[PATCH] md: Improve comments about locking situation in raid5 make_request
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 *
6 * RAID-5 management functions.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * You should have received a copy of the GNU General Public License
14 * (for example /usr/src/linux/COPYING); if not, write to the Free
15 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
16 */
17
18
19#include <linux/config.h>
20#include <linux/module.h>
21#include <linux/slab.h>
22#include <linux/raid/raid5.h>
23#include <linux/highmem.h>
24#include <linux/bitops.h>
f6705578 25#include <linux/kthread.h>
1da177e4
LT
26#include <asm/atomic.h>
27
72626685
N
28#include <linux/raid/bitmap.h>
29
1da177e4
LT
30/*
31 * Stripe cache
32 */
33
34#define NR_STRIPES 256
35#define STRIPE_SIZE PAGE_SIZE
36#define STRIPE_SHIFT (PAGE_SHIFT - 9)
37#define STRIPE_SECTORS (STRIPE_SIZE>>9)
38#define IO_THRESHOLD 1
fccddba0 39#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
40#define HASH_MASK (NR_HASH - 1)
41
fccddba0 42#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
43
44/* bio's attached to a stripe+device for I/O are linked together in bi_sector
45 * order without overlap. There may be several bio's per stripe+device, and
46 * a bio could span several devices.
47 * When walking this list for a particular stripe+device, we must never proceed
48 * beyond a bio that extends past this device, as the next bio might no longer
49 * be valid.
50 * This macro is used to determine the 'next' bio in the list, given the sector
51 * of the current stripe+device
52 */
53#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
54/*
55 * The following can be used to debug the driver
56 */
57#define RAID5_DEBUG 0
58#define RAID5_PARANOIA 1
59#if RAID5_PARANOIA && defined(CONFIG_SMP)
60# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
61#else
62# define CHECK_DEVLOCK()
63#endif
64
65#define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
66#if RAID5_DEBUG
67#define inline
68#define __inline__
69#endif
70
71static void print_raid5_conf (raid5_conf_t *conf);
72
858119e1 73static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
74{
75 if (atomic_dec_and_test(&sh->count)) {
76 if (!list_empty(&sh->lru))
77 BUG();
78 if (atomic_read(&conf->active_stripes)==0)
79 BUG();
80 if (test_bit(STRIPE_HANDLE, &sh->state)) {
81 if (test_bit(STRIPE_DELAYED, &sh->state))
82 list_add_tail(&sh->lru, &conf->delayed_list);
72626685
N
83 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
84 conf->seq_write == sh->bm_seq)
85 list_add_tail(&sh->lru, &conf->bitmap_list);
86 else {
87 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 88 list_add_tail(&sh->lru, &conf->handle_list);
72626685 89 }
1da177e4
LT
90 md_wakeup_thread(conf->mddev->thread);
91 } else {
92 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
93 atomic_dec(&conf->preread_active_stripes);
94 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
95 md_wakeup_thread(conf->mddev->thread);
96 }
1da177e4 97 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
98 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
99 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 100 wake_up(&conf->wait_for_stripe);
ccfcc3c1 101 }
1da177e4
LT
102 }
103 }
104}
105static void release_stripe(struct stripe_head *sh)
106{
107 raid5_conf_t *conf = sh->raid_conf;
108 unsigned long flags;
109
110 spin_lock_irqsave(&conf->device_lock, flags);
111 __release_stripe(conf, sh);
112 spin_unlock_irqrestore(&conf->device_lock, flags);
113}
114
fccddba0 115static inline void remove_hash(struct stripe_head *sh)
1da177e4
LT
116{
117 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
118
fccddba0 119 hlist_del_init(&sh->hash);
1da177e4
LT
120}
121
858119e1 122static void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 123{
fccddba0 124 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4
LT
125
126 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
127
128 CHECK_DEVLOCK();
fccddba0 129 hlist_add_head(&sh->hash, hp);
1da177e4
LT
130}
131
132
133/* find an idle stripe, make sure it is unhashed, and return it. */
134static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
135{
136 struct stripe_head *sh = NULL;
137 struct list_head *first;
138
139 CHECK_DEVLOCK();
140 if (list_empty(&conf->inactive_list))
141 goto out;
142 first = conf->inactive_list.next;
143 sh = list_entry(first, struct stripe_head, lru);
144 list_del_init(first);
145 remove_hash(sh);
146 atomic_inc(&conf->active_stripes);
147out:
148 return sh;
149}
150
151static void shrink_buffers(struct stripe_head *sh, int num)
152{
153 struct page *p;
154 int i;
155
156 for (i=0; i<num ; i++) {
157 p = sh->dev[i].page;
158 if (!p)
159 continue;
160 sh->dev[i].page = NULL;
2d1f3b5d 161 put_page(p);
1da177e4
LT
162 }
163}
164
165static int grow_buffers(struct stripe_head *sh, int num)
166{
167 int i;
168
169 for (i=0; i<num; i++) {
170 struct page *page;
171
172 if (!(page = alloc_page(GFP_KERNEL))) {
173 return 1;
174 }
175 sh->dev[i].page = page;
176 }
177 return 0;
178}
179
180static void raid5_build_block (struct stripe_head *sh, int i);
181
7ecaa1e6 182static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
1da177e4
LT
183{
184 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 185 int i;
1da177e4
LT
186
187 if (atomic_read(&sh->count) != 0)
188 BUG();
189 if (test_bit(STRIPE_HANDLE, &sh->state))
190 BUG();
191
192 CHECK_DEVLOCK();
193 PRINTK("init_stripe called, stripe %llu\n",
194 (unsigned long long)sh->sector);
195
196 remove_hash(sh);
197
198 sh->sector = sector;
199 sh->pd_idx = pd_idx;
200 sh->state = 0;
201
7ecaa1e6
N
202 sh->disks = disks;
203
204 for (i = sh->disks; i--; ) {
1da177e4
LT
205 struct r5dev *dev = &sh->dev[i];
206
207 if (dev->toread || dev->towrite || dev->written ||
208 test_bit(R5_LOCKED, &dev->flags)) {
209 printk("sector=%llx i=%d %p %p %p %d\n",
210 (unsigned long long)sh->sector, i, dev->toread,
211 dev->towrite, dev->written,
212 test_bit(R5_LOCKED, &dev->flags));
213 BUG();
214 }
215 dev->flags = 0;
216 raid5_build_block(sh, i);
217 }
218 insert_hash(conf, sh);
219}
220
7ecaa1e6 221static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
1da177e4
LT
222{
223 struct stripe_head *sh;
fccddba0 224 struct hlist_node *hn;
1da177e4
LT
225
226 CHECK_DEVLOCK();
227 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 228 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
7ecaa1e6 229 if (sh->sector == sector && sh->disks == disks)
1da177e4
LT
230 return sh;
231 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
232 return NULL;
233}
234
235static void unplug_slaves(mddev_t *mddev);
236static void raid5_unplug_device(request_queue_t *q);
237
7ecaa1e6
N
238static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
239 int pd_idx, int noblock)
1da177e4
LT
240{
241 struct stripe_head *sh;
242
243 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
244
245 spin_lock_irq(&conf->device_lock);
246
247 do {
72626685
N
248 wait_event_lock_irq(conf->wait_for_stripe,
249 conf->quiesce == 0,
250 conf->device_lock, /* nothing */);
7ecaa1e6 251 sh = __find_stripe(conf, sector, disks);
1da177e4
LT
252 if (!sh) {
253 if (!conf->inactive_blocked)
254 sh = get_free_stripe(conf);
255 if (noblock && sh == NULL)
256 break;
257 if (!sh) {
258 conf->inactive_blocked = 1;
259 wait_event_lock_irq(conf->wait_for_stripe,
260 !list_empty(&conf->inactive_list) &&
5036805b
N
261 (atomic_read(&conf->active_stripes)
262 < (conf->max_nr_stripes *3/4)
1da177e4
LT
263 || !conf->inactive_blocked),
264 conf->device_lock,
265 unplug_slaves(conf->mddev);
266 );
267 conf->inactive_blocked = 0;
268 } else
7ecaa1e6 269 init_stripe(sh, sector, pd_idx, disks);
1da177e4
LT
270 } else {
271 if (atomic_read(&sh->count)) {
272 if (!list_empty(&sh->lru))
273 BUG();
274 } else {
275 if (!test_bit(STRIPE_HANDLE, &sh->state))
276 atomic_inc(&conf->active_stripes);
ccfcc3c1
N
277 if (!list_empty(&sh->lru))
278 list_del_init(&sh->lru);
1da177e4
LT
279 }
280 }
281 } while (sh == NULL);
282
283 if (sh)
284 atomic_inc(&sh->count);
285
286 spin_unlock_irq(&conf->device_lock);
287 return sh;
288}
289
3f294f4f 290static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
291{
292 struct stripe_head *sh;
3f294f4f
N
293 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
294 if (!sh)
295 return 0;
296 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
297 sh->raid_conf = conf;
298 spin_lock_init(&sh->lock);
299
300 if (grow_buffers(sh, conf->raid_disks)) {
301 shrink_buffers(sh, conf->raid_disks);
302 kmem_cache_free(conf->slab_cache, sh);
303 return 0;
304 }
7ecaa1e6 305 sh->disks = conf->raid_disks;
3f294f4f
N
306 /* we just created an active stripe so... */
307 atomic_set(&sh->count, 1);
308 atomic_inc(&conf->active_stripes);
309 INIT_LIST_HEAD(&sh->lru);
310 release_stripe(sh);
311 return 1;
312}
313
314static int grow_stripes(raid5_conf_t *conf, int num)
315{
1da177e4
LT
316 kmem_cache_t *sc;
317 int devs = conf->raid_disks;
318
ad01c9e3
N
319 sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
320 sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
321 conf->active_name = 0;
322 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4
LT
323 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
324 0, 0, NULL, NULL);
325 if (!sc)
326 return 1;
327 conf->slab_cache = sc;
ad01c9e3 328 conf->pool_size = devs;
1da177e4 329 while (num--) {
3f294f4f 330 if (!grow_one_stripe(conf))
1da177e4 331 return 1;
1da177e4
LT
332 }
333 return 0;
334}
29269553
N
335
336#ifdef CONFIG_MD_RAID5_RESHAPE
ad01c9e3
N
337static int resize_stripes(raid5_conf_t *conf, int newsize)
338{
339 /* Make all the stripes able to hold 'newsize' devices.
340 * New slots in each stripe get 'page' set to a new page.
341 *
342 * This happens in stages:
343 * 1/ create a new kmem_cache and allocate the required number of
344 * stripe_heads.
345 * 2/ gather all the old stripe_heads and tranfer the pages across
346 * to the new stripe_heads. This will have the side effect of
347 * freezing the array as once all stripe_heads have been collected,
348 * no IO will be possible. Old stripe heads are freed once their
349 * pages have been transferred over, and the old kmem_cache is
350 * freed when all stripes are done.
351 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
352 * we simple return a failre status - no need to clean anything up.
353 * 4/ allocate new pages for the new slots in the new stripe_heads.
354 * If this fails, we don't bother trying the shrink the
355 * stripe_heads down again, we just leave them as they are.
356 * As each stripe_head is processed the new one is released into
357 * active service.
358 *
359 * Once step2 is started, we cannot afford to wait for a write,
360 * so we use GFP_NOIO allocations.
361 */
362 struct stripe_head *osh, *nsh;
363 LIST_HEAD(newstripes);
364 struct disk_info *ndisks;
365 int err = 0;
366 kmem_cache_t *sc;
367 int i;
368
369 if (newsize <= conf->pool_size)
370 return 0; /* never bother to shrink */
371
372 /* Step 1 */
373 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
374 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
375 0, 0, NULL, NULL);
376 if (!sc)
377 return -ENOMEM;
378
379 for (i = conf->max_nr_stripes; i; i--) {
380 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
381 if (!nsh)
382 break;
383
384 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
385
386 nsh->raid_conf = conf;
387 spin_lock_init(&nsh->lock);
388
389 list_add(&nsh->lru, &newstripes);
390 }
391 if (i) {
392 /* didn't get enough, give up */
393 while (!list_empty(&newstripes)) {
394 nsh = list_entry(newstripes.next, struct stripe_head, lru);
395 list_del(&nsh->lru);
396 kmem_cache_free(sc, nsh);
397 }
398 kmem_cache_destroy(sc);
399 return -ENOMEM;
400 }
401 /* Step 2 - Must use GFP_NOIO now.
402 * OK, we have enough stripes, start collecting inactive
403 * stripes and copying them over
404 */
405 list_for_each_entry(nsh, &newstripes, lru) {
406 spin_lock_irq(&conf->device_lock);
407 wait_event_lock_irq(conf->wait_for_stripe,
408 !list_empty(&conf->inactive_list),
409 conf->device_lock,
410 unplug_slaves(conf->mddev);
411 );
412 osh = get_free_stripe(conf);
413 spin_unlock_irq(&conf->device_lock);
414 atomic_set(&nsh->count, 1);
415 for(i=0; i<conf->pool_size; i++)
416 nsh->dev[i].page = osh->dev[i].page;
417 for( ; i<newsize; i++)
418 nsh->dev[i].page = NULL;
419 kmem_cache_free(conf->slab_cache, osh);
420 }
421 kmem_cache_destroy(conf->slab_cache);
422
423 /* Step 3.
424 * At this point, we are holding all the stripes so the array
425 * is completely stalled, so now is a good time to resize
426 * conf->disks.
427 */
428 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
429 if (ndisks) {
430 for (i=0; i<conf->raid_disks; i++)
431 ndisks[i] = conf->disks[i];
432 kfree(conf->disks);
433 conf->disks = ndisks;
434 } else
435 err = -ENOMEM;
436
437 /* Step 4, return new stripes to service */
438 while(!list_empty(&newstripes)) {
439 nsh = list_entry(newstripes.next, struct stripe_head, lru);
440 list_del_init(&nsh->lru);
441 for (i=conf->raid_disks; i < newsize; i++)
442 if (nsh->dev[i].page == NULL) {
443 struct page *p = alloc_page(GFP_NOIO);
444 nsh->dev[i].page = p;
445 if (!p)
446 err = -ENOMEM;
447 }
448 release_stripe(nsh);
449 }
450 /* critical section pass, GFP_NOIO no longer needed */
451
452 conf->slab_cache = sc;
453 conf->active_name = 1-conf->active_name;
454 conf->pool_size = newsize;
455 return err;
456}
29269553 457#endif
1da177e4 458
3f294f4f 459static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
460{
461 struct stripe_head *sh;
462
3f294f4f
N
463 spin_lock_irq(&conf->device_lock);
464 sh = get_free_stripe(conf);
465 spin_unlock_irq(&conf->device_lock);
466 if (!sh)
467 return 0;
468 if (atomic_read(&sh->count))
469 BUG();
ad01c9e3 470 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
471 kmem_cache_free(conf->slab_cache, sh);
472 atomic_dec(&conf->active_stripes);
473 return 1;
474}
475
476static void shrink_stripes(raid5_conf_t *conf)
477{
478 while (drop_one_stripe(conf))
479 ;
480
29fc7e3e
N
481 if (conf->slab_cache)
482 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
483 conf->slab_cache = NULL;
484}
485
4e5314b5 486static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
1da177e4
LT
487 int error)
488{
489 struct stripe_head *sh = bi->bi_private;
490 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 491 int disks = sh->disks, i;
1da177e4
LT
492 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
493
494 if (bi->bi_size)
495 return 1;
496
497 for (i=0 ; i<disks; i++)
498 if (bi == &sh->dev[i].req)
499 break;
500
501 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
502 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
503 uptodate);
504 if (i == disks) {
505 BUG();
506 return 0;
507 }
508
509 if (uptodate) {
510#if 0
511 struct bio *bio;
512 unsigned long flags;
513 spin_lock_irqsave(&conf->device_lock, flags);
514 /* we can return a buffer if we bypassed the cache or
515 * if the top buffer is not in highmem. If there are
516 * multiple buffers, leave the extra work to
517 * handle_stripe
518 */
519 buffer = sh->bh_read[i];
520 if (buffer &&
521 (!PageHighMem(buffer->b_page)
522 || buffer->b_page == bh->b_page )
523 ) {
524 sh->bh_read[i] = buffer->b_reqnext;
525 buffer->b_reqnext = NULL;
526 } else
527 buffer = NULL;
528 spin_unlock_irqrestore(&conf->device_lock, flags);
529 if (sh->bh_page[i]==bh->b_page)
530 set_buffer_uptodate(bh);
531 if (buffer) {
532 if (buffer->b_page != bh->b_page)
533 memcpy(buffer->b_data, bh->b_data, bh->b_size);
534 buffer->b_end_io(buffer, 1);
535 }
536#else
537 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5
N
538#endif
539 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14f8d26b 540 printk(KERN_INFO "raid5: read error corrected!!\n");
4e5314b5
N
541 clear_bit(R5_ReadError, &sh->dev[i].flags);
542 clear_bit(R5_ReWrite, &sh->dev[i].flags);
543 }
ba22dcbf
N
544 if (atomic_read(&conf->disks[i].rdev->read_errors))
545 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 546 } else {
ba22dcbf 547 int retry = 0;
1da177e4 548 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
ba22dcbf
N
549 atomic_inc(&conf->disks[i].rdev->read_errors);
550 if (conf->mddev->degraded)
14f8d26b 551 printk(KERN_WARNING "raid5: read error not correctable.\n");
ba22dcbf 552 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 553 /* Oh, no!!! */
14f8d26b 554 printk(KERN_WARNING "raid5: read error NOT corrected!!\n");
ba22dcbf
N
555 else if (atomic_read(&conf->disks[i].rdev->read_errors)
556 > conf->max_nr_stripes)
14f8d26b
N
557 printk(KERN_WARNING
558 "raid5: Too many read errors, failing device.\n");
ba22dcbf
N
559 else
560 retry = 1;
561 if (retry)
562 set_bit(R5_ReadError, &sh->dev[i].flags);
563 else {
4e5314b5
N
564 clear_bit(R5_ReadError, &sh->dev[i].flags);
565 clear_bit(R5_ReWrite, &sh->dev[i].flags);
566 md_error(conf->mddev, conf->disks[i].rdev);
ba22dcbf 567 }
1da177e4
LT
568 }
569 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
570#if 0
571 /* must restore b_page before unlocking buffer... */
572 if (sh->bh_page[i] != bh->b_page) {
573 bh->b_page = sh->bh_page[i];
574 bh->b_data = page_address(bh->b_page);
575 clear_buffer_uptodate(bh);
576 }
577#endif
578 clear_bit(R5_LOCKED, &sh->dev[i].flags);
579 set_bit(STRIPE_HANDLE, &sh->state);
580 release_stripe(sh);
581 return 0;
582}
583
584static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
585 int error)
586{
587 struct stripe_head *sh = bi->bi_private;
588 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 589 int disks = sh->disks, i;
1da177e4
LT
590 unsigned long flags;
591 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
592
593 if (bi->bi_size)
594 return 1;
595
596 for (i=0 ; i<disks; i++)
597 if (bi == &sh->dev[i].req)
598 break;
599
600 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
601 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
602 uptodate);
603 if (i == disks) {
604 BUG();
605 return 0;
606 }
607
608 spin_lock_irqsave(&conf->device_lock, flags);
609 if (!uptodate)
610 md_error(conf->mddev, conf->disks[i].rdev);
611
612 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
613
614 clear_bit(R5_LOCKED, &sh->dev[i].flags);
615 set_bit(STRIPE_HANDLE, &sh->state);
616 __release_stripe(conf, sh);
617 spin_unlock_irqrestore(&conf->device_lock, flags);
618 return 0;
619}
620
621
622static sector_t compute_blocknr(struct stripe_head *sh, int i);
623
624static void raid5_build_block (struct stripe_head *sh, int i)
625{
626 struct r5dev *dev = &sh->dev[i];
627
628 bio_init(&dev->req);
629 dev->req.bi_io_vec = &dev->vec;
630 dev->req.bi_vcnt++;
631 dev->req.bi_max_vecs++;
632 dev->vec.bv_page = dev->page;
633 dev->vec.bv_len = STRIPE_SIZE;
634 dev->vec.bv_offset = 0;
635
636 dev->req.bi_sector = sh->sector;
637 dev->req.bi_private = sh;
638
639 dev->flags = 0;
640 if (i != sh->pd_idx)
641 dev->sector = compute_blocknr(sh, i);
642}
643
644static void error(mddev_t *mddev, mdk_rdev_t *rdev)
645{
646 char b[BDEVNAME_SIZE];
647 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
648 PRINTK("raid5: error called\n");
649
b2d444d7 650 if (!test_bit(Faulty, &rdev->flags)) {
1da177e4 651 mddev->sb_dirty = 1;
b2d444d7 652 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
653 conf->working_disks--;
654 mddev->degraded++;
655 conf->failed_disks++;
b2d444d7 656 clear_bit(In_sync, &rdev->flags);
1da177e4
LT
657 /*
658 * if recovery was running, make sure it aborts.
659 */
660 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
661 }
b2d444d7 662 set_bit(Faulty, &rdev->flags);
1da177e4
LT
663 printk (KERN_ALERT
664 "raid5: Disk failure on %s, disabling device."
665 " Operation continuing on %d devices\n",
666 bdevname(rdev->bdev,b), conf->working_disks);
667 }
668}
669
670/*
671 * Input: a 'big' sector number,
672 * Output: index of the data and parity disk, and the sector # in them.
673 */
674static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
675 unsigned int data_disks, unsigned int * dd_idx,
676 unsigned int * pd_idx, raid5_conf_t *conf)
677{
678 long stripe;
679 unsigned long chunk_number;
680 unsigned int chunk_offset;
681 sector_t new_sector;
682 int sectors_per_chunk = conf->chunk_size >> 9;
683
684 /* First compute the information on this sector */
685
686 /*
687 * Compute the chunk number and the sector offset inside the chunk
688 */
689 chunk_offset = sector_div(r_sector, sectors_per_chunk);
690 chunk_number = r_sector;
691 BUG_ON(r_sector != chunk_number);
692
693 /*
694 * Compute the stripe number
695 */
696 stripe = chunk_number / data_disks;
697
698 /*
699 * Compute the data disk and parity disk indexes inside the stripe
700 */
701 *dd_idx = chunk_number % data_disks;
702
703 /*
704 * Select the parity disk based on the user selected algorithm.
705 */
706 if (conf->level == 4)
707 *pd_idx = data_disks;
708 else switch (conf->algorithm) {
709 case ALGORITHM_LEFT_ASYMMETRIC:
710 *pd_idx = data_disks - stripe % raid_disks;
711 if (*dd_idx >= *pd_idx)
712 (*dd_idx)++;
713 break;
714 case ALGORITHM_RIGHT_ASYMMETRIC:
715 *pd_idx = stripe % raid_disks;
716 if (*dd_idx >= *pd_idx)
717 (*dd_idx)++;
718 break;
719 case ALGORITHM_LEFT_SYMMETRIC:
720 *pd_idx = data_disks - stripe % raid_disks;
721 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
722 break;
723 case ALGORITHM_RIGHT_SYMMETRIC:
724 *pd_idx = stripe % raid_disks;
725 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
726 break;
727 default:
14f8d26b 728 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1da177e4
LT
729 conf->algorithm);
730 }
731
732 /*
733 * Finally, compute the new sector number
734 */
735 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
736 return new_sector;
737}
738
739
740static sector_t compute_blocknr(struct stripe_head *sh, int i)
741{
742 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 743 int raid_disks = sh->disks, data_disks = raid_disks - 1;
1da177e4
LT
744 sector_t new_sector = sh->sector, check;
745 int sectors_per_chunk = conf->chunk_size >> 9;
746 sector_t stripe;
747 int chunk_offset;
748 int chunk_number, dummy1, dummy2, dd_idx = i;
749 sector_t r_sector;
750
751 chunk_offset = sector_div(new_sector, sectors_per_chunk);
752 stripe = new_sector;
753 BUG_ON(new_sector != stripe);
754
755
756 switch (conf->algorithm) {
757 case ALGORITHM_LEFT_ASYMMETRIC:
758 case ALGORITHM_RIGHT_ASYMMETRIC:
759 if (i > sh->pd_idx)
760 i--;
761 break;
762 case ALGORITHM_LEFT_SYMMETRIC:
763 case ALGORITHM_RIGHT_SYMMETRIC:
764 if (i < sh->pd_idx)
765 i += raid_disks;
766 i -= (sh->pd_idx + 1);
767 break;
768 default:
14f8d26b 769 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1da177e4
LT
770 conf->algorithm);
771 }
772
773 chunk_number = stripe * data_disks + i;
774 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
775
776 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
777 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
14f8d26b 778 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
779 return 0;
780 }
781 return r_sector;
782}
783
784
785
786/*
787 * Copy data between a page in the stripe cache, and a bio.
788 * There are no alignment or size guarantees between the page or the
789 * bio except that there is some overlap.
790 * All iovecs in the bio must be considered.
791 */
792static void copy_data(int frombio, struct bio *bio,
793 struct page *page,
794 sector_t sector)
795{
796 char *pa = page_address(page);
797 struct bio_vec *bvl;
798 int i;
799 int page_offset;
800
801 if (bio->bi_sector >= sector)
802 page_offset = (signed)(bio->bi_sector - sector) * 512;
803 else
804 page_offset = (signed)(sector - bio->bi_sector) * -512;
805 bio_for_each_segment(bvl, bio, i) {
806 int len = bio_iovec_idx(bio,i)->bv_len;
807 int clen;
808 int b_offset = 0;
809
810 if (page_offset < 0) {
811 b_offset = -page_offset;
812 page_offset += b_offset;
813 len -= b_offset;
814 }
815
816 if (len > 0 && page_offset + len > STRIPE_SIZE)
817 clen = STRIPE_SIZE - page_offset;
818 else clen = len;
819
820 if (clen > 0) {
821 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
822 if (frombio)
823 memcpy(pa+page_offset, ba+b_offset, clen);
824 else
825 memcpy(ba+b_offset, pa+page_offset, clen);
826 __bio_kunmap_atomic(ba, KM_USER0);
827 }
828 if (clen < len) /* hit end of page */
829 break;
830 page_offset += len;
831 }
832}
833
834#define check_xor() do { \
835 if (count == MAX_XOR_BLOCKS) { \
836 xor_block(count, STRIPE_SIZE, ptr); \
837 count = 1; \
838 } \
839 } while(0)
840
841
842static void compute_block(struct stripe_head *sh, int dd_idx)
843{
7ecaa1e6 844 int i, count, disks = sh->disks;
1da177e4
LT
845 void *ptr[MAX_XOR_BLOCKS], *p;
846
847 PRINTK("compute_block, stripe %llu, idx %d\n",
848 (unsigned long long)sh->sector, dd_idx);
849
850 ptr[0] = page_address(sh->dev[dd_idx].page);
851 memset(ptr[0], 0, STRIPE_SIZE);
852 count = 1;
853 for (i = disks ; i--; ) {
854 if (i == dd_idx)
855 continue;
856 p = page_address(sh->dev[i].page);
857 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
858 ptr[count++] = p;
859 else
14f8d26b 860 printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
1da177e4
LT
861 " not present\n", dd_idx,
862 (unsigned long long)sh->sector, i);
863
864 check_xor();
865 }
866 if (count != 1)
867 xor_block(count, STRIPE_SIZE, ptr);
868 set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
869}
870
871static void compute_parity(struct stripe_head *sh, int method)
872{
873 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 874 int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
1da177e4
LT
875 void *ptr[MAX_XOR_BLOCKS];
876 struct bio *chosen;
877
878 PRINTK("compute_parity, stripe %llu, method %d\n",
879 (unsigned long long)sh->sector, method);
880
881 count = 1;
882 ptr[0] = page_address(sh->dev[pd_idx].page);
883 switch(method) {
884 case READ_MODIFY_WRITE:
885 if (!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags))
886 BUG();
887 for (i=disks ; i-- ;) {
888 if (i==pd_idx)
889 continue;
890 if (sh->dev[i].towrite &&
891 test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
892 ptr[count++] = page_address(sh->dev[i].page);
893 chosen = sh->dev[i].towrite;
894 sh->dev[i].towrite = NULL;
895
896 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
897 wake_up(&conf->wait_for_overlap);
898
899 if (sh->dev[i].written) BUG();
900 sh->dev[i].written = chosen;
901 check_xor();
902 }
903 }
904 break;
905 case RECONSTRUCT_WRITE:
906 memset(ptr[0], 0, STRIPE_SIZE);
907 for (i= disks; i-- ;)
908 if (i!=pd_idx && sh->dev[i].towrite) {
909 chosen = sh->dev[i].towrite;
910 sh->dev[i].towrite = NULL;
911
912 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
913 wake_up(&conf->wait_for_overlap);
914
915 if (sh->dev[i].written) BUG();
916 sh->dev[i].written = chosen;
917 }
918 break;
919 case CHECK_PARITY:
920 break;
921 }
922 if (count>1) {
923 xor_block(count, STRIPE_SIZE, ptr);
924 count = 1;
925 }
926
927 for (i = disks; i--;)
928 if (sh->dev[i].written) {
929 sector_t sector = sh->dev[i].sector;
930 struct bio *wbi = sh->dev[i].written;
931 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
932 copy_data(1, wbi, sh->dev[i].page, sector);
933 wbi = r5_next_bio(wbi, sector);
934 }
935
936 set_bit(R5_LOCKED, &sh->dev[i].flags);
937 set_bit(R5_UPTODATE, &sh->dev[i].flags);
938 }
939
940 switch(method) {
941 case RECONSTRUCT_WRITE:
942 case CHECK_PARITY:
943 for (i=disks; i--;)
944 if (i != pd_idx) {
945 ptr[count++] = page_address(sh->dev[i].page);
946 check_xor();
947 }
948 break;
949 case READ_MODIFY_WRITE:
950 for (i = disks; i--;)
951 if (sh->dev[i].written) {
952 ptr[count++] = page_address(sh->dev[i].page);
953 check_xor();
954 }
955 }
956 if (count != 1)
957 xor_block(count, STRIPE_SIZE, ptr);
958
959 if (method != CHECK_PARITY) {
960 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
961 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
962 } else
963 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
964}
965
966/*
967 * Each stripe/dev can have one or more bion attached.
968 * toread/towrite point to the first in a chain.
969 * The bi_next chain must be in order.
970 */
971static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
972{
973 struct bio **bip;
974 raid5_conf_t *conf = sh->raid_conf;
72626685 975 int firstwrite=0;
1da177e4
LT
976
977 PRINTK("adding bh b#%llu to stripe s#%llu\n",
978 (unsigned long long)bi->bi_sector,
979 (unsigned long long)sh->sector);
980
981
982 spin_lock(&sh->lock);
983 spin_lock_irq(&conf->device_lock);
72626685 984 if (forwrite) {
1da177e4 985 bip = &sh->dev[dd_idx].towrite;
72626685
N
986 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
987 firstwrite = 1;
988 } else
1da177e4
LT
989 bip = &sh->dev[dd_idx].toread;
990 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
991 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
992 goto overlap;
993 bip = & (*bip)->bi_next;
994 }
995 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
996 goto overlap;
997
998 if (*bip && bi->bi_next && (*bip) != bi->bi_next)
999 BUG();
1000 if (*bip)
1001 bi->bi_next = *bip;
1002 *bip = bi;
1003 bi->bi_phys_segments ++;
1004 spin_unlock_irq(&conf->device_lock);
1005 spin_unlock(&sh->lock);
1006
1007 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1008 (unsigned long long)bi->bi_sector,
1009 (unsigned long long)sh->sector, dd_idx);
1010
72626685
N
1011 if (conf->mddev->bitmap && firstwrite) {
1012 sh->bm_seq = conf->seq_write;
1013 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1014 STRIPE_SECTORS, 0);
1015 set_bit(STRIPE_BIT_DELAY, &sh->state);
1016 }
1017
1da177e4
LT
1018 if (forwrite) {
1019 /* check if page is covered */
1020 sector_t sector = sh->dev[dd_idx].sector;
1021 for (bi=sh->dev[dd_idx].towrite;
1022 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1023 bi && bi->bi_sector <= sector;
1024 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1025 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1026 sector = bi->bi_sector + (bi->bi_size>>9);
1027 }
1028 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1029 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1030 }
1031 return 1;
1032
1033 overlap:
1034 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1035 spin_unlock_irq(&conf->device_lock);
1036 spin_unlock(&sh->lock);
1037 return 0;
1038}
1039
29269553
N
1040static void end_reshape(raid5_conf_t *conf);
1041
ccfcc3c1
N
1042static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1043{
1044 int sectors_per_chunk = conf->chunk_size >> 9;
1045 sector_t x = stripe;
1046 int pd_idx, dd_idx;
1047 int chunk_offset = sector_div(x, sectors_per_chunk);
1048 stripe = x;
1049 raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk
1050 + chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf);
1051 return pd_idx;
1052}
1053
1da177e4
LT
1054
1055/*
1056 * handle_stripe - do things to a stripe.
1057 *
1058 * We lock the stripe and then examine the state of various bits
1059 * to see what needs to be done.
1060 * Possible results:
1061 * return some read request which now have data
1062 * return some write requests which are safely on disc
1063 * schedule a read on some buffers
1064 * schedule a write of some buffers
1065 * return confirmation of parity correctness
1066 *
1067 * Parity calculations are done inside the stripe lock
1068 * buffers are taken off read_list or write_list, and bh_cache buffers
1069 * get BH_Lock set before the stripe lock is released.
1070 *
1071 */
1072
1073static void handle_stripe(struct stripe_head *sh)
1074{
1075 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1076 int disks = sh->disks;
1da177e4
LT
1077 struct bio *return_bi= NULL;
1078 struct bio *bi;
1079 int i;
ccfcc3c1 1080 int syncing, expanding, expanded;
1da177e4
LT
1081 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1082 int non_overwrite = 0;
1083 int failed_num=0;
1084 struct r5dev *dev;
1085
1086 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1087 (unsigned long long)sh->sector, atomic_read(&sh->count),
1088 sh->pd_idx);
1089
1090 spin_lock(&sh->lock);
1091 clear_bit(STRIPE_HANDLE, &sh->state);
1092 clear_bit(STRIPE_DELAYED, &sh->state);
1093
1094 syncing = test_bit(STRIPE_SYNCING, &sh->state);
ccfcc3c1
N
1095 expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1096 expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1da177e4
LT
1097 /* Now to look around and see what can be done */
1098
9910f16a 1099 rcu_read_lock();
1da177e4
LT
1100 for (i=disks; i--; ) {
1101 mdk_rdev_t *rdev;
1102 dev = &sh->dev[i];
1103 clear_bit(R5_Insync, &dev->flags);
1da177e4
LT
1104
1105 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1106 i, dev->flags, dev->toread, dev->towrite, dev->written);
1107 /* maybe we can reply to a read */
1108 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1109 struct bio *rbi, *rbi2;
1110 PRINTK("Return read for disc %d\n", i);
1111 spin_lock_irq(&conf->device_lock);
1112 rbi = dev->toread;
1113 dev->toread = NULL;
1114 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1115 wake_up(&conf->wait_for_overlap);
1116 spin_unlock_irq(&conf->device_lock);
1117 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1118 copy_data(0, rbi, dev->page, dev->sector);
1119 rbi2 = r5_next_bio(rbi, dev->sector);
1120 spin_lock_irq(&conf->device_lock);
1121 if (--rbi->bi_phys_segments == 0) {
1122 rbi->bi_next = return_bi;
1123 return_bi = rbi;
1124 }
1125 spin_unlock_irq(&conf->device_lock);
1126 rbi = rbi2;
1127 }
1128 }
1129
1130 /* now count some things */
1131 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1132 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1133
1134
1135 if (dev->toread) to_read++;
1136 if (dev->towrite) {
1137 to_write++;
1138 if (!test_bit(R5_OVERWRITE, &dev->flags))
1139 non_overwrite++;
1140 }
1141 if (dev->written) written++;
9910f16a 1142 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 1143 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 1144 /* The ReadError flag will just be confusing now */
4e5314b5
N
1145 clear_bit(R5_ReadError, &dev->flags);
1146 clear_bit(R5_ReWrite, &dev->flags);
1147 }
b2d444d7 1148 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 1149 || test_bit(R5_ReadError, &dev->flags)) {
1da177e4
LT
1150 failed++;
1151 failed_num = i;
1152 } else
1153 set_bit(R5_Insync, &dev->flags);
1154 }
9910f16a 1155 rcu_read_unlock();
1da177e4
LT
1156 PRINTK("locked=%d uptodate=%d to_read=%d"
1157 " to_write=%d failed=%d failed_num=%d\n",
1158 locked, uptodate, to_read, to_write, failed, failed_num);
1159 /* check if the array has lost two devices and, if so, some requests might
1160 * need to be failed
1161 */
1162 if (failed > 1 && to_read+to_write+written) {
1da177e4 1163 for (i=disks; i--; ) {
72626685 1164 int bitmap_end = 0;
4e5314b5
N
1165
1166 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
9910f16a
N
1167 mdk_rdev_t *rdev;
1168 rcu_read_lock();
1169 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 1170 if (rdev && test_bit(In_sync, &rdev->flags))
4e5314b5
N
1171 /* multiple read failures in one stripe */
1172 md_error(conf->mddev, rdev);
9910f16a 1173 rcu_read_unlock();
4e5314b5
N
1174 }
1175
72626685 1176 spin_lock_irq(&conf->device_lock);
1da177e4
LT
1177 /* fail all writes first */
1178 bi = sh->dev[i].towrite;
1179 sh->dev[i].towrite = NULL;
72626685 1180 if (bi) { to_write--; bitmap_end = 1; }
1da177e4
LT
1181
1182 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1183 wake_up(&conf->wait_for_overlap);
1184
1185 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1186 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1187 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1188 if (--bi->bi_phys_segments == 0) {
1189 md_write_end(conf->mddev);
1190 bi->bi_next = return_bi;
1191 return_bi = bi;
1192 }
1193 bi = nextbi;
1194 }
1195 /* and fail all 'written' */
1196 bi = sh->dev[i].written;
1197 sh->dev[i].written = NULL;
72626685 1198 if (bi) bitmap_end = 1;
1da177e4
LT
1199 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1200 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1201 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1202 if (--bi->bi_phys_segments == 0) {
1203 md_write_end(conf->mddev);
1204 bi->bi_next = return_bi;
1205 return_bi = bi;
1206 }
1207 bi = bi2;
1208 }
1209
1210 /* fail any reads if this device is non-operational */
4e5314b5
N
1211 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1212 test_bit(R5_ReadError, &sh->dev[i].flags)) {
1da177e4
LT
1213 bi = sh->dev[i].toread;
1214 sh->dev[i].toread = NULL;
1215 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1216 wake_up(&conf->wait_for_overlap);
1217 if (bi) to_read--;
1218 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1219 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1220 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1221 if (--bi->bi_phys_segments == 0) {
1222 bi->bi_next = return_bi;
1223 return_bi = bi;
1224 }
1225 bi = nextbi;
1226 }
1227 }
72626685
N
1228 spin_unlock_irq(&conf->device_lock);
1229 if (bitmap_end)
1230 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1231 STRIPE_SECTORS, 0, 0);
1da177e4 1232 }
1da177e4
LT
1233 }
1234 if (failed > 1 && syncing) {
1235 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1236 clear_bit(STRIPE_SYNCING, &sh->state);
1237 syncing = 0;
1238 }
1239
1240 /* might be able to return some write requests if the parity block
1241 * is safe, or on a failed drive
1242 */
1243 dev = &sh->dev[sh->pd_idx];
1244 if ( written &&
1245 ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1246 test_bit(R5_UPTODATE, &dev->flags))
1247 || (failed == 1 && failed_num == sh->pd_idx))
1248 ) {
1249 /* any written block on an uptodate or failed drive can be returned.
1250 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1251 * never LOCKED, so we don't need to test 'failed' directly.
1252 */
1253 for (i=disks; i--; )
1254 if (sh->dev[i].written) {
1255 dev = &sh->dev[i];
1256 if (!test_bit(R5_LOCKED, &dev->flags) &&
1257 test_bit(R5_UPTODATE, &dev->flags) ) {
1258 /* We can return any write requests */
1259 struct bio *wbi, *wbi2;
72626685 1260 int bitmap_end = 0;
1da177e4
LT
1261 PRINTK("Return write for disc %d\n", i);
1262 spin_lock_irq(&conf->device_lock);
1263 wbi = dev->written;
1264 dev->written = NULL;
1265 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1266 wbi2 = r5_next_bio(wbi, dev->sector);
1267 if (--wbi->bi_phys_segments == 0) {
1268 md_write_end(conf->mddev);
1269 wbi->bi_next = return_bi;
1270 return_bi = wbi;
1271 }
1272 wbi = wbi2;
1273 }
72626685
N
1274 if (dev->towrite == NULL)
1275 bitmap_end = 1;
1da177e4 1276 spin_unlock_irq(&conf->device_lock);
72626685
N
1277 if (bitmap_end)
1278 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1279 STRIPE_SECTORS,
1280 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1da177e4
LT
1281 }
1282 }
1283 }
1284
1285 /* Now we might consider reading some blocks, either to check/generate
1286 * parity, or to satisfy requests
1287 * or to load a block that is being partially written.
1288 */
ccfcc3c1 1289 if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1da177e4
LT
1290 for (i=disks; i--;) {
1291 dev = &sh->dev[i];
1292 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1293 (dev->toread ||
1294 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1295 syncing ||
ccfcc3c1 1296 expanding ||
1da177e4
LT
1297 (failed && (sh->dev[failed_num].toread ||
1298 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1299 )
1300 ) {
1301 /* we would like to get this block, possibly
1302 * by computing it, but we might not be able to
1303 */
1304 if (uptodate == disks-1) {
1305 PRINTK("Computing block %d\n", i);
1306 compute_block(sh, i);
1307 uptodate++;
1308 } else if (test_bit(R5_Insync, &dev->flags)) {
1309 set_bit(R5_LOCKED, &dev->flags);
1310 set_bit(R5_Wantread, &dev->flags);
1311#if 0
1312 /* if I am just reading this block and we don't have
1313 a failed drive, or any pending writes then sidestep the cache */
1314 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1315 ! syncing && !failed && !to_write) {
1316 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
1317 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
1318 }
1319#endif
1320 locked++;
1321 PRINTK("Reading block %d (sync=%d)\n",
1322 i, syncing);
1da177e4
LT
1323 }
1324 }
1325 }
1326 set_bit(STRIPE_HANDLE, &sh->state);
1327 }
1328
1329 /* now to consider writing and what else, if anything should be read */
1330 if (to_write) {
1331 int rmw=0, rcw=0;
1332 for (i=disks ; i--;) {
1333 /* would I have to read this buffer for read_modify_write */
1334 dev = &sh->dev[i];
1335 if ((dev->towrite || i == sh->pd_idx) &&
1336 (!test_bit(R5_LOCKED, &dev->flags)
1337#if 0
1338|| sh->bh_page[i]!=bh->b_page
1339#endif
1340 ) &&
1341 !test_bit(R5_UPTODATE, &dev->flags)) {
1342 if (test_bit(R5_Insync, &dev->flags)
1343/* && !(!mddev->insync && i == sh->pd_idx) */
1344 )
1345 rmw++;
1346 else rmw += 2*disks; /* cannot read it */
1347 }
1348 /* Would I have to read this buffer for reconstruct_write */
1349 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1350 (!test_bit(R5_LOCKED, &dev->flags)
1351#if 0
1352|| sh->bh_page[i] != bh->b_page
1353#endif
1354 ) &&
1355 !test_bit(R5_UPTODATE, &dev->flags)) {
1356 if (test_bit(R5_Insync, &dev->flags)) rcw++;
1357 else rcw += 2*disks;
1358 }
1359 }
1360 PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1361 (unsigned long long)sh->sector, rmw, rcw);
1362 set_bit(STRIPE_HANDLE, &sh->state);
1363 if (rmw < rcw && rmw > 0)
1364 /* prefer read-modify-write, but need to get some data */
1365 for (i=disks; i--;) {
1366 dev = &sh->dev[i];
1367 if ((dev->towrite || i == sh->pd_idx) &&
1368 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1369 test_bit(R5_Insync, &dev->flags)) {
1370 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1371 {
1372 PRINTK("Read_old block %d for r-m-w\n", i);
1373 set_bit(R5_LOCKED, &dev->flags);
1374 set_bit(R5_Wantread, &dev->flags);
1375 locked++;
1376 } else {
1377 set_bit(STRIPE_DELAYED, &sh->state);
1378 set_bit(STRIPE_HANDLE, &sh->state);
1379 }
1380 }
1381 }
1382 if (rcw <= rmw && rcw > 0)
1383 /* want reconstruct write, but need to get some data */
1384 for (i=disks; i--;) {
1385 dev = &sh->dev[i];
1386 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1387 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1388 test_bit(R5_Insync, &dev->flags)) {
1389 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1390 {
1391 PRINTK("Read_old block %d for Reconstruct\n", i);
1392 set_bit(R5_LOCKED, &dev->flags);
1393 set_bit(R5_Wantread, &dev->flags);
1394 locked++;
1395 } else {
1396 set_bit(STRIPE_DELAYED, &sh->state);
1397 set_bit(STRIPE_HANDLE, &sh->state);
1398 }
1399 }
1400 }
1401 /* now if nothing is locked, and if we have enough data, we can start a write request */
72626685
N
1402 if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1403 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1da177e4
LT
1404 PRINTK("Computing parity...\n");
1405 compute_parity(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1406 /* now every locked buffer is ready to be written */
1407 for (i=disks; i--;)
1408 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1409 PRINTK("Writing block %d\n", i);
1410 locked++;
1411 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1412 if (!test_bit(R5_Insync, &sh->dev[i].flags)
1413 || (i==sh->pd_idx && failed == 0))
1414 set_bit(STRIPE_INSYNC, &sh->state);
1415 }
1416 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1417 atomic_dec(&conf->preread_active_stripes);
1418 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1419 md_wakeup_thread(conf->mddev->thread);
1420 }
1421 }
1422 }
1423
1424 /* maybe we need to check and possibly fix the parity for this stripe
1425 * Any reads will already have been scheduled, so we just see if enough data
1426 * is available
1427 */
1428 if (syncing && locked == 0 &&
14f8d26b 1429 !test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
1430 set_bit(STRIPE_HANDLE, &sh->state);
1431 if (failed == 0) {
1432 char *pagea;
1433 if (uptodate != disks)
1434 BUG();
1435 compute_parity(sh, CHECK_PARITY);
1436 uptodate--;
1437 pagea = page_address(sh->dev[sh->pd_idx].page);
1438 if ((*(u32*)pagea) == 0 &&
1439 !memcmp(pagea, pagea+4, STRIPE_SIZE-4)) {
1440 /* parity is correct (on disc, not in buffer any more) */
1441 set_bit(STRIPE_INSYNC, &sh->state);
9d88883e
N
1442 } else {
1443 conf->mddev->resync_mismatches += STRIPE_SECTORS;
1444 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1445 /* don't try to repair!! */
1446 set_bit(STRIPE_INSYNC, &sh->state);
14f8d26b
N
1447 else {
1448 compute_block(sh, sh->pd_idx);
1449 uptodate++;
1450 }
1da177e4
LT
1451 }
1452 }
1453 if (!test_bit(STRIPE_INSYNC, &sh->state)) {
14f8d26b 1454 /* either failed parity check, or recovery is happening */
1da177e4
LT
1455 if (failed==0)
1456 failed_num = sh->pd_idx;
1da177e4 1457 dev = &sh->dev[failed_num];
14f8d26b
N
1458 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1459 BUG_ON(uptodate != disks);
1460
1da177e4
LT
1461 set_bit(R5_LOCKED, &dev->flags);
1462 set_bit(R5_Wantwrite, &dev->flags);
72626685 1463 clear_bit(STRIPE_DEGRADED, &sh->state);
1da177e4
LT
1464 locked++;
1465 set_bit(STRIPE_INSYNC, &sh->state);
1da177e4
LT
1466 }
1467 }
1468 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1469 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1470 clear_bit(STRIPE_SYNCING, &sh->state);
1471 }
4e5314b5
N
1472
1473 /* If the failed drive is just a ReadError, then we might need to progress
1474 * the repair/check process
1475 */
ba22dcbf
N
1476 if (failed == 1 && ! conf->mddev->ro &&
1477 test_bit(R5_ReadError, &sh->dev[failed_num].flags)
4e5314b5
N
1478 && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1479 && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1480 ) {
1481 dev = &sh->dev[failed_num];
1482 if (!test_bit(R5_ReWrite, &dev->flags)) {
1483 set_bit(R5_Wantwrite, &dev->flags);
1484 set_bit(R5_ReWrite, &dev->flags);
1485 set_bit(R5_LOCKED, &dev->flags);
ccfcc3c1 1486 locked++;
4e5314b5
N
1487 } else {
1488 /* let's read it back */
1489 set_bit(R5_Wantread, &dev->flags);
1490 set_bit(R5_LOCKED, &dev->flags);
ccfcc3c1 1491 locked++;
4e5314b5
N
1492 }
1493 }
1494
ccfcc3c1
N
1495 if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1496 /* Need to write out all blocks after computing parity */
1497 sh->disks = conf->raid_disks;
1498 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
1499 compute_parity(sh, RECONSTRUCT_WRITE);
1500 for (i= conf->raid_disks; i--;) {
1501 set_bit(R5_LOCKED, &sh->dev[i].flags);
1502 locked++;
1503 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1504 }
1505 clear_bit(STRIPE_EXPANDING, &sh->state);
1506 } else if (expanded) {
1507 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 1508 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
1509 wake_up(&conf->wait_for_overlap);
1510 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1511 }
1512
1513 if (expanding && locked == 0) {
1514 /* We have read all the blocks in this stripe and now we need to
1515 * copy some of them into a target stripe for expand.
1516 */
1517 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1518 for (i=0; i< sh->disks; i++)
1519 if (i != sh->pd_idx) {
1520 int dd_idx, pd_idx, j;
1521 struct stripe_head *sh2;
1522
1523 sector_t bn = compute_blocknr(sh, i);
1524 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1525 conf->raid_disks-1,
1526 &dd_idx, &pd_idx, conf);
1527 sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1528 if (sh2 == NULL)
1529 /* so far only the early blocks of this stripe
1530 * have been requested. When later blocks
1531 * get requested, we will try again
1532 */
1533 continue;
1534 if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1535 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1536 /* must have already done this block */
1537 release_stripe(sh2);
1538 continue;
1539 }
1540 memcpy(page_address(sh2->dev[dd_idx].page),
1541 page_address(sh->dev[i].page),
1542 STRIPE_SIZE);
1543 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1544 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1545 for (j=0; j<conf->raid_disks; j++)
1546 if (j != sh2->pd_idx &&
1547 !test_bit(R5_Expanded, &sh2->dev[j].flags))
1548 break;
1549 if (j == conf->raid_disks) {
1550 set_bit(STRIPE_EXPAND_READY, &sh2->state);
1551 set_bit(STRIPE_HANDLE, &sh2->state);
1552 }
1553 release_stripe(sh2);
1554 }
1555 }
1556
1da177e4
LT
1557 spin_unlock(&sh->lock);
1558
1559 while ((bi=return_bi)) {
1560 int bytes = bi->bi_size;
1561
1562 return_bi = bi->bi_next;
1563 bi->bi_next = NULL;
1564 bi->bi_size = 0;
1565 bi->bi_end_io(bi, bytes, 0);
1566 }
1567 for (i=disks; i-- ;) {
1568 int rw;
1569 struct bio *bi;
1570 mdk_rdev_t *rdev;
1571 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1572 rw = 1;
1573 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1574 rw = 0;
1575 else
1576 continue;
1577
1578 bi = &sh->dev[i].req;
1579
1580 bi->bi_rw = rw;
1581 if (rw)
1582 bi->bi_end_io = raid5_end_write_request;
1583 else
1584 bi->bi_end_io = raid5_end_read_request;
1585
1586 rcu_read_lock();
d6065f7b 1587 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 1588 if (rdev && test_bit(Faulty, &rdev->flags))
1da177e4
LT
1589 rdev = NULL;
1590 if (rdev)
1591 atomic_inc(&rdev->nr_pending);
1592 rcu_read_unlock();
1593
1594 if (rdev) {
ccfcc3c1 1595 if (syncing || expanding || expanded)
1da177e4
LT
1596 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1597
1598 bi->bi_bdev = rdev->bdev;
1599 PRINTK("for %llu schedule op %ld on disc %d\n",
1600 (unsigned long long)sh->sector, bi->bi_rw, i);
1601 atomic_inc(&sh->count);
1602 bi->bi_sector = sh->sector + rdev->data_offset;
1603 bi->bi_flags = 1 << BIO_UPTODATE;
1604 bi->bi_vcnt = 1;
1605 bi->bi_max_vecs = 1;
1606 bi->bi_idx = 0;
1607 bi->bi_io_vec = &sh->dev[i].vec;
1608 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1609 bi->bi_io_vec[0].bv_offset = 0;
1610 bi->bi_size = STRIPE_SIZE;
1611 bi->bi_next = NULL;
4dbcdc75
N
1612 if (rw == WRITE &&
1613 test_bit(R5_ReWrite, &sh->dev[i].flags))
1614 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1da177e4
LT
1615 generic_make_request(bi);
1616 } else {
72626685
N
1617 if (rw == 1)
1618 set_bit(STRIPE_DEGRADED, &sh->state);
1da177e4
LT
1619 PRINTK("skip op %ld on disc %d for sector %llu\n",
1620 bi->bi_rw, i, (unsigned long long)sh->sector);
1621 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1622 set_bit(STRIPE_HANDLE, &sh->state);
1623 }
1624 }
1625}
1626
858119e1 1627static void raid5_activate_delayed(raid5_conf_t *conf)
1da177e4
LT
1628{
1629 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
1630 while (!list_empty(&conf->delayed_list)) {
1631 struct list_head *l = conf->delayed_list.next;
1632 struct stripe_head *sh;
1633 sh = list_entry(l, struct stripe_head, lru);
1634 list_del_init(l);
1635 clear_bit(STRIPE_DELAYED, &sh->state);
1636 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1637 atomic_inc(&conf->preread_active_stripes);
1638 list_add_tail(&sh->lru, &conf->handle_list);
1639 }
1640 }
1641}
1642
858119e1 1643static void activate_bit_delay(raid5_conf_t *conf)
72626685
N
1644{
1645 /* device_lock is held */
1646 struct list_head head;
1647 list_add(&head, &conf->bitmap_list);
1648 list_del_init(&conf->bitmap_list);
1649 while (!list_empty(&head)) {
1650 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
1651 list_del_init(&sh->lru);
1652 atomic_inc(&sh->count);
1653 __release_stripe(conf, sh);
1654 }
1655}
1656
1da177e4
LT
1657static void unplug_slaves(mddev_t *mddev)
1658{
1659 raid5_conf_t *conf = mddev_to_conf(mddev);
1660 int i;
1661
1662 rcu_read_lock();
1663 for (i=0; i<mddev->raid_disks; i++) {
d6065f7b 1664 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 1665 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
1da177e4
LT
1666 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
1667
1668 atomic_inc(&rdev->nr_pending);
1669 rcu_read_unlock();
1670
1671 if (r_queue->unplug_fn)
1672 r_queue->unplug_fn(r_queue);
1673
1674 rdev_dec_pending(rdev, mddev);
1675 rcu_read_lock();
1676 }
1677 }
1678 rcu_read_unlock();
1679}
1680
1681static void raid5_unplug_device(request_queue_t *q)
1682{
1683 mddev_t *mddev = q->queuedata;
1684 raid5_conf_t *conf = mddev_to_conf(mddev);
1685 unsigned long flags;
1686
1687 spin_lock_irqsave(&conf->device_lock, flags);
1688
72626685
N
1689 if (blk_remove_plug(q)) {
1690 conf->seq_flush++;
1da177e4 1691 raid5_activate_delayed(conf);
72626685 1692 }
1da177e4
LT
1693 md_wakeup_thread(mddev->thread);
1694
1695 spin_unlock_irqrestore(&conf->device_lock, flags);
1696
1697 unplug_slaves(mddev);
1698}
1699
1700static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
1701 sector_t *error_sector)
1702{
1703 mddev_t *mddev = q->queuedata;
1704 raid5_conf_t *conf = mddev_to_conf(mddev);
1705 int i, ret = 0;
1706
1707 rcu_read_lock();
1708 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
d6065f7b 1709 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 1710 if (rdev && !test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
1711 struct block_device *bdev = rdev->bdev;
1712 request_queue_t *r_queue = bdev_get_queue(bdev);
1713
1714 if (!r_queue->issue_flush_fn)
1715 ret = -EOPNOTSUPP;
1716 else {
1717 atomic_inc(&rdev->nr_pending);
1718 rcu_read_unlock();
1719 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
1720 error_sector);
1721 rdev_dec_pending(rdev, mddev);
1722 rcu_read_lock();
1723 }
1724 }
1725 }
1726 rcu_read_unlock();
1727 return ret;
1728}
1729
1730static inline void raid5_plug_device(raid5_conf_t *conf)
1731{
1732 spin_lock_irq(&conf->device_lock);
1733 blk_plug_device(conf->mddev->queue);
1734 spin_unlock_irq(&conf->device_lock);
1735}
1736
7ecaa1e6 1737static int make_request(request_queue_t *q, struct bio * bi)
1da177e4
LT
1738{
1739 mddev_t *mddev = q->queuedata;
1740 raid5_conf_t *conf = mddev_to_conf(mddev);
1da177e4
LT
1741 unsigned int dd_idx, pd_idx;
1742 sector_t new_sector;
1743 sector_t logical_sector, last_sector;
1744 struct stripe_head *sh;
a362357b 1745 const int rw = bio_data_dir(bi);
1da177e4 1746
e5dcdd80
N
1747 if (unlikely(bio_barrier(bi))) {
1748 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
1749 return 0;
1750 }
1751
3d310eb7 1752 md_write_start(mddev, bi);
06d91a5f 1753
a362357b
JA
1754 disk_stat_inc(mddev->gendisk, ios[rw]);
1755 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1da177e4
LT
1756
1757 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
1758 last_sector = bi->bi_sector + (bi->bi_size>>9);
1759 bi->bi_next = NULL;
1760 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 1761
1da177e4
LT
1762 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
1763 DEFINE_WAIT(w);
7ecaa1e6 1764 int disks;
b578d55f 1765
7ecaa1e6 1766 retry:
b578d55f 1767 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
7ecaa1e6
N
1768 if (likely(conf->expand_progress == MaxSector))
1769 disks = conf->raid_disks;
1770 else {
df8e7f76
N
1771 /* spinlock is needed as expand_progress may be
1772 * 64bit on a 32bit platform, and so it might be
1773 * possible to see a half-updated value
1774 * Ofcourse expand_progress could change after
1775 * the lock is dropped, so once we get a reference
1776 * to the stripe that we think it is, we will have
1777 * to check again.
1778 */
7ecaa1e6
N
1779 spin_lock_irq(&conf->device_lock);
1780 disks = conf->raid_disks;
1781 if (logical_sector >= conf->expand_progress)
1782 disks = conf->previous_raid_disks;
b578d55f
N
1783 else {
1784 if (logical_sector >= conf->expand_lo) {
1785 spin_unlock_irq(&conf->device_lock);
1786 schedule();
1787 goto retry;
1788 }
1789 }
7ecaa1e6
N
1790 spin_unlock_irq(&conf->device_lock);
1791 }
1792 new_sector = raid5_compute_sector(logical_sector, disks, disks - 1,
1793 &dd_idx, &pd_idx, conf);
1da177e4
LT
1794 PRINTK("raid5: make_request, sector %llu logical %llu\n",
1795 (unsigned long long)new_sector,
1796 (unsigned long long)logical_sector);
1797
7ecaa1e6 1798 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
1da177e4 1799 if (sh) {
7ecaa1e6
N
1800 if (unlikely(conf->expand_progress != MaxSector)) {
1801 /* expansion might have moved on while waiting for a
df8e7f76
N
1802 * stripe, so we must do the range check again.
1803 * Expansion could still move past after this
1804 * test, but as we are holding a reference to
1805 * 'sh', we know that if that happens,
1806 * STRIPE_EXPANDING will get set and the expansion
1807 * won't proceed until we finish with the stripe.
7ecaa1e6
N
1808 */
1809 int must_retry = 0;
1810 spin_lock_irq(&conf->device_lock);
1811 if (logical_sector < conf->expand_progress &&
1812 disks == conf->previous_raid_disks)
1813 /* mismatch, need to try again */
1814 must_retry = 1;
1815 spin_unlock_irq(&conf->device_lock);
1816 if (must_retry) {
1817 release_stripe(sh);
1818 goto retry;
1819 }
1820 }
e464eafd
N
1821 /* FIXME what if we get a false positive because these
1822 * are being updated.
1823 */
1824 if (logical_sector >= mddev->suspend_lo &&
1825 logical_sector < mddev->suspend_hi) {
1826 release_stripe(sh);
1827 schedule();
1828 goto retry;
1829 }
7ecaa1e6
N
1830
1831 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
1832 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
1833 /* Stripe is busy expanding or
1834 * add failed due to overlap. Flush everything
1da177e4
LT
1835 * and wait a while
1836 */
1837 raid5_unplug_device(mddev->queue);
1838 release_stripe(sh);
1839 schedule();
1840 goto retry;
1841 }
1842 finish_wait(&conf->wait_for_overlap, &w);
1843 raid5_plug_device(conf);
1844 handle_stripe(sh);
1845 release_stripe(sh);
1da177e4
LT
1846 } else {
1847 /* cannot get stripe for read-ahead, just give-up */
1848 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1849 finish_wait(&conf->wait_for_overlap, &w);
1850 break;
1851 }
1852
1853 }
1854 spin_lock_irq(&conf->device_lock);
1855 if (--bi->bi_phys_segments == 0) {
1856 int bytes = bi->bi_size;
1857
1858 if ( bio_data_dir(bi) == WRITE )
1859 md_write_end(mddev);
1860 bi->bi_size = 0;
1861 bi->bi_end_io(bi, bytes, 0);
1862 }
1863 spin_unlock_irq(&conf->device_lock);
1864 return 0;
1865}
1866
1867/* FIXME go_faster isn't used */
57afd89f 1868static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4
LT
1869{
1870 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1871 struct stripe_head *sh;
ccfcc3c1
N
1872 int pd_idx;
1873 sector_t first_sector, last_sector;
1da177e4
LT
1874 int raid_disks = conf->raid_disks;
1875 int data_disks = raid_disks-1;
72626685
N
1876 sector_t max_sector = mddev->size << 1;
1877 int sync_blocks;
1da177e4 1878
72626685 1879 if (sector_nr >= max_sector) {
1da177e4
LT
1880 /* just being told to finish up .. nothing much to do */
1881 unplug_slaves(mddev);
29269553
N
1882 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
1883 end_reshape(conf);
1884 return 0;
1885 }
72626685
N
1886
1887 if (mddev->curr_resync < max_sector) /* aborted */
1888 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1889 &sync_blocks, 1);
1890 else /* compelted sync */
1891 conf->fullsync = 0;
1892 bitmap_close_sync(mddev->bitmap);
1893
1da177e4
LT
1894 return 0;
1895 }
ccfcc3c1
N
1896
1897 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
1898 /* reshaping is quite different to recovery/resync so it is
1899 * handled quite separately ... here.
1900 *
1901 * On each call to sync_request, we gather one chunk worth of
1902 * destination stripes and flag them as expanding.
1903 * Then we find all the source stripes and request reads.
1904 * As the reads complete, handle_stripe will copy the data
1905 * into the destination stripe and release that stripe.
1906 */
1907 int i;
1908 int dd_idx;
b578d55f 1909 sector_t writepos, safepos, gap;
f6705578
N
1910
1911 if (sector_nr == 0 &&
1912 conf->expand_progress != 0) {
1913 /* restarting in the middle, skip the initial sectors */
1914 sector_nr = conf->expand_progress;
1915 sector_div(sector_nr, conf->raid_disks-1);
1916 *skipped = 1;
1917 return sector_nr;
1918 }
1919
b578d55f
N
1920 /* we update the metadata when there is more than 3Meg
1921 * in the block range (that is rather arbitrary, should
1922 * probably be time based) or when the data about to be
1923 * copied would over-write the source of the data at
1924 * the front of the range.
1925 * i.e. one new_stripe forward from expand_progress new_maps
1926 * to after where expand_lo old_maps to
1927 */
1928 writepos = conf->expand_progress +
1929 conf->chunk_size/512*(conf->raid_disks-1);
1930 sector_div(writepos, conf->raid_disks-1);
1931 safepos = conf->expand_lo;
1932 sector_div(safepos, conf->previous_raid_disks-1);
1933 gap = conf->expand_progress - conf->expand_lo;
1934
1935 if (writepos >= safepos ||
1936 gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
1937 /* Cannot proceed until we've updated the superblock... */
1938 wait_event(conf->wait_for_overlap,
1939 atomic_read(&conf->reshape_stripes)==0);
1940 mddev->reshape_position = conf->expand_progress;
1941 mddev->sb_dirty = 1;
1942 md_wakeup_thread(mddev->thread);
1943 wait_event(mddev->sb_wait, mddev->sb_dirty == 0 ||
1944 kthread_should_stop());
1945 spin_lock_irq(&conf->device_lock);
1946 conf->expand_lo = mddev->reshape_position;
1947 spin_unlock_irq(&conf->device_lock);
1948 wake_up(&conf->wait_for_overlap);
1949 }
f6705578 1950
ccfcc3c1
N
1951 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
1952 int j;
1953 int skipped = 0;
1954 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
1955 sh = get_active_stripe(conf, sector_nr+i,
1956 conf->raid_disks, pd_idx, 0);
1957 set_bit(STRIPE_EXPANDING, &sh->state);
f6705578 1958 atomic_inc(&conf->reshape_stripes);
ccfcc3c1
N
1959 /* If any of this stripe is beyond the end of the old
1960 * array, then we need to zero those blocks
1961 */
1962 for (j=sh->disks; j--;) {
1963 sector_t s;
1964 if (j == sh->pd_idx)
1965 continue;
1966 s = compute_blocknr(sh, j);
1967 if (s < (mddev->array_size<<1)) {
1968 skipped = 1;
1969 continue;
1970 }
1971 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
1972 set_bit(R5_Expanded, &sh->dev[j].flags);
1973 set_bit(R5_UPTODATE, &sh->dev[j].flags);
1974 }
1975 if (!skipped) {
1976 set_bit(STRIPE_EXPAND_READY, &sh->state);
1977 set_bit(STRIPE_HANDLE, &sh->state);
1978 }
1979 release_stripe(sh);
1980 }
1981 spin_lock_irq(&conf->device_lock);
1982 conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
1983 spin_unlock_irq(&conf->device_lock);
1984 /* Ok, those stripe are ready. We can start scheduling
1985 * reads on the source stripes.
1986 * The source stripes are determined by mapping the first and last
1987 * block on the destination stripes.
1988 */
1989 raid_disks = conf->previous_raid_disks;
1990 data_disks = raid_disks - 1;
1991 first_sector =
1992 raid5_compute_sector(sector_nr*(conf->raid_disks-1),
1993 raid_disks, data_disks,
1994 &dd_idx, &pd_idx, conf);
1995 last_sector =
1996 raid5_compute_sector((sector_nr+conf->chunk_size/512)
1997 *(conf->raid_disks-1) -1,
1998 raid_disks, data_disks,
1999 &dd_idx, &pd_idx, conf);
2000 if (last_sector >= (mddev->size<<1))
2001 last_sector = (mddev->size<<1)-1;
2002 while (first_sector <= last_sector) {
2003 pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
2004 sh = get_active_stripe(conf, first_sector,
2005 conf->previous_raid_disks, pd_idx, 0);
2006 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2007 set_bit(STRIPE_HANDLE, &sh->state);
2008 release_stripe(sh);
2009 first_sector += STRIPE_SECTORS;
2010 }
2011 return conf->chunk_size>>9;
2012 }
1da177e4
LT
2013 /* if there is 1 or more failed drives and we are trying
2014 * to resync, then assert that we are finished, because there is
2015 * nothing we can do.
2016 */
2017 if (mddev->degraded >= 1 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
57afd89f
N
2018 sector_t rv = (mddev->size << 1) - sector_nr;
2019 *skipped = 1;
1da177e4
LT
2020 return rv;
2021 }
72626685 2022 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 2023 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
2024 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
2025 /* we can skip this block, and probably more */
2026 sync_blocks /= STRIPE_SECTORS;
2027 *skipped = 1;
2028 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
2029 }
1da177e4 2030
ccfcc3c1 2031 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
7ecaa1e6 2032 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
1da177e4 2033 if (sh == NULL) {
7ecaa1e6 2034 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
1da177e4
LT
2035 /* make sure we don't swamp the stripe cache if someone else
2036 * is trying to get access
2037 */
66c006a5 2038 schedule_timeout_uninterruptible(1);
1da177e4 2039 }
72626685 2040 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 0);
1da177e4
LT
2041 spin_lock(&sh->lock);
2042 set_bit(STRIPE_SYNCING, &sh->state);
2043 clear_bit(STRIPE_INSYNC, &sh->state);
2044 spin_unlock(&sh->lock);
2045
2046 handle_stripe(sh);
2047 release_stripe(sh);
2048
2049 return STRIPE_SECTORS;
2050}
2051
2052/*
2053 * This is our raid5 kernel thread.
2054 *
2055 * We scan the hash table for stripes which can be handled now.
2056 * During the scan, completed stripes are saved for us by the interrupt
2057 * handler, so that they will not have to wait for our next wakeup.
2058 */
2059static void raid5d (mddev_t *mddev)
2060{
2061 struct stripe_head *sh;
2062 raid5_conf_t *conf = mddev_to_conf(mddev);
2063 int handled;
2064
2065 PRINTK("+++ raid5d active\n");
2066
2067 md_check_recovery(mddev);
1da177e4
LT
2068
2069 handled = 0;
2070 spin_lock_irq(&conf->device_lock);
2071 while (1) {
2072 struct list_head *first;
2073
72626685
N
2074 if (conf->seq_flush - conf->seq_write > 0) {
2075 int seq = conf->seq_flush;
700e432d 2076 spin_unlock_irq(&conf->device_lock);
72626685 2077 bitmap_unplug(mddev->bitmap);
700e432d 2078 spin_lock_irq(&conf->device_lock);
72626685
N
2079 conf->seq_write = seq;
2080 activate_bit_delay(conf);
2081 }
2082
1da177e4
LT
2083 if (list_empty(&conf->handle_list) &&
2084 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
2085 !blk_queue_plugged(mddev->queue) &&
2086 !list_empty(&conf->delayed_list))
2087 raid5_activate_delayed(conf);
2088
2089 if (list_empty(&conf->handle_list))
2090 break;
2091
2092 first = conf->handle_list.next;
2093 sh = list_entry(first, struct stripe_head, lru);
2094
2095 list_del_init(first);
2096 atomic_inc(&sh->count);
2097 if (atomic_read(&sh->count)!= 1)
2098 BUG();
2099 spin_unlock_irq(&conf->device_lock);
2100
2101 handled++;
2102 handle_stripe(sh);
2103 release_stripe(sh);
2104
2105 spin_lock_irq(&conf->device_lock);
2106 }
2107 PRINTK("%d stripes handled\n", handled);
2108
2109 spin_unlock_irq(&conf->device_lock);
2110
2111 unplug_slaves(mddev);
2112
2113 PRINTK("--- raid5d inactive\n");
2114}
2115
3f294f4f 2116static ssize_t
007583c9 2117raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 2118{
007583c9 2119 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
2120 if (conf)
2121 return sprintf(page, "%d\n", conf->max_nr_stripes);
2122 else
2123 return 0;
3f294f4f
N
2124}
2125
2126static ssize_t
007583c9 2127raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 2128{
007583c9 2129 raid5_conf_t *conf = mddev_to_conf(mddev);
3f294f4f
N
2130 char *end;
2131 int new;
2132 if (len >= PAGE_SIZE)
2133 return -EINVAL;
96de1e66
N
2134 if (!conf)
2135 return -ENODEV;
3f294f4f
N
2136
2137 new = simple_strtoul(page, &end, 10);
2138 if (!*page || (*end && *end != '\n') )
2139 return -EINVAL;
2140 if (new <= 16 || new > 32768)
2141 return -EINVAL;
2142 while (new < conf->max_nr_stripes) {
2143 if (drop_one_stripe(conf))
2144 conf->max_nr_stripes--;
2145 else
2146 break;
2147 }
2148 while (new > conf->max_nr_stripes) {
2149 if (grow_one_stripe(conf))
2150 conf->max_nr_stripes++;
2151 else break;
2152 }
2153 return len;
2154}
007583c9 2155
96de1e66
N
2156static struct md_sysfs_entry
2157raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
2158 raid5_show_stripe_cache_size,
2159 raid5_store_stripe_cache_size);
3f294f4f
N
2160
2161static ssize_t
96de1e66 2162stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 2163{
007583c9 2164 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
2165 if (conf)
2166 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
2167 else
2168 return 0;
3f294f4f
N
2169}
2170
96de1e66
N
2171static struct md_sysfs_entry
2172raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 2173
007583c9 2174static struct attribute *raid5_attrs[] = {
3f294f4f
N
2175 &raid5_stripecache_size.attr,
2176 &raid5_stripecache_active.attr,
2177 NULL,
2178};
007583c9
N
2179static struct attribute_group raid5_attrs_group = {
2180 .name = NULL,
2181 .attrs = raid5_attrs,
3f294f4f
N
2182};
2183
72626685 2184static int run(mddev_t *mddev)
1da177e4
LT
2185{
2186 raid5_conf_t *conf;
2187 int raid_disk, memory;
2188 mdk_rdev_t *rdev;
2189 struct disk_info *disk;
2190 struct list_head *tmp;
2191
2192 if (mddev->level != 5 && mddev->level != 4) {
14f8d26b
N
2193 printk(KERN_ERR "raid5: %s: raid level not set to 4/5 (%d)\n",
2194 mdname(mddev), mddev->level);
1da177e4
LT
2195 return -EIO;
2196 }
2197
f6705578
N
2198 if (mddev->reshape_position != MaxSector) {
2199 /* Check that we can continue the reshape.
2200 * Currently only disks can change, it must
2201 * increase, and we must be past the point where
2202 * a stripe over-writes itself
2203 */
2204 sector_t here_new, here_old;
2205 int old_disks;
2206
2207 if (mddev->new_level != mddev->level ||
2208 mddev->new_layout != mddev->layout ||
2209 mddev->new_chunk != mddev->chunk_size) {
2210 printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
2211 mdname(mddev));
2212 return -EINVAL;
2213 }
2214 if (mddev->delta_disks <= 0) {
2215 printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
2216 mdname(mddev));
2217 return -EINVAL;
2218 }
2219 old_disks = mddev->raid_disks - mddev->delta_disks;
2220 /* reshape_position must be on a new-stripe boundary, and one
2221 * further up in new geometry must map after here in old geometry.
2222 */
2223 here_new = mddev->reshape_position;
2224 if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
2225 printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
2226 return -EINVAL;
2227 }
2228 /* here_new is the stripe we will write to */
2229 here_old = mddev->reshape_position;
2230 sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
2231 /* here_old is the first stripe that we might need to read from */
2232 if (here_new >= here_old) {
2233 /* Reading from the same stripe as writing to - bad */
2234 printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
2235 return -EINVAL;
2236 }
2237 printk(KERN_INFO "raid5: reshape will continue\n");
2238 /* OK, we should be able to continue; */
2239 }
2240
2241
b55e6bfc 2242 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
1da177e4
LT
2243 if ((conf = mddev->private) == NULL)
2244 goto abort;
f6705578
N
2245 if (mddev->reshape_position == MaxSector) {
2246 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
2247 } else {
2248 conf->raid_disks = mddev->raid_disks;
2249 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
2250 }
2251
2252 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
2253 GFP_KERNEL);
2254 if (!conf->disks)
2255 goto abort;
9ffae0cf 2256
1da177e4
LT
2257 conf->mddev = mddev;
2258
fccddba0 2259 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 2260 goto abort;
1da177e4
LT
2261
2262 spin_lock_init(&conf->device_lock);
2263 init_waitqueue_head(&conf->wait_for_stripe);
2264 init_waitqueue_head(&conf->wait_for_overlap);
2265 INIT_LIST_HEAD(&conf->handle_list);
2266 INIT_LIST_HEAD(&conf->delayed_list);
72626685 2267 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
2268 INIT_LIST_HEAD(&conf->inactive_list);
2269 atomic_set(&conf->active_stripes, 0);
2270 atomic_set(&conf->preread_active_stripes, 0);
2271
1da177e4
LT
2272 PRINTK("raid5: run(%s) called.\n", mdname(mddev));
2273
2274 ITERATE_RDEV(mddev,rdev,tmp) {
2275 raid_disk = rdev->raid_disk;
f6705578 2276 if (raid_disk >= conf->raid_disks
1da177e4
LT
2277 || raid_disk < 0)
2278 continue;
2279 disk = conf->disks + raid_disk;
2280
2281 disk->rdev = rdev;
2282
b2d444d7 2283 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2284 char b[BDEVNAME_SIZE];
2285 printk(KERN_INFO "raid5: device %s operational as raid"
2286 " disk %d\n", bdevname(rdev->bdev,b),
2287 raid_disk);
2288 conf->working_disks++;
2289 }
2290 }
2291
1da177e4
LT
2292 /*
2293 * 0 for a fully functional array, 1 for a degraded array.
2294 */
2295 mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
2296 conf->mddev = mddev;
2297 conf->chunk_size = mddev->chunk_size;
2298 conf->level = mddev->level;
2299 conf->algorithm = mddev->layout;
2300 conf->max_nr_stripes = NR_STRIPES;
f6705578 2301 conf->expand_progress = mddev->reshape_position;
1da177e4
LT
2302
2303 /* device size must be a multiple of chunk size */
2304 mddev->size &= ~(mddev->chunk_size/1024 -1);
b1581566 2305 mddev->resync_max_sectors = mddev->size << 1;
1da177e4
LT
2306
2307 if (!conf->chunk_size || conf->chunk_size % 4) {
2308 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
2309 conf->chunk_size, mdname(mddev));
2310 goto abort;
2311 }
2312 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
2313 printk(KERN_ERR
2314 "raid5: unsupported parity algorithm %d for %s\n",
2315 conf->algorithm, mdname(mddev));
2316 goto abort;
2317 }
2318 if (mddev->degraded > 1) {
2319 printk(KERN_ERR "raid5: not enough operational devices for %s"
2320 " (%d/%d failed)\n",
2321 mdname(mddev), conf->failed_disks, conf->raid_disks);
2322 goto abort;
2323 }
2324
2325 if (mddev->degraded == 1 &&
2326 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
2327 if (mddev->ok_start_degraded)
2328 printk(KERN_WARNING
2329 "raid5: starting dirty degraded array: %s"
2330 "- data corruption possible.\n",
2331 mdname(mddev));
2332 else {
2333 printk(KERN_ERR
2334 "raid5: cannot start dirty degraded array for %s\n",
2335 mdname(mddev));
2336 goto abort;
2337 }
1da177e4
LT
2338 }
2339
2340 {
2341 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
2342 if (!mddev->thread) {
2343 printk(KERN_ERR
2344 "raid5: couldn't allocate thread for %s\n",
2345 mdname(mddev));
2346 goto abort;
2347 }
2348 }
5036805b 2349 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1da177e4
LT
2350 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
2351 if (grow_stripes(conf, conf->max_nr_stripes)) {
2352 printk(KERN_ERR
2353 "raid5: couldn't allocate %dkB for buffers\n", memory);
2354 shrink_stripes(conf);
2355 md_unregister_thread(mddev->thread);
2356 goto abort;
2357 } else
2358 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
2359 memory, mdname(mddev));
2360
2361 if (mddev->degraded == 0)
2362 printk("raid5: raid level %d set %s active with %d out of %d"
2363 " devices, algorithm %d\n", conf->level, mdname(mddev),
2364 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
2365 conf->algorithm);
2366 else
2367 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
2368 " out of %d devices, algorithm %d\n", conf->level,
2369 mdname(mddev), mddev->raid_disks - mddev->degraded,
2370 mddev->raid_disks, conf->algorithm);
2371
2372 print_raid5_conf(conf);
2373
f6705578
N
2374 if (conf->expand_progress != MaxSector) {
2375 printk("...ok start reshape thread\n");
b578d55f 2376 conf->expand_lo = conf->expand_progress;
f6705578
N
2377 atomic_set(&conf->reshape_stripes, 0);
2378 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2379 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2380 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
2381 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
2382 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
2383 "%s_reshape");
2384 /* FIXME if md_register_thread fails?? */
2385 md_wakeup_thread(mddev->sync_thread);
2386
2387 }
2388
1da177e4
LT
2389 /* read-ahead size must cover two whole stripes, which is
2390 * 2 * (n-1) * chunksize where 'n' is the number of raid devices
2391 */
2392 {
2393 int stripe = (mddev->raid_disks-1) * mddev->chunk_size
2d1f3b5d 2394 / PAGE_SIZE;
1da177e4
LT
2395 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
2396 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
2397 }
2398
2399 /* Ok, everything is just fine now */
007583c9 2400 sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
7a5febe9
N
2401
2402 mddev->queue->unplug_fn = raid5_unplug_device;
2403 mddev->queue->issue_flush_fn = raid5_issue_flush;
f6705578 2404 mddev->array_size = mddev->size * (conf->previous_raid_disks - 1);
7a5febe9 2405
1da177e4
LT
2406 return 0;
2407abort:
2408 if (conf) {
2409 print_raid5_conf(conf);
b55e6bfc 2410 kfree(conf->disks);
fccddba0 2411 kfree(conf->stripe_hashtbl);
1da177e4
LT
2412 kfree(conf);
2413 }
2414 mddev->private = NULL;
2415 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
2416 return -EIO;
2417}
2418
2419
2420
3f294f4f 2421static int stop(mddev_t *mddev)
1da177e4
LT
2422{
2423 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2424
2425 md_unregister_thread(mddev->thread);
2426 mddev->thread = NULL;
2427 shrink_stripes(conf);
fccddba0 2428 kfree(conf->stripe_hashtbl);
1da177e4 2429 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 2430 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 2431 kfree(conf->disks);
96de1e66 2432 kfree(conf);
1da177e4
LT
2433 mddev->private = NULL;
2434 return 0;
2435}
2436
2437#if RAID5_DEBUG
2438static void print_sh (struct stripe_head *sh)
2439{
2440 int i;
2441
2442 printk("sh %llu, pd_idx %d, state %ld.\n",
2443 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
2444 printk("sh %llu, count %d.\n",
2445 (unsigned long long)sh->sector, atomic_read(&sh->count));
2446 printk("sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 2447 for (i = 0; i < sh->disks; i++) {
1da177e4
LT
2448 printk("(cache%d: %p %ld) ",
2449 i, sh->dev[i].page, sh->dev[i].flags);
2450 }
2451 printk("\n");
2452}
2453
2454static void printall (raid5_conf_t *conf)
2455{
2456 struct stripe_head *sh;
fccddba0 2457 struct hlist_node *hn;
1da177e4
LT
2458 int i;
2459
2460 spin_lock_irq(&conf->device_lock);
2461 for (i = 0; i < NR_HASH; i++) {
fccddba0 2462 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
2463 if (sh->raid_conf != conf)
2464 continue;
2465 print_sh(sh);
2466 }
2467 }
2468 spin_unlock_irq(&conf->device_lock);
2469}
2470#endif
2471
2472static void status (struct seq_file *seq, mddev_t *mddev)
2473{
2474 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2475 int i;
2476
2477 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
2478 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
2479 for (i = 0; i < conf->raid_disks; i++)
2480 seq_printf (seq, "%s",
2481 conf->disks[i].rdev &&
b2d444d7 2482 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4
LT
2483 seq_printf (seq, "]");
2484#if RAID5_DEBUG
2485#define D(x) \
2486 seq_printf (seq, "<"#x":%d>", atomic_read(&conf->x))
2487 printall(conf);
2488#endif
2489}
2490
2491static void print_raid5_conf (raid5_conf_t *conf)
2492{
2493 int i;
2494 struct disk_info *tmp;
2495
2496 printk("RAID5 conf printout:\n");
2497 if (!conf) {
2498 printk("(conf==NULL)\n");
2499 return;
2500 }
2501 printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
2502 conf->working_disks, conf->failed_disks);
2503
2504 for (i = 0; i < conf->raid_disks; i++) {
2505 char b[BDEVNAME_SIZE];
2506 tmp = conf->disks + i;
2507 if (tmp->rdev)
2508 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 2509 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
2510 bdevname(tmp->rdev->bdev,b));
2511 }
2512}
2513
2514static int raid5_spare_active(mddev_t *mddev)
2515{
2516 int i;
2517 raid5_conf_t *conf = mddev->private;
2518 struct disk_info *tmp;
2519
2520 for (i = 0; i < conf->raid_disks; i++) {
2521 tmp = conf->disks + i;
2522 if (tmp->rdev
b2d444d7
N
2523 && !test_bit(Faulty, &tmp->rdev->flags)
2524 && !test_bit(In_sync, &tmp->rdev->flags)) {
1da177e4
LT
2525 mddev->degraded--;
2526 conf->failed_disks--;
2527 conf->working_disks++;
b2d444d7 2528 set_bit(In_sync, &tmp->rdev->flags);
1da177e4
LT
2529 }
2530 }
2531 print_raid5_conf(conf);
2532 return 0;
2533}
2534
2535static int raid5_remove_disk(mddev_t *mddev, int number)
2536{
2537 raid5_conf_t *conf = mddev->private;
2538 int err = 0;
2539 mdk_rdev_t *rdev;
2540 struct disk_info *p = conf->disks + number;
2541
2542 print_raid5_conf(conf);
2543 rdev = p->rdev;
2544 if (rdev) {
b2d444d7 2545 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
2546 atomic_read(&rdev->nr_pending)) {
2547 err = -EBUSY;
2548 goto abort;
2549 }
2550 p->rdev = NULL;
fbd568a3 2551 synchronize_rcu();
1da177e4
LT
2552 if (atomic_read(&rdev->nr_pending)) {
2553 /* lost the race, try later */
2554 err = -EBUSY;
2555 p->rdev = rdev;
2556 }
2557 }
2558abort:
2559
2560 print_raid5_conf(conf);
2561 return err;
2562}
2563
2564static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
2565{
2566 raid5_conf_t *conf = mddev->private;
2567 int found = 0;
2568 int disk;
2569 struct disk_info *p;
2570
2571 if (mddev->degraded > 1)
2572 /* no point adding a device */
2573 return 0;
2574
2575 /*
2576 * find the disk ...
2577 */
f6705578 2578 for (disk=0; disk < conf->raid_disks; disk++)
1da177e4 2579 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 2580 clear_bit(In_sync, &rdev->flags);
1da177e4
LT
2581 rdev->raid_disk = disk;
2582 found = 1;
72626685
N
2583 if (rdev->saved_raid_disk != disk)
2584 conf->fullsync = 1;
d6065f7b 2585 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
2586 break;
2587 }
2588 print_raid5_conf(conf);
2589 return found;
2590}
2591
2592static int raid5_resize(mddev_t *mddev, sector_t sectors)
2593{
2594 /* no resync is happening, and there is enough space
2595 * on all devices, so we can resize.
2596 * We need to make sure resync covers any new space.
2597 * If the array is shrinking we should possibly wait until
2598 * any io in the removed space completes, but it hardly seems
2599 * worth it.
2600 */
2601 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
2602 mddev->array_size = (sectors * (mddev->raid_disks-1))>>1;
2603 set_capacity(mddev->gendisk, mddev->array_size << 1);
2604 mddev->changed = 1;
2605 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
2606 mddev->recovery_cp = mddev->size << 1;
2607 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2608 }
2609 mddev->size = sectors /2;
4b5c7ae8 2610 mddev->resync_max_sectors = sectors;
1da177e4
LT
2611 return 0;
2612}
2613
29269553 2614#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f 2615static int raid5_check_reshape(mddev_t *mddev)
29269553
N
2616{
2617 raid5_conf_t *conf = mddev_to_conf(mddev);
2618 int err;
29269553 2619
63c70c4f
N
2620 if (mddev->delta_disks < 0 ||
2621 mddev->new_level != mddev->level)
2622 return -EINVAL; /* Cannot shrink array or change level yet */
2623 if (mddev->delta_disks == 0)
29269553
N
2624 return 0; /* nothing to do */
2625
2626 /* Can only proceed if there are plenty of stripe_heads.
2627 * We need a minimum of one full stripe,, and for sensible progress
2628 * it is best to have about 4 times that.
2629 * If we require 4 times, then the default 256 4K stripe_heads will
2630 * allow for chunk sizes up to 256K, which is probably OK.
2631 * If the chunk size is greater, user-space should request more
2632 * stripe_heads first.
2633 */
63c70c4f
N
2634 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
2635 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553
N
2636 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
2637 (mddev->chunk_size / STRIPE_SIZE)*4);
2638 return -ENOSPC;
2639 }
2640
63c70c4f
N
2641 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
2642 if (err)
2643 return err;
2644
2645 /* looks like we might be able to manage this */
2646 return 0;
2647}
2648
2649static int raid5_start_reshape(mddev_t *mddev)
2650{
2651 raid5_conf_t *conf = mddev_to_conf(mddev);
2652 mdk_rdev_t *rdev;
2653 struct list_head *rtmp;
2654 int spares = 0;
2655 int added_devices = 0;
2656
2657 if (mddev->degraded ||
2658 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2659 return -EBUSY;
2660
29269553
N
2661 ITERATE_RDEV(mddev, rdev, rtmp)
2662 if (rdev->raid_disk < 0 &&
2663 !test_bit(Faulty, &rdev->flags))
2664 spares++;
63c70c4f
N
2665
2666 if (spares < mddev->delta_disks-1)
29269553
N
2667 /* Not enough devices even to make a degraded array
2668 * of that size
2669 */
2670 return -EINVAL;
2671
f6705578 2672 atomic_set(&conf->reshape_stripes, 0);
29269553
N
2673 spin_lock_irq(&conf->device_lock);
2674 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 2675 conf->raid_disks += mddev->delta_disks;
29269553 2676 conf->expand_progress = 0;
b578d55f 2677 conf->expand_lo = 0;
29269553
N
2678 spin_unlock_irq(&conf->device_lock);
2679
2680 /* Add some new drives, as many as will fit.
2681 * We know there are enough to make the newly sized array work.
2682 */
2683 ITERATE_RDEV(mddev, rdev, rtmp)
2684 if (rdev->raid_disk < 0 &&
2685 !test_bit(Faulty, &rdev->flags)) {
2686 if (raid5_add_disk(mddev, rdev)) {
2687 char nm[20];
2688 set_bit(In_sync, &rdev->flags);
2689 conf->working_disks++;
2690 added_devices++;
2691 sprintf(nm, "rd%d", rdev->raid_disk);
2692 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2693 } else
2694 break;
2695 }
2696
63c70c4f
N
2697 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
2698 mddev->raid_disks = conf->raid_disks;
f6705578
N
2699 mddev->reshape_position = 0;
2700 mddev->sb_dirty = 1;
2701
29269553
N
2702 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2703 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2704 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
2705 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
2706 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
2707 "%s_reshape");
2708 if (!mddev->sync_thread) {
2709 mddev->recovery = 0;
2710 spin_lock_irq(&conf->device_lock);
2711 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
2712 conf->expand_progress = MaxSector;
2713 spin_unlock_irq(&conf->device_lock);
2714 return -EAGAIN;
2715 }
2716 md_wakeup_thread(mddev->sync_thread);
2717 md_new_event(mddev);
2718 return 0;
2719}
2720#endif
2721
2722static void end_reshape(raid5_conf_t *conf)
2723{
2724 struct block_device *bdev;
2725
f6705578
N
2726 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
2727 conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
2728 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
2729 conf->mddev->changed = 1;
2730
2731 bdev = bdget_disk(conf->mddev->gendisk, 0);
2732 if (bdev) {
2733 mutex_lock(&bdev->bd_inode->i_mutex);
2734 i_size_write(bdev->bd_inode, conf->mddev->array_size << 10);
2735 mutex_unlock(&bdev->bd_inode->i_mutex);
2736 bdput(bdev);
2737 }
2738 spin_lock_irq(&conf->device_lock);
2739 conf->expand_progress = MaxSector;
2740 spin_unlock_irq(&conf->device_lock);
2741 conf->mddev->reshape_position = MaxSector;
29269553 2742 }
29269553
N
2743}
2744
72626685
N
2745static void raid5_quiesce(mddev_t *mddev, int state)
2746{
2747 raid5_conf_t *conf = mddev_to_conf(mddev);
2748
2749 switch(state) {
e464eafd
N
2750 case 2: /* resume for a suspend */
2751 wake_up(&conf->wait_for_overlap);
2752 break;
2753
72626685
N
2754 case 1: /* stop all writes */
2755 spin_lock_irq(&conf->device_lock);
2756 conf->quiesce = 1;
2757 wait_event_lock_irq(conf->wait_for_stripe,
2758 atomic_read(&conf->active_stripes) == 0,
2759 conf->device_lock, /* nothing */);
2760 spin_unlock_irq(&conf->device_lock);
2761 break;
2762
2763 case 0: /* re-enable writes */
2764 spin_lock_irq(&conf->device_lock);
2765 conf->quiesce = 0;
2766 wake_up(&conf->wait_for_stripe);
e464eafd 2767 wake_up(&conf->wait_for_overlap);
72626685
N
2768 spin_unlock_irq(&conf->device_lock);
2769 break;
2770 }
72626685 2771}
b15c2e57 2772
2604b703 2773static struct mdk_personality raid5_personality =
1da177e4
LT
2774{
2775 .name = "raid5",
2604b703 2776 .level = 5,
1da177e4
LT
2777 .owner = THIS_MODULE,
2778 .make_request = make_request,
2779 .run = run,
2780 .stop = stop,
2781 .status = status,
2782 .error_handler = error,
2783 .hot_add_disk = raid5_add_disk,
2784 .hot_remove_disk= raid5_remove_disk,
2785 .spare_active = raid5_spare_active,
2786 .sync_request = sync_request,
2787 .resize = raid5_resize,
29269553 2788#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f
N
2789 .check_reshape = raid5_check_reshape,
2790 .start_reshape = raid5_start_reshape,
29269553 2791#endif
72626685 2792 .quiesce = raid5_quiesce,
1da177e4
LT
2793};
2794
2604b703 2795static struct mdk_personality raid4_personality =
1da177e4 2796{
2604b703
N
2797 .name = "raid4",
2798 .level = 4,
2799 .owner = THIS_MODULE,
2800 .make_request = make_request,
2801 .run = run,
2802 .stop = stop,
2803 .status = status,
2804 .error_handler = error,
2805 .hot_add_disk = raid5_add_disk,
2806 .hot_remove_disk= raid5_remove_disk,
2807 .spare_active = raid5_spare_active,
2808 .sync_request = sync_request,
2809 .resize = raid5_resize,
2810 .quiesce = raid5_quiesce,
2811};
2812
2813static int __init raid5_init(void)
2814{
2815 register_md_personality(&raid5_personality);
2816 register_md_personality(&raid4_personality);
2817 return 0;
1da177e4
LT
2818}
2819
2604b703 2820static void raid5_exit(void)
1da177e4 2821{
2604b703
N
2822 unregister_md_personality(&raid5_personality);
2823 unregister_md_personality(&raid4_personality);
1da177e4
LT
2824}
2825
2826module_init(raid5_init);
2827module_exit(raid5_exit);
2828MODULE_LICENSE("GPL");
2829MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
2830MODULE_ALIAS("md-raid5");
2831MODULE_ALIAS("md-raid4");
2604b703
N
2832MODULE_ALIAS("md-level-5");
2833MODULE_ALIAS("md-level-4");