Fix common misspellings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / cxgb4vf / sge.c
CommitLineData
c6e0d914
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/skbuff.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/if_vlan.h>
40#include <linux/ip.h>
41#include <net/ipv6.h>
42#include <net/tcp.h>
43#include <linux/dma-mapping.h>
44
45#include "t4vf_common.h"
46#include "t4vf_defs.h"
47
48#include "../cxgb4/t4_regs.h"
49#include "../cxgb4/t4fw_api.h"
50#include "../cxgb4/t4_msg.h"
51
52/*
53 * Decoded Adapter Parameters.
54 */
55static u32 FL_PG_ORDER; /* large page allocation size */
56static u32 STAT_LEN; /* length of status page at ring end */
57static u32 PKTSHIFT; /* padding between CPL and packet data */
58static u32 FL_ALIGN; /* response queue message alignment */
59
60/*
61 * Constants ...
62 */
63enum {
64 /*
65 * Egress Queue sizes, producer and consumer indices are all in units
66 * of Egress Context Units bytes. Note that as far as the hardware is
67 * concerned, the free list is an Egress Queue (the host produces free
68 * buffers which the hardware consumes) and free list entries are
69 * 64-bit PCI DMA addresses.
70 */
71 EQ_UNIT = SGE_EQ_IDXSIZE,
72 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
73 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
74
75 /*
76 * Max number of TX descriptors we clean up at a time. Should be
77 * modest as freeing skbs isn't cheap and it happens while holding
78 * locks. We just need to free packets faster than they arrive, we
79 * eventually catch up and keep the amortized cost reasonable.
80 */
81 MAX_TX_RECLAIM = 16,
82
83 /*
84 * Max number of Rx buffers we replenish at a time. Again keep this
85 * modest, allocating buffers isn't cheap either.
86 */
87 MAX_RX_REFILL = 16,
88
89 /*
90 * Period of the Rx queue check timer. This timer is infrequent as it
91 * has something to do only when the system experiences severe memory
92 * shortage.
93 */
94 RX_QCHECK_PERIOD = (HZ / 2),
95
96 /*
97 * Period of the TX queue check timer and the maximum number of TX
98 * descriptors to be reclaimed by the TX timer.
99 */
100 TX_QCHECK_PERIOD = (HZ / 2),
101 MAX_TIMER_TX_RECLAIM = 100,
102
103 /*
104 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic
105 * timer will attempt to refill it.
106 */
107 FL_STARVE_THRES = 4,
108
109 /*
110 * Suspend an Ethernet TX queue with fewer available descriptors than
111 * this. We always want to have room for a maximum sized packet:
112 * inline immediate data + MAX_SKB_FRAGS. This is the same as
113 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
114 * (see that function and its helpers for a description of the
115 * calculation).
116 */
117 ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
118 ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
119 ((ETHTXQ_MAX_FRAGS-1) & 1) +
120 2),
121 ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
122 sizeof(struct cpl_tx_pkt_lso_core) +
123 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
124 ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
125
126 ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
127
128 /*
129 * Max TX descriptor space we allow for an Ethernet packet to be
130 * inlined into a WR. This is limited by the maximum value which
131 * we can specify for immediate data in the firmware Ethernet TX
132 * Work Request.
133 */
134 MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_MASK,
135
136 /*
137 * Max size of a WR sent through a control TX queue.
138 */
139 MAX_CTRL_WR_LEN = 256,
140
141 /*
142 * Maximum amount of data which we'll ever need to inline into a
143 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
144 */
145 MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
146 ? MAX_IMM_TX_PKT_LEN
147 : MAX_CTRL_WR_LEN),
148
149 /*
150 * For incoming packets less than RX_COPY_THRES, we copy the data into
151 * an skb rather than referencing the data. We allocate enough
152 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
153 * of the data (header).
154 */
155 RX_COPY_THRES = 256,
156 RX_PULL_LEN = 128,
c6e0d914 157
eb6c503d
CL
158 /*
159 * Main body length for sk_buffs used for RX Ethernet packets with
160 * fragments. Should be >= RX_PULL_LEN but possibly bigger to give
161 * pskb_may_pull() some room.
162 */
163 RX_SKB_LEN = 512,
164};
c6e0d914
CL
165
166/*
167 * Software state per TX descriptor.
168 */
169struct tx_sw_desc {
170 struct sk_buff *skb; /* socket buffer of TX data source */
171 struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */
172};
173
174/*
175 * Software state per RX Free List descriptor. We keep track of the allocated
176 * FL page, its size, and its PCI DMA address (if the page is mapped). The FL
177 * page size and its PCI DMA mapped state are stored in the low bits of the
178 * PCI DMA address as per below.
179 */
180struct rx_sw_desc {
181 struct page *page; /* Free List page buffer */
182 dma_addr_t dma_addr; /* PCI DMA address (if mapped) */
183 /* and flags (see below) */
184};
185
186/*
187 * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the
188 * SGE also uses the low 4 bits to determine the size of the buffer. It uses
189 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
190 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
191 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
192 * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is
193 * maintained in an inverse sense so the hardware never sees that bit high.
194 */
195enum {
196 RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */
197 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */
198};
199
200/**
201 * get_buf_addr - return DMA buffer address of software descriptor
202 * @sdesc: pointer to the software buffer descriptor
203 *
204 * Return the DMA buffer address of a software descriptor (stripping out
205 * our low-order flag bits).
206 */
207static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
208{
209 return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
210}
211
212/**
213 * is_buf_mapped - is buffer mapped for DMA?
214 * @sdesc: pointer to the software buffer descriptor
215 *
216 * Determine whether the buffer associated with a software descriptor in
217 * mapped for DMA or not.
218 */
219static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
220{
221 return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
222}
223
224/**
225 * need_skb_unmap - does the platform need unmapping of sk_buffs?
226 *
25985edc
LDM
227 * Returns true if the platform needs sk_buff unmapping. The compiler
228 * optimizes away unnecessary code if this returns true.
c6e0d914
CL
229 */
230static inline int need_skb_unmap(void)
231{
57b2eaf7
FT
232#ifdef CONFIG_NEED_DMA_MAP_STATE
233 return 1;
234#else
235 return 0;
236#endif
c6e0d914
CL
237}
238
239/**
240 * txq_avail - return the number of available slots in a TX queue
241 * @tq: the TX queue
242 *
243 * Returns the number of available descriptors in a TX queue.
244 */
245static inline unsigned int txq_avail(const struct sge_txq *tq)
246{
247 return tq->size - 1 - tq->in_use;
248}
249
250/**
251 * fl_cap - return the capacity of a Free List
252 * @fl: the Free List
253 *
254 * Returns the capacity of a Free List. The capacity is less than the
255 * size because an Egress Queue Index Unit worth of descriptors needs to
256 * be left unpopulated, otherwise the Producer and Consumer indices PIDX
257 * and CIDX will match and the hardware will think the FL is empty.
258 */
259static inline unsigned int fl_cap(const struct sge_fl *fl)
260{
261 return fl->size - FL_PER_EQ_UNIT;
262}
263
264/**
265 * fl_starving - return whether a Free List is starving.
266 * @fl: the Free List
267 *
268 * Tests specified Free List to see whether the number of buffers
269 * available to the hardware has falled below our "starvation"
25985edc 270 * threshold.
c6e0d914
CL
271 */
272static inline bool fl_starving(const struct sge_fl *fl)
273{
274 return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
275}
276
277/**
278 * map_skb - map an skb for DMA to the device
279 * @dev: the egress net device
280 * @skb: the packet to map
281 * @addr: a pointer to the base of the DMA mapping array
282 *
283 * Map an skb for DMA to the device and return an array of DMA addresses.
284 */
285static int map_skb(struct device *dev, const struct sk_buff *skb,
286 dma_addr_t *addr)
287{
288 const skb_frag_t *fp, *end;
289 const struct skb_shared_info *si;
290
291 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
292 if (dma_mapping_error(dev, *addr))
293 goto out_err;
294
295 si = skb_shinfo(skb);
296 end = &si->frags[si->nr_frags];
297 for (fp = si->frags; fp < end; fp++) {
298 *++addr = dma_map_page(dev, fp->page, fp->page_offset, fp->size,
299 DMA_TO_DEVICE);
300 if (dma_mapping_error(dev, *addr))
301 goto unwind;
302 }
303 return 0;
304
305unwind:
306 while (fp-- > si->frags)
307 dma_unmap_page(dev, *--addr, fp->size, DMA_TO_DEVICE);
308 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
309
310out_err:
311 return -ENOMEM;
312}
313
314static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
315 const struct ulptx_sgl *sgl, const struct sge_txq *tq)
316{
317 const struct ulptx_sge_pair *p;
318 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
319
320 if (likely(skb_headlen(skb)))
321 dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
322 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
323 else {
324 dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
325 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
326 nfrags--;
327 }
328
329 /*
330 * the complexity below is because of the possibility of a wrap-around
331 * in the middle of an SGL
332 */
333 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
334 if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
335unmap:
336 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
337 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
338 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
339 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
340 p++;
341 } else if ((u8 *)p == (u8 *)tq->stat) {
342 p = (const struct ulptx_sge_pair *)tq->desc;
343 goto unmap;
344 } else if ((u8 *)p + 8 == (u8 *)tq->stat) {
345 const __be64 *addr = (const __be64 *)tq->desc;
346
347 dma_unmap_page(dev, be64_to_cpu(addr[0]),
348 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
349 dma_unmap_page(dev, be64_to_cpu(addr[1]),
350 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
351 p = (const struct ulptx_sge_pair *)&addr[2];
352 } else {
353 const __be64 *addr = (const __be64 *)tq->desc;
354
355 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
356 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
357 dma_unmap_page(dev, be64_to_cpu(addr[0]),
358 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
359 p = (const struct ulptx_sge_pair *)&addr[1];
360 }
361 }
362 if (nfrags) {
363 __be64 addr;
364
365 if ((u8 *)p == (u8 *)tq->stat)
366 p = (const struct ulptx_sge_pair *)tq->desc;
367 addr = ((u8 *)p + 16 <= (u8 *)tq->stat
368 ? p->addr[0]
369 : *(const __be64 *)tq->desc);
370 dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
371 DMA_TO_DEVICE);
372 }
373}
374
375/**
376 * free_tx_desc - reclaims TX descriptors and their buffers
377 * @adapter: the adapter
378 * @tq: the TX queue to reclaim descriptors from
379 * @n: the number of descriptors to reclaim
380 * @unmap: whether the buffers should be unmapped for DMA
381 *
382 * Reclaims TX descriptors from an SGE TX queue and frees the associated
383 * TX buffers. Called with the TX queue lock held.
384 */
385static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
386 unsigned int n, bool unmap)
387{
388 struct tx_sw_desc *sdesc;
389 unsigned int cidx = tq->cidx;
390 struct device *dev = adapter->pdev_dev;
391
392 const int need_unmap = need_skb_unmap() && unmap;
393
394 sdesc = &tq->sdesc[cidx];
395 while (n--) {
396 /*
397 * If we kept a reference to the original TX skb, we need to
398 * unmap it from PCI DMA space (if required) and free it.
399 */
400 if (sdesc->skb) {
401 if (need_unmap)
402 unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
403 kfree_skb(sdesc->skb);
404 sdesc->skb = NULL;
405 }
406
407 sdesc++;
408 if (++cidx == tq->size) {
409 cidx = 0;
410 sdesc = tq->sdesc;
411 }
412 }
413 tq->cidx = cidx;
414}
415
416/*
417 * Return the number of reclaimable descriptors in a TX queue.
418 */
419static inline int reclaimable(const struct sge_txq *tq)
420{
421 int hw_cidx = be16_to_cpu(tq->stat->cidx);
422 int reclaimable = hw_cidx - tq->cidx;
423 if (reclaimable < 0)
424 reclaimable += tq->size;
425 return reclaimable;
426}
427
428/**
429 * reclaim_completed_tx - reclaims completed TX descriptors
430 * @adapter: the adapter
431 * @tq: the TX queue to reclaim completed descriptors from
432 * @unmap: whether the buffers should be unmapped for DMA
433 *
434 * Reclaims TX descriptors that the SGE has indicated it has processed,
435 * and frees the associated buffers if possible. Called with the TX
436 * queue locked.
437 */
438static inline void reclaim_completed_tx(struct adapter *adapter,
439 struct sge_txq *tq,
440 bool unmap)
441{
442 int avail = reclaimable(tq);
443
444 if (avail) {
445 /*
446 * Limit the amount of clean up work we do at a time to keep
447 * the TX lock hold time O(1).
448 */
449 if (avail > MAX_TX_RECLAIM)
450 avail = MAX_TX_RECLAIM;
451
452 free_tx_desc(adapter, tq, avail, unmap);
453 tq->in_use -= avail;
454 }
455}
456
457/**
458 * get_buf_size - return the size of an RX Free List buffer.
459 * @sdesc: pointer to the software buffer descriptor
460 */
461static inline int get_buf_size(const struct rx_sw_desc *sdesc)
462{
463 return FL_PG_ORDER > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
464 ? (PAGE_SIZE << FL_PG_ORDER)
465 : PAGE_SIZE;
466}
467
468/**
469 * free_rx_bufs - free RX buffers on an SGE Free List
470 * @adapter: the adapter
471 * @fl: the SGE Free List to free buffers from
472 * @n: how many buffers to free
473 *
474 * Release the next @n buffers on an SGE Free List RX queue. The
475 * buffers must be made inaccessible to hardware before calling this
476 * function.
477 */
478static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
479{
480 while (n--) {
481 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
482
483 if (is_buf_mapped(sdesc))
484 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
485 get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
486 put_page(sdesc->page);
487 sdesc->page = NULL;
488 if (++fl->cidx == fl->size)
489 fl->cidx = 0;
490 fl->avail--;
491 }
492}
493
494/**
495 * unmap_rx_buf - unmap the current RX buffer on an SGE Free List
496 * @adapter: the adapter
497 * @fl: the SGE Free List
498 *
499 * Unmap the current buffer on an SGE Free List RX queue. The
500 * buffer must be made inaccessible to HW before calling this function.
501 *
502 * This is similar to @free_rx_bufs above but does not free the buffer.
503 * Do note that the FL still loses any further access to the buffer.
504 * This is used predominantly to "transfer ownership" of an FL buffer
505 * to another entity (typically an skb's fragment list).
506 */
507static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
508{
509 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
510
511 if (is_buf_mapped(sdesc))
512 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
513 get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
514 sdesc->page = NULL;
515 if (++fl->cidx == fl->size)
516 fl->cidx = 0;
517 fl->avail--;
518}
519
520/**
521 * ring_fl_db - righ doorbell on free list
522 * @adapter: the adapter
523 * @fl: the Free List whose doorbell should be rung ...
524 *
525 * Tell the Scatter Gather Engine that there are new free list entries
526 * available.
527 */
528static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
529{
530 /*
531 * The SGE keeps track of its Producer and Consumer Indices in terms
532 * of Egress Queue Units so we can only tell it about integral numbers
533 * of multiples of Free List Entries per Egress Queue Units ...
534 */
535 if (fl->pend_cred >= FL_PER_EQ_UNIT) {
536 wmb();
537 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
538 DBPRIO |
539 QID(fl->cntxt_id) |
540 PIDX(fl->pend_cred / FL_PER_EQ_UNIT));
541 fl->pend_cred %= FL_PER_EQ_UNIT;
542 }
543}
544
545/**
546 * set_rx_sw_desc - initialize software RX buffer descriptor
547 * @sdesc: pointer to the softwore RX buffer descriptor
548 * @page: pointer to the page data structure backing the RX buffer
549 * @dma_addr: PCI DMA address (possibly with low-bit flags)
550 */
551static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
552 dma_addr_t dma_addr)
553{
554 sdesc->page = page;
555 sdesc->dma_addr = dma_addr;
556}
557
558/*
559 * Support for poisoning RX buffers ...
560 */
561#define POISON_BUF_VAL -1
562
563static inline void poison_buf(struct page *page, size_t sz)
564{
565#if POISON_BUF_VAL >= 0
566 memset(page_address(page), POISON_BUF_VAL, sz);
567#endif
568}
569
570/**
571 * refill_fl - refill an SGE RX buffer ring
572 * @adapter: the adapter
573 * @fl: the Free List ring to refill
574 * @n: the number of new buffers to allocate
575 * @gfp: the gfp flags for the allocations
576 *
577 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
578 * allocated with the supplied gfp flags. The caller must assure that
579 * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
580 * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number
581 * of buffers allocated. If afterwards the queue is found critically low,
582 * mark it as starving in the bitmap of starving FLs.
583 */
584static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
585 int n, gfp_t gfp)
586{
587 struct page *page;
588 dma_addr_t dma_addr;
589 unsigned int cred = fl->avail;
590 __be64 *d = &fl->desc[fl->pidx];
591 struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
592
593 /*
594 * Sanity: ensure that the result of adding n Free List buffers
595 * won't result in wrapping the SGE's Producer Index around to
596 * it's Consumer Index thereby indicating an empty Free List ...
597 */
598 BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
599
600 /*
601 * If we support large pages, prefer large buffers and fail over to
602 * small pages if we can't allocate large pages to satisfy the refill.
603 * If we don't support large pages, drop directly into the small page
604 * allocation code.
605 */
606 if (FL_PG_ORDER == 0)
607 goto alloc_small_pages;
608
609 while (n) {
610 page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
611 FL_PG_ORDER);
612 if (unlikely(!page)) {
613 /*
614 * We've failed inour attempt to allocate a "large
615 * page". Fail over to the "small page" allocation
616 * below.
617 */
618 fl->large_alloc_failed++;
619 break;
620 }
621 poison_buf(page, PAGE_SIZE << FL_PG_ORDER);
622
623 dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
624 PAGE_SIZE << FL_PG_ORDER,
625 PCI_DMA_FROMDEVICE);
626 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
627 /*
628 * We've run out of DMA mapping space. Free up the
629 * buffer and return with what we've managed to put
630 * into the free list. We don't want to fail over to
631 * the small page allocation below in this case
632 * because DMA mapping resources are typically
633 * critical resources once they become scarse.
634 */
635 __free_pages(page, FL_PG_ORDER);
636 goto out;
637 }
638 dma_addr |= RX_LARGE_BUF;
639 *d++ = cpu_to_be64(dma_addr);
640
641 set_rx_sw_desc(sdesc, page, dma_addr);
642 sdesc++;
643
644 fl->avail++;
645 if (++fl->pidx == fl->size) {
646 fl->pidx = 0;
647 sdesc = fl->sdesc;
648 d = fl->desc;
649 }
650 n--;
651 }
652
653alloc_small_pages:
654 while (n--) {
655 page = __netdev_alloc_page(adapter->port[0],
656 gfp | __GFP_NOWARN);
657 if (unlikely(!page)) {
658 fl->alloc_failed++;
659 break;
660 }
661 poison_buf(page, PAGE_SIZE);
662
663 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
664 PCI_DMA_FROMDEVICE);
665 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
666 netdev_free_page(adapter->port[0], page);
667 break;
668 }
669 *d++ = cpu_to_be64(dma_addr);
670
671 set_rx_sw_desc(sdesc, page, dma_addr);
672 sdesc++;
673
674 fl->avail++;
675 if (++fl->pidx == fl->size) {
676 fl->pidx = 0;
677 sdesc = fl->sdesc;
678 d = fl->desc;
679 }
680 }
681
682out:
683 /*
684 * Update our accounting state to incorporate the new Free List
685 * buffers, tell the hardware about them and return the number of
686 * bufers which we were able to allocate.
687 */
688 cred = fl->avail - cred;
689 fl->pend_cred += cred;
690 ring_fl_db(adapter, fl);
691
692 if (unlikely(fl_starving(fl))) {
693 smp_wmb();
694 set_bit(fl->cntxt_id, adapter->sge.starving_fl);
695 }
696
697 return cred;
698}
699
700/*
701 * Refill a Free List to its capacity or the Maximum Refill Increment,
702 * whichever is smaller ...
703 */
704static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
705{
706 refill_fl(adapter, fl,
707 min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
708 GFP_ATOMIC);
709}
710
711/**
712 * alloc_ring - allocate resources for an SGE descriptor ring
713 * @dev: the PCI device's core device
714 * @nelem: the number of descriptors
715 * @hwsize: the size of each hardware descriptor
716 * @swsize: the size of each software descriptor
717 * @busaddrp: the physical PCI bus address of the allocated ring
718 * @swringp: return address pointer for software ring
719 * @stat_size: extra space in hardware ring for status information
720 *
721 * Allocates resources for an SGE descriptor ring, such as TX queues,
722 * free buffer lists, response queues, etc. Each SGE ring requires
723 * space for its hardware descriptors plus, optionally, space for software
724 * state associated with each hardware entry (the metadata). The function
725 * returns three values: the virtual address for the hardware ring (the
726 * return value of the function), the PCI bus address of the hardware
727 * ring (in *busaddrp), and the address of the software ring (in swringp).
728 * Both the hardware and software rings are returned zeroed out.
729 */
730static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
731 size_t swsize, dma_addr_t *busaddrp, void *swringp,
732 size_t stat_size)
733{
734 /*
735 * Allocate the hardware ring and PCI DMA bus address space for said.
736 */
737 size_t hwlen = nelem * hwsize + stat_size;
738 void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
739
740 if (!hwring)
741 return NULL;
742
743 /*
744 * If the caller wants a software ring, allocate it and return a
745 * pointer to it in *swringp.
746 */
747 BUG_ON((swsize != 0) != (swringp != NULL));
748 if (swsize) {
749 void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
750
751 if (!swring) {
752 dma_free_coherent(dev, hwlen, hwring, *busaddrp);
753 return NULL;
754 }
755 *(void **)swringp = swring;
756 }
757
758 /*
759 * Zero out the hardware ring and return its address as our function
760 * value.
761 */
762 memset(hwring, 0, hwlen);
763 return hwring;
764}
765
766/**
767 * sgl_len - calculates the size of an SGL of the given capacity
768 * @n: the number of SGL entries
769 *
770 * Calculates the number of flits (8-byte units) needed for a Direct
771 * Scatter/Gather List that can hold the given number of entries.
772 */
773static inline unsigned int sgl_len(unsigned int n)
774{
775 /*
776 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
777 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
778 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
779 * repeated sequences of { Length[i], Length[i+1], Address[i],
780 * Address[i+1] } (this ensures that all addresses are on 64-bit
781 * boundaries). If N is even, then Length[N+1] should be set to 0 and
782 * Address[N+1] is omitted.
783 *
784 * The following calculation incorporates all of the above. It's
785 * somewhat hard to follow but, briefly: the "+2" accounts for the
786 * first two flits which include the DSGL header, Length0 and
787 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
788 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
789 * finally the "+((n-1)&1)" adds the one remaining flit needed if
790 * (n-1) is odd ...
791 */
792 n--;
793 return (3 * n) / 2 + (n & 1) + 2;
794}
795
796/**
797 * flits_to_desc - returns the num of TX descriptors for the given flits
798 * @flits: the number of flits
799 *
800 * Returns the number of TX descriptors needed for the supplied number
801 * of flits.
802 */
803static inline unsigned int flits_to_desc(unsigned int flits)
804{
805 BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
806 return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
807}
808
809/**
810 * is_eth_imm - can an Ethernet packet be sent as immediate data?
811 * @skb: the packet
812 *
813 * Returns whether an Ethernet packet is small enough to fit completely as
814 * immediate data.
815 */
816static inline int is_eth_imm(const struct sk_buff *skb)
817{
818 /*
819 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
820 * which does not accommodate immediate data. We could dike out all
821 * of the support code for immediate data but that would tie our hands
822 * too much if we ever want to enhace the firmware. It would also
823 * create more differences between the PF and VF Drivers.
824 */
825 return false;
826}
827
828/**
829 * calc_tx_flits - calculate the number of flits for a packet TX WR
830 * @skb: the packet
831 *
832 * Returns the number of flits needed for a TX Work Request for the
833 * given Ethernet packet, including the needed WR and CPL headers.
834 */
835static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
836{
837 unsigned int flits;
838
839 /*
840 * If the skb is small enough, we can pump it out as a work request
841 * with only immediate data. In that case we just have to have the
842 * TX Packet header plus the skb data in the Work Request.
843 */
844 if (is_eth_imm(skb))
845 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
846 sizeof(__be64));
847
848 /*
849 * Otherwise, we're going to have to construct a Scatter gather list
850 * of the skb body and fragments. We also include the flits necessary
851 * for the TX Packet Work Request and CPL. We always have a firmware
852 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
853 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
854 * message or, if we're doing a Large Send Offload, an LSO CPL message
855 * with an embeded TX Packet Write CPL message.
856 */
857 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
858 if (skb_shinfo(skb)->gso_size)
859 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
860 sizeof(struct cpl_tx_pkt_lso_core) +
861 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
862 else
863 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
864 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
865 return flits;
866}
867
868/**
869 * write_sgl - populate a Scatter/Gather List for a packet
870 * @skb: the packet
871 * @tq: the TX queue we are writing into
872 * @sgl: starting location for writing the SGL
873 * @end: points right after the end of the SGL
874 * @start: start offset into skb main-body data to include in the SGL
875 * @addr: the list of DMA bus addresses for the SGL elements
876 *
877 * Generates a Scatter/Gather List for the buffers that make up a packet.
878 * The caller must provide adequate space for the SGL that will be written.
879 * The SGL includes all of the packet's page fragments and the data in its
880 * main body except for the first @start bytes. @pos must be 16-byte
881 * aligned and within a TX descriptor with available space. @end points
882 * write after the end of the SGL but does not account for any potential
883 * wrap around, i.e., @end > @tq->stat.
884 */
885static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
886 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
887 const dma_addr_t *addr)
888{
889 unsigned int i, len;
890 struct ulptx_sge_pair *to;
891 const struct skb_shared_info *si = skb_shinfo(skb);
892 unsigned int nfrags = si->nr_frags;
893 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
894
895 len = skb_headlen(skb) - start;
896 if (likely(len)) {
897 sgl->len0 = htonl(len);
898 sgl->addr0 = cpu_to_be64(addr[0] + start);
899 nfrags++;
900 } else {
901 sgl->len0 = htonl(si->frags[0].size);
902 sgl->addr0 = cpu_to_be64(addr[1]);
903 }
904
905 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) |
906 ULPTX_NSGE(nfrags));
907 if (likely(--nfrags == 0))
908 return;
909 /*
910 * Most of the complexity below deals with the possibility we hit the
911 * end of the queue in the middle of writing the SGL. For this case
912 * only we create the SGL in a temporary buffer and then copy it.
913 */
914 to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
915
916 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
917 to->len[0] = cpu_to_be32(si->frags[i].size);
918 to->len[1] = cpu_to_be32(si->frags[++i].size);
919 to->addr[0] = cpu_to_be64(addr[i]);
920 to->addr[1] = cpu_to_be64(addr[++i]);
921 }
922 if (nfrags) {
923 to->len[0] = cpu_to_be32(si->frags[i].size);
924 to->len[1] = cpu_to_be32(0);
925 to->addr[0] = cpu_to_be64(addr[i + 1]);
926 }
927 if (unlikely((u8 *)end > (u8 *)tq->stat)) {
928 unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
929
930 if (likely(part0))
931 memcpy(sgl->sge, buf, part0);
932 part1 = (u8 *)end - (u8 *)tq->stat;
933 memcpy(tq->desc, (u8 *)buf + part0, part1);
934 end = (void *)tq->desc + part1;
935 }
936 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
937 *(u64 *)end = 0;
938}
939
940/**
941 * check_ring_tx_db - check and potentially ring a TX queue's doorbell
942 * @adapter: the adapter
943 * @tq: the TX queue
944 * @n: number of new descriptors to give to HW
945 *
946 * Ring the doorbel for a TX queue.
947 */
948static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
949 int n)
950{
951 /*
952 * Warn if we write doorbells with the wrong priority and write
953 * descriptors before telling HW.
954 */
955 WARN_ON((QID(tq->cntxt_id) | PIDX(n)) & DBPRIO);
956 wmb();
957 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
958 QID(tq->cntxt_id) | PIDX(n));
959}
960
961/**
962 * inline_tx_skb - inline a packet's data into TX descriptors
963 * @skb: the packet
964 * @tq: the TX queue where the packet will be inlined
965 * @pos: starting position in the TX queue to inline the packet
966 *
967 * Inline a packet's contents directly into TX descriptors, starting at
968 * the given position within the TX DMA ring.
969 * Most of the complexity of this operation is dealing with wrap arounds
970 * in the middle of the packet we want to inline.
971 */
972static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
973 void *pos)
974{
975 u64 *p;
976 int left = (void *)tq->stat - pos;
977
978 if (likely(skb->len <= left)) {
979 if (likely(!skb->data_len))
980 skb_copy_from_linear_data(skb, pos, skb->len);
981 else
982 skb_copy_bits(skb, 0, pos, skb->len);
983 pos += skb->len;
984 } else {
985 skb_copy_bits(skb, 0, pos, left);
986 skb_copy_bits(skb, left, tq->desc, skb->len - left);
987 pos = (void *)tq->desc + (skb->len - left);
988 }
989
990 /* 0-pad to multiple of 16 */
991 p = PTR_ALIGN(pos, 8);
992 if ((uintptr_t)p & 8)
993 *p = 0;
994}
995
996/*
997 * Figure out what HW csum a packet wants and return the appropriate control
998 * bits.
999 */
1000static u64 hwcsum(const struct sk_buff *skb)
1001{
1002 int csum_type;
1003 const struct iphdr *iph = ip_hdr(skb);
1004
1005 if (iph->version == 4) {
1006 if (iph->protocol == IPPROTO_TCP)
1007 csum_type = TX_CSUM_TCPIP;
1008 else if (iph->protocol == IPPROTO_UDP)
1009 csum_type = TX_CSUM_UDPIP;
1010 else {
1011nocsum:
1012 /*
1013 * unknown protocol, disable HW csum
1014 * and hope a bad packet is detected
1015 */
1016 return TXPKT_L4CSUM_DIS;
1017 }
1018 } else {
1019 /*
1020 * this doesn't work with extension headers
1021 */
1022 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1023
1024 if (ip6h->nexthdr == IPPROTO_TCP)
1025 csum_type = TX_CSUM_TCPIP6;
1026 else if (ip6h->nexthdr == IPPROTO_UDP)
1027 csum_type = TX_CSUM_UDPIP6;
1028 else
1029 goto nocsum;
1030 }
1031
1032 if (likely(csum_type >= TX_CSUM_TCPIP))
1033 return TXPKT_CSUM_TYPE(csum_type) |
1034 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1035 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1036 else {
1037 int start = skb_transport_offset(skb);
1038
1039 return TXPKT_CSUM_TYPE(csum_type) |
1040 TXPKT_CSUM_START(start) |
1041 TXPKT_CSUM_LOC(start + skb->csum_offset);
1042 }
1043}
1044
1045/*
1046 * Stop an Ethernet TX queue and record that state change.
1047 */
1048static void txq_stop(struct sge_eth_txq *txq)
1049{
1050 netif_tx_stop_queue(txq->txq);
1051 txq->q.stops++;
1052}
1053
1054/*
1055 * Advance our software state for a TX queue by adding n in use descriptors.
1056 */
1057static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1058{
1059 tq->in_use += n;
1060 tq->pidx += n;
1061 if (tq->pidx >= tq->size)
1062 tq->pidx -= tq->size;
1063}
1064
1065/**
1066 * t4vf_eth_xmit - add a packet to an Ethernet TX queue
1067 * @skb: the packet
1068 * @dev: the egress net device
1069 *
1070 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1071 */
1072int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1073{
7f9dd2fa 1074 u32 wr_mid;
c6e0d914
CL
1075 u64 cntrl, *end;
1076 int qidx, credits;
1077 unsigned int flits, ndesc;
1078 struct adapter *adapter;
1079 struct sge_eth_txq *txq;
1080 const struct port_info *pi;
1081 struct fw_eth_tx_pkt_vm_wr *wr;
1082 struct cpl_tx_pkt_core *cpl;
1083 const struct skb_shared_info *ssi;
1084 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1085 const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1086 sizeof(wr->ethmacsrc) +
1087 sizeof(wr->ethtype) +
1088 sizeof(wr->vlantci));
1089
1090 /*
1091 * The chip minimum packet length is 10 octets but the firmware
1092 * command that we are using requires that we copy the Ethernet header
1093 * (including the VLAN tag) into the header so we reject anything
1094 * smaller than that ...
1095 */
1096 if (unlikely(skb->len < fw_hdr_copy_len))
1097 goto out_free;
1098
1099 /*
1100 * Figure out which TX Queue we're going to use.
1101 */
1102 pi = netdev_priv(dev);
1103 adapter = pi->adapter;
1104 qidx = skb_get_queue_mapping(skb);
1105 BUG_ON(qidx >= pi->nqsets);
1106 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1107
1108 /*
1109 * Take this opportunity to reclaim any TX Descriptors whose DMA
1110 * transfers have completed.
1111 */
1112 reclaim_completed_tx(adapter, &txq->q, true);
1113
1114 /*
1115 * Calculate the number of flits and TX Descriptors we're going to
1116 * need along with how many TX Descriptors will be left over after
1117 * we inject our Work Request.
1118 */
1119 flits = calc_tx_flits(skb);
1120 ndesc = flits_to_desc(flits);
1121 credits = txq_avail(&txq->q) - ndesc;
1122
1123 if (unlikely(credits < 0)) {
1124 /*
1125 * Not enough room for this packet's Work Request. Stop the
1126 * TX Queue and return a "busy" condition. The queue will get
1127 * started later on when the firmware informs us that space
1128 * has opened up.
1129 */
1130 txq_stop(txq);
1131 dev_err(adapter->pdev_dev,
1132 "%s: TX ring %u full while queue awake!\n",
1133 dev->name, qidx);
1134 return NETDEV_TX_BUSY;
1135 }
1136
1137 if (!is_eth_imm(skb) &&
1138 unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1139 /*
1140 * We need to map the skb into PCI DMA space (because it can't
1141 * be in-lined directly into the Work Request) and the mapping
1142 * operation failed. Record the error and drop the packet.
1143 */
1144 txq->mapping_err++;
1145 goto out_free;
1146 }
1147
7f9dd2fa 1148 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
c6e0d914
CL
1149 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1150 /*
1151 * After we're done injecting the Work Request for this
25985edc 1152 * packet, we'll be below our "stop threshold" so stop the TX
7f9dd2fa
CL
1153 * Queue now and schedule a request for an SGE Egress Queue
1154 * Update message. The queue will get started later on when
1155 * the firmware processes this Work Request and sends us an
1156 * Egress Queue Status Update message indicating that space
1157 * has opened up.
c6e0d914
CL
1158 */
1159 txq_stop(txq);
7f9dd2fa 1160 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
c6e0d914
CL
1161 }
1162
1163 /*
1164 * Start filling in our Work Request. Note that we do _not_ handle
1165 * the WR Header wrapping around the TX Descriptor Ring. If our
1166 * maximum header size ever exceeds one TX Descriptor, we'll need to
1167 * do something else here.
1168 */
1169 BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1170 wr = (void *)&txq->q.desc[txq->q.pidx];
7f9dd2fa 1171 wr->equiq_to_len16 = cpu_to_be32(wr_mid);
c6e0d914
CL
1172 wr->r3[0] = cpu_to_be64(0);
1173 wr->r3[1] = cpu_to_be64(0);
1174 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1175 end = (u64 *)wr + flits;
1176
1177 /*
1178 * If this is a Large Send Offload packet we'll put in an LSO CPL
1179 * message with an encapsulated TX Packet CPL message. Otherwise we
1180 * just use a TX Packet CPL message.
1181 */
1182 ssi = skb_shinfo(skb);
1183 if (ssi->gso_size) {
1184 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1185 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1186 int l3hdr_len = skb_network_header_len(skb);
1187 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1188
1189 wr->op_immdlen =
1190 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1191 FW_WR_IMMDLEN(sizeof(*lso) +
1192 sizeof(*cpl)));
1193 /*
1194 * Fill in the LSO CPL message.
1195 */
1196 lso->lso_ctrl =
1197 cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
1198 LSO_FIRST_SLICE |
1199 LSO_LAST_SLICE |
1200 LSO_IPV6(v6) |
1201 LSO_ETHHDR_LEN(eth_xtra_len/4) |
1202 LSO_IPHDR_LEN(l3hdr_len/4) |
1203 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1204 lso->ipid_ofst = cpu_to_be16(0);
1205 lso->mss = cpu_to_be16(ssi->gso_size);
1206 lso->seqno_offset = cpu_to_be32(0);
1207 lso->len = cpu_to_be32(skb->len);
1208
1209 /*
1210 * Set up TX Packet CPL pointer, control word and perform
1211 * accounting.
1212 */
1213 cpl = (void *)(lso + 1);
1214 cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1215 TXPKT_IPHDR_LEN(l3hdr_len) |
1216 TXPKT_ETHHDR_LEN(eth_xtra_len));
1217 txq->tso++;
1218 txq->tx_cso += ssi->gso_segs;
1219 } else {
1220 int len;
1221
1222 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1223 wr->op_immdlen =
1224 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1225 FW_WR_IMMDLEN(len));
1226
1227 /*
1228 * Set up TX Packet CPL pointer, control word and perform
1229 * accounting.
1230 */
1231 cpl = (void *)(wr + 1);
1232 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1233 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1234 txq->tx_cso++;
1235 } else
1236 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1237 }
1238
1239 /*
1240 * If there's a VLAN tag present, add that to the list of things to
1241 * do in this Work Request.
1242 */
1243 if (vlan_tx_tag_present(skb)) {
1244 txq->vlan_ins++;
1245 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1246 }
1247
1248 /*
1249 * Fill in the TX Packet CPL message header.
1250 */
1251 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1252 TXPKT_INTF(pi->port_id) |
1253 TXPKT_PF(0));
1254 cpl->pack = cpu_to_be16(0);
1255 cpl->len = cpu_to_be16(skb->len);
1256 cpl->ctrl1 = cpu_to_be64(cntrl);
1257
1258#ifdef T4_TRACE
1259 T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1260 "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1261 ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1262#endif
1263
1264 /*
1265 * Fill in the body of the TX Packet CPL message with either in-lined
1266 * data or a Scatter/Gather List.
1267 */
1268 if (is_eth_imm(skb)) {
1269 /*
1270 * In-line the packet's data and free the skb since we don't
1271 * need it any longer.
1272 */
1273 inline_tx_skb(skb, &txq->q, cpl + 1);
1274 dev_kfree_skb(skb);
1275 } else {
1276 /*
1277 * Write the skb's Scatter/Gather list into the TX Packet CPL
1278 * message and retain a pointer to the skb so we can free it
1279 * later when its DMA completes. (We store the skb pointer
1280 * in the Software Descriptor corresponding to the last TX
1281 * Descriptor used by the Work Request.)
1282 *
1283 * The retained skb will be freed when the corresponding TX
1284 * Descriptors are reclaimed after their DMAs complete.
1285 * However, this could take quite a while since, in general,
1286 * the hardware is set up to be lazy about sending DMA
1287 * completion notifications to us and we mostly perform TX
1288 * reclaims in the transmit routine.
1289 *
1290 * This is good for performamce but means that we rely on new
1291 * TX packets arriving to run the destructors of completed
1292 * packets, which open up space in their sockets' send queues.
1293 * Sometimes we do not get such new packets causing TX to
1294 * stall. A single UDP transmitter is a good example of this
1295 * situation. We have a clean up timer that periodically
1296 * reclaims completed packets but it doesn't run often enough
1297 * (nor do we want it to) to prevent lengthy stalls. A
1298 * solution to this problem is to run the destructor early,
1299 * after the packet is queued but before it's DMAd. A con is
1300 * that we lie to socket memory accounting, but the amount of
1301 * extra memory is reasonable (limited by the number of TX
1302 * descriptors), the packets do actually get freed quickly by
1303 * new packets almost always, and for protocols like TCP that
1304 * wait for acks to really free up the data the extra memory
1305 * is even less. On the positive side we run the destructors
1306 * on the sending CPU rather than on a potentially different
64bb336c 1307 * completing CPU, usually a good thing.
c6e0d914
CL
1308 *
1309 * Run the destructor before telling the DMA engine about the
1310 * packet to make sure it doesn't complete and get freed
1311 * prematurely.
1312 */
1313 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1314 struct sge_txq *tq = &txq->q;
1315 int last_desc;
1316
1317 /*
1318 * If the Work Request header was an exact multiple of our TX
1319 * Descriptor length, then it's possible that the starting SGL
1320 * pointer lines up exactly with the end of our TX Descriptor
1321 * ring. If that's the case, wrap around to the beginning
1322 * here ...
1323 */
1324 if (unlikely((void *)sgl == (void *)tq->stat)) {
1325 sgl = (void *)tq->desc;
1326 end = (void *)((void *)tq->desc +
1327 ((void *)end - (void *)tq->stat));
1328 }
1329
1330 write_sgl(skb, tq, sgl, end, 0, addr);
1331 skb_orphan(skb);
1332
1333 last_desc = tq->pidx + ndesc - 1;
1334 if (last_desc >= tq->size)
1335 last_desc -= tq->size;
1336 tq->sdesc[last_desc].skb = skb;
1337 tq->sdesc[last_desc].sgl = sgl;
1338 }
1339
1340 /*
1341 * Advance our internal TX Queue state, tell the hardware about
1342 * the new TX descriptors and return success.
1343 */
1344 txq_advance(&txq->q, ndesc);
1345 dev->trans_start = jiffies;
1346 ring_tx_db(adapter, &txq->q, ndesc);
1347 return NETDEV_TX_OK;
1348
1349out_free:
1350 /*
1351 * An error of some sort happened. Free the TX skb and tell the
1352 * OS that we've "dealt" with the packet ...
1353 */
1354 dev_kfree_skb(skb);
1355 return NETDEV_TX_OK;
1356}
1357
eb6c503d
CL
1358/**
1359 * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1360 * @gl: the gather list
1361 * @skb_len: size of sk_buff main body if it carries fragments
1362 * @pull_len: amount of data to move to the sk_buff's main body
1363 *
1364 * Builds an sk_buff from the given packet gather list. Returns the
1365 * sk_buff or %NULL if sk_buff allocation failed.
1366 */
1367struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1368 unsigned int skb_len, unsigned int pull_len)
1369{
1370 struct sk_buff *skb;
1371 struct skb_shared_info *ssi;
1372
1373 /*
1374 * If the ingress packet is small enough, allocate an skb large enough
1375 * for all of the data and copy it inline. Otherwise, allocate an skb
1376 * with enough room to pull in the header and reference the rest of
1377 * the data via the skb fragment list.
1378 *
1379 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1380 * buff! size, which is expected since buffers are at least
1381 * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one
1382 * fragment.
1383 */
1384 if (gl->tot_len <= RX_COPY_THRES) {
1385 /* small packets have only one fragment */
1386 skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1387 if (unlikely(!skb))
1388 goto out;
1389 __skb_put(skb, gl->tot_len);
1390 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1391 } else {
1392 skb = alloc_skb(skb_len, GFP_ATOMIC);
1393 if (unlikely(!skb))
1394 goto out;
1395 __skb_put(skb, pull_len);
1396 skb_copy_to_linear_data(skb, gl->va, pull_len);
1397
1398 ssi = skb_shinfo(skb);
1399 ssi->frags[0].page = gl->frags[0].page;
1400 ssi->frags[0].page_offset = gl->frags[0].page_offset + pull_len;
1401 ssi->frags[0].size = gl->frags[0].size - pull_len;
1402 if (gl->nfrags > 1)
1403 memcpy(&ssi->frags[1], &gl->frags[1],
1404 (gl->nfrags-1) * sizeof(skb_frag_t));
1405 ssi->nr_frags = gl->nfrags;
1406
1407 skb->len = gl->tot_len;
1408 skb->data_len = skb->len - pull_len;
1409 skb->truesize += skb->data_len;
1410
1411 /* Get a reference for the last page, we don't own it */
1412 get_page(gl->frags[gl->nfrags - 1].page);
1413 }
1414
1415out:
1416 return skb;
1417}
1418
c6e0d914
CL
1419/**
1420 * t4vf_pktgl_free - free a packet gather list
1421 * @gl: the gather list
1422 *
1423 * Releases the pages of a packet gather list. We do not own the last
1424 * page on the list and do not free it.
1425 */
1426void t4vf_pktgl_free(const struct pkt_gl *gl)
1427{
1428 int frag;
1429
1430 frag = gl->nfrags - 1;
1431 while (frag--)
1432 put_page(gl->frags[frag].page);
1433}
1434
1435/**
1436 * copy_frags - copy fragments from gather list into skb_shared_info
1437 * @si: destination skb shared info structure
1438 * @gl: source internal packet gather list
1439 * @offset: packet start offset in first page
1440 *
1441 * Copy an internal packet gather list into a Linux skb_shared_info
1442 * structure.
1443 */
1444static inline void copy_frags(struct skb_shared_info *si,
1445 const struct pkt_gl *gl,
1446 unsigned int offset)
1447{
1448 unsigned int n;
1449
1450 /* usually there's just one frag */
1451 si->frags[0].page = gl->frags[0].page;
1452 si->frags[0].page_offset = gl->frags[0].page_offset + offset;
1453 si->frags[0].size = gl->frags[0].size - offset;
1454 si->nr_frags = gl->nfrags;
1455
1456 n = gl->nfrags - 1;
1457 if (n)
1458 memcpy(&si->frags[1], &gl->frags[1], n * sizeof(skb_frag_t));
1459
1460 /* get a reference to the last page, we don't own it */
1461 get_page(gl->frags[n].page);
1462}
1463
1464/**
1465 * do_gro - perform Generic Receive Offload ingress packet processing
1466 * @rxq: ingress RX Ethernet Queue
1467 * @gl: gather list for ingress packet
1468 * @pkt: CPL header for last packet fragment
1469 *
1470 * Perform Generic Receive Offload (GRO) ingress packet processing.
1471 * We use the standard Linux GRO interfaces for this.
1472 */
1473static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1474 const struct cpl_rx_pkt *pkt)
1475{
1476 int ret;
1477 struct sk_buff *skb;
1478
1479 skb = napi_get_frags(&rxq->rspq.napi);
1480 if (unlikely(!skb)) {
1481 t4vf_pktgl_free(gl);
1482 rxq->stats.rx_drops++;
1483 return;
1484 }
1485
1486 copy_frags(skb_shinfo(skb), gl, PKTSHIFT);
1487 skb->len = gl->tot_len - PKTSHIFT;
1488 skb->data_len = skb->len;
1489 skb->truesize += skb->data_len;
1490 skb->ip_summed = CHECKSUM_UNNECESSARY;
1491 skb_record_rx_queue(skb, rxq->rspq.idx);
1492
1493 if (unlikely(pkt->vlan_ex)) {
1494 struct port_info *pi = netdev_priv(rxq->rspq.netdev);
1495 struct vlan_group *grp = pi->vlan_grp;
1496
1497 rxq->stats.vlan_ex++;
1498 if (likely(grp)) {
1499 ret = vlan_gro_frags(&rxq->rspq.napi, grp,
1500 be16_to_cpu(pkt->vlan));
1501 goto stats;
1502 }
1503 }
1504 ret = napi_gro_frags(&rxq->rspq.napi);
1505
1506stats:
1507 if (ret == GRO_HELD)
1508 rxq->stats.lro_pkts++;
1509 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1510 rxq->stats.lro_merged++;
1511 rxq->stats.pkts++;
1512 rxq->stats.rx_cso++;
1513}
1514
1515/**
1516 * t4vf_ethrx_handler - process an ingress ethernet packet
1517 * @rspq: the response queue that received the packet
1518 * @rsp: the response queue descriptor holding the RX_PKT message
1519 * @gl: the gather list of packet fragments
1520 *
1521 * Process an ingress ethernet packet and deliver it to the stack.
1522 */
1523int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1524 const struct pkt_gl *gl)
1525{
1526 struct sk_buff *skb;
1527 struct port_info *pi;
c6e0d914
CL
1528 const struct cpl_rx_pkt *pkt = (void *)&rsp[1];
1529 bool csum_ok = pkt->csum_calc && !pkt->err_vec;
c6e0d914
CL
1530 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1531
1532 /*
1533 * If this is a good TCP packet and we have Generic Receive Offload
1534 * enabled, handle the packet in the GRO path.
1535 */
1536 if ((pkt->l2info & cpu_to_be32(RXF_TCP)) &&
1537 (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1538 !pkt->ip_frag) {
1539 do_gro(rxq, gl, pkt);
1540 return 0;
1541 }
1542
1543 /*
eb6c503d 1544 * Convert the Packet Gather List into an skb.
c6e0d914 1545 */
eb6c503d
CL
1546 skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1547 if (unlikely(!skb)) {
1548 t4vf_pktgl_free(gl);
1549 rxq->stats.rx_drops++;
1550 return 0;
c6e0d914 1551 }
c6e0d914
CL
1552 __skb_pull(skb, PKTSHIFT);
1553 skb->protocol = eth_type_trans(skb, rspq->netdev);
1554 skb_record_rx_queue(skb, rspq->idx);
c6e0d914
CL
1555 pi = netdev_priv(skb->dev);
1556 rxq->stats.pkts++;
1557
1558 if (csum_ok && (pi->rx_offload & RX_CSO) && !pkt->err_vec &&
1559 (be32_to_cpu(pkt->l2info) & (RXF_UDP|RXF_TCP))) {
1560 if (!pkt->ip_frag)
1561 skb->ip_summed = CHECKSUM_UNNECESSARY;
1562 else {
1563 __sum16 c = (__force __sum16)pkt->csum;
1564 skb->csum = csum_unfold(c);
1565 skb->ip_summed = CHECKSUM_COMPLETE;
1566 }
1567 rxq->stats.rx_cso++;
1568 } else
bc8acf2c 1569 skb_checksum_none_assert(skb);
c6e0d914 1570
caedda35
CL
1571 /*
1572 * Deliver the packet to the stack.
1573 */
c6e0d914
CL
1574 if (unlikely(pkt->vlan_ex)) {
1575 struct vlan_group *grp = pi->vlan_grp;
1576
1577 rxq->stats.vlan_ex++;
1578 if (likely(grp))
1579 vlan_hwaccel_receive_skb(skb, grp,
1580 be16_to_cpu(pkt->vlan));
1581 else
1582 dev_kfree_skb_any(skb);
1583 } else
1584 netif_receive_skb(skb);
1585
1586 return 0;
c6e0d914
CL
1587}
1588
1589/**
1590 * is_new_response - check if a response is newly written
1591 * @rc: the response control descriptor
1592 * @rspq: the response queue
1593 *
1594 * Returns true if a response descriptor contains a yet unprocessed
1595 * response.
1596 */
1597static inline bool is_new_response(const struct rsp_ctrl *rc,
1598 const struct sge_rspq *rspq)
1599{
1600 return RSPD_GEN(rc->type_gen) == rspq->gen;
1601}
1602
1603/**
1604 * restore_rx_bufs - put back a packet's RX buffers
1605 * @gl: the packet gather list
1606 * @fl: the SGE Free List
1607 * @nfrags: how many fragments in @si
1608 *
1609 * Called when we find out that the current packet, @si, can't be
1610 * processed right away for some reason. This is a very rare event and
1611 * there's no effort to make this suspension/resumption process
1612 * particularly efficient.
1613 *
1614 * We implement the suspension by putting all of the RX buffers associated
1615 * with the current packet back on the original Free List. The buffers
1616 * have already been unmapped and are left unmapped, we mark them as
1617 * unmapped in order to prevent further unmapping attempts. (Effectively
1618 * this function undoes the series of @unmap_rx_buf calls which were done
1619 * to create the current packet's gather list.) This leaves us ready to
1620 * restart processing of the packet the next time we start processing the
1621 * RX Queue ...
1622 */
1623static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1624 int frags)
1625{
1626 struct rx_sw_desc *sdesc;
1627
1628 while (frags--) {
1629 if (fl->cidx == 0)
1630 fl->cidx = fl->size - 1;
1631 else
1632 fl->cidx--;
1633 sdesc = &fl->sdesc[fl->cidx];
1634 sdesc->page = gl->frags[frags].page;
1635 sdesc->dma_addr |= RX_UNMAPPED_BUF;
1636 fl->avail++;
1637 }
1638}
1639
1640/**
1641 * rspq_next - advance to the next entry in a response queue
1642 * @rspq: the queue
1643 *
1644 * Updates the state of a response queue to advance it to the next entry.
1645 */
1646static inline void rspq_next(struct sge_rspq *rspq)
1647{
1648 rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1649 if (unlikely(++rspq->cidx == rspq->size)) {
1650 rspq->cidx = 0;
1651 rspq->gen ^= 1;
1652 rspq->cur_desc = rspq->desc;
1653 }
1654}
1655
1656/**
1657 * process_responses - process responses from an SGE response queue
1658 * @rspq: the ingress response queue to process
1659 * @budget: how many responses can be processed in this round
1660 *
1661 * Process responses from a Scatter Gather Engine response queue up to
1662 * the supplied budget. Responses include received packets as well as
1663 * control messages from firmware or hardware.
1664 *
1665 * Additionally choose the interrupt holdoff time for the next interrupt
1666 * on this queue. If the system is under memory shortage use a fairly
1667 * long delay to help recovery.
1668 */
1669int process_responses(struct sge_rspq *rspq, int budget)
1670{
1671 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1672 int budget_left = budget;
1673
1674 while (likely(budget_left)) {
1675 int ret, rsp_type;
1676 const struct rsp_ctrl *rc;
1677
1678 rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1679 if (!is_new_response(rc, rspq))
1680 break;
1681
1682 /*
1683 * Figure out what kind of response we've received from the
1684 * SGE.
1685 */
1686 rmb();
1687 rsp_type = RSPD_TYPE(rc->type_gen);
1688 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1689 skb_frag_t *fp;
1690 struct pkt_gl gl;
1691 const struct rx_sw_desc *sdesc;
1692 u32 bufsz, frag;
1693 u32 len = be32_to_cpu(rc->pldbuflen_qid);
1694
1695 /*
1696 * If we get a "new buffer" message from the SGE we
1697 * need to move on to the next Free List buffer.
1698 */
1699 if (len & RSPD_NEWBUF) {
1700 /*
1701 * We get one "new buffer" message when we
1702 * first start up a queue so we need to ignore
1703 * it when our offset into the buffer is 0.
1704 */
1705 if (likely(rspq->offset > 0)) {
1706 free_rx_bufs(rspq->adapter, &rxq->fl,
1707 1);
1708 rspq->offset = 0;
1709 }
1710 len = RSPD_LEN(len);
1711 }
b94e72e2 1712 gl.tot_len = len;
c6e0d914
CL
1713
1714 /*
1715 * Gather packet fragments.
1716 */
1717 for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1718 BUG_ON(frag >= MAX_SKB_FRAGS);
1719 BUG_ON(rxq->fl.avail == 0);
1720 sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1721 bufsz = get_buf_size(sdesc);
1722 fp->page = sdesc->page;
1723 fp->page_offset = rspq->offset;
1724 fp->size = min(bufsz, len);
1725 len -= fp->size;
1726 if (!len)
1727 break;
1728 unmap_rx_buf(rspq->adapter, &rxq->fl);
1729 }
1730 gl.nfrags = frag+1;
1731
1732 /*
1733 * Last buffer remains mapped so explicitly make it
1734 * coherent for CPU access and start preloading first
1735 * cache line ...
1736 */
1737 dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1738 get_buf_addr(sdesc),
1739 fp->size, DMA_FROM_DEVICE);
1740 gl.va = (page_address(gl.frags[0].page) +
1741 gl.frags[0].page_offset);
1742 prefetch(gl.va);
1743
1744 /*
1745 * Hand the new ingress packet to the handler for
1746 * this Response Queue.
1747 */
1748 ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1749 if (likely(ret == 0))
1750 rspq->offset += ALIGN(fp->size, FL_ALIGN);
1751 else
1752 restore_rx_bufs(&gl, &rxq->fl, frag);
1753 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1754 ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1755 } else {
1756 WARN_ON(rsp_type > RSP_TYPE_CPL);
1757 ret = 0;
1758 }
1759
1760 if (unlikely(ret)) {
1761 /*
1762 * Couldn't process descriptor, back off for recovery.
1763 * We use the SGE's last timer which has the longest
1764 * interrupt coalescing value ...
1765 */
1766 const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1767 rspq->next_intr_params =
1768 QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
1769 break;
1770 }
1771
1772 rspq_next(rspq);
1773 budget_left--;
1774 }
1775
1776 /*
1777 * If this is a Response Queue with an associated Free List and
1778 * at least two Egress Queue units available in the Free List
1779 * for new buffer pointers, refill the Free List.
1780 */
1781 if (rspq->offset >= 0 &&
1782 rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1783 __refill_fl(rspq->adapter, &rxq->fl);
1784 return budget - budget_left;
1785}
1786
1787/**
1788 * napi_rx_handler - the NAPI handler for RX processing
1789 * @napi: the napi instance
1790 * @budget: how many packets we can process in this round
1791 *
1792 * Handler for new data events when using NAPI. This does not need any
1793 * locking or protection from interrupts as data interrupts are off at
1794 * this point and other adapter interrupts do not interfere (the latter
1795 * in not a concern at all with MSI-X as non-data interrupts then have
1796 * a separate handler).
1797 */
1798static int napi_rx_handler(struct napi_struct *napi, int budget)
1799{
1800 unsigned int intr_params;
1801 struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1802 int work_done = process_responses(rspq, budget);
1803
1804 if (likely(work_done < budget)) {
1805 napi_complete(napi);
1806 intr_params = rspq->next_intr_params;
1807 rspq->next_intr_params = rspq->intr_params;
1808 } else
1809 intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);
1810
68dc9d36
CL
1811 if (unlikely(work_done == 0))
1812 rspq->unhandled_irqs++;
1813
c6e0d914
CL
1814 t4_write_reg(rspq->adapter,
1815 T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1816 CIDXINC(work_done) |
1817 INGRESSQID((u32)rspq->cntxt_id) |
1818 SEINTARM(intr_params));
1819 return work_done;
1820}
1821
1822/*
1823 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1824 * (i.e., response queue serviced by NAPI polling).
1825 */
1826irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1827{
1828 struct sge_rspq *rspq = cookie;
1829
1830 napi_schedule(&rspq->napi);
1831 return IRQ_HANDLED;
1832}
1833
1834/*
1835 * Process the indirect interrupt entries in the interrupt queue and kick off
1836 * NAPI for each queue that has generated an entry.
1837 */
1838static unsigned int process_intrq(struct adapter *adapter)
1839{
1840 struct sge *s = &adapter->sge;
1841 struct sge_rspq *intrq = &s->intrq;
1842 unsigned int work_done;
1843
1844 spin_lock(&adapter->sge.intrq_lock);
1845 for (work_done = 0; ; work_done++) {
1846 const struct rsp_ctrl *rc;
1847 unsigned int qid, iq_idx;
1848 struct sge_rspq *rspq;
1849
1850 /*
1851 * Grab the next response from the interrupt queue and bail
1852 * out if it's not a new response.
1853 */
1854 rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1855 if (!is_new_response(rc, intrq))
1856 break;
1857
1858 /*
1859 * If the response isn't a forwarded interrupt message issue a
1860 * error and go on to the next response message. This should
1861 * never happen ...
1862 */
1863 rmb();
1864 if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
1865 dev_err(adapter->pdev_dev,
1866 "Unexpected INTRQ response type %d\n",
1867 RSPD_TYPE(rc->type_gen));
1868 continue;
1869 }
1870
1871 /*
1872 * Extract the Queue ID from the interrupt message and perform
1873 * sanity checking to make sure it really refers to one of our
1874 * Ingress Queues which is active and matches the queue's ID.
1875 * None of these error conditions should ever happen so we may
1876 * want to either make them fatal and/or conditionalized under
1877 * DEBUG.
1878 */
1879 qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
1880 iq_idx = IQ_IDX(s, qid);
1881 if (unlikely(iq_idx >= MAX_INGQ)) {
1882 dev_err(adapter->pdev_dev,
1883 "Ingress QID %d out of range\n", qid);
1884 continue;
1885 }
1886 rspq = s->ingr_map[iq_idx];
1887 if (unlikely(rspq == NULL)) {
1888 dev_err(adapter->pdev_dev,
1889 "Ingress QID %d RSPQ=NULL\n", qid);
1890 continue;
1891 }
1892 if (unlikely(rspq->abs_id != qid)) {
1893 dev_err(adapter->pdev_dev,
1894 "Ingress QID %d refers to RSPQ %d\n",
1895 qid, rspq->abs_id);
1896 continue;
1897 }
1898
1899 /*
1900 * Schedule NAPI processing on the indicated Response Queue
1901 * and move on to the next entry in the Forwarded Interrupt
1902 * Queue.
1903 */
1904 napi_schedule(&rspq->napi);
1905 rspq_next(intrq);
1906 }
1907
1908 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1909 CIDXINC(work_done) |
1910 INGRESSQID(intrq->cntxt_id) |
1911 SEINTARM(intrq->intr_params));
1912
1913 spin_unlock(&adapter->sge.intrq_lock);
1914
1915 return work_done;
1916}
1917
1918/*
1919 * The MSI interrupt handler handles data events from SGE response queues as
1920 * well as error and other async events as they all use the same MSI vector.
1921 */
1922irqreturn_t t4vf_intr_msi(int irq, void *cookie)
1923{
1924 struct adapter *adapter = cookie;
1925
1926 process_intrq(adapter);
1927 return IRQ_HANDLED;
1928}
1929
1930/**
1931 * t4vf_intr_handler - select the top-level interrupt handler
1932 * @adapter: the adapter
1933 *
1934 * Selects the top-level interrupt handler based on the type of interrupts
1935 * (MSI-X or MSI).
1936 */
1937irq_handler_t t4vf_intr_handler(struct adapter *adapter)
1938{
1939 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
1940 if (adapter->flags & USING_MSIX)
1941 return t4vf_sge_intr_msix;
1942 else
1943 return t4vf_intr_msi;
1944}
1945
1946/**
1947 * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
1948 * @data: the adapter
1949 *
1950 * Runs periodically from a timer to perform maintenance of SGE RX queues.
1951 *
1952 * a) Replenishes RX queues that have run out due to memory shortage.
1953 * Normally new RX buffers are added when existing ones are consumed but
1954 * when out of memory a queue can become empty. We schedule NAPI to do
1955 * the actual refill.
1956 */
1957static void sge_rx_timer_cb(unsigned long data)
1958{
1959 struct adapter *adapter = (struct adapter *)data;
1960 struct sge *s = &adapter->sge;
1961 unsigned int i;
1962
1963 /*
1964 * Scan the "Starving Free Lists" flag array looking for any Free
1965 * Lists in need of more free buffers. If we find one and it's not
1966 * being actively polled, then bump its "starving" counter and attempt
1967 * to refill it. If we're successful in adding enough buffers to push
1968 * the Free List over the starving threshold, then we can clear its
1969 * "starving" status.
1970 */
1971 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
1972 unsigned long m;
1973
1974 for (m = s->starving_fl[i]; m; m &= m - 1) {
1975 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
1976 struct sge_fl *fl = s->egr_map[id];
1977
1978 clear_bit(id, s->starving_fl);
1979 smp_mb__after_clear_bit();
1980
1981 /*
1982 * Since we are accessing fl without a lock there's a
1983 * small probability of a false positive where we
1984 * schedule napi but the FL is no longer starving.
1985 * No biggie.
1986 */
1987 if (fl_starving(fl)) {
1988 struct sge_eth_rxq *rxq;
1989
1990 rxq = container_of(fl, struct sge_eth_rxq, fl);
1991 if (napi_reschedule(&rxq->rspq.napi))
1992 fl->starving++;
1993 else
1994 set_bit(id, s->starving_fl);
1995 }
1996 }
1997 }
1998
1999 /*
2000 * Reschedule the next scan for starving Free Lists ...
2001 */
2002 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2003}
2004
2005/**
2006 * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
2007 * @data: the adapter
2008 *
2009 * Runs periodically from a timer to perform maintenance of SGE TX queues.
2010 *
2011 * b) Reclaims completed Tx packets for the Ethernet queues. Normally
2012 * packets are cleaned up by new Tx packets, this timer cleans up packets
2013 * when no new packets are being submitted. This is essential for pktgen,
2014 * at least.
2015 */
2016static void sge_tx_timer_cb(unsigned long data)
2017{
2018 struct adapter *adapter = (struct adapter *)data;
2019 struct sge *s = &adapter->sge;
2020 unsigned int i, budget;
2021
2022 budget = MAX_TIMER_TX_RECLAIM;
2023 i = s->ethtxq_rover;
2024 do {
2025 struct sge_eth_txq *txq = &s->ethtxq[i];
2026
2027 if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2028 int avail = reclaimable(&txq->q);
2029
2030 if (avail > budget)
2031 avail = budget;
2032
2033 free_tx_desc(adapter, &txq->q, avail, true);
2034 txq->q.in_use -= avail;
2035 __netif_tx_unlock(txq->txq);
2036
2037 budget -= avail;
2038 if (!budget)
2039 break;
2040 }
2041
2042 i++;
2043 if (i >= s->ethqsets)
2044 i = 0;
2045 } while (i != s->ethtxq_rover);
2046 s->ethtxq_rover = i;
2047
2048 /*
2049 * If we found too many reclaimable packets schedule a timer in the
2050 * near future to continue where we left off. Otherwise the next timer
2051 * will be at its normal interval.
2052 */
2053 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2054}
2055
2056/**
2057 * t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2058 * @adapter: the adapter
2059 * @rspq: pointer to to the new rxq's Response Queue to be filled in
2060 * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2061 * @dev: the network device associated with the new rspq
2062 * @intr_dest: MSI-X vector index (overriden in MSI mode)
2063 * @fl: pointer to the new rxq's Free List to be filled in
2064 * @hnd: the interrupt handler to invoke for the rspq
2065 */
2066int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2067 bool iqasynch, struct net_device *dev,
2068 int intr_dest,
2069 struct sge_fl *fl, rspq_handler_t hnd)
2070{
2071 struct port_info *pi = netdev_priv(dev);
2072 struct fw_iq_cmd cmd, rpl;
2073 int ret, iqandst, flsz = 0;
2074
2075 /*
2076 * If we're using MSI interrupts and we're not initializing the
2077 * Forwarded Interrupt Queue itself, then set up this queue for
2078 * indirect interrupts to the Forwarded Interrupt Queue. Obviously
2079 * the Forwarded Interrupt Queue must be set up before any other
2080 * ingress queue ...
2081 */
2082 if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
2083 iqandst = SGE_INTRDST_IQ;
2084 intr_dest = adapter->sge.intrq.abs_id;
2085 } else
2086 iqandst = SGE_INTRDST_PCI;
2087
2088 /*
2089 * Allocate the hardware ring for the Response Queue. The size needs
2090 * to be a multiple of 16 which includes the mandatory status entry
2091 * (regardless of whether the Status Page capabilities are enabled or
2092 * not).
2093 */
2094 rspq->size = roundup(rspq->size, 16);
2095 rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2096 0, &rspq->phys_addr, NULL, 0);
2097 if (!rspq->desc)
2098 return -ENOMEM;
2099
2100 /*
2101 * Fill in the Ingress Queue Command. Note: Ideally this code would
2102 * be in t4vf_hw.c but there are so many parameters and dependencies
2103 * on our Linux SGE state that we would end up having to pass tons of
2104 * parameters. We'll have to think about how this might be migrated
2105 * into OS-independent common code ...
2106 */
2107 memset(&cmd, 0, sizeof(cmd));
2108 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
2109 FW_CMD_REQUEST |
2110 FW_CMD_WRITE |
2111 FW_CMD_EXEC);
2112 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC |
2113 FW_IQ_CMD_IQSTART(1) |
2114 FW_LEN16(cmd));
2115 cmd.type_to_iqandstindex =
2116 cpu_to_be32(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2117 FW_IQ_CMD_IQASYNCH(iqasynch) |
2118 FW_IQ_CMD_VIID(pi->viid) |
2119 FW_IQ_CMD_IQANDST(iqandst) |
2120 FW_IQ_CMD_IQANUS(1) |
2121 FW_IQ_CMD_IQANUD(SGE_UPDATEDEL_INTR) |
2122 FW_IQ_CMD_IQANDSTINDEX(intr_dest));
2123 cmd.iqdroprss_to_iqesize =
2124 cpu_to_be16(FW_IQ_CMD_IQPCIECH(pi->port_id) |
2125 FW_IQ_CMD_IQGTSMODE |
2126 FW_IQ_CMD_IQINTCNTTHRESH(rspq->pktcnt_idx) |
2127 FW_IQ_CMD_IQESIZE(ilog2(rspq->iqe_len) - 4));
2128 cmd.iqsize = cpu_to_be16(rspq->size);
2129 cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2130
2131 if (fl) {
2132 /*
2133 * Allocate the ring for the hardware free list (with space
2134 * for its status page) along with the associated software
2135 * descriptor ring. The free list size needs to be a multiple
2136 * of the Egress Queue Unit.
2137 */
2138 fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2139 fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2140 sizeof(__be64), sizeof(struct rx_sw_desc),
2141 &fl->addr, &fl->sdesc, STAT_LEN);
2142 if (!fl->desc) {
2143 ret = -ENOMEM;
2144 goto err;
2145 }
2146
2147 /*
2148 * Calculate the size of the hardware free list ring plus
caedda35 2149 * Status Page (which the SGE will place after the end of the
c6e0d914
CL
2150 * free list ring) in Egress Queue Units.
2151 */
2152 flsz = (fl->size / FL_PER_EQ_UNIT +
2153 STAT_LEN / EQ_UNIT);
2154
2155 /*
2156 * Fill in all the relevant firmware Ingress Queue Command
2157 * fields for the free list.
2158 */
2159 cmd.iqns_to_fl0congen =
2160 cpu_to_be32(
2161 FW_IQ_CMD_FL0HOSTFCMODE(SGE_HOSTFCMODE_NONE) |
2162 FW_IQ_CMD_FL0PACKEN |
2163 FW_IQ_CMD_FL0PADEN);
2164 cmd.fl0dcaen_to_fl0cidxfthresh =
2165 cpu_to_be16(
2166 FW_IQ_CMD_FL0FBMIN(SGE_FETCHBURSTMIN_64B) |
2167 FW_IQ_CMD_FL0FBMAX(SGE_FETCHBURSTMAX_512B));
2168 cmd.fl0size = cpu_to_be16(flsz);
2169 cmd.fl0addr = cpu_to_be64(fl->addr);
2170 }
2171
2172 /*
2173 * Issue the firmware Ingress Queue Command and extract the results if
2174 * it completes successfully.
2175 */
2176 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2177 if (ret)
2178 goto err;
2179
2180 netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2181 rspq->cur_desc = rspq->desc;
2182 rspq->cidx = 0;
2183 rspq->gen = 1;
2184 rspq->next_intr_params = rspq->intr_params;
2185 rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2186 rspq->abs_id = be16_to_cpu(rpl.physiqid);
2187 rspq->size--; /* subtract status entry */
2188 rspq->adapter = adapter;
2189 rspq->netdev = dev;
2190 rspq->handler = hnd;
2191
2192 /* set offset to -1 to distinguish ingress queues without FL */
2193 rspq->offset = fl ? 0 : -1;
2194
2195 if (fl) {
2196 fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2197 fl->avail = 0;
2198 fl->pend_cred = 0;
2199 fl->pidx = 0;
2200 fl->cidx = 0;
2201 fl->alloc_failed = 0;
2202 fl->large_alloc_failed = 0;
2203 fl->starving = 0;
2204 refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2205 }
2206
2207 return 0;
2208
2209err:
2210 /*
2211 * An error occurred. Clean up our partial allocation state and
2212 * return the error.
2213 */
2214 if (rspq->desc) {
2215 dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2216 rspq->desc, rspq->phys_addr);
2217 rspq->desc = NULL;
2218 }
2219 if (fl && fl->desc) {
2220 kfree(fl->sdesc);
2221 fl->sdesc = NULL;
2222 dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2223 fl->desc, fl->addr);
2224 fl->desc = NULL;
2225 }
2226 return ret;
2227}
2228
2229/**
2230 * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2231 * @adapter: the adapter
2232 * @txq: pointer to the new txq to be filled in
2233 * @devq: the network TX queue associated with the new txq
2234 * @iqid: the relative ingress queue ID to which events relating to
2235 * the new txq should be directed
2236 */
2237int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2238 struct net_device *dev, struct netdev_queue *devq,
2239 unsigned int iqid)
2240{
2241 int ret, nentries;
2242 struct fw_eq_eth_cmd cmd, rpl;
2243 struct port_info *pi = netdev_priv(dev);
2244
2245 /*
caedda35
CL
2246 * Calculate the size of the hardware TX Queue (including the Status
2247 * Page on the end of the TX Queue) in units of TX Descriptors.
c6e0d914
CL
2248 */
2249 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2250
2251 /*
2252 * Allocate the hardware ring for the TX ring (with space for its
2253 * status page) along with the associated software descriptor ring.
2254 */
2255 txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2256 sizeof(struct tx_desc),
2257 sizeof(struct tx_sw_desc),
2258 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN);
2259 if (!txq->q.desc)
2260 return -ENOMEM;
2261
2262 /*
2263 * Fill in the Egress Queue Command. Note: As with the direct use of
2264 * the firmware Ingress Queue COmmand above in our RXQ allocation
2265 * routine, ideally, this code would be in t4vf_hw.c. Again, we'll
2266 * have to see if there's some reasonable way to parameterize it
2267 * into the common code ...
2268 */
2269 memset(&cmd, 0, sizeof(cmd));
2270 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
2271 FW_CMD_REQUEST |
2272 FW_CMD_WRITE |
2273 FW_CMD_EXEC);
2274 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC |
2275 FW_EQ_ETH_CMD_EQSTART |
2276 FW_LEN16(cmd));
2277 cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_VIID(pi->viid));
2278 cmd.fetchszm_to_iqid =
2279 cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE(SGE_HOSTFCMODE_STPG) |
2280 FW_EQ_ETH_CMD_PCIECHN(pi->port_id) |
2281 FW_EQ_ETH_CMD_IQID(iqid));
2282 cmd.dcaen_to_eqsize =
2283 cpu_to_be32(FW_EQ_ETH_CMD_FBMIN(SGE_FETCHBURSTMIN_64B) |
2284 FW_EQ_ETH_CMD_FBMAX(SGE_FETCHBURSTMAX_512B) |
2285 FW_EQ_ETH_CMD_CIDXFTHRESH(SGE_CIDXFLUSHTHRESH_32) |
2286 FW_EQ_ETH_CMD_EQSIZE(nentries));
2287 cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2288
2289 /*
2290 * Issue the firmware Egress Queue Command and extract the results if
2291 * it completes successfully.
2292 */
2293 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2294 if (ret) {
2295 /*
2296 * The girmware Ingress Queue Command failed for some reason.
2297 * Free up our partial allocation state and return the error.
2298 */
2299 kfree(txq->q.sdesc);
2300 txq->q.sdesc = NULL;
2301 dma_free_coherent(adapter->pdev_dev,
2302 nentries * sizeof(struct tx_desc),
2303 txq->q.desc, txq->q.phys_addr);
2304 txq->q.desc = NULL;
2305 return ret;
2306 }
2307
2308 txq->q.in_use = 0;
2309 txq->q.cidx = 0;
2310 txq->q.pidx = 0;
2311 txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2312 txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_GET(be32_to_cpu(rpl.eqid_pkd));
2313 txq->q.abs_id =
2314 FW_EQ_ETH_CMD_PHYSEQID_GET(be32_to_cpu(rpl.physeqid_pkd));
2315 txq->txq = devq;
2316 txq->tso = 0;
2317 txq->tx_cso = 0;
2318 txq->vlan_ins = 0;
2319 txq->q.stops = 0;
2320 txq->q.restarts = 0;
2321 txq->mapping_err = 0;
2322 return 0;
2323}
2324
2325/*
2326 * Free the DMA map resources associated with a TX queue.
2327 */
2328static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2329{
2330 dma_free_coherent(adapter->pdev_dev,
2331 tq->size * sizeof(*tq->desc) + STAT_LEN,
2332 tq->desc, tq->phys_addr);
2333 tq->cntxt_id = 0;
2334 tq->sdesc = NULL;
2335 tq->desc = NULL;
2336}
2337
2338/*
2339 * Free the resources associated with a response queue (possibly including a
2340 * free list).
2341 */
2342static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2343 struct sge_fl *fl)
2344{
2345 unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2346
2347 t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2348 rspq->cntxt_id, flid, 0xffff);
2349 dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2350 rspq->desc, rspq->phys_addr);
2351 netif_napi_del(&rspq->napi);
2352 rspq->netdev = NULL;
2353 rspq->cntxt_id = 0;
2354 rspq->abs_id = 0;
2355 rspq->desc = NULL;
2356
2357 if (fl) {
2358 free_rx_bufs(adapter, fl, fl->avail);
2359 dma_free_coherent(adapter->pdev_dev,
2360 fl->size * sizeof(*fl->desc) + STAT_LEN,
2361 fl->desc, fl->addr);
2362 kfree(fl->sdesc);
2363 fl->sdesc = NULL;
2364 fl->cntxt_id = 0;
2365 fl->desc = NULL;
2366 }
2367}
2368
2369/**
2370 * t4vf_free_sge_resources - free SGE resources
2371 * @adapter: the adapter
2372 *
2373 * Frees resources used by the SGE queue sets.
2374 */
2375void t4vf_free_sge_resources(struct adapter *adapter)
2376{
2377 struct sge *s = &adapter->sge;
2378 struct sge_eth_rxq *rxq = s->ethrxq;
2379 struct sge_eth_txq *txq = s->ethtxq;
2380 struct sge_rspq *evtq = &s->fw_evtq;
2381 struct sge_rspq *intrq = &s->intrq;
2382 int qs;
2383
b97d13a5 2384 for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
c6e0d914
CL
2385 if (rxq->rspq.desc)
2386 free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2387 if (txq->q.desc) {
2388 t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2389 free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2390 kfree(txq->q.sdesc);
2391 free_txq(adapter, &txq->q);
2392 }
2393 }
2394 if (evtq->desc)
2395 free_rspq_fl(adapter, evtq, NULL);
2396 if (intrq->desc)
2397 free_rspq_fl(adapter, intrq, NULL);
2398}
2399
2400/**
2401 * t4vf_sge_start - enable SGE operation
2402 * @adapter: the adapter
2403 *
2404 * Start tasklets and timers associated with the DMA engine.
2405 */
2406void t4vf_sge_start(struct adapter *adapter)
2407{
2408 adapter->sge.ethtxq_rover = 0;
2409 mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2410 mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2411}
2412
2413/**
2414 * t4vf_sge_stop - disable SGE operation
2415 * @adapter: the adapter
2416 *
2417 * Stop tasklets and timers associated with the DMA engine. Note that
2418 * this is effective only if measures have been taken to disable any HW
2419 * events that may restart them.
2420 */
2421void t4vf_sge_stop(struct adapter *adapter)
2422{
2423 struct sge *s = &adapter->sge;
2424
2425 if (s->rx_timer.function)
2426 del_timer_sync(&s->rx_timer);
2427 if (s->tx_timer.function)
2428 del_timer_sync(&s->tx_timer);
2429}
2430
2431/**
2432 * t4vf_sge_init - initialize SGE
2433 * @adapter: the adapter
2434 *
2435 * Performs SGE initialization needed every time after a chip reset.
2436 * We do not initialize any of the queue sets here, instead the driver
2437 * top-level must request those individually. We also do not enable DMA
2438 * here, that should be done after the queues have been set up.
2439 */
2440int t4vf_sge_init(struct adapter *adapter)
2441{
2442 struct sge_params *sge_params = &adapter->params.sge;
2443 u32 fl0 = sge_params->sge_fl_buffer_size[0];
2444 u32 fl1 = sge_params->sge_fl_buffer_size[1];
2445 struct sge *s = &adapter->sge;
2446
2447 /*
2448 * Start by vetting the basic SGE parameters which have been set up by
2449 * the Physical Function Driver. Ideally we should be able to deal
2450 * with _any_ configuration. Practice is different ...
2451 */
2452 if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
2453 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2454 fl0, fl1);
2455 return -EINVAL;
2456 }
2457 if ((sge_params->sge_control & RXPKTCPLMODE) == 0) {
2458 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2459 return -EINVAL;
2460 }
2461
2462 /*
2463 * Now translate the adapter parameters into our internal forms.
2464 */
2465 if (fl1)
2466 FL_PG_ORDER = ilog2(fl1) - PAGE_SHIFT;
2467 STAT_LEN = ((sge_params->sge_control & EGRSTATUSPAGESIZE) ? 128 : 64);
2468 PKTSHIFT = PKTSHIFT_GET(sge_params->sge_control);
2469 FL_ALIGN = 1 << (INGPADBOUNDARY_GET(sge_params->sge_control) +
b3003be3 2470 SGE_INGPADBOUNDARY_SHIFT);
c6e0d914
CL
2471
2472 /*
2473 * Set up tasklet timers.
2474 */
2475 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
2476 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
2477
2478 /*
2479 * Initialize Forwarded Interrupt Queue lock.
2480 */
2481 spin_lock_init(&s->intrq_lock);
2482
2483 return 0;
2484}