md/raid5: If there is a spare and a want_replacement device, start replacement.
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
43b2e5d8 56#include "md.h"
bff61975 57#include "raid5.h"
54071b38 58#include "raid0.h"
ef740c37 59#include "bitmap.h"
72626685 60
1da177e4
LT
61/*
62 * Stripe cache
63 */
64
65#define NR_STRIPES 256
66#define STRIPE_SIZE PAGE_SIZE
67#define STRIPE_SHIFT (PAGE_SHIFT - 9)
68#define STRIPE_SECTORS (STRIPE_SIZE>>9)
69#define IO_THRESHOLD 1
8b3e6cdc 70#define BYPASS_THRESHOLD 1
fccddba0 71#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
72#define HASH_MASK (NR_HASH - 1)
73
d1688a6d 74static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
75{
76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78}
1da177e4
LT
79
80/* bio's attached to a stripe+device for I/O are linked together in bi_sector
81 * order without overlap. There may be several bio's per stripe+device, and
82 * a bio could span several devices.
83 * When walking this list for a particular stripe+device, we must never proceed
84 * beyond a bio that extends past this device, as the next bio might no longer
85 * be valid.
db298e19 86 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
87 * of the current stripe+device
88 */
db298e19
N
89static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90{
91 int sectors = bio->bi_size >> 9;
92 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 return bio->bi_next;
94 else
95 return NULL;
96}
1da177e4 97
960e739d 98/*
5b99c2ff
JA
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
101 */
102static inline int raid5_bi_phys_segments(struct bio *bio)
103{
5b99c2ff 104 return bio->bi_phys_segments & 0xffff;
960e739d
JA
105}
106
107static inline int raid5_bi_hw_segments(struct bio *bio)
108{
5b99c2ff 109 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
110}
111
112static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113{
114 --bio->bi_phys_segments;
115 return raid5_bi_phys_segments(bio);
116}
117
118static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119{
120 unsigned short val = raid5_bi_hw_segments(bio);
121
122 --val;
5b99c2ff 123 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
124 return val;
125}
126
127static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128{
9b2dc8b6 129 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
960e739d
JA
130}
131
d0dabf7e
N
132/* Find first data disk in a raid6 stripe */
133static inline int raid6_d0(struct stripe_head *sh)
134{
67cc2b81
N
135 if (sh->ddf_layout)
136 /* ddf always start from first device */
137 return 0;
138 /* md starts just after Q block */
d0dabf7e
N
139 if (sh->qd_idx == sh->disks - 1)
140 return 0;
141 else
142 return sh->qd_idx + 1;
143}
16a53ecc
N
144static inline int raid6_next_disk(int disk, int raid_disks)
145{
146 disk++;
147 return (disk < raid_disks) ? disk : 0;
148}
a4456856 149
d0dabf7e
N
150/* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
154 */
67cc2b81
N
155static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 int *count, int syndrome_disks)
d0dabf7e 157{
6629542e 158 int slot = *count;
67cc2b81 159
e4424fee 160 if (sh->ddf_layout)
6629542e 161 (*count)++;
d0dabf7e 162 if (idx == sh->pd_idx)
67cc2b81 163 return syndrome_disks;
d0dabf7e 164 if (idx == sh->qd_idx)
67cc2b81 165 return syndrome_disks + 1;
e4424fee 166 if (!sh->ddf_layout)
6629542e 167 (*count)++;
d0dabf7e
N
168 return slot;
169}
170
a4456856
DW
171static void return_io(struct bio *return_bi)
172{
173 struct bio *bi = return_bi;
174 while (bi) {
a4456856
DW
175
176 return_bi = bi->bi_next;
177 bi->bi_next = NULL;
178 bi->bi_size = 0;
0e13fe23 179 bio_endio(bi, 0);
a4456856
DW
180 bi = return_bi;
181 }
182}
183
d1688a6d 184static void print_raid5_conf (struct r5conf *conf);
1da177e4 185
600aa109
DW
186static int stripe_operations_active(struct stripe_head *sh)
187{
188 return sh->check_state || sh->reconstruct_state ||
189 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191}
192
d1688a6d 193static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
1da177e4
LT
194{
195 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
196 BUG_ON(!list_empty(&sh->lru));
197 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 198 if (test_bit(STRIPE_HANDLE, &sh->state)) {
482c0834 199 if (test_bit(STRIPE_DELAYED, &sh->state))
1da177e4 200 list_add_tail(&sh->lru, &conf->delayed_list);
482c0834
N
201 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202 sh->bm_seq - conf->seq_write > 0)
72626685 203 list_add_tail(&sh->lru, &conf->bitmap_list);
482c0834 204 else {
72626685 205 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 206 list_add_tail(&sh->lru, &conf->handle_list);
72626685 207 }
1da177e4
LT
208 md_wakeup_thread(conf->mddev->thread);
209 } else {
600aa109 210 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
211 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
212 atomic_dec(&conf->preread_active_stripes);
213 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
214 md_wakeup_thread(conf->mddev->thread);
215 }
1da177e4 216 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
217 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
218 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 219 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
220 if (conf->retry_read_aligned)
221 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 222 }
1da177e4
LT
223 }
224 }
225}
d0dabf7e 226
1da177e4
LT
227static void release_stripe(struct stripe_head *sh)
228{
d1688a6d 229 struct r5conf *conf = sh->raid_conf;
1da177e4 230 unsigned long flags;
16a53ecc 231
1da177e4
LT
232 spin_lock_irqsave(&conf->device_lock, flags);
233 __release_stripe(conf, sh);
234 spin_unlock_irqrestore(&conf->device_lock, flags);
235}
236
fccddba0 237static inline void remove_hash(struct stripe_head *sh)
1da177e4 238{
45b4233c
DW
239 pr_debug("remove_hash(), stripe %llu\n",
240 (unsigned long long)sh->sector);
1da177e4 241
fccddba0 242 hlist_del_init(&sh->hash);
1da177e4
LT
243}
244
d1688a6d 245static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 246{
fccddba0 247 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 248
45b4233c
DW
249 pr_debug("insert_hash(), stripe %llu\n",
250 (unsigned long long)sh->sector);
1da177e4 251
fccddba0 252 hlist_add_head(&sh->hash, hp);
1da177e4
LT
253}
254
255
256/* find an idle stripe, make sure it is unhashed, and return it. */
d1688a6d 257static struct stripe_head *get_free_stripe(struct r5conf *conf)
1da177e4
LT
258{
259 struct stripe_head *sh = NULL;
260 struct list_head *first;
261
1da177e4
LT
262 if (list_empty(&conf->inactive_list))
263 goto out;
264 first = conf->inactive_list.next;
265 sh = list_entry(first, struct stripe_head, lru);
266 list_del_init(first);
267 remove_hash(sh);
268 atomic_inc(&conf->active_stripes);
269out:
270 return sh;
271}
272
e4e11e38 273static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
274{
275 struct page *p;
276 int i;
e4e11e38 277 int num = sh->raid_conf->pool_size;
1da177e4 278
e4e11e38 279 for (i = 0; i < num ; i++) {
1da177e4
LT
280 p = sh->dev[i].page;
281 if (!p)
282 continue;
283 sh->dev[i].page = NULL;
2d1f3b5d 284 put_page(p);
1da177e4
LT
285 }
286}
287
e4e11e38 288static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
289{
290 int i;
e4e11e38 291 int num = sh->raid_conf->pool_size;
1da177e4 292
e4e11e38 293 for (i = 0; i < num; i++) {
1da177e4
LT
294 struct page *page;
295
296 if (!(page = alloc_page(GFP_KERNEL))) {
297 return 1;
298 }
299 sh->dev[i].page = page;
300 }
301 return 0;
302}
303
784052ec 304static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 305static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 306 struct stripe_head *sh);
1da177e4 307
b5663ba4 308static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 309{
d1688a6d 310 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 311 int i;
1da177e4 312
78bafebd
ES
313 BUG_ON(atomic_read(&sh->count) != 0);
314 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 315 BUG_ON(stripe_operations_active(sh));
d84e0f10 316
45b4233c 317 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
318 (unsigned long long)sh->sector);
319
320 remove_hash(sh);
16a53ecc 321
86b42c71 322 sh->generation = conf->generation - previous;
b5663ba4 323 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 324 sh->sector = sector;
911d4ee8 325 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
326 sh->state = 0;
327
7ecaa1e6
N
328
329 for (i = sh->disks; i--; ) {
1da177e4
LT
330 struct r5dev *dev = &sh->dev[i];
331
d84e0f10 332 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 333 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 334 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 335 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 336 dev->read, dev->towrite, dev->written,
1da177e4 337 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 338 WARN_ON(1);
1da177e4
LT
339 }
340 dev->flags = 0;
784052ec 341 raid5_build_block(sh, i, previous);
1da177e4
LT
342 }
343 insert_hash(conf, sh);
344}
345
d1688a6d 346static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 347 short generation)
1da177e4
LT
348{
349 struct stripe_head *sh;
fccddba0 350 struct hlist_node *hn;
1da177e4 351
45b4233c 352 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 353 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 354 if (sh->sector == sector && sh->generation == generation)
1da177e4 355 return sh;
45b4233c 356 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
357 return NULL;
358}
359
674806d6
N
360/*
361 * Need to check if array has failed when deciding whether to:
362 * - start an array
363 * - remove non-faulty devices
364 * - add a spare
365 * - allow a reshape
366 * This determination is simple when no reshape is happening.
367 * However if there is a reshape, we need to carefully check
368 * both the before and after sections.
369 * This is because some failed devices may only affect one
370 * of the two sections, and some non-in_sync devices may
371 * be insync in the section most affected by failed devices.
372 */
908f4fbd 373static int calc_degraded(struct r5conf *conf)
674806d6 374{
908f4fbd 375 int degraded, degraded2;
674806d6 376 int i;
674806d6
N
377
378 rcu_read_lock();
379 degraded = 0;
380 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 381 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
674806d6
N
382 if (!rdev || test_bit(Faulty, &rdev->flags))
383 degraded++;
384 else if (test_bit(In_sync, &rdev->flags))
385 ;
386 else
387 /* not in-sync or faulty.
388 * If the reshape increases the number of devices,
389 * this is being recovered by the reshape, so
390 * this 'previous' section is not in_sync.
391 * If the number of devices is being reduced however,
392 * the device can only be part of the array if
393 * we are reverting a reshape, so this section will
394 * be in-sync.
395 */
396 if (conf->raid_disks >= conf->previous_raid_disks)
397 degraded++;
398 }
399 rcu_read_unlock();
908f4fbd
N
400 if (conf->raid_disks == conf->previous_raid_disks)
401 return degraded;
674806d6 402 rcu_read_lock();
908f4fbd 403 degraded2 = 0;
674806d6 404 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 405 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
674806d6 406 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 407 degraded2++;
674806d6
N
408 else if (test_bit(In_sync, &rdev->flags))
409 ;
410 else
411 /* not in-sync or faulty.
412 * If reshape increases the number of devices, this
413 * section has already been recovered, else it
414 * almost certainly hasn't.
415 */
416 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 417 degraded2++;
674806d6
N
418 }
419 rcu_read_unlock();
908f4fbd
N
420 if (degraded2 > degraded)
421 return degraded2;
422 return degraded;
423}
424
425static int has_failed(struct r5conf *conf)
426{
427 int degraded;
428
429 if (conf->mddev->reshape_position == MaxSector)
430 return conf->mddev->degraded > conf->max_degraded;
431
432 degraded = calc_degraded(conf);
674806d6
N
433 if (degraded > conf->max_degraded)
434 return 1;
435 return 0;
436}
437
b5663ba4 438static struct stripe_head *
d1688a6d 439get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 440 int previous, int noblock, int noquiesce)
1da177e4
LT
441{
442 struct stripe_head *sh;
443
45b4233c 444 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
445
446 spin_lock_irq(&conf->device_lock);
447
448 do {
72626685 449 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 450 conf->quiesce == 0 || noquiesce,
72626685 451 conf->device_lock, /* nothing */);
86b42c71 452 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
453 if (!sh) {
454 if (!conf->inactive_blocked)
455 sh = get_free_stripe(conf);
456 if (noblock && sh == NULL)
457 break;
458 if (!sh) {
459 conf->inactive_blocked = 1;
460 wait_event_lock_irq(conf->wait_for_stripe,
461 !list_empty(&conf->inactive_list) &&
5036805b
N
462 (atomic_read(&conf->active_stripes)
463 < (conf->max_nr_stripes *3/4)
1da177e4
LT
464 || !conf->inactive_blocked),
465 conf->device_lock,
7c13edc8 466 );
1da177e4
LT
467 conf->inactive_blocked = 0;
468 } else
b5663ba4 469 init_stripe(sh, sector, previous);
1da177e4
LT
470 } else {
471 if (atomic_read(&sh->count)) {
ab69ae12
N
472 BUG_ON(!list_empty(&sh->lru)
473 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
474 } else {
475 if (!test_bit(STRIPE_HANDLE, &sh->state))
476 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
477 if (list_empty(&sh->lru) &&
478 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
479 BUG();
480 list_del_init(&sh->lru);
1da177e4
LT
481 }
482 }
483 } while (sh == NULL);
484
485 if (sh)
486 atomic_inc(&sh->count);
487
488 spin_unlock_irq(&conf->device_lock);
489 return sh;
490}
491
6712ecf8
N
492static void
493raid5_end_read_request(struct bio *bi, int error);
494static void
495raid5_end_write_request(struct bio *bi, int error);
91c00924 496
c4e5ac0a 497static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 498{
d1688a6d 499 struct r5conf *conf = sh->raid_conf;
91c00924
DW
500 int i, disks = sh->disks;
501
502 might_sleep();
503
504 for (i = disks; i--; ) {
505 int rw;
9a3e1101 506 int replace_only = 0;
977df362
N
507 struct bio *bi, *rbi;
508 struct md_rdev *rdev, *rrdev = NULL;
e9c7469b
TH
509 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
510 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
511 rw = WRITE_FUA;
512 else
513 rw = WRITE;
514 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 515 rw = READ;
9a3e1101
N
516 else if (test_and_clear_bit(R5_WantReplace,
517 &sh->dev[i].flags)) {
518 rw = WRITE;
519 replace_only = 1;
520 } else
91c00924
DW
521 continue;
522
523 bi = &sh->dev[i].req;
977df362 524 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924
DW
525
526 bi->bi_rw = rw;
977df362
N
527 rbi->bi_rw = rw;
528 if (rw & WRITE) {
91c00924 529 bi->bi_end_io = raid5_end_write_request;
977df362
N
530 rbi->bi_end_io = raid5_end_write_request;
531 } else
91c00924
DW
532 bi->bi_end_io = raid5_end_read_request;
533
534 rcu_read_lock();
9a3e1101 535 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
536 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
537 rdev = rcu_dereference(conf->disks[i].rdev);
538 if (!rdev) {
539 rdev = rrdev;
540 rrdev = NULL;
541 }
9a3e1101
N
542 if (rw & WRITE) {
543 if (replace_only)
544 rdev = NULL;
dd054fce
N
545 if (rdev == rrdev)
546 /* We raced and saw duplicates */
547 rrdev = NULL;
9a3e1101 548 } else {
dd054fce 549 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
9a3e1101
N
550 rdev = rrdev;
551 rrdev = NULL;
552 }
977df362 553
91c00924
DW
554 if (rdev && test_bit(Faulty, &rdev->flags))
555 rdev = NULL;
556 if (rdev)
557 atomic_inc(&rdev->nr_pending);
977df362
N
558 if (rrdev && test_bit(Faulty, &rrdev->flags))
559 rrdev = NULL;
560 if (rrdev)
561 atomic_inc(&rrdev->nr_pending);
91c00924
DW
562 rcu_read_unlock();
563
73e92e51 564 /* We have already checked bad blocks for reads. Now
977df362
N
565 * need to check for writes. We never accept write errors
566 * on the replacement, so we don't to check rrdev.
73e92e51
N
567 */
568 while ((rw & WRITE) && rdev &&
569 test_bit(WriteErrorSeen, &rdev->flags)) {
570 sector_t first_bad;
571 int bad_sectors;
572 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
573 &first_bad, &bad_sectors);
574 if (!bad)
575 break;
576
577 if (bad < 0) {
578 set_bit(BlockedBadBlocks, &rdev->flags);
579 if (!conf->mddev->external &&
580 conf->mddev->flags) {
581 /* It is very unlikely, but we might
582 * still need to write out the
583 * bad block log - better give it
584 * a chance*/
585 md_check_recovery(conf->mddev);
586 }
587 md_wait_for_blocked_rdev(rdev, conf->mddev);
588 } else {
589 /* Acknowledged bad block - skip the write */
590 rdev_dec_pending(rdev, conf->mddev);
591 rdev = NULL;
592 }
593 }
594
91c00924 595 if (rdev) {
9a3e1101
N
596 if (s->syncing || s->expanding || s->expanded
597 || s->replacing)
91c00924
DW
598 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
599
2b7497f0
DW
600 set_bit(STRIPE_IO_STARTED, &sh->state);
601
91c00924
DW
602 bi->bi_bdev = rdev->bdev;
603 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 604 __func__, (unsigned long long)sh->sector,
91c00924
DW
605 bi->bi_rw, i);
606 atomic_inc(&sh->count);
607 bi->bi_sector = sh->sector + rdev->data_offset;
608 bi->bi_flags = 1 << BIO_UPTODATE;
91c00924 609 bi->bi_idx = 0;
91c00924
DW
610 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
611 bi->bi_io_vec[0].bv_offset = 0;
612 bi->bi_size = STRIPE_SIZE;
613 bi->bi_next = NULL;
977df362
N
614 if (rrdev)
615 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
91c00924 616 generic_make_request(bi);
977df362
N
617 }
618 if (rrdev) {
9a3e1101
N
619 if (s->syncing || s->expanding || s->expanded
620 || s->replacing)
977df362
N
621 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
622
623 set_bit(STRIPE_IO_STARTED, &sh->state);
624
625 rbi->bi_bdev = rrdev->bdev;
626 pr_debug("%s: for %llu schedule op %ld on "
627 "replacement disc %d\n",
628 __func__, (unsigned long long)sh->sector,
629 rbi->bi_rw, i);
630 atomic_inc(&sh->count);
631 rbi->bi_sector = sh->sector + rrdev->data_offset;
632 rbi->bi_flags = 1 << BIO_UPTODATE;
633 rbi->bi_idx = 0;
634 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
635 rbi->bi_io_vec[0].bv_offset = 0;
636 rbi->bi_size = STRIPE_SIZE;
637 rbi->bi_next = NULL;
638 generic_make_request(rbi);
639 }
640 if (!rdev && !rrdev) {
b062962e 641 if (rw & WRITE)
91c00924
DW
642 set_bit(STRIPE_DEGRADED, &sh->state);
643 pr_debug("skip op %ld on disc %d for sector %llu\n",
644 bi->bi_rw, i, (unsigned long long)sh->sector);
645 clear_bit(R5_LOCKED, &sh->dev[i].flags);
646 set_bit(STRIPE_HANDLE, &sh->state);
647 }
648 }
649}
650
651static struct dma_async_tx_descriptor *
652async_copy_data(int frombio, struct bio *bio, struct page *page,
653 sector_t sector, struct dma_async_tx_descriptor *tx)
654{
655 struct bio_vec *bvl;
656 struct page *bio_page;
657 int i;
658 int page_offset;
a08abd8c 659 struct async_submit_ctl submit;
0403e382 660 enum async_tx_flags flags = 0;
91c00924
DW
661
662 if (bio->bi_sector >= sector)
663 page_offset = (signed)(bio->bi_sector - sector) * 512;
664 else
665 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 666
0403e382
DW
667 if (frombio)
668 flags |= ASYNC_TX_FENCE;
669 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
670
91c00924 671 bio_for_each_segment(bvl, bio, i) {
fcde9075 672 int len = bvl->bv_len;
91c00924
DW
673 int clen;
674 int b_offset = 0;
675
676 if (page_offset < 0) {
677 b_offset = -page_offset;
678 page_offset += b_offset;
679 len -= b_offset;
680 }
681
682 if (len > 0 && page_offset + len > STRIPE_SIZE)
683 clen = STRIPE_SIZE - page_offset;
684 else
685 clen = len;
686
687 if (clen > 0) {
fcde9075
NK
688 b_offset += bvl->bv_offset;
689 bio_page = bvl->bv_page;
91c00924
DW
690 if (frombio)
691 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 692 b_offset, clen, &submit);
91c00924
DW
693 else
694 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 695 page_offset, clen, &submit);
91c00924 696 }
a08abd8c
DW
697 /* chain the operations */
698 submit.depend_tx = tx;
699
91c00924
DW
700 if (clen < len) /* hit end of page */
701 break;
702 page_offset += len;
703 }
704
705 return tx;
706}
707
708static void ops_complete_biofill(void *stripe_head_ref)
709{
710 struct stripe_head *sh = stripe_head_ref;
711 struct bio *return_bi = NULL;
d1688a6d 712 struct r5conf *conf = sh->raid_conf;
e4d84909 713 int i;
91c00924 714
e46b272b 715 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
716 (unsigned long long)sh->sector);
717
718 /* clear completed biofills */
83de75cc 719 spin_lock_irq(&conf->device_lock);
91c00924
DW
720 for (i = sh->disks; i--; ) {
721 struct r5dev *dev = &sh->dev[i];
91c00924
DW
722
723 /* acknowledge completion of a biofill operation */
e4d84909
DW
724 /* and check if we need to reply to a read request,
725 * new R5_Wantfill requests are held off until
83de75cc 726 * !STRIPE_BIOFILL_RUN
e4d84909
DW
727 */
728 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 729 struct bio *rbi, *rbi2;
91c00924 730
91c00924
DW
731 BUG_ON(!dev->read);
732 rbi = dev->read;
733 dev->read = NULL;
734 while (rbi && rbi->bi_sector <
735 dev->sector + STRIPE_SECTORS) {
736 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 737 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
738 rbi->bi_next = return_bi;
739 return_bi = rbi;
740 }
91c00924
DW
741 rbi = rbi2;
742 }
743 }
744 }
83de75cc
DW
745 spin_unlock_irq(&conf->device_lock);
746 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
747
748 return_io(return_bi);
749
e4d84909 750 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
751 release_stripe(sh);
752}
753
754static void ops_run_biofill(struct stripe_head *sh)
755{
756 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 757 struct r5conf *conf = sh->raid_conf;
a08abd8c 758 struct async_submit_ctl submit;
91c00924
DW
759 int i;
760
e46b272b 761 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
762 (unsigned long long)sh->sector);
763
764 for (i = sh->disks; i--; ) {
765 struct r5dev *dev = &sh->dev[i];
766 if (test_bit(R5_Wantfill, &dev->flags)) {
767 struct bio *rbi;
768 spin_lock_irq(&conf->device_lock);
769 dev->read = rbi = dev->toread;
770 dev->toread = NULL;
771 spin_unlock_irq(&conf->device_lock);
772 while (rbi && rbi->bi_sector <
773 dev->sector + STRIPE_SECTORS) {
774 tx = async_copy_data(0, rbi, dev->page,
775 dev->sector, tx);
776 rbi = r5_next_bio(rbi, dev->sector);
777 }
778 }
779 }
780
781 atomic_inc(&sh->count);
a08abd8c
DW
782 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
783 async_trigger_callback(&submit);
91c00924
DW
784}
785
4e7d2c0a 786static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 787{
4e7d2c0a 788 struct r5dev *tgt;
91c00924 789
4e7d2c0a
DW
790 if (target < 0)
791 return;
91c00924 792
4e7d2c0a 793 tgt = &sh->dev[target];
91c00924
DW
794 set_bit(R5_UPTODATE, &tgt->flags);
795 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
796 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
797}
798
ac6b53b6 799static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
800{
801 struct stripe_head *sh = stripe_head_ref;
91c00924 802
e46b272b 803 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
804 (unsigned long long)sh->sector);
805
ac6b53b6 806 /* mark the computed target(s) as uptodate */
4e7d2c0a 807 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 808 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 809
ecc65c9b
DW
810 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
811 if (sh->check_state == check_state_compute_run)
812 sh->check_state = check_state_compute_result;
91c00924
DW
813 set_bit(STRIPE_HANDLE, &sh->state);
814 release_stripe(sh);
815}
816
d6f38f31
DW
817/* return a pointer to the address conversion region of the scribble buffer */
818static addr_conv_t *to_addr_conv(struct stripe_head *sh,
819 struct raid5_percpu *percpu)
820{
821 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
822}
823
824static struct dma_async_tx_descriptor *
825ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 826{
91c00924 827 int disks = sh->disks;
d6f38f31 828 struct page **xor_srcs = percpu->scribble;
91c00924
DW
829 int target = sh->ops.target;
830 struct r5dev *tgt = &sh->dev[target];
831 struct page *xor_dest = tgt->page;
832 int count = 0;
833 struct dma_async_tx_descriptor *tx;
a08abd8c 834 struct async_submit_ctl submit;
91c00924
DW
835 int i;
836
837 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 838 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
839 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
840
841 for (i = disks; i--; )
842 if (i != target)
843 xor_srcs[count++] = sh->dev[i].page;
844
845 atomic_inc(&sh->count);
846
0403e382 847 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 848 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 849 if (unlikely(count == 1))
a08abd8c 850 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 851 else
a08abd8c 852 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 853
91c00924
DW
854 return tx;
855}
856
ac6b53b6
DW
857/* set_syndrome_sources - populate source buffers for gen_syndrome
858 * @srcs - (struct page *) array of size sh->disks
859 * @sh - stripe_head to parse
860 *
861 * Populates srcs in proper layout order for the stripe and returns the
862 * 'count' of sources to be used in a call to async_gen_syndrome. The P
863 * destination buffer is recorded in srcs[count] and the Q destination
864 * is recorded in srcs[count+1]].
865 */
866static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
867{
868 int disks = sh->disks;
869 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
870 int d0_idx = raid6_d0(sh);
871 int count;
872 int i;
873
874 for (i = 0; i < disks; i++)
5dd33c9a 875 srcs[i] = NULL;
ac6b53b6
DW
876
877 count = 0;
878 i = d0_idx;
879 do {
880 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
881
882 srcs[slot] = sh->dev[i].page;
883 i = raid6_next_disk(i, disks);
884 } while (i != d0_idx);
ac6b53b6 885
e4424fee 886 return syndrome_disks;
ac6b53b6
DW
887}
888
889static struct dma_async_tx_descriptor *
890ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
891{
892 int disks = sh->disks;
893 struct page **blocks = percpu->scribble;
894 int target;
895 int qd_idx = sh->qd_idx;
896 struct dma_async_tx_descriptor *tx;
897 struct async_submit_ctl submit;
898 struct r5dev *tgt;
899 struct page *dest;
900 int i;
901 int count;
902
903 if (sh->ops.target < 0)
904 target = sh->ops.target2;
905 else if (sh->ops.target2 < 0)
906 target = sh->ops.target;
91c00924 907 else
ac6b53b6
DW
908 /* we should only have one valid target */
909 BUG();
910 BUG_ON(target < 0);
911 pr_debug("%s: stripe %llu block: %d\n",
912 __func__, (unsigned long long)sh->sector, target);
913
914 tgt = &sh->dev[target];
915 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
916 dest = tgt->page;
917
918 atomic_inc(&sh->count);
919
920 if (target == qd_idx) {
921 count = set_syndrome_sources(blocks, sh);
922 blocks[count] = NULL; /* regenerating p is not necessary */
923 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
924 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
925 ops_complete_compute, sh,
ac6b53b6
DW
926 to_addr_conv(sh, percpu));
927 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
928 } else {
929 /* Compute any data- or p-drive using XOR */
930 count = 0;
931 for (i = disks; i-- ; ) {
932 if (i == target || i == qd_idx)
933 continue;
934 blocks[count++] = sh->dev[i].page;
935 }
936
0403e382
DW
937 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
938 NULL, ops_complete_compute, sh,
ac6b53b6
DW
939 to_addr_conv(sh, percpu));
940 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
941 }
91c00924 942
91c00924
DW
943 return tx;
944}
945
ac6b53b6
DW
946static struct dma_async_tx_descriptor *
947ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
948{
949 int i, count, disks = sh->disks;
950 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
951 int d0_idx = raid6_d0(sh);
952 int faila = -1, failb = -1;
953 int target = sh->ops.target;
954 int target2 = sh->ops.target2;
955 struct r5dev *tgt = &sh->dev[target];
956 struct r5dev *tgt2 = &sh->dev[target2];
957 struct dma_async_tx_descriptor *tx;
958 struct page **blocks = percpu->scribble;
959 struct async_submit_ctl submit;
960
961 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
962 __func__, (unsigned long long)sh->sector, target, target2);
963 BUG_ON(target < 0 || target2 < 0);
964 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
965 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
966
6c910a78 967 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
968 * slot number conversion for 'faila' and 'failb'
969 */
970 for (i = 0; i < disks ; i++)
5dd33c9a 971 blocks[i] = NULL;
ac6b53b6
DW
972 count = 0;
973 i = d0_idx;
974 do {
975 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
976
977 blocks[slot] = sh->dev[i].page;
978
979 if (i == target)
980 faila = slot;
981 if (i == target2)
982 failb = slot;
983 i = raid6_next_disk(i, disks);
984 } while (i != d0_idx);
ac6b53b6
DW
985
986 BUG_ON(faila == failb);
987 if (failb < faila)
988 swap(faila, failb);
989 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
990 __func__, (unsigned long long)sh->sector, faila, failb);
991
992 atomic_inc(&sh->count);
993
994 if (failb == syndrome_disks+1) {
995 /* Q disk is one of the missing disks */
996 if (faila == syndrome_disks) {
997 /* Missing P+Q, just recompute */
0403e382
DW
998 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
999 ops_complete_compute, sh,
1000 to_addr_conv(sh, percpu));
e4424fee 1001 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1002 STRIPE_SIZE, &submit);
1003 } else {
1004 struct page *dest;
1005 int data_target;
1006 int qd_idx = sh->qd_idx;
1007
1008 /* Missing D+Q: recompute D from P, then recompute Q */
1009 if (target == qd_idx)
1010 data_target = target2;
1011 else
1012 data_target = target;
1013
1014 count = 0;
1015 for (i = disks; i-- ; ) {
1016 if (i == data_target || i == qd_idx)
1017 continue;
1018 blocks[count++] = sh->dev[i].page;
1019 }
1020 dest = sh->dev[data_target].page;
0403e382
DW
1021 init_async_submit(&submit,
1022 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1023 NULL, NULL, NULL,
1024 to_addr_conv(sh, percpu));
ac6b53b6
DW
1025 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1026 &submit);
1027
1028 count = set_syndrome_sources(blocks, sh);
0403e382
DW
1029 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1030 ops_complete_compute, sh,
1031 to_addr_conv(sh, percpu));
ac6b53b6
DW
1032 return async_gen_syndrome(blocks, 0, count+2,
1033 STRIPE_SIZE, &submit);
1034 }
ac6b53b6 1035 } else {
6c910a78
DW
1036 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1037 ops_complete_compute, sh,
1038 to_addr_conv(sh, percpu));
1039 if (failb == syndrome_disks) {
1040 /* We're missing D+P. */
1041 return async_raid6_datap_recov(syndrome_disks+2,
1042 STRIPE_SIZE, faila,
1043 blocks, &submit);
1044 } else {
1045 /* We're missing D+D. */
1046 return async_raid6_2data_recov(syndrome_disks+2,
1047 STRIPE_SIZE, faila, failb,
1048 blocks, &submit);
1049 }
ac6b53b6
DW
1050 }
1051}
1052
1053
91c00924
DW
1054static void ops_complete_prexor(void *stripe_head_ref)
1055{
1056 struct stripe_head *sh = stripe_head_ref;
1057
e46b272b 1058 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1059 (unsigned long long)sh->sector);
91c00924
DW
1060}
1061
1062static struct dma_async_tx_descriptor *
d6f38f31
DW
1063ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1064 struct dma_async_tx_descriptor *tx)
91c00924 1065{
91c00924 1066 int disks = sh->disks;
d6f38f31 1067 struct page **xor_srcs = percpu->scribble;
91c00924 1068 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1069 struct async_submit_ctl submit;
91c00924
DW
1070
1071 /* existing parity data subtracted */
1072 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1073
e46b272b 1074 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1075 (unsigned long long)sh->sector);
1076
1077 for (i = disks; i--; ) {
1078 struct r5dev *dev = &sh->dev[i];
1079 /* Only process blocks that are known to be uptodate */
d8ee0728 1080 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1081 xor_srcs[count++] = dev->page;
1082 }
1083
0403e382 1084 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1085 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1086 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1087
1088 return tx;
1089}
1090
1091static struct dma_async_tx_descriptor *
d8ee0728 1092ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1093{
1094 int disks = sh->disks;
d8ee0728 1095 int i;
91c00924 1096
e46b272b 1097 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1098 (unsigned long long)sh->sector);
1099
1100 for (i = disks; i--; ) {
1101 struct r5dev *dev = &sh->dev[i];
1102 struct bio *chosen;
91c00924 1103
d8ee0728 1104 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1105 struct bio *wbi;
1106
cbe47ec5 1107 spin_lock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1108 chosen = dev->towrite;
1109 dev->towrite = NULL;
1110 BUG_ON(dev->written);
1111 wbi = dev->written = chosen;
cbe47ec5 1112 spin_unlock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1113
1114 while (wbi && wbi->bi_sector <
1115 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1116 if (wbi->bi_rw & REQ_FUA)
1117 set_bit(R5_WantFUA, &dev->flags);
91c00924
DW
1118 tx = async_copy_data(1, wbi, dev->page,
1119 dev->sector, tx);
1120 wbi = r5_next_bio(wbi, dev->sector);
1121 }
1122 }
1123 }
1124
1125 return tx;
1126}
1127
ac6b53b6 1128static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1129{
1130 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1131 int disks = sh->disks;
1132 int pd_idx = sh->pd_idx;
1133 int qd_idx = sh->qd_idx;
1134 int i;
e9c7469b 1135 bool fua = false;
91c00924 1136
e46b272b 1137 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1138 (unsigned long long)sh->sector);
1139
e9c7469b
TH
1140 for (i = disks; i--; )
1141 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1142
91c00924
DW
1143 for (i = disks; i--; ) {
1144 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1145
e9c7469b 1146 if (dev->written || i == pd_idx || i == qd_idx) {
91c00924 1147 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1148 if (fua)
1149 set_bit(R5_WantFUA, &dev->flags);
1150 }
91c00924
DW
1151 }
1152
d8ee0728
DW
1153 if (sh->reconstruct_state == reconstruct_state_drain_run)
1154 sh->reconstruct_state = reconstruct_state_drain_result;
1155 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1156 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1157 else {
1158 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1159 sh->reconstruct_state = reconstruct_state_result;
1160 }
91c00924
DW
1161
1162 set_bit(STRIPE_HANDLE, &sh->state);
1163 release_stripe(sh);
1164}
1165
1166static void
ac6b53b6
DW
1167ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1168 struct dma_async_tx_descriptor *tx)
91c00924 1169{
91c00924 1170 int disks = sh->disks;
d6f38f31 1171 struct page **xor_srcs = percpu->scribble;
a08abd8c 1172 struct async_submit_ctl submit;
91c00924
DW
1173 int count = 0, pd_idx = sh->pd_idx, i;
1174 struct page *xor_dest;
d8ee0728 1175 int prexor = 0;
91c00924 1176 unsigned long flags;
91c00924 1177
e46b272b 1178 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1179 (unsigned long long)sh->sector);
1180
1181 /* check if prexor is active which means only process blocks
1182 * that are part of a read-modify-write (written)
1183 */
d8ee0728
DW
1184 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1185 prexor = 1;
91c00924
DW
1186 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1187 for (i = disks; i--; ) {
1188 struct r5dev *dev = &sh->dev[i];
1189 if (dev->written)
1190 xor_srcs[count++] = dev->page;
1191 }
1192 } else {
1193 xor_dest = sh->dev[pd_idx].page;
1194 for (i = disks; i--; ) {
1195 struct r5dev *dev = &sh->dev[i];
1196 if (i != pd_idx)
1197 xor_srcs[count++] = dev->page;
1198 }
1199 }
1200
91c00924
DW
1201 /* 1/ if we prexor'd then the dest is reused as a source
1202 * 2/ if we did not prexor then we are redoing the parity
1203 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1204 * for the synchronous xor case
1205 */
88ba2aa5 1206 flags = ASYNC_TX_ACK |
91c00924
DW
1207 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1208
1209 atomic_inc(&sh->count);
1210
ac6b53b6 1211 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1212 to_addr_conv(sh, percpu));
a08abd8c
DW
1213 if (unlikely(count == 1))
1214 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1215 else
1216 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1217}
1218
ac6b53b6
DW
1219static void
1220ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1221 struct dma_async_tx_descriptor *tx)
1222{
1223 struct async_submit_ctl submit;
1224 struct page **blocks = percpu->scribble;
1225 int count;
1226
1227 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1228
1229 count = set_syndrome_sources(blocks, sh);
1230
1231 atomic_inc(&sh->count);
1232
1233 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1234 sh, to_addr_conv(sh, percpu));
1235 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1236}
1237
1238static void ops_complete_check(void *stripe_head_ref)
1239{
1240 struct stripe_head *sh = stripe_head_ref;
91c00924 1241
e46b272b 1242 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1243 (unsigned long long)sh->sector);
1244
ecc65c9b 1245 sh->check_state = check_state_check_result;
91c00924
DW
1246 set_bit(STRIPE_HANDLE, &sh->state);
1247 release_stripe(sh);
1248}
1249
ac6b53b6 1250static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1251{
91c00924 1252 int disks = sh->disks;
ac6b53b6
DW
1253 int pd_idx = sh->pd_idx;
1254 int qd_idx = sh->qd_idx;
1255 struct page *xor_dest;
d6f38f31 1256 struct page **xor_srcs = percpu->scribble;
91c00924 1257 struct dma_async_tx_descriptor *tx;
a08abd8c 1258 struct async_submit_ctl submit;
ac6b53b6
DW
1259 int count;
1260 int i;
91c00924 1261
e46b272b 1262 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1263 (unsigned long long)sh->sector);
1264
ac6b53b6
DW
1265 count = 0;
1266 xor_dest = sh->dev[pd_idx].page;
1267 xor_srcs[count++] = xor_dest;
91c00924 1268 for (i = disks; i--; ) {
ac6b53b6
DW
1269 if (i == pd_idx || i == qd_idx)
1270 continue;
1271 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1272 }
1273
d6f38f31
DW
1274 init_async_submit(&submit, 0, NULL, NULL, NULL,
1275 to_addr_conv(sh, percpu));
099f53cb 1276 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1277 &sh->ops.zero_sum_result, &submit);
91c00924 1278
91c00924 1279 atomic_inc(&sh->count);
a08abd8c
DW
1280 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1281 tx = async_trigger_callback(&submit);
91c00924
DW
1282}
1283
ac6b53b6
DW
1284static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1285{
1286 struct page **srcs = percpu->scribble;
1287 struct async_submit_ctl submit;
1288 int count;
1289
1290 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1291 (unsigned long long)sh->sector, checkp);
1292
1293 count = set_syndrome_sources(srcs, sh);
1294 if (!checkp)
1295 srcs[count] = NULL;
91c00924 1296
91c00924 1297 atomic_inc(&sh->count);
ac6b53b6
DW
1298 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1299 sh, to_addr_conv(sh, percpu));
1300 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1301 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1302}
1303
417b8d4a 1304static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1305{
1306 int overlap_clear = 0, i, disks = sh->disks;
1307 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1308 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1309 int level = conf->level;
d6f38f31
DW
1310 struct raid5_percpu *percpu;
1311 unsigned long cpu;
91c00924 1312
d6f38f31
DW
1313 cpu = get_cpu();
1314 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1315 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1316 ops_run_biofill(sh);
1317 overlap_clear++;
1318 }
1319
7b3a871e 1320 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1321 if (level < 6)
1322 tx = ops_run_compute5(sh, percpu);
1323 else {
1324 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1325 tx = ops_run_compute6_1(sh, percpu);
1326 else
1327 tx = ops_run_compute6_2(sh, percpu);
1328 }
1329 /* terminate the chain if reconstruct is not set to be run */
1330 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1331 async_tx_ack(tx);
1332 }
91c00924 1333
600aa109 1334 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1335 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1336
600aa109 1337 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1338 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1339 overlap_clear++;
1340 }
1341
ac6b53b6
DW
1342 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1343 if (level < 6)
1344 ops_run_reconstruct5(sh, percpu, tx);
1345 else
1346 ops_run_reconstruct6(sh, percpu, tx);
1347 }
91c00924 1348
ac6b53b6
DW
1349 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1350 if (sh->check_state == check_state_run)
1351 ops_run_check_p(sh, percpu);
1352 else if (sh->check_state == check_state_run_q)
1353 ops_run_check_pq(sh, percpu, 0);
1354 else if (sh->check_state == check_state_run_pq)
1355 ops_run_check_pq(sh, percpu, 1);
1356 else
1357 BUG();
1358 }
91c00924 1359
91c00924
DW
1360 if (overlap_clear)
1361 for (i = disks; i--; ) {
1362 struct r5dev *dev = &sh->dev[i];
1363 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1364 wake_up(&sh->raid_conf->wait_for_overlap);
1365 }
d6f38f31 1366 put_cpu();
91c00924
DW
1367}
1368
417b8d4a
DW
1369#ifdef CONFIG_MULTICORE_RAID456
1370static void async_run_ops(void *param, async_cookie_t cookie)
1371{
1372 struct stripe_head *sh = param;
1373 unsigned long ops_request = sh->ops.request;
1374
1375 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1376 wake_up(&sh->ops.wait_for_ops);
1377
1378 __raid_run_ops(sh, ops_request);
1379 release_stripe(sh);
1380}
1381
1382static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1383{
1384 /* since handle_stripe can be called outside of raid5d context
1385 * we need to ensure sh->ops.request is de-staged before another
1386 * request arrives
1387 */
1388 wait_event(sh->ops.wait_for_ops,
1389 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1390 sh->ops.request = ops_request;
1391
1392 atomic_inc(&sh->count);
1393 async_schedule(async_run_ops, sh);
1394}
1395#else
1396#define raid_run_ops __raid_run_ops
1397#endif
1398
d1688a6d 1399static int grow_one_stripe(struct r5conf *conf)
1da177e4
LT
1400{
1401 struct stripe_head *sh;
6ce32846 1402 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1403 if (!sh)
1404 return 0;
6ce32846 1405
3f294f4f 1406 sh->raid_conf = conf;
417b8d4a
DW
1407 #ifdef CONFIG_MULTICORE_RAID456
1408 init_waitqueue_head(&sh->ops.wait_for_ops);
1409 #endif
3f294f4f 1410
e4e11e38
N
1411 if (grow_buffers(sh)) {
1412 shrink_buffers(sh);
3f294f4f
N
1413 kmem_cache_free(conf->slab_cache, sh);
1414 return 0;
1415 }
1416 /* we just created an active stripe so... */
1417 atomic_set(&sh->count, 1);
1418 atomic_inc(&conf->active_stripes);
1419 INIT_LIST_HEAD(&sh->lru);
1420 release_stripe(sh);
1421 return 1;
1422}
1423
d1688a6d 1424static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 1425{
e18b890b 1426 struct kmem_cache *sc;
5e5e3e78 1427 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1428
f4be6b43
N
1429 if (conf->mddev->gendisk)
1430 sprintf(conf->cache_name[0],
1431 "raid%d-%s", conf->level, mdname(conf->mddev));
1432 else
1433 sprintf(conf->cache_name[0],
1434 "raid%d-%p", conf->level, conf->mddev);
1435 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1436
ad01c9e3
N
1437 conf->active_name = 0;
1438 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1439 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1440 0, 0, NULL);
1da177e4
LT
1441 if (!sc)
1442 return 1;
1443 conf->slab_cache = sc;
ad01c9e3 1444 conf->pool_size = devs;
16a53ecc 1445 while (num--)
3f294f4f 1446 if (!grow_one_stripe(conf))
1da177e4 1447 return 1;
1da177e4
LT
1448 return 0;
1449}
29269553 1450
d6f38f31
DW
1451/**
1452 * scribble_len - return the required size of the scribble region
1453 * @num - total number of disks in the array
1454 *
1455 * The size must be enough to contain:
1456 * 1/ a struct page pointer for each device in the array +2
1457 * 2/ room to convert each entry in (1) to its corresponding dma
1458 * (dma_map_page()) or page (page_address()) address.
1459 *
1460 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1461 * calculate over all devices (not just the data blocks), using zeros in place
1462 * of the P and Q blocks.
1463 */
1464static size_t scribble_len(int num)
1465{
1466 size_t len;
1467
1468 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1469
1470 return len;
1471}
1472
d1688a6d 1473static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
1474{
1475 /* Make all the stripes able to hold 'newsize' devices.
1476 * New slots in each stripe get 'page' set to a new page.
1477 *
1478 * This happens in stages:
1479 * 1/ create a new kmem_cache and allocate the required number of
1480 * stripe_heads.
1481 * 2/ gather all the old stripe_heads and tranfer the pages across
1482 * to the new stripe_heads. This will have the side effect of
1483 * freezing the array as once all stripe_heads have been collected,
1484 * no IO will be possible. Old stripe heads are freed once their
1485 * pages have been transferred over, and the old kmem_cache is
1486 * freed when all stripes are done.
1487 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1488 * we simple return a failre status - no need to clean anything up.
1489 * 4/ allocate new pages for the new slots in the new stripe_heads.
1490 * If this fails, we don't bother trying the shrink the
1491 * stripe_heads down again, we just leave them as they are.
1492 * As each stripe_head is processed the new one is released into
1493 * active service.
1494 *
1495 * Once step2 is started, we cannot afford to wait for a write,
1496 * so we use GFP_NOIO allocations.
1497 */
1498 struct stripe_head *osh, *nsh;
1499 LIST_HEAD(newstripes);
1500 struct disk_info *ndisks;
d6f38f31 1501 unsigned long cpu;
b5470dc5 1502 int err;
e18b890b 1503 struct kmem_cache *sc;
ad01c9e3
N
1504 int i;
1505
1506 if (newsize <= conf->pool_size)
1507 return 0; /* never bother to shrink */
1508
b5470dc5
DW
1509 err = md_allow_write(conf->mddev);
1510 if (err)
1511 return err;
2a2275d6 1512
ad01c9e3
N
1513 /* Step 1 */
1514 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1515 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1516 0, 0, NULL);
ad01c9e3
N
1517 if (!sc)
1518 return -ENOMEM;
1519
1520 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1521 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1522 if (!nsh)
1523 break;
1524
ad01c9e3 1525 nsh->raid_conf = conf;
417b8d4a
DW
1526 #ifdef CONFIG_MULTICORE_RAID456
1527 init_waitqueue_head(&nsh->ops.wait_for_ops);
1528 #endif
ad01c9e3
N
1529
1530 list_add(&nsh->lru, &newstripes);
1531 }
1532 if (i) {
1533 /* didn't get enough, give up */
1534 while (!list_empty(&newstripes)) {
1535 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1536 list_del(&nsh->lru);
1537 kmem_cache_free(sc, nsh);
1538 }
1539 kmem_cache_destroy(sc);
1540 return -ENOMEM;
1541 }
1542 /* Step 2 - Must use GFP_NOIO now.
1543 * OK, we have enough stripes, start collecting inactive
1544 * stripes and copying them over
1545 */
1546 list_for_each_entry(nsh, &newstripes, lru) {
1547 spin_lock_irq(&conf->device_lock);
1548 wait_event_lock_irq(conf->wait_for_stripe,
1549 !list_empty(&conf->inactive_list),
1550 conf->device_lock,
482c0834 1551 );
ad01c9e3
N
1552 osh = get_free_stripe(conf);
1553 spin_unlock_irq(&conf->device_lock);
1554 atomic_set(&nsh->count, 1);
1555 for(i=0; i<conf->pool_size; i++)
1556 nsh->dev[i].page = osh->dev[i].page;
1557 for( ; i<newsize; i++)
1558 nsh->dev[i].page = NULL;
1559 kmem_cache_free(conf->slab_cache, osh);
1560 }
1561 kmem_cache_destroy(conf->slab_cache);
1562
1563 /* Step 3.
1564 * At this point, we are holding all the stripes so the array
1565 * is completely stalled, so now is a good time to resize
d6f38f31 1566 * conf->disks and the scribble region
ad01c9e3
N
1567 */
1568 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1569 if (ndisks) {
1570 for (i=0; i<conf->raid_disks; i++)
1571 ndisks[i] = conf->disks[i];
1572 kfree(conf->disks);
1573 conf->disks = ndisks;
1574 } else
1575 err = -ENOMEM;
1576
d6f38f31
DW
1577 get_online_cpus();
1578 conf->scribble_len = scribble_len(newsize);
1579 for_each_present_cpu(cpu) {
1580 struct raid5_percpu *percpu;
1581 void *scribble;
1582
1583 percpu = per_cpu_ptr(conf->percpu, cpu);
1584 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1585
1586 if (scribble) {
1587 kfree(percpu->scribble);
1588 percpu->scribble = scribble;
1589 } else {
1590 err = -ENOMEM;
1591 break;
1592 }
1593 }
1594 put_online_cpus();
1595
ad01c9e3
N
1596 /* Step 4, return new stripes to service */
1597 while(!list_empty(&newstripes)) {
1598 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1599 list_del_init(&nsh->lru);
d6f38f31 1600
ad01c9e3
N
1601 for (i=conf->raid_disks; i < newsize; i++)
1602 if (nsh->dev[i].page == NULL) {
1603 struct page *p = alloc_page(GFP_NOIO);
1604 nsh->dev[i].page = p;
1605 if (!p)
1606 err = -ENOMEM;
1607 }
1608 release_stripe(nsh);
1609 }
1610 /* critical section pass, GFP_NOIO no longer needed */
1611
1612 conf->slab_cache = sc;
1613 conf->active_name = 1-conf->active_name;
1614 conf->pool_size = newsize;
1615 return err;
1616}
1da177e4 1617
d1688a6d 1618static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
1619{
1620 struct stripe_head *sh;
1621
3f294f4f
N
1622 spin_lock_irq(&conf->device_lock);
1623 sh = get_free_stripe(conf);
1624 spin_unlock_irq(&conf->device_lock);
1625 if (!sh)
1626 return 0;
78bafebd 1627 BUG_ON(atomic_read(&sh->count));
e4e11e38 1628 shrink_buffers(sh);
3f294f4f
N
1629 kmem_cache_free(conf->slab_cache, sh);
1630 atomic_dec(&conf->active_stripes);
1631 return 1;
1632}
1633
d1688a6d 1634static void shrink_stripes(struct r5conf *conf)
3f294f4f
N
1635{
1636 while (drop_one_stripe(conf))
1637 ;
1638
29fc7e3e
N
1639 if (conf->slab_cache)
1640 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1641 conf->slab_cache = NULL;
1642}
1643
6712ecf8 1644static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1645{
99c0fb5f 1646 struct stripe_head *sh = bi->bi_private;
d1688a6d 1647 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1648 int disks = sh->disks, i;
1da177e4 1649 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 1650 char b[BDEVNAME_SIZE];
dd054fce 1651 struct md_rdev *rdev = NULL;
1da177e4 1652
1da177e4
LT
1653
1654 for (i=0 ; i<disks; i++)
1655 if (bi == &sh->dev[i].req)
1656 break;
1657
45b4233c
DW
1658 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1659 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1660 uptodate);
1661 if (i == disks) {
1662 BUG();
6712ecf8 1663 return;
1da177e4 1664 }
14a75d3e 1665 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
1666 /* If replacement finished while this request was outstanding,
1667 * 'replacement' might be NULL already.
1668 * In that case it moved down to 'rdev'.
1669 * rdev is not removed until all requests are finished.
1670 */
14a75d3e 1671 rdev = conf->disks[i].replacement;
dd054fce 1672 if (!rdev)
14a75d3e 1673 rdev = conf->disks[i].rdev;
1da177e4
LT
1674
1675 if (uptodate) {
1da177e4 1676 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1677 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
1678 /* Note that this cannot happen on a
1679 * replacement device. We just fail those on
1680 * any error
1681 */
8bda470e
CD
1682 printk_ratelimited(
1683 KERN_INFO
1684 "md/raid:%s: read error corrected"
1685 " (%lu sectors at %llu on %s)\n",
1686 mdname(conf->mddev), STRIPE_SECTORS,
1687 (unsigned long long)(sh->sector
1688 + rdev->data_offset),
1689 bdevname(rdev->bdev, b));
ddd5115f 1690 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
1691 clear_bit(R5_ReadError, &sh->dev[i].flags);
1692 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1693 }
14a75d3e
N
1694 if (atomic_read(&rdev->read_errors))
1695 atomic_set(&rdev->read_errors, 0);
1da177e4 1696 } else {
14a75d3e 1697 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 1698 int retry = 0;
d6950432 1699
1da177e4 1700 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1701 atomic_inc(&rdev->read_errors);
14a75d3e
N
1702 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1703 printk_ratelimited(
1704 KERN_WARNING
1705 "md/raid:%s: read error on replacement device "
1706 "(sector %llu on %s).\n",
1707 mdname(conf->mddev),
1708 (unsigned long long)(sh->sector
1709 + rdev->data_offset),
1710 bdn);
1711 else if (conf->mddev->degraded >= conf->max_degraded)
8bda470e
CD
1712 printk_ratelimited(
1713 KERN_WARNING
1714 "md/raid:%s: read error not correctable "
1715 "(sector %llu on %s).\n",
1716 mdname(conf->mddev),
1717 (unsigned long long)(sh->sector
1718 + rdev->data_offset),
1719 bdn);
ba22dcbf 1720 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1721 /* Oh, no!!! */
8bda470e
CD
1722 printk_ratelimited(
1723 KERN_WARNING
1724 "md/raid:%s: read error NOT corrected!! "
1725 "(sector %llu on %s).\n",
1726 mdname(conf->mddev),
1727 (unsigned long long)(sh->sector
1728 + rdev->data_offset),
1729 bdn);
d6950432 1730 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1731 > conf->max_nr_stripes)
14f8d26b 1732 printk(KERN_WARNING
0c55e022 1733 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1734 mdname(conf->mddev), bdn);
ba22dcbf
N
1735 else
1736 retry = 1;
1737 if (retry)
1738 set_bit(R5_ReadError, &sh->dev[i].flags);
1739 else {
4e5314b5
N
1740 clear_bit(R5_ReadError, &sh->dev[i].flags);
1741 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1742 md_error(conf->mddev, rdev);
ba22dcbf 1743 }
1da177e4 1744 }
14a75d3e 1745 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
1746 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1747 set_bit(STRIPE_HANDLE, &sh->state);
1748 release_stripe(sh);
1da177e4
LT
1749}
1750
d710e138 1751static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1752{
99c0fb5f 1753 struct stripe_head *sh = bi->bi_private;
d1688a6d 1754 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1755 int disks = sh->disks, i;
977df362 1756 struct md_rdev *uninitialized_var(rdev);
1da177e4 1757 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
1758 sector_t first_bad;
1759 int bad_sectors;
977df362 1760 int replacement = 0;
1da177e4 1761
977df362
N
1762 for (i = 0 ; i < disks; i++) {
1763 if (bi == &sh->dev[i].req) {
1764 rdev = conf->disks[i].rdev;
1da177e4 1765 break;
977df362
N
1766 }
1767 if (bi == &sh->dev[i].rreq) {
1768 rdev = conf->disks[i].replacement;
dd054fce
N
1769 if (rdev)
1770 replacement = 1;
1771 else
1772 /* rdev was removed and 'replacement'
1773 * replaced it. rdev is not removed
1774 * until all requests are finished.
1775 */
1776 rdev = conf->disks[i].rdev;
977df362
N
1777 break;
1778 }
1779 }
45b4233c 1780 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1781 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1782 uptodate);
1783 if (i == disks) {
1784 BUG();
6712ecf8 1785 return;
1da177e4
LT
1786 }
1787
977df362
N
1788 if (replacement) {
1789 if (!uptodate)
1790 md_error(conf->mddev, rdev);
1791 else if (is_badblock(rdev, sh->sector,
1792 STRIPE_SECTORS,
1793 &first_bad, &bad_sectors))
1794 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1795 } else {
1796 if (!uptodate) {
1797 set_bit(WriteErrorSeen, &rdev->flags);
1798 set_bit(R5_WriteError, &sh->dev[i].flags);
1799 } else if (is_badblock(rdev, sh->sector,
1800 STRIPE_SECTORS,
1801 &first_bad, &bad_sectors))
1802 set_bit(R5_MadeGood, &sh->dev[i].flags);
1803 }
1804 rdev_dec_pending(rdev, conf->mddev);
1da177e4 1805
977df362
N
1806 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1807 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 1808 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1809 release_stripe(sh);
1da177e4
LT
1810}
1811
784052ec 1812static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1813
784052ec 1814static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1815{
1816 struct r5dev *dev = &sh->dev[i];
1817
1818 bio_init(&dev->req);
1819 dev->req.bi_io_vec = &dev->vec;
1820 dev->req.bi_vcnt++;
1821 dev->req.bi_max_vecs++;
1da177e4 1822 dev->req.bi_private = sh;
995c4275 1823 dev->vec.bv_page = dev->page;
1da177e4 1824
977df362
N
1825 bio_init(&dev->rreq);
1826 dev->rreq.bi_io_vec = &dev->rvec;
1827 dev->rreq.bi_vcnt++;
1828 dev->rreq.bi_max_vecs++;
1829 dev->rreq.bi_private = sh;
1830 dev->rvec.bv_page = dev->page;
1831
1da177e4 1832 dev->flags = 0;
784052ec 1833 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1834}
1835
fd01b88c 1836static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1837{
1838 char b[BDEVNAME_SIZE];
d1688a6d 1839 struct r5conf *conf = mddev->private;
908f4fbd 1840 unsigned long flags;
0c55e022 1841 pr_debug("raid456: error called\n");
1da177e4 1842
908f4fbd
N
1843 spin_lock_irqsave(&conf->device_lock, flags);
1844 clear_bit(In_sync, &rdev->flags);
1845 mddev->degraded = calc_degraded(conf);
1846 spin_unlock_irqrestore(&conf->device_lock, flags);
1847 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1848
de393cde 1849 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
1850 set_bit(Faulty, &rdev->flags);
1851 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1852 printk(KERN_ALERT
1853 "md/raid:%s: Disk failure on %s, disabling device.\n"
1854 "md/raid:%s: Operation continuing on %d devices.\n",
1855 mdname(mddev),
1856 bdevname(rdev->bdev, b),
1857 mdname(mddev),
1858 conf->raid_disks - mddev->degraded);
16a53ecc 1859}
1da177e4
LT
1860
1861/*
1862 * Input: a 'big' sector number,
1863 * Output: index of the data and parity disk, and the sector # in them.
1864 */
d1688a6d 1865static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
1866 int previous, int *dd_idx,
1867 struct stripe_head *sh)
1da177e4 1868{
6e3b96ed 1869 sector_t stripe, stripe2;
35f2a591 1870 sector_t chunk_number;
1da177e4 1871 unsigned int chunk_offset;
911d4ee8 1872 int pd_idx, qd_idx;
67cc2b81 1873 int ddf_layout = 0;
1da177e4 1874 sector_t new_sector;
e183eaed
N
1875 int algorithm = previous ? conf->prev_algo
1876 : conf->algorithm;
09c9e5fa
AN
1877 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1878 : conf->chunk_sectors;
112bf897
N
1879 int raid_disks = previous ? conf->previous_raid_disks
1880 : conf->raid_disks;
1881 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1882
1883 /* First compute the information on this sector */
1884
1885 /*
1886 * Compute the chunk number and the sector offset inside the chunk
1887 */
1888 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1889 chunk_number = r_sector;
1da177e4
LT
1890
1891 /*
1892 * Compute the stripe number
1893 */
35f2a591
N
1894 stripe = chunk_number;
1895 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 1896 stripe2 = stripe;
1da177e4
LT
1897 /*
1898 * Select the parity disk based on the user selected algorithm.
1899 */
84789554 1900 pd_idx = qd_idx = -1;
16a53ecc
N
1901 switch(conf->level) {
1902 case 4:
911d4ee8 1903 pd_idx = data_disks;
16a53ecc
N
1904 break;
1905 case 5:
e183eaed 1906 switch (algorithm) {
1da177e4 1907 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1908 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1909 if (*dd_idx >= pd_idx)
1da177e4
LT
1910 (*dd_idx)++;
1911 break;
1912 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1913 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1914 if (*dd_idx >= pd_idx)
1da177e4
LT
1915 (*dd_idx)++;
1916 break;
1917 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1918 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1919 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1920 break;
1921 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1922 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1923 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1924 break;
99c0fb5f
N
1925 case ALGORITHM_PARITY_0:
1926 pd_idx = 0;
1927 (*dd_idx)++;
1928 break;
1929 case ALGORITHM_PARITY_N:
1930 pd_idx = data_disks;
1931 break;
1da177e4 1932 default:
99c0fb5f 1933 BUG();
16a53ecc
N
1934 }
1935 break;
1936 case 6:
1937
e183eaed 1938 switch (algorithm) {
16a53ecc 1939 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1940 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1941 qd_idx = pd_idx + 1;
1942 if (pd_idx == raid_disks-1) {
99c0fb5f 1943 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1944 qd_idx = 0;
1945 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1946 (*dd_idx) += 2; /* D D P Q D */
1947 break;
1948 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1949 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1950 qd_idx = pd_idx + 1;
1951 if (pd_idx == raid_disks-1) {
99c0fb5f 1952 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1953 qd_idx = 0;
1954 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1955 (*dd_idx) += 2; /* D D P Q D */
1956 break;
1957 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1958 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1959 qd_idx = (pd_idx + 1) % raid_disks;
1960 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1961 break;
1962 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1963 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1964 qd_idx = (pd_idx + 1) % raid_disks;
1965 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1966 break;
99c0fb5f
N
1967
1968 case ALGORITHM_PARITY_0:
1969 pd_idx = 0;
1970 qd_idx = 1;
1971 (*dd_idx) += 2;
1972 break;
1973 case ALGORITHM_PARITY_N:
1974 pd_idx = data_disks;
1975 qd_idx = data_disks + 1;
1976 break;
1977
1978 case ALGORITHM_ROTATING_ZERO_RESTART:
1979 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1980 * of blocks for computing Q is different.
1981 */
6e3b96ed 1982 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
1983 qd_idx = pd_idx + 1;
1984 if (pd_idx == raid_disks-1) {
1985 (*dd_idx)++; /* Q D D D P */
1986 qd_idx = 0;
1987 } else if (*dd_idx >= pd_idx)
1988 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1989 ddf_layout = 1;
99c0fb5f
N
1990 break;
1991
1992 case ALGORITHM_ROTATING_N_RESTART:
1993 /* Same a left_asymmetric, by first stripe is
1994 * D D D P Q rather than
1995 * Q D D D P
1996 */
6e3b96ed
N
1997 stripe2 += 1;
1998 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1999 qd_idx = pd_idx + 1;
2000 if (pd_idx == raid_disks-1) {
2001 (*dd_idx)++; /* Q D D D P */
2002 qd_idx = 0;
2003 } else if (*dd_idx >= pd_idx)
2004 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2005 ddf_layout = 1;
99c0fb5f
N
2006 break;
2007
2008 case ALGORITHM_ROTATING_N_CONTINUE:
2009 /* Same as left_symmetric but Q is before P */
6e3b96ed 2010 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2011 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2012 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2013 ddf_layout = 1;
99c0fb5f
N
2014 break;
2015
2016 case ALGORITHM_LEFT_ASYMMETRIC_6:
2017 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2018 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2019 if (*dd_idx >= pd_idx)
2020 (*dd_idx)++;
2021 qd_idx = raid_disks - 1;
2022 break;
2023
2024 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2025 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2026 if (*dd_idx >= pd_idx)
2027 (*dd_idx)++;
2028 qd_idx = raid_disks - 1;
2029 break;
2030
2031 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2032 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2033 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2034 qd_idx = raid_disks - 1;
2035 break;
2036
2037 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2038 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2039 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2040 qd_idx = raid_disks - 1;
2041 break;
2042
2043 case ALGORITHM_PARITY_0_6:
2044 pd_idx = 0;
2045 (*dd_idx)++;
2046 qd_idx = raid_disks - 1;
2047 break;
2048
16a53ecc 2049 default:
99c0fb5f 2050 BUG();
16a53ecc
N
2051 }
2052 break;
1da177e4
LT
2053 }
2054
911d4ee8
N
2055 if (sh) {
2056 sh->pd_idx = pd_idx;
2057 sh->qd_idx = qd_idx;
67cc2b81 2058 sh->ddf_layout = ddf_layout;
911d4ee8 2059 }
1da177e4
LT
2060 /*
2061 * Finally, compute the new sector number
2062 */
2063 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2064 return new_sector;
2065}
2066
2067
784052ec 2068static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2069{
d1688a6d 2070 struct r5conf *conf = sh->raid_conf;
b875e531
N
2071 int raid_disks = sh->disks;
2072 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2073 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2074 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2075 : conf->chunk_sectors;
e183eaed
N
2076 int algorithm = previous ? conf->prev_algo
2077 : conf->algorithm;
1da177e4
LT
2078 sector_t stripe;
2079 int chunk_offset;
35f2a591
N
2080 sector_t chunk_number;
2081 int dummy1, dd_idx = i;
1da177e4 2082 sector_t r_sector;
911d4ee8 2083 struct stripe_head sh2;
1da177e4 2084
16a53ecc 2085
1da177e4
LT
2086 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2087 stripe = new_sector;
1da177e4 2088
16a53ecc
N
2089 if (i == sh->pd_idx)
2090 return 0;
2091 switch(conf->level) {
2092 case 4: break;
2093 case 5:
e183eaed 2094 switch (algorithm) {
1da177e4
LT
2095 case ALGORITHM_LEFT_ASYMMETRIC:
2096 case ALGORITHM_RIGHT_ASYMMETRIC:
2097 if (i > sh->pd_idx)
2098 i--;
2099 break;
2100 case ALGORITHM_LEFT_SYMMETRIC:
2101 case ALGORITHM_RIGHT_SYMMETRIC:
2102 if (i < sh->pd_idx)
2103 i += raid_disks;
2104 i -= (sh->pd_idx + 1);
2105 break;
99c0fb5f
N
2106 case ALGORITHM_PARITY_0:
2107 i -= 1;
2108 break;
2109 case ALGORITHM_PARITY_N:
2110 break;
1da177e4 2111 default:
99c0fb5f 2112 BUG();
16a53ecc
N
2113 }
2114 break;
2115 case 6:
d0dabf7e 2116 if (i == sh->qd_idx)
16a53ecc 2117 return 0; /* It is the Q disk */
e183eaed 2118 switch (algorithm) {
16a53ecc
N
2119 case ALGORITHM_LEFT_ASYMMETRIC:
2120 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2121 case ALGORITHM_ROTATING_ZERO_RESTART:
2122 case ALGORITHM_ROTATING_N_RESTART:
2123 if (sh->pd_idx == raid_disks-1)
2124 i--; /* Q D D D P */
16a53ecc
N
2125 else if (i > sh->pd_idx)
2126 i -= 2; /* D D P Q D */
2127 break;
2128 case ALGORITHM_LEFT_SYMMETRIC:
2129 case ALGORITHM_RIGHT_SYMMETRIC:
2130 if (sh->pd_idx == raid_disks-1)
2131 i--; /* Q D D D P */
2132 else {
2133 /* D D P Q D */
2134 if (i < sh->pd_idx)
2135 i += raid_disks;
2136 i -= (sh->pd_idx + 2);
2137 }
2138 break;
99c0fb5f
N
2139 case ALGORITHM_PARITY_0:
2140 i -= 2;
2141 break;
2142 case ALGORITHM_PARITY_N:
2143 break;
2144 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2145 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2146 if (sh->pd_idx == 0)
2147 i--; /* P D D D Q */
e4424fee
N
2148 else {
2149 /* D D Q P D */
2150 if (i < sh->pd_idx)
2151 i += raid_disks;
2152 i -= (sh->pd_idx + 1);
2153 }
99c0fb5f
N
2154 break;
2155 case ALGORITHM_LEFT_ASYMMETRIC_6:
2156 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2157 if (i > sh->pd_idx)
2158 i--;
2159 break;
2160 case ALGORITHM_LEFT_SYMMETRIC_6:
2161 case ALGORITHM_RIGHT_SYMMETRIC_6:
2162 if (i < sh->pd_idx)
2163 i += data_disks + 1;
2164 i -= (sh->pd_idx + 1);
2165 break;
2166 case ALGORITHM_PARITY_0_6:
2167 i -= 1;
2168 break;
16a53ecc 2169 default:
99c0fb5f 2170 BUG();
16a53ecc
N
2171 }
2172 break;
1da177e4
LT
2173 }
2174
2175 chunk_number = stripe * data_disks + i;
35f2a591 2176 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2177
112bf897 2178 check = raid5_compute_sector(conf, r_sector,
784052ec 2179 previous, &dummy1, &sh2);
911d4ee8
N
2180 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2181 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2182 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2183 mdname(conf->mddev));
1da177e4
LT
2184 return 0;
2185 }
2186 return r_sector;
2187}
2188
2189
600aa109 2190static void
c0f7bddb 2191schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2192 int rcw, int expand)
e33129d8
DW
2193{
2194 int i, pd_idx = sh->pd_idx, disks = sh->disks;
d1688a6d 2195 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2196 int level = conf->level;
e33129d8
DW
2197
2198 if (rcw) {
2199 /* if we are not expanding this is a proper write request, and
2200 * there will be bios with new data to be drained into the
2201 * stripe cache
2202 */
2203 if (!expand) {
600aa109
DW
2204 sh->reconstruct_state = reconstruct_state_drain_run;
2205 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2206 } else
2207 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 2208
ac6b53b6 2209 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2210
2211 for (i = disks; i--; ) {
2212 struct r5dev *dev = &sh->dev[i];
2213
2214 if (dev->towrite) {
2215 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2216 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2217 if (!expand)
2218 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2219 s->locked++;
e33129d8
DW
2220 }
2221 }
c0f7bddb 2222 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2223 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2224 atomic_inc(&conf->pending_full_writes);
e33129d8 2225 } else {
c0f7bddb 2226 BUG_ON(level == 6);
e33129d8
DW
2227 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2228 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2229
d8ee0728 2230 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2231 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2232 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2233 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2234
2235 for (i = disks; i--; ) {
2236 struct r5dev *dev = &sh->dev[i];
2237 if (i == pd_idx)
2238 continue;
2239
e33129d8
DW
2240 if (dev->towrite &&
2241 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2242 test_bit(R5_Wantcompute, &dev->flags))) {
2243 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2244 set_bit(R5_LOCKED, &dev->flags);
2245 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2246 s->locked++;
e33129d8
DW
2247 }
2248 }
2249 }
2250
c0f7bddb 2251 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2252 * are in flight
2253 */
2254 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2255 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2256 s->locked++;
e33129d8 2257
c0f7bddb
YT
2258 if (level == 6) {
2259 int qd_idx = sh->qd_idx;
2260 struct r5dev *dev = &sh->dev[qd_idx];
2261
2262 set_bit(R5_LOCKED, &dev->flags);
2263 clear_bit(R5_UPTODATE, &dev->flags);
2264 s->locked++;
2265 }
2266
600aa109 2267 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2268 __func__, (unsigned long long)sh->sector,
600aa109 2269 s->locked, s->ops_request);
e33129d8 2270}
16a53ecc 2271
1da177e4
LT
2272/*
2273 * Each stripe/dev can have one or more bion attached.
16a53ecc 2274 * toread/towrite point to the first in a chain.
1da177e4
LT
2275 * The bi_next chain must be in order.
2276 */
2277static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2278{
2279 struct bio **bip;
d1688a6d 2280 struct r5conf *conf = sh->raid_conf;
72626685 2281 int firstwrite=0;
1da177e4 2282
cbe47ec5 2283 pr_debug("adding bi b#%llu to stripe s#%llu\n",
1da177e4
LT
2284 (unsigned long long)bi->bi_sector,
2285 (unsigned long long)sh->sector);
2286
2287
1da177e4 2288 spin_lock_irq(&conf->device_lock);
72626685 2289 if (forwrite) {
1da177e4 2290 bip = &sh->dev[dd_idx].towrite;
72626685
N
2291 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2292 firstwrite = 1;
2293 } else
1da177e4
LT
2294 bip = &sh->dev[dd_idx].toread;
2295 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2296 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2297 goto overlap;
2298 bip = & (*bip)->bi_next;
2299 }
2300 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2301 goto overlap;
2302
78bafebd 2303 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2304 if (*bip)
2305 bi->bi_next = *bip;
2306 *bip = bi;
960e739d 2307 bi->bi_phys_segments++;
72626685 2308
1da177e4
LT
2309 if (forwrite) {
2310 /* check if page is covered */
2311 sector_t sector = sh->dev[dd_idx].sector;
2312 for (bi=sh->dev[dd_idx].towrite;
2313 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2314 bi && bi->bi_sector <= sector;
2315 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2316 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2317 sector = bi->bi_sector + (bi->bi_size>>9);
2318 }
2319 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2320 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2321 }
cbe47ec5 2322 spin_unlock_irq(&conf->device_lock);
cbe47ec5
N
2323
2324 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2325 (unsigned long long)(*bip)->bi_sector,
2326 (unsigned long long)sh->sector, dd_idx);
2327
2328 if (conf->mddev->bitmap && firstwrite) {
2329 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2330 STRIPE_SECTORS, 0);
2331 sh->bm_seq = conf->seq_flush+1;
2332 set_bit(STRIPE_BIT_DELAY, &sh->state);
2333 }
1da177e4
LT
2334 return 1;
2335
2336 overlap:
2337 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2338 spin_unlock_irq(&conf->device_lock);
1da177e4
LT
2339 return 0;
2340}
2341
d1688a6d 2342static void end_reshape(struct r5conf *conf);
29269553 2343
d1688a6d 2344static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 2345 struct stripe_head *sh)
ccfcc3c1 2346{
784052ec 2347 int sectors_per_chunk =
09c9e5fa 2348 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2349 int dd_idx;
2d2063ce 2350 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2351 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2352
112bf897
N
2353 raid5_compute_sector(conf,
2354 stripe * (disks - conf->max_degraded)
b875e531 2355 *sectors_per_chunk + chunk_offset,
112bf897 2356 previous,
911d4ee8 2357 &dd_idx, sh);
ccfcc3c1
N
2358}
2359
a4456856 2360static void
d1688a6d 2361handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2362 struct stripe_head_state *s, int disks,
2363 struct bio **return_bi)
2364{
2365 int i;
2366 for (i = disks; i--; ) {
2367 struct bio *bi;
2368 int bitmap_end = 0;
2369
2370 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 2371 struct md_rdev *rdev;
a4456856
DW
2372 rcu_read_lock();
2373 rdev = rcu_dereference(conf->disks[i].rdev);
2374 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
2375 atomic_inc(&rdev->nr_pending);
2376 else
2377 rdev = NULL;
a4456856 2378 rcu_read_unlock();
7f0da59b
N
2379 if (rdev) {
2380 if (!rdev_set_badblocks(
2381 rdev,
2382 sh->sector,
2383 STRIPE_SECTORS, 0))
2384 md_error(conf->mddev, rdev);
2385 rdev_dec_pending(rdev, conf->mddev);
2386 }
a4456856
DW
2387 }
2388 spin_lock_irq(&conf->device_lock);
2389 /* fail all writes first */
2390 bi = sh->dev[i].towrite;
2391 sh->dev[i].towrite = NULL;
2392 if (bi) {
2393 s->to_write--;
2394 bitmap_end = 1;
2395 }
2396
2397 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2398 wake_up(&conf->wait_for_overlap);
2399
2400 while (bi && bi->bi_sector <
2401 sh->dev[i].sector + STRIPE_SECTORS) {
2402 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2403 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2404 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2405 md_write_end(conf->mddev);
2406 bi->bi_next = *return_bi;
2407 *return_bi = bi;
2408 }
2409 bi = nextbi;
2410 }
2411 /* and fail all 'written' */
2412 bi = sh->dev[i].written;
2413 sh->dev[i].written = NULL;
2414 if (bi) bitmap_end = 1;
2415 while (bi && bi->bi_sector <
2416 sh->dev[i].sector + STRIPE_SECTORS) {
2417 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2418 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2419 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2420 md_write_end(conf->mddev);
2421 bi->bi_next = *return_bi;
2422 *return_bi = bi;
2423 }
2424 bi = bi2;
2425 }
2426
b5e98d65
DW
2427 /* fail any reads if this device is non-operational and
2428 * the data has not reached the cache yet.
2429 */
2430 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2431 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2432 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2433 bi = sh->dev[i].toread;
2434 sh->dev[i].toread = NULL;
2435 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2436 wake_up(&conf->wait_for_overlap);
2437 if (bi) s->to_read--;
2438 while (bi && bi->bi_sector <
2439 sh->dev[i].sector + STRIPE_SECTORS) {
2440 struct bio *nextbi =
2441 r5_next_bio(bi, sh->dev[i].sector);
2442 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2443 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2444 bi->bi_next = *return_bi;
2445 *return_bi = bi;
2446 }
2447 bi = nextbi;
2448 }
2449 }
2450 spin_unlock_irq(&conf->device_lock);
2451 if (bitmap_end)
2452 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2453 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
2454 /* If we were in the middle of a write the parity block might
2455 * still be locked - so just clear all R5_LOCKED flags
2456 */
2457 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
2458 }
2459
8b3e6cdc
DW
2460 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2461 if (atomic_dec_and_test(&conf->pending_full_writes))
2462 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2463}
2464
7f0da59b 2465static void
d1688a6d 2466handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
2467 struct stripe_head_state *s)
2468{
2469 int abort = 0;
2470 int i;
2471
2472 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2473 clear_bit(STRIPE_SYNCING, &sh->state);
2474 s->syncing = 0;
9a3e1101 2475 s->replacing = 0;
7f0da59b 2476 /* There is nothing more to do for sync/check/repair.
9a3e1101 2477 * For recover/replace we need to record a bad block on all
7f0da59b
N
2478 * non-sync devices, or abort the recovery
2479 */
2480 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2481 return;
2482 /* During recovery devices cannot be removed, so locking and
2483 * refcounting of rdevs is not needed
2484 */
2485 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 2486 struct md_rdev *rdev = conf->disks[i].rdev;
9a3e1101
N
2487 if (rdev
2488 && !test_bit(Faulty, &rdev->flags)
2489 && !test_bit(In_sync, &rdev->flags)
2490 && !rdev_set_badblocks(rdev, sh->sector,
2491 STRIPE_SECTORS, 0))
2492 abort = 1;
2493 rdev = conf->disks[i].replacement;
2494 if (rdev
2495 && !test_bit(Faulty, &rdev->flags)
2496 && !test_bit(In_sync, &rdev->flags)
2497 && !rdev_set_badblocks(rdev, sh->sector,
2498 STRIPE_SECTORS, 0))
7f0da59b
N
2499 abort = 1;
2500 }
2501 if (abort) {
2502 conf->recovery_disabled = conf->mddev->recovery_disabled;
2503 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2504 }
2505}
2506
9a3e1101
N
2507static int want_replace(struct stripe_head *sh, int disk_idx)
2508{
2509 struct md_rdev *rdev;
2510 int rv = 0;
2511 /* Doing recovery so rcu locking not required */
2512 rdev = sh->raid_conf->disks[disk_idx].replacement;
2513 if (rdev
2514 && !test_bit(Faulty, &rdev->flags)
2515 && !test_bit(In_sync, &rdev->flags)
2516 && (rdev->recovery_offset <= sh->sector
2517 || rdev->mddev->recovery_cp <= sh->sector))
2518 rv = 1;
2519
2520 return rv;
2521}
2522
93b3dbce 2523/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
2524 * to be read or computed to satisfy a request.
2525 *
2526 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 2527 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 2528 */
93b3dbce
N
2529static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2530 int disk_idx, int disks)
a4456856 2531{
5599becc 2532 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
2533 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2534 &sh->dev[s->failed_num[1]] };
5599becc 2535
93b3dbce 2536 /* is the data in this block needed, and can we get it? */
5599becc
YT
2537 if (!test_bit(R5_LOCKED, &dev->flags) &&
2538 !test_bit(R5_UPTODATE, &dev->flags) &&
2539 (dev->toread ||
2540 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2541 s->syncing || s->expanding ||
9a3e1101 2542 (s->replacing && want_replace(sh, disk_idx)) ||
5d35e09c
N
2543 (s->failed >= 1 && fdev[0]->toread) ||
2544 (s->failed >= 2 && fdev[1]->toread) ||
93b3dbce
N
2545 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2546 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2547 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
5599becc
YT
2548 /* we would like to get this block, possibly by computing it,
2549 * otherwise read it if the backing disk is insync
2550 */
2551 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2552 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2553 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
2554 (s->failed && (disk_idx == s->failed_num[0] ||
2555 disk_idx == s->failed_num[1]))) {
5599becc
YT
2556 /* have disk failed, and we're requested to fetch it;
2557 * do compute it
a4456856 2558 */
5599becc
YT
2559 pr_debug("Computing stripe %llu block %d\n",
2560 (unsigned long long)sh->sector, disk_idx);
2561 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2562 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2563 set_bit(R5_Wantcompute, &dev->flags);
2564 sh->ops.target = disk_idx;
2565 sh->ops.target2 = -1; /* no 2nd target */
2566 s->req_compute = 1;
93b3dbce
N
2567 /* Careful: from this point on 'uptodate' is in the eye
2568 * of raid_run_ops which services 'compute' operations
2569 * before writes. R5_Wantcompute flags a block that will
2570 * be R5_UPTODATE by the time it is needed for a
2571 * subsequent operation.
2572 */
5599becc
YT
2573 s->uptodate++;
2574 return 1;
2575 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2576 /* Computing 2-failure is *very* expensive; only
2577 * do it if failed >= 2
2578 */
2579 int other;
2580 for (other = disks; other--; ) {
2581 if (other == disk_idx)
2582 continue;
2583 if (!test_bit(R5_UPTODATE,
2584 &sh->dev[other].flags))
2585 break;
a4456856 2586 }
5599becc
YT
2587 BUG_ON(other < 0);
2588 pr_debug("Computing stripe %llu blocks %d,%d\n",
2589 (unsigned long long)sh->sector,
2590 disk_idx, other);
2591 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2592 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2593 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2594 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2595 sh->ops.target = disk_idx;
2596 sh->ops.target2 = other;
2597 s->uptodate += 2;
2598 s->req_compute = 1;
2599 return 1;
2600 } else if (test_bit(R5_Insync, &dev->flags)) {
2601 set_bit(R5_LOCKED, &dev->flags);
2602 set_bit(R5_Wantread, &dev->flags);
2603 s->locked++;
2604 pr_debug("Reading block %d (sync=%d)\n",
2605 disk_idx, s->syncing);
a4456856
DW
2606 }
2607 }
5599becc
YT
2608
2609 return 0;
2610}
2611
2612/**
93b3dbce 2613 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 2614 */
93b3dbce
N
2615static void handle_stripe_fill(struct stripe_head *sh,
2616 struct stripe_head_state *s,
2617 int disks)
5599becc
YT
2618{
2619 int i;
2620
2621 /* look for blocks to read/compute, skip this if a compute
2622 * is already in flight, or if the stripe contents are in the
2623 * midst of changing due to a write
2624 */
2625 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2626 !sh->reconstruct_state)
2627 for (i = disks; i--; )
93b3dbce 2628 if (fetch_block(sh, s, i, disks))
5599becc 2629 break;
a4456856
DW
2630 set_bit(STRIPE_HANDLE, &sh->state);
2631}
2632
2633
1fe797e6 2634/* handle_stripe_clean_event
a4456856
DW
2635 * any written block on an uptodate or failed drive can be returned.
2636 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2637 * never LOCKED, so we don't need to test 'failed' directly.
2638 */
d1688a6d 2639static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
2640 struct stripe_head *sh, int disks, struct bio **return_bi)
2641{
2642 int i;
2643 struct r5dev *dev;
2644
2645 for (i = disks; i--; )
2646 if (sh->dev[i].written) {
2647 dev = &sh->dev[i];
2648 if (!test_bit(R5_LOCKED, &dev->flags) &&
2649 test_bit(R5_UPTODATE, &dev->flags)) {
2650 /* We can return any write requests */
2651 struct bio *wbi, *wbi2;
2652 int bitmap_end = 0;
45b4233c 2653 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2654 spin_lock_irq(&conf->device_lock);
2655 wbi = dev->written;
2656 dev->written = NULL;
2657 while (wbi && wbi->bi_sector <
2658 dev->sector + STRIPE_SECTORS) {
2659 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2660 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2661 md_write_end(conf->mddev);
2662 wbi->bi_next = *return_bi;
2663 *return_bi = wbi;
2664 }
2665 wbi = wbi2;
2666 }
2667 if (dev->towrite == NULL)
2668 bitmap_end = 1;
2669 spin_unlock_irq(&conf->device_lock);
2670 if (bitmap_end)
2671 bitmap_endwrite(conf->mddev->bitmap,
2672 sh->sector,
2673 STRIPE_SECTORS,
2674 !test_bit(STRIPE_DEGRADED, &sh->state),
2675 0);
2676 }
2677 }
8b3e6cdc
DW
2678
2679 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2680 if (atomic_dec_and_test(&conf->pending_full_writes))
2681 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2682}
2683
d1688a6d 2684static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
2685 struct stripe_head *sh,
2686 struct stripe_head_state *s,
2687 int disks)
a4456856
DW
2688{
2689 int rmw = 0, rcw = 0, i;
c8ac1803
N
2690 if (conf->max_degraded == 2) {
2691 /* RAID6 requires 'rcw' in current implementation
2692 * Calculate the real rcw later - for now fake it
2693 * look like rcw is cheaper
2694 */
2695 rcw = 1; rmw = 2;
2696 } else for (i = disks; i--; ) {
a4456856
DW
2697 /* would I have to read this buffer for read_modify_write */
2698 struct r5dev *dev = &sh->dev[i];
2699 if ((dev->towrite || i == sh->pd_idx) &&
2700 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2701 !(test_bit(R5_UPTODATE, &dev->flags) ||
2702 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2703 if (test_bit(R5_Insync, &dev->flags))
2704 rmw++;
2705 else
2706 rmw += 2*disks; /* cannot read it */
2707 }
2708 /* Would I have to read this buffer for reconstruct_write */
2709 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2710 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2711 !(test_bit(R5_UPTODATE, &dev->flags) ||
2712 test_bit(R5_Wantcompute, &dev->flags))) {
2713 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2714 else
2715 rcw += 2*disks;
2716 }
2717 }
45b4233c 2718 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2719 (unsigned long long)sh->sector, rmw, rcw);
2720 set_bit(STRIPE_HANDLE, &sh->state);
2721 if (rmw < rcw && rmw > 0)
2722 /* prefer read-modify-write, but need to get some data */
2723 for (i = disks; i--; ) {
2724 struct r5dev *dev = &sh->dev[i];
2725 if ((dev->towrite || i == sh->pd_idx) &&
2726 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2727 !(test_bit(R5_UPTODATE, &dev->flags) ||
2728 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2729 test_bit(R5_Insync, &dev->flags)) {
2730 if (
2731 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2732 pr_debug("Read_old block "
a4456856
DW
2733 "%d for r-m-w\n", i);
2734 set_bit(R5_LOCKED, &dev->flags);
2735 set_bit(R5_Wantread, &dev->flags);
2736 s->locked++;
2737 } else {
2738 set_bit(STRIPE_DELAYED, &sh->state);
2739 set_bit(STRIPE_HANDLE, &sh->state);
2740 }
2741 }
2742 }
c8ac1803 2743 if (rcw <= rmw && rcw > 0) {
a4456856 2744 /* want reconstruct write, but need to get some data */
c8ac1803 2745 rcw = 0;
a4456856
DW
2746 for (i = disks; i--; ) {
2747 struct r5dev *dev = &sh->dev[i];
2748 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 2749 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 2750 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 2751 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
2752 test_bit(R5_Wantcompute, &dev->flags))) {
2753 rcw++;
2754 if (!test_bit(R5_Insync, &dev->flags))
2755 continue; /* it's a failed drive */
a4456856
DW
2756 if (
2757 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2758 pr_debug("Read_old block "
a4456856
DW
2759 "%d for Reconstruct\n", i);
2760 set_bit(R5_LOCKED, &dev->flags);
2761 set_bit(R5_Wantread, &dev->flags);
2762 s->locked++;
2763 } else {
2764 set_bit(STRIPE_DELAYED, &sh->state);
2765 set_bit(STRIPE_HANDLE, &sh->state);
2766 }
2767 }
2768 }
c8ac1803 2769 }
a4456856
DW
2770 /* now if nothing is locked, and if we have enough data,
2771 * we can start a write request
2772 */
f38e1219
DW
2773 /* since handle_stripe can be called at any time we need to handle the
2774 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2775 * subsequent call wants to start a write request. raid_run_ops only
2776 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2777 * simultaneously. If this is not the case then new writes need to be
2778 * held off until the compute completes.
2779 */
976ea8d4
DW
2780 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2781 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2782 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2783 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2784}
2785
d1688a6d 2786static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2787 struct stripe_head_state *s, int disks)
2788{
ecc65c9b 2789 struct r5dev *dev = NULL;
bd2ab670 2790
a4456856 2791 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2792
ecc65c9b
DW
2793 switch (sh->check_state) {
2794 case check_state_idle:
2795 /* start a new check operation if there are no failures */
bd2ab670 2796 if (s->failed == 0) {
bd2ab670 2797 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2798 sh->check_state = check_state_run;
2799 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2800 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2801 s->uptodate--;
ecc65c9b 2802 break;
bd2ab670 2803 }
f2b3b44d 2804 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
2805 /* fall through */
2806 case check_state_compute_result:
2807 sh->check_state = check_state_idle;
2808 if (!dev)
2809 dev = &sh->dev[sh->pd_idx];
2810
2811 /* check that a write has not made the stripe insync */
2812 if (test_bit(STRIPE_INSYNC, &sh->state))
2813 break;
c8894419 2814
a4456856 2815 /* either failed parity check, or recovery is happening */
a4456856
DW
2816 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2817 BUG_ON(s->uptodate != disks);
2818
2819 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2820 s->locked++;
a4456856 2821 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2822
a4456856 2823 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2824 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2825 break;
2826 case check_state_run:
2827 break; /* we will be called again upon completion */
2828 case check_state_check_result:
2829 sh->check_state = check_state_idle;
2830
2831 /* if a failure occurred during the check operation, leave
2832 * STRIPE_INSYNC not set and let the stripe be handled again
2833 */
2834 if (s->failed)
2835 break;
2836
2837 /* handle a successful check operation, if parity is correct
2838 * we are done. Otherwise update the mismatch count and repair
2839 * parity if !MD_RECOVERY_CHECK
2840 */
ad283ea4 2841 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2842 /* parity is correct (on disc,
2843 * not in buffer any more)
2844 */
2845 set_bit(STRIPE_INSYNC, &sh->state);
2846 else {
2847 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2848 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2849 /* don't try to repair!! */
2850 set_bit(STRIPE_INSYNC, &sh->state);
2851 else {
2852 sh->check_state = check_state_compute_run;
976ea8d4 2853 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2854 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2855 set_bit(R5_Wantcompute,
2856 &sh->dev[sh->pd_idx].flags);
2857 sh->ops.target = sh->pd_idx;
ac6b53b6 2858 sh->ops.target2 = -1;
ecc65c9b
DW
2859 s->uptodate++;
2860 }
2861 }
2862 break;
2863 case check_state_compute_run:
2864 break;
2865 default:
2866 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2867 __func__, sh->check_state,
2868 (unsigned long long) sh->sector);
2869 BUG();
a4456856
DW
2870 }
2871}
2872
2873
d1688a6d 2874static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 2875 struct stripe_head_state *s,
f2b3b44d 2876 int disks)
a4456856 2877{
a4456856 2878 int pd_idx = sh->pd_idx;
34e04e87 2879 int qd_idx = sh->qd_idx;
d82dfee0 2880 struct r5dev *dev;
a4456856
DW
2881
2882 set_bit(STRIPE_HANDLE, &sh->state);
2883
2884 BUG_ON(s->failed > 2);
d82dfee0 2885
a4456856
DW
2886 /* Want to check and possibly repair P and Q.
2887 * However there could be one 'failed' device, in which
2888 * case we can only check one of them, possibly using the
2889 * other to generate missing data
2890 */
2891
d82dfee0
DW
2892 switch (sh->check_state) {
2893 case check_state_idle:
2894 /* start a new check operation if there are < 2 failures */
f2b3b44d 2895 if (s->failed == s->q_failed) {
d82dfee0 2896 /* The only possible failed device holds Q, so it
a4456856
DW
2897 * makes sense to check P (If anything else were failed,
2898 * we would have used P to recreate it).
2899 */
d82dfee0 2900 sh->check_state = check_state_run;
a4456856 2901 }
f2b3b44d 2902 if (!s->q_failed && s->failed < 2) {
d82dfee0 2903 /* Q is not failed, and we didn't use it to generate
a4456856
DW
2904 * anything, so it makes sense to check it
2905 */
d82dfee0
DW
2906 if (sh->check_state == check_state_run)
2907 sh->check_state = check_state_run_pq;
2908 else
2909 sh->check_state = check_state_run_q;
a4456856 2910 }
a4456856 2911
d82dfee0
DW
2912 /* discard potentially stale zero_sum_result */
2913 sh->ops.zero_sum_result = 0;
a4456856 2914
d82dfee0
DW
2915 if (sh->check_state == check_state_run) {
2916 /* async_xor_zero_sum destroys the contents of P */
2917 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2918 s->uptodate--;
a4456856 2919 }
d82dfee0
DW
2920 if (sh->check_state >= check_state_run &&
2921 sh->check_state <= check_state_run_pq) {
2922 /* async_syndrome_zero_sum preserves P and Q, so
2923 * no need to mark them !uptodate here
2924 */
2925 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2926 break;
a4456856
DW
2927 }
2928
d82dfee0
DW
2929 /* we have 2-disk failure */
2930 BUG_ON(s->failed != 2);
2931 /* fall through */
2932 case check_state_compute_result:
2933 sh->check_state = check_state_idle;
a4456856 2934
d82dfee0
DW
2935 /* check that a write has not made the stripe insync */
2936 if (test_bit(STRIPE_INSYNC, &sh->state))
2937 break;
a4456856
DW
2938
2939 /* now write out any block on a failed drive,
d82dfee0 2940 * or P or Q if they were recomputed
a4456856 2941 */
d82dfee0 2942 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 2943 if (s->failed == 2) {
f2b3b44d 2944 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
2945 s->locked++;
2946 set_bit(R5_LOCKED, &dev->flags);
2947 set_bit(R5_Wantwrite, &dev->flags);
2948 }
2949 if (s->failed >= 1) {
f2b3b44d 2950 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
2951 s->locked++;
2952 set_bit(R5_LOCKED, &dev->flags);
2953 set_bit(R5_Wantwrite, &dev->flags);
2954 }
d82dfee0 2955 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
2956 dev = &sh->dev[pd_idx];
2957 s->locked++;
2958 set_bit(R5_LOCKED, &dev->flags);
2959 set_bit(R5_Wantwrite, &dev->flags);
2960 }
d82dfee0 2961 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
2962 dev = &sh->dev[qd_idx];
2963 s->locked++;
2964 set_bit(R5_LOCKED, &dev->flags);
2965 set_bit(R5_Wantwrite, &dev->flags);
2966 }
2967 clear_bit(STRIPE_DEGRADED, &sh->state);
2968
2969 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
2970 break;
2971 case check_state_run:
2972 case check_state_run_q:
2973 case check_state_run_pq:
2974 break; /* we will be called again upon completion */
2975 case check_state_check_result:
2976 sh->check_state = check_state_idle;
2977
2978 /* handle a successful check operation, if parity is correct
2979 * we are done. Otherwise update the mismatch count and repair
2980 * parity if !MD_RECOVERY_CHECK
2981 */
2982 if (sh->ops.zero_sum_result == 0) {
2983 /* both parities are correct */
2984 if (!s->failed)
2985 set_bit(STRIPE_INSYNC, &sh->state);
2986 else {
2987 /* in contrast to the raid5 case we can validate
2988 * parity, but still have a failure to write
2989 * back
2990 */
2991 sh->check_state = check_state_compute_result;
2992 /* Returning at this point means that we may go
2993 * off and bring p and/or q uptodate again so
2994 * we make sure to check zero_sum_result again
2995 * to verify if p or q need writeback
2996 */
2997 }
2998 } else {
2999 conf->mddev->resync_mismatches += STRIPE_SECTORS;
3000 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3001 /* don't try to repair!! */
3002 set_bit(STRIPE_INSYNC, &sh->state);
3003 else {
3004 int *target = &sh->ops.target;
3005
3006 sh->ops.target = -1;
3007 sh->ops.target2 = -1;
3008 sh->check_state = check_state_compute_run;
3009 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3010 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3011 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3012 set_bit(R5_Wantcompute,
3013 &sh->dev[pd_idx].flags);
3014 *target = pd_idx;
3015 target = &sh->ops.target2;
3016 s->uptodate++;
3017 }
3018 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3019 set_bit(R5_Wantcompute,
3020 &sh->dev[qd_idx].flags);
3021 *target = qd_idx;
3022 s->uptodate++;
3023 }
3024 }
3025 }
3026 break;
3027 case check_state_compute_run:
3028 break;
3029 default:
3030 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3031 __func__, sh->check_state,
3032 (unsigned long long) sh->sector);
3033 BUG();
a4456856
DW
3034 }
3035}
3036
d1688a6d 3037static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3038{
3039 int i;
3040
3041 /* We have read all the blocks in this stripe and now we need to
3042 * copy some of them into a target stripe for expand.
3043 */
f0a50d37 3044 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
3045 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3046 for (i = 0; i < sh->disks; i++)
34e04e87 3047 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3048 int dd_idx, j;
a4456856 3049 struct stripe_head *sh2;
a08abd8c 3050 struct async_submit_ctl submit;
a4456856 3051
784052ec 3052 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3053 sector_t s = raid5_compute_sector(conf, bn, 0,
3054 &dd_idx, NULL);
a8c906ca 3055 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3056 if (sh2 == NULL)
3057 /* so far only the early blocks of this stripe
3058 * have been requested. When later blocks
3059 * get requested, we will try again
3060 */
3061 continue;
3062 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3063 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3064 /* must have already done this block */
3065 release_stripe(sh2);
3066 continue;
3067 }
f0a50d37
DW
3068
3069 /* place all the copies on one channel */
a08abd8c 3070 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3071 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3072 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3073 &submit);
f0a50d37 3074
a4456856
DW
3075 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3076 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3077 for (j = 0; j < conf->raid_disks; j++)
3078 if (j != sh2->pd_idx &&
86c374ba 3079 j != sh2->qd_idx &&
a4456856
DW
3080 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3081 break;
3082 if (j == conf->raid_disks) {
3083 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3084 set_bit(STRIPE_HANDLE, &sh2->state);
3085 }
3086 release_stripe(sh2);
f0a50d37 3087
a4456856 3088 }
a2e08551
N
3089 /* done submitting copies, wait for them to complete */
3090 if (tx) {
3091 async_tx_ack(tx);
3092 dma_wait_for_async_tx(tx);
3093 }
a4456856 3094}
1da177e4
LT
3095
3096/*
3097 * handle_stripe - do things to a stripe.
3098 *
9a3e1101
N
3099 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3100 * state of various bits to see what needs to be done.
1da177e4 3101 * Possible results:
9a3e1101
N
3102 * return some read requests which now have data
3103 * return some write requests which are safely on storage
1da177e4
LT
3104 * schedule a read on some buffers
3105 * schedule a write of some buffers
3106 * return confirmation of parity correctness
3107 *
1da177e4 3108 */
a4456856 3109
acfe726b 3110static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3111{
d1688a6d 3112 struct r5conf *conf = sh->raid_conf;
f416885e 3113 int disks = sh->disks;
474af965
N
3114 struct r5dev *dev;
3115 int i;
9a3e1101 3116 int do_recovery = 0;
1da177e4 3117
acfe726b
N
3118 memset(s, 0, sizeof(*s));
3119
acfe726b
N
3120 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3121 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3122 s->failed_num[0] = -1;
3123 s->failed_num[1] = -1;
1da177e4 3124
acfe726b 3125 /* Now to look around and see what can be done */
1da177e4 3126 rcu_read_lock();
c4c1663b 3127 spin_lock_irq(&conf->device_lock);
16a53ecc 3128 for (i=disks; i--; ) {
3cb03002 3129 struct md_rdev *rdev;
31c176ec
N
3130 sector_t first_bad;
3131 int bad_sectors;
3132 int is_bad = 0;
acfe726b 3133
16a53ecc 3134 dev = &sh->dev[i];
1da177e4 3135
45b4233c 3136 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
3137 i, dev->flags,
3138 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3139 /* maybe we can reply to a read
3140 *
3141 * new wantfill requests are only permitted while
3142 * ops_complete_biofill is guaranteed to be inactive
3143 */
3144 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3145 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3146 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3147
16a53ecc 3148 /* now count some things */
cc94015a
N
3149 if (test_bit(R5_LOCKED, &dev->flags))
3150 s->locked++;
3151 if (test_bit(R5_UPTODATE, &dev->flags))
3152 s->uptodate++;
2d6e4ecc 3153 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
3154 s->compute++;
3155 BUG_ON(s->compute > 2);
2d6e4ecc 3156 }
1da177e4 3157
acfe726b 3158 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 3159 s->to_fill++;
acfe726b 3160 else if (dev->toread)
cc94015a 3161 s->to_read++;
16a53ecc 3162 if (dev->towrite) {
cc94015a 3163 s->to_write++;
16a53ecc 3164 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 3165 s->non_overwrite++;
16a53ecc 3166 }
a4456856 3167 if (dev->written)
cc94015a 3168 s->written++;
14a75d3e
N
3169 /* Prefer to use the replacement for reads, but only
3170 * if it is recovered enough and has no bad blocks.
3171 */
3172 rdev = rcu_dereference(conf->disks[i].replacement);
3173 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3174 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3175 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3176 &first_bad, &bad_sectors))
3177 set_bit(R5_ReadRepl, &dev->flags);
3178 else {
9a3e1101
N
3179 if (rdev)
3180 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
3181 rdev = rcu_dereference(conf->disks[i].rdev);
3182 clear_bit(R5_ReadRepl, &dev->flags);
3183 }
9283d8c5
N
3184 if (rdev && test_bit(Faulty, &rdev->flags))
3185 rdev = NULL;
31c176ec
N
3186 if (rdev) {
3187 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3188 &first_bad, &bad_sectors);
3189 if (s->blocked_rdev == NULL
3190 && (test_bit(Blocked, &rdev->flags)
3191 || is_bad < 0)) {
3192 if (is_bad < 0)
3193 set_bit(BlockedBadBlocks,
3194 &rdev->flags);
3195 s->blocked_rdev = rdev;
3196 atomic_inc(&rdev->nr_pending);
3197 }
6bfe0b49 3198 }
415e72d0
N
3199 clear_bit(R5_Insync, &dev->flags);
3200 if (!rdev)
3201 /* Not in-sync */;
31c176ec
N
3202 else if (is_bad) {
3203 /* also not in-sync */
3204 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3205 /* treat as in-sync, but with a read error
3206 * which we can now try to correct
3207 */
3208 set_bit(R5_Insync, &dev->flags);
3209 set_bit(R5_ReadError, &dev->flags);
3210 }
3211 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 3212 set_bit(R5_Insync, &dev->flags);
30d7a483 3213 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 3214 /* in sync if before recovery_offset */
30d7a483
N
3215 set_bit(R5_Insync, &dev->flags);
3216 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3217 test_bit(R5_Expanded, &dev->flags))
3218 /* If we've reshaped into here, we assume it is Insync.
3219 * We will shortly update recovery_offset to make
3220 * it official.
3221 */
3222 set_bit(R5_Insync, &dev->flags);
3223
5d8c71f9 3224 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
3225 /* This flag does not apply to '.replacement'
3226 * only to .rdev, so make sure to check that*/
3227 struct md_rdev *rdev2 = rcu_dereference(
3228 conf->disks[i].rdev);
3229 if (rdev2 == rdev)
3230 clear_bit(R5_Insync, &dev->flags);
3231 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 3232 s->handle_bad_blocks = 1;
14a75d3e 3233 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
3234 } else
3235 clear_bit(R5_WriteError, &dev->flags);
3236 }
5d8c71f9 3237 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
3238 /* This flag does not apply to '.replacement'
3239 * only to .rdev, so make sure to check that*/
3240 struct md_rdev *rdev2 = rcu_dereference(
3241 conf->disks[i].rdev);
3242 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 3243 s->handle_bad_blocks = 1;
14a75d3e 3244 atomic_inc(&rdev2->nr_pending);
b84db560
N
3245 } else
3246 clear_bit(R5_MadeGood, &dev->flags);
3247 }
977df362
N
3248 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3249 struct md_rdev *rdev2 = rcu_dereference(
3250 conf->disks[i].replacement);
3251 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3252 s->handle_bad_blocks = 1;
3253 atomic_inc(&rdev2->nr_pending);
3254 } else
3255 clear_bit(R5_MadeGoodRepl, &dev->flags);
3256 }
415e72d0 3257 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3258 /* The ReadError flag will just be confusing now */
3259 clear_bit(R5_ReadError, &dev->flags);
3260 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3261 }
415e72d0
N
3262 if (test_bit(R5_ReadError, &dev->flags))
3263 clear_bit(R5_Insync, &dev->flags);
3264 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
3265 if (s->failed < 2)
3266 s->failed_num[s->failed] = i;
3267 s->failed++;
9a3e1101
N
3268 if (rdev && !test_bit(Faulty, &rdev->flags))
3269 do_recovery = 1;
415e72d0 3270 }
1da177e4 3271 }
c4c1663b 3272 spin_unlock_irq(&conf->device_lock);
9a3e1101
N
3273 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3274 /* If there is a failed device being replaced,
3275 * we must be recovering.
3276 * else if we are after recovery_cp, we must be syncing
3277 * else we can only be replacing
3278 * sync and recovery both need to read all devices, and so
3279 * use the same flag.
3280 */
3281 if (do_recovery ||
3282 sh->sector >= conf->mddev->recovery_cp)
3283 s->syncing = 1;
3284 else
3285 s->replacing = 1;
3286 }
1da177e4 3287 rcu_read_unlock();
cc94015a
N
3288}
3289
3290static void handle_stripe(struct stripe_head *sh)
3291{
3292 struct stripe_head_state s;
d1688a6d 3293 struct r5conf *conf = sh->raid_conf;
3687c061 3294 int i;
84789554
N
3295 int prexor;
3296 int disks = sh->disks;
474af965 3297 struct r5dev *pdev, *qdev;
cc94015a
N
3298
3299 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 3300 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
3301 /* already being handled, ensure it gets handled
3302 * again when current action finishes */
3303 set_bit(STRIPE_HANDLE, &sh->state);
3304 return;
3305 }
3306
3307 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3308 set_bit(STRIPE_SYNCING, &sh->state);
3309 clear_bit(STRIPE_INSYNC, &sh->state);
3310 }
3311 clear_bit(STRIPE_DELAYED, &sh->state);
3312
3313 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3314 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3315 (unsigned long long)sh->sector, sh->state,
3316 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3317 sh->check_state, sh->reconstruct_state);
3687c061 3318
acfe726b 3319 analyse_stripe(sh, &s);
c5a31000 3320
bc2607f3
N
3321 if (s.handle_bad_blocks) {
3322 set_bit(STRIPE_HANDLE, &sh->state);
3323 goto finish;
3324 }
3325
474af965
N
3326 if (unlikely(s.blocked_rdev)) {
3327 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 3328 s.replacing || s.to_write || s.written) {
474af965
N
3329 set_bit(STRIPE_HANDLE, &sh->state);
3330 goto finish;
3331 }
3332 /* There is nothing for the blocked_rdev to block */
3333 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3334 s.blocked_rdev = NULL;
3335 }
3336
3337 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3338 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3339 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3340 }
3341
3342 pr_debug("locked=%d uptodate=%d to_read=%d"
3343 " to_write=%d failed=%d failed_num=%d,%d\n",
3344 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3345 s.failed_num[0], s.failed_num[1]);
3346 /* check if the array has lost more than max_degraded devices and,
3347 * if so, some requests might need to be failed.
3348 */
9a3f530f
N
3349 if (s.failed > conf->max_degraded) {
3350 sh->check_state = 0;
3351 sh->reconstruct_state = 0;
3352 if (s.to_read+s.to_write+s.written)
3353 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 3354 if (s.syncing + s.replacing)
9a3f530f
N
3355 handle_failed_sync(conf, sh, &s);
3356 }
474af965
N
3357
3358 /*
3359 * might be able to return some write requests if the parity blocks
3360 * are safe, or on a failed drive
3361 */
3362 pdev = &sh->dev[sh->pd_idx];
3363 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3364 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3365 qdev = &sh->dev[sh->qd_idx];
3366 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3367 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3368 || conf->level < 6;
3369
3370 if (s.written &&
3371 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3372 && !test_bit(R5_LOCKED, &pdev->flags)
3373 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3374 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3375 && !test_bit(R5_LOCKED, &qdev->flags)
3376 && test_bit(R5_UPTODATE, &qdev->flags)))))
3377 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3378
3379 /* Now we might consider reading some blocks, either to check/generate
3380 * parity, or to satisfy requests
3381 * or to load a block that is being partially written.
3382 */
3383 if (s.to_read || s.non_overwrite
3384 || (conf->level == 6 && s.to_write && s.failed)
9a3e1101
N
3385 || (s.syncing && (s.uptodate + s.compute < disks))
3386 || s.replacing
3387 || s.expanding)
474af965
N
3388 handle_stripe_fill(sh, &s, disks);
3389
84789554
N
3390 /* Now we check to see if any write operations have recently
3391 * completed
3392 */
3393 prexor = 0;
3394 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3395 prexor = 1;
3396 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3397 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3398 sh->reconstruct_state = reconstruct_state_idle;
3399
3400 /* All the 'written' buffers and the parity block are ready to
3401 * be written back to disk
3402 */
3403 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3404 BUG_ON(sh->qd_idx >= 0 &&
3405 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3406 for (i = disks; i--; ) {
3407 struct r5dev *dev = &sh->dev[i];
3408 if (test_bit(R5_LOCKED, &dev->flags) &&
3409 (i == sh->pd_idx || i == sh->qd_idx ||
3410 dev->written)) {
3411 pr_debug("Writing block %d\n", i);
3412 set_bit(R5_Wantwrite, &dev->flags);
3413 if (prexor)
3414 continue;
3415 if (!test_bit(R5_Insync, &dev->flags) ||
3416 ((i == sh->pd_idx || i == sh->qd_idx) &&
3417 s.failed == 0))
3418 set_bit(STRIPE_INSYNC, &sh->state);
3419 }
3420 }
3421 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3422 s.dec_preread_active = 1;
3423 }
3424
3425 /* Now to consider new write requests and what else, if anything
3426 * should be read. We do not handle new writes when:
3427 * 1/ A 'write' operation (copy+xor) is already in flight.
3428 * 2/ A 'check' operation is in flight, as it may clobber the parity
3429 * block.
3430 */
3431 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3432 handle_stripe_dirtying(conf, sh, &s, disks);
3433
3434 /* maybe we need to check and possibly fix the parity for this stripe
3435 * Any reads will already have been scheduled, so we just see if enough
3436 * data is available. The parity check is held off while parity
3437 * dependent operations are in flight.
3438 */
3439 if (sh->check_state ||
3440 (s.syncing && s.locked == 0 &&
3441 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3442 !test_bit(STRIPE_INSYNC, &sh->state))) {
3443 if (conf->level == 6)
3444 handle_parity_checks6(conf, sh, &s, disks);
3445 else
3446 handle_parity_checks5(conf, sh, &s, disks);
3447 }
c5a31000 3448
9a3e1101
N
3449 if (s.replacing && s.locked == 0
3450 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3451 /* Write out to replacement devices where possible */
3452 for (i = 0; i < conf->raid_disks; i++)
3453 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3454 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3455 set_bit(R5_WantReplace, &sh->dev[i].flags);
3456 set_bit(R5_LOCKED, &sh->dev[i].flags);
3457 s.locked++;
3458 }
3459 set_bit(STRIPE_INSYNC, &sh->state);
3460 }
3461 if ((s.syncing || s.replacing) && s.locked == 0 &&
3462 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
3463 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3464 clear_bit(STRIPE_SYNCING, &sh->state);
3465 }
3466
3467 /* If the failed drives are just a ReadError, then we might need
3468 * to progress the repair/check process
3469 */
3470 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3471 for (i = 0; i < s.failed; i++) {
3472 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3473 if (test_bit(R5_ReadError, &dev->flags)
3474 && !test_bit(R5_LOCKED, &dev->flags)
3475 && test_bit(R5_UPTODATE, &dev->flags)
3476 ) {
3477 if (!test_bit(R5_ReWrite, &dev->flags)) {
3478 set_bit(R5_Wantwrite, &dev->flags);
3479 set_bit(R5_ReWrite, &dev->flags);
3480 set_bit(R5_LOCKED, &dev->flags);
3481 s.locked++;
3482 } else {
3483 /* let's read it back */
3484 set_bit(R5_Wantread, &dev->flags);
3485 set_bit(R5_LOCKED, &dev->flags);
3486 s.locked++;
3487 }
3488 }
3489 }
3490
3491
3687c061
N
3492 /* Finish reconstruct operations initiated by the expansion process */
3493 if (sh->reconstruct_state == reconstruct_state_result) {
3494 struct stripe_head *sh_src
3495 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3496 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3497 /* sh cannot be written until sh_src has been read.
3498 * so arrange for sh to be delayed a little
3499 */
3500 set_bit(STRIPE_DELAYED, &sh->state);
3501 set_bit(STRIPE_HANDLE, &sh->state);
3502 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3503 &sh_src->state))
3504 atomic_inc(&conf->preread_active_stripes);
3505 release_stripe(sh_src);
3506 goto finish;
3507 }
3508 if (sh_src)
3509 release_stripe(sh_src);
3510
3511 sh->reconstruct_state = reconstruct_state_idle;
3512 clear_bit(STRIPE_EXPANDING, &sh->state);
3513 for (i = conf->raid_disks; i--; ) {
3514 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3515 set_bit(R5_LOCKED, &sh->dev[i].flags);
3516 s.locked++;
3517 }
3518 }
f416885e 3519
3687c061
N
3520 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3521 !sh->reconstruct_state) {
3522 /* Need to write out all blocks after computing parity */
3523 sh->disks = conf->raid_disks;
3524 stripe_set_idx(sh->sector, conf, 0, sh);
3525 schedule_reconstruction(sh, &s, 1, 1);
3526 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3527 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3528 atomic_dec(&conf->reshape_stripes);
3529 wake_up(&conf->wait_for_overlap);
3530 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3531 }
3532
3533 if (s.expanding && s.locked == 0 &&
3534 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3535 handle_stripe_expansion(conf, sh);
16a53ecc 3536
3687c061 3537finish:
6bfe0b49 3538 /* wait for this device to become unblocked */
43220aa0 3539 if (conf->mddev->external && unlikely(s.blocked_rdev))
c5709ef6 3540 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
6bfe0b49 3541
bc2607f3
N
3542 if (s.handle_bad_blocks)
3543 for (i = disks; i--; ) {
3cb03002 3544 struct md_rdev *rdev;
bc2607f3
N
3545 struct r5dev *dev = &sh->dev[i];
3546 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3547 /* We own a safe reference to the rdev */
3548 rdev = conf->disks[i].rdev;
3549 if (!rdev_set_badblocks(rdev, sh->sector,
3550 STRIPE_SECTORS, 0))
3551 md_error(conf->mddev, rdev);
3552 rdev_dec_pending(rdev, conf->mddev);
3553 }
b84db560
N
3554 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3555 rdev = conf->disks[i].rdev;
3556 rdev_clear_badblocks(rdev, sh->sector,
3557 STRIPE_SECTORS);
3558 rdev_dec_pending(rdev, conf->mddev);
3559 }
977df362
N
3560 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3561 rdev = conf->disks[i].replacement;
dd054fce
N
3562 if (!rdev)
3563 /* rdev have been moved down */
3564 rdev = conf->disks[i].rdev;
977df362
N
3565 rdev_clear_badblocks(rdev, sh->sector,
3566 STRIPE_SECTORS);
3567 rdev_dec_pending(rdev, conf->mddev);
3568 }
bc2607f3
N
3569 }
3570
6c0069c0
YT
3571 if (s.ops_request)
3572 raid_run_ops(sh, s.ops_request);
3573
f0e43bcd 3574 ops_run_io(sh, &s);
16a53ecc 3575
c5709ef6 3576 if (s.dec_preread_active) {
729a1866 3577 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3578 * is waiting on a flush, it won't continue until the writes
729a1866
N
3579 * have actually been submitted.
3580 */
3581 atomic_dec(&conf->preread_active_stripes);
3582 if (atomic_read(&conf->preread_active_stripes) <
3583 IO_THRESHOLD)
3584 md_wakeup_thread(conf->mddev->thread);
3585 }
3586
c5709ef6 3587 return_io(s.return_bi);
16a53ecc 3588
257a4b42 3589 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
3590}
3591
d1688a6d 3592static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
3593{
3594 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3595 while (!list_empty(&conf->delayed_list)) {
3596 struct list_head *l = conf->delayed_list.next;
3597 struct stripe_head *sh;
3598 sh = list_entry(l, struct stripe_head, lru);
3599 list_del_init(l);
3600 clear_bit(STRIPE_DELAYED, &sh->state);
3601 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3602 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3603 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3604 }
482c0834 3605 }
16a53ecc
N
3606}
3607
d1688a6d 3608static void activate_bit_delay(struct r5conf *conf)
16a53ecc
N
3609{
3610 /* device_lock is held */
3611 struct list_head head;
3612 list_add(&head, &conf->bitmap_list);
3613 list_del_init(&conf->bitmap_list);
3614 while (!list_empty(&head)) {
3615 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3616 list_del_init(&sh->lru);
3617 atomic_inc(&sh->count);
3618 __release_stripe(conf, sh);
3619 }
3620}
3621
fd01b88c 3622int md_raid5_congested(struct mddev *mddev, int bits)
f022b2fd 3623{
d1688a6d 3624 struct r5conf *conf = mddev->private;
f022b2fd
N
3625
3626 /* No difference between reads and writes. Just check
3627 * how busy the stripe_cache is
3628 */
3fa841d7 3629
f022b2fd
N
3630 if (conf->inactive_blocked)
3631 return 1;
3632 if (conf->quiesce)
3633 return 1;
3634 if (list_empty_careful(&conf->inactive_list))
3635 return 1;
3636
3637 return 0;
3638}
11d8a6e3
N
3639EXPORT_SYMBOL_GPL(md_raid5_congested);
3640
3641static int raid5_congested(void *data, int bits)
3642{
fd01b88c 3643 struct mddev *mddev = data;
11d8a6e3
N
3644
3645 return mddev_congested(mddev, bits) ||
3646 md_raid5_congested(mddev, bits);
3647}
f022b2fd 3648
23032a0e
RBJ
3649/* We want read requests to align with chunks where possible,
3650 * but write requests don't need to.
3651 */
cc371e66
AK
3652static int raid5_mergeable_bvec(struct request_queue *q,
3653 struct bvec_merge_data *bvm,
3654 struct bio_vec *biovec)
23032a0e 3655{
fd01b88c 3656 struct mddev *mddev = q->queuedata;
cc371e66 3657 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3658 int max;
9d8f0363 3659 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3660 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3661
cc371e66 3662 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3663 return biovec->bv_len; /* always allow writes to be mergeable */
3664
664e7c41
AN
3665 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3666 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3667 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3668 if (max < 0) max = 0;
3669 if (max <= biovec->bv_len && bio_sectors == 0)
3670 return biovec->bv_len;
3671 else
3672 return max;
3673}
3674
f679623f 3675
fd01b88c 3676static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f
RBJ
3677{
3678 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3679 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3680 unsigned int bio_sectors = bio->bi_size >> 9;
3681
664e7c41
AN
3682 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3683 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3684 return chunk_sectors >=
3685 ((sector & (chunk_sectors - 1)) + bio_sectors);
3686}
3687
46031f9a
RBJ
3688/*
3689 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3690 * later sampled by raid5d.
3691 */
d1688a6d 3692static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
3693{
3694 unsigned long flags;
3695
3696 spin_lock_irqsave(&conf->device_lock, flags);
3697
3698 bi->bi_next = conf->retry_read_aligned_list;
3699 conf->retry_read_aligned_list = bi;
3700
3701 spin_unlock_irqrestore(&conf->device_lock, flags);
3702 md_wakeup_thread(conf->mddev->thread);
3703}
3704
3705
d1688a6d 3706static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
3707{
3708 struct bio *bi;
3709
3710 bi = conf->retry_read_aligned;
3711 if (bi) {
3712 conf->retry_read_aligned = NULL;
3713 return bi;
3714 }
3715 bi = conf->retry_read_aligned_list;
3716 if(bi) {
387bb173 3717 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3718 bi->bi_next = NULL;
960e739d
JA
3719 /*
3720 * this sets the active strip count to 1 and the processed
3721 * strip count to zero (upper 8 bits)
3722 */
46031f9a 3723 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3724 }
3725
3726 return bi;
3727}
3728
3729
f679623f
RBJ
3730/*
3731 * The "raid5_align_endio" should check if the read succeeded and if it
3732 * did, call bio_endio on the original bio (having bio_put the new bio
3733 * first).
3734 * If the read failed..
3735 */
6712ecf8 3736static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3737{
3738 struct bio* raid_bi = bi->bi_private;
fd01b88c 3739 struct mddev *mddev;
d1688a6d 3740 struct r5conf *conf;
46031f9a 3741 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 3742 struct md_rdev *rdev;
46031f9a 3743
f679623f 3744 bio_put(bi);
46031f9a 3745
46031f9a
RBJ
3746 rdev = (void*)raid_bi->bi_next;
3747 raid_bi->bi_next = NULL;
2b7f2228
N
3748 mddev = rdev->mddev;
3749 conf = mddev->private;
46031f9a
RBJ
3750
3751 rdev_dec_pending(rdev, conf->mddev);
3752
3753 if (!error && uptodate) {
6712ecf8 3754 bio_endio(raid_bi, 0);
46031f9a
RBJ
3755 if (atomic_dec_and_test(&conf->active_aligned_reads))
3756 wake_up(&conf->wait_for_stripe);
6712ecf8 3757 return;
46031f9a
RBJ
3758 }
3759
3760
45b4233c 3761 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3762
3763 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3764}
3765
387bb173
NB
3766static int bio_fits_rdev(struct bio *bi)
3767{
165125e1 3768 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3769
ae03bf63 3770 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3771 return 0;
3772 blk_recount_segments(q, bi);
8a78362c 3773 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3774 return 0;
3775
3776 if (q->merge_bvec_fn)
3777 /* it's too hard to apply the merge_bvec_fn at this stage,
3778 * just just give up
3779 */
3780 return 0;
3781
3782 return 1;
3783}
3784
3785
fd01b88c 3786static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 3787{
d1688a6d 3788 struct r5conf *conf = mddev->private;
8553fe7e 3789 int dd_idx;
f679623f 3790 struct bio* align_bi;
3cb03002 3791 struct md_rdev *rdev;
671488cc 3792 sector_t end_sector;
f679623f
RBJ
3793
3794 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3795 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3796 return 0;
3797 }
3798 /*
a167f663 3799 * use bio_clone_mddev to make a copy of the bio
f679623f 3800 */
a167f663 3801 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
3802 if (!align_bi)
3803 return 0;
3804 /*
3805 * set bi_end_io to a new function, and set bi_private to the
3806 * original bio.
3807 */
3808 align_bi->bi_end_io = raid5_align_endio;
3809 align_bi->bi_private = raid_bio;
3810 /*
3811 * compute position
3812 */
112bf897
N
3813 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3814 0,
911d4ee8 3815 &dd_idx, NULL);
f679623f 3816
671488cc 3817 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
f679623f 3818 rcu_read_lock();
671488cc
N
3819 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3820 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3821 rdev->recovery_offset < end_sector) {
3822 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3823 if (rdev &&
3824 (test_bit(Faulty, &rdev->flags) ||
3825 !(test_bit(In_sync, &rdev->flags) ||
3826 rdev->recovery_offset >= end_sector)))
3827 rdev = NULL;
3828 }
3829 if (rdev) {
31c176ec
N
3830 sector_t first_bad;
3831 int bad_sectors;
3832
f679623f
RBJ
3833 atomic_inc(&rdev->nr_pending);
3834 rcu_read_unlock();
46031f9a
RBJ
3835 raid_bio->bi_next = (void*)rdev;
3836 align_bi->bi_bdev = rdev->bdev;
3837 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3838 align_bi->bi_sector += rdev->data_offset;
3839
31c176ec
N
3840 if (!bio_fits_rdev(align_bi) ||
3841 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3842 &first_bad, &bad_sectors)) {
3843 /* too big in some way, or has a known bad block */
387bb173
NB
3844 bio_put(align_bi);
3845 rdev_dec_pending(rdev, mddev);
3846 return 0;
3847 }
3848
46031f9a
RBJ
3849 spin_lock_irq(&conf->device_lock);
3850 wait_event_lock_irq(conf->wait_for_stripe,
3851 conf->quiesce == 0,
3852 conf->device_lock, /* nothing */);
3853 atomic_inc(&conf->active_aligned_reads);
3854 spin_unlock_irq(&conf->device_lock);
3855
f679623f
RBJ
3856 generic_make_request(align_bi);
3857 return 1;
3858 } else {
3859 rcu_read_unlock();
46031f9a 3860 bio_put(align_bi);
f679623f
RBJ
3861 return 0;
3862 }
3863}
3864
8b3e6cdc
DW
3865/* __get_priority_stripe - get the next stripe to process
3866 *
3867 * Full stripe writes are allowed to pass preread active stripes up until
3868 * the bypass_threshold is exceeded. In general the bypass_count
3869 * increments when the handle_list is handled before the hold_list; however, it
3870 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3871 * stripe with in flight i/o. The bypass_count will be reset when the
3872 * head of the hold_list has changed, i.e. the head was promoted to the
3873 * handle_list.
3874 */
d1688a6d 3875static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
8b3e6cdc
DW
3876{
3877 struct stripe_head *sh;
3878
3879 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3880 __func__,
3881 list_empty(&conf->handle_list) ? "empty" : "busy",
3882 list_empty(&conf->hold_list) ? "empty" : "busy",
3883 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3884
3885 if (!list_empty(&conf->handle_list)) {
3886 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3887
3888 if (list_empty(&conf->hold_list))
3889 conf->bypass_count = 0;
3890 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3891 if (conf->hold_list.next == conf->last_hold)
3892 conf->bypass_count++;
3893 else {
3894 conf->last_hold = conf->hold_list.next;
3895 conf->bypass_count -= conf->bypass_threshold;
3896 if (conf->bypass_count < 0)
3897 conf->bypass_count = 0;
3898 }
3899 }
3900 } else if (!list_empty(&conf->hold_list) &&
3901 ((conf->bypass_threshold &&
3902 conf->bypass_count > conf->bypass_threshold) ||
3903 atomic_read(&conf->pending_full_writes) == 0)) {
3904 sh = list_entry(conf->hold_list.next,
3905 typeof(*sh), lru);
3906 conf->bypass_count -= conf->bypass_threshold;
3907 if (conf->bypass_count < 0)
3908 conf->bypass_count = 0;
3909 } else
3910 return NULL;
3911
3912 list_del_init(&sh->lru);
3913 atomic_inc(&sh->count);
3914 BUG_ON(atomic_read(&sh->count) != 1);
3915 return sh;
3916}
f679623f 3917
b4fdcb02 3918static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 3919{
d1688a6d 3920 struct r5conf *conf = mddev->private;
911d4ee8 3921 int dd_idx;
1da177e4
LT
3922 sector_t new_sector;
3923 sector_t logical_sector, last_sector;
3924 struct stripe_head *sh;
a362357b 3925 const int rw = bio_data_dir(bi);
49077326 3926 int remaining;
7c13edc8 3927 int plugged;
1da177e4 3928
e9c7469b
TH
3929 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3930 md_flush_request(mddev, bi);
5a7bbad2 3931 return;
e5dcdd80
N
3932 }
3933
3d310eb7 3934 md_write_start(mddev, bi);
06d91a5f 3935
802ba064 3936 if (rw == READ &&
52488615 3937 mddev->reshape_position == MaxSector &&
21a52c6d 3938 chunk_aligned_read(mddev,bi))
5a7bbad2 3939 return;
52488615 3940
1da177e4
LT
3941 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3942 last_sector = bi->bi_sector + (bi->bi_size>>9);
3943 bi->bi_next = NULL;
3944 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3945
7c13edc8 3946 plugged = mddev_check_plugged(mddev);
1da177e4
LT
3947 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3948 DEFINE_WAIT(w);
16a53ecc 3949 int disks, data_disks;
b5663ba4 3950 int previous;
b578d55f 3951
7ecaa1e6 3952 retry:
b5663ba4 3953 previous = 0;
b0f9ec04 3954 disks = conf->raid_disks;
b578d55f 3955 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 3956 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 3957 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3958 * 64bit on a 32bit platform, and so it might be
3959 * possible to see a half-updated value
aeb878b0 3960 * Of course reshape_progress could change after
df8e7f76
N
3961 * the lock is dropped, so once we get a reference
3962 * to the stripe that we think it is, we will have
3963 * to check again.
3964 */
7ecaa1e6 3965 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3966 if (mddev->delta_disks < 0
3967 ? logical_sector < conf->reshape_progress
3968 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3969 disks = conf->previous_raid_disks;
b5663ba4
N
3970 previous = 1;
3971 } else {
fef9c61f
N
3972 if (mddev->delta_disks < 0
3973 ? logical_sector < conf->reshape_safe
3974 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3975 spin_unlock_irq(&conf->device_lock);
3976 schedule();
3977 goto retry;
3978 }
3979 }
7ecaa1e6
N
3980 spin_unlock_irq(&conf->device_lock);
3981 }
16a53ecc
N
3982 data_disks = disks - conf->max_degraded;
3983
112bf897
N
3984 new_sector = raid5_compute_sector(conf, logical_sector,
3985 previous,
911d4ee8 3986 &dd_idx, NULL);
0c55e022 3987 pr_debug("raid456: make_request, sector %llu logical %llu\n",
1da177e4
LT
3988 (unsigned long long)new_sector,
3989 (unsigned long long)logical_sector);
3990
b5663ba4 3991 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 3992 (bi->bi_rw&RWA_MASK), 0);
1da177e4 3993 if (sh) {
b0f9ec04 3994 if (unlikely(previous)) {
7ecaa1e6 3995 /* expansion might have moved on while waiting for a
df8e7f76
N
3996 * stripe, so we must do the range check again.
3997 * Expansion could still move past after this
3998 * test, but as we are holding a reference to
3999 * 'sh', we know that if that happens,
4000 * STRIPE_EXPANDING will get set and the expansion
4001 * won't proceed until we finish with the stripe.
7ecaa1e6
N
4002 */
4003 int must_retry = 0;
4004 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
4005 if (mddev->delta_disks < 0
4006 ? logical_sector >= conf->reshape_progress
4007 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
4008 /* mismatch, need to try again */
4009 must_retry = 1;
4010 spin_unlock_irq(&conf->device_lock);
4011 if (must_retry) {
4012 release_stripe(sh);
7a3ab908 4013 schedule();
7ecaa1e6
N
4014 goto retry;
4015 }
4016 }
e62e58a5 4017
ffd96e35 4018 if (rw == WRITE &&
a5c308d4 4019 logical_sector >= mddev->suspend_lo &&
e464eafd
N
4020 logical_sector < mddev->suspend_hi) {
4021 release_stripe(sh);
e62e58a5
N
4022 /* As the suspend_* range is controlled by
4023 * userspace, we want an interruptible
4024 * wait.
4025 */
4026 flush_signals(current);
4027 prepare_to_wait(&conf->wait_for_overlap,
4028 &w, TASK_INTERRUPTIBLE);
4029 if (logical_sector >= mddev->suspend_lo &&
4030 logical_sector < mddev->suspend_hi)
4031 schedule();
e464eafd
N
4032 goto retry;
4033 }
7ecaa1e6
N
4034
4035 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 4036 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
4037 /* Stripe is busy expanding or
4038 * add failed due to overlap. Flush everything
1da177e4
LT
4039 * and wait a while
4040 */
482c0834 4041 md_wakeup_thread(mddev->thread);
1da177e4
LT
4042 release_stripe(sh);
4043 schedule();
4044 goto retry;
4045 }
4046 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
4047 set_bit(STRIPE_HANDLE, &sh->state);
4048 clear_bit(STRIPE_DELAYED, &sh->state);
e9c7469b 4049 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
4050 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4051 atomic_inc(&conf->preread_active_stripes);
1da177e4 4052 release_stripe(sh);
1da177e4
LT
4053 } else {
4054 /* cannot get stripe for read-ahead, just give-up */
4055 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4056 finish_wait(&conf->wait_for_overlap, &w);
4057 break;
4058 }
4059
4060 }
7c13edc8
N
4061 if (!plugged)
4062 md_wakeup_thread(mddev->thread);
4063
1da177e4 4064 spin_lock_irq(&conf->device_lock);
960e739d 4065 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
4066 spin_unlock_irq(&conf->device_lock);
4067 if (remaining == 0) {
1da177e4 4068
16a53ecc 4069 if ( rw == WRITE )
1da177e4 4070 md_write_end(mddev);
6712ecf8 4071
0e13fe23 4072 bio_endio(bi, 0);
1da177e4 4073 }
1da177e4
LT
4074}
4075
fd01b88c 4076static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 4077
fd01b88c 4078static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 4079{
52c03291
N
4080 /* reshaping is quite different to recovery/resync so it is
4081 * handled quite separately ... here.
4082 *
4083 * On each call to sync_request, we gather one chunk worth of
4084 * destination stripes and flag them as expanding.
4085 * Then we find all the source stripes and request reads.
4086 * As the reads complete, handle_stripe will copy the data
4087 * into the destination stripe and release that stripe.
4088 */
d1688a6d 4089 struct r5conf *conf = mddev->private;
1da177e4 4090 struct stripe_head *sh;
ccfcc3c1 4091 sector_t first_sector, last_sector;
f416885e
N
4092 int raid_disks = conf->previous_raid_disks;
4093 int data_disks = raid_disks - conf->max_degraded;
4094 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4095 int i;
4096 int dd_idx;
c8f517c4 4097 sector_t writepos, readpos, safepos;
ec32a2bd 4098 sector_t stripe_addr;
7a661381 4099 int reshape_sectors;
ab69ae12 4100 struct list_head stripes;
52c03291 4101
fef9c61f
N
4102 if (sector_nr == 0) {
4103 /* If restarting in the middle, skip the initial sectors */
4104 if (mddev->delta_disks < 0 &&
4105 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4106 sector_nr = raid5_size(mddev, 0, 0)
4107 - conf->reshape_progress;
a639755c 4108 } else if (mddev->delta_disks >= 0 &&
fef9c61f
N
4109 conf->reshape_progress > 0)
4110 sector_nr = conf->reshape_progress;
f416885e 4111 sector_div(sector_nr, new_data_disks);
fef9c61f 4112 if (sector_nr) {
8dee7211
N
4113 mddev->curr_resync_completed = sector_nr;
4114 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4115 *skipped = 1;
4116 return sector_nr;
4117 }
52c03291
N
4118 }
4119
7a661381
N
4120 /* We need to process a full chunk at a time.
4121 * If old and new chunk sizes differ, we need to process the
4122 * largest of these
4123 */
664e7c41
AN
4124 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4125 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4126 else
9d8f0363 4127 reshape_sectors = mddev->chunk_sectors;
7a661381 4128
52c03291
N
4129 /* we update the metadata when there is more than 3Meg
4130 * in the block range (that is rather arbitrary, should
4131 * probably be time based) or when the data about to be
4132 * copied would over-write the source of the data at
4133 * the front of the range.
fef9c61f
N
4134 * i.e. one new_stripe along from reshape_progress new_maps
4135 * to after where reshape_safe old_maps to
52c03291 4136 */
fef9c61f 4137 writepos = conf->reshape_progress;
f416885e 4138 sector_div(writepos, new_data_disks);
c8f517c4
N
4139 readpos = conf->reshape_progress;
4140 sector_div(readpos, data_disks);
fef9c61f 4141 safepos = conf->reshape_safe;
f416885e 4142 sector_div(safepos, data_disks);
fef9c61f 4143 if (mddev->delta_disks < 0) {
ed37d83e 4144 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4145 readpos += reshape_sectors;
7a661381 4146 safepos += reshape_sectors;
fef9c61f 4147 } else {
7a661381 4148 writepos += reshape_sectors;
ed37d83e
N
4149 readpos -= min_t(sector_t, reshape_sectors, readpos);
4150 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4151 }
52c03291 4152
c8f517c4
N
4153 /* 'writepos' is the most advanced device address we might write.
4154 * 'readpos' is the least advanced device address we might read.
4155 * 'safepos' is the least address recorded in the metadata as having
4156 * been reshaped.
4157 * If 'readpos' is behind 'writepos', then there is no way that we can
4158 * ensure safety in the face of a crash - that must be done by userspace
4159 * making a backup of the data. So in that case there is no particular
4160 * rush to update metadata.
4161 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4162 * update the metadata to advance 'safepos' to match 'readpos' so that
4163 * we can be safe in the event of a crash.
4164 * So we insist on updating metadata if safepos is behind writepos and
4165 * readpos is beyond writepos.
4166 * In any case, update the metadata every 10 seconds.
4167 * Maybe that number should be configurable, but I'm not sure it is
4168 * worth it.... maybe it could be a multiple of safemode_delay???
4169 */
fef9c61f 4170 if ((mddev->delta_disks < 0
c8f517c4
N
4171 ? (safepos > writepos && readpos < writepos)
4172 : (safepos < writepos && readpos > writepos)) ||
4173 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4174 /* Cannot proceed until we've updated the superblock... */
4175 wait_event(conf->wait_for_overlap,
4176 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 4177 mddev->reshape_position = conf->reshape_progress;
75d3da43 4178 mddev->curr_resync_completed = sector_nr;
c8f517c4 4179 conf->reshape_checkpoint = jiffies;
850b2b42 4180 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4181 md_wakeup_thread(mddev->thread);
850b2b42 4182 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
4183 kthread_should_stop());
4184 spin_lock_irq(&conf->device_lock);
fef9c61f 4185 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4186 spin_unlock_irq(&conf->device_lock);
4187 wake_up(&conf->wait_for_overlap);
acb180b0 4188 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4189 }
4190
ec32a2bd
N
4191 if (mddev->delta_disks < 0) {
4192 BUG_ON(conf->reshape_progress == 0);
4193 stripe_addr = writepos;
4194 BUG_ON((mddev->dev_sectors &
7a661381
N
4195 ~((sector_t)reshape_sectors - 1))
4196 - reshape_sectors - stripe_addr
ec32a2bd
N
4197 != sector_nr);
4198 } else {
7a661381 4199 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
4200 stripe_addr = sector_nr;
4201 }
ab69ae12 4202 INIT_LIST_HEAD(&stripes);
7a661381 4203 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4204 int j;
a9f326eb 4205 int skipped_disk = 0;
a8c906ca 4206 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4207 set_bit(STRIPE_EXPANDING, &sh->state);
4208 atomic_inc(&conf->reshape_stripes);
4209 /* If any of this stripe is beyond the end of the old
4210 * array, then we need to zero those blocks
4211 */
4212 for (j=sh->disks; j--;) {
4213 sector_t s;
4214 if (j == sh->pd_idx)
4215 continue;
f416885e 4216 if (conf->level == 6 &&
d0dabf7e 4217 j == sh->qd_idx)
f416885e 4218 continue;
784052ec 4219 s = compute_blocknr(sh, j, 0);
b522adcd 4220 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4221 skipped_disk = 1;
52c03291
N
4222 continue;
4223 }
4224 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4225 set_bit(R5_Expanded, &sh->dev[j].flags);
4226 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4227 }
a9f326eb 4228 if (!skipped_disk) {
52c03291
N
4229 set_bit(STRIPE_EXPAND_READY, &sh->state);
4230 set_bit(STRIPE_HANDLE, &sh->state);
4231 }
ab69ae12 4232 list_add(&sh->lru, &stripes);
52c03291
N
4233 }
4234 spin_lock_irq(&conf->device_lock);
fef9c61f 4235 if (mddev->delta_disks < 0)
7a661381 4236 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4237 else
7a661381 4238 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4239 spin_unlock_irq(&conf->device_lock);
4240 /* Ok, those stripe are ready. We can start scheduling
4241 * reads on the source stripes.
4242 * The source stripes are determined by mapping the first and last
4243 * block on the destination stripes.
4244 */
52c03291 4245 first_sector =
ec32a2bd 4246 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4247 1, &dd_idx, NULL);
52c03291 4248 last_sector =
0e6e0271 4249 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4250 * new_data_disks - 1),
911d4ee8 4251 1, &dd_idx, NULL);
58c0fed4
AN
4252 if (last_sector >= mddev->dev_sectors)
4253 last_sector = mddev->dev_sectors - 1;
52c03291 4254 while (first_sector <= last_sector) {
a8c906ca 4255 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4256 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4257 set_bit(STRIPE_HANDLE, &sh->state);
4258 release_stripe(sh);
4259 first_sector += STRIPE_SECTORS;
4260 }
ab69ae12
N
4261 /* Now that the sources are clearly marked, we can release
4262 * the destination stripes
4263 */
4264 while (!list_empty(&stripes)) {
4265 sh = list_entry(stripes.next, struct stripe_head, lru);
4266 list_del_init(&sh->lru);
4267 release_stripe(sh);
4268 }
c6207277
N
4269 /* If this takes us to the resync_max point where we have to pause,
4270 * then we need to write out the superblock.
4271 */
7a661381 4272 sector_nr += reshape_sectors;
c03f6a19
N
4273 if ((sector_nr - mddev->curr_resync_completed) * 2
4274 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4275 /* Cannot proceed until we've updated the superblock... */
4276 wait_event(conf->wait_for_overlap,
4277 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4278 mddev->reshape_position = conf->reshape_progress;
75d3da43 4279 mddev->curr_resync_completed = sector_nr;
c8f517c4 4280 conf->reshape_checkpoint = jiffies;
c6207277
N
4281 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4282 md_wakeup_thread(mddev->thread);
4283 wait_event(mddev->sb_wait,
4284 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4285 || kthread_should_stop());
4286 spin_lock_irq(&conf->device_lock);
fef9c61f 4287 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4288 spin_unlock_irq(&conf->device_lock);
4289 wake_up(&conf->wait_for_overlap);
acb180b0 4290 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4291 }
7a661381 4292 return reshape_sectors;
52c03291
N
4293}
4294
4295/* FIXME go_faster isn't used */
fd01b88c 4296static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
52c03291 4297{
d1688a6d 4298 struct r5conf *conf = mddev->private;
52c03291 4299 struct stripe_head *sh;
58c0fed4 4300 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4301 sector_t sync_blocks;
16a53ecc
N
4302 int still_degraded = 0;
4303 int i;
1da177e4 4304
72626685 4305 if (sector_nr >= max_sector) {
1da177e4 4306 /* just being told to finish up .. nothing much to do */
cea9c228 4307
29269553
N
4308 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4309 end_reshape(conf);
4310 return 0;
4311 }
72626685
N
4312
4313 if (mddev->curr_resync < max_sector) /* aborted */
4314 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4315 &sync_blocks, 1);
16a53ecc 4316 else /* completed sync */
72626685
N
4317 conf->fullsync = 0;
4318 bitmap_close_sync(mddev->bitmap);
4319
1da177e4
LT
4320 return 0;
4321 }
ccfcc3c1 4322
64bd660b
N
4323 /* Allow raid5_quiesce to complete */
4324 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4325
52c03291
N
4326 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4327 return reshape_request(mddev, sector_nr, skipped);
f6705578 4328
c6207277
N
4329 /* No need to check resync_max as we never do more than one
4330 * stripe, and as resync_max will always be on a chunk boundary,
4331 * if the check in md_do_sync didn't fire, there is no chance
4332 * of overstepping resync_max here
4333 */
4334
16a53ecc 4335 /* if there is too many failed drives and we are trying
1da177e4
LT
4336 * to resync, then assert that we are finished, because there is
4337 * nothing we can do.
4338 */
3285edf1 4339 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4340 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4341 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4342 *skipped = 1;
1da177e4
LT
4343 return rv;
4344 }
72626685 4345 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4346 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4347 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4348 /* we can skip this block, and probably more */
4349 sync_blocks /= STRIPE_SECTORS;
4350 *skipped = 1;
4351 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4352 }
1da177e4 4353
b47490c9
N
4354 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4355
a8c906ca 4356 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4357 if (sh == NULL) {
a8c906ca 4358 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4359 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4360 * is trying to get access
1da177e4 4361 */
66c006a5 4362 schedule_timeout_uninterruptible(1);
1da177e4 4363 }
16a53ecc
N
4364 /* Need to check if array will still be degraded after recovery/resync
4365 * We don't need to check the 'failed' flag as when that gets set,
4366 * recovery aborts.
4367 */
f001a70c 4368 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4369 if (conf->disks[i].rdev == NULL)
4370 still_degraded = 1;
4371
4372 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4373
83206d66 4374 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 4375
1442577b 4376 handle_stripe(sh);
1da177e4
LT
4377 release_stripe(sh);
4378
4379 return STRIPE_SECTORS;
4380}
4381
d1688a6d 4382static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
4383{
4384 /* We may not be able to submit a whole bio at once as there
4385 * may not be enough stripe_heads available.
4386 * We cannot pre-allocate enough stripe_heads as we may need
4387 * more than exist in the cache (if we allow ever large chunks).
4388 * So we do one stripe head at a time and record in
4389 * ->bi_hw_segments how many have been done.
4390 *
4391 * We *know* that this entire raid_bio is in one chunk, so
4392 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4393 */
4394 struct stripe_head *sh;
911d4ee8 4395 int dd_idx;
46031f9a
RBJ
4396 sector_t sector, logical_sector, last_sector;
4397 int scnt = 0;
4398 int remaining;
4399 int handled = 0;
4400
4401 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4402 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4403 0, &dd_idx, NULL);
46031f9a
RBJ
4404 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4405
4406 for (; logical_sector < last_sector;
387bb173
NB
4407 logical_sector += STRIPE_SECTORS,
4408 sector += STRIPE_SECTORS,
4409 scnt++) {
46031f9a 4410
960e739d 4411 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4412 /* already done this stripe */
4413 continue;
4414
a8c906ca 4415 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4416
4417 if (!sh) {
4418 /* failed to get a stripe - must wait */
960e739d 4419 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4420 conf->retry_read_aligned = raid_bio;
4421 return handled;
4422 }
4423
387bb173
NB
4424 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4425 release_stripe(sh);
960e739d 4426 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4427 conf->retry_read_aligned = raid_bio;
4428 return handled;
4429 }
4430
36d1c647 4431 handle_stripe(sh);
46031f9a
RBJ
4432 release_stripe(sh);
4433 handled++;
4434 }
4435 spin_lock_irq(&conf->device_lock);
960e739d 4436 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4437 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4438 if (remaining == 0)
4439 bio_endio(raid_bio, 0);
46031f9a
RBJ
4440 if (atomic_dec_and_test(&conf->active_aligned_reads))
4441 wake_up(&conf->wait_for_stripe);
4442 return handled;
4443}
4444
46031f9a 4445
1da177e4
LT
4446/*
4447 * This is our raid5 kernel thread.
4448 *
4449 * We scan the hash table for stripes which can be handled now.
4450 * During the scan, completed stripes are saved for us by the interrupt
4451 * handler, so that they will not have to wait for our next wakeup.
4452 */
fd01b88c 4453static void raid5d(struct mddev *mddev)
1da177e4
LT
4454{
4455 struct stripe_head *sh;
d1688a6d 4456 struct r5conf *conf = mddev->private;
1da177e4 4457 int handled;
e1dfa0a2 4458 struct blk_plug plug;
1da177e4 4459
45b4233c 4460 pr_debug("+++ raid5d active\n");
1da177e4
LT
4461
4462 md_check_recovery(mddev);
1da177e4 4463
e1dfa0a2 4464 blk_start_plug(&plug);
1da177e4
LT
4465 handled = 0;
4466 spin_lock_irq(&conf->device_lock);
4467 while (1) {
46031f9a 4468 struct bio *bio;
1da177e4 4469
7c13edc8
N
4470 if (atomic_read(&mddev->plug_cnt) == 0 &&
4471 !list_empty(&conf->bitmap_list)) {
4472 /* Now is a good time to flush some bitmap updates */
4473 conf->seq_flush++;
700e432d 4474 spin_unlock_irq(&conf->device_lock);
72626685 4475 bitmap_unplug(mddev->bitmap);
700e432d 4476 spin_lock_irq(&conf->device_lock);
7c13edc8 4477 conf->seq_write = conf->seq_flush;
72626685
N
4478 activate_bit_delay(conf);
4479 }
7c13edc8
N
4480 if (atomic_read(&mddev->plug_cnt) == 0)
4481 raid5_activate_delayed(conf);
72626685 4482
46031f9a
RBJ
4483 while ((bio = remove_bio_from_retry(conf))) {
4484 int ok;
4485 spin_unlock_irq(&conf->device_lock);
4486 ok = retry_aligned_read(conf, bio);
4487 spin_lock_irq(&conf->device_lock);
4488 if (!ok)
4489 break;
4490 handled++;
4491 }
4492
8b3e6cdc
DW
4493 sh = __get_priority_stripe(conf);
4494
c9f21aaf 4495 if (!sh)
1da177e4 4496 break;
1da177e4
LT
4497 spin_unlock_irq(&conf->device_lock);
4498
4499 handled++;
417b8d4a
DW
4500 handle_stripe(sh);
4501 release_stripe(sh);
4502 cond_resched();
1da177e4 4503
de393cde
N
4504 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4505 md_check_recovery(mddev);
4506
1da177e4
LT
4507 spin_lock_irq(&conf->device_lock);
4508 }
45b4233c 4509 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4510
4511 spin_unlock_irq(&conf->device_lock);
4512
c9f21aaf 4513 async_tx_issue_pending_all();
e1dfa0a2 4514 blk_finish_plug(&plug);
1da177e4 4515
45b4233c 4516 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4517}
4518
3f294f4f 4519static ssize_t
fd01b88c 4520raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 4521{
d1688a6d 4522 struct r5conf *conf = mddev->private;
96de1e66
N
4523 if (conf)
4524 return sprintf(page, "%d\n", conf->max_nr_stripes);
4525 else
4526 return 0;
3f294f4f
N
4527}
4528
c41d4ac4 4529int
fd01b88c 4530raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 4531{
d1688a6d 4532 struct r5conf *conf = mddev->private;
b5470dc5
DW
4533 int err;
4534
c41d4ac4 4535 if (size <= 16 || size > 32768)
3f294f4f 4536 return -EINVAL;
c41d4ac4 4537 while (size < conf->max_nr_stripes) {
3f294f4f
N
4538 if (drop_one_stripe(conf))
4539 conf->max_nr_stripes--;
4540 else
4541 break;
4542 }
b5470dc5
DW
4543 err = md_allow_write(mddev);
4544 if (err)
4545 return err;
c41d4ac4 4546 while (size > conf->max_nr_stripes) {
3f294f4f
N
4547 if (grow_one_stripe(conf))
4548 conf->max_nr_stripes++;
4549 else break;
4550 }
c41d4ac4
N
4551 return 0;
4552}
4553EXPORT_SYMBOL(raid5_set_cache_size);
4554
4555static ssize_t
fd01b88c 4556raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 4557{
d1688a6d 4558 struct r5conf *conf = mddev->private;
c41d4ac4
N
4559 unsigned long new;
4560 int err;
4561
4562 if (len >= PAGE_SIZE)
4563 return -EINVAL;
4564 if (!conf)
4565 return -ENODEV;
4566
4567 if (strict_strtoul(page, 10, &new))
4568 return -EINVAL;
4569 err = raid5_set_cache_size(mddev, new);
4570 if (err)
4571 return err;
3f294f4f
N
4572 return len;
4573}
007583c9 4574
96de1e66
N
4575static struct md_sysfs_entry
4576raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4577 raid5_show_stripe_cache_size,
4578 raid5_store_stripe_cache_size);
3f294f4f 4579
8b3e6cdc 4580static ssize_t
fd01b88c 4581raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 4582{
d1688a6d 4583 struct r5conf *conf = mddev->private;
8b3e6cdc
DW
4584 if (conf)
4585 return sprintf(page, "%d\n", conf->bypass_threshold);
4586 else
4587 return 0;
4588}
4589
4590static ssize_t
fd01b88c 4591raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 4592{
d1688a6d 4593 struct r5conf *conf = mddev->private;
4ef197d8 4594 unsigned long new;
8b3e6cdc
DW
4595 if (len >= PAGE_SIZE)
4596 return -EINVAL;
4597 if (!conf)
4598 return -ENODEV;
4599
4ef197d8 4600 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4601 return -EINVAL;
4ef197d8 4602 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4603 return -EINVAL;
4604 conf->bypass_threshold = new;
4605 return len;
4606}
4607
4608static struct md_sysfs_entry
4609raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4610 S_IRUGO | S_IWUSR,
4611 raid5_show_preread_threshold,
4612 raid5_store_preread_threshold);
4613
3f294f4f 4614static ssize_t
fd01b88c 4615stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 4616{
d1688a6d 4617 struct r5conf *conf = mddev->private;
96de1e66
N
4618 if (conf)
4619 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4620 else
4621 return 0;
3f294f4f
N
4622}
4623
96de1e66
N
4624static struct md_sysfs_entry
4625raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4626
007583c9 4627static struct attribute *raid5_attrs[] = {
3f294f4f
N
4628 &raid5_stripecache_size.attr,
4629 &raid5_stripecache_active.attr,
8b3e6cdc 4630 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4631 NULL,
4632};
007583c9
N
4633static struct attribute_group raid5_attrs_group = {
4634 .name = NULL,
4635 .attrs = raid5_attrs,
3f294f4f
N
4636};
4637
80c3a6ce 4638static sector_t
fd01b88c 4639raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 4640{
d1688a6d 4641 struct r5conf *conf = mddev->private;
80c3a6ce
DW
4642
4643 if (!sectors)
4644 sectors = mddev->dev_sectors;
5e5e3e78 4645 if (!raid_disks)
7ec05478 4646 /* size is defined by the smallest of previous and new size */
5e5e3e78 4647 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4648
9d8f0363 4649 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4650 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4651 return sectors * (raid_disks - conf->max_degraded);
4652}
4653
d1688a6d 4654static void raid5_free_percpu(struct r5conf *conf)
36d1c647
DW
4655{
4656 struct raid5_percpu *percpu;
4657 unsigned long cpu;
4658
4659 if (!conf->percpu)
4660 return;
4661
4662 get_online_cpus();
4663 for_each_possible_cpu(cpu) {
4664 percpu = per_cpu_ptr(conf->percpu, cpu);
4665 safe_put_page(percpu->spare_page);
d6f38f31 4666 kfree(percpu->scribble);
36d1c647
DW
4667 }
4668#ifdef CONFIG_HOTPLUG_CPU
4669 unregister_cpu_notifier(&conf->cpu_notify);
4670#endif
4671 put_online_cpus();
4672
4673 free_percpu(conf->percpu);
4674}
4675
d1688a6d 4676static void free_conf(struct r5conf *conf)
95fc17aa
DW
4677{
4678 shrink_stripes(conf);
36d1c647 4679 raid5_free_percpu(conf);
95fc17aa
DW
4680 kfree(conf->disks);
4681 kfree(conf->stripe_hashtbl);
4682 kfree(conf);
4683}
4684
36d1c647
DW
4685#ifdef CONFIG_HOTPLUG_CPU
4686static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4687 void *hcpu)
4688{
d1688a6d 4689 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
4690 long cpu = (long)hcpu;
4691 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4692
4693 switch (action) {
4694 case CPU_UP_PREPARE:
4695 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4696 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4697 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4698 if (!percpu->scribble)
4699 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4700
4701 if (!percpu->scribble ||
4702 (conf->level == 6 && !percpu->spare_page)) {
4703 safe_put_page(percpu->spare_page);
4704 kfree(percpu->scribble);
36d1c647
DW
4705 pr_err("%s: failed memory allocation for cpu%ld\n",
4706 __func__, cpu);
55af6bb5 4707 return notifier_from_errno(-ENOMEM);
36d1c647
DW
4708 }
4709 break;
4710 case CPU_DEAD:
4711 case CPU_DEAD_FROZEN:
4712 safe_put_page(percpu->spare_page);
d6f38f31 4713 kfree(percpu->scribble);
36d1c647 4714 percpu->spare_page = NULL;
d6f38f31 4715 percpu->scribble = NULL;
36d1c647
DW
4716 break;
4717 default:
4718 break;
4719 }
4720 return NOTIFY_OK;
4721}
4722#endif
4723
d1688a6d 4724static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
4725{
4726 unsigned long cpu;
4727 struct page *spare_page;
a29d8b8e 4728 struct raid5_percpu __percpu *allcpus;
d6f38f31 4729 void *scribble;
36d1c647
DW
4730 int err;
4731
36d1c647
DW
4732 allcpus = alloc_percpu(struct raid5_percpu);
4733 if (!allcpus)
4734 return -ENOMEM;
4735 conf->percpu = allcpus;
4736
4737 get_online_cpus();
4738 err = 0;
4739 for_each_present_cpu(cpu) {
d6f38f31
DW
4740 if (conf->level == 6) {
4741 spare_page = alloc_page(GFP_KERNEL);
4742 if (!spare_page) {
4743 err = -ENOMEM;
4744 break;
4745 }
4746 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4747 }
5e5e3e78 4748 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 4749 if (!scribble) {
36d1c647
DW
4750 err = -ENOMEM;
4751 break;
4752 }
d6f38f31 4753 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4754 }
4755#ifdef CONFIG_HOTPLUG_CPU
4756 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4757 conf->cpu_notify.priority = 0;
4758 if (err == 0)
4759 err = register_cpu_notifier(&conf->cpu_notify);
4760#endif
4761 put_online_cpus();
4762
4763 return err;
4764}
4765
d1688a6d 4766static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 4767{
d1688a6d 4768 struct r5conf *conf;
5e5e3e78 4769 int raid_disk, memory, max_disks;
3cb03002 4770 struct md_rdev *rdev;
1da177e4 4771 struct disk_info *disk;
1da177e4 4772
91adb564
N
4773 if (mddev->new_level != 5
4774 && mddev->new_level != 4
4775 && mddev->new_level != 6) {
0c55e022 4776 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4777 mdname(mddev), mddev->new_level);
4778 return ERR_PTR(-EIO);
1da177e4 4779 }
91adb564
N
4780 if ((mddev->new_level == 5
4781 && !algorithm_valid_raid5(mddev->new_layout)) ||
4782 (mddev->new_level == 6
4783 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 4784 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
4785 mdname(mddev), mddev->new_layout);
4786 return ERR_PTR(-EIO);
99c0fb5f 4787 }
91adb564 4788 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 4789 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
4790 mdname(mddev), mddev->raid_disks);
4791 return ERR_PTR(-EINVAL);
4bbf3771
N
4792 }
4793
664e7c41
AN
4794 if (!mddev->new_chunk_sectors ||
4795 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4796 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
4797 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4798 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 4799 return ERR_PTR(-EINVAL);
f6705578
N
4800 }
4801
d1688a6d 4802 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 4803 if (conf == NULL)
1da177e4 4804 goto abort;
f5efd45a
DW
4805 spin_lock_init(&conf->device_lock);
4806 init_waitqueue_head(&conf->wait_for_stripe);
4807 init_waitqueue_head(&conf->wait_for_overlap);
4808 INIT_LIST_HEAD(&conf->handle_list);
4809 INIT_LIST_HEAD(&conf->hold_list);
4810 INIT_LIST_HEAD(&conf->delayed_list);
4811 INIT_LIST_HEAD(&conf->bitmap_list);
4812 INIT_LIST_HEAD(&conf->inactive_list);
4813 atomic_set(&conf->active_stripes, 0);
4814 atomic_set(&conf->preread_active_stripes, 0);
4815 atomic_set(&conf->active_aligned_reads, 0);
4816 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 4817 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
4818
4819 conf->raid_disks = mddev->raid_disks;
4820 if (mddev->reshape_position == MaxSector)
4821 conf->previous_raid_disks = mddev->raid_disks;
4822 else
f6705578 4823 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
4824 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4825 conf->scribble_len = scribble_len(max_disks);
f6705578 4826
5e5e3e78 4827 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
4828 GFP_KERNEL);
4829 if (!conf->disks)
4830 goto abort;
9ffae0cf 4831
1da177e4
LT
4832 conf->mddev = mddev;
4833
fccddba0 4834 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4835 goto abort;
1da177e4 4836
36d1c647
DW
4837 conf->level = mddev->new_level;
4838 if (raid5_alloc_percpu(conf) != 0)
4839 goto abort;
4840
0c55e022 4841 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 4842
159ec1fc 4843 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4844 raid_disk = rdev->raid_disk;
5e5e3e78 4845 if (raid_disk >= max_disks
1da177e4
LT
4846 || raid_disk < 0)
4847 continue;
4848 disk = conf->disks + raid_disk;
4849
17045f52
N
4850 if (test_bit(Replacement, &rdev->flags)) {
4851 if (disk->replacement)
4852 goto abort;
4853 disk->replacement = rdev;
4854 } else {
4855 if (disk->rdev)
4856 goto abort;
4857 disk->rdev = rdev;
4858 }
1da177e4 4859
b2d444d7 4860 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 4861 char b[BDEVNAME_SIZE];
0c55e022
N
4862 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4863 " disk %d\n",
4864 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 4865 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
4866 /* Cannot rely on bitmap to complete recovery */
4867 conf->fullsync = 1;
1da177e4
LT
4868 }
4869
09c9e5fa 4870 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 4871 conf->level = mddev->new_level;
16a53ecc
N
4872 if (conf->level == 6)
4873 conf->max_degraded = 2;
4874 else
4875 conf->max_degraded = 1;
91adb564 4876 conf->algorithm = mddev->new_layout;
1da177e4 4877 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4878 conf->reshape_progress = mddev->reshape_position;
e183eaed 4879 if (conf->reshape_progress != MaxSector) {
09c9e5fa 4880 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
4881 conf->prev_algo = mddev->layout;
4882 }
1da177e4 4883
91adb564 4884 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 4885 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
4886 if (grow_stripes(conf, conf->max_nr_stripes)) {
4887 printk(KERN_ERR
0c55e022
N
4888 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4889 mdname(mddev), memory);
91adb564
N
4890 goto abort;
4891 } else
0c55e022
N
4892 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4893 mdname(mddev), memory);
1da177e4 4894
0da3c619 4895 conf->thread = md_register_thread(raid5d, mddev, NULL);
91adb564
N
4896 if (!conf->thread) {
4897 printk(KERN_ERR
0c55e022 4898 "md/raid:%s: couldn't allocate thread.\n",
91adb564 4899 mdname(mddev));
16a53ecc
N
4900 goto abort;
4901 }
91adb564
N
4902
4903 return conf;
4904
4905 abort:
4906 if (conf) {
95fc17aa 4907 free_conf(conf);
91adb564
N
4908 return ERR_PTR(-EIO);
4909 } else
4910 return ERR_PTR(-ENOMEM);
4911}
4912
c148ffdc
N
4913
4914static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4915{
4916 switch (algo) {
4917 case ALGORITHM_PARITY_0:
4918 if (raid_disk < max_degraded)
4919 return 1;
4920 break;
4921 case ALGORITHM_PARITY_N:
4922 if (raid_disk >= raid_disks - max_degraded)
4923 return 1;
4924 break;
4925 case ALGORITHM_PARITY_0_6:
4926 if (raid_disk == 0 ||
4927 raid_disk == raid_disks - 1)
4928 return 1;
4929 break;
4930 case ALGORITHM_LEFT_ASYMMETRIC_6:
4931 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4932 case ALGORITHM_LEFT_SYMMETRIC_6:
4933 case ALGORITHM_RIGHT_SYMMETRIC_6:
4934 if (raid_disk == raid_disks - 1)
4935 return 1;
4936 }
4937 return 0;
4938}
4939
fd01b88c 4940static int run(struct mddev *mddev)
91adb564 4941{
d1688a6d 4942 struct r5conf *conf;
9f7c2220 4943 int working_disks = 0;
c148ffdc 4944 int dirty_parity_disks = 0;
3cb03002 4945 struct md_rdev *rdev;
c148ffdc 4946 sector_t reshape_offset = 0;
17045f52 4947 int i;
91adb564 4948
8c6ac868 4949 if (mddev->recovery_cp != MaxSector)
0c55e022 4950 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
4951 " -- starting background reconstruction\n",
4952 mdname(mddev));
91adb564
N
4953 if (mddev->reshape_position != MaxSector) {
4954 /* Check that we can continue the reshape.
4955 * Currently only disks can change, it must
4956 * increase, and we must be past the point where
4957 * a stripe over-writes itself
4958 */
4959 sector_t here_new, here_old;
4960 int old_disks;
18b00334 4961 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 4962
88ce4930 4963 if (mddev->new_level != mddev->level) {
0c55e022 4964 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
4965 "required - aborting.\n",
4966 mdname(mddev));
4967 return -EINVAL;
4968 }
91adb564
N
4969 old_disks = mddev->raid_disks - mddev->delta_disks;
4970 /* reshape_position must be on a new-stripe boundary, and one
4971 * further up in new geometry must map after here in old
4972 * geometry.
4973 */
4974 here_new = mddev->reshape_position;
664e7c41 4975 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 4976 (mddev->raid_disks - max_degraded))) {
0c55e022
N
4977 printk(KERN_ERR "md/raid:%s: reshape_position not "
4978 "on a stripe boundary\n", mdname(mddev));
91adb564
N
4979 return -EINVAL;
4980 }
c148ffdc 4981 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
4982 /* here_new is the stripe we will write to */
4983 here_old = mddev->reshape_position;
9d8f0363 4984 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
4985 (old_disks-max_degraded));
4986 /* here_old is the first stripe that we might need to read
4987 * from */
67ac6011
N
4988 if (mddev->delta_disks == 0) {
4989 /* We cannot be sure it is safe to start an in-place
4990 * reshape. It is only safe if user-space if monitoring
4991 * and taking constant backups.
4992 * mdadm always starts a situation like this in
4993 * readonly mode so it can take control before
4994 * allowing any writes. So just check for that.
4995 */
4996 if ((here_new * mddev->new_chunk_sectors !=
4997 here_old * mddev->chunk_sectors) ||
4998 mddev->ro == 0) {
0c55e022
N
4999 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5000 " in read-only mode - aborting\n",
5001 mdname(mddev));
67ac6011
N
5002 return -EINVAL;
5003 }
5004 } else if (mddev->delta_disks < 0
5005 ? (here_new * mddev->new_chunk_sectors <=
5006 here_old * mddev->chunk_sectors)
5007 : (here_new * mddev->new_chunk_sectors >=
5008 here_old * mddev->chunk_sectors)) {
91adb564 5009 /* Reading from the same stripe as writing to - bad */
0c55e022
N
5010 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5011 "auto-recovery - aborting.\n",
5012 mdname(mddev));
91adb564
N
5013 return -EINVAL;
5014 }
0c55e022
N
5015 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5016 mdname(mddev));
91adb564
N
5017 /* OK, we should be able to continue; */
5018 } else {
5019 BUG_ON(mddev->level != mddev->new_level);
5020 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 5021 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 5022 BUG_ON(mddev->delta_disks != 0);
1da177e4 5023 }
91adb564 5024
245f46c2
N
5025 if (mddev->private == NULL)
5026 conf = setup_conf(mddev);
5027 else
5028 conf = mddev->private;
5029
91adb564
N
5030 if (IS_ERR(conf))
5031 return PTR_ERR(conf);
5032
5033 mddev->thread = conf->thread;
5034 conf->thread = NULL;
5035 mddev->private = conf;
5036
17045f52
N
5037 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5038 i++) {
5039 rdev = conf->disks[i].rdev;
5040 if (!rdev && conf->disks[i].replacement) {
5041 /* The replacement is all we have yet */
5042 rdev = conf->disks[i].replacement;
5043 conf->disks[i].replacement = NULL;
5044 clear_bit(Replacement, &rdev->flags);
5045 conf->disks[i].rdev = rdev;
5046 }
5047 if (!rdev)
c148ffdc 5048 continue;
17045f52
N
5049 if (conf->disks[i].replacement &&
5050 conf->reshape_progress != MaxSector) {
5051 /* replacements and reshape simply do not mix. */
5052 printk(KERN_ERR "md: cannot handle concurrent "
5053 "replacement and reshape.\n");
5054 goto abort;
5055 }
2f115882 5056 if (test_bit(In_sync, &rdev->flags)) {
91adb564 5057 working_disks++;
2f115882
N
5058 continue;
5059 }
c148ffdc
N
5060 /* This disc is not fully in-sync. However if it
5061 * just stored parity (beyond the recovery_offset),
5062 * when we don't need to be concerned about the
5063 * array being dirty.
5064 * When reshape goes 'backwards', we never have
5065 * partially completed devices, so we only need
5066 * to worry about reshape going forwards.
5067 */
5068 /* Hack because v0.91 doesn't store recovery_offset properly. */
5069 if (mddev->major_version == 0 &&
5070 mddev->minor_version > 90)
5071 rdev->recovery_offset = reshape_offset;
5072
c148ffdc
N
5073 if (rdev->recovery_offset < reshape_offset) {
5074 /* We need to check old and new layout */
5075 if (!only_parity(rdev->raid_disk,
5076 conf->algorithm,
5077 conf->raid_disks,
5078 conf->max_degraded))
5079 continue;
5080 }
5081 if (!only_parity(rdev->raid_disk,
5082 conf->prev_algo,
5083 conf->previous_raid_disks,
5084 conf->max_degraded))
5085 continue;
5086 dirty_parity_disks++;
5087 }
91adb564 5088
17045f52
N
5089 /*
5090 * 0 for a fully functional array, 1 or 2 for a degraded array.
5091 */
908f4fbd 5092 mddev->degraded = calc_degraded(conf);
91adb564 5093
674806d6 5094 if (has_failed(conf)) {
0c55e022 5095 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 5096 " (%d/%d failed)\n",
02c2de8c 5097 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
5098 goto abort;
5099 }
5100
91adb564 5101 /* device size must be a multiple of chunk size */
9d8f0363 5102 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
5103 mddev->resync_max_sectors = mddev->dev_sectors;
5104
c148ffdc 5105 if (mddev->degraded > dirty_parity_disks &&
1da177e4 5106 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
5107 if (mddev->ok_start_degraded)
5108 printk(KERN_WARNING
0c55e022
N
5109 "md/raid:%s: starting dirty degraded array"
5110 " - data corruption possible.\n",
6ff8d8ec
N
5111 mdname(mddev));
5112 else {
5113 printk(KERN_ERR
0c55e022 5114 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
5115 mdname(mddev));
5116 goto abort;
5117 }
1da177e4
LT
5118 }
5119
1da177e4 5120 if (mddev->degraded == 0)
0c55e022
N
5121 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5122 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
5123 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5124 mddev->new_layout);
1da177e4 5125 else
0c55e022
N
5126 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5127 " out of %d devices, algorithm %d\n",
5128 mdname(mddev), conf->level,
5129 mddev->raid_disks - mddev->degraded,
5130 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
5131
5132 print_raid5_conf(conf);
5133
fef9c61f 5134 if (conf->reshape_progress != MaxSector) {
fef9c61f 5135 conf->reshape_safe = conf->reshape_progress;
f6705578
N
5136 atomic_set(&conf->reshape_stripes, 0);
5137 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5138 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5139 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5140 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5141 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5142 "reshape");
f6705578
N
5143 }
5144
1da177e4
LT
5145
5146 /* Ok, everything is just fine now */
a64c876f
N
5147 if (mddev->to_remove == &raid5_attrs_group)
5148 mddev->to_remove = NULL;
00bcb4ac
N
5149 else if (mddev->kobj.sd &&
5150 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 5151 printk(KERN_WARNING
4a5add49 5152 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 5153 mdname(mddev));
4a5add49 5154 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 5155
4a5add49 5156 if (mddev->queue) {
9f7c2220 5157 int chunk_size;
4a5add49
N
5158 /* read-ahead size must cover two whole stripes, which
5159 * is 2 * (datadisks) * chunksize where 'n' is the
5160 * number of raid devices
5161 */
5162 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5163 int stripe = data_disks *
5164 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5165 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5166 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 5167
4a5add49 5168 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 5169
11d8a6e3
N
5170 mddev->queue->backing_dev_info.congested_data = mddev;
5171 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 5172
9f7c2220
N
5173 chunk_size = mddev->chunk_sectors << 9;
5174 blk_queue_io_min(mddev->queue, chunk_size);
5175 blk_queue_io_opt(mddev->queue, chunk_size *
5176 (conf->raid_disks - conf->max_degraded));
8f6c2e4b 5177
9f7c2220
N
5178 list_for_each_entry(rdev, &mddev->disks, same_set)
5179 disk_stack_limits(mddev->gendisk, rdev->bdev,
5180 rdev->data_offset << 9);
5181 }
23032a0e 5182
1da177e4
LT
5183 return 0;
5184abort:
01f96c0a 5185 md_unregister_thread(&mddev->thread);
e4f869d9
N
5186 print_raid5_conf(conf);
5187 free_conf(conf);
1da177e4 5188 mddev->private = NULL;
0c55e022 5189 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
5190 return -EIO;
5191}
5192
fd01b88c 5193static int stop(struct mddev *mddev)
1da177e4 5194{
d1688a6d 5195 struct r5conf *conf = mddev->private;
1da177e4 5196
01f96c0a 5197 md_unregister_thread(&mddev->thread);
11d8a6e3
N
5198 if (mddev->queue)
5199 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 5200 free_conf(conf);
a64c876f
N
5201 mddev->private = NULL;
5202 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
5203 return 0;
5204}
5205
fd01b88c 5206static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 5207{
d1688a6d 5208 struct r5conf *conf = mddev->private;
1da177e4
LT
5209 int i;
5210
9d8f0363
AN
5211 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5212 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 5213 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
5214 for (i = 0; i < conf->raid_disks; i++)
5215 seq_printf (seq, "%s",
5216 conf->disks[i].rdev &&
b2d444d7 5217 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 5218 seq_printf (seq, "]");
1da177e4
LT
5219}
5220
d1688a6d 5221static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
5222{
5223 int i;
5224 struct disk_info *tmp;
5225
0c55e022 5226 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
5227 if (!conf) {
5228 printk("(conf==NULL)\n");
5229 return;
5230 }
0c55e022
N
5231 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5232 conf->raid_disks,
5233 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
5234
5235 for (i = 0; i < conf->raid_disks; i++) {
5236 char b[BDEVNAME_SIZE];
5237 tmp = conf->disks + i;
5238 if (tmp->rdev)
0c55e022
N
5239 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5240 i, !test_bit(Faulty, &tmp->rdev->flags),
5241 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
5242 }
5243}
5244
fd01b88c 5245static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
5246{
5247 int i;
d1688a6d 5248 struct r5conf *conf = mddev->private;
1da177e4 5249 struct disk_info *tmp;
6b965620
N
5250 int count = 0;
5251 unsigned long flags;
1da177e4
LT
5252
5253 for (i = 0; i < conf->raid_disks; i++) {
5254 tmp = conf->disks + i;
dd054fce
N
5255 if (tmp->replacement
5256 && tmp->replacement->recovery_offset == MaxSector
5257 && !test_bit(Faulty, &tmp->replacement->flags)
5258 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5259 /* Replacement has just become active. */
5260 if (!tmp->rdev
5261 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5262 count++;
5263 if (tmp->rdev) {
5264 /* Replaced device not technically faulty,
5265 * but we need to be sure it gets removed
5266 * and never re-added.
5267 */
5268 set_bit(Faulty, &tmp->rdev->flags);
5269 sysfs_notify_dirent_safe(
5270 tmp->rdev->sysfs_state);
5271 }
5272 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5273 } else if (tmp->rdev
70fffd0b 5274 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 5275 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 5276 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 5277 count++;
43c73ca4 5278 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
5279 }
5280 }
6b965620 5281 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 5282 mddev->degraded = calc_degraded(conf);
6b965620 5283 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 5284 print_raid5_conf(conf);
6b965620 5285 return count;
1da177e4
LT
5286}
5287
b8321b68 5288static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 5289{
d1688a6d 5290 struct r5conf *conf = mddev->private;
1da177e4 5291 int err = 0;
b8321b68 5292 int number = rdev->raid_disk;
657e3e4d 5293 struct md_rdev **rdevp;
1da177e4
LT
5294 struct disk_info *p = conf->disks + number;
5295
5296 print_raid5_conf(conf);
657e3e4d
N
5297 if (rdev == p->rdev)
5298 rdevp = &p->rdev;
5299 else if (rdev == p->replacement)
5300 rdevp = &p->replacement;
5301 else
5302 return 0;
5303
5304 if (number >= conf->raid_disks &&
5305 conf->reshape_progress == MaxSector)
5306 clear_bit(In_sync, &rdev->flags);
5307
5308 if (test_bit(In_sync, &rdev->flags) ||
5309 atomic_read(&rdev->nr_pending)) {
5310 err = -EBUSY;
5311 goto abort;
5312 }
5313 /* Only remove non-faulty devices if recovery
5314 * isn't possible.
5315 */
5316 if (!test_bit(Faulty, &rdev->flags) &&
5317 mddev->recovery_disabled != conf->recovery_disabled &&
5318 !has_failed(conf) &&
dd054fce 5319 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
5320 number < conf->raid_disks) {
5321 err = -EBUSY;
5322 goto abort;
5323 }
5324 *rdevp = NULL;
5325 synchronize_rcu();
5326 if (atomic_read(&rdev->nr_pending)) {
5327 /* lost the race, try later */
5328 err = -EBUSY;
5329 *rdevp = rdev;
dd054fce
N
5330 } else if (p->replacement) {
5331 /* We must have just cleared 'rdev' */
5332 p->rdev = p->replacement;
5333 clear_bit(Replacement, &p->replacement->flags);
5334 smp_mb(); /* Make sure other CPUs may see both as identical
5335 * but will never see neither - if they are careful
5336 */
5337 p->replacement = NULL;
5338 clear_bit(WantReplacement, &rdev->flags);
5339 } else
5340 /* We might have just removed the Replacement as faulty-
5341 * clear the bit just in case
5342 */
5343 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
5344abort:
5345
5346 print_raid5_conf(conf);
5347 return err;
5348}
5349
fd01b88c 5350static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 5351{
d1688a6d 5352 struct r5conf *conf = mddev->private;
199050ea 5353 int err = -EEXIST;
1da177e4
LT
5354 int disk;
5355 struct disk_info *p;
6c2fce2e
NB
5356 int first = 0;
5357 int last = conf->raid_disks - 1;
1da177e4 5358
7f0da59b
N
5359 if (mddev->recovery_disabled == conf->recovery_disabled)
5360 return -EBUSY;
5361
674806d6 5362 if (has_failed(conf))
1da177e4 5363 /* no point adding a device */
199050ea 5364 return -EINVAL;
1da177e4 5365
6c2fce2e
NB
5366 if (rdev->raid_disk >= 0)
5367 first = last = rdev->raid_disk;
1da177e4
LT
5368
5369 /*
16a53ecc
N
5370 * find the disk ... but prefer rdev->saved_raid_disk
5371 * if possible.
1da177e4 5372 */
16a53ecc 5373 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5374 rdev->saved_raid_disk >= first &&
16a53ecc
N
5375 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5376 disk = rdev->saved_raid_disk;
5377 else
6c2fce2e 5378 disk = first;
7bfec5f3
N
5379 for ( ; disk <= last ; disk++) {
5380 p = conf->disks + disk;
5381 if (p->rdev == NULL) {
b2d444d7 5382 clear_bit(In_sync, &rdev->flags);
1da177e4 5383 rdev->raid_disk = disk;
199050ea 5384 err = 0;
72626685
N
5385 if (rdev->saved_raid_disk != disk)
5386 conf->fullsync = 1;
d6065f7b 5387 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
5388 break;
5389 }
7bfec5f3
N
5390 if (test_bit(WantReplacement, &p->rdev->flags) &&
5391 p->replacement == NULL) {
5392 clear_bit(In_sync, &rdev->flags);
5393 set_bit(Replacement, &rdev->flags);
5394 rdev->raid_disk = disk;
5395 err = 0;
5396 conf->fullsync = 1;
5397 rcu_assign_pointer(p->replacement, rdev);
5398 break;
5399 }
5400 }
1da177e4 5401 print_raid5_conf(conf);
199050ea 5402 return err;
1da177e4
LT
5403}
5404
fd01b88c 5405static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
5406{
5407 /* no resync is happening, and there is enough space
5408 * on all devices, so we can resize.
5409 * We need to make sure resync covers any new space.
5410 * If the array is shrinking we should possibly wait until
5411 * any io in the removed space completes, but it hardly seems
5412 * worth it.
5413 */
9d8f0363 5414 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
1f403624
DW
5415 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5416 mddev->raid_disks));
b522adcd
DW
5417 if (mddev->array_sectors >
5418 raid5_size(mddev, sectors, mddev->raid_disks))
5419 return -EINVAL;
f233ea5c 5420 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5421 revalidate_disk(mddev->gendisk);
b098636c
N
5422 if (sectors > mddev->dev_sectors &&
5423 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 5424 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5425 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5426 }
58c0fed4 5427 mddev->dev_sectors = sectors;
4b5c7ae8 5428 mddev->resync_max_sectors = sectors;
1da177e4
LT
5429 return 0;
5430}
5431
fd01b88c 5432static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
5433{
5434 /* Can only proceed if there are plenty of stripe_heads.
5435 * We need a minimum of one full stripe,, and for sensible progress
5436 * it is best to have about 4 times that.
5437 * If we require 4 times, then the default 256 4K stripe_heads will
5438 * allow for chunk sizes up to 256K, which is probably OK.
5439 * If the chunk size is greater, user-space should request more
5440 * stripe_heads first.
5441 */
d1688a6d 5442 struct r5conf *conf = mddev->private;
01ee22b4
N
5443 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5444 > conf->max_nr_stripes ||
5445 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5446 > conf->max_nr_stripes) {
0c55e022
N
5447 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5448 mdname(mddev),
01ee22b4
N
5449 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5450 / STRIPE_SIZE)*4);
5451 return 0;
5452 }
5453 return 1;
5454}
5455
fd01b88c 5456static int check_reshape(struct mddev *mddev)
29269553 5457{
d1688a6d 5458 struct r5conf *conf = mddev->private;
29269553 5459
88ce4930
N
5460 if (mddev->delta_disks == 0 &&
5461 mddev->new_layout == mddev->layout &&
664e7c41 5462 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5463 return 0; /* nothing to do */
dba034ee
N
5464 if (mddev->bitmap)
5465 /* Cannot grow a bitmap yet */
5466 return -EBUSY;
674806d6 5467 if (has_failed(conf))
ec32a2bd
N
5468 return -EINVAL;
5469 if (mddev->delta_disks < 0) {
5470 /* We might be able to shrink, but the devices must
5471 * be made bigger first.
5472 * For raid6, 4 is the minimum size.
5473 * Otherwise 2 is the minimum
5474 */
5475 int min = 2;
5476 if (mddev->level == 6)
5477 min = 4;
5478 if (mddev->raid_disks + mddev->delta_disks < min)
5479 return -EINVAL;
5480 }
29269553 5481
01ee22b4 5482 if (!check_stripe_cache(mddev))
29269553 5483 return -ENOSPC;
29269553 5484
ec32a2bd 5485 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5486}
5487
fd01b88c 5488static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 5489{
d1688a6d 5490 struct r5conf *conf = mddev->private;
3cb03002 5491 struct md_rdev *rdev;
63c70c4f 5492 int spares = 0;
c04be0aa 5493 unsigned long flags;
63c70c4f 5494
f416885e 5495 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5496 return -EBUSY;
5497
01ee22b4
N
5498 if (!check_stripe_cache(mddev))
5499 return -ENOSPC;
5500
159ec1fc 5501 list_for_each_entry(rdev, &mddev->disks, same_set)
469518a3
N
5502 if (!test_bit(In_sync, &rdev->flags)
5503 && !test_bit(Faulty, &rdev->flags))
29269553 5504 spares++;
63c70c4f 5505
f416885e 5506 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5507 /* Not enough devices even to make a degraded array
5508 * of that size
5509 */
5510 return -EINVAL;
5511
ec32a2bd
N
5512 /* Refuse to reduce size of the array. Any reductions in
5513 * array size must be through explicit setting of array_size
5514 * attribute.
5515 */
5516 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5517 < mddev->array_sectors) {
0c55e022 5518 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
5519 "before number of disks\n", mdname(mddev));
5520 return -EINVAL;
5521 }
5522
f6705578 5523 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5524 spin_lock_irq(&conf->device_lock);
5525 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5526 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5527 conf->prev_chunk_sectors = conf->chunk_sectors;
5528 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5529 conf->prev_algo = conf->algorithm;
5530 conf->algorithm = mddev->new_layout;
fef9c61f
N
5531 if (mddev->delta_disks < 0)
5532 conf->reshape_progress = raid5_size(mddev, 0, 0);
5533 else
5534 conf->reshape_progress = 0;
5535 conf->reshape_safe = conf->reshape_progress;
86b42c71 5536 conf->generation++;
29269553
N
5537 spin_unlock_irq(&conf->device_lock);
5538
5539 /* Add some new drives, as many as will fit.
5540 * We know there are enough to make the newly sized array work.
3424bf6a
N
5541 * Don't add devices if we are reducing the number of
5542 * devices in the array. This is because it is not possible
5543 * to correctly record the "partially reconstructed" state of
5544 * such devices during the reshape and confusion could result.
29269553 5545 */
87a8dec9
N
5546 if (mddev->delta_disks >= 0) {
5547 int added_devices = 0;
5548 list_for_each_entry(rdev, &mddev->disks, same_set)
5549 if (rdev->raid_disk < 0 &&
5550 !test_bit(Faulty, &rdev->flags)) {
5551 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9
N
5552 if (rdev->raid_disk
5553 >= conf->previous_raid_disks) {
5554 set_bit(In_sync, &rdev->flags);
5555 added_devices++;
5556 } else
5557 rdev->recovery_offset = 0;
36fad858
NK
5558
5559 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 5560 /* Failure here is OK */;
50da0840 5561 }
87a8dec9
N
5562 } else if (rdev->raid_disk >= conf->previous_raid_disks
5563 && !test_bit(Faulty, &rdev->flags)) {
5564 /* This is a spare that was manually added */
5565 set_bit(In_sync, &rdev->flags);
5566 added_devices++;
5567 }
29269553 5568
87a8dec9
N
5569 /* When a reshape changes the number of devices,
5570 * ->degraded is measured against the larger of the
5571 * pre and post number of devices.
5572 */
ec32a2bd 5573 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 5574 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
5575 spin_unlock_irqrestore(&conf->device_lock, flags);
5576 }
63c70c4f 5577 mddev->raid_disks = conf->raid_disks;
e516402c 5578 mddev->reshape_position = conf->reshape_progress;
850b2b42 5579 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5580
29269553
N
5581 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5582 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5583 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5584 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5585 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5586 "reshape");
29269553
N
5587 if (!mddev->sync_thread) {
5588 mddev->recovery = 0;
5589 spin_lock_irq(&conf->device_lock);
5590 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 5591 conf->reshape_progress = MaxSector;
29269553
N
5592 spin_unlock_irq(&conf->device_lock);
5593 return -EAGAIN;
5594 }
c8f517c4 5595 conf->reshape_checkpoint = jiffies;
29269553
N
5596 md_wakeup_thread(mddev->sync_thread);
5597 md_new_event(mddev);
5598 return 0;
5599}
29269553 5600
ec32a2bd
N
5601/* This is called from the reshape thread and should make any
5602 * changes needed in 'conf'
5603 */
d1688a6d 5604static void end_reshape(struct r5conf *conf)
29269553 5605{
29269553 5606
f6705578 5607 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 5608
f6705578 5609 spin_lock_irq(&conf->device_lock);
cea9c228 5610 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5611 conf->reshape_progress = MaxSector;
f6705578 5612 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5613 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5614
5615 /* read-ahead size must cover two whole stripes, which is
5616 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5617 */
4a5add49 5618 if (conf->mddev->queue) {
cea9c228 5619 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 5620 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 5621 / PAGE_SIZE);
16a53ecc
N
5622 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5623 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5624 }
29269553 5625 }
29269553
N
5626}
5627
ec32a2bd
N
5628/* This is called from the raid5d thread with mddev_lock held.
5629 * It makes config changes to the device.
5630 */
fd01b88c 5631static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 5632{
d1688a6d 5633 struct r5conf *conf = mddev->private;
cea9c228
N
5634
5635 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5636
ec32a2bd
N
5637 if (mddev->delta_disks > 0) {
5638 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5639 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5640 revalidate_disk(mddev->gendisk);
ec32a2bd
N
5641 } else {
5642 int d;
908f4fbd
N
5643 spin_lock_irq(&conf->device_lock);
5644 mddev->degraded = calc_degraded(conf);
5645 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
5646 for (d = conf->raid_disks ;
5647 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 5648 d++) {
3cb03002 5649 struct md_rdev *rdev = conf->disks[d].rdev;
b8321b68
N
5650 if (rdev &&
5651 raid5_remove_disk(mddev, rdev) == 0) {
36fad858 5652 sysfs_unlink_rdev(mddev, rdev);
1a67dde0
N
5653 rdev->raid_disk = -1;
5654 }
5655 }
cea9c228 5656 }
88ce4930 5657 mddev->layout = conf->algorithm;
09c9e5fa 5658 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
5659 mddev->reshape_position = MaxSector;
5660 mddev->delta_disks = 0;
cea9c228
N
5661 }
5662}
5663
fd01b88c 5664static void raid5_quiesce(struct mddev *mddev, int state)
72626685 5665{
d1688a6d 5666 struct r5conf *conf = mddev->private;
72626685
N
5667
5668 switch(state) {
e464eafd
N
5669 case 2: /* resume for a suspend */
5670 wake_up(&conf->wait_for_overlap);
5671 break;
5672
72626685
N
5673 case 1: /* stop all writes */
5674 spin_lock_irq(&conf->device_lock);
64bd660b
N
5675 /* '2' tells resync/reshape to pause so that all
5676 * active stripes can drain
5677 */
5678 conf->quiesce = 2;
72626685 5679 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5680 atomic_read(&conf->active_stripes) == 0 &&
5681 atomic_read(&conf->active_aligned_reads) == 0,
72626685 5682 conf->device_lock, /* nothing */);
64bd660b 5683 conf->quiesce = 1;
72626685 5684 spin_unlock_irq(&conf->device_lock);
64bd660b
N
5685 /* allow reshape to continue */
5686 wake_up(&conf->wait_for_overlap);
72626685
N
5687 break;
5688
5689 case 0: /* re-enable writes */
5690 spin_lock_irq(&conf->device_lock);
5691 conf->quiesce = 0;
5692 wake_up(&conf->wait_for_stripe);
e464eafd 5693 wake_up(&conf->wait_for_overlap);
72626685
N
5694 spin_unlock_irq(&conf->device_lock);
5695 break;
5696 }
72626685 5697}
b15c2e57 5698
d562b0c4 5699
fd01b88c 5700static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 5701{
e373ab10 5702 struct r0conf *raid0_conf = mddev->private;
d76c8420 5703 sector_t sectors;
54071b38 5704
f1b29bca 5705 /* for raid0 takeover only one zone is supported */
e373ab10 5706 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
5707 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5708 mdname(mddev));
f1b29bca
DW
5709 return ERR_PTR(-EINVAL);
5710 }
5711
e373ab10
N
5712 sectors = raid0_conf->strip_zone[0].zone_end;
5713 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 5714 mddev->dev_sectors = sectors;
f1b29bca 5715 mddev->new_level = level;
54071b38
TM
5716 mddev->new_layout = ALGORITHM_PARITY_N;
5717 mddev->new_chunk_sectors = mddev->chunk_sectors;
5718 mddev->raid_disks += 1;
5719 mddev->delta_disks = 1;
5720 /* make sure it will be not marked as dirty */
5721 mddev->recovery_cp = MaxSector;
5722
5723 return setup_conf(mddev);
5724}
5725
5726
fd01b88c 5727static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
5728{
5729 int chunksect;
5730
5731 if (mddev->raid_disks != 2 ||
5732 mddev->degraded > 1)
5733 return ERR_PTR(-EINVAL);
5734
5735 /* Should check if there are write-behind devices? */
5736
5737 chunksect = 64*2; /* 64K by default */
5738
5739 /* The array must be an exact multiple of chunksize */
5740 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5741 chunksect >>= 1;
5742
5743 if ((chunksect<<9) < STRIPE_SIZE)
5744 /* array size does not allow a suitable chunk size */
5745 return ERR_PTR(-EINVAL);
5746
5747 mddev->new_level = 5;
5748 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 5749 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
5750
5751 return setup_conf(mddev);
5752}
5753
fd01b88c 5754static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
5755{
5756 int new_layout;
5757
5758 switch (mddev->layout) {
5759 case ALGORITHM_LEFT_ASYMMETRIC_6:
5760 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5761 break;
5762 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5763 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5764 break;
5765 case ALGORITHM_LEFT_SYMMETRIC_6:
5766 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5767 break;
5768 case ALGORITHM_RIGHT_SYMMETRIC_6:
5769 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5770 break;
5771 case ALGORITHM_PARITY_0_6:
5772 new_layout = ALGORITHM_PARITY_0;
5773 break;
5774 case ALGORITHM_PARITY_N:
5775 new_layout = ALGORITHM_PARITY_N;
5776 break;
5777 default:
5778 return ERR_PTR(-EINVAL);
5779 }
5780 mddev->new_level = 5;
5781 mddev->new_layout = new_layout;
5782 mddev->delta_disks = -1;
5783 mddev->raid_disks -= 1;
5784 return setup_conf(mddev);
5785}
5786
d562b0c4 5787
fd01b88c 5788static int raid5_check_reshape(struct mddev *mddev)
b3546035 5789{
88ce4930
N
5790 /* For a 2-drive array, the layout and chunk size can be changed
5791 * immediately as not restriping is needed.
5792 * For larger arrays we record the new value - after validation
5793 * to be used by a reshape pass.
b3546035 5794 */
d1688a6d 5795 struct r5conf *conf = mddev->private;
597a711b 5796 int new_chunk = mddev->new_chunk_sectors;
b3546035 5797
597a711b 5798 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
5799 return -EINVAL;
5800 if (new_chunk > 0) {
0ba459d2 5801 if (!is_power_of_2(new_chunk))
b3546035 5802 return -EINVAL;
597a711b 5803 if (new_chunk < (PAGE_SIZE>>9))
b3546035 5804 return -EINVAL;
597a711b 5805 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
5806 /* not factor of array size */
5807 return -EINVAL;
5808 }
5809
5810 /* They look valid */
5811
88ce4930 5812 if (mddev->raid_disks == 2) {
597a711b
N
5813 /* can make the change immediately */
5814 if (mddev->new_layout >= 0) {
5815 conf->algorithm = mddev->new_layout;
5816 mddev->layout = mddev->new_layout;
88ce4930
N
5817 }
5818 if (new_chunk > 0) {
597a711b
N
5819 conf->chunk_sectors = new_chunk ;
5820 mddev->chunk_sectors = new_chunk;
88ce4930
N
5821 }
5822 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5823 md_wakeup_thread(mddev->thread);
b3546035 5824 }
50ac168a 5825 return check_reshape(mddev);
88ce4930
N
5826}
5827
fd01b88c 5828static int raid6_check_reshape(struct mddev *mddev)
88ce4930 5829{
597a711b 5830 int new_chunk = mddev->new_chunk_sectors;
50ac168a 5831
597a711b 5832 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 5833 return -EINVAL;
b3546035 5834 if (new_chunk > 0) {
0ba459d2 5835 if (!is_power_of_2(new_chunk))
88ce4930 5836 return -EINVAL;
597a711b 5837 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 5838 return -EINVAL;
597a711b 5839 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
5840 /* not factor of array size */
5841 return -EINVAL;
b3546035 5842 }
88ce4930
N
5843
5844 /* They look valid */
50ac168a 5845 return check_reshape(mddev);
b3546035
N
5846}
5847
fd01b88c 5848static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
5849{
5850 /* raid5 can take over:
f1b29bca 5851 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
5852 * raid1 - if there are two drives. We need to know the chunk size
5853 * raid4 - trivial - just use a raid4 layout.
5854 * raid6 - Providing it is a *_6 layout
d562b0c4 5855 */
f1b29bca
DW
5856 if (mddev->level == 0)
5857 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
5858 if (mddev->level == 1)
5859 return raid5_takeover_raid1(mddev);
e9d4758f
N
5860 if (mddev->level == 4) {
5861 mddev->new_layout = ALGORITHM_PARITY_N;
5862 mddev->new_level = 5;
5863 return setup_conf(mddev);
5864 }
fc9739c6
N
5865 if (mddev->level == 6)
5866 return raid5_takeover_raid6(mddev);
d562b0c4
N
5867
5868 return ERR_PTR(-EINVAL);
5869}
5870
fd01b88c 5871static void *raid4_takeover(struct mddev *mddev)
a78d38a1 5872{
f1b29bca
DW
5873 /* raid4 can take over:
5874 * raid0 - if there is only one strip zone
5875 * raid5 - if layout is right
a78d38a1 5876 */
f1b29bca
DW
5877 if (mddev->level == 0)
5878 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
5879 if (mddev->level == 5 &&
5880 mddev->layout == ALGORITHM_PARITY_N) {
5881 mddev->new_layout = 0;
5882 mddev->new_level = 4;
5883 return setup_conf(mddev);
5884 }
5885 return ERR_PTR(-EINVAL);
5886}
d562b0c4 5887
84fc4b56 5888static struct md_personality raid5_personality;
245f46c2 5889
fd01b88c 5890static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
5891{
5892 /* Currently can only take over a raid5. We map the
5893 * personality to an equivalent raid6 personality
5894 * with the Q block at the end.
5895 */
5896 int new_layout;
5897
5898 if (mddev->pers != &raid5_personality)
5899 return ERR_PTR(-EINVAL);
5900 if (mddev->degraded > 1)
5901 return ERR_PTR(-EINVAL);
5902 if (mddev->raid_disks > 253)
5903 return ERR_PTR(-EINVAL);
5904 if (mddev->raid_disks < 3)
5905 return ERR_PTR(-EINVAL);
5906
5907 switch (mddev->layout) {
5908 case ALGORITHM_LEFT_ASYMMETRIC:
5909 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5910 break;
5911 case ALGORITHM_RIGHT_ASYMMETRIC:
5912 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5913 break;
5914 case ALGORITHM_LEFT_SYMMETRIC:
5915 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5916 break;
5917 case ALGORITHM_RIGHT_SYMMETRIC:
5918 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5919 break;
5920 case ALGORITHM_PARITY_0:
5921 new_layout = ALGORITHM_PARITY_0_6;
5922 break;
5923 case ALGORITHM_PARITY_N:
5924 new_layout = ALGORITHM_PARITY_N;
5925 break;
5926 default:
5927 return ERR_PTR(-EINVAL);
5928 }
5929 mddev->new_level = 6;
5930 mddev->new_layout = new_layout;
5931 mddev->delta_disks = 1;
5932 mddev->raid_disks += 1;
5933 return setup_conf(mddev);
5934}
5935
5936
84fc4b56 5937static struct md_personality raid6_personality =
16a53ecc
N
5938{
5939 .name = "raid6",
5940 .level = 6,
5941 .owner = THIS_MODULE,
5942 .make_request = make_request,
5943 .run = run,
5944 .stop = stop,
5945 .status = status,
5946 .error_handler = error,
5947 .hot_add_disk = raid5_add_disk,
5948 .hot_remove_disk= raid5_remove_disk,
5949 .spare_active = raid5_spare_active,
5950 .sync_request = sync_request,
5951 .resize = raid5_resize,
80c3a6ce 5952 .size = raid5_size,
50ac168a 5953 .check_reshape = raid6_check_reshape,
f416885e 5954 .start_reshape = raid5_start_reshape,
cea9c228 5955 .finish_reshape = raid5_finish_reshape,
16a53ecc 5956 .quiesce = raid5_quiesce,
245f46c2 5957 .takeover = raid6_takeover,
16a53ecc 5958};
84fc4b56 5959static struct md_personality raid5_personality =
1da177e4
LT
5960{
5961 .name = "raid5",
2604b703 5962 .level = 5,
1da177e4
LT
5963 .owner = THIS_MODULE,
5964 .make_request = make_request,
5965 .run = run,
5966 .stop = stop,
5967 .status = status,
5968 .error_handler = error,
5969 .hot_add_disk = raid5_add_disk,
5970 .hot_remove_disk= raid5_remove_disk,
5971 .spare_active = raid5_spare_active,
5972 .sync_request = sync_request,
5973 .resize = raid5_resize,
80c3a6ce 5974 .size = raid5_size,
63c70c4f
N
5975 .check_reshape = raid5_check_reshape,
5976 .start_reshape = raid5_start_reshape,
cea9c228 5977 .finish_reshape = raid5_finish_reshape,
72626685 5978 .quiesce = raid5_quiesce,
d562b0c4 5979 .takeover = raid5_takeover,
1da177e4
LT
5980};
5981
84fc4b56 5982static struct md_personality raid4_personality =
1da177e4 5983{
2604b703
N
5984 .name = "raid4",
5985 .level = 4,
5986 .owner = THIS_MODULE,
5987 .make_request = make_request,
5988 .run = run,
5989 .stop = stop,
5990 .status = status,
5991 .error_handler = error,
5992 .hot_add_disk = raid5_add_disk,
5993 .hot_remove_disk= raid5_remove_disk,
5994 .spare_active = raid5_spare_active,
5995 .sync_request = sync_request,
5996 .resize = raid5_resize,
80c3a6ce 5997 .size = raid5_size,
3d37890b
N
5998 .check_reshape = raid5_check_reshape,
5999 .start_reshape = raid5_start_reshape,
cea9c228 6000 .finish_reshape = raid5_finish_reshape,
2604b703 6001 .quiesce = raid5_quiesce,
a78d38a1 6002 .takeover = raid4_takeover,
2604b703
N
6003};
6004
6005static int __init raid5_init(void)
6006{
16a53ecc 6007 register_md_personality(&raid6_personality);
2604b703
N
6008 register_md_personality(&raid5_personality);
6009 register_md_personality(&raid4_personality);
6010 return 0;
1da177e4
LT
6011}
6012
2604b703 6013static void raid5_exit(void)
1da177e4 6014{
16a53ecc 6015 unregister_md_personality(&raid6_personality);
2604b703
N
6016 unregister_md_personality(&raid5_personality);
6017 unregister_md_personality(&raid4_personality);
1da177e4
LT
6018}
6019
6020module_init(raid5_init);
6021module_exit(raid5_exit);
6022MODULE_LICENSE("GPL");
0efb9e61 6023MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 6024MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
6025MODULE_ALIAS("md-raid5");
6026MODULE_ALIAS("md-raid4");
2604b703
N
6027MODULE_ALIAS("md-level-5");
6028MODULE_ALIAS("md-level-4");
16a53ecc
N
6029MODULE_ALIAS("md-personality-8"); /* RAID6 */
6030MODULE_ALIAS("md-raid6");
6031MODULE_ALIAS("md-level-6");
6032
6033/* This used to be two separate modules, they were: */
6034MODULE_ALIAS("raid5");
6035MODULE_ALIAS("raid6");