Merge branch 'wl12xx-next' into for-linville
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / nand / s3c2410.c
CommitLineData
1da177e4
LT
1/* linux/drivers/mtd/nand/s3c2410.c
2 *
7e74a507
BD
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
fdf2fd52 5 * Ben Dooks <ben@simtec.co.uk>
1da177e4 6 *
7e74a507 7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
1da177e4 8 *
1da177e4
LT
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22*/
23
92aeb5d2
SK
24#define pr_fmt(fmt) "nand-s3c2410: " fmt
25
1da177e4
LT
26#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
27#define DEBUG
28#endif
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/kernel.h>
34#include <linux/string.h>
d2a89be8 35#include <linux/io.h>
1da177e4 36#include <linux/ioport.h>
d052d1be 37#include <linux/platform_device.h>
1da177e4
LT
38#include <linux/delay.h>
39#include <linux/err.h>
4e57b681 40#include <linux/slab.h>
f8ce2547 41#include <linux/clk.h>
30821fee 42#include <linux/cpufreq.h>
1da177e4
LT
43
44#include <linux/mtd/mtd.h>
45#include <linux/mtd/nand.h>
46#include <linux/mtd/nand_ecc.h>
47#include <linux/mtd/partitions.h>
48
7926b5a3 49#include <plat/regs-nand.h>
436d42c6 50#include <linux/platform_data/mtd-nand-s3c2410.h>
1da177e4 51
1da177e4
LT
52/* new oob placement block for use with hardware ecc generation
53 */
54
5bd34c09 55static struct nand_ecclayout nand_hw_eccoob = {
e0c7d767
DW
56 .eccbytes = 3,
57 .eccpos = {0, 1, 2},
58 .oobfree = {{8, 8}}
1da177e4
LT
59};
60
61/* controller and mtd information */
62
63struct s3c2410_nand_info;
64
3db72151
BD
65/**
66 * struct s3c2410_nand_mtd - driver MTD structure
67 * @mtd: The MTD instance to pass to the MTD layer.
68 * @chip: The NAND chip information.
69 * @set: The platform information supplied for this set of NAND chips.
70 * @info: Link back to the hardware information.
71 * @scan_res: The result from calling nand_scan_ident().
72*/
1da177e4
LT
73struct s3c2410_nand_mtd {
74 struct mtd_info mtd;
75 struct nand_chip chip;
76 struct s3c2410_nand_set *set;
77 struct s3c2410_nand_info *info;
78 int scan_res;
79};
80
2c06a082
BD
81enum s3c_cpu_type {
82 TYPE_S3C2410,
83 TYPE_S3C2412,
84 TYPE_S3C2440,
85};
86
ac497c16
JP
87enum s3c_nand_clk_state {
88 CLOCK_DISABLE = 0,
89 CLOCK_ENABLE,
90 CLOCK_SUSPEND,
91};
92
1da177e4
LT
93/* overview of the s3c2410 nand state */
94
3db72151
BD
95/**
96 * struct s3c2410_nand_info - NAND controller state.
97 * @mtds: An array of MTD instances on this controoler.
98 * @platform: The platform data for this board.
99 * @device: The platform device we bound to.
3db72151 100 * @clk: The clock resource for this controller.
6f32a3e2 101 * @regs: The area mapped for the hardware registers.
3db72151
BD
102 * @sel_reg: Pointer to the register controlling the NAND selection.
103 * @sel_bit: The bit in @sel_reg to select the NAND chip.
104 * @mtd_count: The number of MTDs created from this controller.
105 * @save_sel: The contents of @sel_reg to be saved over suspend.
106 * @clk_rate: The clock rate from @clk.
ac497c16 107 * @clk_state: The current clock state.
3db72151
BD
108 * @cpu_type: The exact type of this controller.
109 */
1da177e4
LT
110struct s3c2410_nand_info {
111 /* mtd info */
112 struct nand_hw_control controller;
113 struct s3c2410_nand_mtd *mtds;
114 struct s3c2410_platform_nand *platform;
115
116 /* device info */
117 struct device *device;
1da177e4 118 struct clk *clk;
fdf2fd52 119 void __iomem *regs;
2c06a082
BD
120 void __iomem *sel_reg;
121 int sel_bit;
1da177e4 122 int mtd_count;
09160832 123 unsigned long save_sel;
30821fee 124 unsigned long clk_rate;
ac497c16 125 enum s3c_nand_clk_state clk_state;
03680b1e 126
2c06a082 127 enum s3c_cpu_type cpu_type;
30821fee
BD
128
129#ifdef CONFIG_CPU_FREQ
130 struct notifier_block freq_transition;
131#endif
1da177e4
LT
132};
133
134/* conversion functions */
135
136static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
137{
138 return container_of(mtd, struct s3c2410_nand_mtd, mtd);
139}
140
141static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
142{
143 return s3c2410_nand_mtd_toours(mtd)->info;
144}
145
3ae5eaec 146static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
1da177e4 147{
3ae5eaec 148 return platform_get_drvdata(dev);
1da177e4
LT
149}
150
3ae5eaec 151static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
1da177e4 152{
3ae5eaec 153 return dev->dev.platform_data;
1da177e4
LT
154}
155
ac497c16 156static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
d1fef3c5 157{
a68c5ec8
SK
158#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
159 return 1;
160#else
161 return 0;
162#endif
d1fef3c5
BD
163}
164
ac497c16
JP
165/**
166 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
167 * @info: The controller instance.
168 * @new_state: State to which clock should be set.
169 */
170static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
171 enum s3c_nand_clk_state new_state)
172{
173 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
174 return;
175
176 if (info->clk_state == CLOCK_ENABLE) {
177 if (new_state != CLOCK_ENABLE)
178 clk_disable(info->clk);
179 } else {
180 if (new_state == CLOCK_ENABLE)
181 clk_enable(info->clk);
182 }
183
184 info->clk_state = new_state;
185}
186
1da177e4
LT
187/* timing calculations */
188
cfd320fb 189#define NS_IN_KHZ 1000000
1da177e4 190
3db72151
BD
191/**
192 * s3c_nand_calc_rate - calculate timing data.
193 * @wanted: The cycle time in nanoseconds.
194 * @clk: The clock rate in kHz.
195 * @max: The maximum divider value.
196 *
197 * Calculate the timing value from the given parameters.
198 */
2c06a082 199static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
1da177e4
LT
200{
201 int result;
202
947391cf 203 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
1da177e4
LT
204
205 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
206
207 if (result > max) {
92aeb5d2
SK
208 pr_err("%d ns is too big for current clock rate %ld\n",
209 wanted, clk);
1da177e4
LT
210 return -1;
211 }
212
213 if (result < 1)
214 result = 1;
215
216 return result;
217}
218
54cd0208 219#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
1da177e4
LT
220
221/* controller setup */
222
3db72151
BD
223/**
224 * s3c2410_nand_setrate - setup controller timing information.
225 * @info: The controller instance.
226 *
227 * Given the information supplied by the platform, calculate and set
228 * the necessary timing registers in the hardware to generate the
229 * necessary timing cycles to the hardware.
230 */
30821fee 231static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
1da177e4 232{
30821fee 233 struct s3c2410_platform_nand *plat = info->platform;
2c06a082 234 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
cfd320fb 235 int tacls, twrph0, twrph1;
30821fee 236 unsigned long clkrate = clk_get_rate(info->clk);
2612e523 237 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
30821fee 238 unsigned long flags;
1da177e4
LT
239
240 /* calculate the timing information for the controller */
241
30821fee 242 info->clk_rate = clkrate;
cfd320fb
BD
243 clkrate /= 1000; /* turn clock into kHz for ease of use */
244
1da177e4 245 if (plat != NULL) {
2c06a082
BD
246 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
247 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
248 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
1da177e4
LT
249 } else {
250 /* default timings */
2c06a082 251 tacls = tacls_max;
1da177e4
LT
252 twrph0 = 8;
253 twrph1 = 8;
254 }
61b03bd7 255
1da177e4 256 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
99974c62 257 dev_err(info->device, "cannot get suitable timings\n");
1da177e4
LT
258 return -EINVAL;
259 }
260
99974c62 261 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
54cd0208
SK
262 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
263 twrph1, to_ns(twrph1, clkrate));
1da177e4 264
30821fee
BD
265 switch (info->cpu_type) {
266 case TYPE_S3C2410:
267 mask = (S3C2410_NFCONF_TACLS(3) |
268 S3C2410_NFCONF_TWRPH0(7) |
269 S3C2410_NFCONF_TWRPH1(7));
270 set = S3C2410_NFCONF_EN;
271 set |= S3C2410_NFCONF_TACLS(tacls - 1);
272 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
273 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
274 break;
275
276 case TYPE_S3C2440:
277 case TYPE_S3C2412:
a755a385
PK
278 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
279 S3C2440_NFCONF_TWRPH0(7) |
280 S3C2440_NFCONF_TWRPH1(7));
30821fee
BD
281
282 set = S3C2440_NFCONF_TACLS(tacls - 1);
283 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
284 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
285 break;
286
287 default:
30821fee
BD
288 BUG();
289 }
290
30821fee
BD
291 local_irq_save(flags);
292
293 cfg = readl(info->regs + S3C2410_NFCONF);
294 cfg &= ~mask;
295 cfg |= set;
296 writel(cfg, info->regs + S3C2410_NFCONF);
297
298 local_irq_restore(flags);
299
ae7304e5
AG
300 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
301
30821fee
BD
302 return 0;
303}
304
3db72151
BD
305/**
306 * s3c2410_nand_inithw - basic hardware initialisation
307 * @info: The hardware state.
308 *
309 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
310 * to setup the hardware access speeds and set the controller to be enabled.
311*/
30821fee
BD
312static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
313{
314 int ret;
315
316 ret = s3c2410_nand_setrate(info);
317 if (ret < 0)
318 return ret;
319
54cd0208
SK
320 switch (info->cpu_type) {
321 case TYPE_S3C2410:
30821fee 322 default:
2c06a082
BD
323 break;
324
54cd0208
SK
325 case TYPE_S3C2440:
326 case TYPE_S3C2412:
d1fef3c5
BD
327 /* enable the controller and de-assert nFCE */
328
2c06a082 329 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
a4f957f1 330 }
1da177e4 331
1da177e4
LT
332 return 0;
333}
334
3db72151
BD
335/**
336 * s3c2410_nand_select_chip - select the given nand chip
337 * @mtd: The MTD instance for this chip.
338 * @chip: The chip number.
339 *
340 * This is called by the MTD layer to either select a given chip for the
341 * @mtd instance, or to indicate that the access has finished and the
342 * chip can be de-selected.
343 *
344 * The routine ensures that the nFCE line is correctly setup, and any
345 * platform specific selection code is called to route nFCE to the specific
346 * chip.
347 */
1da177e4
LT
348static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
349{
350 struct s3c2410_nand_info *info;
61b03bd7 351 struct s3c2410_nand_mtd *nmtd;
1da177e4
LT
352 struct nand_chip *this = mtd->priv;
353 unsigned long cur;
354
355 nmtd = this->priv;
356 info = nmtd->info;
357
ac497c16
JP
358 if (chip != -1)
359 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
d1fef3c5 360
2c06a082 361 cur = readl(info->sel_reg);
1da177e4
LT
362
363 if (chip == -1) {
2c06a082 364 cur |= info->sel_bit;
1da177e4 365 } else {
fb8d82a8 366 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
99974c62 367 dev_err(info->device, "invalid chip %d\n", chip);
1da177e4
LT
368 return;
369 }
370
371 if (info->platform != NULL) {
372 if (info->platform->select_chip != NULL)
e0c7d767 373 (info->platform->select_chip) (nmtd->set, chip);
1da177e4
LT
374 }
375
2c06a082 376 cur &= ~info->sel_bit;
1da177e4
LT
377 }
378
2c06a082 379 writel(cur, info->sel_reg);
d1fef3c5 380
ac497c16
JP
381 if (chip == -1)
382 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1da177e4
LT
383}
384
ad3b5fb7 385/* s3c2410_nand_hwcontrol
a4f957f1 386 *
ad3b5fb7 387 * Issue command and address cycles to the chip
a4f957f1 388*/
1da177e4 389
7abd3ef9 390static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
f9068876 391 unsigned int ctrl)
1da177e4
LT
392{
393 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
c9ac5977 394
7abd3ef9
TG
395 if (cmd == NAND_CMD_NONE)
396 return;
397
f9068876 398 if (ctrl & NAND_CLE)
7abd3ef9
TG
399 writeb(cmd, info->regs + S3C2410_NFCMD);
400 else
401 writeb(cmd, info->regs + S3C2410_NFADDR);
a4f957f1
BD
402}
403
404/* command and control functions */
405
f9068876
DW
406static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
407 unsigned int ctrl)
a4f957f1
BD
408{
409 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
1da177e4 410
7abd3ef9
TG
411 if (cmd == NAND_CMD_NONE)
412 return;
413
f9068876 414 if (ctrl & NAND_CLE)
7abd3ef9
TG
415 writeb(cmd, info->regs + S3C2440_NFCMD);
416 else
417 writeb(cmd, info->regs + S3C2440_NFADDR);
1da177e4
LT
418}
419
1da177e4
LT
420/* s3c2410_nand_devready()
421 *
422 * returns 0 if the nand is busy, 1 if it is ready
423*/
424
425static int s3c2410_nand_devready(struct mtd_info *mtd)
426{
427 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
1da177e4
LT
428 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
429}
430
2c06a082
BD
431static int s3c2440_nand_devready(struct mtd_info *mtd)
432{
433 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
434 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
435}
436
437static int s3c2412_nand_devready(struct mtd_info *mtd)
438{
439 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
440 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
441}
442
1da177e4
LT
443/* ECC handling functions */
444
19da4158 445#ifdef CONFIG_MTD_NAND_S3C2410_HWECC
2c06a082
BD
446static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
447 u_char *read_ecc, u_char *calc_ecc)
1da177e4 448{
a2593247
BD
449 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
450 unsigned int diff0, diff1, diff2;
451 unsigned int bit, byte;
452
453 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
454
455 diff0 = read_ecc[0] ^ calc_ecc[0];
456 diff1 = read_ecc[1] ^ calc_ecc[1];
457 diff2 = read_ecc[2] ^ calc_ecc[2];
458
13e85974
AS
459 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
460 __func__, 3, read_ecc, 3, calc_ecc,
a2593247
BD
461 diff0, diff1, diff2);
462
463 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
464 return 0; /* ECC is ok */
465
c45c6c68
BD
466 /* sometimes people do not think about using the ECC, so check
467 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
468 * the error, on the assumption that this is an un-eccd page.
469 */
470 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
471 && info->platform->ignore_unset_ecc)
472 return 0;
473
a2593247
BD
474 /* Can we correct this ECC (ie, one row and column change).
475 * Note, this is similar to the 256 error code on smartmedia */
476
477 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
478 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
479 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
480 /* calculate the bit position of the error */
481
d0bf3793
MR
482 bit = ((diff2 >> 3) & 1) |
483 ((diff2 >> 4) & 2) |
484 ((diff2 >> 5) & 4);
1da177e4 485
a2593247 486 /* calculate the byte position of the error */
1da177e4 487
d0bf3793
MR
488 byte = ((diff2 << 7) & 0x100) |
489 ((diff1 << 0) & 0x80) |
490 ((diff1 << 1) & 0x40) |
491 ((diff1 << 2) & 0x20) |
492 ((diff1 << 3) & 0x10) |
493 ((diff0 >> 4) & 0x08) |
494 ((diff0 >> 3) & 0x04) |
495 ((diff0 >> 2) & 0x02) |
496 ((diff0 >> 1) & 0x01);
a2593247
BD
497
498 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
499 bit, byte);
500
501 dat[byte] ^= (1 << bit);
502 return 1;
503 }
504
505 /* if there is only one bit difference in the ECC, then
506 * one of only a row or column parity has changed, which
507 * means the error is most probably in the ECC itself */
508
509 diff0 |= (diff1 << 8);
510 diff0 |= (diff2 << 16);
511
512 if ((diff0 & ~(1<<fls(diff0))) == 0)
513 return 1;
514
4fac9f69 515 return -1;
1da177e4
LT
516}
517
a4f957f1
BD
518/* ECC functions
519 *
520 * These allow the s3c2410 and s3c2440 to use the controller's ECC
521 * generator block to ECC the data as it passes through]
522*/
523
1da177e4
LT
524static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
525{
526 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
527 unsigned long ctrl;
528
529 ctrl = readl(info->regs + S3C2410_NFCONF);
530 ctrl |= S3C2410_NFCONF_INITECC;
531 writel(ctrl, info->regs + S3C2410_NFCONF);
532}
533
4f659923
MC
534static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
535{
536 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
537 unsigned long ctrl;
538
539 ctrl = readl(info->regs + S3C2440_NFCONT);
f938bc56
SK
540 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
541 info->regs + S3C2440_NFCONT);
4f659923
MC
542}
543
a4f957f1
BD
544static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
545{
546 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
547 unsigned long ctrl;
548
549 ctrl = readl(info->regs + S3C2440_NFCONT);
550 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
551}
552
f938bc56
SK
553static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
554 u_char *ecc_code)
1da177e4
LT
555{
556 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
557
558 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
559 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
560 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
561
13e85974 562 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
1da177e4
LT
563
564 return 0;
565}
566
f938bc56
SK
567static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
568 u_char *ecc_code)
4f659923
MC
569{
570 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
571 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
572
573 ecc_code[0] = ecc;
574 ecc_code[1] = ecc >> 8;
575 ecc_code[2] = ecc >> 16;
576
13e85974 577 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
4f659923
MC
578
579 return 0;
580}
581
f938bc56
SK
582static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
583 u_char *ecc_code)
a4f957f1
BD
584{
585 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
586 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
587
588 ecc_code[0] = ecc;
589 ecc_code[1] = ecc >> 8;
590 ecc_code[2] = ecc >> 16;
591
71d54f38 592 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
a4f957f1
BD
593
594 return 0;
595}
19da4158 596#endif
a4f957f1 597
a4f957f1
BD
598/* over-ride the standard functions for a little more speed. We can
599 * use read/write block to move the data buffers to/from the controller
600*/
1da177e4
LT
601
602static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
603{
604 struct nand_chip *this = mtd->priv;
605 readsb(this->IO_ADDR_R, buf, len);
606}
607
b773bb2e
MR
608static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
609{
610 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
dea2aa6f
BD
611
612 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
613
614 /* cleanup if we've got less than a word to do */
615 if (len & 3) {
616 buf += len & ~3;
617
618 for (; len & 3; len--)
619 *buf++ = readb(info->regs + S3C2440_NFDATA);
620 }
b773bb2e
MR
621}
622
f938bc56
SK
623static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
624 int len)
1da177e4
LT
625{
626 struct nand_chip *this = mtd->priv;
627 writesb(this->IO_ADDR_W, buf, len);
628}
629
f938bc56
SK
630static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
631 int len)
b773bb2e
MR
632{
633 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
dea2aa6f
BD
634
635 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
636
637 /* cleanup any fractional write */
638 if (len & 3) {
639 buf += len & ~3;
640
641 for (; len & 3; len--, buf++)
642 writeb(*buf, info->regs + S3C2440_NFDATA);
643 }
b773bb2e
MR
644}
645
30821fee
BD
646/* cpufreq driver support */
647
648#ifdef CONFIG_CPU_FREQ
649
650static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
651 unsigned long val, void *data)
652{
653 struct s3c2410_nand_info *info;
654 unsigned long newclk;
655
656 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
657 newclk = clk_get_rate(info->clk);
658
659 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
660 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
661 s3c2410_nand_setrate(info);
662 }
663
664 return 0;
665}
666
667static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
668{
669 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
670
671 return cpufreq_register_notifier(&info->freq_transition,
672 CPUFREQ_TRANSITION_NOTIFIER);
673}
674
f938bc56
SK
675static inline void
676s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
30821fee
BD
677{
678 cpufreq_unregister_notifier(&info->freq_transition,
679 CPUFREQ_TRANSITION_NOTIFIER);
680}
681
682#else
683static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
684{
685 return 0;
686}
687
f938bc56
SK
688static inline void
689s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
30821fee
BD
690{
691}
692#endif
693
1da177e4
LT
694/* device management functions */
695
ec0482e6 696static int s3c24xx_nand_remove(struct platform_device *pdev)
1da177e4 697{
3ae5eaec 698 struct s3c2410_nand_info *info = to_nand_info(pdev);
1da177e4 699
3ae5eaec 700 platform_set_drvdata(pdev, NULL);
1da177e4 701
61b03bd7 702 if (info == NULL)
1da177e4
LT
703 return 0;
704
30821fee
BD
705 s3c2410_nand_cpufreq_deregister(info);
706
707 /* Release all our mtds and their partitions, then go through
708 * freeing the resources used
1da177e4 709 */
61b03bd7 710
1da177e4
LT
711 if (info->mtds != NULL) {
712 struct s3c2410_nand_mtd *ptr = info->mtds;
713 int mtdno;
714
715 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
716 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
717 nand_release(&ptr->mtd);
718 }
1da177e4
LT
719 }
720
721 /* free the common resources */
722
6f32a3e2 723 if (!IS_ERR(info->clk))
ac497c16 724 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1da177e4
LT
725
726 return 0;
727}
728
1da177e4
LT
729static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
730 struct s3c2410_nand_mtd *mtd,
731 struct s3c2410_nand_set *set)
732{
ded4c55d 733 if (set) {
599501a7 734 mtd->mtd.name = set->name;
ed27f028 735
ded4c55d 736 return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
42d7fbe2 737 set->partitions, set->nr_partitions);
ded4c55d
SK
738 }
739
740 return -ENODEV;
1da177e4 741}
1da177e4 742
3db72151
BD
743/**
744 * s3c2410_nand_init_chip - initialise a single instance of an chip
745 * @info: The base NAND controller the chip is on.
746 * @nmtd: The new controller MTD instance to fill in.
747 * @set: The information passed from the board specific platform data.
1da177e4 748 *
3db72151
BD
749 * Initialise the given @nmtd from the information in @info and @set. This
750 * readies the structure for use with the MTD layer functions by ensuring
751 * all pointers are setup and the necessary control routines selected.
752 */
1da177e4
LT
753static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
754 struct s3c2410_nand_mtd *nmtd,
755 struct s3c2410_nand_set *set)
756{
757 struct nand_chip *chip = &nmtd->chip;
2c06a082 758 void __iomem *regs = info->regs;
1da177e4 759
1da177e4
LT
760 chip->write_buf = s3c2410_nand_write_buf;
761 chip->read_buf = s3c2410_nand_read_buf;
762 chip->select_chip = s3c2410_nand_select_chip;
763 chip->chip_delay = 50;
764 chip->priv = nmtd;
74218fed 765 chip->options = set->options;
1da177e4
LT
766 chip->controller = &info->controller;
767
2c06a082
BD
768 switch (info->cpu_type) {
769 case TYPE_S3C2410:
770 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
771 info->sel_reg = regs + S3C2410_NFCONF;
772 info->sel_bit = S3C2410_NFCONF_nFCE;
773 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
774 chip->dev_ready = s3c2410_nand_devready;
775 break;
776
777 case TYPE_S3C2440:
778 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
779 info->sel_reg = regs + S3C2440_NFCONT;
780 info->sel_bit = S3C2440_NFCONT_nFCE;
781 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
782 chip->dev_ready = s3c2440_nand_devready;
b773bb2e
MR
783 chip->read_buf = s3c2440_nand_read_buf;
784 chip->write_buf = s3c2440_nand_write_buf;
2c06a082
BD
785 break;
786
787 case TYPE_S3C2412:
788 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
789 info->sel_reg = regs + S3C2440_NFCONT;
790 info->sel_bit = S3C2412_NFCONT_nFCE0;
791 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
792 chip->dev_ready = s3c2412_nand_devready;
793
794 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
795 dev_info(info->device, "System booted from NAND\n");
796
797 break;
54cd0208 798 }
2c06a082
BD
799
800 chip->IO_ADDR_R = chip->IO_ADDR_W;
a4f957f1 801
1da177e4
LT
802 nmtd->info = info;
803 nmtd->mtd.priv = chip;
552d9205 804 nmtd->mtd.owner = THIS_MODULE;
1da177e4
LT
805 nmtd->set = set;
806
a68c5ec8
SK
807#ifdef CONFIG_MTD_NAND_S3C2410_HWECC
808 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
809 chip->ecc.correct = s3c2410_nand_correct_data;
810 chip->ecc.mode = NAND_ECC_HW;
811 chip->ecc.strength = 1;
812
813 switch (info->cpu_type) {
814 case TYPE_S3C2410:
815 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
6dfc6d25 816 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
a68c5ec8 817 break;
2c06a082 818
a68c5ec8
SK
819 case TYPE_S3C2412:
820 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
821 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
822 break;
823
824 case TYPE_S3C2440:
825 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
826 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
827 break;
1da177e4 828 }
a68c5ec8
SK
829#else
830 chip->ecc.mode = NAND_ECC_SOFT;
831#endif
1c21ab67
BD
832
833 if (set->ecc_layout != NULL)
834 chip->ecc.layout = set->ecc_layout;
37e5ffa3
BD
835
836 if (set->disable_ecc)
837 chip->ecc.mode = NAND_ECC_NONE;
8c3e843d
AG
838
839 switch (chip->ecc.mode) {
840 case NAND_ECC_NONE:
841 dev_info(info->device, "NAND ECC disabled\n");
842 break;
843 case NAND_ECC_SOFT:
844 dev_info(info->device, "NAND soft ECC\n");
845 break;
846 case NAND_ECC_HW:
847 dev_info(info->device, "NAND hardware ECC\n");
848 break;
849 default:
850 dev_info(info->device, "NAND ECC UNKNOWN\n");
851 break;
852 }
9db41f9e
MP
853
854 /* If you use u-boot BBT creation code, specifying this flag will
855 * let the kernel fish out the BBT from the NAND, and also skip the
856 * full NAND scan that can take 1/2s or so. Little things... */
a40f7341 857 if (set->flash_bbt) {
bb9ebd4e 858 chip->bbt_options |= NAND_BBT_USE_FLASH;
a40f7341
BN
859 chip->options |= NAND_SKIP_BBTSCAN;
860 }
1da177e4
LT
861}
862
3db72151
BD
863/**
864 * s3c2410_nand_update_chip - post probe update
865 * @info: The controller instance.
866 * @nmtd: The driver version of the MTD instance.
71d54f38 867 *
af901ca1 868 * This routine is called after the chip probe has successfully completed
3db72151
BD
869 * and the relevant per-chip information updated. This call ensure that
870 * we update the internal state accordingly.
871 *
872 * The internal state is currently limited to the ECC state information.
873*/
71d54f38
BD
874static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
875 struct s3c2410_nand_mtd *nmtd)
876{
877 struct nand_chip *chip = &nmtd->chip;
878
451d3399
BD
879 dev_dbg(info->device, "chip %p => page shift %d\n",
880 chip, chip->page_shift);
71d54f38 881
8c3e843d
AG
882 if (chip->ecc.mode != NAND_ECC_HW)
883 return;
884
48fc7f7e 885 /* change the behaviour depending on whether we are using
71d54f38
BD
886 * the large or small page nand device */
887
8c3e843d
AG
888 if (chip->page_shift > 10) {
889 chip->ecc.size = 256;
890 chip->ecc.bytes = 3;
891 } else {
892 chip->ecc.size = 512;
893 chip->ecc.bytes = 3;
894 chip->ecc.layout = &nand_hw_eccoob;
71d54f38
BD
895 }
896}
897
ec0482e6 898/* s3c24xx_nand_probe
1da177e4
LT
899 *
900 * called by device layer when it finds a device matching
901 * one our driver can handled. This code checks to see if
902 * it can allocate all necessary resources then calls the
903 * nand layer to look for devices
904*/
ec0482e6 905static int s3c24xx_nand_probe(struct platform_device *pdev)
1da177e4 906{
3ae5eaec 907 struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
54cd0208 908 enum s3c_cpu_type cpu_type;
1da177e4
LT
909 struct s3c2410_nand_info *info;
910 struct s3c2410_nand_mtd *nmtd;
911 struct s3c2410_nand_set *sets;
912 struct resource *res;
913 int err = 0;
914 int size;
915 int nr_sets;
916 int setno;
917
ec0482e6
BD
918 cpu_type = platform_get_device_id(pdev)->driver_data;
919
3ae5eaec 920 pr_debug("s3c2410_nand_probe(%p)\n", pdev);
1da177e4 921
6f32a3e2 922 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1da177e4 923 if (info == NULL) {
3ae5eaec 924 dev_err(&pdev->dev, "no memory for flash info\n");
1da177e4
LT
925 err = -ENOMEM;
926 goto exit_error;
927 }
928
3ae5eaec 929 platform_set_drvdata(pdev, info);
1da177e4
LT
930
931 spin_lock_init(&info->controller.lock);
a4f957f1 932 init_waitqueue_head(&info->controller.wq);
1da177e4
LT
933
934 /* get the clock source and enable it */
935
6f32a3e2 936 info->clk = devm_clk_get(&pdev->dev, "nand");
1da177e4 937 if (IS_ERR(info->clk)) {
898eb71c 938 dev_err(&pdev->dev, "failed to get clock\n");
1da177e4
LT
939 err = -ENOENT;
940 goto exit_error;
941 }
942
ac497c16 943 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1da177e4
LT
944
945 /* allocate and map the resource */
946
a4f957f1 947 /* currently we assume we have the one resource */
6f32a3e2 948 res = pdev->resource;
fc161c4e 949 size = resource_size(res);
1da177e4 950
6f32a3e2
SK
951 info->device = &pdev->dev;
952 info->platform = plat;
953 info->cpu_type = cpu_type;
1da177e4 954
b0de774c
TR
955 info->regs = devm_ioremap_resource(&pdev->dev, res);
956 if (IS_ERR(info->regs)) {
957 err = PTR_ERR(info->regs);
1da177e4 958 goto exit_error;
61b03bd7 959 }
1da177e4 960
3ae5eaec 961 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1da177e4
LT
962
963 /* initialise the hardware */
964
30821fee 965 err = s3c2410_nand_inithw(info);
1da177e4
LT
966 if (err != 0)
967 goto exit_error;
968
969 sets = (plat != NULL) ? plat->sets : NULL;
970 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
971
972 info->mtd_count = nr_sets;
973
974 /* allocate our information */
975
976 size = nr_sets * sizeof(*info->mtds);
6f32a3e2 977 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1da177e4 978 if (info->mtds == NULL) {
3ae5eaec 979 dev_err(&pdev->dev, "failed to allocate mtd storage\n");
1da177e4
LT
980 err = -ENOMEM;
981 goto exit_error;
982 }
983
1da177e4
LT
984 /* initialise all possible chips */
985
986 nmtd = info->mtds;
987
988 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
f938bc56
SK
989 pr_debug("initialising set %d (%p, info %p)\n",
990 setno, nmtd, info);
61b03bd7 991
1da177e4
LT
992 s3c2410_nand_init_chip(info, nmtd, sets);
993
71d54f38 994 nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
5e81e88a
DW
995 (sets) ? sets->nr_chips : 1,
996 NULL);
1da177e4
LT
997
998 if (nmtd->scan_res == 0) {
71d54f38
BD
999 s3c2410_nand_update_chip(info, nmtd);
1000 nand_scan_tail(&nmtd->mtd);
1da177e4
LT
1001 s3c2410_nand_add_partition(info, nmtd, sets);
1002 }
1003
1004 if (sets != NULL)
1005 sets++;
1006 }
61b03bd7 1007
30821fee
BD
1008 err = s3c2410_nand_cpufreq_register(info);
1009 if (err < 0) {
1010 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1011 goto exit_error;
1012 }
1013
ac497c16 1014 if (allow_clk_suspend(info)) {
d1fef3c5 1015 dev_info(&pdev->dev, "clock idle support enabled\n");
ac497c16 1016 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
d1fef3c5
BD
1017 }
1018
1da177e4
LT
1019 pr_debug("initialised ok\n");
1020 return 0;
1021
1022 exit_error:
ec0482e6 1023 s3c24xx_nand_remove(pdev);
1da177e4
LT
1024
1025 if (err == 0)
1026 err = -EINVAL;
1027 return err;
1028}
1029
d1fef3c5
BD
1030/* PM Support */
1031#ifdef CONFIG_PM
1032
1033static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1034{
1035 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1036
1037 if (info) {
09160832 1038 info->save_sel = readl(info->sel_reg);
03680b1e
BD
1039
1040 /* For the moment, we must ensure nFCE is high during
1041 * the time we are suspended. This really should be
1042 * handled by suspending the MTDs we are using, but
1043 * that is currently not the case. */
1044
09160832 1045 writel(info->save_sel | info->sel_bit, info->sel_reg);
03680b1e 1046
ac497c16 1047 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
d1fef3c5
BD
1048 }
1049
1050 return 0;
1051}
1052
1053static int s3c24xx_nand_resume(struct platform_device *dev)
1054{
1055 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
09160832 1056 unsigned long sel;
d1fef3c5
BD
1057
1058 if (info) {
ac497c16 1059 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
30821fee 1060 s3c2410_nand_inithw(info);
d1fef3c5 1061
03680b1e
BD
1062 /* Restore the state of the nFCE line. */
1063
09160832
BD
1064 sel = readl(info->sel_reg);
1065 sel &= ~info->sel_bit;
1066 sel |= info->save_sel & info->sel_bit;
1067 writel(sel, info->sel_reg);
03680b1e 1068
ac497c16 1069 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
d1fef3c5
BD
1070 }
1071
1072 return 0;
1073}
1074
1075#else
1076#define s3c24xx_nand_suspend NULL
1077#define s3c24xx_nand_resume NULL
1078#endif
1079
a4f957f1
BD
1080/* driver device registration */
1081
ec0482e6
BD
1082static struct platform_device_id s3c24xx_driver_ids[] = {
1083 {
1084 .name = "s3c2410-nand",
1085 .driver_data = TYPE_S3C2410,
1086 }, {
1087 .name = "s3c2440-nand",
1088 .driver_data = TYPE_S3C2440,
1089 }, {
1090 .name = "s3c2412-nand",
1091 .driver_data = TYPE_S3C2412,
9dbc0902
PK
1092 }, {
1093 .name = "s3c6400-nand",
1094 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
3ae5eaec 1095 },
ec0482e6 1096 { }
1da177e4
LT
1097};
1098
ec0482e6 1099MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
a4f957f1 1100
ec0482e6
BD
1101static struct platform_driver s3c24xx_nand_driver = {
1102 .probe = s3c24xx_nand_probe,
1103 .remove = s3c24xx_nand_remove,
2c06a082
BD
1104 .suspend = s3c24xx_nand_suspend,
1105 .resume = s3c24xx_nand_resume,
ec0482e6 1106 .id_table = s3c24xx_driver_ids,
2c06a082 1107 .driver = {
ec0482e6 1108 .name = "s3c24xx-nand",
2c06a082
BD
1109 .owner = THIS_MODULE,
1110 },
1111};
1112
056fcab5 1113module_platform_driver(s3c24xx_nand_driver);
1da177e4
LT
1114
1115MODULE_LICENSE("GPL");
1116MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
a4f957f1 1117MODULE_DESCRIPTION("S3C24XX MTD NAND driver");