Merge branch 'cleanup' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / mtdcore.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
a1452a37
DW
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
1da177e4 26#include <linux/ptrace.h>
447d9bd8 27#include <linux/seq_file.h>
1da177e4
LT
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
7799308f 32#include <linux/err.h>
1da177e4
LT
33#include <linux/ioctl.h>
34#include <linux/init.h>
1da177e4 35#include <linux/proc_fs.h>
b520e412 36#include <linux/idr.h>
a33eb6b9 37#include <linux/backing-dev.h>
05d71b46 38#include <linux/gfp.h>
1da177e4
LT
39
40#include <linux/mtd/mtd.h>
f5671ab3 41#include <linux/mtd/partitions.h>
1da177e4 42
356d70f1 43#include "mtdcore.h"
a33eb6b9
JE
44/*
45 * backing device capabilities for non-mappable devices (such as NAND flash)
46 * - permits private mappings, copies are taken of the data
47 */
ca91facf 48static struct backing_dev_info mtd_bdi_unmappable = {
a33eb6b9
JE
49 .capabilities = BDI_CAP_MAP_COPY,
50};
51
52/*
53 * backing device capabilities for R/O mappable devices (such as ROM)
54 * - permits private mappings, copies are taken of the data
55 * - permits non-writable shared mappings
56 */
ca91facf 57static struct backing_dev_info mtd_bdi_ro_mappable = {
a33eb6b9
JE
58 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
59 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
60};
61
62/*
63 * backing device capabilities for writable mappable devices (such as RAM)
64 * - permits private mappings, copies are taken of the data
65 * - permits non-writable shared mappings
66 */
ca91facf 67static struct backing_dev_info mtd_bdi_rw_mappable = {
a33eb6b9
JE
68 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
69 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
70 BDI_CAP_WRITE_MAP),
71};
356d70f1 72
15bce40c
DW
73static int mtd_cls_suspend(struct device *dev, pm_message_t state);
74static int mtd_cls_resume(struct device *dev);
75
76static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
79 .suspend = mtd_cls_suspend,
80 .resume = mtd_cls_resume,
81};
1f24b5a8 82
b520e412
BH
83static DEFINE_IDR(mtd_idr);
84
97894cda 85/* These are exported solely for the purpose of mtd_blkdevs.c. You
1da177e4 86 should not use them for _anything_ else */
48b19268 87DEFINE_MUTEX(mtd_table_mutex);
1da177e4 88EXPORT_SYMBOL_GPL(mtd_table_mutex);
b520e412
BH
89
90struct mtd_info *__mtd_next_device(int i)
91{
92 return idr_get_next(&mtd_idr, &i);
93}
94EXPORT_SYMBOL_GPL(__mtd_next_device);
1da177e4
LT
95
96static LIST_HEAD(mtd_notifiers);
97
1f24b5a8
DB
98
99#if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE)
100#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101#else
102#define MTD_DEVT(index) 0
103#endif
104
105/* REVISIT once MTD uses the driver model better, whoever allocates
106 * the mtd_info will probably want to use the release() hook...
107 */
108static void mtd_release(struct device *dev)
109{
335a5f40 110 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
d5de20a9 111 dev_t index = MTD_DEVT(mtd->index);
1f24b5a8
DB
112
113 /* remove /dev/mtdXro node if needed */
2fdb1144 114 if (index)
15bce40c
DW
115 device_destroy(&mtd_class, index + 1);
116}
117
118static int mtd_cls_suspend(struct device *dev, pm_message_t state)
119{
d5de20a9 120 struct mtd_info *mtd = dev_get_drvdata(dev);
6afc4fdb 121
1a30871f 122 return mtd ? mtd_suspend(mtd) : 0;
15bce40c
DW
123}
124
125static int mtd_cls_resume(struct device *dev)
126{
d5de20a9 127 struct mtd_info *mtd = dev_get_drvdata(dev);
33c87b4a 128
3ee50141 129 if (mtd)
ead995f8 130 mtd_resume(mtd);
15bce40c 131 return 0;
1f24b5a8
DB
132}
133
134static ssize_t mtd_type_show(struct device *dev,
135 struct device_attribute *attr, char *buf)
136{
d5de20a9 137 struct mtd_info *mtd = dev_get_drvdata(dev);
1f24b5a8
DB
138 char *type;
139
140 switch (mtd->type) {
141 case MTD_ABSENT:
142 type = "absent";
143 break;
144 case MTD_RAM:
145 type = "ram";
146 break;
147 case MTD_ROM:
148 type = "rom";
149 break;
150 case MTD_NORFLASH:
151 type = "nor";
152 break;
153 case MTD_NANDFLASH:
154 type = "nand";
155 break;
156 case MTD_DATAFLASH:
157 type = "dataflash";
158 break;
159 case MTD_UBIVOLUME:
160 type = "ubi";
161 break;
162 default:
163 type = "unknown";
164 }
165
166 return snprintf(buf, PAGE_SIZE, "%s\n", type);
167}
694bb7fc
KC
168static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
169
170static ssize_t mtd_flags_show(struct device *dev,
171 struct device_attribute *attr, char *buf)
172{
d5de20a9 173 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
174
175 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
176
177}
178static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
179
180static ssize_t mtd_size_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182{
d5de20a9 183 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
184
185 return snprintf(buf, PAGE_SIZE, "%llu\n",
186 (unsigned long long)mtd->size);
187
188}
189static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
190
191static ssize_t mtd_erasesize_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193{
d5de20a9 194 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
195
196 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
197
198}
199static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
200
201static ssize_t mtd_writesize_show(struct device *dev,
202 struct device_attribute *attr, char *buf)
203{
d5de20a9 204 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
205
206 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
207
208}
209static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
210
e7693548
AB
211static ssize_t mtd_subpagesize_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213{
d5de20a9 214 struct mtd_info *mtd = dev_get_drvdata(dev);
e7693548
AB
215 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216
217 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
218
219}
220static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
221
694bb7fc
KC
222static ssize_t mtd_oobsize_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224{
d5de20a9 225 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
226
227 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
228
229}
230static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
231
232static ssize_t mtd_numeraseregions_show(struct device *dev,
233 struct device_attribute *attr, char *buf)
234{
d5de20a9 235 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
236
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
238
239}
240static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
241 NULL);
242
243static ssize_t mtd_name_show(struct device *dev,
244 struct device_attribute *attr, char *buf)
245{
d5de20a9 246 struct mtd_info *mtd = dev_get_drvdata(dev);
694bb7fc
KC
247
248 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
249
250}
251static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
1f24b5a8 252
a9b672e8
MD
253static ssize_t mtd_ecc_strength_show(struct device *dev,
254 struct device_attribute *attr, char *buf)
255{
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257
258 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
259}
260static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
261
d062d4ed
MD
262static ssize_t mtd_bitflip_threshold_show(struct device *dev,
263 struct device_attribute *attr,
264 char *buf)
265{
266 struct mtd_info *mtd = dev_get_drvdata(dev);
267
268 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
269}
270
271static ssize_t mtd_bitflip_threshold_store(struct device *dev,
272 struct device_attribute *attr,
273 const char *buf, size_t count)
274{
275 struct mtd_info *mtd = dev_get_drvdata(dev);
276 unsigned int bitflip_threshold;
277 int retval;
278
279 retval = kstrtouint(buf, 0, &bitflip_threshold);
280 if (retval)
281 return retval;
282
283 mtd->bitflip_threshold = bitflip_threshold;
284 return count;
285}
286static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
287 mtd_bitflip_threshold_show,
288 mtd_bitflip_threshold_store);
289
1f24b5a8 290static struct attribute *mtd_attrs[] = {
694bb7fc
KC
291 &dev_attr_type.attr,
292 &dev_attr_flags.attr,
293 &dev_attr_size.attr,
294 &dev_attr_erasesize.attr,
295 &dev_attr_writesize.attr,
e7693548 296 &dev_attr_subpagesize.attr,
694bb7fc
KC
297 &dev_attr_oobsize.attr,
298 &dev_attr_numeraseregions.attr,
299 &dev_attr_name.attr,
a9b672e8 300 &dev_attr_ecc_strength.attr,
d062d4ed 301 &dev_attr_bitflip_threshold.attr,
1f24b5a8
DB
302 NULL,
303};
304
fca91088 305static struct attribute_group mtd_group = {
1f24b5a8
DB
306 .attrs = mtd_attrs,
307};
308
6469f540 309static const struct attribute_group *mtd_groups[] = {
1f24b5a8
DB
310 &mtd_group,
311 NULL,
312};
313
314static struct device_type mtd_devtype = {
315 .name = "mtd",
316 .groups = mtd_groups,
317 .release = mtd_release,
318};
319
1da177e4
LT
320/**
321 * add_mtd_device - register an MTD device
322 * @mtd: pointer to new MTD device info structure
323 *
324 * Add a device to the list of MTD devices present in the system, and
325 * notify each currently active MTD 'user' of its arrival. Returns
326 * zero on success or 1 on failure, which currently will only happen
b520e412 327 * if there is insufficient memory or a sysfs error.
1da177e4
LT
328 */
329
330int add_mtd_device(struct mtd_info *mtd)
331{
b520e412
BH
332 struct mtd_notifier *not;
333 int i, error;
1da177e4 334
402d3265
DH
335 if (!mtd->backing_dev_info) {
336 switch (mtd->type) {
337 case MTD_RAM:
338 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
339 break;
340 case MTD_ROM:
341 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
342 break;
343 default:
344 mtd->backing_dev_info = &mtd_bdi_unmappable;
345 break;
346 }
347 }
348
783ed81f 349 BUG_ON(mtd->writesize == 0);
48b19268 350 mutex_lock(&mtd_table_mutex);
1da177e4 351
589e9c4d
TH
352 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
353 if (i < 0)
b520e412 354 goto fail_locked;
1f24b5a8 355
b520e412
BH
356 mtd->index = i;
357 mtd->usecount = 0;
358
d062d4ed
MD
359 /* default value if not set by driver */
360 if (mtd->bitflip_threshold == 0)
361 mtd->bitflip_threshold = mtd->ecc_strength;
362
b520e412
BH
363 if (is_power_of_2(mtd->erasesize))
364 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
365 else
366 mtd->erasesize_shift = 0;
367
368 if (is_power_of_2(mtd->writesize))
369 mtd->writesize_shift = ffs(mtd->writesize) - 1;
370 else
371 mtd->writesize_shift = 0;
372
373 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
374 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
375
376 /* Some chips always power up locked. Unlock them now */
38134565
AB
377 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
378 error = mtd_unlock(mtd, 0, mtd->size);
379 if (error && error != -EOPNOTSUPP)
b520e412
BH
380 printk(KERN_WARNING
381 "%s: unlock failed, writes may not work\n",
382 mtd->name);
383 }
384
385 /* Caller should have set dev.parent to match the
386 * physical device.
387 */
388 mtd->dev.type = &mtd_devtype;
389 mtd->dev.class = &mtd_class;
390 mtd->dev.devt = MTD_DEVT(i);
391 dev_set_name(&mtd->dev, "mtd%d", i);
392 dev_set_drvdata(&mtd->dev, mtd);
393 if (device_register(&mtd->dev) != 0)
394 goto fail_added;
395
396 if (MTD_DEVT(i))
397 device_create(&mtd_class, mtd->dev.parent,
398 MTD_DEVT(i) + 1,
399 NULL, "mtd%dro", i);
400
289c0522 401 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
b520e412
BH
402 /* No need to get a refcount on the module containing
403 the notifier, since we hold the mtd_table_mutex */
404 list_for_each_entry(not, &mtd_notifiers, list)
405 not->add(mtd);
406
407 mutex_unlock(&mtd_table_mutex);
408 /* We _know_ we aren't being removed, because
409 our caller is still holding us here. So none
410 of this try_ nonsense, and no bitching about it
411 either. :) */
412 __module_get(THIS_MODULE);
413 return 0;
97894cda 414
b520e412
BH
415fail_added:
416 idr_remove(&mtd_idr, i);
417fail_locked:
48b19268 418 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
419 return 1;
420}
421
422/**
423 * del_mtd_device - unregister an MTD device
424 * @mtd: pointer to MTD device info structure
425 *
426 * Remove a device from the list of MTD devices present in the system,
427 * and notify each currently active MTD 'user' of its departure.
428 * Returns zero on success or 1 on failure, which currently will happen
429 * if the requested device does not appear to be present in the list.
430 */
431
eea72d5f 432int del_mtd_device(struct mtd_info *mtd)
1da177e4
LT
433{
434 int ret;
75c0b84d 435 struct mtd_notifier *not;
97894cda 436
48b19268 437 mutex_lock(&mtd_table_mutex);
1da177e4 438
b520e412 439 if (idr_find(&mtd_idr, mtd->index) != mtd) {
1da177e4 440 ret = -ENODEV;
75c0b84d
ML
441 goto out_error;
442 }
443
444 /* No need to get a refcount on the module containing
445 the notifier, since we hold the mtd_table_mutex */
446 list_for_each_entry(not, &mtd_notifiers, list)
447 not->remove(mtd);
448
449 if (mtd->usecount) {
97894cda 450 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
1da177e4
LT
451 mtd->index, mtd->name, mtd->usecount);
452 ret = -EBUSY;
453 } else {
694bb7fc
KC
454 device_unregister(&mtd->dev);
455
b520e412 456 idr_remove(&mtd_idr, mtd->index);
1da177e4
LT
457
458 module_put(THIS_MODULE);
459 ret = 0;
460 }
461
75c0b84d 462out_error:
48b19268 463 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
464 return ret;
465}
466
1c4c215c
DES
467/**
468 * mtd_device_parse_register - parse partitions and register an MTD device.
469 *
470 * @mtd: the MTD device to register
471 * @types: the list of MTD partition probes to try, see
472 * 'parse_mtd_partitions()' for more information
c7975330 473 * @parser_data: MTD partition parser-specific data
1c4c215c
DES
474 * @parts: fallback partition information to register, if parsing fails;
475 * only valid if %nr_parts > %0
476 * @nr_parts: the number of partitions in parts, if zero then the full
477 * MTD device is registered if no partition info is found
478 *
479 * This function aggregates MTD partitions parsing (done by
480 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
481 * basically follows the most common pattern found in many MTD drivers:
482 *
483 * * It first tries to probe partitions on MTD device @mtd using parsers
484 * specified in @types (if @types is %NULL, then the default list of parsers
485 * is used, see 'parse_mtd_partitions()' for more information). If none are
486 * found this functions tries to fallback to information specified in
487 * @parts/@nr_parts.
92394b5c 488 * * If any partitioning info was found, this function registers the found
1c4c215c
DES
489 * partitions.
490 * * If no partitions were found this function just registers the MTD device
491 * @mtd and exits.
492 *
493 * Returns zero in case of success and a negative error code in case of failure.
494 */
495int mtd_device_parse_register(struct mtd_info *mtd, const char **types,
c7975330 496 struct mtd_part_parser_data *parser_data,
1c4c215c
DES
497 const struct mtd_partition *parts,
498 int nr_parts)
499{
500 int err;
501 struct mtd_partition *real_parts;
502
c7975330 503 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
4d523b60 504 if (err <= 0 && nr_parts && parts) {
1c4c215c
DES
505 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
506 GFP_KERNEL);
4d523b60 507 if (!real_parts)
1c4c215c 508 err = -ENOMEM;
4d523b60
JL
509 else
510 err = nr_parts;
1c4c215c
DES
511 }
512
513 if (err > 0) {
514 err = add_mtd_partitions(mtd, real_parts, err);
515 kfree(real_parts);
516 } else if (err == 0) {
517 err = add_mtd_device(mtd);
518 if (err == 1)
519 err = -ENODEV;
520 }
521
522 return err;
523}
524EXPORT_SYMBOL_GPL(mtd_device_parse_register);
525
f5671ab3
JI
526/**
527 * mtd_device_unregister - unregister an existing MTD device.
528 *
529 * @master: the MTD device to unregister. This will unregister both the master
530 * and any partitions if registered.
531 */
532int mtd_device_unregister(struct mtd_info *master)
533{
534 int err;
535
536 err = del_mtd_partitions(master);
537 if (err)
538 return err;
539
540 if (!device_is_registered(&master->dev))
541 return 0;
542
543 return del_mtd_device(master);
544}
545EXPORT_SYMBOL_GPL(mtd_device_unregister);
546
1da177e4
LT
547/**
548 * register_mtd_user - register a 'user' of MTD devices.
549 * @new: pointer to notifier info structure
550 *
551 * Registers a pair of callbacks function to be called upon addition
552 * or removal of MTD devices. Causes the 'add' callback to be immediately
553 * invoked for each MTD device currently present in the system.
554 */
1da177e4
LT
555void register_mtd_user (struct mtd_notifier *new)
556{
f1332ba2 557 struct mtd_info *mtd;
1da177e4 558
48b19268 559 mutex_lock(&mtd_table_mutex);
1da177e4
LT
560
561 list_add(&new->list, &mtd_notifiers);
562
d5ca5129 563 __module_get(THIS_MODULE);
97894cda 564
f1332ba2
BH
565 mtd_for_each_device(mtd)
566 new->add(mtd);
1da177e4 567
48b19268 568 mutex_unlock(&mtd_table_mutex);
1da177e4 569}
33c87b4a 570EXPORT_SYMBOL_GPL(register_mtd_user);
1da177e4
LT
571
572/**
49450795
AB
573 * unregister_mtd_user - unregister a 'user' of MTD devices.
574 * @old: pointer to notifier info structure
1da177e4
LT
575 *
576 * Removes a callback function pair from the list of 'users' to be
577 * notified upon addition or removal of MTD devices. Causes the
578 * 'remove' callback to be immediately invoked for each MTD device
579 * currently present in the system.
580 */
1da177e4
LT
581int unregister_mtd_user (struct mtd_notifier *old)
582{
f1332ba2 583 struct mtd_info *mtd;
1da177e4 584
48b19268 585 mutex_lock(&mtd_table_mutex);
1da177e4
LT
586
587 module_put(THIS_MODULE);
588
f1332ba2
BH
589 mtd_for_each_device(mtd)
590 old->remove(mtd);
97894cda 591
1da177e4 592 list_del(&old->list);
48b19268 593 mutex_unlock(&mtd_table_mutex);
1da177e4
LT
594 return 0;
595}
33c87b4a 596EXPORT_SYMBOL_GPL(unregister_mtd_user);
1da177e4
LT
597
598/**
599 * get_mtd_device - obtain a validated handle for an MTD device
600 * @mtd: last known address of the required MTD device
601 * @num: internal device number of the required MTD device
602 *
603 * Given a number and NULL address, return the num'th entry in the device
604 * table, if any. Given an address and num == -1, search the device table
605 * for a device with that address and return if it's still present. Given
9c74034f
AB
606 * both, return the num'th driver only if its address matches. Return
607 * error code if not.
1da177e4 608 */
1da177e4
LT
609struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
610{
f1332ba2
BH
611 struct mtd_info *ret = NULL, *other;
612 int err = -ENODEV;
1da177e4 613
48b19268 614 mutex_lock(&mtd_table_mutex);
1da177e4
LT
615
616 if (num == -1) {
f1332ba2
BH
617 mtd_for_each_device(other) {
618 if (other == mtd) {
619 ret = mtd;
620 break;
621 }
622 }
b520e412
BH
623 } else if (num >= 0) {
624 ret = idr_find(&mtd_idr, num);
1da177e4
LT
625 if (mtd && mtd != ret)
626 ret = NULL;
627 }
628
3bd45657
ML
629 if (!ret) {
630 ret = ERR_PTR(err);
631 goto out;
9fe912ce 632 }
1da177e4 633
3bd45657
ML
634 err = __get_mtd_device(ret);
635 if (err)
636 ret = ERR_PTR(err);
637out:
9c74034f
AB
638 mutex_unlock(&mtd_table_mutex);
639 return ret;
3bd45657 640}
33c87b4a 641EXPORT_SYMBOL_GPL(get_mtd_device);
1da177e4 642
3bd45657
ML
643
644int __get_mtd_device(struct mtd_info *mtd)
645{
646 int err;
647
648 if (!try_module_get(mtd->owner))
649 return -ENODEV;
650
3c3c10bb
AB
651 if (mtd->_get_device) {
652 err = mtd->_get_device(mtd);
3bd45657
ML
653
654 if (err) {
655 module_put(mtd->owner);
656 return err;
657 }
658 }
659 mtd->usecount++;
660 return 0;
1da177e4 661}
33c87b4a 662EXPORT_SYMBOL_GPL(__get_mtd_device);
1da177e4 663
7799308f
AB
664/**
665 * get_mtd_device_nm - obtain a validated handle for an MTD device by
666 * device name
667 * @name: MTD device name to open
668 *
669 * This function returns MTD device description structure in case of
670 * success and an error code in case of failure.
671 */
7799308f
AB
672struct mtd_info *get_mtd_device_nm(const char *name)
673{
f1332ba2
BH
674 int err = -ENODEV;
675 struct mtd_info *mtd = NULL, *other;
7799308f
AB
676
677 mutex_lock(&mtd_table_mutex);
678
f1332ba2
BH
679 mtd_for_each_device(other) {
680 if (!strcmp(name, other->name)) {
681 mtd = other;
7799308f
AB
682 break;
683 }
684 }
685
9fe912ce 686 if (!mtd)
7799308f
AB
687 goto out_unlock;
688
52534f2d
WG
689 err = __get_mtd_device(mtd);
690 if (err)
7799308f
AB
691 goto out_unlock;
692
9fe912ce
AB
693 mutex_unlock(&mtd_table_mutex);
694 return mtd;
7799308f
AB
695
696out_unlock:
697 mutex_unlock(&mtd_table_mutex);
9fe912ce 698 return ERR_PTR(err);
7799308f 699}
33c87b4a 700EXPORT_SYMBOL_GPL(get_mtd_device_nm);
7799308f 701
1da177e4
LT
702void put_mtd_device(struct mtd_info *mtd)
703{
48b19268 704 mutex_lock(&mtd_table_mutex);
3bd45657
ML
705 __put_mtd_device(mtd);
706 mutex_unlock(&mtd_table_mutex);
707
708}
33c87b4a 709EXPORT_SYMBOL_GPL(put_mtd_device);
3bd45657
ML
710
711void __put_mtd_device(struct mtd_info *mtd)
712{
713 --mtd->usecount;
714 BUG_ON(mtd->usecount < 0);
715
3c3c10bb
AB
716 if (mtd->_put_device)
717 mtd->_put_device(mtd);
1da177e4
LT
718
719 module_put(mtd->owner);
720}
33c87b4a 721EXPORT_SYMBOL_GPL(__put_mtd_device);
1da177e4 722
8273a0c9
AB
723/*
724 * Erase is an asynchronous operation. Device drivers are supposed
725 * to call instr->callback() whenever the operation completes, even
726 * if it completes with a failure.
727 * Callers are supposed to pass a callback function and wait for it
728 * to be called before writing to the block.
729 */
730int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
731{
732 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
733 return -EINVAL;
664addc2
AB
734 if (!(mtd->flags & MTD_WRITEABLE))
735 return -EROFS;
3b27dac0 736 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
bcb1d238
AB
737 if (!instr->len) {
738 instr->state = MTD_ERASE_DONE;
739 mtd_erase_callback(instr);
740 return 0;
741 }
8273a0c9
AB
742 return mtd->_erase(mtd, instr);
743}
744EXPORT_SYMBOL_GPL(mtd_erase);
745
746/*
747 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
748 */
749int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
750 void **virt, resource_size_t *phys)
751{
752 *retlen = 0;
0dd5235f
AB
753 *virt = NULL;
754 if (phys)
755 *phys = 0;
8273a0c9
AB
756 if (!mtd->_point)
757 return -EOPNOTSUPP;
758 if (from < 0 || from > mtd->size || len > mtd->size - from)
759 return -EINVAL;
bcb1d238
AB
760 if (!len)
761 return 0;
8273a0c9
AB
762 return mtd->_point(mtd, from, len, retlen, virt, phys);
763}
764EXPORT_SYMBOL_GPL(mtd_point);
765
766/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
767int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
768{
769 if (!mtd->_point)
770 return -EOPNOTSUPP;
771 if (from < 0 || from > mtd->size || len > mtd->size - from)
772 return -EINVAL;
bcb1d238
AB
773 if (!len)
774 return 0;
8273a0c9
AB
775 return mtd->_unpoint(mtd, from, len);
776}
777EXPORT_SYMBOL_GPL(mtd_unpoint);
778
779/*
780 * Allow NOMMU mmap() to directly map the device (if not NULL)
781 * - return the address to which the offset maps
782 * - return -ENOSYS to indicate refusal to do the mapping
783 */
784unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
785 unsigned long offset, unsigned long flags)
786{
787 if (!mtd->_get_unmapped_area)
788 return -EOPNOTSUPP;
789 if (offset > mtd->size || len > mtd->size - offset)
790 return -EINVAL;
791 return mtd->_get_unmapped_area(mtd, len, offset, flags);
792}
793EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
794
795int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
796 u_char *buf)
797{
edbc4540 798 int ret_code;
834247ec 799 *retlen = 0;
8273a0c9
AB
800 if (from < 0 || from > mtd->size || len > mtd->size - from)
801 return -EINVAL;
bcb1d238
AB
802 if (!len)
803 return 0;
edbc4540
MD
804
805 /*
806 * In the absence of an error, drivers return a non-negative integer
807 * representing the maximum number of bitflips that were corrected on
808 * any one ecc region (if applicable; zero otherwise).
809 */
810 ret_code = mtd->_read(mtd, from, len, retlen, buf);
811 if (unlikely(ret_code < 0))
812 return ret_code;
813 if (mtd->ecc_strength == 0)
814 return 0; /* device lacks ecc */
815 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
8273a0c9
AB
816}
817EXPORT_SYMBOL_GPL(mtd_read);
818
819int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
820 const u_char *buf)
821{
822 *retlen = 0;
8273a0c9
AB
823 if (to < 0 || to > mtd->size || len > mtd->size - to)
824 return -EINVAL;
664addc2
AB
825 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
826 return -EROFS;
bcb1d238
AB
827 if (!len)
828 return 0;
8273a0c9
AB
829 return mtd->_write(mtd, to, len, retlen, buf);
830}
831EXPORT_SYMBOL_GPL(mtd_write);
832
833/*
834 * In blackbox flight recorder like scenarios we want to make successful writes
835 * in interrupt context. panic_write() is only intended to be called when its
836 * known the kernel is about to panic and we need the write to succeed. Since
837 * the kernel is not going to be running for much longer, this function can
838 * break locks and delay to ensure the write succeeds (but not sleep).
839 */
840int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
841 const u_char *buf)
842{
843 *retlen = 0;
844 if (!mtd->_panic_write)
845 return -EOPNOTSUPP;
846 if (to < 0 || to > mtd->size || len > mtd->size - to)
847 return -EINVAL;
664addc2
AB
848 if (!(mtd->flags & MTD_WRITEABLE))
849 return -EROFS;
bcb1d238
AB
850 if (!len)
851 return 0;
8273a0c9
AB
852 return mtd->_panic_write(mtd, to, len, retlen, buf);
853}
854EXPORT_SYMBOL_GPL(mtd_panic_write);
855
d2d48480
BN
856int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
857{
e47f6858 858 int ret_code;
d2d48480
BN
859 ops->retlen = ops->oobretlen = 0;
860 if (!mtd->_read_oob)
861 return -EOPNOTSUPP;
e47f6858
BN
862 /*
863 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
864 * similar to mtd->_read(), returning a non-negative integer
865 * representing max bitflips. In other cases, mtd->_read_oob() may
866 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
867 */
868 ret_code = mtd->_read_oob(mtd, from, ops);
869 if (unlikely(ret_code < 0))
870 return ret_code;
871 if (mtd->ecc_strength == 0)
872 return 0; /* device lacks ecc */
873 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
d2d48480
BN
874}
875EXPORT_SYMBOL_GPL(mtd_read_oob);
876
de3cac93
AB
877/*
878 * Method to access the protection register area, present in some flash
879 * devices. The user data is one time programmable but the factory data is read
880 * only.
881 */
882int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
883 size_t len)
884{
885 if (!mtd->_get_fact_prot_info)
886 return -EOPNOTSUPP;
887 if (!len)
888 return 0;
889 return mtd->_get_fact_prot_info(mtd, buf, len);
890}
891EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
892
893int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
894 size_t *retlen, u_char *buf)
895{
896 *retlen = 0;
897 if (!mtd->_read_fact_prot_reg)
898 return -EOPNOTSUPP;
899 if (!len)
900 return 0;
901 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
902}
903EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
904
905int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
906 size_t len)
907{
908 if (!mtd->_get_user_prot_info)
909 return -EOPNOTSUPP;
910 if (!len)
911 return 0;
912 return mtd->_get_user_prot_info(mtd, buf, len);
913}
914EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
915
916int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
917 size_t *retlen, u_char *buf)
918{
919 *retlen = 0;
920 if (!mtd->_read_user_prot_reg)
921 return -EOPNOTSUPP;
922 if (!len)
923 return 0;
924 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
925}
926EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
927
928int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
929 size_t *retlen, u_char *buf)
930{
931 *retlen = 0;
932 if (!mtd->_write_user_prot_reg)
933 return -EOPNOTSUPP;
934 if (!len)
935 return 0;
936 return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
937}
938EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
939
940int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
941{
942 if (!mtd->_lock_user_prot_reg)
943 return -EOPNOTSUPP;
944 if (!len)
945 return 0;
946 return mtd->_lock_user_prot_reg(mtd, from, len);
947}
948EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
949
8273a0c9
AB
950/* Chip-supported device locking */
951int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
952{
953 if (!mtd->_lock)
954 return -EOPNOTSUPP;
955 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
956 return -EINVAL;
bcb1d238
AB
957 if (!len)
958 return 0;
8273a0c9
AB
959 return mtd->_lock(mtd, ofs, len);
960}
961EXPORT_SYMBOL_GPL(mtd_lock);
962
963int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
964{
965 if (!mtd->_unlock)
966 return -EOPNOTSUPP;
967 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
968 return -EINVAL;
bcb1d238
AB
969 if (!len)
970 return 0;
8273a0c9
AB
971 return mtd->_unlock(mtd, ofs, len);
972}
973EXPORT_SYMBOL_GPL(mtd_unlock);
974
975int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
976{
977 if (!mtd->_is_locked)
978 return -EOPNOTSUPP;
979 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
980 return -EINVAL;
bcb1d238
AB
981 if (!len)
982 return 0;
8273a0c9
AB
983 return mtd->_is_locked(mtd, ofs, len);
984}
985EXPORT_SYMBOL_GPL(mtd_is_locked);
986
987int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
988{
989 if (!mtd->_block_isbad)
990 return 0;
991 if (ofs < 0 || ofs > mtd->size)
992 return -EINVAL;
993 return mtd->_block_isbad(mtd, ofs);
994}
995EXPORT_SYMBOL_GPL(mtd_block_isbad);
996
997int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
998{
999 if (!mtd->_block_markbad)
1000 return -EOPNOTSUPP;
1001 if (ofs < 0 || ofs > mtd->size)
1002 return -EINVAL;
664addc2
AB
1003 if (!(mtd->flags & MTD_WRITEABLE))
1004 return -EROFS;
8273a0c9
AB
1005 return mtd->_block_markbad(mtd, ofs);
1006}
1007EXPORT_SYMBOL_GPL(mtd_block_markbad);
1008
52b02031
AB
1009/*
1010 * default_mtd_writev - the default writev method
1011 * @mtd: mtd device description object pointer
1012 * @vecs: the vectors to write
1013 * @count: count of vectors in @vecs
1014 * @to: the MTD device offset to write to
1015 * @retlen: on exit contains the count of bytes written to the MTD device.
1016 *
1017 * This function returns zero in case of success and a negative error code in
1018 * case of failure.
1da177e4 1019 */
1dbebd32
AB
1020static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1021 unsigned long count, loff_t to, size_t *retlen)
1da177e4
LT
1022{
1023 unsigned long i;
1024 size_t totlen = 0, thislen;
1025 int ret = 0;
1026
52b02031
AB
1027 for (i = 0; i < count; i++) {
1028 if (!vecs[i].iov_len)
1029 continue;
1030 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1031 vecs[i].iov_base);
1032 totlen += thislen;
1033 if (ret || thislen != vecs[i].iov_len)
1034 break;
1035 to += vecs[i].iov_len;
1da177e4 1036 }
52b02031 1037 *retlen = totlen;
1da177e4
LT
1038 return ret;
1039}
1dbebd32
AB
1040
1041/*
1042 * mtd_writev - the vector-based MTD write method
1043 * @mtd: mtd device description object pointer
1044 * @vecs: the vectors to write
1045 * @count: count of vectors in @vecs
1046 * @to: the MTD device offset to write to
1047 * @retlen: on exit contains the count of bytes written to the MTD device.
1048 *
1049 * This function returns zero in case of success and a negative error code in
1050 * case of failure.
1051 */
1052int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1053 unsigned long count, loff_t to, size_t *retlen)
1054{
1055 *retlen = 0;
664addc2
AB
1056 if (!(mtd->flags & MTD_WRITEABLE))
1057 return -EROFS;
3c3c10bb 1058 if (!mtd->_writev)
1dbebd32 1059 return default_mtd_writev(mtd, vecs, count, to, retlen);
3c3c10bb 1060 return mtd->_writev(mtd, vecs, count, to, retlen);
1dbebd32
AB
1061}
1062EXPORT_SYMBOL_GPL(mtd_writev);
1da177e4 1063
33b53716
GE
1064/**
1065 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
52b02031
AB
1066 * @mtd: mtd device description object pointer
1067 * @size: a pointer to the ideal or maximum size of the allocation, points
33b53716
GE
1068 * to the actual allocation size on success.
1069 *
1070 * This routine attempts to allocate a contiguous kernel buffer up to
1071 * the specified size, backing off the size of the request exponentially
1072 * until the request succeeds or until the allocation size falls below
1073 * the system page size. This attempts to make sure it does not adversely
1074 * impact system performance, so when allocating more than one page, we
caf49191
LT
1075 * ask the memory allocator to avoid re-trying, swapping, writing back
1076 * or performing I/O.
33b53716
GE
1077 *
1078 * Note, this function also makes sure that the allocated buffer is aligned to
1079 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1080 *
1081 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1082 * to handle smaller (i.e. degraded) buffer allocations under low- or
1083 * fragmented-memory situations where such reduced allocations, from a
1084 * requested ideal, are allowed.
1085 *
1086 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1087 */
1088void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1089{
caf49191
LT
1090 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1091 __GFP_NORETRY | __GFP_NO_KSWAPD;
33b53716
GE
1092 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1093 void *kbuf;
1094
1095 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1096
1097 while (*size > min_alloc) {
1098 kbuf = kmalloc(*size, flags);
1099 if (kbuf)
1100 return kbuf;
1101
1102 *size >>= 1;
1103 *size = ALIGN(*size, mtd->writesize);
1104 }
1105
1106 /*
1107 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1108 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1109 */
1110 return kmalloc(*size, GFP_KERNEL);
1111}
33b53716 1112EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1da177e4 1113
2d2dce0e
PM
1114#ifdef CONFIG_PROC_FS
1115
1da177e4
LT
1116/*====================================================================*/
1117/* Support for /proc/mtd */
1118
1da177e4
LT
1119static struct proc_dir_entry *proc_mtd;
1120
447d9bd8 1121static int mtd_proc_show(struct seq_file *m, void *v)
1da177e4 1122{
f1332ba2 1123 struct mtd_info *mtd;
1da177e4 1124
447d9bd8 1125 seq_puts(m, "dev: size erasesize name\n");
48b19268 1126 mutex_lock(&mtd_table_mutex);
f1332ba2 1127 mtd_for_each_device(mtd) {
447d9bd8
AD
1128 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1129 mtd->index, (unsigned long long)mtd->size,
1130 mtd->erasesize, mtd->name);
d5ca5129 1131 }
48b19268 1132 mutex_unlock(&mtd_table_mutex);
d5ca5129 1133 return 0;
1da177e4
LT
1134}
1135
447d9bd8
AD
1136static int mtd_proc_open(struct inode *inode, struct file *file)
1137{
1138 return single_open(file, mtd_proc_show, NULL);
1139}
1140
1141static const struct file_operations mtd_proc_ops = {
1142 .open = mtd_proc_open,
1143 .read = seq_read,
1144 .llseek = seq_lseek,
1145 .release = single_release,
1146};
45b09076
KC
1147#endif /* CONFIG_PROC_FS */
1148
1da177e4
LT
1149/*====================================================================*/
1150/* Init code */
1151
0661b1ac
JA
1152static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1153{
1154 int ret;
1155
1156 ret = bdi_init(bdi);
1157 if (!ret)
1158 ret = bdi_register(bdi, NULL, name);
1159
1160 if (ret)
1161 bdi_destroy(bdi);
1162
1163 return ret;
1164}
1165
1da177e4
LT
1166static int __init init_mtd(void)
1167{
15bce40c 1168 int ret;
0661b1ac 1169
15bce40c 1170 ret = class_register(&mtd_class);
0661b1ac
JA
1171 if (ret)
1172 goto err_reg;
1173
1174 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1175 if (ret)
1176 goto err_bdi1;
1177
1178 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1179 if (ret)
1180 goto err_bdi2;
1181
1182 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1183 if (ret)
1184 goto err_bdi3;
694bb7fc 1185
45b09076 1186#ifdef CONFIG_PROC_FS
447d9bd8 1187 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
45b09076 1188#endif /* CONFIG_PROC_FS */
1da177e4 1189 return 0;
0661b1ac
JA
1190
1191err_bdi3:
1192 bdi_destroy(&mtd_bdi_ro_mappable);
1193err_bdi2:
1194 bdi_destroy(&mtd_bdi_unmappable);
1195err_bdi1:
1196 class_unregister(&mtd_class);
1197err_reg:
1198 pr_err("Error registering mtd class or bdi: %d\n", ret);
1199 return ret;
1da177e4
LT
1200}
1201
1202static void __exit cleanup_mtd(void)
1203{
45b09076 1204#ifdef CONFIG_PROC_FS
d5ca5129 1205 if (proc_mtd)
1da177e4 1206 remove_proc_entry( "mtd", NULL);
45b09076 1207#endif /* CONFIG_PROC_FS */
15bce40c 1208 class_unregister(&mtd_class);
0661b1ac
JA
1209 bdi_destroy(&mtd_bdi_unmappable);
1210 bdi_destroy(&mtd_bdi_ro_mappable);
1211 bdi_destroy(&mtd_bdi_rw_mappable);
1da177e4
LT
1212}
1213
1214module_init(init_mtd);
1215module_exit(cleanup_mtd);
1216
1da177e4
LT
1217MODULE_LICENSE("GPL");
1218MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1219MODULE_DESCRIPTION("Core MTD registration and access routines");