mfd: Remove check for db8500 firmware bug
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mfd / db8500-prcmu.c
CommitLineData
e3726fcf 1/*
e0befb23
MP
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
e3726fcf
LW
4 *
5 * License Terms: GNU General Public License v2
e0befb23
MP
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
e3726fcf
LW
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
e0befb23
MP
10 * U8500 PRCM Unit interface driver
11 *
e3726fcf 12 */
e3726fcf 13#include <linux/module.h>
3df57bcf
MN
14#include <linux/kernel.h>
15#include <linux/delay.h>
e3726fcf
LW
16#include <linux/errno.h>
17#include <linux/err.h>
3df57bcf 18#include <linux/spinlock.h>
e3726fcf 19#include <linux/io.h>
3df57bcf 20#include <linux/slab.h>
e3726fcf
LW
21#include <linux/mutex.h>
22#include <linux/completion.h>
3df57bcf 23#include <linux/irq.h>
e3726fcf
LW
24#include <linux/jiffies.h>
25#include <linux/bitops.h>
3df57bcf
MN
26#include <linux/fs.h>
27#include <linux/platform_device.h>
28#include <linux/uaccess.h>
29#include <linux/mfd/core.h>
73180f85 30#include <linux/mfd/dbx500-prcmu.h>
1032fbfd
BJ
31#include <linux/regulator/db8500-prcmu.h>
32#include <linux/regulator/machine.h>
3df57bcf
MN
33#include <mach/hardware.h>
34#include <mach/irqs.h>
35#include <mach/db8500-regs.h>
36#include <mach/id.h>
73180f85 37#include "dbx500-prcmu-regs.h"
3df57bcf
MN
38
39/* Offset for the firmware version within the TCPM */
40#define PRCMU_FW_VERSION_OFFSET 0xA4
41
3df57bcf
MN
42/* Index of different voltages to be used when accessing AVSData */
43#define PRCM_AVS_BASE 0x2FC
44#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
45#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
46#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
47#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
48#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
49#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
50#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
51#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
52#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
53#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
54#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
55#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
56#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
57
58#define PRCM_AVS_VOLTAGE 0
59#define PRCM_AVS_VOLTAGE_MASK 0x3f
60#define PRCM_AVS_ISSLOWSTARTUP 6
61#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
62#define PRCM_AVS_ISMODEENABLE 7
63#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
64
65#define PRCM_BOOT_STATUS 0xFFF
66#define PRCM_ROMCODE_A2P 0xFFE
67#define PRCM_ROMCODE_P2A 0xFFD
68#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
69
70#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71
72#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
73#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
74#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
75#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
76#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
77#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
78#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
79#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
80
81/* Req Mailboxes */
82#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
83#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
84#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
85#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
86#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
87#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
88
89/* Ack Mailboxes */
90#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
91#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96
97/* Mailbox 0 headers */
98#define MB0H_POWER_STATE_TRANS 0
99#define MB0H_CONFIG_WAKEUPS_EXE 1
100#define MB0H_READ_WAKEUP_ACK 3
101#define MB0H_CONFIG_WAKEUPS_SLEEP 4
102
103#define MB0H_WAKEUP_EXE 2
104#define MB0H_WAKEUP_SLEEP 5
105
106/* Mailbox 0 REQs */
107#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
108#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
109#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
110#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
111#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
112#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
113
114/* Mailbox 0 ACKs */
115#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
116#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
117#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
118#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
119#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
120#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
121#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
122
123/* Mailbox 1 headers */
124#define MB1H_ARM_APE_OPP 0x0
125#define MB1H_RESET_MODEM 0x2
126#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128#define MB1H_RELEASE_USB_WAKEUP 0x5
a592c2e2 129#define MB1H_PLL_ON_OFF 0x6
3df57bcf
MN
130
131/* Mailbox 1 Requests */
132#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
133#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
a592c2e2 134#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
6b6fae2b
MN
135#define PLL_SOC0_OFF 0x1
136#define PLL_SOC0_ON 0x2
a592c2e2
MN
137#define PLL_SOC1_OFF 0x4
138#define PLL_SOC1_ON 0x8
3df57bcf
MN
139
140/* Mailbox 1 ACKs */
141#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
142#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
143#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
144#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
145
146/* Mailbox 2 headers */
147#define MB2H_DPS 0x0
148#define MB2H_AUTO_PWR 0x1
149
150/* Mailbox 2 REQs */
151#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
152#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
153#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
154#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
155#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
156#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
157#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
158#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
159#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
160#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
161
162/* Mailbox 2 ACKs */
163#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164#define HWACC_PWR_ST_OK 0xFE
165
166/* Mailbox 3 headers */
167#define MB3H_ANC 0x0
168#define MB3H_SIDETONE 0x1
169#define MB3H_SYSCLK 0xE
170
171/* Mailbox 3 Requests */
172#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
173#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
174#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
175#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
176#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
177#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
178#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
179
180/* Mailbox 4 headers */
181#define MB4H_DDR_INIT 0x0
182#define MB4H_MEM_ST 0x1
183#define MB4H_HOTDOG 0x12
184#define MB4H_HOTMON 0x13
185#define MB4H_HOT_PERIOD 0x14
a592c2e2
MN
186#define MB4H_A9WDOG_CONF 0x16
187#define MB4H_A9WDOG_EN 0x17
188#define MB4H_A9WDOG_DIS 0x18
189#define MB4H_A9WDOG_LOAD 0x19
190#define MB4H_A9WDOG_KICK 0x20
3df57bcf
MN
191
192/* Mailbox 4 Requests */
193#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
194#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
195#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
196#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
197#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
198#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
199#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
200#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
201#define HOTMON_CONFIG_LOW BIT(0)
202#define HOTMON_CONFIG_HIGH BIT(1)
a592c2e2
MN
203#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
204#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
205#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
206#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
207#define A9WDOG_AUTO_OFF_EN BIT(7)
208#define A9WDOG_AUTO_OFF_DIS 0
209#define A9WDOG_ID_MASK 0xf
3df57bcf
MN
210
211/* Mailbox 5 Requests */
212#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
213#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
214#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
215#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
216#define PRCMU_I2C_WRITE(slave) \
217 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
218#define PRCMU_I2C_READ(slave) \
219 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
220#define PRCMU_I2C_STOP_EN BIT(3)
221
222/* Mailbox 5 ACKs */
223#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
224#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
225#define I2C_WR_OK 0x1
226#define I2C_RD_OK 0x2
227
228#define NUM_MB 8
229#define MBOX_BIT BIT
230#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
231
232/*
233 * Wakeups/IRQs
234 */
235
236#define WAKEUP_BIT_RTC BIT(0)
237#define WAKEUP_BIT_RTT0 BIT(1)
238#define WAKEUP_BIT_RTT1 BIT(2)
239#define WAKEUP_BIT_HSI0 BIT(3)
240#define WAKEUP_BIT_HSI1 BIT(4)
241#define WAKEUP_BIT_CA_WAKE BIT(5)
242#define WAKEUP_BIT_USB BIT(6)
243#define WAKEUP_BIT_ABB BIT(7)
244#define WAKEUP_BIT_ABB_FIFO BIT(8)
245#define WAKEUP_BIT_SYSCLK_OK BIT(9)
246#define WAKEUP_BIT_CA_SLEEP BIT(10)
247#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
248#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
249#define WAKEUP_BIT_ANC_OK BIT(13)
250#define WAKEUP_BIT_SW_ERROR BIT(14)
251#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
252#define WAKEUP_BIT_ARM BIT(17)
253#define WAKEUP_BIT_HOTMON_LOW BIT(18)
254#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
255#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
256#define WAKEUP_BIT_GPIO0 BIT(23)
257#define WAKEUP_BIT_GPIO1 BIT(24)
258#define WAKEUP_BIT_GPIO2 BIT(25)
259#define WAKEUP_BIT_GPIO3 BIT(26)
260#define WAKEUP_BIT_GPIO4 BIT(27)
261#define WAKEUP_BIT_GPIO5 BIT(28)
262#define WAKEUP_BIT_GPIO6 BIT(29)
263#define WAKEUP_BIT_GPIO7 BIT(30)
264#define WAKEUP_BIT_GPIO8 BIT(31)
265
b58d12fe
MN
266static struct {
267 bool valid;
268 struct prcmu_fw_version version;
269} fw_info;
270
3df57bcf
MN
271/*
272 * This vector maps irq numbers to the bits in the bit field used in
273 * communication with the PRCMU firmware.
274 *
275 * The reason for having this is to keep the irq numbers contiguous even though
276 * the bits in the bit field are not. (The bits also have a tendency to move
277 * around, to further complicate matters.)
278 */
279#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
280#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
282 IRQ_ENTRY(RTC),
283 IRQ_ENTRY(RTT0),
284 IRQ_ENTRY(RTT1),
285 IRQ_ENTRY(HSI0),
286 IRQ_ENTRY(HSI1),
287 IRQ_ENTRY(CA_WAKE),
288 IRQ_ENTRY(USB),
289 IRQ_ENTRY(ABB),
290 IRQ_ENTRY(ABB_FIFO),
291 IRQ_ENTRY(CA_SLEEP),
292 IRQ_ENTRY(ARM),
293 IRQ_ENTRY(HOTMON_LOW),
294 IRQ_ENTRY(HOTMON_HIGH),
295 IRQ_ENTRY(MODEM_SW_RESET_REQ),
296 IRQ_ENTRY(GPIO0),
297 IRQ_ENTRY(GPIO1),
298 IRQ_ENTRY(GPIO2),
299 IRQ_ENTRY(GPIO3),
300 IRQ_ENTRY(GPIO4),
301 IRQ_ENTRY(GPIO5),
302 IRQ_ENTRY(GPIO6),
303 IRQ_ENTRY(GPIO7),
304 IRQ_ENTRY(GPIO8)
305};
306
307#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
308#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
309static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
310 WAKEUP_ENTRY(RTC),
311 WAKEUP_ENTRY(RTT0),
312 WAKEUP_ENTRY(RTT1),
313 WAKEUP_ENTRY(HSI0),
314 WAKEUP_ENTRY(HSI1),
315 WAKEUP_ENTRY(USB),
316 WAKEUP_ENTRY(ABB),
317 WAKEUP_ENTRY(ABB_FIFO),
318 WAKEUP_ENTRY(ARM)
319};
320
321/*
322 * mb0_transfer - state needed for mailbox 0 communication.
323 * @lock: The transaction lock.
324 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
325 * the request data.
326 * @mask_work: Work structure used for (un)masking wakeup interrupts.
327 * @req: Request data that need to persist between requests.
328 */
329static struct {
330 spinlock_t lock;
331 spinlock_t dbb_irqs_lock;
332 struct work_struct mask_work;
333 struct mutex ac_wake_lock;
334 struct completion ac_wake_work;
335 struct {
336 u32 dbb_irqs;
337 u32 dbb_wakeups;
338 u32 abb_events;
339 } req;
340} mb0_transfer;
341
342/*
343 * mb1_transfer - state needed for mailbox 1 communication.
344 * @lock: The transaction lock.
345 * @work: The transaction completion structure.
4d64d2e3 346 * @ape_opp: The current APE OPP.
3df57bcf
MN
347 * @ack: Reply ("acknowledge") data.
348 */
349static struct {
350 struct mutex lock;
351 struct completion work;
4d64d2e3 352 u8 ape_opp;
3df57bcf
MN
353 struct {
354 u8 header;
355 u8 arm_opp;
356 u8 ape_opp;
357 u8 ape_voltage_status;
358 } ack;
359} mb1_transfer;
360
361/*
362 * mb2_transfer - state needed for mailbox 2 communication.
363 * @lock: The transaction lock.
364 * @work: The transaction completion structure.
365 * @auto_pm_lock: The autonomous power management configuration lock.
366 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
367 * @req: Request data that need to persist between requests.
368 * @ack: Reply ("acknowledge") data.
369 */
370static struct {
371 struct mutex lock;
372 struct completion work;
373 spinlock_t auto_pm_lock;
374 bool auto_pm_enabled;
375 struct {
376 u8 status;
377 } ack;
378} mb2_transfer;
379
380/*
381 * mb3_transfer - state needed for mailbox 3 communication.
382 * @lock: The request lock.
383 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
384 * @sysclk_work: Work structure used for sysclk requests.
385 */
386static struct {
387 spinlock_t lock;
388 struct mutex sysclk_lock;
389 struct completion sysclk_work;
390} mb3_transfer;
391
392/*
393 * mb4_transfer - state needed for mailbox 4 communication.
394 * @lock: The transaction lock.
395 * @work: The transaction completion structure.
396 */
397static struct {
398 struct mutex lock;
399 struct completion work;
400} mb4_transfer;
401
402/*
403 * mb5_transfer - state needed for mailbox 5 communication.
404 * @lock: The transaction lock.
405 * @work: The transaction completion structure.
406 * @ack: Reply ("acknowledge") data.
407 */
408static struct {
409 struct mutex lock;
410 struct completion work;
411 struct {
412 u8 status;
413 u8 value;
414 } ack;
415} mb5_transfer;
416
417static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
418
419/* Spinlocks */
420static DEFINE_SPINLOCK(clkout_lock);
421static DEFINE_SPINLOCK(gpiocr_lock);
422
423/* Global var to runtime determine TCDM base for v2 or v1 */
424static __iomem void *tcdm_base;
425
426struct clk_mgt {
6b6fae2b 427 void __iomem *reg;
3df57bcf 428 u32 pllsw;
6b6fae2b
MN
429 int branch;
430 bool clk38div;
431};
432
433enum {
434 PLL_RAW,
435 PLL_FIX,
436 PLL_DIV
3df57bcf
MN
437};
438
439static DEFINE_SPINLOCK(clk_mgt_lock);
440
6b6fae2b
MN
441#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
442 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
3df57bcf 443struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
6b6fae2b
MN
444 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
445 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
446 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
447 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
448 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
449 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
450 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
451 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
452 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
453 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
454 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
455 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
456 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
457 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
458 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
459 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
460 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
461 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
462 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
463 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
464 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
465 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
466 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
467 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
468 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
469 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
470 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
471 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
473};
474
475struct dsiclk {
476 u32 divsel_mask;
477 u32 divsel_shift;
478 u32 divsel;
479};
480
481static struct dsiclk dsiclk[2] = {
482 {
483 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
484 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
485 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
486 },
487 {
488 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
489 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
490 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
491 }
492};
493
494struct dsiescclk {
495 u32 en;
496 u32 div_mask;
497 u32 div_shift;
498};
499
500static struct dsiescclk dsiescclk[3] = {
501 {
502 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
503 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
504 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
505 },
506 {
507 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
508 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
509 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
510 },
511 {
512 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
513 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
514 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
515 }
3df57bcf
MN
516};
517
0837bb72
MN
518static struct regulator *hwacc_regulator[NUM_HW_ACC];
519static struct regulator *hwacc_ret_regulator[NUM_HW_ACC];
520
521static bool hwacc_enabled[NUM_HW_ACC];
522static bool hwacc_ret_enabled[NUM_HW_ACC];
523
524static const char *hwacc_regulator_name[NUM_HW_ACC] = {
525 [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp",
526 [HW_ACC_SVAPIPE] = "hwacc-sva-pipe",
527 [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp",
528 [HW_ACC_SIAPIPE] = "hwacc-sia-pipe",
529 [HW_ACC_SGA] = "hwacc-sga",
530 [HW_ACC_B2R2] = "hwacc-b2r2",
531 [HW_ACC_MCDE] = "hwacc-mcde",
532 [HW_ACC_ESRAM1] = "hwacc-esram1",
533 [HW_ACC_ESRAM2] = "hwacc-esram2",
534 [HW_ACC_ESRAM3] = "hwacc-esram3",
535 [HW_ACC_ESRAM4] = "hwacc-esram4",
536};
537
538static const char *hwacc_ret_regulator_name[NUM_HW_ACC] = {
539 [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp-ret",
540 [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp-ret",
541 [HW_ACC_ESRAM1] = "hwacc-esram1-ret",
542 [HW_ACC_ESRAM2] = "hwacc-esram2-ret",
543 [HW_ACC_ESRAM3] = "hwacc-esram3-ret",
544 [HW_ACC_ESRAM4] = "hwacc-esram4-ret",
545};
546
3df57bcf
MN
547/*
548* Used by MCDE to setup all necessary PRCMU registers
549*/
550#define PRCMU_RESET_DSIPLL 0x00004000
551#define PRCMU_UNCLAMP_DSIPLL 0x00400800
552
553#define PRCMU_CLK_PLL_DIV_SHIFT 0
554#define PRCMU_CLK_PLL_SW_SHIFT 5
555#define PRCMU_CLK_38 (1 << 9)
556#define PRCMU_CLK_38_SRC (1 << 10)
557#define PRCMU_CLK_38_DIV (1 << 11)
558
559/* PLLDIV=12, PLLSW=4 (PLLDDR) */
560#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
561
3df57bcf
MN
562/* DPI 50000000 Hz */
563#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
564 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
565#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
566
567/* D=101, N=1, R=4, SELDIV2=0 */
568#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
569
3df57bcf
MN
570#define PRCMU_ENABLE_PLLDSI 0x00000001
571#define PRCMU_DISABLE_PLLDSI 0x00000000
572#define PRCMU_RELEASE_RESET_DSS 0x0000400C
573#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
574/* ESC clk, div0=1, div1=1, div2=3 */
575#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
576#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
577#define PRCMU_DSI_RESET_SW 0x00000007
578
579#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
580
73180f85 581int db8500_prcmu_enable_dsipll(void)
3df57bcf
MN
582{
583 int i;
3df57bcf
MN
584
585 /* Clear DSIPLL_RESETN */
c553b3ca 586 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
3df57bcf 587 /* Unclamp DSIPLL in/out */
c553b3ca 588 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
3df57bcf 589
3df57bcf 590 /* Set DSI PLL FREQ */
c72fe851 591 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
c553b3ca 592 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
3df57bcf 593 /* Enable Escape clocks */
c553b3ca 594 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
595
596 /* Start DSI PLL */
c553b3ca 597 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 598 /* Reset DSI PLL */
c553b3ca 599 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
3df57bcf 600 for (i = 0; i < 10; i++) {
c553b3ca 601 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
3df57bcf
MN
602 == PRCMU_PLLDSI_LOCKP_LOCKED)
603 break;
604 udelay(100);
605 }
606 /* Set DSIPLL_RESETN */
c553b3ca 607 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
3df57bcf
MN
608 return 0;
609}
610
73180f85 611int db8500_prcmu_disable_dsipll(void)
3df57bcf
MN
612{
613 /* Disable dsi pll */
c553b3ca 614 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 615 /* Disable escapeclock */
c553b3ca 616 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
617 return 0;
618}
619
73180f85 620int db8500_prcmu_set_display_clocks(void)
3df57bcf
MN
621{
622 unsigned long flags;
3df57bcf
MN
623
624 spin_lock_irqsave(&clk_mgt_lock, flags);
625
626 /* Grab the HW semaphore. */
c553b3ca 627 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
628 cpu_relax();
629
c72fe851 630 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
c553b3ca
MN
631 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
632 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
3df57bcf
MN
633
634 /* Release the HW semaphore. */
c553b3ca 635 writel(0, PRCM_SEM);
3df57bcf
MN
636
637 spin_unlock_irqrestore(&clk_mgt_lock, flags);
638
639 return 0;
640}
641
642/**
643 * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
644 */
645void prcmu_enable_spi2(void)
646{
647 u32 reg;
648 unsigned long flags;
649
650 spin_lock_irqsave(&gpiocr_lock, flags);
c553b3ca
MN
651 reg = readl(PRCM_GPIOCR);
652 writel(reg | PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
3df57bcf
MN
653 spin_unlock_irqrestore(&gpiocr_lock, flags);
654}
655
656/**
657 * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
658 */
659void prcmu_disable_spi2(void)
660{
661 u32 reg;
662 unsigned long flags;
663
664 spin_lock_irqsave(&gpiocr_lock, flags);
c553b3ca
MN
665 reg = readl(PRCM_GPIOCR);
666 writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
3df57bcf
MN
667 spin_unlock_irqrestore(&gpiocr_lock, flags);
668}
669
b58d12fe
MN
670struct prcmu_fw_version *prcmu_get_fw_version(void)
671{
672 return fw_info.valid ? &fw_info.version : NULL;
673}
674
3df57bcf
MN
675bool prcmu_has_arm_maxopp(void)
676{
677 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
678 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
679}
680
3df57bcf
MN
681/**
682 * prcmu_get_boot_status - PRCMU boot status checking
683 * Returns: the current PRCMU boot status
684 */
685int prcmu_get_boot_status(void)
686{
687 return readb(tcdm_base + PRCM_BOOT_STATUS);
688}
689
690/**
691 * prcmu_set_rc_a2p - This function is used to run few power state sequences
692 * @val: Value to be set, i.e. transition requested
693 * Returns: 0 on success, -EINVAL on invalid argument
694 *
695 * This function is used to run the following power state sequences -
696 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
697 */
698int prcmu_set_rc_a2p(enum romcode_write val)
699{
700 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
701 return -EINVAL;
702 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
703 return 0;
704}
705
706/**
707 * prcmu_get_rc_p2a - This function is used to get power state sequences
708 * Returns: the power transition that has last happened
709 *
710 * This function can return the following transitions-
711 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
712 */
713enum romcode_read prcmu_get_rc_p2a(void)
714{
715 return readb(tcdm_base + PRCM_ROMCODE_P2A);
716}
717
718/**
719 * prcmu_get_current_mode - Return the current XP70 power mode
720 * Returns: Returns the current AP(ARM) power mode: init,
721 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
722 */
723enum ap_pwrst prcmu_get_xp70_current_state(void)
724{
725 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
726}
727
728/**
729 * prcmu_config_clkout - Configure one of the programmable clock outputs.
730 * @clkout: The CLKOUT number (0 or 1).
731 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
732 * @div: The divider to be applied.
733 *
734 * Configures one of the programmable clock outputs (CLKOUTs).
735 * @div should be in the range [1,63] to request a configuration, or 0 to
736 * inform that the configuration is no longer requested.
737 */
738int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
739{
740 static int requests[2];
741 int r = 0;
742 unsigned long flags;
743 u32 val;
744 u32 bits;
745 u32 mask;
746 u32 div_mask;
747
748 BUG_ON(clkout > 1);
749 BUG_ON(div > 63);
750 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
751
752 if (!div && !requests[clkout])
753 return -EINVAL;
754
755 switch (clkout) {
756 case 0:
757 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
758 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
759 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
760 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
761 break;
762 case 1:
763 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
764 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
765 PRCM_CLKOCR_CLK1TYPE);
766 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
767 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
768 break;
769 }
770 bits &= mask;
771
772 spin_lock_irqsave(&clkout_lock, flags);
773
c553b3ca 774 val = readl(PRCM_CLKOCR);
3df57bcf
MN
775 if (val & div_mask) {
776 if (div) {
777 if ((val & mask) != bits) {
778 r = -EBUSY;
779 goto unlock_and_return;
780 }
781 } else {
782 if ((val & mask & ~div_mask) != bits) {
783 r = -EINVAL;
784 goto unlock_and_return;
785 }
786 }
787 }
c553b3ca 788 writel((bits | (val & ~mask)), PRCM_CLKOCR);
3df57bcf
MN
789 requests[clkout] += (div ? 1 : -1);
790
791unlock_and_return:
792 spin_unlock_irqrestore(&clkout_lock, flags);
793
794 return r;
795}
796
73180f85 797int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
3df57bcf
MN
798{
799 unsigned long flags;
800
801 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
802
803 spin_lock_irqsave(&mb0_transfer.lock, flags);
804
c553b3ca 805 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
806 cpu_relax();
807
808 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
809 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
810 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
811 writeb((keep_ulp_clk ? 1 : 0),
812 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
813 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
c553b3ca 814 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
815
816 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
817
818 return 0;
819}
820
4d64d2e3
MN
821u8 db8500_prcmu_get_power_state_result(void)
822{
823 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
824}
825
3df57bcf
MN
826/* This function should only be called while mb0_transfer.lock is held. */
827static void config_wakeups(void)
828{
829 const u8 header[2] = {
830 MB0H_CONFIG_WAKEUPS_EXE,
831 MB0H_CONFIG_WAKEUPS_SLEEP
832 };
833 static u32 last_dbb_events;
834 static u32 last_abb_events;
835 u32 dbb_events;
836 u32 abb_events;
837 unsigned int i;
838
839 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
840 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
841
842 abb_events = mb0_transfer.req.abb_events;
843
844 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
845 return;
846
847 for (i = 0; i < 2; i++) {
c553b3ca 848 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
849 cpu_relax();
850 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
851 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
852 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 853 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
854 }
855 last_dbb_events = dbb_events;
856 last_abb_events = abb_events;
857}
858
73180f85 859void db8500_prcmu_enable_wakeups(u32 wakeups)
3df57bcf
MN
860{
861 unsigned long flags;
862 u32 bits;
863 int i;
864
865 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
866
867 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
868 if (wakeups & BIT(i))
869 bits |= prcmu_wakeup_bit[i];
870 }
871
872 spin_lock_irqsave(&mb0_transfer.lock, flags);
873
874 mb0_transfer.req.dbb_wakeups = bits;
875 config_wakeups();
876
877 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
878}
879
73180f85 880void db8500_prcmu_config_abb_event_readout(u32 abb_events)
3df57bcf
MN
881{
882 unsigned long flags;
883
884 spin_lock_irqsave(&mb0_transfer.lock, flags);
885
886 mb0_transfer.req.abb_events = abb_events;
887 config_wakeups();
888
889 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
890}
891
73180f85 892void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
3df57bcf
MN
893{
894 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
895 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
896 else
897 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
898}
899
900/**
73180f85 901 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
3df57bcf
MN
902 * @opp: The new ARM operating point to which transition is to be made
903 * Returns: 0 on success, non-zero on failure
904 *
905 * This function sets the the operating point of the ARM.
906 */
73180f85 907int db8500_prcmu_set_arm_opp(u8 opp)
3df57bcf
MN
908{
909 int r;
910
911 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
912 return -EINVAL;
913
914 r = 0;
915
916 mutex_lock(&mb1_transfer.lock);
917
c553b3ca 918 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
919 cpu_relax();
920
921 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
922 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
923 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
924
c553b3ca 925 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
926 wait_for_completion(&mb1_transfer.work);
927
928 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
929 (mb1_transfer.ack.arm_opp != opp))
930 r = -EIO;
931
932 mutex_unlock(&mb1_transfer.lock);
933
934 return r;
935}
936
937/**
73180f85 938 * db8500_prcmu_get_arm_opp - get the current ARM OPP
3df57bcf
MN
939 *
940 * Returns: the current ARM OPP
941 */
73180f85 942int db8500_prcmu_get_arm_opp(void)
3df57bcf
MN
943{
944 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
945}
946
947/**
0508901c 948 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
3df57bcf
MN
949 *
950 * Returns: the current DDR OPP
951 */
0508901c 952int db8500_prcmu_get_ddr_opp(void)
3df57bcf 953{
c553b3ca 954 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
955}
956
957/**
0508901c 958 * db8500_set_ddr_opp - set the appropriate DDR OPP
3df57bcf
MN
959 * @opp: The new DDR operating point to which transition is to be made
960 * Returns: 0 on success, non-zero on failure
961 *
962 * This function sets the operating point of the DDR.
963 */
0508901c 964int db8500_prcmu_set_ddr_opp(u8 opp)
3df57bcf
MN
965{
966 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
967 return -EINVAL;
968 /* Changing the DDR OPP can hang the hardware pre-v21 */
969 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
c553b3ca 970 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
971
972 return 0;
973}
6b6fae2b 974
4d64d2e3
MN
975/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
976static void request_even_slower_clocks(bool enable)
977{
978 void __iomem *clock_reg[] = {
979 PRCM_ACLK_MGT,
980 PRCM_DMACLK_MGT
981 };
982 unsigned long flags;
983 unsigned int i;
984
985 spin_lock_irqsave(&clk_mgt_lock, flags);
986
987 /* Grab the HW semaphore. */
988 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
989 cpu_relax();
990
991 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
992 u32 val;
993 u32 div;
994
995 val = readl(clock_reg[i]);
996 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
997 if (enable) {
998 if ((div <= 1) || (div > 15)) {
999 pr_err("prcmu: Bad clock divider %d in %s\n",
1000 div, __func__);
1001 goto unlock_and_return;
1002 }
1003 div <<= 1;
1004 } else {
1005 if (div <= 2)
1006 goto unlock_and_return;
1007 div >>= 1;
1008 }
1009 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1010 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1011 writel(val, clock_reg[i]);
1012 }
1013
1014unlock_and_return:
1015 /* Release the HW semaphore. */
1016 writel(0, PRCM_SEM);
1017
1018 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1019}
1020
3df57bcf 1021/**
0508901c 1022 * db8500_set_ape_opp - set the appropriate APE OPP
3df57bcf
MN
1023 * @opp: The new APE operating point to which transition is to be made
1024 * Returns: 0 on success, non-zero on failure
1025 *
1026 * This function sets the operating point of the APE.
1027 */
0508901c 1028int db8500_prcmu_set_ape_opp(u8 opp)
3df57bcf
MN
1029{
1030 int r = 0;
1031
4d64d2e3
MN
1032 if (opp == mb1_transfer.ape_opp)
1033 return 0;
1034
3df57bcf
MN
1035 mutex_lock(&mb1_transfer.lock);
1036
4d64d2e3
MN
1037 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1038 request_even_slower_clocks(false);
1039
1040 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1041 goto skip_message;
1042
c553b3ca 1043 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1044 cpu_relax();
1045
1046 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1047 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
4d64d2e3
MN
1048 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1049 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
3df57bcf 1050
c553b3ca 1051 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1052 wait_for_completion(&mb1_transfer.work);
1053
1054 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1055 (mb1_transfer.ack.ape_opp != opp))
1056 r = -EIO;
1057
4d64d2e3
MN
1058skip_message:
1059 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1060 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1061 request_even_slower_clocks(true);
1062 if (!r)
1063 mb1_transfer.ape_opp = opp;
1064
3df57bcf
MN
1065 mutex_unlock(&mb1_transfer.lock);
1066
1067 return r;
1068}
1069
1070/**
0508901c 1071 * db8500_prcmu_get_ape_opp - get the current APE OPP
3df57bcf
MN
1072 *
1073 * Returns: the current APE OPP
1074 */
0508901c 1075int db8500_prcmu_get_ape_opp(void)
3df57bcf
MN
1076{
1077 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1078}
1079
1080/**
1081 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1082 * @enable: true to request the higher voltage, false to drop a request.
1083 *
1084 * Calls to this function to enable and disable requests must be balanced.
1085 */
1086int prcmu_request_ape_opp_100_voltage(bool enable)
1087{
1088 int r = 0;
1089 u8 header;
1090 static unsigned int requests;
1091
1092 mutex_lock(&mb1_transfer.lock);
1093
1094 if (enable) {
1095 if (0 != requests++)
1096 goto unlock_and_return;
1097 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1098 } else {
1099 if (requests == 0) {
1100 r = -EIO;
1101 goto unlock_and_return;
1102 } else if (1 != requests--) {
1103 goto unlock_and_return;
1104 }
1105 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1106 }
1107
c553b3ca 1108 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1109 cpu_relax();
1110
1111 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1112
c553b3ca 1113 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1114 wait_for_completion(&mb1_transfer.work);
1115
1116 if ((mb1_transfer.ack.header != header) ||
1117 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1118 r = -EIO;
1119
1120unlock_and_return:
1121 mutex_unlock(&mb1_transfer.lock);
1122
1123 return r;
1124}
1125
1126/**
1127 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1128 *
1129 * This function releases the power state requirements of a USB wakeup.
1130 */
1131int prcmu_release_usb_wakeup_state(void)
1132{
1133 int r = 0;
1134
1135 mutex_lock(&mb1_transfer.lock);
1136
c553b3ca 1137 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1138 cpu_relax();
1139
1140 writeb(MB1H_RELEASE_USB_WAKEUP,
1141 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1142
c553b3ca 1143 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1144 wait_for_completion(&mb1_transfer.work);
1145
1146 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1147 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1148 r = -EIO;
1149
1150 mutex_unlock(&mb1_transfer.lock);
1151
1152 return r;
1153}
1154
0837bb72
MN
1155static int request_pll(u8 clock, bool enable)
1156{
1157 int r = 0;
1158
6b6fae2b
MN
1159 if (clock == PRCMU_PLLSOC0)
1160 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1161 else if (clock == PRCMU_PLLSOC1)
0837bb72
MN
1162 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1163 else
1164 return -EINVAL;
1165
1166 mutex_lock(&mb1_transfer.lock);
1167
1168 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1169 cpu_relax();
1170
1171 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1172 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1173
1174 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1175 wait_for_completion(&mb1_transfer.work);
1176
1177 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1178 r = -EIO;
1179
1180 mutex_unlock(&mb1_transfer.lock);
1181
1182 return r;
1183}
1184
0b9199e3
BJ
1185/**
1186 * prcmu_set_hwacc - set the power state of a h/w accelerator
1187 * @hwacc_dev: The hardware accelerator (enum hw_acc_dev).
1188 * @state: The new power state (enum hw_acc_state).
1189 *
1190 * This function sets the power state of a hardware accelerator.
1191 * This function should not be called from interrupt context.
1192 *
1193 * NOTE! Deprecated, to be removed when all users switched over to use the
1194 * regulator framework API.
1195 */
1196int prcmu_set_hwacc(u16 hwacc_dev, u8 state)
1197{
1198 int r = 0;
1199 bool ram_retention = false;
1200 bool enable, enable_ret;
1201
1202 /* check argument */
1203 BUG_ON(hwacc_dev >= NUM_HW_ACC);
1204
1205 /* get state of switches */
1206 enable = hwacc_enabled[hwacc_dev];
1207 enable_ret = hwacc_ret_enabled[hwacc_dev];
1208
1209 /* set flag if retention is possible */
1210 switch (hwacc_dev) {
1211 case HW_ACC_SVAMMDSP:
1212 case HW_ACC_SIAMMDSP:
1213 case HW_ACC_ESRAM1:
1214 case HW_ACC_ESRAM2:
1215 case HW_ACC_ESRAM3:
1216 case HW_ACC_ESRAM4:
1217 ram_retention = true;
1218 break;
1219 }
1220
1221 /* check argument */
1222 BUG_ON(state > HW_ON);
1223 BUG_ON(state == HW_OFF_RAMRET && !ram_retention);
1224
1225 /* modify enable flags */
1226 switch (state) {
1227 case HW_OFF:
1228 enable_ret = false;
1229 enable = false;
1230 break;
1231 case HW_ON:
1232 enable = true;
1233 break;
1234 case HW_OFF_RAMRET:
1235 enable_ret = true;
1236 enable = false;
1237 break;
1238 }
1239
1240 /* get regulator (lazy) */
1241 if (hwacc_regulator[hwacc_dev] == NULL) {
1242 hwacc_regulator[hwacc_dev] = regulator_get(NULL,
1243 hwacc_regulator_name[hwacc_dev]);
1244 if (IS_ERR(hwacc_regulator[hwacc_dev])) {
1245 pr_err("prcmu: failed to get supply %s\n",
1246 hwacc_regulator_name[hwacc_dev]);
1247 r = PTR_ERR(hwacc_regulator[hwacc_dev]);
1248 goto out;
1249 }
1250 }
1251
1252 if (ram_retention) {
1253 if (hwacc_ret_regulator[hwacc_dev] == NULL) {
1254 hwacc_ret_regulator[hwacc_dev] = regulator_get(NULL,
1255 hwacc_ret_regulator_name[hwacc_dev]);
1256 if (IS_ERR(hwacc_ret_regulator[hwacc_dev])) {
1257 pr_err("prcmu: failed to get supply %s\n",
1258 hwacc_ret_regulator_name[hwacc_dev]);
1259 r = PTR_ERR(hwacc_ret_regulator[hwacc_dev]);
1260 goto out;
1261 }
1262 }
1263 }
1264
1265 /* set regulators */
1266 if (ram_retention) {
1267 if (enable_ret && !hwacc_ret_enabled[hwacc_dev]) {
1268 r = regulator_enable(hwacc_ret_regulator[hwacc_dev]);
1269 if (r < 0) {
1270 pr_err("prcmu_set_hwacc: ret enable failed\n");
1271 goto out;
1272 }
1273 hwacc_ret_enabled[hwacc_dev] = true;
1274 }
1275 }
1276
1277 if (enable && !hwacc_enabled[hwacc_dev]) {
1278 r = regulator_enable(hwacc_regulator[hwacc_dev]);
1279 if (r < 0) {
1280 pr_err("prcmu_set_hwacc: enable failed\n");
1281 goto out;
1282 }
1283 hwacc_enabled[hwacc_dev] = true;
1284 }
1285
1286 if (!enable && hwacc_enabled[hwacc_dev]) {
1287 r = regulator_disable(hwacc_regulator[hwacc_dev]);
1288 if (r < 0) {
1289 pr_err("prcmu_set_hwacc: disable failed\n");
1290 goto out;
1291 }
1292 hwacc_enabled[hwacc_dev] = false;
1293 }
1294
1295 if (ram_retention) {
1296 if (!enable_ret && hwacc_ret_enabled[hwacc_dev]) {
1297 r = regulator_disable(hwacc_ret_regulator[hwacc_dev]);
1298 if (r < 0) {
1299 pr_err("prcmu_set_hwacc: ret disable failed\n");
1300 goto out;
1301 }
1302 hwacc_ret_enabled[hwacc_dev] = false;
1303 }
1304 }
1305
1306out:
1307 return r;
1308}
1309EXPORT_SYMBOL(prcmu_set_hwacc);
1310
3df57bcf 1311/**
73180f85 1312 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
3df57bcf
MN
1313 * @epod_id: The EPOD to set
1314 * @epod_state: The new EPOD state
1315 *
1316 * This function sets the state of a EPOD (power domain). It may not be called
1317 * from interrupt context.
1318 */
73180f85 1319int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
3df57bcf
MN
1320{
1321 int r = 0;
1322 bool ram_retention = false;
1323 int i;
1324
1325 /* check argument */
1326 BUG_ON(epod_id >= NUM_EPOD_ID);
1327
1328 /* set flag if retention is possible */
1329 switch (epod_id) {
1330 case EPOD_ID_SVAMMDSP:
1331 case EPOD_ID_SIAMMDSP:
1332 case EPOD_ID_ESRAM12:
1333 case EPOD_ID_ESRAM34:
1334 ram_retention = true;
1335 break;
1336 }
1337
1338 /* check argument */
1339 BUG_ON(epod_state > EPOD_STATE_ON);
1340 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1341
1342 /* get lock */
1343 mutex_lock(&mb2_transfer.lock);
1344
1345 /* wait for mailbox */
c553b3ca 1346 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
3df57bcf
MN
1347 cpu_relax();
1348
1349 /* fill in mailbox */
1350 for (i = 0; i < NUM_EPOD_ID; i++)
1351 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1352 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1353
1354 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1355
c553b3ca 1356 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1357
1358 /*
1359 * The current firmware version does not handle errors correctly,
1360 * and we cannot recover if there is an error.
1361 * This is expected to change when the firmware is updated.
1362 */
1363 if (!wait_for_completion_timeout(&mb2_transfer.work,
1364 msecs_to_jiffies(20000))) {
1365 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1366 __func__);
1367 r = -EIO;
1368 goto unlock_and_return;
1369 }
1370
1371 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1372 r = -EIO;
1373
1374unlock_and_return:
1375 mutex_unlock(&mb2_transfer.lock);
1376 return r;
1377}
1378
1379/**
1380 * prcmu_configure_auto_pm - Configure autonomous power management.
1381 * @sleep: Configuration for ApSleep.
1382 * @idle: Configuration for ApIdle.
1383 */
1384void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1385 struct prcmu_auto_pm_config *idle)
1386{
1387 u32 sleep_cfg;
1388 u32 idle_cfg;
1389 unsigned long flags;
e3726fcf 1390
3df57bcf 1391 BUG_ON((sleep == NULL) || (idle == NULL));
650c2a21 1392
3df57bcf
MN
1393 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1394 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1395 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1396 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1397 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1398 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
e3726fcf 1399
3df57bcf
MN
1400 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1401 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1402 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1403 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1404 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1405 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
e3726fcf 1406
3df57bcf 1407 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
e0befb23 1408
3df57bcf
MN
1409 /*
1410 * The autonomous power management configuration is done through
1411 * fields in mailbox 2, but these fields are only used as shared
1412 * variables - i.e. there is no need to send a message.
1413 */
1414 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1415 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
e0befb23 1416
3df57bcf
MN
1417 mb2_transfer.auto_pm_enabled =
1418 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1419 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1420 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1421 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
e0befb23 1422
3df57bcf
MN
1423 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1424}
1425EXPORT_SYMBOL(prcmu_configure_auto_pm);
e3726fcf 1426
3df57bcf
MN
1427bool prcmu_is_auto_pm_enabled(void)
1428{
1429 return mb2_transfer.auto_pm_enabled;
1430}
e0befb23 1431
3df57bcf
MN
1432static int request_sysclk(bool enable)
1433{
1434 int r;
1435 unsigned long flags;
e3726fcf 1436
3df57bcf 1437 r = 0;
e3726fcf 1438
3df57bcf 1439 mutex_lock(&mb3_transfer.sysclk_lock);
e0befb23 1440
3df57bcf 1441 spin_lock_irqsave(&mb3_transfer.lock, flags);
e0befb23 1442
c553b3ca 1443 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
3df57bcf 1444 cpu_relax();
e0befb23 1445
3df57bcf 1446 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
e3726fcf 1447
3df57bcf 1448 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
c553b3ca 1449 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
e3726fcf 1450
3df57bcf
MN
1451 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1452
1453 /*
1454 * The firmware only sends an ACK if we want to enable the
1455 * SysClk, and it succeeds.
1456 */
1457 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1458 msecs_to_jiffies(20000))) {
1459 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1460 __func__);
1461 r = -EIO;
1462 }
1463
1464 mutex_unlock(&mb3_transfer.sysclk_lock);
1465
1466 return r;
1467}
1468
1469static int request_timclk(bool enable)
1470{
1471 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1472
1473 if (!enable)
1474 val |= PRCM_TCR_STOP_TIMERS;
c553b3ca 1475 writel(val, PRCM_TCR);
3df57bcf
MN
1476
1477 return 0;
1478}
1479
6b6fae2b 1480static int request_clock(u8 clock, bool enable)
3df57bcf
MN
1481{
1482 u32 val;
1483 unsigned long flags;
1484
1485 spin_lock_irqsave(&clk_mgt_lock, flags);
1486
1487 /* Grab the HW semaphore. */
c553b3ca 1488 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1489 cpu_relax();
1490
6b6fae2b 1491 val = readl(clk_mgt[clock].reg);
3df57bcf
MN
1492 if (enable) {
1493 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1494 } else {
1495 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1496 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1497 }
6b6fae2b 1498 writel(val, clk_mgt[clock].reg);
3df57bcf
MN
1499
1500 /* Release the HW semaphore. */
c553b3ca 1501 writel(0, PRCM_SEM);
3df57bcf
MN
1502
1503 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1504
1505 return 0;
1506}
1507
0837bb72
MN
1508static int request_sga_clock(u8 clock, bool enable)
1509{
1510 u32 val;
1511 int ret;
1512
1513 if (enable) {
1514 val = readl(PRCM_CGATING_BYPASS);
1515 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1516 }
1517
6b6fae2b 1518 ret = request_clock(clock, enable);
0837bb72
MN
1519
1520 if (!ret && !enable) {
1521 val = readl(PRCM_CGATING_BYPASS);
1522 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1523 }
1524
1525 return ret;
1526}
1527
6b6fae2b
MN
1528static inline bool plldsi_locked(void)
1529{
1530 return (readl(PRCM_PLLDSI_LOCKP) &
1531 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1532 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1533 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1534 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1535}
1536
1537static int request_plldsi(bool enable)
1538{
1539 int r = 0;
1540 u32 val;
1541
1542 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1543 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1544 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1545
1546 val = readl(PRCM_PLLDSI_ENABLE);
1547 if (enable)
1548 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1549 else
1550 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1551 writel(val, PRCM_PLLDSI_ENABLE);
1552
1553 if (enable) {
1554 unsigned int i;
1555 bool locked = plldsi_locked();
1556
1557 for (i = 10; !locked && (i > 0); --i) {
1558 udelay(100);
1559 locked = plldsi_locked();
1560 }
1561 if (locked) {
1562 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1563 PRCM_APE_RESETN_SET);
1564 } else {
1565 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1566 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1567 PRCM_MMIP_LS_CLAMP_SET);
1568 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1569 writel(val, PRCM_PLLDSI_ENABLE);
1570 r = -EAGAIN;
1571 }
1572 } else {
1573 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1574 }
1575 return r;
1576}
1577
1578static int request_dsiclk(u8 n, bool enable)
1579{
1580 u32 val;
1581
1582 val = readl(PRCM_DSI_PLLOUT_SEL);
1583 val &= ~dsiclk[n].divsel_mask;
1584 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1585 dsiclk[n].divsel_shift);
1586 writel(val, PRCM_DSI_PLLOUT_SEL);
1587 return 0;
1588}
1589
1590static int request_dsiescclk(u8 n, bool enable)
1591{
1592 u32 val;
1593
1594 val = readl(PRCM_DSITVCLK_DIV);
1595 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1596 writel(val, PRCM_DSITVCLK_DIV);
1597 return 0;
1598}
1599
3df57bcf 1600/**
73180f85 1601 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
3df57bcf
MN
1602 * @clock: The clock for which the request is made.
1603 * @enable: Whether the clock should be enabled (true) or disabled (false).
1604 *
1605 * This function should only be used by the clock implementation.
1606 * Do not use it from any other place!
1607 */
73180f85 1608int db8500_prcmu_request_clock(u8 clock, bool enable)
3df57bcf 1609{
6b6fae2b 1610 if (clock == PRCMU_SGACLK)
0837bb72 1611 return request_sga_clock(clock, enable);
6b6fae2b
MN
1612 else if (clock < PRCMU_NUM_REG_CLOCKS)
1613 return request_clock(clock, enable);
1614 else if (clock == PRCMU_TIMCLK)
3df57bcf 1615 return request_timclk(enable);
6b6fae2b
MN
1616 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1617 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1618 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1619 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1620 else if (clock == PRCMU_PLLDSI)
1621 return request_plldsi(enable);
1622 else if (clock == PRCMU_SYSCLK)
3df57bcf 1623 return request_sysclk(enable);
6b6fae2b 1624 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
0837bb72 1625 return request_pll(clock, enable);
6b6fae2b
MN
1626 else
1627 return -EINVAL;
1628}
1629
1630static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1631 int branch)
1632{
1633 u64 rate;
1634 u32 val;
1635 u32 d;
1636 u32 div = 1;
1637
1638 val = readl(reg);
1639
1640 rate = src_rate;
1641 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1642
1643 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1644 if (d > 1)
1645 div *= d;
1646
1647 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1648 if (d > 1)
1649 div *= d;
1650
1651 if (val & PRCM_PLL_FREQ_SELDIV2)
1652 div *= 2;
1653
1654 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1655 (val & PRCM_PLL_FREQ_DIV2EN) &&
1656 ((reg == PRCM_PLLSOC0_FREQ) ||
1657 (reg == PRCM_PLLDDR_FREQ))))
1658 div *= 2;
1659
1660 (void)do_div(rate, div);
1661
1662 return (unsigned long)rate;
1663}
1664
1665#define ROOT_CLOCK_RATE 38400000
1666
1667static unsigned long clock_rate(u8 clock)
1668{
1669 u32 val;
1670 u32 pllsw;
1671 unsigned long rate = ROOT_CLOCK_RATE;
1672
1673 val = readl(clk_mgt[clock].reg);
1674
1675 if (val & PRCM_CLK_MGT_CLK38) {
1676 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1677 rate /= 2;
1678 return rate;
1679 }
1680
1681 val |= clk_mgt[clock].pllsw;
1682 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1683
1684 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1685 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1686 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1687 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1688 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1689 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1690 else
1691 return 0;
1692
1693 if ((clock == PRCMU_SGACLK) &&
1694 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1695 u64 r = (rate * 10);
1696
1697 (void)do_div(r, 25);
1698 return (unsigned long)r;
1699 }
1700 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1701 if (val)
1702 return rate / val;
1703 else
1704 return 0;
1705}
1706
1707static unsigned long dsiclk_rate(u8 n)
1708{
1709 u32 divsel;
1710 u32 div = 1;
1711
1712 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1713 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1714
1715 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1716 divsel = dsiclk[n].divsel;
1717
1718 switch (divsel) {
1719 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1720 div *= 2;
1721 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1722 div *= 2;
1723 case PRCM_DSI_PLLOUT_SEL_PHI:
1724 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1725 PLL_RAW) / div;
e62ccf3a 1726 default:
6b6fae2b 1727 return 0;
e62ccf3a 1728 }
6b6fae2b
MN
1729}
1730
1731static unsigned long dsiescclk_rate(u8 n)
1732{
1733 u32 div;
1734
1735 div = readl(PRCM_DSITVCLK_DIV);
1736 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1737 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1738}
1739
1740unsigned long prcmu_clock_rate(u8 clock)
1741{
e62ccf3a 1742 if (clock < PRCMU_NUM_REG_CLOCKS)
6b6fae2b
MN
1743 return clock_rate(clock);
1744 else if (clock == PRCMU_TIMCLK)
1745 return ROOT_CLOCK_RATE / 16;
1746 else if (clock == PRCMU_SYSCLK)
1747 return ROOT_CLOCK_RATE;
1748 else if (clock == PRCMU_PLLSOC0)
1749 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1750 else if (clock == PRCMU_PLLSOC1)
1751 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1752 else if (clock == PRCMU_PLLDDR)
1753 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1754 else if (clock == PRCMU_PLLDSI)
1755 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1756 PLL_RAW);
1757 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1758 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1759 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1760 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1761 else
1762 return 0;
1763}
1764
1765static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1766{
1767 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1768 return ROOT_CLOCK_RATE;
1769 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1770 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1771 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1772 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1773 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1774 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1775 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1776 else
1777 return 0;
1778}
1779
1780static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1781{
1782 u32 div;
1783
1784 div = (src_rate / rate);
1785 if (div == 0)
1786 return 1;
1787 if (rate < (src_rate / div))
1788 div++;
1789 return div;
1790}
1791
1792static long round_clock_rate(u8 clock, unsigned long rate)
1793{
1794 u32 val;
1795 u32 div;
1796 unsigned long src_rate;
1797 long rounded_rate;
1798
1799 val = readl(clk_mgt[clock].reg);
1800 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1801 clk_mgt[clock].branch);
1802 div = clock_divider(src_rate, rate);
1803 if (val & PRCM_CLK_MGT_CLK38) {
1804 if (clk_mgt[clock].clk38div) {
1805 if (div > 2)
1806 div = 2;
1807 } else {
1808 div = 1;
1809 }
1810 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1811 u64 r = (src_rate * 10);
1812
1813 (void)do_div(r, 25);
1814 if (r <= rate)
1815 return (unsigned long)r;
1816 }
1817 rounded_rate = (src_rate / min(div, (u32)31));
1818
1819 return rounded_rate;
1820}
1821
1822#define MIN_PLL_VCO_RATE 600000000ULL
1823#define MAX_PLL_VCO_RATE 1680640000ULL
1824
1825static long round_plldsi_rate(unsigned long rate)
1826{
1827 long rounded_rate = 0;
1828 unsigned long src_rate;
1829 unsigned long rem;
1830 u32 r;
1831
1832 src_rate = clock_rate(PRCMU_HDMICLK);
1833 rem = rate;
1834
1835 for (r = 7; (rem > 0) && (r > 0); r--) {
1836 u64 d;
1837
1838 d = (r * rate);
1839 (void)do_div(d, src_rate);
1840 if (d < 6)
1841 d = 6;
1842 else if (d > 255)
1843 d = 255;
1844 d *= src_rate;
1845 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1846 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1847 continue;
1848 (void)do_div(d, r);
1849 if (rate < d) {
1850 if (rounded_rate == 0)
1851 rounded_rate = (long)d;
1852 break;
1853 }
1854 if ((rate - d) < rem) {
1855 rem = (rate - d);
1856 rounded_rate = (long)d;
1857 }
1858 }
1859 return rounded_rate;
1860}
1861
1862static long round_dsiclk_rate(unsigned long rate)
1863{
1864 u32 div;
1865 unsigned long src_rate;
1866 long rounded_rate;
1867
1868 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1869 PLL_RAW);
1870 div = clock_divider(src_rate, rate);
1871 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1872
1873 return rounded_rate;
1874}
1875
1876static long round_dsiescclk_rate(unsigned long rate)
1877{
1878 u32 div;
1879 unsigned long src_rate;
1880 long rounded_rate;
1881
1882 src_rate = clock_rate(PRCMU_TVCLK);
1883 div = clock_divider(src_rate, rate);
1884 rounded_rate = (src_rate / min(div, (u32)255));
1885
1886 return rounded_rate;
1887}
1888
1889long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1890{
1891 if (clock < PRCMU_NUM_REG_CLOCKS)
1892 return round_clock_rate(clock, rate);
1893 else if (clock == PRCMU_PLLDSI)
1894 return round_plldsi_rate(rate);
1895 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1896 return round_dsiclk_rate(rate);
1897 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1898 return round_dsiescclk_rate(rate);
1899 else
1900 return (long)prcmu_clock_rate(clock);
1901}
1902
1903static void set_clock_rate(u8 clock, unsigned long rate)
1904{
1905 u32 val;
1906 u32 div;
1907 unsigned long src_rate;
1908 unsigned long flags;
1909
1910 spin_lock_irqsave(&clk_mgt_lock, flags);
1911
1912 /* Grab the HW semaphore. */
1913 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1914 cpu_relax();
1915
1916 val = readl(clk_mgt[clock].reg);
1917 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1918 clk_mgt[clock].branch);
1919 div = clock_divider(src_rate, rate);
1920 if (val & PRCM_CLK_MGT_CLK38) {
1921 if (clk_mgt[clock].clk38div) {
1922 if (div > 1)
1923 val |= PRCM_CLK_MGT_CLK38DIV;
1924 else
1925 val &= ~PRCM_CLK_MGT_CLK38DIV;
1926 }
1927 } else if (clock == PRCMU_SGACLK) {
1928 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1929 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1930 if (div == 3) {
1931 u64 r = (src_rate * 10);
1932
1933 (void)do_div(r, 25);
1934 if (r <= rate) {
1935 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1936 div = 0;
1937 }
1938 }
1939 val |= min(div, (u32)31);
1940 } else {
1941 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1942 val |= min(div, (u32)31);
1943 }
1944 writel(val, clk_mgt[clock].reg);
1945
1946 /* Release the HW semaphore. */
1947 writel(0, PRCM_SEM);
1948
1949 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1950}
1951
1952static int set_plldsi_rate(unsigned long rate)
1953{
1954 unsigned long src_rate;
1955 unsigned long rem;
1956 u32 pll_freq = 0;
1957 u32 r;
1958
1959 src_rate = clock_rate(PRCMU_HDMICLK);
1960 rem = rate;
1961
1962 for (r = 7; (rem > 0) && (r > 0); r--) {
1963 u64 d;
1964 u64 hwrate;
1965
1966 d = (r * rate);
1967 (void)do_div(d, src_rate);
1968 if (d < 6)
1969 d = 6;
1970 else if (d > 255)
1971 d = 255;
1972 hwrate = (d * src_rate);
1973 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1974 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1975 continue;
1976 (void)do_div(hwrate, r);
1977 if (rate < hwrate) {
1978 if (pll_freq == 0)
1979 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1980 (r << PRCM_PLL_FREQ_R_SHIFT));
1981 break;
1982 }
1983 if ((rate - hwrate) < rem) {
1984 rem = (rate - hwrate);
1985 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1986 (r << PRCM_PLL_FREQ_R_SHIFT));
1987 }
1988 }
1989 if (pll_freq == 0)
1990 return -EINVAL;
1991
1992 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1993 writel(pll_freq, PRCM_PLLDSI_FREQ);
1994
1995 return 0;
1996}
1997
1998static void set_dsiclk_rate(u8 n, unsigned long rate)
1999{
2000 u32 val;
2001 u32 div;
2002
2003 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2004 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2005
2006 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2007 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2008 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
2009
2010 val = readl(PRCM_DSI_PLLOUT_SEL);
2011 val &= ~dsiclk[n].divsel_mask;
2012 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2013 writel(val, PRCM_DSI_PLLOUT_SEL);
2014}
2015
2016static void set_dsiescclk_rate(u8 n, unsigned long rate)
2017{
2018 u32 val;
2019 u32 div;
2020
2021 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2022 val = readl(PRCM_DSITVCLK_DIV);
2023 val &= ~dsiescclk[n].div_mask;
2024 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2025 writel(val, PRCM_DSITVCLK_DIV);
2026}
2027
2028int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2029{
2030 if (clock < PRCMU_NUM_REG_CLOCKS)
2031 set_clock_rate(clock, rate);
2032 else if (clock == PRCMU_PLLDSI)
2033 return set_plldsi_rate(rate);
2034 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2035 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2036 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2037 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2038 return 0;
3df57bcf
MN
2039}
2040
73180f85 2041int db8500_prcmu_config_esram0_deep_sleep(u8 state)
3df57bcf
MN
2042{
2043 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2044 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2045 return -EINVAL;
2046
2047 mutex_lock(&mb4_transfer.lock);
2048
c553b3ca 2049 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2050 cpu_relax();
2051
2052 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2053 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2054 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2055 writeb(DDR_PWR_STATE_ON,
2056 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2057 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2058
c553b3ca 2059 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2060 wait_for_completion(&mb4_transfer.work);
2061
2062 mutex_unlock(&mb4_transfer.lock);
2063
2064 return 0;
2065}
2066
0508901c 2067int db8500_prcmu_config_hotdog(u8 threshold)
3df57bcf
MN
2068{
2069 mutex_lock(&mb4_transfer.lock);
2070
c553b3ca 2071 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2072 cpu_relax();
2073
2074 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2075 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2076
c553b3ca 2077 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2078 wait_for_completion(&mb4_transfer.work);
2079
2080 mutex_unlock(&mb4_transfer.lock);
2081
2082 return 0;
2083}
2084
0508901c 2085int db8500_prcmu_config_hotmon(u8 low, u8 high)
3df57bcf
MN
2086{
2087 mutex_lock(&mb4_transfer.lock);
2088
c553b3ca 2089 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2090 cpu_relax();
2091
2092 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2093 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2094 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2095 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2096 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2097
c553b3ca 2098 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2099 wait_for_completion(&mb4_transfer.work);
2100
2101 mutex_unlock(&mb4_transfer.lock);
2102
2103 return 0;
2104}
2105
2106static int config_hot_period(u16 val)
2107{
2108 mutex_lock(&mb4_transfer.lock);
2109
c553b3ca 2110 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2111 cpu_relax();
2112
2113 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2114 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2115
c553b3ca 2116 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2117 wait_for_completion(&mb4_transfer.work);
2118
2119 mutex_unlock(&mb4_transfer.lock);
2120
2121 return 0;
2122}
2123
0508901c 2124int db8500_prcmu_start_temp_sense(u16 cycles32k)
3df57bcf
MN
2125{
2126 if (cycles32k == 0xFFFF)
2127 return -EINVAL;
2128
2129 return config_hot_period(cycles32k);
2130}
2131
0508901c 2132int db8500_prcmu_stop_temp_sense(void)
3df57bcf
MN
2133{
2134 return config_hot_period(0xFFFF);
2135}
2136
84165b80
JA
2137static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2138{
2139
2140 mutex_lock(&mb4_transfer.lock);
2141
2142 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2143 cpu_relax();
2144
2145 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2146 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2147 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2148 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2149
2150 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2151
2152 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2153 wait_for_completion(&mb4_transfer.work);
2154
2155 mutex_unlock(&mb4_transfer.lock);
2156
2157 return 0;
2158
2159}
2160
0508901c 2161int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
84165b80
JA
2162{
2163 BUG_ON(num == 0 || num > 0xf);
2164 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2165 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2166 A9WDOG_AUTO_OFF_DIS);
2167}
2168
0508901c 2169int db8500_prcmu_enable_a9wdog(u8 id)
84165b80
JA
2170{
2171 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2172}
2173
0508901c 2174int db8500_prcmu_disable_a9wdog(u8 id)
84165b80
JA
2175{
2176 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2177}
2178
0508901c 2179int db8500_prcmu_kick_a9wdog(u8 id)
84165b80
JA
2180{
2181 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2182}
2183
2184/*
2185 * timeout is 28 bit, in ms.
2186 */
0508901c 2187int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
84165b80 2188{
84165b80
JA
2189 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2190 (id & A9WDOG_ID_MASK) |
2191 /*
2192 * Put the lowest 28 bits of timeout at
2193 * offset 4. Four first bits are used for id.
2194 */
2195 (u8)((timeout << 4) & 0xf0),
2196 (u8)((timeout >> 4) & 0xff),
2197 (u8)((timeout >> 12) & 0xff),
2198 (u8)((timeout >> 20) & 0xff));
2199}
2200
e3726fcf
LW
2201/**
2202 * prcmu_abb_read() - Read register value(s) from the ABB.
2203 * @slave: The I2C slave address.
2204 * @reg: The (start) register address.
2205 * @value: The read out value(s).
2206 * @size: The number of registers to read.
2207 *
2208 * Reads register value(s) from the ABB.
2209 * @size has to be 1 for the current firmware version.
2210 */
2211int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2212{
2213 int r;
2214
2215 if (size != 1)
2216 return -EINVAL;
2217
3df57bcf 2218 mutex_lock(&mb5_transfer.lock);
e3726fcf 2219
c553b3ca 2220 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2221 cpu_relax();
2222
3df57bcf
MN
2223 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2224 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2225 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2226 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2227
c553b3ca 2228 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2229
e3726fcf 2230 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2231 msecs_to_jiffies(20000))) {
2232 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2233 __func__);
e3726fcf 2234 r = -EIO;
3df57bcf
MN
2235 } else {
2236 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
e3726fcf 2237 }
3df57bcf 2238
e3726fcf
LW
2239 if (!r)
2240 *value = mb5_transfer.ack.value;
2241
e3726fcf 2242 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2243
e3726fcf
LW
2244 return r;
2245}
e3726fcf
LW
2246
2247/**
2248 * prcmu_abb_write() - Write register value(s) to the ABB.
2249 * @slave: The I2C slave address.
2250 * @reg: The (start) register address.
2251 * @value: The value(s) to write.
2252 * @size: The number of registers to write.
2253 *
2254 * Reads register value(s) from the ABB.
2255 * @size has to be 1 for the current firmware version.
2256 */
2257int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2258{
2259 int r;
2260
2261 if (size != 1)
2262 return -EINVAL;
2263
3df57bcf 2264 mutex_lock(&mb5_transfer.lock);
e3726fcf 2265
c553b3ca 2266 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2267 cpu_relax();
2268
3df57bcf
MN
2269 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2270 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2271 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2272 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2273
c553b3ca 2274 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2275
e3726fcf 2276 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2277 msecs_to_jiffies(20000))) {
2278 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2279 __func__);
e3726fcf 2280 r = -EIO;
3df57bcf
MN
2281 } else {
2282 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
e3726fcf 2283 }
e3726fcf 2284
e3726fcf 2285 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2286
e3726fcf
LW
2287 return r;
2288}
e3726fcf 2289
3df57bcf
MN
2290/**
2291 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2292 */
2293void prcmu_ac_wake_req(void)
e0befb23 2294{
3df57bcf 2295 u32 val;
d6e3002e 2296 u32 status;
e0befb23 2297
3df57bcf 2298 mutex_lock(&mb0_transfer.ac_wake_lock);
e0befb23 2299
c553b3ca 2300 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2301 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2302 goto unlock_and_return;
e0befb23 2303
3df57bcf 2304 atomic_set(&ac_wake_req_state, 1);
e0befb23 2305
d6e3002e 2306retry:
c553b3ca 2307 writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
e0befb23 2308
3df57bcf 2309 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2310 msecs_to_jiffies(5000))) {
57265bc1 2311 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
d6e3002e
MN
2312 __func__);
2313 goto unlock_and_return;
2314 }
2315
2316 /*
2317 * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
2318 * As a workaround, we wait, and then check that the modem is indeed
2319 * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
2320 * register, which may not be the whole truth).
2321 */
2322 udelay(400);
2323 status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
2324 if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
2325 PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
2326 pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
2327 __func__, status);
2328 udelay(1200);
2329 writel(val, PRCM_HOSTACCESS_REQ);
2330 if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2331 msecs_to_jiffies(5000)))
2332 goto retry;
57265bc1 2333 pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
3df57bcf
MN
2334 __func__);
2335 }
e0befb23 2336
3df57bcf
MN
2337unlock_and_return:
2338 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23
MP
2339}
2340
2341/**
3df57bcf 2342 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
e0befb23 2343 */
3df57bcf 2344void prcmu_ac_sleep_req()
e0befb23 2345{
3df57bcf
MN
2346 u32 val;
2347
2348 mutex_lock(&mb0_transfer.ac_wake_lock);
2349
c553b3ca 2350 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2351 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2352 goto unlock_and_return;
2353
2354 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
c553b3ca 2355 PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2356
2357 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2358 msecs_to_jiffies(5000))) {
57265bc1 2359 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
3df57bcf
MN
2360 __func__);
2361 }
2362
2363 atomic_set(&ac_wake_req_state, 0);
2364
2365unlock_and_return:
2366 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23 2367}
e0befb23 2368
73180f85 2369bool db8500_prcmu_is_ac_wake_requested(void)
e0befb23 2370{
3df57bcf 2371 return (atomic_read(&ac_wake_req_state) != 0);
e0befb23 2372}
e0befb23
MP
2373
2374/**
73180f85 2375 * db8500_prcmu_system_reset - System reset
e0befb23 2376 *
73180f85 2377 * Saves the reset reason code and then sets the APE_SOFTRST register which
3df57bcf 2378 * fires interrupt to fw
e0befb23 2379 */
73180f85 2380void db8500_prcmu_system_reset(u16 reset_code)
e0befb23 2381{
3df57bcf 2382 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
c553b3ca 2383 writel(1, PRCM_APE_SOFTRST);
e0befb23 2384}
e0befb23 2385
597045de
SR
2386/**
2387 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2388 *
2389 * Retrieves the reset reason code stored by prcmu_system_reset() before
2390 * last restart.
2391 */
2392u16 db8500_prcmu_get_reset_code(void)
2393{
2394 return readw(tcdm_base + PRCM_SW_RST_REASON);
2395}
2396
e0befb23 2397/**
0508901c 2398 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
e0befb23 2399 */
0508901c 2400void db8500_prcmu_modem_reset(void)
e0befb23 2401{
3df57bcf
MN
2402 mutex_lock(&mb1_transfer.lock);
2403
c553b3ca 2404 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
2405 cpu_relax();
2406
2407 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
c553b3ca 2408 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2409 wait_for_completion(&mb1_transfer.work);
2410
2411 /*
2412 * No need to check return from PRCMU as modem should go in reset state
2413 * This state is already managed by upper layer
2414 */
2415
2416 mutex_unlock(&mb1_transfer.lock);
e0befb23 2417}
e0befb23 2418
3df57bcf 2419static void ack_dbb_wakeup(void)
e0befb23 2420{
3df57bcf
MN
2421 unsigned long flags;
2422
2423 spin_lock_irqsave(&mb0_transfer.lock, flags);
2424
c553b3ca 2425 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
2426 cpu_relax();
2427
2428 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 2429 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2430
2431 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
e0befb23 2432}
e0befb23 2433
3df57bcf 2434static inline void print_unknown_header_warning(u8 n, u8 header)
e0befb23 2435{
3df57bcf
MN
2436 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2437 header, n);
e0befb23
MP
2438}
2439
3df57bcf 2440static bool read_mailbox_0(void)
e3726fcf 2441{
3df57bcf
MN
2442 bool r;
2443 u32 ev;
2444 unsigned int n;
2445 u8 header;
2446
2447 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2448 switch (header) {
2449 case MB0H_WAKEUP_EXE:
2450 case MB0H_WAKEUP_SLEEP:
2451 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2452 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2453 else
2454 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2455
2456 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2457 complete(&mb0_transfer.ac_wake_work);
2458 if (ev & WAKEUP_BIT_SYSCLK_OK)
2459 complete(&mb3_transfer.sysclk_work);
2460
2461 ev &= mb0_transfer.req.dbb_irqs;
2462
2463 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2464 if (ev & prcmu_irq_bit[n])
2465 generic_handle_irq(IRQ_PRCMU_BASE + n);
2466 }
2467 r = true;
2468 break;
2469 default:
2470 print_unknown_header_warning(0, header);
2471 r = false;
2472 break;
2473 }
c553b3ca 2474 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
3df57bcf 2475 return r;
e3726fcf
LW
2476}
2477
3df57bcf 2478static bool read_mailbox_1(void)
e3726fcf 2479{
3df57bcf
MN
2480 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2481 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2482 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2483 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2484 PRCM_ACK_MB1_CURRENT_APE_OPP);
2485 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2486 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
c553b3ca 2487 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
e0befb23 2488 complete(&mb1_transfer.work);
3df57bcf 2489 return false;
e3726fcf
LW
2490}
2491
3df57bcf 2492static bool read_mailbox_2(void)
e3726fcf 2493{
3df57bcf 2494 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
c553b3ca 2495 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2496 complete(&mb2_transfer.work);
2497 return false;
e3726fcf
LW
2498}
2499
3df57bcf 2500static bool read_mailbox_3(void)
e3726fcf 2501{
c553b3ca 2502 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
3df57bcf 2503 return false;
e3726fcf
LW
2504}
2505
3df57bcf 2506static bool read_mailbox_4(void)
e3726fcf 2507{
3df57bcf
MN
2508 u8 header;
2509 bool do_complete = true;
2510
2511 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2512 switch (header) {
2513 case MB4H_MEM_ST:
2514 case MB4H_HOTDOG:
2515 case MB4H_HOTMON:
2516 case MB4H_HOT_PERIOD:
a592c2e2
MN
2517 case MB4H_A9WDOG_CONF:
2518 case MB4H_A9WDOG_EN:
2519 case MB4H_A9WDOG_DIS:
2520 case MB4H_A9WDOG_LOAD:
2521 case MB4H_A9WDOG_KICK:
3df57bcf
MN
2522 break;
2523 default:
2524 print_unknown_header_warning(4, header);
2525 do_complete = false;
2526 break;
2527 }
2528
c553b3ca 2529 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2530
2531 if (do_complete)
2532 complete(&mb4_transfer.work);
2533
2534 return false;
e3726fcf
LW
2535}
2536
3df57bcf 2537static bool read_mailbox_5(void)
e3726fcf 2538{
3df57bcf
MN
2539 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2540 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
c553b3ca 2541 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
e3726fcf 2542 complete(&mb5_transfer.work);
3df57bcf 2543 return false;
e3726fcf
LW
2544}
2545
3df57bcf 2546static bool read_mailbox_6(void)
e3726fcf 2547{
c553b3ca 2548 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
3df57bcf 2549 return false;
e3726fcf
LW
2550}
2551
3df57bcf 2552static bool read_mailbox_7(void)
e3726fcf 2553{
c553b3ca 2554 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
3df57bcf 2555 return false;
e3726fcf
LW
2556}
2557
3df57bcf 2558static bool (* const read_mailbox[NUM_MB])(void) = {
e3726fcf
LW
2559 read_mailbox_0,
2560 read_mailbox_1,
2561 read_mailbox_2,
2562 read_mailbox_3,
2563 read_mailbox_4,
2564 read_mailbox_5,
2565 read_mailbox_6,
2566 read_mailbox_7
2567};
2568
2569static irqreturn_t prcmu_irq_handler(int irq, void *data)
2570{
2571 u32 bits;
2572 u8 n;
3df57bcf 2573 irqreturn_t r;
e3726fcf 2574
c553b3ca 2575 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
e3726fcf
LW
2576 if (unlikely(!bits))
2577 return IRQ_NONE;
2578
3df57bcf 2579 r = IRQ_HANDLED;
e3726fcf
LW
2580 for (n = 0; bits; n++) {
2581 if (bits & MBOX_BIT(n)) {
2582 bits -= MBOX_BIT(n);
3df57bcf
MN
2583 if (read_mailbox[n]())
2584 r = IRQ_WAKE_THREAD;
e3726fcf
LW
2585 }
2586 }
3df57bcf
MN
2587 return r;
2588}
2589
2590static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2591{
2592 ack_dbb_wakeup();
e3726fcf
LW
2593 return IRQ_HANDLED;
2594}
2595
3df57bcf
MN
2596static void prcmu_mask_work(struct work_struct *work)
2597{
2598 unsigned long flags;
2599
2600 spin_lock_irqsave(&mb0_transfer.lock, flags);
2601
2602 config_wakeups();
2603
2604 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2605}
2606
2607static void prcmu_irq_mask(struct irq_data *d)
2608{
2609 unsigned long flags;
2610
2611 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2612
2613 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2614
2615 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2616
2617 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2618 schedule_work(&mb0_transfer.mask_work);
2619}
2620
2621static void prcmu_irq_unmask(struct irq_data *d)
2622{
2623 unsigned long flags;
2624
2625 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2626
2627 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2628
2629 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2630
2631 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2632 schedule_work(&mb0_transfer.mask_work);
2633}
2634
2635static void noop(struct irq_data *d)
2636{
2637}
2638
2639static struct irq_chip prcmu_irq_chip = {
2640 .name = "prcmu",
2641 .irq_disable = prcmu_irq_mask,
2642 .irq_ack = noop,
2643 .irq_mask = prcmu_irq_mask,
2644 .irq_unmask = prcmu_irq_unmask,
2645};
2646
b58d12fe
MN
2647static char *fw_project_name(u8 project)
2648{
2649 switch (project) {
2650 case PRCMU_FW_PROJECT_U8500:
2651 return "U8500";
2652 case PRCMU_FW_PROJECT_U8500_C2:
2653 return "U8500 C2";
2654 case PRCMU_FW_PROJECT_U9500:
2655 return "U9500";
2656 case PRCMU_FW_PROJECT_U9500_C2:
2657 return "U9500 C2";
2658 default:
2659 return "Unknown";
2660 }
2661}
2662
73180f85 2663void __init db8500_prcmu_early_init(void)
fcbd458e 2664{
3df57bcf 2665 unsigned int i;
3e2762c8 2666 if (cpu_is_u8500v2()) {
3df57bcf
MN
2667 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2668
2669 if (tcpm_base != NULL) {
3e2762c8 2670 u32 version;
3df57bcf 2671 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
b58d12fe
MN
2672 fw_info.version.project = version & 0xFF;
2673 fw_info.version.api_version = (version >> 8) & 0xFF;
2674 fw_info.version.func_version = (version >> 16) & 0xFF;
2675 fw_info.version.errata = (version >> 24) & 0xFF;
2676 fw_info.valid = true;
2677 pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2678 fw_project_name(fw_info.version.project),
3df57bcf
MN
2679 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2680 (version >> 24) & 0xFF);
2681 iounmap(tcpm_base);
2682 }
2683
fcbd458e
MW
2684 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2685 } else {
2686 pr_err("prcmu: Unsupported chip version\n");
2687 BUG();
2688 }
e0befb23 2689
3df57bcf
MN
2690 spin_lock_init(&mb0_transfer.lock);
2691 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2692 mutex_init(&mb0_transfer.ac_wake_lock);
2693 init_completion(&mb0_transfer.ac_wake_work);
e0befb23
MP
2694 mutex_init(&mb1_transfer.lock);
2695 init_completion(&mb1_transfer.work);
4d64d2e3 2696 mb1_transfer.ape_opp = APE_NO_CHANGE;
3df57bcf
MN
2697 mutex_init(&mb2_transfer.lock);
2698 init_completion(&mb2_transfer.work);
2699 spin_lock_init(&mb2_transfer.auto_pm_lock);
2700 spin_lock_init(&mb3_transfer.lock);
2701 mutex_init(&mb3_transfer.sysclk_lock);
2702 init_completion(&mb3_transfer.sysclk_work);
2703 mutex_init(&mb4_transfer.lock);
2704 init_completion(&mb4_transfer.work);
e3726fcf
LW
2705 mutex_init(&mb5_transfer.lock);
2706 init_completion(&mb5_transfer.work);
2707
3df57bcf
MN
2708 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2709
2710 /* Initalize irqs. */
2711 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2712 unsigned int irq;
2713
2714 irq = IRQ_PRCMU_BASE + i;
2715 irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2716 handle_simple_irq);
2717 set_irq_flags(irq, IRQF_VALID);
2718 }
2719}
2720
0508901c 2721static void __init init_prcm_registers(void)
d65e12d7
MN
2722{
2723 u32 val;
2724
2725 val = readl(PRCM_A9PL_FORCE_CLKEN);
2726 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2727 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2728 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2729}
2730
1032fbfd
BJ
2731/*
2732 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2733 */
2734static struct regulator_consumer_supply db8500_vape_consumers[] = {
2735 REGULATOR_SUPPLY("v-ape", NULL),
2736 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2737 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2738 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2739 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2740 /* "v-mmc" changed to "vcore" in the mainline kernel */
2741 REGULATOR_SUPPLY("vcore", "sdi0"),
2742 REGULATOR_SUPPLY("vcore", "sdi1"),
2743 REGULATOR_SUPPLY("vcore", "sdi2"),
2744 REGULATOR_SUPPLY("vcore", "sdi3"),
2745 REGULATOR_SUPPLY("vcore", "sdi4"),
2746 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2747 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2748 /* "v-uart" changed to "vcore" in the mainline kernel */
2749 REGULATOR_SUPPLY("vcore", "uart0"),
2750 REGULATOR_SUPPLY("vcore", "uart1"),
2751 REGULATOR_SUPPLY("vcore", "uart2"),
2752 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
992b133a 2753 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
1032fbfd
BJ
2754};
2755
2756static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1032fbfd
BJ
2757 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2758 /* AV8100 regulator */
2759 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2760};
2761
2762static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
992b133a 2763 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
624e87c2
BJ
2764 REGULATOR_SUPPLY("vsupply", "mcde"),
2765};
2766
2767/* SVA MMDSP regulator switch */
2768static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2769 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2770};
2771
2772/* SVA pipe regulator switch */
2773static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2774 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2775};
2776
2777/* SIA MMDSP regulator switch */
2778static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2779 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2780};
2781
2782/* SIA pipe regulator switch */
2783static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2784 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2785};
2786
2787static struct regulator_consumer_supply db8500_sga_consumers[] = {
2788 REGULATOR_SUPPLY("v-mali", NULL),
2789};
2790
2791/* ESRAM1 and 2 regulator switch */
2792static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2793 REGULATOR_SUPPLY("esram12", "cm_control"),
2794};
2795
2796/* ESRAM3 and 4 regulator switch */
2797static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2798 REGULATOR_SUPPLY("v-esram34", "mcde"),
2799 REGULATOR_SUPPLY("esram34", "cm_control"),
992b133a 2800 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
1032fbfd
BJ
2801};
2802
2803static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2804 [DB8500_REGULATOR_VAPE] = {
2805 .constraints = {
2806 .name = "db8500-vape",
2807 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2808 },
2809 .consumer_supplies = db8500_vape_consumers,
2810 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2811 },
2812 [DB8500_REGULATOR_VARM] = {
2813 .constraints = {
2814 .name = "db8500-varm",
2815 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2816 },
2817 },
2818 [DB8500_REGULATOR_VMODEM] = {
2819 .constraints = {
2820 .name = "db8500-vmodem",
2821 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2822 },
2823 },
2824 [DB8500_REGULATOR_VPLL] = {
2825 .constraints = {
2826 .name = "db8500-vpll",
2827 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2828 },
2829 },
2830 [DB8500_REGULATOR_VSMPS1] = {
2831 .constraints = {
2832 .name = "db8500-vsmps1",
2833 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2834 },
2835 },
2836 [DB8500_REGULATOR_VSMPS2] = {
2837 .constraints = {
2838 .name = "db8500-vsmps2",
2839 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2840 },
2841 .consumer_supplies = db8500_vsmps2_consumers,
2842 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2843 },
2844 [DB8500_REGULATOR_VSMPS3] = {
2845 .constraints = {
2846 .name = "db8500-vsmps3",
2847 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2848 },
2849 },
2850 [DB8500_REGULATOR_VRF1] = {
2851 .constraints = {
2852 .name = "db8500-vrf1",
2853 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2854 },
2855 },
2856 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
992b133a 2857 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2858 .constraints = {
2859 .name = "db8500-sva-mmdsp",
2860 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2861 },
624e87c2
BJ
2862 .consumer_supplies = db8500_svammdsp_consumers,
2863 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
1032fbfd
BJ
2864 },
2865 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2866 .constraints = {
2867 /* "ret" means "retention" */
2868 .name = "db8500-sva-mmdsp-ret",
2869 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2870 },
2871 },
2872 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
992b133a 2873 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2874 .constraints = {
2875 .name = "db8500-sva-pipe",
2876 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2877 },
624e87c2
BJ
2878 .consumer_supplies = db8500_svapipe_consumers,
2879 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
1032fbfd
BJ
2880 },
2881 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
992b133a 2882 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2883 .constraints = {
2884 .name = "db8500-sia-mmdsp",
2885 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2886 },
624e87c2
BJ
2887 .consumer_supplies = db8500_siammdsp_consumers,
2888 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
1032fbfd
BJ
2889 },
2890 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2891 .constraints = {
2892 .name = "db8500-sia-mmdsp-ret",
2893 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2894 },
2895 },
2896 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
992b133a 2897 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2898 .constraints = {
2899 .name = "db8500-sia-pipe",
2900 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2901 },
624e87c2
BJ
2902 .consumer_supplies = db8500_siapipe_consumers,
2903 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
1032fbfd
BJ
2904 },
2905 [DB8500_REGULATOR_SWITCH_SGA] = {
2906 .supply_regulator = "db8500-vape",
2907 .constraints = {
2908 .name = "db8500-sga",
2909 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2910 },
624e87c2
BJ
2911 .consumer_supplies = db8500_sga_consumers,
2912 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2913
1032fbfd
BJ
2914 },
2915 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2916 .supply_regulator = "db8500-vape",
2917 .constraints = {
2918 .name = "db8500-b2r2-mcde",
2919 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920 },
2921 .consumer_supplies = db8500_b2r2_mcde_consumers,
2922 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2923 },
2924 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
992b133a
BJ
2925 /*
2926 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2927 * no need to hold Vape
2928 */
1032fbfd
BJ
2929 .constraints = {
2930 .name = "db8500-esram12",
2931 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2932 },
624e87c2
BJ
2933 .consumer_supplies = db8500_esram12_consumers,
2934 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
1032fbfd
BJ
2935 },
2936 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2937 .constraints = {
2938 .name = "db8500-esram12-ret",
2939 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2940 },
2941 },
2942 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
992b133a
BJ
2943 /*
2944 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2945 * no need to hold Vape
2946 */
1032fbfd
BJ
2947 .constraints = {
2948 .name = "db8500-esram34",
2949 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2950 },
624e87c2
BJ
2951 .consumer_supplies = db8500_esram34_consumers,
2952 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
1032fbfd
BJ
2953 },
2954 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2955 .constraints = {
2956 .name = "db8500-esram34-ret",
2957 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2958 },
2959 },
2960};
2961
3df57bcf
MN
2962static struct mfd_cell db8500_prcmu_devs[] = {
2963 {
2964 .name = "db8500-prcmu-regulators",
1ed7891f
MW
2965 .platform_data = &db8500_regulators,
2966 .pdata_size = sizeof(db8500_regulators),
3df57bcf
MN
2967 },
2968 {
2969 .name = "cpufreq-u8500",
2970 },
2971};
2972
2973/**
2974 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2975 *
2976 */
2977static int __init db8500_prcmu_probe(struct platform_device *pdev)
2978{
2979 int err = 0;
2980
2981 if (ux500_is_svp())
2982 return -ENODEV;
2983
0508901c 2984 init_prcm_registers();
d65e12d7 2985
e3726fcf 2986 /* Clean up the mailbox interrupts after pre-kernel code. */
c553b3ca 2987 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3df57bcf
MN
2988
2989 err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
2990 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2991 if (err < 0) {
2992 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2993 err = -EBUSY;
2994 goto no_irq_return;
2995 }
2996
2997 if (cpu_is_u8500v20_or_later())
2998 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
2999
3000 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3001 ARRAY_SIZE(db8500_prcmu_devs), NULL,
3002 0);
e3726fcf 3003
3df57bcf
MN
3004 if (err)
3005 pr_err("prcmu: Failed to add subdevices\n");
3006 else
3007 pr_info("DB8500 PRCMU initialized\n");
3008
3009no_irq_return:
3010 return err;
3011}
3012
3013static struct platform_driver db8500_prcmu_driver = {
3014 .driver = {
3015 .name = "db8500-prcmu",
3016 .owner = THIS_MODULE,
3017 },
3018};
3019
3020static int __init db8500_prcmu_init(void)
3021{
3022 return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
e3726fcf
LW
3023}
3024
3df57bcf
MN
3025arch_initcall(db8500_prcmu_init);
3026
3027MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3028MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3029MODULE_LICENSE("GPL v2");