PCI: Change all drivers to use pci_device->revision
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / e100.c
CommitLineData
1da177e4
LT
1/*******************************************************************************
2
0abb6eb1
AK
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
05479938
JB
5
6 This program is free software; you can redistribute it and/or modify it
0abb6eb1
AK
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
05479938 9
0abb6eb1 10 This program is distributed in the hope it will be useful, but WITHOUT
05479938
JB
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
1da177e4 13 more details.
05479938 14
1da177e4 15 You should have received a copy of the GNU General Public License along with
0abb6eb1
AK
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
05479938 18
0abb6eb1
AK
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
05479938 21
1da177e4
LT
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
0abb6eb1 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
1da177e4
LT
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * e100.c: Intel(R) PRO/100 ethernet driver
31 *
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35 *
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
40 *
41 *
42 * Theory of Operation
43 *
44 * I. General
45 *
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
54 *
55 * II. Driver Operation
56 *
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
63 *
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
68 *
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
72 *
73 * III. Transmit
74 *
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
82 *
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
86 *
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
92 *
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
96 *
97 * IV. Recieve
98 *
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
108 *
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
117 * placed.
118 *
119 * V. Miscellaneous
120 *
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
126 *
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
128 *
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
131 *
132 * TODO:
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
ac7c6669
OM
135 *
136 * FIXES:
137 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
138 * - Stratus87247: protect MDI control register manipulations
1da177e4
LT
139 */
140
1da177e4
LT
141#include <linux/module.h>
142#include <linux/moduleparam.h>
143#include <linux/kernel.h>
144#include <linux/types.h>
145#include <linux/slab.h>
146#include <linux/delay.h>
147#include <linux/init.h>
148#include <linux/pci.h>
1e7f0bd8 149#include <linux/dma-mapping.h>
1da177e4
LT
150#include <linux/netdevice.h>
151#include <linux/etherdevice.h>
152#include <linux/mii.h>
153#include <linux/if_vlan.h>
154#include <linux/skbuff.h>
155#include <linux/ethtool.h>
156#include <linux/string.h>
157#include <asm/unaligned.h>
158
159
160#define DRV_NAME "e100"
4e1dc97d 161#define DRV_EXT "-NAPI"
44e4925e 162#define DRV_VERSION "3.5.23-k4"DRV_EXT
1da177e4 163#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
4e1dc97d 164#define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
1da177e4
LT
165#define PFX DRV_NAME ": "
166
167#define E100_WATCHDOG_PERIOD (2 * HZ)
168#define E100_NAPI_WEIGHT 16
169
170MODULE_DESCRIPTION(DRV_DESCRIPTION);
171MODULE_AUTHOR(DRV_COPYRIGHT);
172MODULE_LICENSE("GPL");
173MODULE_VERSION(DRV_VERSION);
174
175static int debug = 3;
8fb6f732 176static int eeprom_bad_csum_allow = 0;
27345bb6 177static int use_io = 0;
1da177e4 178module_param(debug, int, 0);
8fb6f732 179module_param(eeprom_bad_csum_allow, int, 0);
27345bb6 180module_param(use_io, int, 0);
1da177e4 181MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
8fb6f732 182MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
27345bb6 183MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
1da177e4
LT
184#define DPRINTK(nlevel, klevel, fmt, args...) \
185 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
186 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
187 __FUNCTION__ , ## args))
188
189#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
190 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
191 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
192static struct pci_device_id e100_id_table[] = {
193 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
194 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
195 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
196 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
197 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
198 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
199 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
200 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
201 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
202 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
203 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
204 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
205 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
206 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
207 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
208 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
209 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
210 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
211 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
212 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
213 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
214 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
215 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
216 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
217 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
218 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
219 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
220 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
221 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
222 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
042e2fb7
MC
223 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
224 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
225 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
226 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
227 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
1da177e4
LT
228 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
229 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
230 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
231 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
232 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
042e2fb7 233 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
1da177e4
LT
234 { 0, }
235};
236MODULE_DEVICE_TABLE(pci, e100_id_table);
237
238enum mac {
239 mac_82557_D100_A = 0,
240 mac_82557_D100_B = 1,
241 mac_82557_D100_C = 2,
242 mac_82558_D101_A4 = 4,
243 mac_82558_D101_B0 = 5,
244 mac_82559_D101M = 8,
245 mac_82559_D101S = 9,
246 mac_82550_D102 = 12,
247 mac_82550_D102_C = 13,
248 mac_82551_E = 14,
249 mac_82551_F = 15,
250 mac_82551_10 = 16,
251 mac_unknown = 0xFF,
252};
253
254enum phy {
255 phy_100a = 0x000003E0,
256 phy_100c = 0x035002A8,
257 phy_82555_tx = 0x015002A8,
258 phy_nsc_tx = 0x5C002000,
259 phy_82562_et = 0x033002A8,
260 phy_82562_em = 0x032002A8,
261 phy_82562_ek = 0x031002A8,
262 phy_82562_eh = 0x017002A8,
263 phy_unknown = 0xFFFFFFFF,
264};
265
266/* CSR (Control/Status Registers) */
267struct csr {
268 struct {
269 u8 status;
270 u8 stat_ack;
271 u8 cmd_lo;
272 u8 cmd_hi;
273 u32 gen_ptr;
274 } scb;
275 u32 port;
276 u16 flash_ctrl;
277 u8 eeprom_ctrl_lo;
278 u8 eeprom_ctrl_hi;
279 u32 mdi_ctrl;
280 u32 rx_dma_count;
281};
282
283enum scb_status {
284 rus_ready = 0x10,
285 rus_mask = 0x3C,
286};
287
ca93ca42
JG
288enum ru_state {
289 RU_SUSPENDED = 0,
290 RU_RUNNING = 1,
291 RU_UNINITIALIZED = -1,
292};
293
1da177e4
LT
294enum scb_stat_ack {
295 stat_ack_not_ours = 0x00,
296 stat_ack_sw_gen = 0x04,
297 stat_ack_rnr = 0x10,
298 stat_ack_cu_idle = 0x20,
299 stat_ack_frame_rx = 0x40,
300 stat_ack_cu_cmd_done = 0x80,
301 stat_ack_not_present = 0xFF,
302 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
303 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
304};
305
306enum scb_cmd_hi {
307 irq_mask_none = 0x00,
308 irq_mask_all = 0x01,
309 irq_sw_gen = 0x02,
310};
311
312enum scb_cmd_lo {
313 cuc_nop = 0x00,
314 ruc_start = 0x01,
315 ruc_load_base = 0x06,
316 cuc_start = 0x10,
317 cuc_resume = 0x20,
318 cuc_dump_addr = 0x40,
319 cuc_dump_stats = 0x50,
320 cuc_load_base = 0x60,
321 cuc_dump_reset = 0x70,
322};
323
324enum cuc_dump {
325 cuc_dump_complete = 0x0000A005,
326 cuc_dump_reset_complete = 0x0000A007,
327};
05479938 328
1da177e4
LT
329enum port {
330 software_reset = 0x0000,
331 selftest = 0x0001,
332 selective_reset = 0x0002,
333};
334
335enum eeprom_ctrl_lo {
336 eesk = 0x01,
337 eecs = 0x02,
338 eedi = 0x04,
339 eedo = 0x08,
340};
341
342enum mdi_ctrl {
343 mdi_write = 0x04000000,
344 mdi_read = 0x08000000,
345 mdi_ready = 0x10000000,
346};
347
348enum eeprom_op {
349 op_write = 0x05,
350 op_read = 0x06,
351 op_ewds = 0x10,
352 op_ewen = 0x13,
353};
354
355enum eeprom_offsets {
356 eeprom_cnfg_mdix = 0x03,
357 eeprom_id = 0x0A,
358 eeprom_config_asf = 0x0D,
359 eeprom_smbus_addr = 0x90,
360};
361
362enum eeprom_cnfg_mdix {
363 eeprom_mdix_enabled = 0x0080,
364};
365
366enum eeprom_id {
367 eeprom_id_wol = 0x0020,
368};
369
370enum eeprom_config_asf {
371 eeprom_asf = 0x8000,
372 eeprom_gcl = 0x4000,
373};
374
375enum cb_status {
376 cb_complete = 0x8000,
377 cb_ok = 0x2000,
378};
379
380enum cb_command {
381 cb_nop = 0x0000,
382 cb_iaaddr = 0x0001,
383 cb_config = 0x0002,
384 cb_multi = 0x0003,
385 cb_tx = 0x0004,
386 cb_ucode = 0x0005,
387 cb_dump = 0x0006,
388 cb_tx_sf = 0x0008,
389 cb_cid = 0x1f00,
390 cb_i = 0x2000,
391 cb_s = 0x4000,
392 cb_el = 0x8000,
393};
394
395struct rfd {
396 u16 status;
397 u16 command;
398 u32 link;
399 u32 rbd;
400 u16 actual_size;
401 u16 size;
402};
403
404struct rx {
405 struct rx *next, *prev;
406 struct sk_buff *skb;
407 dma_addr_t dma_addr;
408};
409
410#if defined(__BIG_ENDIAN_BITFIELD)
411#define X(a,b) b,a
412#else
413#define X(a,b) a,b
414#endif
415struct config {
416/*0*/ u8 X(byte_count:6, pad0:2);
417/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
418/*2*/ u8 adaptive_ifs;
419/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
420 term_write_cache_line:1), pad3:4);
421/*4*/ u8 X(rx_dma_max_count:7, pad4:1);
422/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
423/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
424 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
425 rx_discard_overruns:1), rx_save_bad_frames:1);
426/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
427 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
428 tx_dynamic_tbd:1);
429/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
430/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
431 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
432/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
433 loopback:2);
434/*11*/ u8 X(linear_priority:3, pad11:5);
435/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
436/*13*/ u8 ip_addr_lo;
437/*14*/ u8 ip_addr_hi;
438/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
439 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
440 pad15_2:1), crs_or_cdt:1);
441/*16*/ u8 fc_delay_lo;
442/*17*/ u8 fc_delay_hi;
443/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
444 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
445/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
446 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
447 full_duplex_force:1), full_duplex_pin:1);
448/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
449/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
450/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
451 u8 pad_d102[9];
452};
453
454#define E100_MAX_MULTICAST_ADDRS 64
455struct multi {
456 u16 count;
457 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
458};
459
460/* Important: keep total struct u32-aligned */
461#define UCODE_SIZE 134
462struct cb {
463 u16 status;
464 u16 command;
465 u32 link;
466 union {
467 u8 iaaddr[ETH_ALEN];
468 u32 ucode[UCODE_SIZE];
469 struct config config;
470 struct multi multi;
471 struct {
472 u32 tbd_array;
473 u16 tcb_byte_count;
474 u8 threshold;
475 u8 tbd_count;
476 struct {
477 u32 buf_addr;
478 u16 size;
479 u16 eol;
480 } tbd;
481 } tcb;
482 u32 dump_buffer_addr;
483 } u;
484 struct cb *next, *prev;
485 dma_addr_t dma_addr;
486 struct sk_buff *skb;
487};
488
489enum loopback {
490 lb_none = 0, lb_mac = 1, lb_phy = 3,
491};
492
493struct stats {
494 u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
495 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
496 tx_multiple_collisions, tx_total_collisions;
497 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
498 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
499 rx_short_frame_errors;
500 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
501 u16 xmt_tco_frames, rcv_tco_frames;
502 u32 complete;
503};
504
505struct mem {
506 struct {
507 u32 signature;
508 u32 result;
509 } selftest;
510 struct stats stats;
511 u8 dump_buf[596];
512};
513
514struct param_range {
515 u32 min;
516 u32 max;
517 u32 count;
518};
519
520struct params {
521 struct param_range rfds;
522 struct param_range cbs;
523};
524
525struct nic {
526 /* Begin: frequently used values: keep adjacent for cache effect */
527 u32 msg_enable ____cacheline_aligned;
528 struct net_device *netdev;
529 struct pci_dev *pdev;
530
531 struct rx *rxs ____cacheline_aligned;
532 struct rx *rx_to_use;
533 struct rx *rx_to_clean;
534 struct rfd blank_rfd;
ca93ca42 535 enum ru_state ru_running;
1da177e4
LT
536
537 spinlock_t cb_lock ____cacheline_aligned;
538 spinlock_t cmd_lock;
539 struct csr __iomem *csr;
540 enum scb_cmd_lo cuc_cmd;
541 unsigned int cbs_avail;
542 struct cb *cbs;
543 struct cb *cb_to_use;
544 struct cb *cb_to_send;
545 struct cb *cb_to_clean;
546 u16 tx_command;
547 /* End: frequently used values: keep adjacent for cache effect */
548
549 enum {
550 ich = (1 << 0),
551 promiscuous = (1 << 1),
552 multicast_all = (1 << 2),
553 wol_magic = (1 << 3),
554 ich_10h_workaround = (1 << 4),
555 } flags ____cacheline_aligned;
556
557 enum mac mac;
558 enum phy phy;
559 struct params params;
560 struct net_device_stats net_stats;
561 struct timer_list watchdog;
562 struct timer_list blink_timer;
563 struct mii_if_info mii;
2acdb1e0 564 struct work_struct tx_timeout_task;
1da177e4
LT
565 enum loopback loopback;
566
567 struct mem *mem;
568 dma_addr_t dma_addr;
569
570 dma_addr_t cbs_dma_addr;
571 u8 adaptive_ifs;
572 u8 tx_threshold;
573 u32 tx_frames;
574 u32 tx_collisions;
575 u32 tx_deferred;
576 u32 tx_single_collisions;
577 u32 tx_multiple_collisions;
578 u32 tx_fc_pause;
579 u32 tx_tco_frames;
580
581 u32 rx_fc_pause;
582 u32 rx_fc_unsupported;
583 u32 rx_tco_frames;
584 u32 rx_over_length_errors;
585
1da177e4
LT
586 u16 leds;
587 u16 eeprom_wc;
588 u16 eeprom[256];
ac7c6669 589 spinlock_t mdio_lock;
1da177e4
LT
590};
591
592static inline void e100_write_flush(struct nic *nic)
593{
594 /* Flush previous PCI writes through intermediate bridges
595 * by doing a benign read */
27345bb6 596 (void)ioread8(&nic->csr->scb.status);
1da177e4
LT
597}
598
858119e1 599static void e100_enable_irq(struct nic *nic)
1da177e4
LT
600{
601 unsigned long flags;
602
603 spin_lock_irqsave(&nic->cmd_lock, flags);
27345bb6 604 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
1da177e4 605 e100_write_flush(nic);
ad8c48ad 606 spin_unlock_irqrestore(&nic->cmd_lock, flags);
1da177e4
LT
607}
608
858119e1 609static void e100_disable_irq(struct nic *nic)
1da177e4
LT
610{
611 unsigned long flags;
612
613 spin_lock_irqsave(&nic->cmd_lock, flags);
27345bb6 614 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
1da177e4 615 e100_write_flush(nic);
ad8c48ad 616 spin_unlock_irqrestore(&nic->cmd_lock, flags);
1da177e4
LT
617}
618
619static void e100_hw_reset(struct nic *nic)
620{
621 /* Put CU and RU into idle with a selective reset to get
622 * device off of PCI bus */
27345bb6 623 iowrite32(selective_reset, &nic->csr->port);
1da177e4
LT
624 e100_write_flush(nic); udelay(20);
625
626 /* Now fully reset device */
27345bb6 627 iowrite32(software_reset, &nic->csr->port);
1da177e4
LT
628 e100_write_flush(nic); udelay(20);
629
630 /* Mask off our interrupt line - it's unmasked after reset */
631 e100_disable_irq(nic);
632}
633
634static int e100_self_test(struct nic *nic)
635{
636 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
637
638 /* Passing the self-test is a pretty good indication
639 * that the device can DMA to/from host memory */
640
641 nic->mem->selftest.signature = 0;
642 nic->mem->selftest.result = 0xFFFFFFFF;
643
27345bb6 644 iowrite32(selftest | dma_addr, &nic->csr->port);
1da177e4
LT
645 e100_write_flush(nic);
646 /* Wait 10 msec for self-test to complete */
647 msleep(10);
648
649 /* Interrupts are enabled after self-test */
650 e100_disable_irq(nic);
651
652 /* Check results of self-test */
653 if(nic->mem->selftest.result != 0) {
654 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
655 nic->mem->selftest.result);
656 return -ETIMEDOUT;
657 }
658 if(nic->mem->selftest.signature == 0) {
659 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
660 return -ETIMEDOUT;
661 }
662
663 return 0;
664}
665
666static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
667{
668 u32 cmd_addr_data[3];
669 u8 ctrl;
670 int i, j;
671
672 /* Three cmds: write/erase enable, write data, write/erase disable */
673 cmd_addr_data[0] = op_ewen << (addr_len - 2);
674 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
675 cpu_to_le16(data);
676 cmd_addr_data[2] = op_ewds << (addr_len - 2);
677
678 /* Bit-bang cmds to write word to eeprom */
679 for(j = 0; j < 3; j++) {
680
681 /* Chip select */
27345bb6 682 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
683 e100_write_flush(nic); udelay(4);
684
685 for(i = 31; i >= 0; i--) {
686 ctrl = (cmd_addr_data[j] & (1 << i)) ?
687 eecs | eedi : eecs;
27345bb6 688 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
689 e100_write_flush(nic); udelay(4);
690
27345bb6 691 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
692 e100_write_flush(nic); udelay(4);
693 }
694 /* Wait 10 msec for cmd to complete */
695 msleep(10);
696
697 /* Chip deselect */
27345bb6 698 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
699 e100_write_flush(nic); udelay(4);
700 }
701};
702
703/* General technique stolen from the eepro100 driver - very clever */
704static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
705{
706 u32 cmd_addr_data;
707 u16 data = 0;
708 u8 ctrl;
709 int i;
710
711 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
712
713 /* Chip select */
27345bb6 714 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
715 e100_write_flush(nic); udelay(4);
716
717 /* Bit-bang to read word from eeprom */
718 for(i = 31; i >= 0; i--) {
719 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
27345bb6 720 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
1da177e4 721 e100_write_flush(nic); udelay(4);
05479938 722
27345bb6 723 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4 724 e100_write_flush(nic); udelay(4);
05479938 725
1da177e4
LT
726 /* Eeprom drives a dummy zero to EEDO after receiving
727 * complete address. Use this to adjust addr_len. */
27345bb6 728 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
1da177e4
LT
729 if(!(ctrl & eedo) && i > 16) {
730 *addr_len -= (i - 16);
731 i = 17;
732 }
05479938 733
1da177e4
LT
734 data = (data << 1) | (ctrl & eedo ? 1 : 0);
735 }
736
737 /* Chip deselect */
27345bb6 738 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
739 e100_write_flush(nic); udelay(4);
740
741 return le16_to_cpu(data);
742};
743
744/* Load entire EEPROM image into driver cache and validate checksum */
745static int e100_eeprom_load(struct nic *nic)
746{
747 u16 addr, addr_len = 8, checksum = 0;
748
749 /* Try reading with an 8-bit addr len to discover actual addr len */
750 e100_eeprom_read(nic, &addr_len, 0);
751 nic->eeprom_wc = 1 << addr_len;
752
753 for(addr = 0; addr < nic->eeprom_wc; addr++) {
754 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
755 if(addr < nic->eeprom_wc - 1)
756 checksum += cpu_to_le16(nic->eeprom[addr]);
757 }
758
759 /* The checksum, stored in the last word, is calculated such that
760 * the sum of words should be 0xBABA */
761 checksum = le16_to_cpu(0xBABA - checksum);
762 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
763 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
8fb6f732
DM
764 if (!eeprom_bad_csum_allow)
765 return -EAGAIN;
1da177e4
LT
766 }
767
768 return 0;
769}
770
771/* Save (portion of) driver EEPROM cache to device and update checksum */
772static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
773{
774 u16 addr, addr_len = 8, checksum = 0;
775
776 /* Try reading with an 8-bit addr len to discover actual addr len */
777 e100_eeprom_read(nic, &addr_len, 0);
778 nic->eeprom_wc = 1 << addr_len;
779
780 if(start + count >= nic->eeprom_wc)
781 return -EINVAL;
782
783 for(addr = start; addr < start + count; addr++)
784 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
785
786 /* The checksum, stored in the last word, is calculated such that
787 * the sum of words should be 0xBABA */
788 for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
789 checksum += cpu_to_le16(nic->eeprom[addr]);
790 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum);
791 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
792 nic->eeprom[nic->eeprom_wc - 1]);
793
794 return 0;
795}
796
962082b6 797#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
e6280f26 798#define E100_WAIT_SCB_FAST 20 /* delay like the old code */
858119e1 799static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
1da177e4
LT
800{
801 unsigned long flags;
802 unsigned int i;
803 int err = 0;
804
805 spin_lock_irqsave(&nic->cmd_lock, flags);
806
807 /* Previous command is accepted when SCB clears */
808 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
27345bb6 809 if(likely(!ioread8(&nic->csr->scb.cmd_lo)))
1da177e4
LT
810 break;
811 cpu_relax();
e6280f26 812 if(unlikely(i > E100_WAIT_SCB_FAST))
1da177e4
LT
813 udelay(5);
814 }
815 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
816 err = -EAGAIN;
817 goto err_unlock;
818 }
819
820 if(unlikely(cmd != cuc_resume))
27345bb6
JB
821 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
822 iowrite8(cmd, &nic->csr->scb.cmd_lo);
1da177e4
LT
823
824err_unlock:
825 spin_unlock_irqrestore(&nic->cmd_lock, flags);
826
827 return err;
828}
829
858119e1 830static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
1da177e4
LT
831 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
832{
833 struct cb *cb;
834 unsigned long flags;
835 int err = 0;
836
837 spin_lock_irqsave(&nic->cb_lock, flags);
838
839 if(unlikely(!nic->cbs_avail)) {
840 err = -ENOMEM;
841 goto err_unlock;
842 }
843
844 cb = nic->cb_to_use;
845 nic->cb_to_use = cb->next;
846 nic->cbs_avail--;
847 cb->skb = skb;
848
849 if(unlikely(!nic->cbs_avail))
850 err = -ENOSPC;
851
852 cb_prepare(nic, cb, skb);
853
854 /* Order is important otherwise we'll be in a race with h/w:
855 * set S-bit in current first, then clear S-bit in previous. */
856 cb->command |= cpu_to_le16(cb_s);
857 wmb();
858 cb->prev->command &= cpu_to_le16(~cb_s);
859
860 while(nic->cb_to_send != nic->cb_to_use) {
861 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
862 nic->cb_to_send->dma_addr))) {
863 /* Ok, here's where things get sticky. It's
864 * possible that we can't schedule the command
865 * because the controller is too busy, so
866 * let's just queue the command and try again
867 * when another command is scheduled. */
962082b6
MC
868 if(err == -ENOSPC) {
869 //request a reset
870 schedule_work(&nic->tx_timeout_task);
871 }
1da177e4
LT
872 break;
873 } else {
874 nic->cuc_cmd = cuc_resume;
875 nic->cb_to_send = nic->cb_to_send->next;
876 }
877 }
878
879err_unlock:
880 spin_unlock_irqrestore(&nic->cb_lock, flags);
881
882 return err;
883}
884
885static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
886{
887 u32 data_out = 0;
888 unsigned int i;
ac7c6669 889 unsigned long flags;
1da177e4 890
ac7c6669
OM
891
892 /*
893 * Stratus87247: we shouldn't be writing the MDI control
894 * register until the Ready bit shows True. Also, since
895 * manipulation of the MDI control registers is a multi-step
896 * procedure it should be done under lock.
897 */
898 spin_lock_irqsave(&nic->mdio_lock, flags);
899 for (i = 100; i; --i) {
27345bb6 900 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
ac7c6669
OM
901 break;
902 udelay(20);
903 }
904 if (unlikely(!i)) {
905 printk("e100.mdio_ctrl(%s) won't go Ready\n",
906 nic->netdev->name );
907 spin_unlock_irqrestore(&nic->mdio_lock, flags);
908 return 0; /* No way to indicate timeout error */
909 }
27345bb6 910 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
1da177e4 911
ac7c6669 912 for (i = 0; i < 100; i++) {
1da177e4 913 udelay(20);
27345bb6 914 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
1da177e4
LT
915 break;
916 }
ac7c6669 917 spin_unlock_irqrestore(&nic->mdio_lock, flags);
1da177e4
LT
918 DPRINTK(HW, DEBUG,
919 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
920 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
921 return (u16)data_out;
922}
923
924static int mdio_read(struct net_device *netdev, int addr, int reg)
925{
926 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
927}
928
929static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
930{
931 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
932}
933
934static void e100_get_defaults(struct nic *nic)
935{
2afecc04
JB
936 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
937 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
1da177e4 938
1da177e4 939 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
44c10138 940 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1da177e4
LT
941 if(nic->mac == mac_unknown)
942 nic->mac = mac_82557_D100_A;
943
944 nic->params.rfds = rfds;
945 nic->params.cbs = cbs;
946
947 /* Quadwords to DMA into FIFO before starting frame transmit */
948 nic->tx_threshold = 0xE0;
949
962082b6
MC
950 /* no interrupt for every tx completion, delay = 256us if not 557*/
951 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
952 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1da177e4
LT
953
954 /* Template for a freshly allocated RFD */
ca93ca42 955 nic->blank_rfd.command = cpu_to_le16(cb_el);
1da177e4
LT
956 nic->blank_rfd.rbd = 0xFFFFFFFF;
957 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
958
959 /* MII setup */
960 nic->mii.phy_id_mask = 0x1F;
961 nic->mii.reg_num_mask = 0x1F;
962 nic->mii.dev = nic->netdev;
963 nic->mii.mdio_read = mdio_read;
964 nic->mii.mdio_write = mdio_write;
965}
966
967static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
968{
969 struct config *config = &cb->u.config;
970 u8 *c = (u8 *)config;
971
972 cb->command = cpu_to_le16(cb_config);
973
974 memset(config, 0, sizeof(struct config));
975
976 config->byte_count = 0x16; /* bytes in this struct */
977 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
978 config->direct_rx_dma = 0x1; /* reserved */
979 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
980 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
981 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
982 config->tx_underrun_retry = 0x3; /* # of underrun retries */
983 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
984 config->pad10 = 0x6;
985 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
986 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
987 config->ifs = 0x6; /* x16 = inter frame spacing */
988 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
989 config->pad15_1 = 0x1;
990 config->pad15_2 = 0x1;
991 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
992 config->fc_delay_hi = 0x40; /* time delay for fc frame */
993 config->tx_padding = 0x1; /* 1=pad short frames */
994 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
995 config->pad18 = 0x1;
996 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
997 config->pad20_1 = 0x1F;
998 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
999 config->pad21_1 = 0x5;
1000
1001 config->adaptive_ifs = nic->adaptive_ifs;
1002 config->loopback = nic->loopback;
1003
1004 if(nic->mii.force_media && nic->mii.full_duplex)
1005 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1006
1007 if(nic->flags & promiscuous || nic->loopback) {
1008 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1009 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1010 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1011 }
1012
1013 if(nic->flags & multicast_all)
1014 config->multicast_all = 0x1; /* 1=accept, 0=no */
1015
6bdacb1a
MC
1016 /* disable WoL when up */
1017 if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
1da177e4
LT
1018 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1019
1020 if(nic->mac >= mac_82558_D101_A4) {
1021 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1022 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1023 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1024 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
44e4925e 1025 if (nic->mac >= mac_82559_D101M) {
1da177e4 1026 config->tno_intr = 0x1; /* TCO stats enable */
44e4925e
DG
1027 /* Enable TCO in extended config */
1028 if (nic->mac >= mac_82551_10) {
1029 config->byte_count = 0x20; /* extended bytes */
1030 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1031 }
1032 } else {
1da177e4 1033 config->standard_stat_counter = 0x0;
44e4925e 1034 }
1da177e4
LT
1035 }
1036
1037 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1038 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1039 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1040 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1041 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1042 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1043}
1044
2afecc04
JB
1045/********************************************************/
1046/* Micro code for 8086:1229 Rev 8 */
1047/********************************************************/
1048
1049/* Parameter values for the D101M B-step */
1050#define D101M_CPUSAVER_TIMER_DWORD 78
1051#define D101M_CPUSAVER_BUNDLE_DWORD 65
1052#define D101M_CPUSAVER_MIN_SIZE_DWORD 126
1053
1054#define D101M_B_RCVBUNDLE_UCODE \
1055{\
10560x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
10570x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
10580x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
10590x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
10600x00380438, 0x00000000, 0x00140000, 0x00380555, \
10610x00308000, 0x00100662, 0x00100561, 0x000E0408, \
10620x00134861, 0x000C0002, 0x00103093, 0x00308000, \
10630x00100624, 0x00100561, 0x000E0408, 0x00100861, \
10640x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
10650x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
10660x00000000, 0x00000000, 0x00000000, 0x00000000, \
10670x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
10680x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
10690x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
10700x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
10710x00041000, 0x00010004, 0x00130826, 0x000C0006, \
10720x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
10730x00000000, 0x00000000, 0x00000000, 0x00000000, \
10740x00000000, 0x00000000, 0x00000000, 0x00000000, \
10750x00080600, 0x00101B10, 0x00050004, 0x00100826, \
10760x00101210, 0x00380C34, 0x00000000, 0x00000000, \
10770x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
10780x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
10790x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
10800x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
10810x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
10820x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
10830x00130826, 0x000C0001, 0x00220559, 0x00101313, \
10840x00380559, 0x00000000, 0x00000000, 0x00000000, \
10850x00000000, 0x00000000, 0x00000000, 0x00000000, \
10860x00000000, 0x00130831, 0x0010090B, 0x00124813, \
10870x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
10880x003806A8, 0x00000000, 0x00000000, 0x00000000, \
1089}
1090
1091/********************************************************/
1092/* Micro code for 8086:1229 Rev 9 */
1093/********************************************************/
1094
1095/* Parameter values for the D101S */
1096#define D101S_CPUSAVER_TIMER_DWORD 78
1097#define D101S_CPUSAVER_BUNDLE_DWORD 67
1098#define D101S_CPUSAVER_MIN_SIZE_DWORD 128
1099
1100#define D101S_RCVBUNDLE_UCODE \
1101{\
11020x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
11030x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
11040x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
11050x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
11060x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
11070x00308000, 0x00100610, 0x00100561, 0x000E0408, \
11080x00134861, 0x000C0002, 0x00103093, 0x00308000, \
11090x00100624, 0x00100561, 0x000E0408, 0x00100861, \
11100x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
11110x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
11120x00000000, 0x00000000, 0x00000000, 0x00000000, \
11130x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
11140x003A047E, 0x00044010, 0x00380819, 0x00000000, \
11150x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
11160x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
11170x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
11180x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
11190x00101313, 0x00380700, 0x00000000, 0x00000000, \
11200x00000000, 0x00000000, 0x00000000, 0x00000000, \
11210x00080600, 0x00101B10, 0x00050004, 0x00100826, \
11220x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
11230x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
11240x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
11250x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
11260x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
11270x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
11280x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
11290x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
11300x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
11310x00000000, 0x00000000, 0x00000000, 0x00000000, \
11320x00000000, 0x00000000, 0x00000000, 0x00130831, \
11330x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
11340x00041000, 0x00010004, 0x00380700 \
1135}
1136
1137/********************************************************/
1138/* Micro code for the 8086:1229 Rev F/10 */
1139/********************************************************/
1140
1141/* Parameter values for the D102 E-step */
1142#define D102_E_CPUSAVER_TIMER_DWORD 42
1143#define D102_E_CPUSAVER_BUNDLE_DWORD 54
1144#define D102_E_CPUSAVER_MIN_SIZE_DWORD 46
1145
1146#define D102_E_RCVBUNDLE_UCODE \
1147{\
11480x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
11490x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
11500x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
11510x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
11520x00000000, 0x00000000, 0x00000000, 0x00000000, \
11530x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
11540x00000000, 0x00000000, 0x00000000, 0x00000000, \
11550x00000000, 0x00000000, 0x00000000, 0x00000000, \
11560x00000000, 0x00000000, 0x00000000, 0x00000000, \
11570x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
11580x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
11590x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
11600x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
11610x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
11620x00000000, 0x00000000, 0x00000000, 0x00000000, \
11630x00000000, 0x00000000, 0x00000000, 0x00000000, \
11640x00000000, 0x00000000, 0x00000000, 0x00000000, \
11650x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
11660x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
11670x00000000, 0x00000000, 0x00000000, 0x00000000, \
11680x00000000, 0x00000000, 0x00000000, 0x00000000, \
11690x00000000, 0x00000000, 0x00000000, 0x00000000, \
11700x00000000, 0x00000000, 0x00000000, 0x00000000, \
11710x00000000, 0x00000000, 0x00000000, 0x00000000, \
11720x00000000, 0x00000000, 0x00000000, 0x00000000, \
11730x00000000, 0x00000000, 0x00000000, 0x00000000, \
11740x00000000, 0x00000000, 0x00000000, 0x00000000, \
11750x00000000, 0x00000000, 0x00000000, 0x00000000, \
11760x00000000, 0x00000000, 0x00000000, 0x00000000, \
11770x00000000, 0x00000000, 0x00000000, 0x00000000, \
11780x00000000, 0x00000000, 0x00000000, 0x00000000, \
11790x00000000, 0x00000000, 0x00000000, 0x00000000, \
11800x00000000, 0x00000000, 0x00000000, 0x00000000, \
1181}
1182
24180333 1183static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1da177e4 1184{
2afecc04
JB
1185/* *INDENT-OFF* */
1186 static struct {
1187 u32 ucode[UCODE_SIZE + 1];
1188 u8 mac;
1189 u8 timer_dword;
1190 u8 bundle_dword;
1191 u8 min_size_dword;
1192 } ucode_opts[] = {
1193 { D101M_B_RCVBUNDLE_UCODE,
1194 mac_82559_D101M,
1195 D101M_CPUSAVER_TIMER_DWORD,
1196 D101M_CPUSAVER_BUNDLE_DWORD,
1197 D101M_CPUSAVER_MIN_SIZE_DWORD },
1198 { D101S_RCVBUNDLE_UCODE,
1199 mac_82559_D101S,
1200 D101S_CPUSAVER_TIMER_DWORD,
1201 D101S_CPUSAVER_BUNDLE_DWORD,
1202 D101S_CPUSAVER_MIN_SIZE_DWORD },
1203 { D102_E_RCVBUNDLE_UCODE,
1204 mac_82551_F,
1205 D102_E_CPUSAVER_TIMER_DWORD,
1206 D102_E_CPUSAVER_BUNDLE_DWORD,
1207 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1208 { D102_E_RCVBUNDLE_UCODE,
1209 mac_82551_10,
1210 D102_E_CPUSAVER_TIMER_DWORD,
1211 D102_E_CPUSAVER_BUNDLE_DWORD,
1212 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1213 { {0}, 0, 0, 0, 0}
1214 }, *opts;
1215/* *INDENT-ON* */
1216
1217/*************************************************************************
1218* CPUSaver parameters
1219*
1220* All CPUSaver parameters are 16-bit literals that are part of a
1221* "move immediate value" instruction. By changing the value of
1222* the literal in the instruction before the code is loaded, the
1223* driver can change the algorithm.
1224*
0779bf2d 1225* INTDELAY - This loads the dead-man timer with its initial value.
05479938 1226* When this timer expires the interrupt is asserted, and the
2afecc04
JB
1227* timer is reset each time a new packet is received. (see
1228* BUNDLEMAX below to set the limit on number of chained packets)
1229* The current default is 0x600 or 1536. Experiments show that
1230* the value should probably stay within the 0x200 - 0x1000.
1231*
05479938 1232* BUNDLEMAX -
2afecc04
JB
1233* This sets the maximum number of frames that will be bundled. In
1234* some situations, such as the TCP windowing algorithm, it may be
1235* better to limit the growth of the bundle size than let it go as
1236* high as it can, because that could cause too much added latency.
1237* The default is six, because this is the number of packets in the
1238* default TCP window size. A value of 1 would make CPUSaver indicate
1239* an interrupt for every frame received. If you do not want to put
1240* a limit on the bundle size, set this value to xFFFF.
1241*
05479938 1242* BUNDLESMALL -
2afecc04
JB
1243* This contains a bit-mask describing the minimum size frame that
1244* will be bundled. The default masks the lower 7 bits, which means
1245* that any frame less than 128 bytes in length will not be bundled,
1246* but will instead immediately generate an interrupt. This does
1247* not affect the current bundle in any way. Any frame that is 128
1248* bytes or large will be bundled normally. This feature is meant
1249* to provide immediate indication of ACK frames in a TCP environment.
1250* Customers were seeing poor performance when a machine with CPUSaver
1251* enabled was sending but not receiving. The delay introduced when
1252* the ACKs were received was enough to reduce total throughput, because
1253* the sender would sit idle until the ACK was finally seen.
1254*
1255* The current default is 0xFF80, which masks out the lower 7 bits.
1256* This means that any frame which is x7F (127) bytes or smaller
05479938 1257* will cause an immediate interrupt. Because this value must be a
2afecc04
JB
1258* bit mask, there are only a few valid values that can be used. To
1259* turn this feature off, the driver can write the value xFFFF to the
1260* lower word of this instruction (in the same way that the other
1261* parameters are used). Likewise, a value of 0xF800 (2047) would
1262* cause an interrupt to be generated for every frame, because all
1263* standard Ethernet frames are <= 2047 bytes in length.
1264*************************************************************************/
1265
05479938 1266/* if you wish to disable the ucode functionality, while maintaining the
2afecc04
JB
1267 * workarounds it provides, set the following defines to:
1268 * BUNDLESMALL 0
1269 * BUNDLEMAX 1
1270 * INTDELAY 1
1271 */
1272#define BUNDLESMALL 1
1273#define BUNDLEMAX (u16)6
1274#define INTDELAY (u16)1536 /* 0x600 */
1275
1276 /* do not load u-code for ICH devices */
1277 if (nic->flags & ich)
1278 goto noloaducode;
1279
44c10138 1280 /* Search for ucode match against h/w revision */
2afecc04
JB
1281 for (opts = ucode_opts; opts->mac; opts++) {
1282 int i;
1283 u32 *ucode = opts->ucode;
1284 if (nic->mac != opts->mac)
1285 continue;
1286
1287 /* Insert user-tunable settings */
1288 ucode[opts->timer_dword] &= 0xFFFF0000;
1289 ucode[opts->timer_dword] |= INTDELAY;
1290 ucode[opts->bundle_dword] &= 0xFFFF0000;
1291 ucode[opts->bundle_dword] |= BUNDLEMAX;
1292 ucode[opts->min_size_dword] &= 0xFFFF0000;
1293 ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80;
1294
1295 for (i = 0; i < UCODE_SIZE; i++)
875521dd 1296 cb->u.ucode[i] = cpu_to_le32(ucode[i]);
24180333 1297 cb->command = cpu_to_le16(cb_ucode | cb_el);
2afecc04
JB
1298 return;
1299 }
1300
1301noloaducode:
24180333
JB
1302 cb->command = cpu_to_le16(cb_nop | cb_el);
1303}
1304
1305static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb,
1306 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
1307{
1308 int err = 0, counter = 50;
1309 struct cb *cb = nic->cb_to_clean;
1310
1311 if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode)))
1312 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
05479938 1313
24180333
JB
1314 /* must restart cuc */
1315 nic->cuc_cmd = cuc_start;
1316
1317 /* wait for completion */
1318 e100_write_flush(nic);
1319 udelay(10);
1320
1321 /* wait for possibly (ouch) 500ms */
1322 while (!(cb->status & cpu_to_le16(cb_complete))) {
1323 msleep(10);
1324 if (!--counter) break;
1325 }
05479938 1326
24180333 1327 /* ack any interupts, something could have been set */
27345bb6 1328 iowrite8(~0, &nic->csr->scb.stat_ack);
24180333
JB
1329
1330 /* if the command failed, or is not OK, notify and return */
1331 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1332 DPRINTK(PROBE,ERR, "ucode load failed\n");
1333 err = -EPERM;
1334 }
05479938 1335
24180333 1336 return err;
1da177e4
LT
1337}
1338
1339static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1340 struct sk_buff *skb)
1341{
1342 cb->command = cpu_to_le16(cb_iaaddr);
1343 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1344}
1345
1346static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1347{
1348 cb->command = cpu_to_le16(cb_dump);
1349 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1350 offsetof(struct mem, dump_buf));
1351}
1352
1353#define NCONFIG_AUTO_SWITCH 0x0080
1354#define MII_NSC_CONG MII_RESV1
1355#define NSC_CONG_ENABLE 0x0100
1356#define NSC_CONG_TXREADY 0x0400
1357#define ADVERTISE_FC_SUPPORTED 0x0400
1358static int e100_phy_init(struct nic *nic)
1359{
1360 struct net_device *netdev = nic->netdev;
1361 u32 addr;
1362 u16 bmcr, stat, id_lo, id_hi, cong;
1363
1364 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1365 for(addr = 0; addr < 32; addr++) {
1366 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1367 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1368 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1369 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1370 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1371 break;
1372 }
1373 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1374 if(addr == 32)
1375 return -EAGAIN;
1376
1377 /* Selected the phy and isolate the rest */
1378 for(addr = 0; addr < 32; addr++) {
1379 if(addr != nic->mii.phy_id) {
1380 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1381 } else {
1382 bmcr = mdio_read(netdev, addr, MII_BMCR);
1383 mdio_write(netdev, addr, MII_BMCR,
1384 bmcr & ~BMCR_ISOLATE);
1385 }
1386 }
1387
1388 /* Get phy ID */
1389 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1390 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1391 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1392 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1393
1394 /* Handle National tx phys */
1395#define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1396 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1397 /* Disable congestion control */
1398 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1399 cong |= NSC_CONG_TXREADY;
1400 cong &= ~NSC_CONG_ENABLE;
1401 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1402 }
1403
05479938 1404 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
60ffa478
JK
1405 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1406 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1407 /* enable/disable MDI/MDI-X auto-switching. */
1408 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1409 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
64895145 1410 }
1da177e4
LT
1411
1412 return 0;
1413}
1414
1415static int e100_hw_init(struct nic *nic)
1416{
1417 int err;
1418
1419 e100_hw_reset(nic);
1420
1421 DPRINTK(HW, ERR, "e100_hw_init\n");
1422 if(!in_interrupt() && (err = e100_self_test(nic)))
1423 return err;
1424
1425 if((err = e100_phy_init(nic)))
1426 return err;
1427 if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1428 return err;
1429 if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1430 return err;
24180333 1431 if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode)))
1da177e4
LT
1432 return err;
1433 if((err = e100_exec_cb(nic, NULL, e100_configure)))
1434 return err;
1435 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1436 return err;
1437 if((err = e100_exec_cmd(nic, cuc_dump_addr,
1438 nic->dma_addr + offsetof(struct mem, stats))))
1439 return err;
1440 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1441 return err;
1442
1443 e100_disable_irq(nic);
1444
1445 return 0;
1446}
1447
1448static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1449{
1450 struct net_device *netdev = nic->netdev;
1451 struct dev_mc_list *list = netdev->mc_list;
1452 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1453
1454 cb->command = cpu_to_le16(cb_multi);
1455 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1456 for(i = 0; list && i < count; i++, list = list->next)
1457 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1458 ETH_ALEN);
1459}
1460
1461static void e100_set_multicast_list(struct net_device *netdev)
1462{
1463 struct nic *nic = netdev_priv(netdev);
1464
1465 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1466 netdev->mc_count, netdev->flags);
1467
1468 if(netdev->flags & IFF_PROMISC)
1469 nic->flags |= promiscuous;
1470 else
1471 nic->flags &= ~promiscuous;
1472
1473 if(netdev->flags & IFF_ALLMULTI ||
1474 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1475 nic->flags |= multicast_all;
1476 else
1477 nic->flags &= ~multicast_all;
1478
1479 e100_exec_cb(nic, NULL, e100_configure);
1480 e100_exec_cb(nic, NULL, e100_multi);
1481}
1482
1483static void e100_update_stats(struct nic *nic)
1484{
1485 struct net_device_stats *ns = &nic->net_stats;
1486 struct stats *s = &nic->mem->stats;
1487 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1488 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
1489 &s->complete;
1490
1491 /* Device's stats reporting may take several microseconds to
1492 * complete, so where always waiting for results of the
1493 * previous command. */
1494
1495 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) {
1496 *complete = 0;
1497 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1498 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1499 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1500 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1501 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1502 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1503 ns->collisions += nic->tx_collisions;
1504 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1505 le32_to_cpu(s->tx_lost_crs);
1da177e4
LT
1506 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1507 nic->rx_over_length_errors;
1508 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1509 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1510 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1511 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
ecf7130b 1512 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1da177e4
LT
1513 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1514 le32_to_cpu(s->rx_alignment_errors) +
1515 le32_to_cpu(s->rx_short_frame_errors) +
1516 le32_to_cpu(s->rx_cdt_errors);
1517 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1518 nic->tx_single_collisions +=
1519 le32_to_cpu(s->tx_single_collisions);
1520 nic->tx_multiple_collisions +=
1521 le32_to_cpu(s->tx_multiple_collisions);
1522 if(nic->mac >= mac_82558_D101_A4) {
1523 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1524 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1525 nic->rx_fc_unsupported +=
1526 le32_to_cpu(s->fc_rcv_unsupported);
1527 if(nic->mac >= mac_82559_D101M) {
1528 nic->tx_tco_frames +=
1529 le16_to_cpu(s->xmt_tco_frames);
1530 nic->rx_tco_frames +=
1531 le16_to_cpu(s->rcv_tco_frames);
1532 }
1533 }
1534 }
1535
05479938 1536
1f53367d
MC
1537 if(e100_exec_cmd(nic, cuc_dump_reset, 0))
1538 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1da177e4
LT
1539}
1540
1541static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1542{
1543 /* Adjust inter-frame-spacing (IFS) between two transmits if
1544 * we're getting collisions on a half-duplex connection. */
1545
1546 if(duplex == DUPLEX_HALF) {
1547 u32 prev = nic->adaptive_ifs;
1548 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1549
1550 if((nic->tx_frames / 32 < nic->tx_collisions) &&
1551 (nic->tx_frames > min_frames)) {
1552 if(nic->adaptive_ifs < 60)
1553 nic->adaptive_ifs += 5;
1554 } else if (nic->tx_frames < min_frames) {
1555 if(nic->adaptive_ifs >= 5)
1556 nic->adaptive_ifs -= 5;
1557 }
1558 if(nic->adaptive_ifs != prev)
1559 e100_exec_cb(nic, NULL, e100_configure);
1560 }
1561}
1562
1563static void e100_watchdog(unsigned long data)
1564{
1565 struct nic *nic = (struct nic *)data;
1566 struct ethtool_cmd cmd;
1567
1568 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1569
1570 /* mii library handles link maintenance tasks */
1571
1572 mii_ethtool_gset(&nic->mii, &cmd);
1573
1574 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1575 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
1576 cmd.speed == SPEED_100 ? "100" : "10",
1577 cmd.duplex == DUPLEX_FULL ? "full" : "half");
1578 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1579 DPRINTK(LINK, INFO, "link down\n");
1580 }
1581
1582 mii_check_link(&nic->mii);
1583
1584 /* Software generated interrupt to recover from (rare) Rx
05479938
JB
1585 * allocation failure.
1586 * Unfortunately have to use a spinlock to not re-enable interrupts
1587 * accidentally, due to hardware that shares a register between the
1588 * interrupt mask bit and the SW Interrupt generation bit */
1da177e4 1589 spin_lock_irq(&nic->cmd_lock);
27345bb6 1590 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1da177e4 1591 e100_write_flush(nic);
ad8c48ad 1592 spin_unlock_irq(&nic->cmd_lock);
1da177e4
LT
1593
1594 e100_update_stats(nic);
1595 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1596
1597 if(nic->mac <= mac_82557_D100_C)
1598 /* Issue a multicast command to workaround a 557 lock up */
1599 e100_set_multicast_list(nic->netdev);
1600
1601 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1602 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1603 nic->flags |= ich_10h_workaround;
1604 else
1605 nic->flags &= ~ich_10h_workaround;
1606
1607 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD);
1608}
1609
858119e1 1610static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1da177e4
LT
1611 struct sk_buff *skb)
1612{
1613 cb->command = nic->tx_command;
962082b6 1614 /* interrupt every 16 packets regardless of delay */
996ec353
MC
1615 if((nic->cbs_avail & ~15) == nic->cbs_avail)
1616 cb->command |= cpu_to_le16(cb_i);
1da177e4
LT
1617 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1618 cb->u.tcb.tcb_byte_count = 0;
1619 cb->u.tcb.threshold = nic->tx_threshold;
1620 cb->u.tcb.tbd_count = 1;
1621 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1622 skb->data, skb->len, PCI_DMA_TODEVICE));
611494dc 1623 /* check for mapping failure? */
1da177e4
LT
1624 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1625}
1626
1627static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1628{
1629 struct nic *nic = netdev_priv(netdev);
1630 int err;
1631
1632 if(nic->flags & ich_10h_workaround) {
1633 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1634 Issue a NOP command followed by a 1us delay before
1635 issuing the Tx command. */
1f53367d
MC
1636 if(e100_exec_cmd(nic, cuc_nop, 0))
1637 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1da177e4
LT
1638 udelay(1);
1639 }
1640
1641 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1642
1643 switch(err) {
1644 case -ENOSPC:
1645 /* We queued the skb, but now we're out of space. */
1646 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1647 netif_stop_queue(netdev);
1648 break;
1649 case -ENOMEM:
1650 /* This is a hard error - log it. */
1651 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1652 netif_stop_queue(netdev);
1653 return 1;
1654 }
1655
1656 netdev->trans_start = jiffies;
1657 return 0;
1658}
1659
858119e1 1660static int e100_tx_clean(struct nic *nic)
1da177e4
LT
1661{
1662 struct cb *cb;
1663 int tx_cleaned = 0;
1664
1665 spin_lock(&nic->cb_lock);
1666
1da177e4
LT
1667 /* Clean CBs marked complete */
1668 for(cb = nic->cb_to_clean;
1669 cb->status & cpu_to_le16(cb_complete);
1670 cb = nic->cb_to_clean = cb->next) {
dc45010e
JB
1671 DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n",
1672 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1673 cb->status);
1674
1da177e4
LT
1675 if(likely(cb->skb != NULL)) {
1676 nic->net_stats.tx_packets++;
1677 nic->net_stats.tx_bytes += cb->skb->len;
1678
1679 pci_unmap_single(nic->pdev,
1680 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1681 le16_to_cpu(cb->u.tcb.tbd.size),
1682 PCI_DMA_TODEVICE);
1683 dev_kfree_skb_any(cb->skb);
1684 cb->skb = NULL;
1685 tx_cleaned = 1;
1686 }
1687 cb->status = 0;
1688 nic->cbs_avail++;
1689 }
1690
1691 spin_unlock(&nic->cb_lock);
1692
1693 /* Recover from running out of Tx resources in xmit_frame */
1694 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1695 netif_wake_queue(nic->netdev);
1696
1697 return tx_cleaned;
1698}
1699
1700static void e100_clean_cbs(struct nic *nic)
1701{
1702 if(nic->cbs) {
1703 while(nic->cbs_avail != nic->params.cbs.count) {
1704 struct cb *cb = nic->cb_to_clean;
1705 if(cb->skb) {
1706 pci_unmap_single(nic->pdev,
1707 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1708 le16_to_cpu(cb->u.tcb.tbd.size),
1709 PCI_DMA_TODEVICE);
1710 dev_kfree_skb(cb->skb);
1711 }
1712 nic->cb_to_clean = nic->cb_to_clean->next;
1713 nic->cbs_avail++;
1714 }
1715 pci_free_consistent(nic->pdev,
1716 sizeof(struct cb) * nic->params.cbs.count,
1717 nic->cbs, nic->cbs_dma_addr);
1718 nic->cbs = NULL;
1719 nic->cbs_avail = 0;
1720 }
1721 nic->cuc_cmd = cuc_start;
1722 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1723 nic->cbs;
1724}
1725
1726static int e100_alloc_cbs(struct nic *nic)
1727{
1728 struct cb *cb;
1729 unsigned int i, count = nic->params.cbs.count;
1730
1731 nic->cuc_cmd = cuc_start;
1732 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1733 nic->cbs_avail = 0;
1734
1735 nic->cbs = pci_alloc_consistent(nic->pdev,
1736 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1737 if(!nic->cbs)
1738 return -ENOMEM;
1739
1740 for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1741 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1742 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1743
1744 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1745 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1746 ((i+1) % count) * sizeof(struct cb));
1747 cb->skb = NULL;
1748 }
1749
1750 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1751 nic->cbs_avail = count;
1752
1753 return 0;
1754}
1755
ca93ca42 1756static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1da177e4 1757{
ca93ca42
JG
1758 if(!nic->rxs) return;
1759 if(RU_SUSPENDED != nic->ru_running) return;
1760
1761 /* handle init time starts */
1762 if(!rx) rx = nic->rxs;
1763
1764 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1765 if(rx->skb) {
1766 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1767 nic->ru_running = RU_RUNNING;
1768 }
1da177e4
LT
1769}
1770
1771#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
858119e1 1772static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1da177e4 1773{
4187592b 1774 if(!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
1da177e4
LT
1775 return -ENOMEM;
1776
1777 /* Align, init, and map the RFD. */
1da177e4 1778 skb_reserve(rx->skb, NET_IP_ALIGN);
27d7ff46 1779 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1da177e4
LT
1780 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1781 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1782
1f53367d
MC
1783 if(pci_dma_mapping_error(rx->dma_addr)) {
1784 dev_kfree_skb_any(rx->skb);
097688ef 1785 rx->skb = NULL;
1f53367d
MC
1786 rx->dma_addr = 0;
1787 return -ENOMEM;
1788 }
1789
1da177e4
LT
1790 /* Link the RFD to end of RFA by linking previous RFD to
1791 * this one, and clearing EL bit of previous. */
1792 if(rx->prev->skb) {
1793 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1794 put_unaligned(cpu_to_le32(rx->dma_addr),
1795 (u32 *)&prev_rfd->link);
1796 wmb();
ca93ca42 1797 prev_rfd->command &= ~cpu_to_le16(cb_el);
1da177e4
LT
1798 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1799 sizeof(struct rfd), PCI_DMA_TODEVICE);
1800 }
1801
1802 return 0;
1803}
1804
858119e1 1805static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1da177e4
LT
1806 unsigned int *work_done, unsigned int work_to_do)
1807{
1808 struct sk_buff *skb = rx->skb;
1809 struct rfd *rfd = (struct rfd *)skb->data;
1810 u16 rfd_status, actual_size;
1811
1812 if(unlikely(work_done && *work_done >= work_to_do))
1813 return -EAGAIN;
1814
1815 /* Need to sync before taking a peek at cb_complete bit */
1816 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1817 sizeof(struct rfd), PCI_DMA_FROMDEVICE);
1818 rfd_status = le16_to_cpu(rfd->status);
1819
1820 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1821
1822 /* If data isn't ready, nothing to indicate */
1823 if(unlikely(!(rfd_status & cb_complete)))
1f53367d 1824 return -ENODATA;
1da177e4
LT
1825
1826 /* Get actual data size */
1827 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1828 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1829 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1830
1831 /* Get data */
1832 pci_unmap_single(nic->pdev, rx->dma_addr,
1833 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1834
ca93ca42
JG
1835 /* this allows for a fast restart without re-enabling interrupts */
1836 if(le16_to_cpu(rfd->command) & cb_el)
1837 nic->ru_running = RU_SUSPENDED;
1838
1da177e4
LT
1839 /* Pull off the RFD and put the actual data (minus eth hdr) */
1840 skb_reserve(skb, sizeof(struct rfd));
1841 skb_put(skb, actual_size);
1842 skb->protocol = eth_type_trans(skb, nic->netdev);
1843
1844 if(unlikely(!(rfd_status & cb_ok))) {
1845 /* Don't indicate if hardware indicates errors */
1da177e4 1846 dev_kfree_skb_any(skb);
136df52d 1847 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1da177e4
LT
1848 /* Don't indicate oversized frames */
1849 nic->rx_over_length_errors++;
1da177e4
LT
1850 dev_kfree_skb_any(skb);
1851 } else {
1852 nic->net_stats.rx_packets++;
1853 nic->net_stats.rx_bytes += actual_size;
1854 nic->netdev->last_rx = jiffies;
1855 netif_receive_skb(skb);
1856 if(work_done)
1857 (*work_done)++;
1858 }
1859
1860 rx->skb = NULL;
1861
1862 return 0;
1863}
1864
858119e1 1865static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1da177e4
LT
1866 unsigned int work_to_do)
1867{
1868 struct rx *rx;
ca93ca42
JG
1869 int restart_required = 0;
1870 struct rx *rx_to_start = NULL;
1871
1872 /* are we already rnr? then pay attention!!! this ensures that
1873 * the state machine progression never allows a start with a
1874 * partially cleaned list, avoiding a race between hardware
1875 * and rx_to_clean when in NAPI mode */
1876 if(RU_SUSPENDED == nic->ru_running)
1877 restart_required = 1;
1da177e4
LT
1878
1879 /* Indicate newly arrived packets */
1880 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
ca93ca42
JG
1881 int err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1882 if(-EAGAIN == err) {
1883 /* hit quota so have more work to do, restart once
1884 * cleanup is complete */
1885 restart_required = 0;
1886 break;
1887 } else if(-ENODATA == err)
1da177e4
LT
1888 break; /* No more to clean */
1889 }
1890
ca93ca42
JG
1891 /* save our starting point as the place we'll restart the receiver */
1892 if(restart_required)
1893 rx_to_start = nic->rx_to_clean;
1894
1da177e4
LT
1895 /* Alloc new skbs to refill list */
1896 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1897 if(unlikely(e100_rx_alloc_skb(nic, rx)))
1898 break; /* Better luck next time (see watchdog) */
1899 }
ca93ca42
JG
1900
1901 if(restart_required) {
1902 // ack the rnr?
1903 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack);
1904 e100_start_receiver(nic, rx_to_start);
1905 if(work_done)
1906 (*work_done)++;
1907 }
1da177e4
LT
1908}
1909
1910static void e100_rx_clean_list(struct nic *nic)
1911{
1912 struct rx *rx;
1913 unsigned int i, count = nic->params.rfds.count;
1914
ca93ca42
JG
1915 nic->ru_running = RU_UNINITIALIZED;
1916
1da177e4
LT
1917 if(nic->rxs) {
1918 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1919 if(rx->skb) {
1920 pci_unmap_single(nic->pdev, rx->dma_addr,
1921 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1922 dev_kfree_skb(rx->skb);
1923 }
1924 }
1925 kfree(nic->rxs);
1926 nic->rxs = NULL;
1927 }
1928
1929 nic->rx_to_use = nic->rx_to_clean = NULL;
1da177e4
LT
1930}
1931
1932static int e100_rx_alloc_list(struct nic *nic)
1933{
1934 struct rx *rx;
1935 unsigned int i, count = nic->params.rfds.count;
1936
1937 nic->rx_to_use = nic->rx_to_clean = NULL;
ca93ca42 1938 nic->ru_running = RU_UNINITIALIZED;
1da177e4 1939
c48e3fca 1940 if(!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
1da177e4 1941 return -ENOMEM;
1da177e4
LT
1942
1943 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1944 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1945 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1946 if(e100_rx_alloc_skb(nic, rx)) {
1947 e100_rx_clean_list(nic);
1948 return -ENOMEM;
1949 }
1950 }
1951
1952 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
ca93ca42 1953 nic->ru_running = RU_SUSPENDED;
1da177e4
LT
1954
1955 return 0;
1956}
1957
7d12e780 1958static irqreturn_t e100_intr(int irq, void *dev_id)
1da177e4
LT
1959{
1960 struct net_device *netdev = dev_id;
1961 struct nic *nic = netdev_priv(netdev);
27345bb6 1962 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
1da177e4
LT
1963
1964 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1965
1966 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
1967 stat_ack == stat_ack_not_present) /* Hardware is ejected */
1968 return IRQ_NONE;
1969
1970 /* Ack interrupt(s) */
27345bb6 1971 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
1da177e4 1972
ca93ca42
JG
1973 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1974 if(stat_ack & stat_ack_rnr)
1975 nic->ru_running = RU_SUSPENDED;
1976
0685c31b
MC
1977 if(likely(netif_rx_schedule_prep(netdev))) {
1978 e100_disable_irq(nic);
1979 __netif_rx_schedule(netdev);
1980 }
1da177e4
LT
1981
1982 return IRQ_HANDLED;
1983}
1984
1985static int e100_poll(struct net_device *netdev, int *budget)
1986{
1987 struct nic *nic = netdev_priv(netdev);
1988 unsigned int work_to_do = min(netdev->quota, *budget);
1989 unsigned int work_done = 0;
1990 int tx_cleaned;
1991
1992 e100_rx_clean(nic, &work_done, work_to_do);
1993 tx_cleaned = e100_tx_clean(nic);
1994
1995 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1996 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
1997 netif_rx_complete(netdev);
1998 e100_enable_irq(nic);
1999 return 0;
2000 }
2001
2002 *budget -= work_done;
2003 netdev->quota -= work_done;
2004
2005 return 1;
2006}
2007
2008#ifdef CONFIG_NET_POLL_CONTROLLER
2009static void e100_netpoll(struct net_device *netdev)
2010{
2011 struct nic *nic = netdev_priv(netdev);
611494dc 2012
1da177e4 2013 e100_disable_irq(nic);
7d12e780 2014 e100_intr(nic->pdev->irq, netdev);
1da177e4
LT
2015 e100_tx_clean(nic);
2016 e100_enable_irq(nic);
2017}
2018#endif
2019
2020static struct net_device_stats *e100_get_stats(struct net_device *netdev)
2021{
2022 struct nic *nic = netdev_priv(netdev);
2023 return &nic->net_stats;
2024}
2025
2026static int e100_set_mac_address(struct net_device *netdev, void *p)
2027{
2028 struct nic *nic = netdev_priv(netdev);
2029 struct sockaddr *addr = p;
2030
2031 if (!is_valid_ether_addr(addr->sa_data))
2032 return -EADDRNOTAVAIL;
2033
2034 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2035 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2036
2037 return 0;
2038}
2039
2040static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2041{
2042 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2043 return -EINVAL;
2044 netdev->mtu = new_mtu;
2045 return 0;
2046}
2047
2048static int e100_asf(struct nic *nic)
2049{
2050 /* ASF can be enabled from eeprom */
2051 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2052 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2053 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2054 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2055}
2056
2057static int e100_up(struct nic *nic)
2058{
2059 int err;
2060
2061 if((err = e100_rx_alloc_list(nic)))
2062 return err;
2063 if((err = e100_alloc_cbs(nic)))
2064 goto err_rx_clean_list;
2065 if((err = e100_hw_init(nic)))
2066 goto err_clean_cbs;
2067 e100_set_multicast_list(nic->netdev);
ca93ca42 2068 e100_start_receiver(nic, NULL);
1da177e4 2069 mod_timer(&nic->watchdog, jiffies);
1fb9df5d 2070 if((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
1da177e4
LT
2071 nic->netdev->name, nic->netdev)))
2072 goto err_no_irq;
1da177e4 2073 netif_wake_queue(nic->netdev);
0236ebb7
MC
2074 netif_poll_enable(nic->netdev);
2075 /* enable ints _after_ enabling poll, preventing a race between
2076 * disable ints+schedule */
2077 e100_enable_irq(nic);
1da177e4
LT
2078 return 0;
2079
2080err_no_irq:
2081 del_timer_sync(&nic->watchdog);
2082err_clean_cbs:
2083 e100_clean_cbs(nic);
2084err_rx_clean_list:
2085 e100_rx_clean_list(nic);
2086 return err;
2087}
2088
2089static void e100_down(struct nic *nic)
2090{
0236ebb7
MC
2091 /* wait here for poll to complete */
2092 netif_poll_disable(nic->netdev);
2093 netif_stop_queue(nic->netdev);
1da177e4
LT
2094 e100_hw_reset(nic);
2095 free_irq(nic->pdev->irq, nic->netdev);
2096 del_timer_sync(&nic->watchdog);
2097 netif_carrier_off(nic->netdev);
1da177e4
LT
2098 e100_clean_cbs(nic);
2099 e100_rx_clean_list(nic);
2100}
2101
2102static void e100_tx_timeout(struct net_device *netdev)
2103{
2104 struct nic *nic = netdev_priv(netdev);
2105
05479938 2106 /* Reset outside of interrupt context, to avoid request_irq
2acdb1e0
MC
2107 * in interrupt context */
2108 schedule_work(&nic->tx_timeout_task);
2109}
2110
c4028958 2111static void e100_tx_timeout_task(struct work_struct *work)
2acdb1e0 2112{
c4028958
DH
2113 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2114 struct net_device *netdev = nic->netdev;
2acdb1e0 2115
1da177e4 2116 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
27345bb6 2117 ioread8(&nic->csr->scb.status));
1da177e4
LT
2118 e100_down(netdev_priv(netdev));
2119 e100_up(netdev_priv(netdev));
2120}
2121
2122static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2123{
2124 int err;
2125 struct sk_buff *skb;
2126
2127 /* Use driver resources to perform internal MAC or PHY
2128 * loopback test. A single packet is prepared and transmitted
2129 * in loopback mode, and the test passes if the received
2130 * packet compares byte-for-byte to the transmitted packet. */
2131
2132 if((err = e100_rx_alloc_list(nic)))
2133 return err;
2134 if((err = e100_alloc_cbs(nic)))
2135 goto err_clean_rx;
2136
2137 /* ICH PHY loopback is broken so do MAC loopback instead */
2138 if(nic->flags & ich && loopback_mode == lb_phy)
2139 loopback_mode = lb_mac;
2140
2141 nic->loopback = loopback_mode;
2142 if((err = e100_hw_init(nic)))
2143 goto err_loopback_none;
2144
2145 if(loopback_mode == lb_phy)
2146 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2147 BMCR_LOOPBACK);
2148
ca93ca42 2149 e100_start_receiver(nic, NULL);
1da177e4 2150
4187592b 2151 if(!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
1da177e4
LT
2152 err = -ENOMEM;
2153 goto err_loopback_none;
2154 }
2155 skb_put(skb, ETH_DATA_LEN);
2156 memset(skb->data, 0xFF, ETH_DATA_LEN);
2157 e100_xmit_frame(skb, nic->netdev);
2158
2159 msleep(10);
2160
aa49cdd9
JB
2161 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2162 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
2163
1da177e4
LT
2164 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2165 skb->data, ETH_DATA_LEN))
2166 err = -EAGAIN;
2167
2168err_loopback_none:
2169 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2170 nic->loopback = lb_none;
1da177e4 2171 e100_clean_cbs(nic);
aa49cdd9 2172 e100_hw_reset(nic);
1da177e4
LT
2173err_clean_rx:
2174 e100_rx_clean_list(nic);
2175 return err;
2176}
2177
2178#define MII_LED_CONTROL 0x1B
2179static void e100_blink_led(unsigned long data)
2180{
2181 struct nic *nic = (struct nic *)data;
2182 enum led_state {
2183 led_on = 0x01,
2184 led_off = 0x04,
2185 led_on_559 = 0x05,
2186 led_on_557 = 0x07,
2187 };
2188
2189 nic->leds = (nic->leds & led_on) ? led_off :
2190 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2191 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
2192 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2193}
2194
2195static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2196{
2197 struct nic *nic = netdev_priv(netdev);
2198 return mii_ethtool_gset(&nic->mii, cmd);
2199}
2200
2201static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2202{
2203 struct nic *nic = netdev_priv(netdev);
2204 int err;
2205
2206 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2207 err = mii_ethtool_sset(&nic->mii, cmd);
2208 e100_exec_cb(nic, NULL, e100_configure);
2209
2210 return err;
2211}
2212
2213static void e100_get_drvinfo(struct net_device *netdev,
2214 struct ethtool_drvinfo *info)
2215{
2216 struct nic *nic = netdev_priv(netdev);
2217 strcpy(info->driver, DRV_NAME);
2218 strcpy(info->version, DRV_VERSION);
2219 strcpy(info->fw_version, "N/A");
2220 strcpy(info->bus_info, pci_name(nic->pdev));
2221}
2222
2223static int e100_get_regs_len(struct net_device *netdev)
2224{
2225 struct nic *nic = netdev_priv(netdev);
2226#define E100_PHY_REGS 0x1C
2227#define E100_REGS_LEN 1 + E100_PHY_REGS + \
2228 sizeof(nic->mem->dump_buf) / sizeof(u32)
2229 return E100_REGS_LEN * sizeof(u32);
2230}
2231
2232static void e100_get_regs(struct net_device *netdev,
2233 struct ethtool_regs *regs, void *p)
2234{
2235 struct nic *nic = netdev_priv(netdev);
2236 u32 *buff = p;
2237 int i;
2238
44c10138 2239 regs->version = (1 << 24) | nic->pdev->revision;
27345bb6
JB
2240 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2241 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2242 ioread16(&nic->csr->scb.status);
1da177e4
LT
2243 for(i = E100_PHY_REGS; i >= 0; i--)
2244 buff[1 + E100_PHY_REGS - i] =
2245 mdio_read(netdev, nic->mii.phy_id, i);
2246 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2247 e100_exec_cb(nic, NULL, e100_dump);
2248 msleep(10);
2249 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2250 sizeof(nic->mem->dump_buf));
2251}
2252
2253static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2254{
2255 struct nic *nic = netdev_priv(netdev);
2256 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2257 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2258}
2259
2260static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2261{
2262 struct nic *nic = netdev_priv(netdev);
2263
2264 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
2265 return -EOPNOTSUPP;
2266
2267 if(wol->wolopts)
2268 nic->flags |= wol_magic;
2269 else
2270 nic->flags &= ~wol_magic;
2271
1da177e4
LT
2272 e100_exec_cb(nic, NULL, e100_configure);
2273
2274 return 0;
2275}
2276
2277static u32 e100_get_msglevel(struct net_device *netdev)
2278{
2279 struct nic *nic = netdev_priv(netdev);
2280 return nic->msg_enable;
2281}
2282
2283static void e100_set_msglevel(struct net_device *netdev, u32 value)
2284{
2285 struct nic *nic = netdev_priv(netdev);
2286 nic->msg_enable = value;
2287}
2288
2289static int e100_nway_reset(struct net_device *netdev)
2290{
2291 struct nic *nic = netdev_priv(netdev);
2292 return mii_nway_restart(&nic->mii);
2293}
2294
2295static u32 e100_get_link(struct net_device *netdev)
2296{
2297 struct nic *nic = netdev_priv(netdev);
2298 return mii_link_ok(&nic->mii);
2299}
2300
2301static int e100_get_eeprom_len(struct net_device *netdev)
2302{
2303 struct nic *nic = netdev_priv(netdev);
2304 return nic->eeprom_wc << 1;
2305}
2306
2307#define E100_EEPROM_MAGIC 0x1234
2308static int e100_get_eeprom(struct net_device *netdev,
2309 struct ethtool_eeprom *eeprom, u8 *bytes)
2310{
2311 struct nic *nic = netdev_priv(netdev);
2312
2313 eeprom->magic = E100_EEPROM_MAGIC;
2314 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2315
2316 return 0;
2317}
2318
2319static int e100_set_eeprom(struct net_device *netdev,
2320 struct ethtool_eeprom *eeprom, u8 *bytes)
2321{
2322 struct nic *nic = netdev_priv(netdev);
2323
2324 if(eeprom->magic != E100_EEPROM_MAGIC)
2325 return -EINVAL;
2326
2327 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2328
2329 return e100_eeprom_save(nic, eeprom->offset >> 1,
2330 (eeprom->len >> 1) + 1);
2331}
2332
2333static void e100_get_ringparam(struct net_device *netdev,
2334 struct ethtool_ringparam *ring)
2335{
2336 struct nic *nic = netdev_priv(netdev);
2337 struct param_range *rfds = &nic->params.rfds;
2338 struct param_range *cbs = &nic->params.cbs;
2339
2340 ring->rx_max_pending = rfds->max;
2341 ring->tx_max_pending = cbs->max;
2342 ring->rx_mini_max_pending = 0;
2343 ring->rx_jumbo_max_pending = 0;
2344 ring->rx_pending = rfds->count;
2345 ring->tx_pending = cbs->count;
2346 ring->rx_mini_pending = 0;
2347 ring->rx_jumbo_pending = 0;
2348}
2349
2350static int e100_set_ringparam(struct net_device *netdev,
2351 struct ethtool_ringparam *ring)
2352{
2353 struct nic *nic = netdev_priv(netdev);
2354 struct param_range *rfds = &nic->params.rfds;
2355 struct param_range *cbs = &nic->params.cbs;
2356
05479938 2357 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
1da177e4
LT
2358 return -EINVAL;
2359
2360 if(netif_running(netdev))
2361 e100_down(nic);
2362 rfds->count = max(ring->rx_pending, rfds->min);
2363 rfds->count = min(rfds->count, rfds->max);
2364 cbs->count = max(ring->tx_pending, cbs->min);
2365 cbs->count = min(cbs->count, cbs->max);
2366 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2367 rfds->count, cbs->count);
2368 if(netif_running(netdev))
2369 e100_up(nic);
2370
2371 return 0;
2372}
2373
2374static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2375 "Link test (on/offline)",
2376 "Eeprom test (on/offline)",
2377 "Self test (offline)",
2378 "Mac loopback (offline)",
2379 "Phy loopback (offline)",
2380};
2381#define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2382
2383static int e100_diag_test_count(struct net_device *netdev)
2384{
2385 return E100_TEST_LEN;
2386}
2387
2388static void e100_diag_test(struct net_device *netdev,
2389 struct ethtool_test *test, u64 *data)
2390{
2391 struct ethtool_cmd cmd;
2392 struct nic *nic = netdev_priv(netdev);
2393 int i, err;
2394
2395 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2396 data[0] = !mii_link_ok(&nic->mii);
2397 data[1] = e100_eeprom_load(nic);
2398 if(test->flags & ETH_TEST_FL_OFFLINE) {
2399
2400 /* save speed, duplex & autoneg settings */
2401 err = mii_ethtool_gset(&nic->mii, &cmd);
2402
2403 if(netif_running(netdev))
2404 e100_down(nic);
2405 data[2] = e100_self_test(nic);
2406 data[3] = e100_loopback_test(nic, lb_mac);
2407 data[4] = e100_loopback_test(nic, lb_phy);
2408
2409 /* restore speed, duplex & autoneg settings */
2410 err = mii_ethtool_sset(&nic->mii, &cmd);
2411
2412 if(netif_running(netdev))
2413 e100_up(nic);
2414 }
2415 for(i = 0; i < E100_TEST_LEN; i++)
2416 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
a074fb86
MC
2417
2418 msleep_interruptible(4 * 1000);
1da177e4
LT
2419}
2420
2421static int e100_phys_id(struct net_device *netdev, u32 data)
2422{
2423 struct nic *nic = netdev_priv(netdev);
2424
2425 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2426 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2427 mod_timer(&nic->blink_timer, jiffies);
2428 msleep_interruptible(data * 1000);
2429 del_timer_sync(&nic->blink_timer);
2430 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2431
2432 return 0;
2433}
2434
2435static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2436 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2437 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2438 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2439 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2440 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2441 "tx_heartbeat_errors", "tx_window_errors",
2442 /* device-specific stats */
2443 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2444 "tx_flow_control_pause", "rx_flow_control_pause",
2445 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2446};
2447#define E100_NET_STATS_LEN 21
2448#define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2449
2450static int e100_get_stats_count(struct net_device *netdev)
2451{
2452 return E100_STATS_LEN;
2453}
2454
2455static void e100_get_ethtool_stats(struct net_device *netdev,
2456 struct ethtool_stats *stats, u64 *data)
2457{
2458 struct nic *nic = netdev_priv(netdev);
2459 int i;
2460
2461 for(i = 0; i < E100_NET_STATS_LEN; i++)
2462 data[i] = ((unsigned long *)&nic->net_stats)[i];
2463
2464 data[i++] = nic->tx_deferred;
2465 data[i++] = nic->tx_single_collisions;
2466 data[i++] = nic->tx_multiple_collisions;
2467 data[i++] = nic->tx_fc_pause;
2468 data[i++] = nic->rx_fc_pause;
2469 data[i++] = nic->rx_fc_unsupported;
2470 data[i++] = nic->tx_tco_frames;
2471 data[i++] = nic->rx_tco_frames;
2472}
2473
2474static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2475{
2476 switch(stringset) {
2477 case ETH_SS_TEST:
2478 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2479 break;
2480 case ETH_SS_STATS:
2481 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2482 break;
2483 }
2484}
2485
7282d491 2486static const struct ethtool_ops e100_ethtool_ops = {
1da177e4
LT
2487 .get_settings = e100_get_settings,
2488 .set_settings = e100_set_settings,
2489 .get_drvinfo = e100_get_drvinfo,
2490 .get_regs_len = e100_get_regs_len,
2491 .get_regs = e100_get_regs,
2492 .get_wol = e100_get_wol,
2493 .set_wol = e100_set_wol,
2494 .get_msglevel = e100_get_msglevel,
2495 .set_msglevel = e100_set_msglevel,
2496 .nway_reset = e100_nway_reset,
2497 .get_link = e100_get_link,
2498 .get_eeprom_len = e100_get_eeprom_len,
2499 .get_eeprom = e100_get_eeprom,
2500 .set_eeprom = e100_set_eeprom,
2501 .get_ringparam = e100_get_ringparam,
2502 .set_ringparam = e100_set_ringparam,
2503 .self_test_count = e100_diag_test_count,
2504 .self_test = e100_diag_test,
2505 .get_strings = e100_get_strings,
2506 .phys_id = e100_phys_id,
2507 .get_stats_count = e100_get_stats_count,
2508 .get_ethtool_stats = e100_get_ethtool_stats,
a92dd923 2509 .get_perm_addr = ethtool_op_get_perm_addr,
1da177e4
LT
2510};
2511
2512static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2513{
2514 struct nic *nic = netdev_priv(netdev);
2515
2516 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2517}
2518
2519static int e100_alloc(struct nic *nic)
2520{
2521 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2522 &nic->dma_addr);
2523 return nic->mem ? 0 : -ENOMEM;
2524}
2525
2526static void e100_free(struct nic *nic)
2527{
2528 if(nic->mem) {
2529 pci_free_consistent(nic->pdev, sizeof(struct mem),
2530 nic->mem, nic->dma_addr);
2531 nic->mem = NULL;
2532 }
2533}
2534
2535static int e100_open(struct net_device *netdev)
2536{
2537 struct nic *nic = netdev_priv(netdev);
2538 int err = 0;
2539
2540 netif_carrier_off(netdev);
2541 if((err = e100_up(nic)))
2542 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2543 return err;
2544}
2545
2546static int e100_close(struct net_device *netdev)
2547{
2548 e100_down(netdev_priv(netdev));
2549 return 0;
2550}
2551
2552static int __devinit e100_probe(struct pci_dev *pdev,
2553 const struct pci_device_id *ent)
2554{
2555 struct net_device *netdev;
2556 struct nic *nic;
2557 int err;
2558
2559 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2560 if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2561 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2562 return -ENOMEM;
2563 }
2564
2565 netdev->open = e100_open;
2566 netdev->stop = e100_close;
2567 netdev->hard_start_xmit = e100_xmit_frame;
2568 netdev->get_stats = e100_get_stats;
2569 netdev->set_multicast_list = e100_set_multicast_list;
2570 netdev->set_mac_address = e100_set_mac_address;
2571 netdev->change_mtu = e100_change_mtu;
2572 netdev->do_ioctl = e100_do_ioctl;
2573 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2574 netdev->tx_timeout = e100_tx_timeout;
2575 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2576 netdev->poll = e100_poll;
2577 netdev->weight = E100_NAPI_WEIGHT;
2578#ifdef CONFIG_NET_POLL_CONTROLLER
2579 netdev->poll_controller = e100_netpoll;
2580#endif
0eb5a34c 2581 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1da177e4
LT
2582
2583 nic = netdev_priv(netdev);
2584 nic->netdev = netdev;
2585 nic->pdev = pdev;
2586 nic->msg_enable = (1 << debug) - 1;
2587 pci_set_drvdata(pdev, netdev);
2588
2589 if((err = pci_enable_device(pdev))) {
2590 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2591 goto err_out_free_dev;
2592 }
2593
2594 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2595 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2596 "base address, aborting.\n");
2597 err = -ENODEV;
2598 goto err_out_disable_pdev;
2599 }
2600
2601 if((err = pci_request_regions(pdev, DRV_NAME))) {
2602 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2603 goto err_out_disable_pdev;
2604 }
2605
1e7f0bd8 2606 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
1da177e4
LT
2607 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2608 goto err_out_free_res;
2609 }
2610
2611 SET_MODULE_OWNER(netdev);
2612 SET_NETDEV_DEV(netdev, &pdev->dev);
2613
27345bb6
JB
2614 if (use_io)
2615 DPRINTK(PROBE, INFO, "using i/o access mode\n");
2616
2617 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
1da177e4
LT
2618 if(!nic->csr) {
2619 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2620 err = -ENOMEM;
2621 goto err_out_free_res;
2622 }
2623
2624 if(ent->driver_data)
2625 nic->flags |= ich;
2626 else
2627 nic->flags &= ~ich;
2628
2629 e100_get_defaults(nic);
2630
1f53367d 2631 /* locks must be initialized before calling hw_reset */
1da177e4
LT
2632 spin_lock_init(&nic->cb_lock);
2633 spin_lock_init(&nic->cmd_lock);
ac7c6669 2634 spin_lock_init(&nic->mdio_lock);
1da177e4
LT
2635
2636 /* Reset the device before pci_set_master() in case device is in some
2637 * funky state and has an interrupt pending - hint: we don't have the
2638 * interrupt handler registered yet. */
2639 e100_hw_reset(nic);
2640
2641 pci_set_master(pdev);
2642
2643 init_timer(&nic->watchdog);
2644 nic->watchdog.function = e100_watchdog;
2645 nic->watchdog.data = (unsigned long)nic;
2646 init_timer(&nic->blink_timer);
2647 nic->blink_timer.function = e100_blink_led;
2648 nic->blink_timer.data = (unsigned long)nic;
2649
c4028958 2650 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2acdb1e0 2651
1da177e4
LT
2652 if((err = e100_alloc(nic))) {
2653 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2654 goto err_out_iounmap;
2655 }
2656
1da177e4
LT
2657 if((err = e100_eeprom_load(nic)))
2658 goto err_out_free;
2659
f92d8728
MC
2660 e100_phy_init(nic);
2661
1da177e4 2662 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
a92dd923 2663 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
948cd43f
JB
2664 if (!is_valid_ether_addr(netdev->perm_addr)) {
2665 if (!eeprom_bad_csum_allow) {
2666 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2667 "EEPROM, aborting.\n");
2668 err = -EAGAIN;
2669 goto err_out_free;
2670 } else {
2671 DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, "
2672 "you MUST configure one.\n");
2673 }
1da177e4
LT
2674 }
2675
2676 /* Wol magic packet can be enabled from eeprom */
2677 if((nic->mac >= mac_82558_D101_A4) &&
2678 (nic->eeprom[eeprom_id] & eeprom_id_wol))
2679 nic->flags |= wol_magic;
2680
6bdacb1a 2681 /* ack any pending wake events, disable PME */
3435dbce
JB
2682 err = pci_enable_wake(pdev, 0, 0);
2683 if (err)
2684 DPRINTK(PROBE, ERR, "Error clearing wake event\n");
1da177e4
LT
2685
2686 strcpy(netdev->name, "eth%d");
2687 if((err = register_netdev(netdev))) {
2688 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2689 goto err_out_free;
2690 }
2691
7c7459d1 2692 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, "
1da177e4 2693 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
27345bb6 2694 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), pdev->irq,
1da177e4
LT
2695 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
2696 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
2697
2698 return 0;
2699
2700err_out_free:
2701 e100_free(nic);
2702err_out_iounmap:
27345bb6 2703 pci_iounmap(pdev, nic->csr);
1da177e4
LT
2704err_out_free_res:
2705 pci_release_regions(pdev);
2706err_out_disable_pdev:
2707 pci_disable_device(pdev);
2708err_out_free_dev:
2709 pci_set_drvdata(pdev, NULL);
2710 free_netdev(netdev);
2711 return err;
2712}
2713
2714static void __devexit e100_remove(struct pci_dev *pdev)
2715{
2716 struct net_device *netdev = pci_get_drvdata(pdev);
2717
2718 if(netdev) {
2719 struct nic *nic = netdev_priv(netdev);
2720 unregister_netdev(netdev);
2721 e100_free(nic);
2722 iounmap(nic->csr);
2723 free_netdev(netdev);
2724 pci_release_regions(pdev);
2725 pci_disable_device(pdev);
2726 pci_set_drvdata(pdev, NULL);
2727 }
2728}
2729
e8e82b76 2730#ifdef CONFIG_PM
1da177e4
LT
2731static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2732{
2733 struct net_device *netdev = pci_get_drvdata(pdev);
2734 struct nic *nic = netdev_priv(netdev);
2735
824545e7
AK
2736 if (netif_running(netdev))
2737 netif_poll_disable(nic->netdev);
e8e82b76
AK
2738 del_timer_sync(&nic->watchdog);
2739 netif_carrier_off(nic->netdev);
518d8338 2740 netif_device_detach(netdev);
a53a33da 2741
1da177e4 2742 pci_save_state(pdev);
e8e82b76
AK
2743
2744 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2745 pci_enable_wake(pdev, PCI_D3hot, 1);
2746 pci_enable_wake(pdev, PCI_D3cold, 1);
2747 } else {
2748 pci_enable_wake(pdev, PCI_D3hot, 0);
2749 pci_enable_wake(pdev, PCI_D3cold, 0);
2750 }
975b366a 2751
1da177e4 2752 pci_disable_device(pdev);
518d8338 2753 free_irq(pdev->irq, netdev);
e8e82b76 2754 pci_set_power_state(pdev, PCI_D3hot);
1da177e4
LT
2755
2756 return 0;
2757}
2758
2759static int e100_resume(struct pci_dev *pdev)
2760{
2761 struct net_device *netdev = pci_get_drvdata(pdev);
2762 struct nic *nic = netdev_priv(netdev);
2763
975b366a 2764 pci_set_power_state(pdev, PCI_D0);
1da177e4 2765 pci_restore_state(pdev);
6bdacb1a 2766 /* ack any pending wake events, disable PME */
975b366a 2767 pci_enable_wake(pdev, 0, 0);
1da177e4
LT
2768
2769 netif_device_attach(netdev);
975b366a 2770 if (netif_running(netdev))
1da177e4
LT
2771 e100_up(nic);
2772
2773 return 0;
2774}
975b366a 2775#endif /* CONFIG_PM */
1da177e4 2776
d18c3db5 2777static void e100_shutdown(struct pci_dev *pdev)
6bdacb1a 2778{
e8e82b76
AK
2779 struct net_device *netdev = pci_get_drvdata(pdev);
2780 struct nic *nic = netdev_priv(netdev);
2781
824545e7
AK
2782 if (netif_running(netdev))
2783 netif_poll_disable(nic->netdev);
e8e82b76
AK
2784 del_timer_sync(&nic->watchdog);
2785 netif_carrier_off(nic->netdev);
2786
2787 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2788 pci_enable_wake(pdev, PCI_D3hot, 1);
2789 pci_enable_wake(pdev, PCI_D3cold, 1);
2790 } else {
2791 pci_enable_wake(pdev, PCI_D3hot, 0);
2792 pci_enable_wake(pdev, PCI_D3cold, 0);
2793 }
2794
2795 pci_disable_device(pdev);
2796 pci_set_power_state(pdev, PCI_D3hot);
6bdacb1a
MC
2797}
2798
2cc30492
AK
2799/* ------------------ PCI Error Recovery infrastructure -------------- */
2800/**
2801 * e100_io_error_detected - called when PCI error is detected.
2802 * @pdev: Pointer to PCI device
2803 * @state: The current pci conneection state
2804 */
2805static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2806{
2807 struct net_device *netdev = pci_get_drvdata(pdev);
2808
2809 /* Similar to calling e100_down(), but avoids adpater I/O. */
2810 netdev->stop(netdev);
2811
2812 /* Detach; put netif into state similar to hotplug unplug. */
2813 netif_poll_enable(netdev);
2814 netif_device_detach(netdev);
b1d26f24 2815 pci_disable_device(pdev);
2cc30492
AK
2816
2817 /* Request a slot reset. */
2818 return PCI_ERS_RESULT_NEED_RESET;
2819}
2820
2821/**
2822 * e100_io_slot_reset - called after the pci bus has been reset.
2823 * @pdev: Pointer to PCI device
2824 *
2825 * Restart the card from scratch.
2826 */
2827static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
2828{
2829 struct net_device *netdev = pci_get_drvdata(pdev);
2830 struct nic *nic = netdev_priv(netdev);
2831
2832 if (pci_enable_device(pdev)) {
2833 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
2834 return PCI_ERS_RESULT_DISCONNECT;
2835 }
2836 pci_set_master(pdev);
2837
2838 /* Only one device per card can do a reset */
2839 if (0 != PCI_FUNC(pdev->devfn))
2840 return PCI_ERS_RESULT_RECOVERED;
2841 e100_hw_reset(nic);
2842 e100_phy_init(nic);
2843
2844 return PCI_ERS_RESULT_RECOVERED;
2845}
2846
2847/**
2848 * e100_io_resume - resume normal operations
2849 * @pdev: Pointer to PCI device
2850 *
2851 * Resume normal operations after an error recovery
2852 * sequence has been completed.
2853 */
2854static void e100_io_resume(struct pci_dev *pdev)
2855{
2856 struct net_device *netdev = pci_get_drvdata(pdev);
2857 struct nic *nic = netdev_priv(netdev);
2858
2859 /* ack any pending wake events, disable PME */
2860 pci_enable_wake(pdev, 0, 0);
2861
2862 netif_device_attach(netdev);
2863 if (netif_running(netdev)) {
2864 e100_open(netdev);
2865 mod_timer(&nic->watchdog, jiffies);
2866 }
2867}
2868
2869static struct pci_error_handlers e100_err_handler = {
2870 .error_detected = e100_io_error_detected,
2871 .slot_reset = e100_io_slot_reset,
2872 .resume = e100_io_resume,
2873};
6bdacb1a 2874
1da177e4
LT
2875static struct pci_driver e100_driver = {
2876 .name = DRV_NAME,
2877 .id_table = e100_id_table,
2878 .probe = e100_probe,
2879 .remove = __devexit_p(e100_remove),
e8e82b76 2880#ifdef CONFIG_PM
975b366a 2881 /* Power Management hooks */
1da177e4
LT
2882 .suspend = e100_suspend,
2883 .resume = e100_resume,
2884#endif
05479938 2885 .shutdown = e100_shutdown,
2cc30492 2886 .err_handler = &e100_err_handler,
1da177e4
LT
2887};
2888
2889static int __init e100_init_module(void)
2890{
2891 if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2892 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2893 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2894 }
29917620 2895 return pci_register_driver(&e100_driver);
1da177e4
LT
2896}
2897
2898static void __exit e100_cleanup_module(void)
2899{
2900 pci_unregister_driver(&e100_driver);
2901}
2902
2903module_init(e100_init_module);
2904module_exit(e100_cleanup_module);