md/raid1/10: avoid unnecessary locking
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
3f07c014
IM
58#include <linux/sched/signal.h>
59
a9add5d9 60#include <trace/events/block.h>
aaf9f12e 61#include <linux/list_sort.h>
a9add5d9 62
43b2e5d8 63#include "md.h"
bff61975 64#include "raid5.h"
54071b38 65#include "raid0.h"
ef740c37 66#include "bitmap.h"
ff875738 67#include "raid5-log.h"
72626685 68
394ed8e4
SL
69#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70
851c30c9
SL
71#define cpu_to_group(cpu) cpu_to_node(cpu)
72#define ANY_GROUP NUMA_NO_NODE
73
8e0e99ba
N
74static bool devices_handle_discard_safely = false;
75module_param(devices_handle_discard_safely, bool, 0644);
76MODULE_PARM_DESC(devices_handle_discard_safely,
77 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 78static struct workqueue_struct *raid5_wq;
1da177e4 79
d1688a6d 80static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
81{
82 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83 return &conf->stripe_hashtbl[hash];
84}
1da177e4 85
566c09c5
SL
86static inline int stripe_hash_locks_hash(sector_t sect)
87{
88 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
89}
90
91static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92{
93 spin_lock_irq(conf->hash_locks + hash);
94 spin_lock(&conf->device_lock);
95}
96
97static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98{
99 spin_unlock(&conf->device_lock);
100 spin_unlock_irq(conf->hash_locks + hash);
101}
102
103static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104{
105 int i;
3d05f3ae 106 spin_lock_irq(conf->hash_locks);
566c09c5
SL
107 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
108 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
109 spin_lock(&conf->device_lock);
110}
111
112static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
113{
114 int i;
115 spin_unlock(&conf->device_lock);
3d05f3ae
JC
116 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
117 spin_unlock(conf->hash_locks + i);
118 spin_unlock_irq(conf->hash_locks);
566c09c5
SL
119}
120
d0dabf7e
N
121/* Find first data disk in a raid6 stripe */
122static inline int raid6_d0(struct stripe_head *sh)
123{
67cc2b81
N
124 if (sh->ddf_layout)
125 /* ddf always start from first device */
126 return 0;
127 /* md starts just after Q block */
d0dabf7e
N
128 if (sh->qd_idx == sh->disks - 1)
129 return 0;
130 else
131 return sh->qd_idx + 1;
132}
16a53ecc
N
133static inline int raid6_next_disk(int disk, int raid_disks)
134{
135 disk++;
136 return (disk < raid_disks) ? disk : 0;
137}
a4456856 138
d0dabf7e
N
139/* When walking through the disks in a raid5, starting at raid6_d0,
140 * We need to map each disk to a 'slot', where the data disks are slot
141 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
142 * is raid_disks-1. This help does that mapping.
143 */
67cc2b81
N
144static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
145 int *count, int syndrome_disks)
d0dabf7e 146{
6629542e 147 int slot = *count;
67cc2b81 148
e4424fee 149 if (sh->ddf_layout)
6629542e 150 (*count)++;
d0dabf7e 151 if (idx == sh->pd_idx)
67cc2b81 152 return syndrome_disks;
d0dabf7e 153 if (idx == sh->qd_idx)
67cc2b81 154 return syndrome_disks + 1;
e4424fee 155 if (!sh->ddf_layout)
6629542e 156 (*count)++;
d0dabf7e
N
157 return slot;
158}
159
d1688a6d 160static void print_raid5_conf (struct r5conf *conf);
1da177e4 161
600aa109
DW
162static int stripe_operations_active(struct stripe_head *sh)
163{
164 return sh->check_state || sh->reconstruct_state ||
165 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
166 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
167}
168
535ae4eb
SL
169static bool stripe_is_lowprio(struct stripe_head *sh)
170{
171 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
172 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
173 !test_bit(STRIPE_R5C_CACHING, &sh->state);
174}
175
851c30c9
SL
176static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
177{
178 struct r5conf *conf = sh->raid_conf;
179 struct r5worker_group *group;
bfc90cb0 180 int thread_cnt;
851c30c9
SL
181 int i, cpu = sh->cpu;
182
183 if (!cpu_online(cpu)) {
184 cpu = cpumask_any(cpu_online_mask);
185 sh->cpu = cpu;
186 }
187
188 if (list_empty(&sh->lru)) {
189 struct r5worker_group *group;
190 group = conf->worker_groups + cpu_to_group(cpu);
535ae4eb
SL
191 if (stripe_is_lowprio(sh))
192 list_add_tail(&sh->lru, &group->loprio_list);
193 else
194 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
195 group->stripes_cnt++;
196 sh->group = group;
851c30c9
SL
197 }
198
199 if (conf->worker_cnt_per_group == 0) {
200 md_wakeup_thread(conf->mddev->thread);
201 return;
202 }
203
204 group = conf->worker_groups + cpu_to_group(sh->cpu);
205
bfc90cb0
SL
206 group->workers[0].working = true;
207 /* at least one worker should run to avoid race */
208 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209
210 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 /* wakeup more workers */
212 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 if (group->workers[i].working == false) {
214 group->workers[i].working = true;
215 queue_work_on(sh->cpu, raid5_wq,
216 &group->workers[i].work);
217 thread_cnt--;
218 }
219 }
851c30c9
SL
220}
221
566c09c5
SL
222static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 struct list_head *temp_inactive_list)
1da177e4 224{
1e6d690b
SL
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
4eb788df
SL
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
1e6d690b
SL
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
a39f7afd
SL
235 /*
236 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
237 * data in journal, so they are not released to cached lists
238 */
239 if (conf->quiesce && r5c_is_writeback(conf->log) &&
240 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
241 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
242 r5c_make_stripe_write_out(sh);
243 set_bit(STRIPE_HANDLE, &sh->state);
244 }
1e6d690b 245
4eb788df
SL
246 if (test_bit(STRIPE_HANDLE, &sh->state)) {
247 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 248 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 249 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 250 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
251 sh->bm_seq - conf->seq_write > 0)
252 list_add_tail(&sh->lru, &conf->bitmap_list);
253 else {
254 clear_bit(STRIPE_DELAYED, &sh->state);
255 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9 256 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
257 if (stripe_is_lowprio(sh))
258 list_add_tail(&sh->lru,
259 &conf->loprio_list);
260 else
261 list_add_tail(&sh->lru,
262 &conf->handle_list);
851c30c9
SL
263 } else {
264 raid5_wakeup_stripe_thread(sh);
265 return;
266 }
4eb788df
SL
267 }
268 md_wakeup_thread(conf->mddev->thread);
269 } else {
270 BUG_ON(stripe_operations_active(sh));
271 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
272 if (atomic_dec_return(&conf->preread_active_stripes)
273 < IO_THRESHOLD)
274 md_wakeup_thread(conf->mddev->thread);
275 atomic_dec(&conf->active_stripes);
1e6d690b
SL
276 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
277 if (!r5c_is_writeback(conf->log))
278 list_add_tail(&sh->lru, temp_inactive_list);
279 else {
280 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
281 if (injournal == 0)
282 list_add_tail(&sh->lru, temp_inactive_list);
283 else if (injournal == conf->raid_disks - conf->max_degraded) {
284 /* full stripe */
285 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
286 atomic_inc(&conf->r5c_cached_full_stripes);
287 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
288 atomic_dec(&conf->r5c_cached_partial_stripes);
289 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
a39f7afd 290 r5c_check_cached_full_stripe(conf);
03b047f4
SL
291 } else
292 /*
293 * STRIPE_R5C_PARTIAL_STRIPE is set in
294 * r5c_try_caching_write(). No need to
295 * set it again.
296 */
1e6d690b 297 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
1e6d690b
SL
298 }
299 }
1da177e4
LT
300 }
301}
d0dabf7e 302
566c09c5
SL
303static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
304 struct list_head *temp_inactive_list)
4eb788df
SL
305{
306 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
307 do_release_stripe(conf, sh, temp_inactive_list);
308}
309
310/*
311 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
312 *
313 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
314 * given time. Adding stripes only takes device lock, while deleting stripes
315 * only takes hash lock.
316 */
317static void release_inactive_stripe_list(struct r5conf *conf,
318 struct list_head *temp_inactive_list,
319 int hash)
320{
321 int size;
6ab2a4b8 322 bool do_wakeup = false;
566c09c5
SL
323 unsigned long flags;
324
325 if (hash == NR_STRIPE_HASH_LOCKS) {
326 size = NR_STRIPE_HASH_LOCKS;
327 hash = NR_STRIPE_HASH_LOCKS - 1;
328 } else
329 size = 1;
330 while (size) {
331 struct list_head *list = &temp_inactive_list[size - 1];
332
333 /*
6d036f7d 334 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
335 * remove stripes from the list
336 */
337 if (!list_empty_careful(list)) {
338 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
339 if (list_empty(conf->inactive_list + hash) &&
340 !list_empty(list))
341 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 342 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 343 do_wakeup = true;
566c09c5
SL
344 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
345 }
346 size--;
347 hash--;
348 }
349
350 if (do_wakeup) {
6ab2a4b8 351 wake_up(&conf->wait_for_stripe);
b1b46486
YL
352 if (atomic_read(&conf->active_stripes) == 0)
353 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
354 if (conf->retry_read_aligned)
355 md_wakeup_thread(conf->mddev->thread);
356 }
4eb788df
SL
357}
358
773ca82f 359/* should hold conf->device_lock already */
566c09c5
SL
360static int release_stripe_list(struct r5conf *conf,
361 struct list_head *temp_inactive_list)
773ca82f 362{
eae8263f 363 struct stripe_head *sh, *t;
773ca82f
SL
364 int count = 0;
365 struct llist_node *head;
366
367 head = llist_del_all(&conf->released_stripes);
d265d9dc 368 head = llist_reverse_order(head);
eae8263f 369 llist_for_each_entry_safe(sh, t, head, release_list) {
566c09c5
SL
370 int hash;
371
773ca82f
SL
372 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
373 smp_mb();
374 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
375 /*
376 * Don't worry the bit is set here, because if the bit is set
377 * again, the count is always > 1. This is true for
378 * STRIPE_ON_UNPLUG_LIST bit too.
379 */
566c09c5
SL
380 hash = sh->hash_lock_index;
381 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
382 count++;
383 }
384
385 return count;
386}
387
6d036f7d 388void raid5_release_stripe(struct stripe_head *sh)
1da177e4 389{
d1688a6d 390 struct r5conf *conf = sh->raid_conf;
1da177e4 391 unsigned long flags;
566c09c5
SL
392 struct list_head list;
393 int hash;
773ca82f 394 bool wakeup;
16a53ecc 395
cf170f3f
ES
396 /* Avoid release_list until the last reference.
397 */
398 if (atomic_add_unless(&sh->count, -1, 1))
399 return;
400
ad4068de 401 if (unlikely(!conf->mddev->thread) ||
402 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
403 goto slow_path;
404 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
405 if (wakeup)
406 md_wakeup_thread(conf->mddev->thread);
407 return;
408slow_path:
4eb788df 409 local_irq_save(flags);
773ca82f 410 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 411 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
412 INIT_LIST_HEAD(&list);
413 hash = sh->hash_lock_index;
414 do_release_stripe(conf, sh, &list);
4eb788df 415 spin_unlock(&conf->device_lock);
566c09c5 416 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
417 }
418 local_irq_restore(flags);
1da177e4
LT
419}
420
fccddba0 421static inline void remove_hash(struct stripe_head *sh)
1da177e4 422{
45b4233c
DW
423 pr_debug("remove_hash(), stripe %llu\n",
424 (unsigned long long)sh->sector);
1da177e4 425
fccddba0 426 hlist_del_init(&sh->hash);
1da177e4
LT
427}
428
d1688a6d 429static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 430{
fccddba0 431 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 432
45b4233c
DW
433 pr_debug("insert_hash(), stripe %llu\n",
434 (unsigned long long)sh->sector);
1da177e4 435
fccddba0 436 hlist_add_head(&sh->hash, hp);
1da177e4
LT
437}
438
1da177e4 439/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 440static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
441{
442 struct stripe_head *sh = NULL;
443 struct list_head *first;
444
566c09c5 445 if (list_empty(conf->inactive_list + hash))
1da177e4 446 goto out;
566c09c5 447 first = (conf->inactive_list + hash)->next;
1da177e4
LT
448 sh = list_entry(first, struct stripe_head, lru);
449 list_del_init(first);
450 remove_hash(sh);
451 atomic_inc(&conf->active_stripes);
566c09c5 452 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
453 if (list_empty(conf->inactive_list + hash))
454 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
455out:
456 return sh;
457}
458
e4e11e38 459static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
460{
461 struct page *p;
462 int i;
e4e11e38 463 int num = sh->raid_conf->pool_size;
1da177e4 464
e4e11e38 465 for (i = 0; i < num ; i++) {
d592a996 466 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
467 p = sh->dev[i].page;
468 if (!p)
469 continue;
470 sh->dev[i].page = NULL;
2d1f3b5d 471 put_page(p);
1da177e4
LT
472 }
473}
474
a9683a79 475static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
476{
477 int i;
e4e11e38 478 int num = sh->raid_conf->pool_size;
1da177e4 479
e4e11e38 480 for (i = 0; i < num; i++) {
1da177e4
LT
481 struct page *page;
482
a9683a79 483 if (!(page = alloc_page(gfp))) {
1da177e4
LT
484 return 1;
485 }
486 sh->dev[i].page = page;
d592a996 487 sh->dev[i].orig_page = page;
1da177e4 488 }
3418d036 489
1da177e4
LT
490 return 0;
491}
492
784052ec 493static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 494static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 495 struct stripe_head *sh);
1da177e4 496
b5663ba4 497static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 498{
d1688a6d 499 struct r5conf *conf = sh->raid_conf;
566c09c5 500 int i, seq;
1da177e4 501
78bafebd
ES
502 BUG_ON(atomic_read(&sh->count) != 0);
503 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 504 BUG_ON(stripe_operations_active(sh));
59fc630b 505 BUG_ON(sh->batch_head);
d84e0f10 506
45b4233c 507 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 508 (unsigned long long)sector);
566c09c5
SL
509retry:
510 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 511 sh->generation = conf->generation - previous;
b5663ba4 512 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 513 sh->sector = sector;
911d4ee8 514 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
515 sh->state = 0;
516
7ecaa1e6 517 for (i = sh->disks; i--; ) {
1da177e4
LT
518 struct r5dev *dev = &sh->dev[i];
519
d84e0f10 520 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 521 test_bit(R5_LOCKED, &dev->flags)) {
cc6167b4 522 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 523 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 524 dev->read, dev->towrite, dev->written,
1da177e4 525 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 526 WARN_ON(1);
1da177e4
LT
527 }
528 dev->flags = 0;
784052ec 529 raid5_build_block(sh, i, previous);
1da177e4 530 }
566c09c5
SL
531 if (read_seqcount_retry(&conf->gen_lock, seq))
532 goto retry;
7a87f434 533 sh->overwrite_disks = 0;
1da177e4 534 insert_hash(conf, sh);
851c30c9 535 sh->cpu = smp_processor_id();
da41ba65 536 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
537}
538
d1688a6d 539static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 540 short generation)
1da177e4
LT
541{
542 struct stripe_head *sh;
543
45b4233c 544 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 545 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 546 if (sh->sector == sector && sh->generation == generation)
1da177e4 547 return sh;
45b4233c 548 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
549 return NULL;
550}
551
674806d6
N
552/*
553 * Need to check if array has failed when deciding whether to:
554 * - start an array
555 * - remove non-faulty devices
556 * - add a spare
557 * - allow a reshape
558 * This determination is simple when no reshape is happening.
559 * However if there is a reshape, we need to carefully check
560 * both the before and after sections.
561 * This is because some failed devices may only affect one
562 * of the two sections, and some non-in_sync devices may
563 * be insync in the section most affected by failed devices.
564 */
2e38a37f 565int raid5_calc_degraded(struct r5conf *conf)
674806d6 566{
908f4fbd 567 int degraded, degraded2;
674806d6 568 int i;
674806d6
N
569
570 rcu_read_lock();
571 degraded = 0;
572 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 573 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
574 if (rdev && test_bit(Faulty, &rdev->flags))
575 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
576 if (!rdev || test_bit(Faulty, &rdev->flags))
577 degraded++;
578 else if (test_bit(In_sync, &rdev->flags))
579 ;
580 else
581 /* not in-sync or faulty.
582 * If the reshape increases the number of devices,
583 * this is being recovered by the reshape, so
584 * this 'previous' section is not in_sync.
585 * If the number of devices is being reduced however,
586 * the device can only be part of the array if
587 * we are reverting a reshape, so this section will
588 * be in-sync.
589 */
590 if (conf->raid_disks >= conf->previous_raid_disks)
591 degraded++;
592 }
593 rcu_read_unlock();
908f4fbd
N
594 if (conf->raid_disks == conf->previous_raid_disks)
595 return degraded;
674806d6 596 rcu_read_lock();
908f4fbd 597 degraded2 = 0;
674806d6 598 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 599 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
600 if (rdev && test_bit(Faulty, &rdev->flags))
601 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 602 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 603 degraded2++;
674806d6
N
604 else if (test_bit(In_sync, &rdev->flags))
605 ;
606 else
607 /* not in-sync or faulty.
608 * If reshape increases the number of devices, this
609 * section has already been recovered, else it
610 * almost certainly hasn't.
611 */
612 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 613 degraded2++;
674806d6
N
614 }
615 rcu_read_unlock();
908f4fbd
N
616 if (degraded2 > degraded)
617 return degraded2;
618 return degraded;
619}
620
621static int has_failed(struct r5conf *conf)
622{
623 int degraded;
624
625 if (conf->mddev->reshape_position == MaxSector)
626 return conf->mddev->degraded > conf->max_degraded;
627
2e38a37f 628 degraded = raid5_calc_degraded(conf);
674806d6
N
629 if (degraded > conf->max_degraded)
630 return 1;
631 return 0;
632}
633
6d036f7d
SL
634struct stripe_head *
635raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
636 int previous, int noblock, int noquiesce)
1da177e4
LT
637{
638 struct stripe_head *sh;
566c09c5 639 int hash = stripe_hash_locks_hash(sector);
ff00d3b4 640 int inc_empty_inactive_list_flag;
1da177e4 641
45b4233c 642 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 643
566c09c5 644 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
645
646 do {
b1b46486 647 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 648 conf->quiesce == 0 || noquiesce,
566c09c5 649 *(conf->hash_locks + hash));
86b42c71 650 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 651 if (!sh) {
edbe83ab 652 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 653 sh = get_free_stripe(conf, hash);
713bc5c2
SL
654 if (!sh && !test_bit(R5_DID_ALLOC,
655 &conf->cache_state))
edbe83ab
N
656 set_bit(R5_ALLOC_MORE,
657 &conf->cache_state);
658 }
1da177e4
LT
659 if (noblock && sh == NULL)
660 break;
a39f7afd
SL
661
662 r5c_check_stripe_cache_usage(conf);
1da177e4 663 if (!sh) {
5423399a
N
664 set_bit(R5_INACTIVE_BLOCKED,
665 &conf->cache_state);
a39f7afd 666 r5l_wake_reclaim(conf->log, 0);
6ab2a4b8
SL
667 wait_event_lock_irq(
668 conf->wait_for_stripe,
566c09c5
SL
669 !list_empty(conf->inactive_list + hash) &&
670 (atomic_read(&conf->active_stripes)
671 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
672 || !test_bit(R5_INACTIVE_BLOCKED,
673 &conf->cache_state)),
6ab2a4b8 674 *(conf->hash_locks + hash));
5423399a
N
675 clear_bit(R5_INACTIVE_BLOCKED,
676 &conf->cache_state);
7da9d450 677 } else {
b5663ba4 678 init_stripe(sh, sector, previous);
7da9d450
N
679 atomic_inc(&sh->count);
680 }
e240c183 681 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 682 spin_lock(&conf->device_lock);
e240c183 683 if (!atomic_read(&sh->count)) {
1da177e4
LT
684 if (!test_bit(STRIPE_HANDLE, &sh->state))
685 atomic_inc(&conf->active_stripes);
5af9bef7
N
686 BUG_ON(list_empty(&sh->lru) &&
687 !test_bit(STRIPE_EXPANDING, &sh->state));
ff00d3b4
ZL
688 inc_empty_inactive_list_flag = 0;
689 if (!list_empty(conf->inactive_list + hash))
690 inc_empty_inactive_list_flag = 1;
16a53ecc 691 list_del_init(&sh->lru);
ff00d3b4
ZL
692 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
693 atomic_inc(&conf->empty_inactive_list_nr);
bfc90cb0
SL
694 if (sh->group) {
695 sh->group->stripes_cnt--;
696 sh->group = NULL;
697 }
1da177e4 698 }
7da9d450 699 atomic_inc(&sh->count);
6d183de4 700 spin_unlock(&conf->device_lock);
1da177e4
LT
701 }
702 } while (sh == NULL);
703
566c09c5 704 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
705 return sh;
706}
707
7a87f434 708static bool is_full_stripe_write(struct stripe_head *sh)
709{
710 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
711 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
712}
713
59fc630b 714static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
715{
59fc630b 716 if (sh1 > sh2) {
3d05f3ae 717 spin_lock_irq(&sh2->stripe_lock);
59fc630b 718 spin_lock_nested(&sh1->stripe_lock, 1);
719 } else {
3d05f3ae 720 spin_lock_irq(&sh1->stripe_lock);
59fc630b 721 spin_lock_nested(&sh2->stripe_lock, 1);
722 }
723}
724
725static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
726{
727 spin_unlock(&sh1->stripe_lock);
3d05f3ae 728 spin_unlock_irq(&sh2->stripe_lock);
59fc630b 729}
730
731/* Only freshly new full stripe normal write stripe can be added to a batch list */
732static bool stripe_can_batch(struct stripe_head *sh)
733{
9c3e333d
SL
734 struct r5conf *conf = sh->raid_conf;
735
3418d036 736 if (conf->log || raid5_has_ppl(conf))
9c3e333d 737 return false;
59fc630b 738 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 739 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 740 is_full_stripe_write(sh);
741}
742
743/* we only do back search */
744static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
745{
746 struct stripe_head *head;
747 sector_t head_sector, tmp_sec;
748 int hash;
749 int dd_idx;
ff00d3b4 750 int inc_empty_inactive_list_flag;
59fc630b 751
59fc630b 752 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
753 tmp_sec = sh->sector;
754 if (!sector_div(tmp_sec, conf->chunk_sectors))
755 return;
756 head_sector = sh->sector - STRIPE_SECTORS;
757
758 hash = stripe_hash_locks_hash(head_sector);
759 spin_lock_irq(conf->hash_locks + hash);
760 head = __find_stripe(conf, head_sector, conf->generation);
761 if (head && !atomic_inc_not_zero(&head->count)) {
762 spin_lock(&conf->device_lock);
763 if (!atomic_read(&head->count)) {
764 if (!test_bit(STRIPE_HANDLE, &head->state))
765 atomic_inc(&conf->active_stripes);
766 BUG_ON(list_empty(&head->lru) &&
767 !test_bit(STRIPE_EXPANDING, &head->state));
ff00d3b4
ZL
768 inc_empty_inactive_list_flag = 0;
769 if (!list_empty(conf->inactive_list + hash))
770 inc_empty_inactive_list_flag = 1;
59fc630b 771 list_del_init(&head->lru);
ff00d3b4
ZL
772 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
773 atomic_inc(&conf->empty_inactive_list_nr);
59fc630b 774 if (head->group) {
775 head->group->stripes_cnt--;
776 head->group = NULL;
777 }
778 }
779 atomic_inc(&head->count);
780 spin_unlock(&conf->device_lock);
781 }
782 spin_unlock_irq(conf->hash_locks + hash);
783
784 if (!head)
785 return;
786 if (!stripe_can_batch(head))
787 goto out;
788
789 lock_two_stripes(head, sh);
790 /* clear_batch_ready clear the flag */
791 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
792 goto unlock_out;
793
794 if (sh->batch_head)
795 goto unlock_out;
796
797 dd_idx = 0;
798 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
799 dd_idx++;
1eff9d32 800 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796a5cf0 801 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
59fc630b 802 goto unlock_out;
803
804 if (head->batch_head) {
805 spin_lock(&head->batch_head->batch_lock);
806 /* This batch list is already running */
807 if (!stripe_can_batch(head)) {
808 spin_unlock(&head->batch_head->batch_lock);
809 goto unlock_out;
810 }
811
812 /*
813 * at this point, head's BATCH_READY could be cleared, but we
814 * can still add the stripe to batch list
815 */
816 list_add(&sh->batch_list, &head->batch_list);
817 spin_unlock(&head->batch_head->batch_lock);
818
819 sh->batch_head = head->batch_head;
820 } else {
821 head->batch_head = head;
822 sh->batch_head = head->batch_head;
823 spin_lock(&head->batch_lock);
824 list_add_tail(&sh->batch_list, &head->batch_list);
825 spin_unlock(&head->batch_lock);
826 }
827
828 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
829 if (atomic_dec_return(&conf->preread_active_stripes)
830 < IO_THRESHOLD)
831 md_wakeup_thread(conf->mddev->thread);
832
2b6b2457
N
833 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
834 int seq = sh->bm_seq;
835 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
836 sh->batch_head->bm_seq > seq)
837 seq = sh->batch_head->bm_seq;
838 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
839 sh->batch_head->bm_seq = seq;
840 }
841
59fc630b 842 atomic_inc(&sh->count);
843unlock_out:
844 unlock_two_stripes(head, sh);
845out:
6d036f7d 846 raid5_release_stripe(head);
59fc630b 847}
848
05616be5
N
849/* Determine if 'data_offset' or 'new_data_offset' should be used
850 * in this stripe_head.
851 */
852static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
853{
854 sector_t progress = conf->reshape_progress;
855 /* Need a memory barrier to make sure we see the value
856 * of conf->generation, or ->data_offset that was set before
857 * reshape_progress was updated.
858 */
859 smp_rmb();
860 if (progress == MaxSector)
861 return 0;
862 if (sh->generation == conf->generation - 1)
863 return 0;
864 /* We are in a reshape, and this is a new-generation stripe,
865 * so use new_data_offset.
866 */
867 return 1;
868}
869
aaf9f12e 870static void dispatch_bio_list(struct bio_list *tmp)
765d704d 871{
765d704d
SL
872 struct bio *bio;
873
aaf9f12e
SL
874 while ((bio = bio_list_pop(tmp)))
875 generic_make_request(bio);
876}
877
878static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
879{
880 const struct r5pending_data *da = list_entry(a,
881 struct r5pending_data, sibling);
882 const struct r5pending_data *db = list_entry(b,
883 struct r5pending_data, sibling);
884 if (da->sector > db->sector)
885 return 1;
886 if (da->sector < db->sector)
887 return -1;
888 return 0;
889}
890
891static void dispatch_defer_bios(struct r5conf *conf, int target,
892 struct bio_list *list)
893{
894 struct r5pending_data *data;
895 struct list_head *first, *next = NULL;
896 int cnt = 0;
897
898 if (conf->pending_data_cnt == 0)
899 return;
900
901 list_sort(NULL, &conf->pending_list, cmp_stripe);
902
903 first = conf->pending_list.next;
904
905 /* temporarily move the head */
906 if (conf->next_pending_data)
907 list_move_tail(&conf->pending_list,
908 &conf->next_pending_data->sibling);
909
910 while (!list_empty(&conf->pending_list)) {
911 data = list_first_entry(&conf->pending_list,
912 struct r5pending_data, sibling);
913 if (&data->sibling == first)
914 first = data->sibling.next;
915 next = data->sibling.next;
916
917 bio_list_merge(list, &data->bios);
918 list_move(&data->sibling, &conf->free_list);
919 cnt++;
920 if (cnt >= target)
921 break;
922 }
923 conf->pending_data_cnt -= cnt;
924 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
925
926 if (next != &conf->pending_list)
927 conf->next_pending_data = list_entry(next,
928 struct r5pending_data, sibling);
929 else
930 conf->next_pending_data = NULL;
931 /* list isn't empty */
932 if (first != &conf->pending_list)
933 list_move_tail(&conf->pending_list, first);
934}
935
936static void flush_deferred_bios(struct r5conf *conf)
937{
938 struct bio_list tmp = BIO_EMPTY_LIST;
939
940 if (conf->pending_data_cnt == 0)
765d704d
SL
941 return;
942
765d704d 943 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
944 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
945 BUG_ON(conf->pending_data_cnt != 0);
765d704d
SL
946 spin_unlock(&conf->pending_bios_lock);
947
aaf9f12e 948 dispatch_bio_list(&tmp);
765d704d
SL
949}
950
aaf9f12e
SL
951static void defer_issue_bios(struct r5conf *conf, sector_t sector,
952 struct bio_list *bios)
765d704d 953{
aaf9f12e
SL
954 struct bio_list tmp = BIO_EMPTY_LIST;
955 struct r5pending_data *ent;
956
765d704d 957 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
958 ent = list_first_entry(&conf->free_list, struct r5pending_data,
959 sibling);
960 list_move_tail(&ent->sibling, &conf->pending_list);
961 ent->sector = sector;
962 bio_list_init(&ent->bios);
963 bio_list_merge(&ent->bios, bios);
964 conf->pending_data_cnt++;
965 if (conf->pending_data_cnt >= PENDING_IO_MAX)
966 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
967
765d704d 968 spin_unlock(&conf->pending_bios_lock);
aaf9f12e
SL
969
970 dispatch_bio_list(&tmp);
765d704d
SL
971}
972
6712ecf8 973static void
4246a0b6 974raid5_end_read_request(struct bio *bi);
6712ecf8 975static void
4246a0b6 976raid5_end_write_request(struct bio *bi);
91c00924 977
c4e5ac0a 978static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 979{
d1688a6d 980 struct r5conf *conf = sh->raid_conf;
91c00924 981 int i, disks = sh->disks;
59fc630b 982 struct stripe_head *head_sh = sh;
aaf9f12e
SL
983 struct bio_list pending_bios = BIO_EMPTY_LIST;
984 bool should_defer;
91c00924
DW
985
986 might_sleep();
987
ff875738
AP
988 if (log_stripe(sh, s) == 0)
989 return;
1e6d690b 990
aaf9f12e 991 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1e6d690b 992
91c00924 993 for (i = disks; i--; ) {
796a5cf0 994 int op, op_flags = 0;
9a3e1101 995 int replace_only = 0;
977df362
N
996 struct bio *bi, *rbi;
997 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 998
999 sh = head_sh;
e9c7469b 1000 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
796a5cf0 1001 op = REQ_OP_WRITE;
e9c7469b 1002 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
70fd7614 1003 op_flags = REQ_FUA;
9e444768 1004 if (test_bit(R5_Discard, &sh->dev[i].flags))
796a5cf0 1005 op = REQ_OP_DISCARD;
e9c7469b 1006 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
796a5cf0 1007 op = REQ_OP_READ;
9a3e1101
N
1008 else if (test_and_clear_bit(R5_WantReplace,
1009 &sh->dev[i].flags)) {
796a5cf0 1010 op = REQ_OP_WRITE;
9a3e1101
N
1011 replace_only = 1;
1012 } else
91c00924 1013 continue;
bc0934f0 1014 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
796a5cf0 1015 op_flags |= REQ_SYNC;
91c00924 1016
59fc630b 1017again:
91c00924 1018 bi = &sh->dev[i].req;
977df362 1019 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 1020
91c00924 1021 rcu_read_lock();
9a3e1101 1022 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
1023 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1024 rdev = rcu_dereference(conf->disks[i].rdev);
1025 if (!rdev) {
1026 rdev = rrdev;
1027 rrdev = NULL;
1028 }
796a5cf0 1029 if (op_is_write(op)) {
9a3e1101
N
1030 if (replace_only)
1031 rdev = NULL;
dd054fce
N
1032 if (rdev == rrdev)
1033 /* We raced and saw duplicates */
1034 rrdev = NULL;
9a3e1101 1035 } else {
59fc630b 1036 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
1037 rdev = rrdev;
1038 rrdev = NULL;
1039 }
977df362 1040
91c00924
DW
1041 if (rdev && test_bit(Faulty, &rdev->flags))
1042 rdev = NULL;
1043 if (rdev)
1044 atomic_inc(&rdev->nr_pending);
977df362
N
1045 if (rrdev && test_bit(Faulty, &rrdev->flags))
1046 rrdev = NULL;
1047 if (rrdev)
1048 atomic_inc(&rrdev->nr_pending);
91c00924
DW
1049 rcu_read_unlock();
1050
73e92e51 1051 /* We have already checked bad blocks for reads. Now
977df362
N
1052 * need to check for writes. We never accept write errors
1053 * on the replacement, so we don't to check rrdev.
73e92e51 1054 */
796a5cf0 1055 while (op_is_write(op) && rdev &&
73e92e51
N
1056 test_bit(WriteErrorSeen, &rdev->flags)) {
1057 sector_t first_bad;
1058 int bad_sectors;
1059 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1060 &first_bad, &bad_sectors);
1061 if (!bad)
1062 break;
1063
1064 if (bad < 0) {
1065 set_bit(BlockedBadBlocks, &rdev->flags);
1066 if (!conf->mddev->external &&
2953079c 1067 conf->mddev->sb_flags) {
73e92e51
N
1068 /* It is very unlikely, but we might
1069 * still need to write out the
1070 * bad block log - better give it
1071 * a chance*/
1072 md_check_recovery(conf->mddev);
1073 }
1850753d 1074 /*
1075 * Because md_wait_for_blocked_rdev
1076 * will dec nr_pending, we must
1077 * increment it first.
1078 */
1079 atomic_inc(&rdev->nr_pending);
73e92e51
N
1080 md_wait_for_blocked_rdev(rdev, conf->mddev);
1081 } else {
1082 /* Acknowledged bad block - skip the write */
1083 rdev_dec_pending(rdev, conf->mddev);
1084 rdev = NULL;
1085 }
1086 }
1087
91c00924 1088 if (rdev) {
9a3e1101
N
1089 if (s->syncing || s->expanding || s->expanded
1090 || s->replacing)
91c00924
DW
1091 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1092
2b7497f0
DW
1093 set_bit(STRIPE_IO_STARTED, &sh->state);
1094
91c00924 1095 bi->bi_bdev = rdev->bdev;
796a5cf0
MC
1096 bio_set_op_attrs(bi, op, op_flags);
1097 bi->bi_end_io = op_is_write(op)
2f6db2a7
KO
1098 ? raid5_end_write_request
1099 : raid5_end_read_request;
1100 bi->bi_private = sh;
1101
6296b960 1102 pr_debug("%s: for %llu schedule op %d on disc %d\n",
e46b272b 1103 __func__, (unsigned long long)sh->sector,
1eff9d32 1104 bi->bi_opf, i);
91c00924 1105 atomic_inc(&sh->count);
59fc630b 1106 if (sh != head_sh)
1107 atomic_inc(&head_sh->count);
05616be5 1108 if (use_new_offset(conf, sh))
4f024f37 1109 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1110 + rdev->new_data_offset);
1111 else
4f024f37 1112 bi->bi_iter.bi_sector = (sh->sector
05616be5 1113 + rdev->data_offset);
59fc630b 1114 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1eff9d32 1115 bi->bi_opf |= REQ_NOMERGE;
3f9e7c14 1116
d592a996
SL
1117 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1118 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
86aa1397
SL
1119
1120 if (!op_is_write(op) &&
1121 test_bit(R5_InJournal, &sh->dev[i].flags))
1122 /*
1123 * issuing read for a page in journal, this
1124 * must be preparing for prexor in rmw; read
1125 * the data into orig_page
1126 */
1127 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1128 else
1129 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1130 bi->bi_vcnt = 1;
91c00924
DW
1131 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1132 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1133 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1134 /*
1135 * If this is discard request, set bi_vcnt 0. We don't
1136 * want to confuse SCSI because SCSI will replace payload
1137 */
796a5cf0 1138 if (op == REQ_OP_DISCARD)
37c61ff3 1139 bi->bi_vcnt = 0;
977df362
N
1140 if (rrdev)
1141 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1142
1143 if (conf->mddev->gendisk)
1144 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1145 bi, disk_devt(conf->mddev->gendisk),
1146 sh->dev[i].sector);
aaf9f12e
SL
1147 if (should_defer && op_is_write(op))
1148 bio_list_add(&pending_bios, bi);
1149 else
1150 generic_make_request(bi);
977df362
N
1151 }
1152 if (rrdev) {
9a3e1101
N
1153 if (s->syncing || s->expanding || s->expanded
1154 || s->replacing)
977df362
N
1155 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1156
1157 set_bit(STRIPE_IO_STARTED, &sh->state);
1158
1159 rbi->bi_bdev = rrdev->bdev;
796a5cf0
MC
1160 bio_set_op_attrs(rbi, op, op_flags);
1161 BUG_ON(!op_is_write(op));
2f6db2a7
KO
1162 rbi->bi_end_io = raid5_end_write_request;
1163 rbi->bi_private = sh;
1164
6296b960 1165 pr_debug("%s: for %llu schedule op %d on "
977df362
N
1166 "replacement disc %d\n",
1167 __func__, (unsigned long long)sh->sector,
1eff9d32 1168 rbi->bi_opf, i);
977df362 1169 atomic_inc(&sh->count);
59fc630b 1170 if (sh != head_sh)
1171 atomic_inc(&head_sh->count);
05616be5 1172 if (use_new_offset(conf, sh))
4f024f37 1173 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1174 + rrdev->new_data_offset);
1175 else
4f024f37 1176 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1177 + rrdev->data_offset);
d592a996
SL
1178 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1179 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1180 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1181 rbi->bi_vcnt = 1;
977df362
N
1182 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1183 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1184 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1185 /*
1186 * If this is discard request, set bi_vcnt 0. We don't
1187 * want to confuse SCSI because SCSI will replace payload
1188 */
796a5cf0 1189 if (op == REQ_OP_DISCARD)
37c61ff3 1190 rbi->bi_vcnt = 0;
e3620a3a
JB
1191 if (conf->mddev->gendisk)
1192 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1193 rbi, disk_devt(conf->mddev->gendisk),
1194 sh->dev[i].sector);
aaf9f12e
SL
1195 if (should_defer && op_is_write(op))
1196 bio_list_add(&pending_bios, rbi);
1197 else
1198 generic_make_request(rbi);
977df362
N
1199 }
1200 if (!rdev && !rrdev) {
796a5cf0 1201 if (op_is_write(op))
91c00924 1202 set_bit(STRIPE_DEGRADED, &sh->state);
6296b960 1203 pr_debug("skip op %d on disc %d for sector %llu\n",
1eff9d32 1204 bi->bi_opf, i, (unsigned long long)sh->sector);
91c00924
DW
1205 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1206 set_bit(STRIPE_HANDLE, &sh->state);
1207 }
59fc630b 1208
1209 if (!head_sh->batch_head)
1210 continue;
1211 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1212 batch_list);
1213 if (sh != head_sh)
1214 goto again;
91c00924 1215 }
aaf9f12e
SL
1216
1217 if (should_defer && !bio_list_empty(&pending_bios))
1218 defer_issue_bios(conf, head_sh->sector, &pending_bios);
91c00924
DW
1219}
1220
1221static struct dma_async_tx_descriptor *
d592a996
SL
1222async_copy_data(int frombio, struct bio *bio, struct page **page,
1223 sector_t sector, struct dma_async_tx_descriptor *tx,
1e6d690b 1224 struct stripe_head *sh, int no_skipcopy)
91c00924 1225{
7988613b
KO
1226 struct bio_vec bvl;
1227 struct bvec_iter iter;
91c00924 1228 struct page *bio_page;
91c00924 1229 int page_offset;
a08abd8c 1230 struct async_submit_ctl submit;
0403e382 1231 enum async_tx_flags flags = 0;
91c00924 1232
4f024f37
KO
1233 if (bio->bi_iter.bi_sector >= sector)
1234 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1235 else
4f024f37 1236 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1237
0403e382
DW
1238 if (frombio)
1239 flags |= ASYNC_TX_FENCE;
1240 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1241
7988613b
KO
1242 bio_for_each_segment(bvl, bio, iter) {
1243 int len = bvl.bv_len;
91c00924
DW
1244 int clen;
1245 int b_offset = 0;
1246
1247 if (page_offset < 0) {
1248 b_offset = -page_offset;
1249 page_offset += b_offset;
1250 len -= b_offset;
1251 }
1252
1253 if (len > 0 && page_offset + len > STRIPE_SIZE)
1254 clen = STRIPE_SIZE - page_offset;
1255 else
1256 clen = len;
1257
1258 if (clen > 0) {
7988613b
KO
1259 b_offset += bvl.bv_offset;
1260 bio_page = bvl.bv_page;
d592a996
SL
1261 if (frombio) {
1262 if (sh->raid_conf->skip_copy &&
1263 b_offset == 0 && page_offset == 0 &&
1e6d690b
SL
1264 clen == STRIPE_SIZE &&
1265 !no_skipcopy)
d592a996
SL
1266 *page = bio_page;
1267 else
1268 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1269 b_offset, clen, &submit);
d592a996
SL
1270 } else
1271 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1272 page_offset, clen, &submit);
91c00924 1273 }
a08abd8c
DW
1274 /* chain the operations */
1275 submit.depend_tx = tx;
1276
91c00924
DW
1277 if (clen < len) /* hit end of page */
1278 break;
1279 page_offset += len;
1280 }
1281
1282 return tx;
1283}
1284
1285static void ops_complete_biofill(void *stripe_head_ref)
1286{
1287 struct stripe_head *sh = stripe_head_ref;
e4d84909 1288 int i;
91c00924 1289
e46b272b 1290 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1291 (unsigned long long)sh->sector);
1292
1293 /* clear completed biofills */
1294 for (i = sh->disks; i--; ) {
1295 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1296
1297 /* acknowledge completion of a biofill operation */
e4d84909
DW
1298 /* and check if we need to reply to a read request,
1299 * new R5_Wantfill requests are held off until
83de75cc 1300 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1301 */
1302 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1303 struct bio *rbi, *rbi2;
91c00924 1304
91c00924
DW
1305 BUG_ON(!dev->read);
1306 rbi = dev->read;
1307 dev->read = NULL;
4f024f37 1308 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1309 dev->sector + STRIPE_SECTORS) {
1310 rbi2 = r5_next_bio(rbi, dev->sector);
016c76ac 1311 bio_endio(rbi);
91c00924
DW
1312 rbi = rbi2;
1313 }
1314 }
1315 }
83de75cc 1316 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1317
e4d84909 1318 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1319 raid5_release_stripe(sh);
91c00924
DW
1320}
1321
1322static void ops_run_biofill(struct stripe_head *sh)
1323{
1324 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1325 struct async_submit_ctl submit;
91c00924
DW
1326 int i;
1327
59fc630b 1328 BUG_ON(sh->batch_head);
e46b272b 1329 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1330 (unsigned long long)sh->sector);
1331
1332 for (i = sh->disks; i--; ) {
1333 struct r5dev *dev = &sh->dev[i];
1334 if (test_bit(R5_Wantfill, &dev->flags)) {
1335 struct bio *rbi;
b17459c0 1336 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1337 dev->read = rbi = dev->toread;
1338 dev->toread = NULL;
b17459c0 1339 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1340 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1341 dev->sector + STRIPE_SECTORS) {
d592a996 1342 tx = async_copy_data(0, rbi, &dev->page,
1e6d690b 1343 dev->sector, tx, sh, 0);
91c00924
DW
1344 rbi = r5_next_bio(rbi, dev->sector);
1345 }
1346 }
1347 }
1348
1349 atomic_inc(&sh->count);
a08abd8c
DW
1350 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1351 async_trigger_callback(&submit);
91c00924
DW
1352}
1353
4e7d2c0a 1354static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1355{
4e7d2c0a 1356 struct r5dev *tgt;
91c00924 1357
4e7d2c0a
DW
1358 if (target < 0)
1359 return;
91c00924 1360
4e7d2c0a 1361 tgt = &sh->dev[target];
91c00924
DW
1362 set_bit(R5_UPTODATE, &tgt->flags);
1363 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1364 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1365}
1366
ac6b53b6 1367static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1368{
1369 struct stripe_head *sh = stripe_head_ref;
91c00924 1370
e46b272b 1371 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1372 (unsigned long long)sh->sector);
1373
ac6b53b6 1374 /* mark the computed target(s) as uptodate */
4e7d2c0a 1375 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1376 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1377
ecc65c9b
DW
1378 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1379 if (sh->check_state == check_state_compute_run)
1380 sh->check_state = check_state_compute_result;
91c00924 1381 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1382 raid5_release_stripe(sh);
91c00924
DW
1383}
1384
d6f38f31
DW
1385/* return a pointer to the address conversion region of the scribble buffer */
1386static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1387 struct raid5_percpu *percpu, int i)
d6f38f31 1388{
46d5b785 1389 void *addr;
1390
1391 addr = flex_array_get(percpu->scribble, i);
1392 return addr + sizeof(struct page *) * (sh->disks + 2);
1393}
1394
1395/* return a pointer to the address conversion region of the scribble buffer */
1396static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1397{
1398 void *addr;
1399
1400 addr = flex_array_get(percpu->scribble, i);
1401 return addr;
d6f38f31
DW
1402}
1403
1404static struct dma_async_tx_descriptor *
1405ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1406{
91c00924 1407 int disks = sh->disks;
46d5b785 1408 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1409 int target = sh->ops.target;
1410 struct r5dev *tgt = &sh->dev[target];
1411 struct page *xor_dest = tgt->page;
1412 int count = 0;
1413 struct dma_async_tx_descriptor *tx;
a08abd8c 1414 struct async_submit_ctl submit;
91c00924
DW
1415 int i;
1416
59fc630b 1417 BUG_ON(sh->batch_head);
1418
91c00924 1419 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1420 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1421 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1422
1423 for (i = disks; i--; )
1424 if (i != target)
1425 xor_srcs[count++] = sh->dev[i].page;
1426
1427 atomic_inc(&sh->count);
1428
0403e382 1429 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1430 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1431 if (unlikely(count == 1))
a08abd8c 1432 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1433 else
a08abd8c 1434 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1435
91c00924
DW
1436 return tx;
1437}
1438
ac6b53b6
DW
1439/* set_syndrome_sources - populate source buffers for gen_syndrome
1440 * @srcs - (struct page *) array of size sh->disks
1441 * @sh - stripe_head to parse
1442 *
1443 * Populates srcs in proper layout order for the stripe and returns the
1444 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1445 * destination buffer is recorded in srcs[count] and the Q destination
1446 * is recorded in srcs[count+1]].
1447 */
584acdd4
MS
1448static int set_syndrome_sources(struct page **srcs,
1449 struct stripe_head *sh,
1450 int srctype)
ac6b53b6
DW
1451{
1452 int disks = sh->disks;
1453 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1454 int d0_idx = raid6_d0(sh);
1455 int count;
1456 int i;
1457
1458 for (i = 0; i < disks; i++)
5dd33c9a 1459 srcs[i] = NULL;
ac6b53b6
DW
1460
1461 count = 0;
1462 i = d0_idx;
1463 do {
1464 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1465 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1466
584acdd4
MS
1467 if (i == sh->qd_idx || i == sh->pd_idx ||
1468 (srctype == SYNDROME_SRC_ALL) ||
1469 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1e6d690b
SL
1470 (test_bit(R5_Wantdrain, &dev->flags) ||
1471 test_bit(R5_InJournal, &dev->flags))) ||
584acdd4 1472 (srctype == SYNDROME_SRC_WRITTEN &&
0977762f
SL
1473 (dev->written ||
1474 test_bit(R5_InJournal, &dev->flags)))) {
1e6d690b
SL
1475 if (test_bit(R5_InJournal, &dev->flags))
1476 srcs[slot] = sh->dev[i].orig_page;
1477 else
1478 srcs[slot] = sh->dev[i].page;
1479 }
ac6b53b6
DW
1480 i = raid6_next_disk(i, disks);
1481 } while (i != d0_idx);
ac6b53b6 1482
e4424fee 1483 return syndrome_disks;
ac6b53b6
DW
1484}
1485
1486static struct dma_async_tx_descriptor *
1487ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1488{
1489 int disks = sh->disks;
46d5b785 1490 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1491 int target;
1492 int qd_idx = sh->qd_idx;
1493 struct dma_async_tx_descriptor *tx;
1494 struct async_submit_ctl submit;
1495 struct r5dev *tgt;
1496 struct page *dest;
1497 int i;
1498 int count;
1499
59fc630b 1500 BUG_ON(sh->batch_head);
ac6b53b6
DW
1501 if (sh->ops.target < 0)
1502 target = sh->ops.target2;
1503 else if (sh->ops.target2 < 0)
1504 target = sh->ops.target;
91c00924 1505 else
ac6b53b6
DW
1506 /* we should only have one valid target */
1507 BUG();
1508 BUG_ON(target < 0);
1509 pr_debug("%s: stripe %llu block: %d\n",
1510 __func__, (unsigned long long)sh->sector, target);
1511
1512 tgt = &sh->dev[target];
1513 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1514 dest = tgt->page;
1515
1516 atomic_inc(&sh->count);
1517
1518 if (target == qd_idx) {
584acdd4 1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1520 blocks[count] = NULL; /* regenerating p is not necessary */
1521 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1522 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1523 ops_complete_compute, sh,
46d5b785 1524 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1525 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1526 } else {
1527 /* Compute any data- or p-drive using XOR */
1528 count = 0;
1529 for (i = disks; i-- ; ) {
1530 if (i == target || i == qd_idx)
1531 continue;
1532 blocks[count++] = sh->dev[i].page;
1533 }
1534
0403e382
DW
1535 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1536 NULL, ops_complete_compute, sh,
46d5b785 1537 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1538 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1539 }
91c00924 1540
91c00924
DW
1541 return tx;
1542}
1543
ac6b53b6
DW
1544static struct dma_async_tx_descriptor *
1545ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1546{
1547 int i, count, disks = sh->disks;
1548 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1549 int d0_idx = raid6_d0(sh);
1550 int faila = -1, failb = -1;
1551 int target = sh->ops.target;
1552 int target2 = sh->ops.target2;
1553 struct r5dev *tgt = &sh->dev[target];
1554 struct r5dev *tgt2 = &sh->dev[target2];
1555 struct dma_async_tx_descriptor *tx;
46d5b785 1556 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1557 struct async_submit_ctl submit;
1558
59fc630b 1559 BUG_ON(sh->batch_head);
ac6b53b6
DW
1560 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1561 __func__, (unsigned long long)sh->sector, target, target2);
1562 BUG_ON(target < 0 || target2 < 0);
1563 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1564 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1565
6c910a78 1566 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1567 * slot number conversion for 'faila' and 'failb'
1568 */
1569 for (i = 0; i < disks ; i++)
5dd33c9a 1570 blocks[i] = NULL;
ac6b53b6
DW
1571 count = 0;
1572 i = d0_idx;
1573 do {
1574 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1575
1576 blocks[slot] = sh->dev[i].page;
1577
1578 if (i == target)
1579 faila = slot;
1580 if (i == target2)
1581 failb = slot;
1582 i = raid6_next_disk(i, disks);
1583 } while (i != d0_idx);
ac6b53b6
DW
1584
1585 BUG_ON(faila == failb);
1586 if (failb < faila)
1587 swap(faila, failb);
1588 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1589 __func__, (unsigned long long)sh->sector, faila, failb);
1590
1591 atomic_inc(&sh->count);
1592
1593 if (failb == syndrome_disks+1) {
1594 /* Q disk is one of the missing disks */
1595 if (faila == syndrome_disks) {
1596 /* Missing P+Q, just recompute */
0403e382
DW
1597 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1598 ops_complete_compute, sh,
46d5b785 1599 to_addr_conv(sh, percpu, 0));
e4424fee 1600 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1601 STRIPE_SIZE, &submit);
1602 } else {
1603 struct page *dest;
1604 int data_target;
1605 int qd_idx = sh->qd_idx;
1606
1607 /* Missing D+Q: recompute D from P, then recompute Q */
1608 if (target == qd_idx)
1609 data_target = target2;
1610 else
1611 data_target = target;
1612
1613 count = 0;
1614 for (i = disks; i-- ; ) {
1615 if (i == data_target || i == qd_idx)
1616 continue;
1617 blocks[count++] = sh->dev[i].page;
1618 }
1619 dest = sh->dev[data_target].page;
0403e382
DW
1620 init_async_submit(&submit,
1621 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1622 NULL, NULL, NULL,
46d5b785 1623 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1624 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1625 &submit);
1626
584acdd4 1627 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1628 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1629 ops_complete_compute, sh,
46d5b785 1630 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1631 return async_gen_syndrome(blocks, 0, count+2,
1632 STRIPE_SIZE, &submit);
1633 }
ac6b53b6 1634 } else {
6c910a78
DW
1635 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1636 ops_complete_compute, sh,
46d5b785 1637 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1638 if (failb == syndrome_disks) {
1639 /* We're missing D+P. */
1640 return async_raid6_datap_recov(syndrome_disks+2,
1641 STRIPE_SIZE, faila,
1642 blocks, &submit);
1643 } else {
1644 /* We're missing D+D. */
1645 return async_raid6_2data_recov(syndrome_disks+2,
1646 STRIPE_SIZE, faila, failb,
1647 blocks, &submit);
1648 }
ac6b53b6
DW
1649 }
1650}
1651
91c00924
DW
1652static void ops_complete_prexor(void *stripe_head_ref)
1653{
1654 struct stripe_head *sh = stripe_head_ref;
1655
e46b272b 1656 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1657 (unsigned long long)sh->sector);
1e6d690b
SL
1658
1659 if (r5c_is_writeback(sh->raid_conf->log))
1660 /*
1661 * raid5-cache write back uses orig_page during prexor.
1662 * After prexor, it is time to free orig_page
1663 */
1664 r5c_release_extra_page(sh);
91c00924
DW
1665}
1666
1667static struct dma_async_tx_descriptor *
584acdd4
MS
1668ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1669 struct dma_async_tx_descriptor *tx)
91c00924 1670{
91c00924 1671 int disks = sh->disks;
46d5b785 1672 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1673 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1674 struct async_submit_ctl submit;
91c00924
DW
1675
1676 /* existing parity data subtracted */
1677 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1678
59fc630b 1679 BUG_ON(sh->batch_head);
e46b272b 1680 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1681 (unsigned long long)sh->sector);
1682
1683 for (i = disks; i--; ) {
1684 struct r5dev *dev = &sh->dev[i];
1685 /* Only process blocks that are known to be uptodate */
1e6d690b
SL
1686 if (test_bit(R5_InJournal, &dev->flags))
1687 xor_srcs[count++] = dev->orig_page;
1688 else if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1689 xor_srcs[count++] = dev->page;
1690 }
1691
0403e382 1692 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1693 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1694 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1695
1696 return tx;
1697}
1698
584acdd4
MS
1699static struct dma_async_tx_descriptor *
1700ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1701 struct dma_async_tx_descriptor *tx)
1702{
1703 struct page **blocks = to_addr_page(percpu, 0);
1704 int count;
1705 struct async_submit_ctl submit;
1706
1707 pr_debug("%s: stripe %llu\n", __func__,
1708 (unsigned long long)sh->sector);
1709
1710 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1711
1712 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1713 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1714 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1715
1716 return tx;
1717}
1718
91c00924 1719static struct dma_async_tx_descriptor *
d8ee0728 1720ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924 1721{
1e6d690b 1722 struct r5conf *conf = sh->raid_conf;
91c00924 1723 int disks = sh->disks;
d8ee0728 1724 int i;
59fc630b 1725 struct stripe_head *head_sh = sh;
91c00924 1726
e46b272b 1727 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1728 (unsigned long long)sh->sector);
1729
1730 for (i = disks; i--; ) {
59fc630b 1731 struct r5dev *dev;
91c00924 1732 struct bio *chosen;
91c00924 1733
59fc630b 1734 sh = head_sh;
1735 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1736 struct bio *wbi;
1737
59fc630b 1738again:
1739 dev = &sh->dev[i];
1e6d690b
SL
1740 /*
1741 * clear R5_InJournal, so when rewriting a page in
1742 * journal, it is not skipped by r5l_log_stripe()
1743 */
1744 clear_bit(R5_InJournal, &dev->flags);
b17459c0 1745 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1746 chosen = dev->towrite;
1747 dev->towrite = NULL;
7a87f434 1748 sh->overwrite_disks = 0;
91c00924
DW
1749 BUG_ON(dev->written);
1750 wbi = dev->written = chosen;
b17459c0 1751 spin_unlock_irq(&sh->stripe_lock);
d592a996 1752 WARN_ON(dev->page != dev->orig_page);
91c00924 1753
4f024f37 1754 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1755 dev->sector + STRIPE_SECTORS) {
1eff9d32 1756 if (wbi->bi_opf & REQ_FUA)
e9c7469b 1757 set_bit(R5_WantFUA, &dev->flags);
1eff9d32 1758 if (wbi->bi_opf & REQ_SYNC)
bc0934f0 1759 set_bit(R5_SyncIO, &dev->flags);
796a5cf0 1760 if (bio_op(wbi) == REQ_OP_DISCARD)
620125f2 1761 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1762 else {
1763 tx = async_copy_data(1, wbi, &dev->page,
1e6d690b
SL
1764 dev->sector, tx, sh,
1765 r5c_is_writeback(conf->log));
1766 if (dev->page != dev->orig_page &&
1767 !r5c_is_writeback(conf->log)) {
d592a996
SL
1768 set_bit(R5_SkipCopy, &dev->flags);
1769 clear_bit(R5_UPTODATE, &dev->flags);
1770 clear_bit(R5_OVERWRITE, &dev->flags);
1771 }
1772 }
91c00924
DW
1773 wbi = r5_next_bio(wbi, dev->sector);
1774 }
59fc630b 1775
1776 if (head_sh->batch_head) {
1777 sh = list_first_entry(&sh->batch_list,
1778 struct stripe_head,
1779 batch_list);
1780 if (sh == head_sh)
1781 continue;
1782 goto again;
1783 }
91c00924
DW
1784 }
1785 }
1786
1787 return tx;
1788}
1789
ac6b53b6 1790static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1791{
1792 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1793 int disks = sh->disks;
1794 int pd_idx = sh->pd_idx;
1795 int qd_idx = sh->qd_idx;
1796 int i;
9e444768 1797 bool fua = false, sync = false, discard = false;
91c00924 1798
e46b272b 1799 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1800 (unsigned long long)sh->sector);
1801
bc0934f0 1802 for (i = disks; i--; ) {
e9c7469b 1803 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1804 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1805 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1806 }
e9c7469b 1807
91c00924
DW
1808 for (i = disks; i--; ) {
1809 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1810
e9c7469b 1811 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1812 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1813 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1814 if (fua)
1815 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1816 if (sync)
1817 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1818 }
91c00924
DW
1819 }
1820
d8ee0728
DW
1821 if (sh->reconstruct_state == reconstruct_state_drain_run)
1822 sh->reconstruct_state = reconstruct_state_drain_result;
1823 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1824 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1825 else {
1826 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1827 sh->reconstruct_state = reconstruct_state_result;
1828 }
91c00924
DW
1829
1830 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1831 raid5_release_stripe(sh);
91c00924
DW
1832}
1833
1834static void
ac6b53b6
DW
1835ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1836 struct dma_async_tx_descriptor *tx)
91c00924 1837{
91c00924 1838 int disks = sh->disks;
59fc630b 1839 struct page **xor_srcs;
a08abd8c 1840 struct async_submit_ctl submit;
59fc630b 1841 int count, pd_idx = sh->pd_idx, i;
91c00924 1842 struct page *xor_dest;
d8ee0728 1843 int prexor = 0;
91c00924 1844 unsigned long flags;
59fc630b 1845 int j = 0;
1846 struct stripe_head *head_sh = sh;
1847 int last_stripe;
91c00924 1848
e46b272b 1849 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1850 (unsigned long long)sh->sector);
1851
620125f2
SL
1852 for (i = 0; i < sh->disks; i++) {
1853 if (pd_idx == i)
1854 continue;
1855 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1856 break;
1857 }
1858 if (i >= sh->disks) {
1859 atomic_inc(&sh->count);
620125f2
SL
1860 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1861 ops_complete_reconstruct(sh);
1862 return;
1863 }
59fc630b 1864again:
1865 count = 0;
1866 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1867 /* check if prexor is active which means only process blocks
1868 * that are part of a read-modify-write (written)
1869 */
59fc630b 1870 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1871 prexor = 1;
91c00924
DW
1872 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1873 for (i = disks; i--; ) {
1874 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
1875 if (head_sh->dev[i].written ||
1876 test_bit(R5_InJournal, &head_sh->dev[i].flags))
91c00924
DW
1877 xor_srcs[count++] = dev->page;
1878 }
1879 } else {
1880 xor_dest = sh->dev[pd_idx].page;
1881 for (i = disks; i--; ) {
1882 struct r5dev *dev = &sh->dev[i];
1883 if (i != pd_idx)
1884 xor_srcs[count++] = dev->page;
1885 }
1886 }
1887
91c00924
DW
1888 /* 1/ if we prexor'd then the dest is reused as a source
1889 * 2/ if we did not prexor then we are redoing the parity
1890 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1891 * for the synchronous xor case
1892 */
59fc630b 1893 last_stripe = !head_sh->batch_head ||
1894 list_first_entry(&sh->batch_list,
1895 struct stripe_head, batch_list) == head_sh;
1896 if (last_stripe) {
1897 flags = ASYNC_TX_ACK |
1898 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1899
1900 atomic_inc(&head_sh->count);
1901 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1902 to_addr_conv(sh, percpu, j));
1903 } else {
1904 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1905 init_async_submit(&submit, flags, tx, NULL, NULL,
1906 to_addr_conv(sh, percpu, j));
1907 }
91c00924 1908
a08abd8c
DW
1909 if (unlikely(count == 1))
1910 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1911 else
1912 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1913 if (!last_stripe) {
1914 j++;
1915 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1916 batch_list);
1917 goto again;
1918 }
91c00924
DW
1919}
1920
ac6b53b6
DW
1921static void
1922ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1923 struct dma_async_tx_descriptor *tx)
1924{
1925 struct async_submit_ctl submit;
59fc630b 1926 struct page **blocks;
1927 int count, i, j = 0;
1928 struct stripe_head *head_sh = sh;
1929 int last_stripe;
584acdd4
MS
1930 int synflags;
1931 unsigned long txflags;
ac6b53b6
DW
1932
1933 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1934
620125f2
SL
1935 for (i = 0; i < sh->disks; i++) {
1936 if (sh->pd_idx == i || sh->qd_idx == i)
1937 continue;
1938 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1939 break;
1940 }
1941 if (i >= sh->disks) {
1942 atomic_inc(&sh->count);
620125f2
SL
1943 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1944 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1945 ops_complete_reconstruct(sh);
1946 return;
1947 }
1948
59fc630b 1949again:
1950 blocks = to_addr_page(percpu, j);
584acdd4
MS
1951
1952 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1953 synflags = SYNDROME_SRC_WRITTEN;
1954 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1955 } else {
1956 synflags = SYNDROME_SRC_ALL;
1957 txflags = ASYNC_TX_ACK;
1958 }
1959
1960 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1961 last_stripe = !head_sh->batch_head ||
1962 list_first_entry(&sh->batch_list,
1963 struct stripe_head, batch_list) == head_sh;
1964
1965 if (last_stripe) {
1966 atomic_inc(&head_sh->count);
584acdd4 1967 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1968 head_sh, to_addr_conv(sh, percpu, j));
1969 } else
1970 init_async_submit(&submit, 0, tx, NULL, NULL,
1971 to_addr_conv(sh, percpu, j));
48769695 1972 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1973 if (!last_stripe) {
1974 j++;
1975 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1976 batch_list);
1977 goto again;
1978 }
91c00924
DW
1979}
1980
1981static void ops_complete_check(void *stripe_head_ref)
1982{
1983 struct stripe_head *sh = stripe_head_ref;
91c00924 1984
e46b272b 1985 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1986 (unsigned long long)sh->sector);
1987
ecc65c9b 1988 sh->check_state = check_state_check_result;
91c00924 1989 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1990 raid5_release_stripe(sh);
91c00924
DW
1991}
1992
ac6b53b6 1993static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1994{
91c00924 1995 int disks = sh->disks;
ac6b53b6
DW
1996 int pd_idx = sh->pd_idx;
1997 int qd_idx = sh->qd_idx;
1998 struct page *xor_dest;
46d5b785 1999 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 2000 struct dma_async_tx_descriptor *tx;
a08abd8c 2001 struct async_submit_ctl submit;
ac6b53b6
DW
2002 int count;
2003 int i;
91c00924 2004
e46b272b 2005 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2006 (unsigned long long)sh->sector);
2007
59fc630b 2008 BUG_ON(sh->batch_head);
ac6b53b6
DW
2009 count = 0;
2010 xor_dest = sh->dev[pd_idx].page;
2011 xor_srcs[count++] = xor_dest;
91c00924 2012 for (i = disks; i--; ) {
ac6b53b6
DW
2013 if (i == pd_idx || i == qd_idx)
2014 continue;
2015 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
2016 }
2017
d6f38f31 2018 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 2019 to_addr_conv(sh, percpu, 0));
099f53cb 2020 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 2021 &sh->ops.zero_sum_result, &submit);
91c00924 2022
91c00924 2023 atomic_inc(&sh->count);
a08abd8c
DW
2024 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2025 tx = async_trigger_callback(&submit);
91c00924
DW
2026}
2027
ac6b53b6
DW
2028static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2029{
46d5b785 2030 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
2031 struct async_submit_ctl submit;
2032 int count;
2033
2034 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2035 (unsigned long long)sh->sector, checkp);
2036
59fc630b 2037 BUG_ON(sh->batch_head);
584acdd4 2038 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
2039 if (!checkp)
2040 srcs[count] = NULL;
91c00924 2041
91c00924 2042 atomic_inc(&sh->count);
ac6b53b6 2043 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 2044 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
2045 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2046 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
2047}
2048
51acbcec 2049static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
2050{
2051 int overlap_clear = 0, i, disks = sh->disks;
2052 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 2053 struct r5conf *conf = sh->raid_conf;
ac6b53b6 2054 int level = conf->level;
d6f38f31
DW
2055 struct raid5_percpu *percpu;
2056 unsigned long cpu;
91c00924 2057
d6f38f31
DW
2058 cpu = get_cpu();
2059 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 2060 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
2061 ops_run_biofill(sh);
2062 overlap_clear++;
2063 }
2064
7b3a871e 2065 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
2066 if (level < 6)
2067 tx = ops_run_compute5(sh, percpu);
2068 else {
2069 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2070 tx = ops_run_compute6_1(sh, percpu);
2071 else
2072 tx = ops_run_compute6_2(sh, percpu);
2073 }
2074 /* terminate the chain if reconstruct is not set to be run */
2075 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
2076 async_tx_ack(tx);
2077 }
91c00924 2078
584acdd4
MS
2079 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2080 if (level < 6)
2081 tx = ops_run_prexor5(sh, percpu, tx);
2082 else
2083 tx = ops_run_prexor6(sh, percpu, tx);
2084 }
91c00924 2085
ae1713e2
AP
2086 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2087 tx = ops_run_partial_parity(sh, percpu, tx);
2088
600aa109 2089 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 2090 tx = ops_run_biodrain(sh, tx);
91c00924
DW
2091 overlap_clear++;
2092 }
2093
ac6b53b6
DW
2094 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2095 if (level < 6)
2096 ops_run_reconstruct5(sh, percpu, tx);
2097 else
2098 ops_run_reconstruct6(sh, percpu, tx);
2099 }
91c00924 2100
ac6b53b6
DW
2101 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2102 if (sh->check_state == check_state_run)
2103 ops_run_check_p(sh, percpu);
2104 else if (sh->check_state == check_state_run_q)
2105 ops_run_check_pq(sh, percpu, 0);
2106 else if (sh->check_state == check_state_run_pq)
2107 ops_run_check_pq(sh, percpu, 1);
2108 else
2109 BUG();
2110 }
91c00924 2111
59fc630b 2112 if (overlap_clear && !sh->batch_head)
91c00924
DW
2113 for (i = disks; i--; ) {
2114 struct r5dev *dev = &sh->dev[i];
2115 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2116 wake_up(&sh->raid_conf->wait_for_overlap);
2117 }
d6f38f31 2118 put_cpu();
91c00924
DW
2119}
2120
845b9e22
AP
2121static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2122{
2123 if (sh->ppl_page)
2124 __free_page(sh->ppl_page);
2125 kmem_cache_free(sc, sh);
2126}
2127
5f9d1fde 2128static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
845b9e22 2129 int disks, struct r5conf *conf)
f18c1a35
N
2130{
2131 struct stripe_head *sh;
5f9d1fde 2132 int i;
f18c1a35
N
2133
2134 sh = kmem_cache_zalloc(sc, gfp);
2135 if (sh) {
2136 spin_lock_init(&sh->stripe_lock);
2137 spin_lock_init(&sh->batch_lock);
2138 INIT_LIST_HEAD(&sh->batch_list);
2139 INIT_LIST_HEAD(&sh->lru);
a39f7afd 2140 INIT_LIST_HEAD(&sh->r5c);
d7bd398e 2141 INIT_LIST_HEAD(&sh->log_list);
f18c1a35 2142 atomic_set(&sh->count, 1);
845b9e22 2143 sh->raid_conf = conf;
a39f7afd 2144 sh->log_start = MaxSector;
5f9d1fde
SL
2145 for (i = 0; i < disks; i++) {
2146 struct r5dev *dev = &sh->dev[i];
2147
3a83f467
ML
2148 bio_init(&dev->req, &dev->vec, 1);
2149 bio_init(&dev->rreq, &dev->rvec, 1);
5f9d1fde 2150 }
845b9e22
AP
2151
2152 if (raid5_has_ppl(conf)) {
2153 sh->ppl_page = alloc_page(gfp);
2154 if (!sh->ppl_page) {
2155 free_stripe(sc, sh);
2156 sh = NULL;
2157 }
2158 }
f18c1a35
N
2159 }
2160 return sh;
2161}
486f0644 2162static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2163{
2164 struct stripe_head *sh;
f18c1a35 2165
845b9e22 2166 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
3f294f4f
N
2167 if (!sh)
2168 return 0;
6ce32846 2169
a9683a79 2170 if (grow_buffers(sh, gfp)) {
e4e11e38 2171 shrink_buffers(sh);
845b9e22 2172 free_stripe(conf->slab_cache, sh);
3f294f4f
N
2173 return 0;
2174 }
486f0644
N
2175 sh->hash_lock_index =
2176 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2177 /* we just created an active stripe so... */
3f294f4f 2178 atomic_inc(&conf->active_stripes);
59fc630b 2179
6d036f7d 2180 raid5_release_stripe(sh);
486f0644 2181 conf->max_nr_stripes++;
3f294f4f
N
2182 return 1;
2183}
2184
d1688a6d 2185static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2186{
e18b890b 2187 struct kmem_cache *sc;
5e5e3e78 2188 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2189
f4be6b43
N
2190 if (conf->mddev->gendisk)
2191 sprintf(conf->cache_name[0],
2192 "raid%d-%s", conf->level, mdname(conf->mddev));
2193 else
2194 sprintf(conf->cache_name[0],
2195 "raid%d-%p", conf->level, conf->mddev);
2196 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2197
ad01c9e3
N
2198 conf->active_name = 0;
2199 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2200 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2201 0, 0, NULL);
1da177e4
LT
2202 if (!sc)
2203 return 1;
2204 conf->slab_cache = sc;
ad01c9e3 2205 conf->pool_size = devs;
486f0644
N
2206 while (num--)
2207 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2208 return 1;
486f0644 2209
1da177e4
LT
2210 return 0;
2211}
29269553 2212
d6f38f31
DW
2213/**
2214 * scribble_len - return the required size of the scribble region
2215 * @num - total number of disks in the array
2216 *
2217 * The size must be enough to contain:
2218 * 1/ a struct page pointer for each device in the array +2
2219 * 2/ room to convert each entry in (1) to its corresponding dma
2220 * (dma_map_page()) or page (page_address()) address.
2221 *
2222 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2223 * calculate over all devices (not just the data blocks), using zeros in place
2224 * of the P and Q blocks.
2225 */
46d5b785 2226static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2227{
46d5b785 2228 struct flex_array *ret;
d6f38f31
DW
2229 size_t len;
2230
2231 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2232 ret = flex_array_alloc(len, cnt, flags);
2233 if (!ret)
2234 return NULL;
2235 /* always prealloc all elements, so no locking is required */
2236 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2237 flex_array_free(ret);
2238 return NULL;
2239 }
2240 return ret;
d6f38f31
DW
2241}
2242
738a2738
N
2243static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2244{
2245 unsigned long cpu;
2246 int err = 0;
2247
27a353c0
SL
2248 /*
2249 * Never shrink. And mddev_suspend() could deadlock if this is called
2250 * from raid5d. In that case, scribble_disks and scribble_sectors
2251 * should equal to new_disks and new_sectors
2252 */
2253 if (conf->scribble_disks >= new_disks &&
2254 conf->scribble_sectors >= new_sectors)
2255 return 0;
738a2738
N
2256 mddev_suspend(conf->mddev);
2257 get_online_cpus();
2258 for_each_present_cpu(cpu) {
2259 struct raid5_percpu *percpu;
2260 struct flex_array *scribble;
2261
2262 percpu = per_cpu_ptr(conf->percpu, cpu);
2263 scribble = scribble_alloc(new_disks,
2264 new_sectors / STRIPE_SECTORS,
2265 GFP_NOIO);
2266
2267 if (scribble) {
2268 flex_array_free(percpu->scribble);
2269 percpu->scribble = scribble;
2270 } else {
2271 err = -ENOMEM;
2272 break;
2273 }
2274 }
2275 put_online_cpus();
2276 mddev_resume(conf->mddev);
27a353c0
SL
2277 if (!err) {
2278 conf->scribble_disks = new_disks;
2279 conf->scribble_sectors = new_sectors;
2280 }
738a2738
N
2281 return err;
2282}
2283
d1688a6d 2284static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2285{
2286 /* Make all the stripes able to hold 'newsize' devices.
2287 * New slots in each stripe get 'page' set to a new page.
2288 *
2289 * This happens in stages:
2290 * 1/ create a new kmem_cache and allocate the required number of
2291 * stripe_heads.
83f0d77a 2292 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2293 * to the new stripe_heads. This will have the side effect of
2294 * freezing the array as once all stripe_heads have been collected,
2295 * no IO will be possible. Old stripe heads are freed once their
2296 * pages have been transferred over, and the old kmem_cache is
2297 * freed when all stripes are done.
2298 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
3560741e 2299 * we simple return a failure status - no need to clean anything up.
ad01c9e3
N
2300 * 4/ allocate new pages for the new slots in the new stripe_heads.
2301 * If this fails, we don't bother trying the shrink the
2302 * stripe_heads down again, we just leave them as they are.
2303 * As each stripe_head is processed the new one is released into
2304 * active service.
2305 *
2306 * Once step2 is started, we cannot afford to wait for a write,
2307 * so we use GFP_NOIO allocations.
2308 */
2309 struct stripe_head *osh, *nsh;
2310 LIST_HEAD(newstripes);
2311 struct disk_info *ndisks;
2214c260 2312 int err = 0;
e18b890b 2313 struct kmem_cache *sc;
ad01c9e3 2314 int i;
566c09c5 2315 int hash, cnt;
ad01c9e3 2316
2214c260 2317 md_allow_write(conf->mddev);
2a2275d6 2318
ad01c9e3
N
2319 /* Step 1 */
2320 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2321 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2322 0, 0, NULL);
ad01c9e3
N
2323 if (!sc)
2324 return -ENOMEM;
2325
2d5b569b
N
2326 /* Need to ensure auto-resizing doesn't interfere */
2327 mutex_lock(&conf->cache_size_mutex);
2328
ad01c9e3 2329 for (i = conf->max_nr_stripes; i; i--) {
845b9e22 2330 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
ad01c9e3
N
2331 if (!nsh)
2332 break;
2333
ad01c9e3
N
2334 list_add(&nsh->lru, &newstripes);
2335 }
2336 if (i) {
2337 /* didn't get enough, give up */
2338 while (!list_empty(&newstripes)) {
2339 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2340 list_del(&nsh->lru);
845b9e22 2341 free_stripe(sc, nsh);
ad01c9e3
N
2342 }
2343 kmem_cache_destroy(sc);
2d5b569b 2344 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2345 return -ENOMEM;
2346 }
2347 /* Step 2 - Must use GFP_NOIO now.
2348 * OK, we have enough stripes, start collecting inactive
2349 * stripes and copying them over
2350 */
566c09c5
SL
2351 hash = 0;
2352 cnt = 0;
ad01c9e3 2353 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2354 lock_device_hash_lock(conf, hash);
6ab2a4b8 2355 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2356 !list_empty(conf->inactive_list + hash),
2357 unlock_device_hash_lock(conf, hash),
2358 lock_device_hash_lock(conf, hash));
2359 osh = get_free_stripe(conf, hash);
2360 unlock_device_hash_lock(conf, hash);
f18c1a35 2361
d592a996 2362 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2363 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2364 nsh->dev[i].orig_page = osh->dev[i].page;
2365 }
566c09c5 2366 nsh->hash_lock_index = hash;
845b9e22 2367 free_stripe(conf->slab_cache, osh);
566c09c5
SL
2368 cnt++;
2369 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2370 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2371 hash++;
2372 cnt = 0;
2373 }
ad01c9e3
N
2374 }
2375 kmem_cache_destroy(conf->slab_cache);
2376
2377 /* Step 3.
2378 * At this point, we are holding all the stripes so the array
2379 * is completely stalled, so now is a good time to resize
d6f38f31 2380 * conf->disks and the scribble region
ad01c9e3
N
2381 */
2382 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2383 if (ndisks) {
d7bd398e 2384 for (i = 0; i < conf->pool_size; i++)
ad01c9e3 2385 ndisks[i] = conf->disks[i];
d7bd398e
SL
2386
2387 for (i = conf->pool_size; i < newsize; i++) {
2388 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2389 if (!ndisks[i].extra_page)
2390 err = -ENOMEM;
2391 }
2392
2393 if (err) {
2394 for (i = conf->pool_size; i < newsize; i++)
2395 if (ndisks[i].extra_page)
2396 put_page(ndisks[i].extra_page);
2397 kfree(ndisks);
2398 } else {
2399 kfree(conf->disks);
2400 conf->disks = ndisks;
2401 }
ad01c9e3
N
2402 } else
2403 err = -ENOMEM;
2404
2d5b569b 2405 mutex_unlock(&conf->cache_size_mutex);
583da48e
DY
2406
2407 conf->slab_cache = sc;
2408 conf->active_name = 1-conf->active_name;
2409
ad01c9e3
N
2410 /* Step 4, return new stripes to service */
2411 while(!list_empty(&newstripes)) {
2412 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2413 list_del_init(&nsh->lru);
d6f38f31 2414
ad01c9e3
N
2415 for (i=conf->raid_disks; i < newsize; i++)
2416 if (nsh->dev[i].page == NULL) {
2417 struct page *p = alloc_page(GFP_NOIO);
2418 nsh->dev[i].page = p;
d592a996 2419 nsh->dev[i].orig_page = p;
ad01c9e3
N
2420 if (!p)
2421 err = -ENOMEM;
2422 }
6d036f7d 2423 raid5_release_stripe(nsh);
ad01c9e3
N
2424 }
2425 /* critical section pass, GFP_NOIO no longer needed */
2426
6e9eac2d
N
2427 if (!err)
2428 conf->pool_size = newsize;
ad01c9e3
N
2429 return err;
2430}
1da177e4 2431
486f0644 2432static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2433{
2434 struct stripe_head *sh;
49895bcc 2435 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2436
566c09c5
SL
2437 spin_lock_irq(conf->hash_locks + hash);
2438 sh = get_free_stripe(conf, hash);
2439 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2440 if (!sh)
2441 return 0;
78bafebd 2442 BUG_ON(atomic_read(&sh->count));
e4e11e38 2443 shrink_buffers(sh);
845b9e22 2444 free_stripe(conf->slab_cache, sh);
3f294f4f 2445 atomic_dec(&conf->active_stripes);
486f0644 2446 conf->max_nr_stripes--;
3f294f4f
N
2447 return 1;
2448}
2449
d1688a6d 2450static void shrink_stripes(struct r5conf *conf)
3f294f4f 2451{
486f0644
N
2452 while (conf->max_nr_stripes &&
2453 drop_one_stripe(conf))
2454 ;
3f294f4f 2455
644df1a8 2456 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2457 conf->slab_cache = NULL;
2458}
2459
4246a0b6 2460static void raid5_end_read_request(struct bio * bi)
1da177e4 2461{
99c0fb5f 2462 struct stripe_head *sh = bi->bi_private;
d1688a6d 2463 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2464 int disks = sh->disks, i;
d6950432 2465 char b[BDEVNAME_SIZE];
dd054fce 2466 struct md_rdev *rdev = NULL;
05616be5 2467 sector_t s;
1da177e4
LT
2468
2469 for (i=0 ; i<disks; i++)
2470 if (bi == &sh->dev[i].req)
2471 break;
2472
4246a0b6 2473 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2474 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2475 bi->bi_error);
1da177e4 2476 if (i == disks) {
5f9d1fde 2477 bio_reset(bi);
1da177e4 2478 BUG();
6712ecf8 2479 return;
1da177e4 2480 }
14a75d3e 2481 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2482 /* If replacement finished while this request was outstanding,
2483 * 'replacement' might be NULL already.
2484 * In that case it moved down to 'rdev'.
2485 * rdev is not removed until all requests are finished.
2486 */
14a75d3e 2487 rdev = conf->disks[i].replacement;
dd054fce 2488 if (!rdev)
14a75d3e 2489 rdev = conf->disks[i].rdev;
1da177e4 2490
05616be5
N
2491 if (use_new_offset(conf, sh))
2492 s = sh->sector + rdev->new_data_offset;
2493 else
2494 s = sh->sector + rdev->data_offset;
4246a0b6 2495 if (!bi->bi_error) {
1da177e4 2496 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2497 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2498 /* Note that this cannot happen on a
2499 * replacement device. We just fail those on
2500 * any error
2501 */
cc6167b4
N
2502 pr_info_ratelimited(
2503 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
8bda470e 2504 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2505 (unsigned long long)s,
8bda470e 2506 bdevname(rdev->bdev, b));
ddd5115f 2507 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2508 clear_bit(R5_ReadError, &sh->dev[i].flags);
2509 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2510 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2511 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2512
86aa1397
SL
2513 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2514 /*
2515 * end read for a page in journal, this
2516 * must be preparing for prexor in rmw
2517 */
2518 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2519
14a75d3e
N
2520 if (atomic_read(&rdev->read_errors))
2521 atomic_set(&rdev->read_errors, 0);
1da177e4 2522 } else {
14a75d3e 2523 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2524 int retry = 0;
2e8ac303 2525 int set_bad = 0;
d6950432 2526
1da177e4 2527 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2528 atomic_inc(&rdev->read_errors);
14a75d3e 2529 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
cc6167b4
N
2530 pr_warn_ratelimited(
2531 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
14a75d3e 2532 mdname(conf->mddev),
05616be5 2533 (unsigned long long)s,
14a75d3e 2534 bdn);
2e8ac303 2535 else if (conf->mddev->degraded >= conf->max_degraded) {
2536 set_bad = 1;
cc6167b4
N
2537 pr_warn_ratelimited(
2538 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
8bda470e 2539 mdname(conf->mddev),
05616be5 2540 (unsigned long long)s,
8bda470e 2541 bdn);
2e8ac303 2542 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2543 /* Oh, no!!! */
2e8ac303 2544 set_bad = 1;
cc6167b4
N
2545 pr_warn_ratelimited(
2546 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
8bda470e 2547 mdname(conf->mddev),
05616be5 2548 (unsigned long long)s,
8bda470e 2549 bdn);
2e8ac303 2550 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2551 > conf->max_nr_stripes)
cc6167b4 2552 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2553 mdname(conf->mddev), bdn);
ba22dcbf
N
2554 else
2555 retry = 1;
edfa1f65
BY
2556 if (set_bad && test_bit(In_sync, &rdev->flags)
2557 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2558 retry = 1;
ba22dcbf 2559 if (retry)
3f9e7c14 2560 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2561 set_bit(R5_ReadError, &sh->dev[i].flags);
2562 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2563 } else
2564 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2565 else {
4e5314b5
N
2566 clear_bit(R5_ReadError, &sh->dev[i].flags);
2567 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2568 if (!(set_bad
2569 && test_bit(In_sync, &rdev->flags)
2570 && rdev_set_badblocks(
2571 rdev, sh->sector, STRIPE_SECTORS, 0)))
2572 md_error(conf->mddev, rdev);
ba22dcbf 2573 }
1da177e4 2574 }
14a75d3e 2575 rdev_dec_pending(rdev, conf->mddev);
c9445555 2576 bio_reset(bi);
1da177e4
LT
2577 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2578 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2579 raid5_release_stripe(sh);
1da177e4
LT
2580}
2581
4246a0b6 2582static void raid5_end_write_request(struct bio *bi)
1da177e4 2583{
99c0fb5f 2584 struct stripe_head *sh = bi->bi_private;
d1688a6d 2585 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2586 int disks = sh->disks, i;
977df362 2587 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2588 sector_t first_bad;
2589 int bad_sectors;
977df362 2590 int replacement = 0;
1da177e4 2591
977df362
N
2592 for (i = 0 ; i < disks; i++) {
2593 if (bi == &sh->dev[i].req) {
2594 rdev = conf->disks[i].rdev;
1da177e4 2595 break;
977df362
N
2596 }
2597 if (bi == &sh->dev[i].rreq) {
2598 rdev = conf->disks[i].replacement;
dd054fce
N
2599 if (rdev)
2600 replacement = 1;
2601 else
2602 /* rdev was removed and 'replacement'
2603 * replaced it. rdev is not removed
2604 * until all requests are finished.
2605 */
2606 rdev = conf->disks[i].rdev;
977df362
N
2607 break;
2608 }
2609 }
4246a0b6 2610 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2611 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2612 bi->bi_error);
1da177e4 2613 if (i == disks) {
5f9d1fde 2614 bio_reset(bi);
1da177e4 2615 BUG();
6712ecf8 2616 return;
1da177e4
LT
2617 }
2618
977df362 2619 if (replacement) {
4246a0b6 2620 if (bi->bi_error)
977df362
N
2621 md_error(conf->mddev, rdev);
2622 else if (is_badblock(rdev, sh->sector,
2623 STRIPE_SECTORS,
2624 &first_bad, &bad_sectors))
2625 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2626 } else {
4246a0b6 2627 if (bi->bi_error) {
9f97e4b1 2628 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2629 set_bit(WriteErrorSeen, &rdev->flags);
2630 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2631 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2632 set_bit(MD_RECOVERY_NEEDED,
2633 &rdev->mddev->recovery);
977df362
N
2634 } else if (is_badblock(rdev, sh->sector,
2635 STRIPE_SECTORS,
c0b32972 2636 &first_bad, &bad_sectors)) {
977df362 2637 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2638 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2639 /* That was a successful write so make
2640 * sure it looks like we already did
2641 * a re-write.
2642 */
2643 set_bit(R5_ReWrite, &sh->dev[i].flags);
2644 }
977df362
N
2645 }
2646 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2647
4246a0b6 2648 if (sh->batch_head && bi->bi_error && !replacement)
72ac7330 2649 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2650
c9445555 2651 bio_reset(bi);
977df362
N
2652 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2653 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2654 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2655 raid5_release_stripe(sh);
59fc630b 2656
2657 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2658 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2659}
2660
784052ec 2661static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2662{
2663 struct r5dev *dev = &sh->dev[i];
2664
1da177e4 2665 dev->flags = 0;
6d036f7d 2666 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4
LT
2667}
2668
849674e4 2669static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2670{
2671 char b[BDEVNAME_SIZE];
d1688a6d 2672 struct r5conf *conf = mddev->private;
908f4fbd 2673 unsigned long flags;
0c55e022 2674 pr_debug("raid456: error called\n");
1da177e4 2675
908f4fbd
N
2676 spin_lock_irqsave(&conf->device_lock, flags);
2677 clear_bit(In_sync, &rdev->flags);
2e38a37f 2678 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd
N
2679 spin_unlock_irqrestore(&conf->device_lock, flags);
2680 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2681
de393cde 2682 set_bit(Blocked, &rdev->flags);
6f8d0c77 2683 set_bit(Faulty, &rdev->flags);
2953079c
SL
2684 set_mask_bits(&mddev->sb_flags, 0,
2685 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
cc6167b4
N
2686 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2687 "md/raid:%s: Operation continuing on %d devices.\n",
2688 mdname(mddev),
2689 bdevname(rdev->bdev, b),
2690 mdname(mddev),
2691 conf->raid_disks - mddev->degraded);
2e38a37f 2692 r5c_update_on_rdev_error(mddev);
16a53ecc 2693}
1da177e4
LT
2694
2695/*
2696 * Input: a 'big' sector number,
2697 * Output: index of the data and parity disk, and the sector # in them.
2698 */
6d036f7d
SL
2699sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2700 int previous, int *dd_idx,
2701 struct stripe_head *sh)
1da177e4 2702{
6e3b96ed 2703 sector_t stripe, stripe2;
35f2a591 2704 sector_t chunk_number;
1da177e4 2705 unsigned int chunk_offset;
911d4ee8 2706 int pd_idx, qd_idx;
67cc2b81 2707 int ddf_layout = 0;
1da177e4 2708 sector_t new_sector;
e183eaed
N
2709 int algorithm = previous ? conf->prev_algo
2710 : conf->algorithm;
09c9e5fa
AN
2711 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2712 : conf->chunk_sectors;
112bf897
N
2713 int raid_disks = previous ? conf->previous_raid_disks
2714 : conf->raid_disks;
2715 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2716
2717 /* First compute the information on this sector */
2718
2719 /*
2720 * Compute the chunk number and the sector offset inside the chunk
2721 */
2722 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2723 chunk_number = r_sector;
1da177e4
LT
2724
2725 /*
2726 * Compute the stripe number
2727 */
35f2a591
N
2728 stripe = chunk_number;
2729 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2730 stripe2 = stripe;
1da177e4
LT
2731 /*
2732 * Select the parity disk based on the user selected algorithm.
2733 */
84789554 2734 pd_idx = qd_idx = -1;
16a53ecc
N
2735 switch(conf->level) {
2736 case 4:
911d4ee8 2737 pd_idx = data_disks;
16a53ecc
N
2738 break;
2739 case 5:
e183eaed 2740 switch (algorithm) {
1da177e4 2741 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2742 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2743 if (*dd_idx >= pd_idx)
1da177e4
LT
2744 (*dd_idx)++;
2745 break;
2746 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2747 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2748 if (*dd_idx >= pd_idx)
1da177e4
LT
2749 (*dd_idx)++;
2750 break;
2751 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2752 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2753 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2754 break;
2755 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2756 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2757 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2758 break;
99c0fb5f
N
2759 case ALGORITHM_PARITY_0:
2760 pd_idx = 0;
2761 (*dd_idx)++;
2762 break;
2763 case ALGORITHM_PARITY_N:
2764 pd_idx = data_disks;
2765 break;
1da177e4 2766 default:
99c0fb5f 2767 BUG();
16a53ecc
N
2768 }
2769 break;
2770 case 6:
2771
e183eaed 2772 switch (algorithm) {
16a53ecc 2773 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2774 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2775 qd_idx = pd_idx + 1;
2776 if (pd_idx == raid_disks-1) {
99c0fb5f 2777 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2778 qd_idx = 0;
2779 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2780 (*dd_idx) += 2; /* D D P Q D */
2781 break;
2782 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2783 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2784 qd_idx = pd_idx + 1;
2785 if (pd_idx == raid_disks-1) {
99c0fb5f 2786 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2787 qd_idx = 0;
2788 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2789 (*dd_idx) += 2; /* D D P Q D */
2790 break;
2791 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2792 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2793 qd_idx = (pd_idx + 1) % raid_disks;
2794 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2795 break;
2796 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2797 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2798 qd_idx = (pd_idx + 1) % raid_disks;
2799 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2800 break;
99c0fb5f
N
2801
2802 case ALGORITHM_PARITY_0:
2803 pd_idx = 0;
2804 qd_idx = 1;
2805 (*dd_idx) += 2;
2806 break;
2807 case ALGORITHM_PARITY_N:
2808 pd_idx = data_disks;
2809 qd_idx = data_disks + 1;
2810 break;
2811
2812 case ALGORITHM_ROTATING_ZERO_RESTART:
2813 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2814 * of blocks for computing Q is different.
2815 */
6e3b96ed 2816 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2817 qd_idx = pd_idx + 1;
2818 if (pd_idx == raid_disks-1) {
2819 (*dd_idx)++; /* Q D D D P */
2820 qd_idx = 0;
2821 } else if (*dd_idx >= pd_idx)
2822 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2823 ddf_layout = 1;
99c0fb5f
N
2824 break;
2825
2826 case ALGORITHM_ROTATING_N_RESTART:
2827 /* Same a left_asymmetric, by first stripe is
2828 * D D D P Q rather than
2829 * Q D D D P
2830 */
6e3b96ed
N
2831 stripe2 += 1;
2832 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2833 qd_idx = pd_idx + 1;
2834 if (pd_idx == raid_disks-1) {
2835 (*dd_idx)++; /* Q D D D P */
2836 qd_idx = 0;
2837 } else if (*dd_idx >= pd_idx)
2838 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2839 ddf_layout = 1;
99c0fb5f
N
2840 break;
2841
2842 case ALGORITHM_ROTATING_N_CONTINUE:
2843 /* Same as left_symmetric but Q is before P */
6e3b96ed 2844 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2845 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2846 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2847 ddf_layout = 1;
99c0fb5f
N
2848 break;
2849
2850 case ALGORITHM_LEFT_ASYMMETRIC_6:
2851 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2852 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2853 if (*dd_idx >= pd_idx)
2854 (*dd_idx)++;
2855 qd_idx = raid_disks - 1;
2856 break;
2857
2858 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2859 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2860 if (*dd_idx >= pd_idx)
2861 (*dd_idx)++;
2862 qd_idx = raid_disks - 1;
2863 break;
2864
2865 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2866 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2867 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2868 qd_idx = raid_disks - 1;
2869 break;
2870
2871 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2872 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2873 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2874 qd_idx = raid_disks - 1;
2875 break;
2876
2877 case ALGORITHM_PARITY_0_6:
2878 pd_idx = 0;
2879 (*dd_idx)++;
2880 qd_idx = raid_disks - 1;
2881 break;
2882
16a53ecc 2883 default:
99c0fb5f 2884 BUG();
16a53ecc
N
2885 }
2886 break;
1da177e4
LT
2887 }
2888
911d4ee8
N
2889 if (sh) {
2890 sh->pd_idx = pd_idx;
2891 sh->qd_idx = qd_idx;
67cc2b81 2892 sh->ddf_layout = ddf_layout;
911d4ee8 2893 }
1da177e4
LT
2894 /*
2895 * Finally, compute the new sector number
2896 */
2897 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2898 return new_sector;
2899}
2900
6d036f7d 2901sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2902{
d1688a6d 2903 struct r5conf *conf = sh->raid_conf;
b875e531
N
2904 int raid_disks = sh->disks;
2905 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2906 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2907 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2908 : conf->chunk_sectors;
e183eaed
N
2909 int algorithm = previous ? conf->prev_algo
2910 : conf->algorithm;
1da177e4
LT
2911 sector_t stripe;
2912 int chunk_offset;
35f2a591
N
2913 sector_t chunk_number;
2914 int dummy1, dd_idx = i;
1da177e4 2915 sector_t r_sector;
911d4ee8 2916 struct stripe_head sh2;
1da177e4
LT
2917
2918 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2919 stripe = new_sector;
1da177e4 2920
16a53ecc
N
2921 if (i == sh->pd_idx)
2922 return 0;
2923 switch(conf->level) {
2924 case 4: break;
2925 case 5:
e183eaed 2926 switch (algorithm) {
1da177e4
LT
2927 case ALGORITHM_LEFT_ASYMMETRIC:
2928 case ALGORITHM_RIGHT_ASYMMETRIC:
2929 if (i > sh->pd_idx)
2930 i--;
2931 break;
2932 case ALGORITHM_LEFT_SYMMETRIC:
2933 case ALGORITHM_RIGHT_SYMMETRIC:
2934 if (i < sh->pd_idx)
2935 i += raid_disks;
2936 i -= (sh->pd_idx + 1);
2937 break;
99c0fb5f
N
2938 case ALGORITHM_PARITY_0:
2939 i -= 1;
2940 break;
2941 case ALGORITHM_PARITY_N:
2942 break;
1da177e4 2943 default:
99c0fb5f 2944 BUG();
16a53ecc
N
2945 }
2946 break;
2947 case 6:
d0dabf7e 2948 if (i == sh->qd_idx)
16a53ecc 2949 return 0; /* It is the Q disk */
e183eaed 2950 switch (algorithm) {
16a53ecc
N
2951 case ALGORITHM_LEFT_ASYMMETRIC:
2952 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2953 case ALGORITHM_ROTATING_ZERO_RESTART:
2954 case ALGORITHM_ROTATING_N_RESTART:
2955 if (sh->pd_idx == raid_disks-1)
2956 i--; /* Q D D D P */
16a53ecc
N
2957 else if (i > sh->pd_idx)
2958 i -= 2; /* D D P Q D */
2959 break;
2960 case ALGORITHM_LEFT_SYMMETRIC:
2961 case ALGORITHM_RIGHT_SYMMETRIC:
2962 if (sh->pd_idx == raid_disks-1)
2963 i--; /* Q D D D P */
2964 else {
2965 /* D D P Q D */
2966 if (i < sh->pd_idx)
2967 i += raid_disks;
2968 i -= (sh->pd_idx + 2);
2969 }
2970 break;
99c0fb5f
N
2971 case ALGORITHM_PARITY_0:
2972 i -= 2;
2973 break;
2974 case ALGORITHM_PARITY_N:
2975 break;
2976 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2977 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2978 if (sh->pd_idx == 0)
2979 i--; /* P D D D Q */
e4424fee
N
2980 else {
2981 /* D D Q P D */
2982 if (i < sh->pd_idx)
2983 i += raid_disks;
2984 i -= (sh->pd_idx + 1);
2985 }
99c0fb5f
N
2986 break;
2987 case ALGORITHM_LEFT_ASYMMETRIC_6:
2988 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2989 if (i > sh->pd_idx)
2990 i--;
2991 break;
2992 case ALGORITHM_LEFT_SYMMETRIC_6:
2993 case ALGORITHM_RIGHT_SYMMETRIC_6:
2994 if (i < sh->pd_idx)
2995 i += data_disks + 1;
2996 i -= (sh->pd_idx + 1);
2997 break;
2998 case ALGORITHM_PARITY_0_6:
2999 i -= 1;
3000 break;
16a53ecc 3001 default:
99c0fb5f 3002 BUG();
16a53ecc
N
3003 }
3004 break;
1da177e4
LT
3005 }
3006
3007 chunk_number = stripe * data_disks + i;
35f2a591 3008 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 3009
112bf897 3010 check = raid5_compute_sector(conf, r_sector,
784052ec 3011 previous, &dummy1, &sh2);
911d4ee8
N
3012 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3013 || sh2.qd_idx != sh->qd_idx) {
cc6167b4
N
3014 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3015 mdname(conf->mddev));
1da177e4
LT
3016 return 0;
3017 }
3018 return r_sector;
3019}
3020
07e83364
SL
3021/*
3022 * There are cases where we want handle_stripe_dirtying() and
3023 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3024 *
3025 * This function checks whether we want to delay the towrite. Specifically,
3026 * we delay the towrite when:
3027 *
3028 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3029 * stripe has data in journal (for other devices).
3030 *
3031 * In this case, when reading data for the non-overwrite dev, it is
3032 * necessary to handle complex rmw of write back cache (prexor with
3033 * orig_page, and xor with page). To keep read path simple, we would
3034 * like to flush data in journal to RAID disks first, so complex rmw
3035 * is handled in the write patch (handle_stripe_dirtying).
3036 *
39b99586
SL
3037 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3038 *
3039 * It is important to be able to flush all stripes in raid5-cache.
3040 * Therefore, we need reserve some space on the journal device for
3041 * these flushes. If flush operation includes pending writes to the
3042 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3043 * for the flush out. If we exclude these pending writes from flush
3044 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3045 * Therefore, excluding pending writes in these cases enables more
3046 * efficient use of the journal device.
3047 *
3048 * Note: To make sure the stripe makes progress, we only delay
3049 * towrite for stripes with data already in journal (injournal > 0).
3050 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3051 * no_space_stripes list.
3052 *
07e83364 3053 */
39b99586
SL
3054static inline bool delay_towrite(struct r5conf *conf,
3055 struct r5dev *dev,
3056 struct stripe_head_state *s)
07e83364 3057{
39b99586
SL
3058 /* case 1 above */
3059 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3060 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3061 return true;
3062 /* case 2 above */
3063 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3064 s->injournal > 0)
3065 return true;
3066 return false;
07e83364
SL
3067}
3068
600aa109 3069static void
c0f7bddb 3070schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 3071 int rcw, int expand)
e33129d8 3072{
584acdd4 3073 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 3074 struct r5conf *conf = sh->raid_conf;
c0f7bddb 3075 int level = conf->level;
e33129d8
DW
3076
3077 if (rcw) {
1e6d690b
SL
3078 /*
3079 * In some cases, handle_stripe_dirtying initially decided to
3080 * run rmw and allocates extra page for prexor. However, rcw is
3081 * cheaper later on. We need to free the extra page now,
3082 * because we won't be able to do that in ops_complete_prexor().
3083 */
3084 r5c_release_extra_page(sh);
e33129d8
DW
3085
3086 for (i = disks; i--; ) {
3087 struct r5dev *dev = &sh->dev[i];
3088
39b99586 3089 if (dev->towrite && !delay_towrite(conf, dev, s)) {
e33129d8 3090 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 3091 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3092 if (!expand)
3093 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3094 s->locked++;
1e6d690b
SL
3095 } else if (test_bit(R5_InJournal, &dev->flags)) {
3096 set_bit(R5_LOCKED, &dev->flags);
3097 s->locked++;
e33129d8
DW
3098 }
3099 }
ce7d363a
N
3100 /* if we are not expanding this is a proper write request, and
3101 * there will be bios with new data to be drained into the
3102 * stripe cache
3103 */
3104 if (!expand) {
3105 if (!s->locked)
3106 /* False alarm, nothing to do */
3107 return;
3108 sh->reconstruct_state = reconstruct_state_drain_run;
3109 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3110 } else
3111 sh->reconstruct_state = reconstruct_state_run;
3112
3113 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3114
c0f7bddb 3115 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 3116 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 3117 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
3118 } else {
3119 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3120 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
3121 BUG_ON(level == 6 &&
3122 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3123 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 3124
e33129d8
DW
3125 for (i = disks; i--; ) {
3126 struct r5dev *dev = &sh->dev[i];
584acdd4 3127 if (i == pd_idx || i == qd_idx)
e33129d8
DW
3128 continue;
3129
e33129d8
DW
3130 if (dev->towrite &&
3131 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
3132 test_bit(R5_Wantcompute, &dev->flags))) {
3133 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3134 set_bit(R5_LOCKED, &dev->flags);
3135 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3136 s->locked++;
1e6d690b
SL
3137 } else if (test_bit(R5_InJournal, &dev->flags)) {
3138 set_bit(R5_LOCKED, &dev->flags);
3139 s->locked++;
e33129d8
DW
3140 }
3141 }
ce7d363a
N
3142 if (!s->locked)
3143 /* False alarm - nothing to do */
3144 return;
3145 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3146 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3147 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3148 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
3149 }
3150
c0f7bddb 3151 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
3152 * are in flight
3153 */
3154 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3155 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 3156 s->locked++;
e33129d8 3157
c0f7bddb
YT
3158 if (level == 6) {
3159 int qd_idx = sh->qd_idx;
3160 struct r5dev *dev = &sh->dev[qd_idx];
3161
3162 set_bit(R5_LOCKED, &dev->flags);
3163 clear_bit(R5_UPTODATE, &dev->flags);
3164 s->locked++;
3165 }
3166
845b9e22 3167 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3418d036
AP
3168 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3169 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3170 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3171 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3172
600aa109 3173 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 3174 __func__, (unsigned long long)sh->sector,
600aa109 3175 s->locked, s->ops_request);
e33129d8 3176}
16a53ecc 3177
1da177e4
LT
3178/*
3179 * Each stripe/dev can have one or more bion attached.
16a53ecc 3180 * toread/towrite point to the first in a chain.
1da177e4
LT
3181 * The bi_next chain must be in order.
3182 */
da41ba65 3183static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3184 int forwrite, int previous)
1da177e4
LT
3185{
3186 struct bio **bip;
d1688a6d 3187 struct r5conf *conf = sh->raid_conf;
72626685 3188 int firstwrite=0;
1da177e4 3189
cbe47ec5 3190 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 3191 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
3192 (unsigned long long)sh->sector);
3193
b17459c0 3194 spin_lock_irq(&sh->stripe_lock);
59fc630b 3195 /* Don't allow new IO added to stripes in batch list */
3196 if (sh->batch_head)
3197 goto overlap;
72626685 3198 if (forwrite) {
1da177e4 3199 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 3200 if (*bip == NULL)
72626685
N
3201 firstwrite = 1;
3202 } else
1da177e4 3203 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
3204 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3205 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
3206 goto overlap;
3207 bip = & (*bip)->bi_next;
3208 }
4f024f37 3209 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
3210 goto overlap;
3211
3418d036
AP
3212 if (forwrite && raid5_has_ppl(conf)) {
3213 /*
3214 * With PPL only writes to consecutive data chunks within a
3215 * stripe are allowed because for a single stripe_head we can
3216 * only have one PPL entry at a time, which describes one data
3217 * range. Not really an overlap, but wait_for_overlap can be
3218 * used to handle this.
3219 */
3220 sector_t sector;
3221 sector_t first = 0;
3222 sector_t last = 0;
3223 int count = 0;
3224 int i;
3225
3226 for (i = 0; i < sh->disks; i++) {
3227 if (i != sh->pd_idx &&
3228 (i == dd_idx || sh->dev[i].towrite)) {
3229 sector = sh->dev[i].sector;
3230 if (count == 0 || sector < first)
3231 first = sector;
3232 if (sector > last)
3233 last = sector;
3234 count++;
3235 }
3236 }
3237
3238 if (first + conf->chunk_sectors * (count - 1) != last)
3239 goto overlap;
3240 }
3241
da41ba65 3242 if (!forwrite || previous)
3243 clear_bit(STRIPE_BATCH_READY, &sh->state);
3244
78bafebd 3245 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
3246 if (*bip)
3247 bi->bi_next = *bip;
3248 *bip = bi;
016c76ac 3249 bio_inc_remaining(bi);
49728050 3250 md_write_inc(conf->mddev, bi);
72626685 3251
1da177e4
LT
3252 if (forwrite) {
3253 /* check if page is covered */
3254 sector_t sector = sh->dev[dd_idx].sector;
3255 for (bi=sh->dev[dd_idx].towrite;
3256 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 3257 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 3258 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3259 if (bio_end_sector(bi) >= sector)
3260 sector = bio_end_sector(bi);
1da177e4
LT
3261 }
3262 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3263 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3264 sh->overwrite_disks++;
1da177e4 3265 }
cbe47ec5
N
3266
3267 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3268 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3269 (unsigned long long)sh->sector, dd_idx);
3270
3271 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3272 /* Cannot hold spinlock over bitmap_startwrite,
3273 * but must ensure this isn't added to a batch until
3274 * we have added to the bitmap and set bm_seq.
3275 * So set STRIPE_BITMAP_PENDING to prevent
3276 * batching.
3277 * If multiple add_stripe_bio() calls race here they
3278 * much all set STRIPE_BITMAP_PENDING. So only the first one
3279 * to complete "bitmap_startwrite" gets to set
3280 * STRIPE_BIT_DELAY. This is important as once a stripe
3281 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3282 * any more.
3283 */
3284 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3285 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3286 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3287 STRIPE_SECTORS, 0);
d0852df5
N
3288 spin_lock_irq(&sh->stripe_lock);
3289 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3290 if (!sh->batch_head) {
3291 sh->bm_seq = conf->seq_flush+1;
3292 set_bit(STRIPE_BIT_DELAY, &sh->state);
3293 }
cbe47ec5 3294 }
d0852df5 3295 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3296
3297 if (stripe_can_batch(sh))
3298 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3299 return 1;
3300
3301 overlap:
3302 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3303 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3304 return 0;
3305}
3306
d1688a6d 3307static void end_reshape(struct r5conf *conf);
29269553 3308
d1688a6d 3309static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3310 struct stripe_head *sh)
ccfcc3c1 3311{
784052ec 3312 int sectors_per_chunk =
09c9e5fa 3313 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3314 int dd_idx;
2d2063ce 3315 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3316 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3317
112bf897
N
3318 raid5_compute_sector(conf,
3319 stripe * (disks - conf->max_degraded)
b875e531 3320 *sectors_per_chunk + chunk_offset,
112bf897 3321 previous,
911d4ee8 3322 &dd_idx, sh);
ccfcc3c1
N
3323}
3324
a4456856 3325static void
d1688a6d 3326handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
bd83d0a2 3327 struct stripe_head_state *s, int disks)
a4456856
DW
3328{
3329 int i;
59fc630b 3330 BUG_ON(sh->batch_head);
a4456856
DW
3331 for (i = disks; i--; ) {
3332 struct bio *bi;
3333 int bitmap_end = 0;
3334
3335 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3336 struct md_rdev *rdev;
a4456856
DW
3337 rcu_read_lock();
3338 rdev = rcu_dereference(conf->disks[i].rdev);
f5b67ae8
N
3339 if (rdev && test_bit(In_sync, &rdev->flags) &&
3340 !test_bit(Faulty, &rdev->flags))
7f0da59b
N
3341 atomic_inc(&rdev->nr_pending);
3342 else
3343 rdev = NULL;
a4456856 3344 rcu_read_unlock();
7f0da59b
N
3345 if (rdev) {
3346 if (!rdev_set_badblocks(
3347 rdev,
3348 sh->sector,
3349 STRIPE_SECTORS, 0))
3350 md_error(conf->mddev, rdev);
3351 rdev_dec_pending(rdev, conf->mddev);
3352 }
a4456856 3353 }
b17459c0 3354 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3355 /* fail all writes first */
3356 bi = sh->dev[i].towrite;
3357 sh->dev[i].towrite = NULL;
7a87f434 3358 sh->overwrite_disks = 0;
b17459c0 3359 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3360 if (bi)
a4456856 3361 bitmap_end = 1;
a4456856 3362
ff875738 3363 log_stripe_write_finished(sh);
0576b1c6 3364
a4456856
DW
3365 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3366 wake_up(&conf->wait_for_overlap);
3367
4f024f37 3368 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3369 sh->dev[i].sector + STRIPE_SECTORS) {
3370 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3371
3372 bi->bi_error = -EIO;
49728050 3373 md_write_end(conf->mddev);
016c76ac 3374 bio_endio(bi);
a4456856
DW
3375 bi = nextbi;
3376 }
7eaf7e8e
SL
3377 if (bitmap_end)
3378 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3379 STRIPE_SECTORS, 0, 0);
3380 bitmap_end = 0;
a4456856
DW
3381 /* and fail all 'written' */
3382 bi = sh->dev[i].written;
3383 sh->dev[i].written = NULL;
d592a996
SL
3384 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3385 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3386 sh->dev[i].page = sh->dev[i].orig_page;
3387 }
3388
a4456856 3389 if (bi) bitmap_end = 1;
4f024f37 3390 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3391 sh->dev[i].sector + STRIPE_SECTORS) {
3392 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3393
3394 bi->bi_error = -EIO;
49728050 3395 md_write_end(conf->mddev);
016c76ac 3396 bio_endio(bi);
a4456856
DW
3397 bi = bi2;
3398 }
3399
b5e98d65
DW
3400 /* fail any reads if this device is non-operational and
3401 * the data has not reached the cache yet.
3402 */
3403 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3404 s->failed > conf->max_degraded &&
b5e98d65
DW
3405 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3406 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3407 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3408 bi = sh->dev[i].toread;
3409 sh->dev[i].toread = NULL;
143c4d05 3410 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3411 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3412 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3413 if (bi)
3414 s->to_read--;
4f024f37 3415 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3416 sh->dev[i].sector + STRIPE_SECTORS) {
3417 struct bio *nextbi =
3418 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3419
3420 bi->bi_error = -EIO;
016c76ac 3421 bio_endio(bi);
a4456856
DW
3422 bi = nextbi;
3423 }
3424 }
a4456856
DW
3425 if (bitmap_end)
3426 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3427 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3428 /* If we were in the middle of a write the parity block might
3429 * still be locked - so just clear all R5_LOCKED flags
3430 */
3431 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3432 }
ebda780b
SL
3433 s->to_write = 0;
3434 s->written = 0;
a4456856 3435
8b3e6cdc
DW
3436 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3437 if (atomic_dec_and_test(&conf->pending_full_writes))
3438 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3439}
3440
7f0da59b 3441static void
d1688a6d 3442handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3443 struct stripe_head_state *s)
3444{
3445 int abort = 0;
3446 int i;
3447
59fc630b 3448 BUG_ON(sh->batch_head);
7f0da59b 3449 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3450 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3451 wake_up(&conf->wait_for_overlap);
7f0da59b 3452 s->syncing = 0;
9a3e1101 3453 s->replacing = 0;
7f0da59b 3454 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3455 * Don't even need to abort as that is handled elsewhere
3456 * if needed, and not always wanted e.g. if there is a known
3457 * bad block here.
9a3e1101 3458 * For recover/replace we need to record a bad block on all
7f0da59b
N
3459 * non-sync devices, or abort the recovery
3460 */
18b9837e
N
3461 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3462 /* During recovery devices cannot be removed, so
3463 * locking and refcounting of rdevs is not needed
3464 */
e50d3992 3465 rcu_read_lock();
18b9837e 3466 for (i = 0; i < conf->raid_disks; i++) {
e50d3992 3467 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
18b9837e
N
3468 if (rdev
3469 && !test_bit(Faulty, &rdev->flags)
3470 && !test_bit(In_sync, &rdev->flags)
3471 && !rdev_set_badblocks(rdev, sh->sector,
3472 STRIPE_SECTORS, 0))
3473 abort = 1;
e50d3992 3474 rdev = rcu_dereference(conf->disks[i].replacement);
18b9837e
N
3475 if (rdev
3476 && !test_bit(Faulty, &rdev->flags)
3477 && !test_bit(In_sync, &rdev->flags)
3478 && !rdev_set_badblocks(rdev, sh->sector,
3479 STRIPE_SECTORS, 0))
3480 abort = 1;
3481 }
e50d3992 3482 rcu_read_unlock();
18b9837e
N
3483 if (abort)
3484 conf->recovery_disabled =
3485 conf->mddev->recovery_disabled;
7f0da59b 3486 }
18b9837e 3487 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3488}
3489
9a3e1101
N
3490static int want_replace(struct stripe_head *sh, int disk_idx)
3491{
3492 struct md_rdev *rdev;
3493 int rv = 0;
3f232d6a
N
3494
3495 rcu_read_lock();
3496 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
9a3e1101
N
3497 if (rdev
3498 && !test_bit(Faulty, &rdev->flags)
3499 && !test_bit(In_sync, &rdev->flags)
3500 && (rdev->recovery_offset <= sh->sector
3501 || rdev->mddev->recovery_cp <= sh->sector))
3502 rv = 1;
3f232d6a 3503 rcu_read_unlock();
9a3e1101
N
3504 return rv;
3505}
3506
2c58f06e
N
3507static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3508 int disk_idx, int disks)
a4456856 3509{
5599becc 3510 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3511 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3512 &sh->dev[s->failed_num[1]] };
ea664c82 3513 int i;
5599becc 3514
a79cfe12
N
3515
3516 if (test_bit(R5_LOCKED, &dev->flags) ||
3517 test_bit(R5_UPTODATE, &dev->flags))
3518 /* No point reading this as we already have it or have
3519 * decided to get it.
3520 */
3521 return 0;
3522
3523 if (dev->toread ||
3524 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3525 /* We need this block to directly satisfy a request */
3526 return 1;
3527
3528 if (s->syncing || s->expanding ||
3529 (s->replacing && want_replace(sh, disk_idx)))
3530 /* When syncing, or expanding we read everything.
3531 * When replacing, we need the replaced block.
3532 */
3533 return 1;
3534
3535 if ((s->failed >= 1 && fdev[0]->toread) ||
3536 (s->failed >= 2 && fdev[1]->toread))
3537 /* If we want to read from a failed device, then
3538 * we need to actually read every other device.
3539 */
3540 return 1;
3541
a9d56950
N
3542 /* Sometimes neither read-modify-write nor reconstruct-write
3543 * cycles can work. In those cases we read every block we
3544 * can. Then the parity-update is certain to have enough to
3545 * work with.
3546 * This can only be a problem when we need to write something,
3547 * and some device has failed. If either of those tests
3548 * fail we need look no further.
3549 */
3550 if (!s->failed || !s->to_write)
3551 return 0;
3552
3553 if (test_bit(R5_Insync, &dev->flags) &&
3554 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3555 /* Pre-reads at not permitted until after short delay
3556 * to gather multiple requests. However if this
3560741e 3557 * device is no Insync, the block could only be computed
a9d56950
N
3558 * and there is no need to delay that.
3559 */
3560 return 0;
ea664c82 3561
36707bb2 3562 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3563 if (fdev[i]->towrite &&
3564 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3565 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3566 /* If we have a partial write to a failed
3567 * device, then we will need to reconstruct
3568 * the content of that device, so all other
3569 * devices must be read.
3570 */
3571 return 1;
3572 }
3573
3574 /* If we are forced to do a reconstruct-write, either because
3575 * the current RAID6 implementation only supports that, or
3560741e 3576 * because parity cannot be trusted and we are currently
ea664c82
N
3577 * recovering it, there is extra need to be careful.
3578 * If one of the devices that we would need to read, because
3579 * it is not being overwritten (and maybe not written at all)
3580 * is missing/faulty, then we need to read everything we can.
3581 */
3582 if (sh->raid_conf->level != 6 &&
3583 sh->sector < sh->raid_conf->mddev->recovery_cp)
3584 /* reconstruct-write isn't being forced */
3585 return 0;
36707bb2 3586 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3587 if (s->failed_num[i] != sh->pd_idx &&
3588 s->failed_num[i] != sh->qd_idx &&
3589 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3590 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3591 return 1;
3592 }
3593
2c58f06e
N
3594 return 0;
3595}
3596
ba02684d
SL
3597/* fetch_block - checks the given member device to see if its data needs
3598 * to be read or computed to satisfy a request.
3599 *
3600 * Returns 1 when no more member devices need to be checked, otherwise returns
3601 * 0 to tell the loop in handle_stripe_fill to continue
3602 */
2c58f06e
N
3603static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3604 int disk_idx, int disks)
3605{
3606 struct r5dev *dev = &sh->dev[disk_idx];
3607
3608 /* is the data in this block needed, and can we get it? */
3609 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3610 /* we would like to get this block, possibly by computing it,
3611 * otherwise read it if the backing disk is insync
3612 */
3613 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3614 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3615 BUG_ON(sh->batch_head);
7471fb77
N
3616
3617 /*
3618 * In the raid6 case if the only non-uptodate disk is P
3619 * then we already trusted P to compute the other failed
3620 * drives. It is safe to compute rather than re-read P.
3621 * In other cases we only compute blocks from failed
3622 * devices, otherwise check/repair might fail to detect
3623 * a real inconsistency.
3624 */
3625
5599becc 3626 if ((s->uptodate == disks - 1) &&
7471fb77 3627 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
f2b3b44d 3628 (s->failed && (disk_idx == s->failed_num[0] ||
7471fb77 3629 disk_idx == s->failed_num[1])))) {
5599becc
YT
3630 /* have disk failed, and we're requested to fetch it;
3631 * do compute it
a4456856 3632 */
5599becc
YT
3633 pr_debug("Computing stripe %llu block %d\n",
3634 (unsigned long long)sh->sector, disk_idx);
3635 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3636 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3637 set_bit(R5_Wantcompute, &dev->flags);
3638 sh->ops.target = disk_idx;
3639 sh->ops.target2 = -1; /* no 2nd target */
3640 s->req_compute = 1;
93b3dbce
N
3641 /* Careful: from this point on 'uptodate' is in the eye
3642 * of raid_run_ops which services 'compute' operations
3643 * before writes. R5_Wantcompute flags a block that will
3644 * be R5_UPTODATE by the time it is needed for a
3645 * subsequent operation.
3646 */
5599becc
YT
3647 s->uptodate++;
3648 return 1;
3649 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3650 /* Computing 2-failure is *very* expensive; only
3651 * do it if failed >= 2
3652 */
3653 int other;
3654 for (other = disks; other--; ) {
3655 if (other == disk_idx)
3656 continue;
3657 if (!test_bit(R5_UPTODATE,
3658 &sh->dev[other].flags))
3659 break;
a4456856 3660 }
5599becc
YT
3661 BUG_ON(other < 0);
3662 pr_debug("Computing stripe %llu blocks %d,%d\n",
3663 (unsigned long long)sh->sector,
3664 disk_idx, other);
3665 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3666 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3667 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3668 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3669 sh->ops.target = disk_idx;
3670 sh->ops.target2 = other;
3671 s->uptodate += 2;
3672 s->req_compute = 1;
3673 return 1;
3674 } else if (test_bit(R5_Insync, &dev->flags)) {
3675 set_bit(R5_LOCKED, &dev->flags);
3676 set_bit(R5_Wantread, &dev->flags);
3677 s->locked++;
3678 pr_debug("Reading block %d (sync=%d)\n",
3679 disk_idx, s->syncing);
a4456856
DW
3680 }
3681 }
5599becc
YT
3682
3683 return 0;
3684}
3685
3686/**
93b3dbce 3687 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3688 */
93b3dbce
N
3689static void handle_stripe_fill(struct stripe_head *sh,
3690 struct stripe_head_state *s,
3691 int disks)
5599becc
YT
3692{
3693 int i;
3694
3695 /* look for blocks to read/compute, skip this if a compute
3696 * is already in flight, or if the stripe contents are in the
3697 * midst of changing due to a write
3698 */
3699 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
07e83364
SL
3700 !sh->reconstruct_state) {
3701
3702 /*
3703 * For degraded stripe with data in journal, do not handle
3704 * read requests yet, instead, flush the stripe to raid
3705 * disks first, this avoids handling complex rmw of write
3706 * back cache (prexor with orig_page, and then xor with
3707 * page) in the read path
3708 */
3709 if (s->injournal && s->failed) {
3710 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3711 r5c_make_stripe_write_out(sh);
3712 goto out;
3713 }
3714
5599becc 3715 for (i = disks; i--; )
93b3dbce 3716 if (fetch_block(sh, s, i, disks))
5599becc 3717 break;
07e83364
SL
3718 }
3719out:
a4456856
DW
3720 set_bit(STRIPE_HANDLE, &sh->state);
3721}
3722
787b76fa
N
3723static void break_stripe_batch_list(struct stripe_head *head_sh,
3724 unsigned long handle_flags);
1fe797e6 3725/* handle_stripe_clean_event
a4456856
DW
3726 * any written block on an uptodate or failed drive can be returned.
3727 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3728 * never LOCKED, so we don't need to test 'failed' directly.
3729 */
d1688a6d 3730static void handle_stripe_clean_event(struct r5conf *conf,
bd83d0a2 3731 struct stripe_head *sh, int disks)
a4456856
DW
3732{
3733 int i;
3734 struct r5dev *dev;
f8dfcffd 3735 int discard_pending = 0;
59fc630b 3736 struct stripe_head *head_sh = sh;
3737 bool do_endio = false;
a4456856
DW
3738
3739 for (i = disks; i--; )
3740 if (sh->dev[i].written) {
3741 dev = &sh->dev[i];
3742 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3743 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3744 test_bit(R5_Discard, &dev->flags) ||
3745 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3746 /* We can return any write requests */
3747 struct bio *wbi, *wbi2;
45b4233c 3748 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3749 if (test_and_clear_bit(R5_Discard, &dev->flags))
3750 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3751 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3752 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3753 }
59fc630b 3754 do_endio = true;
3755
3756returnbi:
3757 dev->page = dev->orig_page;
a4456856
DW
3758 wbi = dev->written;
3759 dev->written = NULL;
4f024f37 3760 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3761 dev->sector + STRIPE_SECTORS) {
3762 wbi2 = r5_next_bio(wbi, dev->sector);
49728050 3763 md_write_end(conf->mddev);
016c76ac 3764 bio_endio(wbi);
a4456856
DW
3765 wbi = wbi2;
3766 }
7eaf7e8e
SL
3767 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3768 STRIPE_SECTORS,
a4456856 3769 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3770 0);
59fc630b 3771 if (head_sh->batch_head) {
3772 sh = list_first_entry(&sh->batch_list,
3773 struct stripe_head,
3774 batch_list);
3775 if (sh != head_sh) {
3776 dev = &sh->dev[i];
3777 goto returnbi;
3778 }
3779 }
3780 sh = head_sh;
3781 dev = &sh->dev[i];
f8dfcffd
N
3782 } else if (test_bit(R5_Discard, &dev->flags))
3783 discard_pending = 1;
3784 }
f6bed0ef 3785
ff875738 3786 log_stripe_write_finished(sh);
0576b1c6 3787
f8dfcffd
N
3788 if (!discard_pending &&
3789 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 3790 int hash;
f8dfcffd
N
3791 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3792 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3793 if (sh->qd_idx >= 0) {
3794 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3795 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3796 }
3797 /* now that discard is done we can proceed with any sync */
3798 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3799 /*
3800 * SCSI discard will change some bio fields and the stripe has
3801 * no updated data, so remove it from hash list and the stripe
3802 * will be reinitialized
3803 */
59fc630b 3804unhash:
b8a9d66d
RG
3805 hash = sh->hash_lock_index;
3806 spin_lock_irq(conf->hash_locks + hash);
d47648fc 3807 remove_hash(sh);
b8a9d66d 3808 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 3809 if (head_sh->batch_head) {
3810 sh = list_first_entry(&sh->batch_list,
3811 struct stripe_head, batch_list);
3812 if (sh != head_sh)
3813 goto unhash;
3814 }
59fc630b 3815 sh = head_sh;
3816
f8dfcffd
N
3817 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3818 set_bit(STRIPE_HANDLE, &sh->state);
3819
3820 }
8b3e6cdc
DW
3821
3822 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3823 if (atomic_dec_and_test(&conf->pending_full_writes))
3824 md_wakeup_thread(conf->mddev->thread);
59fc630b 3825
787b76fa
N
3826 if (head_sh->batch_head && do_endio)
3827 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3828}
3829
86aa1397
SL
3830/*
3831 * For RMW in write back cache, we need extra page in prexor to store the
3832 * old data. This page is stored in dev->orig_page.
3833 *
3834 * This function checks whether we have data for prexor. The exact logic
3835 * is:
3836 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3837 */
3838static inline bool uptodate_for_rmw(struct r5dev *dev)
3839{
3840 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3841 (!test_bit(R5_InJournal, &dev->flags) ||
3842 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3843}
3844
d7bd398e
SL
3845static int handle_stripe_dirtying(struct r5conf *conf,
3846 struct stripe_head *sh,
3847 struct stripe_head_state *s,
3848 int disks)
a4456856
DW
3849{
3850 int rmw = 0, rcw = 0, i;
a7854487
AL
3851 sector_t recovery_cp = conf->mddev->recovery_cp;
3852
584acdd4 3853 /* Check whether resync is now happening or should start.
a7854487
AL
3854 * If yes, then the array is dirty (after unclean shutdown or
3855 * initial creation), so parity in some stripes might be inconsistent.
3856 * In this case, we need to always do reconstruct-write, to ensure
3857 * that in case of drive failure or read-error correction, we
3858 * generate correct data from the parity.
3859 */
584acdd4 3860 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3861 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3862 s->failed == 0)) {
a7854487 3863 /* Calculate the real rcw later - for now make it
c8ac1803
N
3864 * look like rcw is cheaper
3865 */
3866 rcw = 1; rmw = 2;
584acdd4
MS
3867 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3868 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3869 (unsigned long long)sh->sector);
c8ac1803 3870 } else for (i = disks; i--; ) {
a4456856
DW
3871 /* would I have to read this buffer for read_modify_write */
3872 struct r5dev *dev = &sh->dev[i];
39b99586 3873 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
07e83364 3874 i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b 3875 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3876 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3877 !(uptodate_for_rmw(dev) ||
f38e1219 3878 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3879 if (test_bit(R5_Insync, &dev->flags))
3880 rmw++;
3881 else
3882 rmw += 2*disks; /* cannot read it */
3883 }
3884 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3885 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3886 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3887 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3888 !(test_bit(R5_UPTODATE, &dev->flags) ||
1e6d690b 3889 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3890 if (test_bit(R5_Insync, &dev->flags))
3891 rcw++;
a4456856
DW
3892 else
3893 rcw += 2*disks;
3894 }
3895 }
1e6d690b 3896
39b99586
SL
3897 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3898 (unsigned long long)sh->sector, sh->state, rmw, rcw);
a4456856 3899 set_bit(STRIPE_HANDLE, &sh->state);
41257580 3900 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 3901 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3902 if (conf->mddev->queue)
3903 blk_add_trace_msg(conf->mddev->queue,
3904 "raid5 rmw %llu %d",
3905 (unsigned long long)sh->sector, rmw);
a4456856
DW
3906 for (i = disks; i--; ) {
3907 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
3908 if (test_bit(R5_InJournal, &dev->flags) &&
3909 dev->page == dev->orig_page &&
3910 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3911 /* alloc page for prexor */
d7bd398e
SL
3912 struct page *p = alloc_page(GFP_NOIO);
3913
3914 if (p) {
3915 dev->orig_page = p;
3916 continue;
3917 }
3918
3919 /*
3920 * alloc_page() failed, try use
3921 * disk_info->extra_page
3922 */
3923 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3924 &conf->cache_state)) {
3925 r5c_use_extra_page(sh);
3926 break;
3927 }
1e6d690b 3928
d7bd398e
SL
3929 /* extra_page in use, add to delayed_list */
3930 set_bit(STRIPE_DELAYED, &sh->state);
3931 s->waiting_extra_page = 1;
3932 return -EAGAIN;
1e6d690b 3933 }
d7bd398e 3934 }
1e6d690b 3935
d7bd398e
SL
3936 for (i = disks; i--; ) {
3937 struct r5dev *dev = &sh->dev[i];
39b99586 3938 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
1e6d690b
SL
3939 i == sh->pd_idx || i == sh->qd_idx ||
3940 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3941 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3942 !(uptodate_for_rmw(dev) ||
1e6d690b 3943 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3944 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3945 if (test_bit(STRIPE_PREREAD_ACTIVE,
3946 &sh->state)) {
3947 pr_debug("Read_old block %d for r-m-w\n",
3948 i);
a4456856
DW
3949 set_bit(R5_LOCKED, &dev->flags);
3950 set_bit(R5_Wantread, &dev->flags);
3951 s->locked++;
3952 } else {
3953 set_bit(STRIPE_DELAYED, &sh->state);
3954 set_bit(STRIPE_HANDLE, &sh->state);
3955 }
3956 }
3957 }
a9add5d9 3958 }
41257580 3959 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 3960 /* want reconstruct write, but need to get some data */
a9add5d9 3961 int qread =0;
c8ac1803 3962 rcw = 0;
a4456856
DW
3963 for (i = disks; i--; ) {
3964 struct r5dev *dev = &sh->dev[i];
3965 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3966 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3967 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3968 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3969 test_bit(R5_Wantcompute, &dev->flags))) {
3970 rcw++;
67f45548
N
3971 if (test_bit(R5_Insync, &dev->flags) &&
3972 test_bit(STRIPE_PREREAD_ACTIVE,
3973 &sh->state)) {
45b4233c 3974 pr_debug("Read_old block "
a4456856
DW
3975 "%d for Reconstruct\n", i);
3976 set_bit(R5_LOCKED, &dev->flags);
3977 set_bit(R5_Wantread, &dev->flags);
3978 s->locked++;
a9add5d9 3979 qread++;
a4456856
DW
3980 } else {
3981 set_bit(STRIPE_DELAYED, &sh->state);
3982 set_bit(STRIPE_HANDLE, &sh->state);
3983 }
3984 }
3985 }
e3620a3a 3986 if (rcw && conf->mddev->queue)
a9add5d9
N
3987 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3988 (unsigned long long)sh->sector,
3989 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3990 }
b1b02fe9
N
3991
3992 if (rcw > disks && rmw > disks &&
3993 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3994 set_bit(STRIPE_DELAYED, &sh->state);
3995
a4456856
DW
3996 /* now if nothing is locked, and if we have enough data,
3997 * we can start a write request
3998 */
f38e1219
DW
3999 /* since handle_stripe can be called at any time we need to handle the
4000 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
4001 * subsequent call wants to start a write request. raid_run_ops only
4002 * handles the case where compute block and reconstruct are requested
f38e1219
DW
4003 * simultaneously. If this is not the case then new writes need to be
4004 * held off until the compute completes.
4005 */
976ea8d4
DW
4006 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4007 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
1e6d690b 4008 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 4009 schedule_reconstruction(sh, s, rcw == 0, 0);
d7bd398e 4010 return 0;
a4456856
DW
4011}
4012
d1688a6d 4013static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
4014 struct stripe_head_state *s, int disks)
4015{
ecc65c9b 4016 struct r5dev *dev = NULL;
bd2ab670 4017
59fc630b 4018 BUG_ON(sh->batch_head);
a4456856 4019 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 4020
ecc65c9b
DW
4021 switch (sh->check_state) {
4022 case check_state_idle:
4023 /* start a new check operation if there are no failures */
bd2ab670 4024 if (s->failed == 0) {
bd2ab670 4025 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
4026 sh->check_state = check_state_run;
4027 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 4028 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 4029 s->uptodate--;
ecc65c9b 4030 break;
bd2ab670 4031 }
f2b3b44d 4032 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
4033 /* fall through */
4034 case check_state_compute_result:
4035 sh->check_state = check_state_idle;
4036 if (!dev)
4037 dev = &sh->dev[sh->pd_idx];
4038
4039 /* check that a write has not made the stripe insync */
4040 if (test_bit(STRIPE_INSYNC, &sh->state))
4041 break;
c8894419 4042
a4456856 4043 /* either failed parity check, or recovery is happening */
a4456856
DW
4044 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4045 BUG_ON(s->uptodate != disks);
4046
4047 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 4048 s->locked++;
a4456856 4049 set_bit(R5_Wantwrite, &dev->flags);
830ea016 4050
a4456856 4051 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 4052 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
4053 break;
4054 case check_state_run:
4055 break; /* we will be called again upon completion */
4056 case check_state_check_result:
4057 sh->check_state = check_state_idle;
4058
4059 /* if a failure occurred during the check operation, leave
4060 * STRIPE_INSYNC not set and let the stripe be handled again
4061 */
4062 if (s->failed)
4063 break;
4064
4065 /* handle a successful check operation, if parity is correct
4066 * we are done. Otherwise update the mismatch count and repair
4067 * parity if !MD_RECOVERY_CHECK
4068 */
ad283ea4 4069 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
4070 /* parity is correct (on disc,
4071 * not in buffer any more)
4072 */
4073 set_bit(STRIPE_INSYNC, &sh->state);
4074 else {
7f7583d4 4075 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
4076 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4077 /* don't try to repair!! */
4078 set_bit(STRIPE_INSYNC, &sh->state);
4079 else {
4080 sh->check_state = check_state_compute_run;
976ea8d4 4081 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
4082 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4083 set_bit(R5_Wantcompute,
4084 &sh->dev[sh->pd_idx].flags);
4085 sh->ops.target = sh->pd_idx;
ac6b53b6 4086 sh->ops.target2 = -1;
ecc65c9b
DW
4087 s->uptodate++;
4088 }
4089 }
4090 break;
4091 case check_state_compute_run:
4092 break;
4093 default:
cc6167b4 4094 pr_err("%s: unknown check_state: %d sector: %llu\n",
ecc65c9b
DW
4095 __func__, sh->check_state,
4096 (unsigned long long) sh->sector);
4097 BUG();
a4456856
DW
4098 }
4099}
4100
d1688a6d 4101static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 4102 struct stripe_head_state *s,
f2b3b44d 4103 int disks)
a4456856 4104{
a4456856 4105 int pd_idx = sh->pd_idx;
34e04e87 4106 int qd_idx = sh->qd_idx;
d82dfee0 4107 struct r5dev *dev;
a4456856 4108
59fc630b 4109 BUG_ON(sh->batch_head);
a4456856
DW
4110 set_bit(STRIPE_HANDLE, &sh->state);
4111
4112 BUG_ON(s->failed > 2);
d82dfee0 4113
a4456856
DW
4114 /* Want to check and possibly repair P and Q.
4115 * However there could be one 'failed' device, in which
4116 * case we can only check one of them, possibly using the
4117 * other to generate missing data
4118 */
4119
d82dfee0
DW
4120 switch (sh->check_state) {
4121 case check_state_idle:
4122 /* start a new check operation if there are < 2 failures */
f2b3b44d 4123 if (s->failed == s->q_failed) {
d82dfee0 4124 /* The only possible failed device holds Q, so it
a4456856
DW
4125 * makes sense to check P (If anything else were failed,
4126 * we would have used P to recreate it).
4127 */
d82dfee0 4128 sh->check_state = check_state_run;
a4456856 4129 }
f2b3b44d 4130 if (!s->q_failed && s->failed < 2) {
d82dfee0 4131 /* Q is not failed, and we didn't use it to generate
a4456856
DW
4132 * anything, so it makes sense to check it
4133 */
d82dfee0
DW
4134 if (sh->check_state == check_state_run)
4135 sh->check_state = check_state_run_pq;
4136 else
4137 sh->check_state = check_state_run_q;
a4456856 4138 }
a4456856 4139
d82dfee0
DW
4140 /* discard potentially stale zero_sum_result */
4141 sh->ops.zero_sum_result = 0;
a4456856 4142
d82dfee0
DW
4143 if (sh->check_state == check_state_run) {
4144 /* async_xor_zero_sum destroys the contents of P */
4145 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4146 s->uptodate--;
a4456856 4147 }
d82dfee0
DW
4148 if (sh->check_state >= check_state_run &&
4149 sh->check_state <= check_state_run_pq) {
4150 /* async_syndrome_zero_sum preserves P and Q, so
4151 * no need to mark them !uptodate here
4152 */
4153 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4154 break;
a4456856
DW
4155 }
4156
d82dfee0
DW
4157 /* we have 2-disk failure */
4158 BUG_ON(s->failed != 2);
4159 /* fall through */
4160 case check_state_compute_result:
4161 sh->check_state = check_state_idle;
a4456856 4162
d82dfee0
DW
4163 /* check that a write has not made the stripe insync */
4164 if (test_bit(STRIPE_INSYNC, &sh->state))
4165 break;
a4456856
DW
4166
4167 /* now write out any block on a failed drive,
d82dfee0 4168 * or P or Q if they were recomputed
a4456856 4169 */
d82dfee0 4170 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 4171 if (s->failed == 2) {
f2b3b44d 4172 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
4173 s->locked++;
4174 set_bit(R5_LOCKED, &dev->flags);
4175 set_bit(R5_Wantwrite, &dev->flags);
4176 }
4177 if (s->failed >= 1) {
f2b3b44d 4178 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
4179 s->locked++;
4180 set_bit(R5_LOCKED, &dev->flags);
4181 set_bit(R5_Wantwrite, &dev->flags);
4182 }
d82dfee0 4183 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
4184 dev = &sh->dev[pd_idx];
4185 s->locked++;
4186 set_bit(R5_LOCKED, &dev->flags);
4187 set_bit(R5_Wantwrite, &dev->flags);
4188 }
d82dfee0 4189 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
4190 dev = &sh->dev[qd_idx];
4191 s->locked++;
4192 set_bit(R5_LOCKED, &dev->flags);
4193 set_bit(R5_Wantwrite, &dev->flags);
4194 }
4195 clear_bit(STRIPE_DEGRADED, &sh->state);
4196
4197 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
4198 break;
4199 case check_state_run:
4200 case check_state_run_q:
4201 case check_state_run_pq:
4202 break; /* we will be called again upon completion */
4203 case check_state_check_result:
4204 sh->check_state = check_state_idle;
4205
4206 /* handle a successful check operation, if parity is correct
4207 * we are done. Otherwise update the mismatch count and repair
4208 * parity if !MD_RECOVERY_CHECK
4209 */
4210 if (sh->ops.zero_sum_result == 0) {
4211 /* both parities are correct */
4212 if (!s->failed)
4213 set_bit(STRIPE_INSYNC, &sh->state);
4214 else {
4215 /* in contrast to the raid5 case we can validate
4216 * parity, but still have a failure to write
4217 * back
4218 */
4219 sh->check_state = check_state_compute_result;
4220 /* Returning at this point means that we may go
4221 * off and bring p and/or q uptodate again so
4222 * we make sure to check zero_sum_result again
4223 * to verify if p or q need writeback
4224 */
4225 }
4226 } else {
7f7583d4 4227 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
4228 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4229 /* don't try to repair!! */
4230 set_bit(STRIPE_INSYNC, &sh->state);
4231 else {
4232 int *target = &sh->ops.target;
4233
4234 sh->ops.target = -1;
4235 sh->ops.target2 = -1;
4236 sh->check_state = check_state_compute_run;
4237 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4238 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4239 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4240 set_bit(R5_Wantcompute,
4241 &sh->dev[pd_idx].flags);
4242 *target = pd_idx;
4243 target = &sh->ops.target2;
4244 s->uptodate++;
4245 }
4246 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4247 set_bit(R5_Wantcompute,
4248 &sh->dev[qd_idx].flags);
4249 *target = qd_idx;
4250 s->uptodate++;
4251 }
4252 }
4253 }
4254 break;
4255 case check_state_compute_run:
4256 break;
4257 default:
cc6167b4
N
4258 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4259 __func__, sh->check_state,
4260 (unsigned long long) sh->sector);
d82dfee0 4261 BUG();
a4456856
DW
4262 }
4263}
4264
d1688a6d 4265static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
4266{
4267 int i;
4268
4269 /* We have read all the blocks in this stripe and now we need to
4270 * copy some of them into a target stripe for expand.
4271 */
f0a50d37 4272 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 4273 BUG_ON(sh->batch_head);
a4456856
DW
4274 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4275 for (i = 0; i < sh->disks; i++)
34e04e87 4276 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 4277 int dd_idx, j;
a4456856 4278 struct stripe_head *sh2;
a08abd8c 4279 struct async_submit_ctl submit;
a4456856 4280
6d036f7d 4281 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
4282 sector_t s = raid5_compute_sector(conf, bn, 0,
4283 &dd_idx, NULL);
6d036f7d 4284 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
4285 if (sh2 == NULL)
4286 /* so far only the early blocks of this stripe
4287 * have been requested. When later blocks
4288 * get requested, we will try again
4289 */
4290 continue;
4291 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4292 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4293 /* must have already done this block */
6d036f7d 4294 raid5_release_stripe(sh2);
a4456856
DW
4295 continue;
4296 }
f0a50d37
DW
4297
4298 /* place all the copies on one channel */
a08abd8c 4299 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 4300 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 4301 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 4302 &submit);
f0a50d37 4303
a4456856
DW
4304 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4305 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4306 for (j = 0; j < conf->raid_disks; j++)
4307 if (j != sh2->pd_idx &&
86c374ba 4308 j != sh2->qd_idx &&
a4456856
DW
4309 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4310 break;
4311 if (j == conf->raid_disks) {
4312 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4313 set_bit(STRIPE_HANDLE, &sh2->state);
4314 }
6d036f7d 4315 raid5_release_stripe(sh2);
f0a50d37 4316
a4456856 4317 }
a2e08551 4318 /* done submitting copies, wait for them to complete */
749586b7 4319 async_tx_quiesce(&tx);
a4456856 4320}
1da177e4
LT
4321
4322/*
4323 * handle_stripe - do things to a stripe.
4324 *
9a3e1101
N
4325 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4326 * state of various bits to see what needs to be done.
1da177e4 4327 * Possible results:
9a3e1101
N
4328 * return some read requests which now have data
4329 * return some write requests which are safely on storage
1da177e4
LT
4330 * schedule a read on some buffers
4331 * schedule a write of some buffers
4332 * return confirmation of parity correctness
4333 *
1da177e4 4334 */
a4456856 4335
acfe726b 4336static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4337{
d1688a6d 4338 struct r5conf *conf = sh->raid_conf;
f416885e 4339 int disks = sh->disks;
474af965
N
4340 struct r5dev *dev;
4341 int i;
9a3e1101 4342 int do_recovery = 0;
1da177e4 4343
acfe726b
N
4344 memset(s, 0, sizeof(*s));
4345
dabc4ec6 4346 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4347 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4348 s->failed_num[0] = -1;
4349 s->failed_num[1] = -1;
6e74a9cf 4350 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4351
acfe726b 4352 /* Now to look around and see what can be done */
1da177e4 4353 rcu_read_lock();
16a53ecc 4354 for (i=disks; i--; ) {
3cb03002 4355 struct md_rdev *rdev;
31c176ec
N
4356 sector_t first_bad;
4357 int bad_sectors;
4358 int is_bad = 0;
acfe726b 4359
16a53ecc 4360 dev = &sh->dev[i];
1da177e4 4361
45b4233c 4362 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4363 i, dev->flags,
4364 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4365 /* maybe we can reply to a read
4366 *
4367 * new wantfill requests are only permitted while
4368 * ops_complete_biofill is guaranteed to be inactive
4369 */
4370 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4371 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4372 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4373
16a53ecc 4374 /* now count some things */
cc94015a
N
4375 if (test_bit(R5_LOCKED, &dev->flags))
4376 s->locked++;
4377 if (test_bit(R5_UPTODATE, &dev->flags))
4378 s->uptodate++;
2d6e4ecc 4379 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4380 s->compute++;
4381 BUG_ON(s->compute > 2);
2d6e4ecc 4382 }
1da177e4 4383
acfe726b 4384 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4385 s->to_fill++;
acfe726b 4386 else if (dev->toread)
cc94015a 4387 s->to_read++;
16a53ecc 4388 if (dev->towrite) {
cc94015a 4389 s->to_write++;
16a53ecc 4390 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4391 s->non_overwrite++;
16a53ecc 4392 }
a4456856 4393 if (dev->written)
cc94015a 4394 s->written++;
14a75d3e
N
4395 /* Prefer to use the replacement for reads, but only
4396 * if it is recovered enough and has no bad blocks.
4397 */
4398 rdev = rcu_dereference(conf->disks[i].replacement);
4399 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4400 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4401 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4402 &first_bad, &bad_sectors))
4403 set_bit(R5_ReadRepl, &dev->flags);
4404 else {
e6030cb0 4405 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4406 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4407 else
4408 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4409 rdev = rcu_dereference(conf->disks[i].rdev);
4410 clear_bit(R5_ReadRepl, &dev->flags);
4411 }
9283d8c5
N
4412 if (rdev && test_bit(Faulty, &rdev->flags))
4413 rdev = NULL;
31c176ec
N
4414 if (rdev) {
4415 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4416 &first_bad, &bad_sectors);
4417 if (s->blocked_rdev == NULL
4418 && (test_bit(Blocked, &rdev->flags)
4419 || is_bad < 0)) {
4420 if (is_bad < 0)
4421 set_bit(BlockedBadBlocks,
4422 &rdev->flags);
4423 s->blocked_rdev = rdev;
4424 atomic_inc(&rdev->nr_pending);
4425 }
6bfe0b49 4426 }
415e72d0
N
4427 clear_bit(R5_Insync, &dev->flags);
4428 if (!rdev)
4429 /* Not in-sync */;
31c176ec
N
4430 else if (is_bad) {
4431 /* also not in-sync */
18b9837e
N
4432 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4433 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4434 /* treat as in-sync, but with a read error
4435 * which we can now try to correct
4436 */
4437 set_bit(R5_Insync, &dev->flags);
4438 set_bit(R5_ReadError, &dev->flags);
4439 }
4440 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4441 set_bit(R5_Insync, &dev->flags);
30d7a483 4442 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4443 /* in sync if before recovery_offset */
30d7a483
N
4444 set_bit(R5_Insync, &dev->flags);
4445 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4446 test_bit(R5_Expanded, &dev->flags))
4447 /* If we've reshaped into here, we assume it is Insync.
4448 * We will shortly update recovery_offset to make
4449 * it official.
4450 */
4451 set_bit(R5_Insync, &dev->flags);
4452
1cc03eb9 4453 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4454 /* This flag does not apply to '.replacement'
4455 * only to .rdev, so make sure to check that*/
4456 struct md_rdev *rdev2 = rcu_dereference(
4457 conf->disks[i].rdev);
4458 if (rdev2 == rdev)
4459 clear_bit(R5_Insync, &dev->flags);
4460 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4461 s->handle_bad_blocks = 1;
14a75d3e 4462 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4463 } else
4464 clear_bit(R5_WriteError, &dev->flags);
4465 }
1cc03eb9 4466 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4467 /* This flag does not apply to '.replacement'
4468 * only to .rdev, so make sure to check that*/
4469 struct md_rdev *rdev2 = rcu_dereference(
4470 conf->disks[i].rdev);
4471 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4472 s->handle_bad_blocks = 1;
14a75d3e 4473 atomic_inc(&rdev2->nr_pending);
b84db560
N
4474 } else
4475 clear_bit(R5_MadeGood, &dev->flags);
4476 }
977df362
N
4477 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4478 struct md_rdev *rdev2 = rcu_dereference(
4479 conf->disks[i].replacement);
4480 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4481 s->handle_bad_blocks = 1;
4482 atomic_inc(&rdev2->nr_pending);
4483 } else
4484 clear_bit(R5_MadeGoodRepl, &dev->flags);
4485 }
415e72d0 4486 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4487 /* The ReadError flag will just be confusing now */
4488 clear_bit(R5_ReadError, &dev->flags);
4489 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4490 }
415e72d0
N
4491 if (test_bit(R5_ReadError, &dev->flags))
4492 clear_bit(R5_Insync, &dev->flags);
4493 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4494 if (s->failed < 2)
4495 s->failed_num[s->failed] = i;
4496 s->failed++;
9a3e1101
N
4497 if (rdev && !test_bit(Faulty, &rdev->flags))
4498 do_recovery = 1;
415e72d0 4499 }
2ded3703
SL
4500
4501 if (test_bit(R5_InJournal, &dev->flags))
4502 s->injournal++;
1e6d690b
SL
4503 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4504 s->just_cached++;
1da177e4 4505 }
9a3e1101
N
4506 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4507 /* If there is a failed device being replaced,
4508 * we must be recovering.
4509 * else if we are after recovery_cp, we must be syncing
c6d2e084 4510 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4511 * else we can only be replacing
4512 * sync and recovery both need to read all devices, and so
4513 * use the same flag.
4514 */
4515 if (do_recovery ||
c6d2e084 4516 sh->sector >= conf->mddev->recovery_cp ||
4517 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4518 s->syncing = 1;
4519 else
4520 s->replacing = 1;
4521 }
1da177e4 4522 rcu_read_unlock();
cc94015a
N
4523}
4524
59fc630b 4525static int clear_batch_ready(struct stripe_head *sh)
4526{
b15a9dbd
N
4527 /* Return '1' if this is a member of batch, or
4528 * '0' if it is a lone stripe or a head which can now be
4529 * handled.
4530 */
59fc630b 4531 struct stripe_head *tmp;
4532 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4533 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4534 spin_lock(&sh->stripe_lock);
4535 if (!sh->batch_head) {
4536 spin_unlock(&sh->stripe_lock);
4537 return 0;
4538 }
4539
4540 /*
4541 * this stripe could be added to a batch list before we check
4542 * BATCH_READY, skips it
4543 */
4544 if (sh->batch_head != sh) {
4545 spin_unlock(&sh->stripe_lock);
4546 return 1;
4547 }
4548 spin_lock(&sh->batch_lock);
4549 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4550 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4551 spin_unlock(&sh->batch_lock);
4552 spin_unlock(&sh->stripe_lock);
4553
4554 /*
4555 * BATCH_READY is cleared, no new stripes can be added.
4556 * batch_list can be accessed without lock
4557 */
4558 return 0;
4559}
4560
3960ce79
N
4561static void break_stripe_batch_list(struct stripe_head *head_sh,
4562 unsigned long handle_flags)
72ac7330 4563{
4e3d62ff 4564 struct stripe_head *sh, *next;
72ac7330 4565 int i;
fb642b92 4566 int do_wakeup = 0;
72ac7330 4567
bb27051f
N
4568 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4569
72ac7330 4570 list_del_init(&sh->batch_list);
4571
fb3229d5 4572 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4573 (1 << STRIPE_SYNCING) |
4574 (1 << STRIPE_REPLACED) |
1b956f7a
N
4575 (1 << STRIPE_DELAYED) |
4576 (1 << STRIPE_BIT_DELAY) |
4577 (1 << STRIPE_FULL_WRITE) |
4578 (1 << STRIPE_BIOFILL_RUN) |
4579 (1 << STRIPE_COMPUTE_RUN) |
4580 (1 << STRIPE_OPS_REQ_PENDING) |
4581 (1 << STRIPE_DISCARD) |
4582 (1 << STRIPE_BATCH_READY) |
4583 (1 << STRIPE_BATCH_ERR) |
fb3229d5
SL
4584 (1 << STRIPE_BITMAP_PENDING)),
4585 "stripe state: %lx\n", sh->state);
4586 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4587 (1 << STRIPE_REPLACED)),
4588 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4589
4590 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4591 (1 << STRIPE_PREREAD_ACTIVE) |
1b956f7a
N
4592 (1 << STRIPE_DEGRADED)),
4593 head_sh->state & (1 << STRIPE_INSYNC));
4594
72ac7330 4595 sh->check_state = head_sh->check_state;
4596 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4597 for (i = 0; i < sh->disks; i++) {
4598 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4599 do_wakeup = 1;
72ac7330 4600 sh->dev[i].flags = head_sh->dev[i].flags &
4601 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4602 }
72ac7330 4603 spin_lock_irq(&sh->stripe_lock);
4604 sh->batch_head = NULL;
4605 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4606 if (handle_flags == 0 ||
4607 sh->state & handle_flags)
4608 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4609 raid5_release_stripe(sh);
72ac7330 4610 }
fb642b92
N
4611 spin_lock_irq(&head_sh->stripe_lock);
4612 head_sh->batch_head = NULL;
4613 spin_unlock_irq(&head_sh->stripe_lock);
4614 for (i = 0; i < head_sh->disks; i++)
4615 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4616 do_wakeup = 1;
3960ce79
N
4617 if (head_sh->state & handle_flags)
4618 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4619
4620 if (do_wakeup)
4621 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4622}
4623
cc94015a
N
4624static void handle_stripe(struct stripe_head *sh)
4625{
4626 struct stripe_head_state s;
d1688a6d 4627 struct r5conf *conf = sh->raid_conf;
3687c061 4628 int i;
84789554
N
4629 int prexor;
4630 int disks = sh->disks;
474af965 4631 struct r5dev *pdev, *qdev;
cc94015a
N
4632
4633 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4634 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4635 /* already being handled, ensure it gets handled
4636 * again when current action finishes */
4637 set_bit(STRIPE_HANDLE, &sh->state);
4638 return;
4639 }
4640
59fc630b 4641 if (clear_batch_ready(sh) ) {
4642 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4643 return;
4644 }
4645
4e3d62ff 4646 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4647 break_stripe_batch_list(sh, 0);
72ac7330 4648
dabc4ec6 4649 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4650 spin_lock(&sh->stripe_lock);
4651 /* Cannot process 'sync' concurrently with 'discard' */
4652 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4653 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4654 set_bit(STRIPE_SYNCING, &sh->state);
4655 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4656 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4657 }
4658 spin_unlock(&sh->stripe_lock);
cc94015a
N
4659 }
4660 clear_bit(STRIPE_DELAYED, &sh->state);
4661
4662 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4663 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4664 (unsigned long long)sh->sector, sh->state,
4665 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4666 sh->check_state, sh->reconstruct_state);
3687c061 4667
acfe726b 4668 analyse_stripe(sh, &s);
c5a31000 4669
b70abcb2
SL
4670 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4671 goto finish;
4672
16d997b7
N
4673 if (s.handle_bad_blocks ||
4674 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
bc2607f3
N
4675 set_bit(STRIPE_HANDLE, &sh->state);
4676 goto finish;
4677 }
4678
474af965
N
4679 if (unlikely(s.blocked_rdev)) {
4680 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4681 s.replacing || s.to_write || s.written) {
474af965
N
4682 set_bit(STRIPE_HANDLE, &sh->state);
4683 goto finish;
4684 }
4685 /* There is nothing for the blocked_rdev to block */
4686 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4687 s.blocked_rdev = NULL;
4688 }
4689
4690 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4691 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4692 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4693 }
4694
4695 pr_debug("locked=%d uptodate=%d to_read=%d"
4696 " to_write=%d failed=%d failed_num=%d,%d\n",
4697 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4698 s.failed_num[0], s.failed_num[1]);
4699 /* check if the array has lost more than max_degraded devices and,
4700 * if so, some requests might need to be failed.
4701 */
6e74a9cf 4702 if (s.failed > conf->max_degraded || s.log_failed) {
9a3f530f
N
4703 sh->check_state = 0;
4704 sh->reconstruct_state = 0;
626f2092 4705 break_stripe_batch_list(sh, 0);
9a3f530f 4706 if (s.to_read+s.to_write+s.written)
bd83d0a2 4707 handle_failed_stripe(conf, sh, &s, disks);
9a3e1101 4708 if (s.syncing + s.replacing)
9a3f530f
N
4709 handle_failed_sync(conf, sh, &s);
4710 }
474af965 4711
84789554
N
4712 /* Now we check to see if any write operations have recently
4713 * completed
4714 */
4715 prexor = 0;
4716 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4717 prexor = 1;
4718 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4719 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4720 sh->reconstruct_state = reconstruct_state_idle;
4721
4722 /* All the 'written' buffers and the parity block are ready to
4723 * be written back to disk
4724 */
9e444768
SL
4725 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4726 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4727 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4728 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4729 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4730 for (i = disks; i--; ) {
4731 struct r5dev *dev = &sh->dev[i];
4732 if (test_bit(R5_LOCKED, &dev->flags) &&
4733 (i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b
SL
4734 dev->written || test_bit(R5_InJournal,
4735 &dev->flags))) {
84789554
N
4736 pr_debug("Writing block %d\n", i);
4737 set_bit(R5_Wantwrite, &dev->flags);
4738 if (prexor)
4739 continue;
9c4bdf69
N
4740 if (s.failed > 1)
4741 continue;
84789554
N
4742 if (!test_bit(R5_Insync, &dev->flags) ||
4743 ((i == sh->pd_idx || i == sh->qd_idx) &&
4744 s.failed == 0))
4745 set_bit(STRIPE_INSYNC, &sh->state);
4746 }
4747 }
4748 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4749 s.dec_preread_active = 1;
4750 }
4751
ef5b7c69
N
4752 /*
4753 * might be able to return some write requests if the parity blocks
4754 * are safe, or on a failed drive
4755 */
4756 pdev = &sh->dev[sh->pd_idx];
4757 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4758 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4759 qdev = &sh->dev[sh->qd_idx];
4760 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4761 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4762 || conf->level < 6;
4763
4764 if (s.written &&
4765 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4766 && !test_bit(R5_LOCKED, &pdev->flags)
4767 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4768 test_bit(R5_Discard, &pdev->flags))))) &&
4769 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4770 && !test_bit(R5_LOCKED, &qdev->flags)
4771 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4772 test_bit(R5_Discard, &qdev->flags))))))
bd83d0a2 4773 handle_stripe_clean_event(conf, sh, disks);
ef5b7c69 4774
1e6d690b 4775 if (s.just_cached)
bd83d0a2 4776 r5c_handle_cached_data_endio(conf, sh, disks);
ff875738 4777 log_stripe_write_finished(sh);
1e6d690b 4778
ef5b7c69
N
4779 /* Now we might consider reading some blocks, either to check/generate
4780 * parity, or to satisfy requests
4781 * or to load a block that is being partially written.
4782 */
4783 if (s.to_read || s.non_overwrite
4784 || (conf->level == 6 && s.to_write && s.failed)
4785 || (s.syncing && (s.uptodate + s.compute < disks))
4786 || s.replacing
4787 || s.expanding)
4788 handle_stripe_fill(sh, &s, disks);
4789
2ded3703
SL
4790 /*
4791 * When the stripe finishes full journal write cycle (write to journal
4792 * and raid disk), this is the clean up procedure so it is ready for
4793 * next operation.
4794 */
4795 r5c_finish_stripe_write_out(conf, sh, &s);
4796
4797 /*
4798 * Now to consider new write requests, cache write back and what else,
4799 * if anything should be read. We do not handle new writes when:
84789554
N
4800 * 1/ A 'write' operation (copy+xor) is already in flight.
4801 * 2/ A 'check' operation is in flight, as it may clobber the parity
4802 * block.
2ded3703 4803 * 3/ A r5c cache log write is in flight.
84789554 4804 */
2ded3703
SL
4805
4806 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4807 if (!r5c_is_writeback(conf->log)) {
4808 if (s.to_write)
4809 handle_stripe_dirtying(conf, sh, &s, disks);
4810 } else { /* write back cache */
4811 int ret = 0;
4812
4813 /* First, try handle writes in caching phase */
4814 if (s.to_write)
4815 ret = r5c_try_caching_write(conf, sh, &s,
4816 disks);
4817 /*
4818 * If caching phase failed: ret == -EAGAIN
4819 * OR
4820 * stripe under reclaim: !caching && injournal
4821 *
4822 * fall back to handle_stripe_dirtying()
4823 */
4824 if (ret == -EAGAIN ||
4825 /* stripe under reclaim: !caching && injournal */
4826 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
d7bd398e
SL
4827 s.injournal > 0)) {
4828 ret = handle_stripe_dirtying(conf, sh, &s,
4829 disks);
4830 if (ret == -EAGAIN)
4831 goto finish;
4832 }
2ded3703
SL
4833 }
4834 }
84789554
N
4835
4836 /* maybe we need to check and possibly fix the parity for this stripe
4837 * Any reads will already have been scheduled, so we just see if enough
4838 * data is available. The parity check is held off while parity
4839 * dependent operations are in flight.
4840 */
4841 if (sh->check_state ||
4842 (s.syncing && s.locked == 0 &&
4843 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4844 !test_bit(STRIPE_INSYNC, &sh->state))) {
4845 if (conf->level == 6)
4846 handle_parity_checks6(conf, sh, &s, disks);
4847 else
4848 handle_parity_checks5(conf, sh, &s, disks);
4849 }
c5a31000 4850
f94c0b66
N
4851 if ((s.replacing || s.syncing) && s.locked == 0
4852 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4853 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4854 /* Write out to replacement devices where possible */
4855 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4856 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4857 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4858 set_bit(R5_WantReplace, &sh->dev[i].flags);
4859 set_bit(R5_LOCKED, &sh->dev[i].flags);
4860 s.locked++;
4861 }
f94c0b66
N
4862 if (s.replacing)
4863 set_bit(STRIPE_INSYNC, &sh->state);
4864 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4865 }
4866 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4867 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4868 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4869 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4870 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4871 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4872 wake_up(&conf->wait_for_overlap);
c5a31000
N
4873 }
4874
4875 /* If the failed drives are just a ReadError, then we might need
4876 * to progress the repair/check process
4877 */
4878 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4879 for (i = 0; i < s.failed; i++) {
4880 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4881 if (test_bit(R5_ReadError, &dev->flags)
4882 && !test_bit(R5_LOCKED, &dev->flags)
4883 && test_bit(R5_UPTODATE, &dev->flags)
4884 ) {
4885 if (!test_bit(R5_ReWrite, &dev->flags)) {
4886 set_bit(R5_Wantwrite, &dev->flags);
4887 set_bit(R5_ReWrite, &dev->flags);
4888 set_bit(R5_LOCKED, &dev->flags);
4889 s.locked++;
4890 } else {
4891 /* let's read it back */
4892 set_bit(R5_Wantread, &dev->flags);
4893 set_bit(R5_LOCKED, &dev->flags);
4894 s.locked++;
4895 }
4896 }
4897 }
4898
3687c061
N
4899 /* Finish reconstruct operations initiated by the expansion process */
4900 if (sh->reconstruct_state == reconstruct_state_result) {
4901 struct stripe_head *sh_src
6d036f7d 4902 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4903 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4904 /* sh cannot be written until sh_src has been read.
4905 * so arrange for sh to be delayed a little
4906 */
4907 set_bit(STRIPE_DELAYED, &sh->state);
4908 set_bit(STRIPE_HANDLE, &sh->state);
4909 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4910 &sh_src->state))
4911 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4912 raid5_release_stripe(sh_src);
3687c061
N
4913 goto finish;
4914 }
4915 if (sh_src)
6d036f7d 4916 raid5_release_stripe(sh_src);
3687c061
N
4917
4918 sh->reconstruct_state = reconstruct_state_idle;
4919 clear_bit(STRIPE_EXPANDING, &sh->state);
4920 for (i = conf->raid_disks; i--; ) {
4921 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4922 set_bit(R5_LOCKED, &sh->dev[i].flags);
4923 s.locked++;
4924 }
4925 }
f416885e 4926
3687c061
N
4927 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4928 !sh->reconstruct_state) {
4929 /* Need to write out all blocks after computing parity */
4930 sh->disks = conf->raid_disks;
4931 stripe_set_idx(sh->sector, conf, 0, sh);
4932 schedule_reconstruction(sh, &s, 1, 1);
4933 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4934 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4935 atomic_dec(&conf->reshape_stripes);
4936 wake_up(&conf->wait_for_overlap);
4937 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4938 }
4939
4940 if (s.expanding && s.locked == 0 &&
4941 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4942 handle_stripe_expansion(conf, sh);
16a53ecc 4943
3687c061 4944finish:
6bfe0b49 4945 /* wait for this device to become unblocked */
5f066c63
N
4946 if (unlikely(s.blocked_rdev)) {
4947 if (conf->mddev->external)
4948 md_wait_for_blocked_rdev(s.blocked_rdev,
4949 conf->mddev);
4950 else
4951 /* Internal metadata will immediately
4952 * be written by raid5d, so we don't
4953 * need to wait here.
4954 */
4955 rdev_dec_pending(s.blocked_rdev,
4956 conf->mddev);
4957 }
6bfe0b49 4958
bc2607f3
N
4959 if (s.handle_bad_blocks)
4960 for (i = disks; i--; ) {
3cb03002 4961 struct md_rdev *rdev;
bc2607f3
N
4962 struct r5dev *dev = &sh->dev[i];
4963 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4964 /* We own a safe reference to the rdev */
4965 rdev = conf->disks[i].rdev;
4966 if (!rdev_set_badblocks(rdev, sh->sector,
4967 STRIPE_SECTORS, 0))
4968 md_error(conf->mddev, rdev);
4969 rdev_dec_pending(rdev, conf->mddev);
4970 }
b84db560
N
4971 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4972 rdev = conf->disks[i].rdev;
4973 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4974 STRIPE_SECTORS, 0);
b84db560
N
4975 rdev_dec_pending(rdev, conf->mddev);
4976 }
977df362
N
4977 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4978 rdev = conf->disks[i].replacement;
dd054fce
N
4979 if (!rdev)
4980 /* rdev have been moved down */
4981 rdev = conf->disks[i].rdev;
977df362 4982 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4983 STRIPE_SECTORS, 0);
977df362
N
4984 rdev_dec_pending(rdev, conf->mddev);
4985 }
bc2607f3
N
4986 }
4987
6c0069c0
YT
4988 if (s.ops_request)
4989 raid_run_ops(sh, s.ops_request);
4990
f0e43bcd 4991 ops_run_io(sh, &s);
16a53ecc 4992
c5709ef6 4993 if (s.dec_preread_active) {
729a1866 4994 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4995 * is waiting on a flush, it won't continue until the writes
729a1866
N
4996 * have actually been submitted.
4997 */
4998 atomic_dec(&conf->preread_active_stripes);
4999 if (atomic_read(&conf->preread_active_stripes) <
5000 IO_THRESHOLD)
5001 md_wakeup_thread(conf->mddev->thread);
5002 }
5003
257a4b42 5004 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
5005}
5006
d1688a6d 5007static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
5008{
5009 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5010 while (!list_empty(&conf->delayed_list)) {
5011 struct list_head *l = conf->delayed_list.next;
5012 struct stripe_head *sh;
5013 sh = list_entry(l, struct stripe_head, lru);
5014 list_del_init(l);
5015 clear_bit(STRIPE_DELAYED, &sh->state);
5016 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5017 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 5018 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 5019 raid5_wakeup_stripe_thread(sh);
16a53ecc 5020 }
482c0834 5021 }
16a53ecc
N
5022}
5023
566c09c5
SL
5024static void activate_bit_delay(struct r5conf *conf,
5025 struct list_head *temp_inactive_list)
16a53ecc
N
5026{
5027 /* device_lock is held */
5028 struct list_head head;
5029 list_add(&head, &conf->bitmap_list);
5030 list_del_init(&conf->bitmap_list);
5031 while (!list_empty(&head)) {
5032 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 5033 int hash;
16a53ecc
N
5034 list_del_init(&sh->lru);
5035 atomic_inc(&sh->count);
566c09c5
SL
5036 hash = sh->hash_lock_index;
5037 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
5038 }
5039}
5040
5c675f83 5041static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 5042{
d1688a6d 5043 struct r5conf *conf = mddev->private;
f022b2fd
N
5044
5045 /* No difference between reads and writes. Just check
5046 * how busy the stripe_cache is
5047 */
3fa841d7 5048
5423399a 5049 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd 5050 return 1;
a39f7afd
SL
5051
5052 /* Also checks whether there is pressure on r5cache log space */
5053 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5054 return 1;
f022b2fd
N
5055 if (conf->quiesce)
5056 return 1;
4bda556a 5057 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
5058 return 1;
5059
5060 return 0;
5061}
5062
fd01b88c 5063static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 5064{
3cb5edf4 5065 struct r5conf *conf = mddev->private;
4f024f37 5066 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
3cb5edf4 5067 unsigned int chunk_sectors;
aa8b57aa 5068 unsigned int bio_sectors = bio_sectors(bio);
f679623f 5069
3cb5edf4 5070 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
5071 return chunk_sectors >=
5072 ((sector & (chunk_sectors - 1)) + bio_sectors);
5073}
5074
46031f9a
RBJ
5075/*
5076 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5077 * later sampled by raid5d.
5078 */
d1688a6d 5079static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
5080{
5081 unsigned long flags;
5082
5083 spin_lock_irqsave(&conf->device_lock, flags);
5084
5085 bi->bi_next = conf->retry_read_aligned_list;
5086 conf->retry_read_aligned_list = bi;
5087
5088 spin_unlock_irqrestore(&conf->device_lock, flags);
5089 md_wakeup_thread(conf->mddev->thread);
5090}
5091
0472a42b
N
5092static struct bio *remove_bio_from_retry(struct r5conf *conf,
5093 unsigned int *offset)
46031f9a
RBJ
5094{
5095 struct bio *bi;
5096
5097 bi = conf->retry_read_aligned;
5098 if (bi) {
0472a42b 5099 *offset = conf->retry_read_offset;
46031f9a
RBJ
5100 conf->retry_read_aligned = NULL;
5101 return bi;
5102 }
5103 bi = conf->retry_read_aligned_list;
5104 if(bi) {
387bb173 5105 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 5106 bi->bi_next = NULL;
0472a42b 5107 *offset = 0;
46031f9a
RBJ
5108 }
5109
5110 return bi;
5111}
5112
f679623f
RBJ
5113/*
5114 * The "raid5_align_endio" should check if the read succeeded and if it
5115 * did, call bio_endio on the original bio (having bio_put the new bio
5116 * first).
5117 * If the read failed..
5118 */
4246a0b6 5119static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
5120{
5121 struct bio* raid_bi = bi->bi_private;
fd01b88c 5122 struct mddev *mddev;
d1688a6d 5123 struct r5conf *conf;
3cb03002 5124 struct md_rdev *rdev;
9b81c842 5125 int error = bi->bi_error;
46031f9a 5126
f679623f 5127 bio_put(bi);
46031f9a 5128
46031f9a
RBJ
5129 rdev = (void*)raid_bi->bi_next;
5130 raid_bi->bi_next = NULL;
2b7f2228
N
5131 mddev = rdev->mddev;
5132 conf = mddev->private;
46031f9a
RBJ
5133
5134 rdev_dec_pending(rdev, conf->mddev);
5135
9b81c842 5136 if (!error) {
4246a0b6 5137 bio_endio(raid_bi);
46031f9a 5138 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5139 wake_up(&conf->wait_for_quiescent);
6712ecf8 5140 return;
46031f9a
RBJ
5141 }
5142
45b4233c 5143 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
5144
5145 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
5146}
5147
7ef6b12a 5148static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 5149{
d1688a6d 5150 struct r5conf *conf = mddev->private;
8553fe7e 5151 int dd_idx;
f679623f 5152 struct bio* align_bi;
3cb03002 5153 struct md_rdev *rdev;
671488cc 5154 sector_t end_sector;
f679623f
RBJ
5155
5156 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 5157 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
5158 return 0;
5159 }
5160 /*
d7a10308 5161 * use bio_clone_fast to make a copy of the bio
f679623f 5162 */
d7a10308 5163 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
f679623f
RBJ
5164 if (!align_bi)
5165 return 0;
5166 /*
5167 * set bi_end_io to a new function, and set bi_private to the
5168 * original bio.
5169 */
5170 align_bi->bi_end_io = raid5_align_endio;
5171 align_bi->bi_private = raid_bio;
5172 /*
5173 * compute position
5174 */
4f024f37
KO
5175 align_bi->bi_iter.bi_sector =
5176 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5177 0, &dd_idx, NULL);
f679623f 5178
f73a1c7d 5179 end_sector = bio_end_sector(align_bi);
f679623f 5180 rcu_read_lock();
671488cc
N
5181 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5182 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5183 rdev->recovery_offset < end_sector) {
5184 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5185 if (rdev &&
5186 (test_bit(Faulty, &rdev->flags) ||
5187 !(test_bit(In_sync, &rdev->flags) ||
5188 rdev->recovery_offset >= end_sector)))
5189 rdev = NULL;
5190 }
03b047f4
SL
5191
5192 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5193 rcu_read_unlock();
5194 bio_put(align_bi);
5195 return 0;
5196 }
5197
671488cc 5198 if (rdev) {
31c176ec
N
5199 sector_t first_bad;
5200 int bad_sectors;
5201
f679623f
RBJ
5202 atomic_inc(&rdev->nr_pending);
5203 rcu_read_unlock();
46031f9a
RBJ
5204 raid_bio->bi_next = (void*)rdev;
5205 align_bi->bi_bdev = rdev->bdev;
b7c44ed9 5206 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 5207
7140aafc 5208 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 5209 bio_sectors(align_bi),
31c176ec 5210 &first_bad, &bad_sectors)) {
387bb173
NB
5211 bio_put(align_bi);
5212 rdev_dec_pending(rdev, mddev);
5213 return 0;
5214 }
5215
6c0544e2 5216 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 5217 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 5218
46031f9a 5219 spin_lock_irq(&conf->device_lock);
b1b46486 5220 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 5221 conf->quiesce == 0,
eed8c02e 5222 conf->device_lock);
46031f9a
RBJ
5223 atomic_inc(&conf->active_aligned_reads);
5224 spin_unlock_irq(&conf->device_lock);
5225
e3620a3a
JB
5226 if (mddev->gendisk)
5227 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5228 align_bi, disk_devt(mddev->gendisk),
4f024f37 5229 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
5230 generic_make_request(align_bi);
5231 return 1;
5232 } else {
5233 rcu_read_unlock();
46031f9a 5234 bio_put(align_bi);
f679623f
RBJ
5235 return 0;
5236 }
5237}
5238
7ef6b12a
ML
5239static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5240{
5241 struct bio *split;
dd7a8f5d
N
5242 sector_t sector = raid_bio->bi_iter.bi_sector;
5243 unsigned chunk_sects = mddev->chunk_sectors;
5244 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
7ef6b12a 5245
dd7a8f5d
N
5246 if (sectors < bio_sectors(raid_bio)) {
5247 struct r5conf *conf = mddev->private;
5248 split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5249 bio_chain(split, raid_bio);
5250 generic_make_request(raid_bio);
5251 raid_bio = split;
5252 }
7ef6b12a 5253
dd7a8f5d
N
5254 if (!raid5_read_one_chunk(mddev, raid_bio))
5255 return raid_bio;
7ef6b12a
ML
5256
5257 return NULL;
5258}
5259
8b3e6cdc
DW
5260/* __get_priority_stripe - get the next stripe to process
5261 *
5262 * Full stripe writes are allowed to pass preread active stripes up until
5263 * the bypass_threshold is exceeded. In general the bypass_count
5264 * increments when the handle_list is handled before the hold_list; however, it
5265 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5266 * stripe with in flight i/o. The bypass_count will be reset when the
5267 * head of the hold_list has changed, i.e. the head was promoted to the
5268 * handle_list.
5269 */
851c30c9 5270static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 5271{
535ae4eb 5272 struct stripe_head *sh, *tmp;
851c30c9 5273 struct list_head *handle_list = NULL;
535ae4eb
SL
5274 struct r5worker_group *wg;
5275 bool second_try = !r5c_is_writeback(conf->log);
5276 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state);
851c30c9 5277
535ae4eb
SL
5278again:
5279 wg = NULL;
5280 sh = NULL;
851c30c9 5281 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
5282 handle_list = try_loprio ? &conf->loprio_list :
5283 &conf->handle_list;
851c30c9 5284 } else if (group != ANY_GROUP) {
535ae4eb
SL
5285 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5286 &conf->worker_groups[group].handle_list;
bfc90cb0 5287 wg = &conf->worker_groups[group];
851c30c9
SL
5288 } else {
5289 int i;
5290 for (i = 0; i < conf->group_cnt; i++) {
535ae4eb
SL
5291 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5292 &conf->worker_groups[i].handle_list;
bfc90cb0 5293 wg = &conf->worker_groups[i];
851c30c9
SL
5294 if (!list_empty(handle_list))
5295 break;
5296 }
5297 }
8b3e6cdc
DW
5298
5299 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5300 __func__,
851c30c9 5301 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
5302 list_empty(&conf->hold_list) ? "empty" : "busy",
5303 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5304
851c30c9
SL
5305 if (!list_empty(handle_list)) {
5306 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
5307
5308 if (list_empty(&conf->hold_list))
5309 conf->bypass_count = 0;
5310 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5311 if (conf->hold_list.next == conf->last_hold)
5312 conf->bypass_count++;
5313 else {
5314 conf->last_hold = conf->hold_list.next;
5315 conf->bypass_count -= conf->bypass_threshold;
5316 if (conf->bypass_count < 0)
5317 conf->bypass_count = 0;
5318 }
5319 }
5320 } else if (!list_empty(&conf->hold_list) &&
5321 ((conf->bypass_threshold &&
5322 conf->bypass_count > conf->bypass_threshold) ||
5323 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
5324
5325 list_for_each_entry(tmp, &conf->hold_list, lru) {
5326 if (conf->worker_cnt_per_group == 0 ||
5327 group == ANY_GROUP ||
5328 !cpu_online(tmp->cpu) ||
5329 cpu_to_group(tmp->cpu) == group) {
5330 sh = tmp;
5331 break;
5332 }
5333 }
5334
5335 if (sh) {
5336 conf->bypass_count -= conf->bypass_threshold;
5337 if (conf->bypass_count < 0)
5338 conf->bypass_count = 0;
5339 }
bfc90cb0 5340 wg = NULL;
851c30c9
SL
5341 }
5342
535ae4eb
SL
5343 if (!sh) {
5344 if (second_try)
5345 return NULL;
5346 second_try = true;
5347 try_loprio = !try_loprio;
5348 goto again;
5349 }
8b3e6cdc 5350
bfc90cb0
SL
5351 if (wg) {
5352 wg->stripes_cnt--;
5353 sh->group = NULL;
5354 }
8b3e6cdc 5355 list_del_init(&sh->lru);
c7a6d35e 5356 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
5357 return sh;
5358}
f679623f 5359
8811b596
SL
5360struct raid5_plug_cb {
5361 struct blk_plug_cb cb;
5362 struct list_head list;
566c09c5 5363 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
5364};
5365
5366static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5367{
5368 struct raid5_plug_cb *cb = container_of(
5369 blk_cb, struct raid5_plug_cb, cb);
5370 struct stripe_head *sh;
5371 struct mddev *mddev = cb->cb.data;
5372 struct r5conf *conf = mddev->private;
a9add5d9 5373 int cnt = 0;
566c09c5 5374 int hash;
8811b596
SL
5375
5376 if (cb->list.next && !list_empty(&cb->list)) {
5377 spin_lock_irq(&conf->device_lock);
5378 while (!list_empty(&cb->list)) {
5379 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5380 list_del_init(&sh->lru);
5381 /*
5382 * avoid race release_stripe_plug() sees
5383 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5384 * is still in our list
5385 */
4e857c58 5386 smp_mb__before_atomic();
8811b596 5387 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5388 /*
5389 * STRIPE_ON_RELEASE_LIST could be set here. In that
5390 * case, the count is always > 1 here
5391 */
566c09c5
SL
5392 hash = sh->hash_lock_index;
5393 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5394 cnt++;
8811b596
SL
5395 }
5396 spin_unlock_irq(&conf->device_lock);
5397 }
566c09c5
SL
5398 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5399 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5400 if (mddev->queue)
5401 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5402 kfree(cb);
5403}
5404
5405static void release_stripe_plug(struct mddev *mddev,
5406 struct stripe_head *sh)
5407{
5408 struct blk_plug_cb *blk_cb = blk_check_plugged(
5409 raid5_unplug, mddev,
5410 sizeof(struct raid5_plug_cb));
5411 struct raid5_plug_cb *cb;
5412
5413 if (!blk_cb) {
6d036f7d 5414 raid5_release_stripe(sh);
8811b596
SL
5415 return;
5416 }
5417
5418 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5419
566c09c5
SL
5420 if (cb->list.next == NULL) {
5421 int i;
8811b596 5422 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5423 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5424 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5425 }
8811b596
SL
5426
5427 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5428 list_add_tail(&sh->lru, &cb->list);
5429 else
6d036f7d 5430 raid5_release_stripe(sh);
8811b596
SL
5431}
5432
620125f2
SL
5433static void make_discard_request(struct mddev *mddev, struct bio *bi)
5434{
5435 struct r5conf *conf = mddev->private;
5436 sector_t logical_sector, last_sector;
5437 struct stripe_head *sh;
620125f2
SL
5438 int stripe_sectors;
5439
5440 if (mddev->reshape_position != MaxSector)
5441 /* Skip discard while reshape is happening */
5442 return;
5443
4f024f37
KO
5444 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5445 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5446
5447 bi->bi_next = NULL;
49728050 5448 md_write_start(mddev, bi);
620125f2
SL
5449
5450 stripe_sectors = conf->chunk_sectors *
5451 (conf->raid_disks - conf->max_degraded);
5452 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5453 stripe_sectors);
5454 sector_div(last_sector, stripe_sectors);
5455
5456 logical_sector *= conf->chunk_sectors;
5457 last_sector *= conf->chunk_sectors;
5458
5459 for (; logical_sector < last_sector;
5460 logical_sector += STRIPE_SECTORS) {
5461 DEFINE_WAIT(w);
5462 int d;
5463 again:
6d036f7d 5464 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5465 prepare_to_wait(&conf->wait_for_overlap, &w,
5466 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5467 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5468 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5469 raid5_release_stripe(sh);
f8dfcffd
N
5470 schedule();
5471 goto again;
5472 }
5473 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5474 spin_lock_irq(&sh->stripe_lock);
5475 for (d = 0; d < conf->raid_disks; d++) {
5476 if (d == sh->pd_idx || d == sh->qd_idx)
5477 continue;
5478 if (sh->dev[d].towrite || sh->dev[d].toread) {
5479 set_bit(R5_Overlap, &sh->dev[d].flags);
5480 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5481 raid5_release_stripe(sh);
620125f2
SL
5482 schedule();
5483 goto again;
5484 }
5485 }
f8dfcffd 5486 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5487 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5488 sh->overwrite_disks = 0;
620125f2
SL
5489 for (d = 0; d < conf->raid_disks; d++) {
5490 if (d == sh->pd_idx || d == sh->qd_idx)
5491 continue;
5492 sh->dev[d].towrite = bi;
5493 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
016c76ac 5494 bio_inc_remaining(bi);
49728050 5495 md_write_inc(mddev, bi);
7a87f434 5496 sh->overwrite_disks++;
620125f2
SL
5497 }
5498 spin_unlock_irq(&sh->stripe_lock);
5499 if (conf->mddev->bitmap) {
5500 for (d = 0;
5501 d < conf->raid_disks - conf->max_degraded;
5502 d++)
5503 bitmap_startwrite(mddev->bitmap,
5504 sh->sector,
5505 STRIPE_SECTORS,
5506 0);
5507 sh->bm_seq = conf->seq_flush + 1;
5508 set_bit(STRIPE_BIT_DELAY, &sh->state);
5509 }
5510
5511 set_bit(STRIPE_HANDLE, &sh->state);
5512 clear_bit(STRIPE_DELAYED, &sh->state);
5513 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5514 atomic_inc(&conf->preread_active_stripes);
5515 release_stripe_plug(mddev, sh);
5516 }
5517
49728050 5518 md_write_end(mddev);
016c76ac 5519 bio_endio(bi);
620125f2
SL
5520}
5521
849674e4 5522static void raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5523{
d1688a6d 5524 struct r5conf *conf = mddev->private;
911d4ee8 5525 int dd_idx;
1da177e4
LT
5526 sector_t new_sector;
5527 sector_t logical_sector, last_sector;
5528 struct stripe_head *sh;
a362357b 5529 const int rw = bio_data_dir(bi);
27c0f68f
SL
5530 DEFINE_WAIT(w);
5531 bool do_prepare;
3bddb7f8 5532 bool do_flush = false;
1da177e4 5533
1eff9d32 5534 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
828cbe98
SL
5535 int ret = r5l_handle_flush_request(conf->log, bi);
5536
5537 if (ret == 0)
5538 return;
5539 if (ret == -ENODEV) {
5540 md_flush_request(mddev, bi);
5541 return;
5542 }
5543 /* ret == -EAGAIN, fallback */
3bddb7f8
SL
5544 /*
5545 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5546 * we need to flush journal device
5547 */
5548 do_flush = bi->bi_opf & REQ_PREFLUSH;
e5dcdd80
N
5549 }
5550
9ffc8f7c
EM
5551 /*
5552 * If array is degraded, better not do chunk aligned read because
5553 * later we might have to read it again in order to reconstruct
5554 * data on failed drives.
5555 */
5556 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5557 mddev->reshape_position == MaxSector) {
5558 bi = chunk_aligned_read(mddev, bi);
5559 if (!bi)
5560 return;
5561 }
52488615 5562
796a5cf0 5563 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
620125f2
SL
5564 make_discard_request(mddev, bi);
5565 return;
5566 }
5567
4f024f37 5568 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5569 last_sector = bio_end_sector(bi);
1da177e4 5570 bi->bi_next = NULL;
49728050 5571 md_write_start(mddev, bi);
06d91a5f 5572
27c0f68f 5573 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5574 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5575 int previous;
c46501b2 5576 int seq;
b578d55f 5577
27c0f68f 5578 do_prepare = false;
7ecaa1e6 5579 retry:
c46501b2 5580 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5581 previous = 0;
27c0f68f
SL
5582 if (do_prepare)
5583 prepare_to_wait(&conf->wait_for_overlap, &w,
5584 TASK_UNINTERRUPTIBLE);
b0f9ec04 5585 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5586 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5587 * 64bit on a 32bit platform, and so it might be
5588 * possible to see a half-updated value
aeb878b0 5589 * Of course reshape_progress could change after
df8e7f76
N
5590 * the lock is dropped, so once we get a reference
5591 * to the stripe that we think it is, we will have
5592 * to check again.
5593 */
7ecaa1e6 5594 spin_lock_irq(&conf->device_lock);
2c810cdd 5595 if (mddev->reshape_backwards
fef9c61f
N
5596 ? logical_sector < conf->reshape_progress
5597 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5598 previous = 1;
5599 } else {
2c810cdd 5600 if (mddev->reshape_backwards
fef9c61f
N
5601 ? logical_sector < conf->reshape_safe
5602 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5603 spin_unlock_irq(&conf->device_lock);
5604 schedule();
27c0f68f 5605 do_prepare = true;
b578d55f
N
5606 goto retry;
5607 }
5608 }
7ecaa1e6
N
5609 spin_unlock_irq(&conf->device_lock);
5610 }
16a53ecc 5611
112bf897
N
5612 new_sector = raid5_compute_sector(conf, logical_sector,
5613 previous,
911d4ee8 5614 &dd_idx, NULL);
849674e4 5615 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
c46501b2 5616 (unsigned long long)new_sector,
1da177e4
LT
5617 (unsigned long long)logical_sector);
5618
6d036f7d 5619 sh = raid5_get_active_stripe(conf, new_sector, previous,
1eff9d32 5620 (bi->bi_opf & REQ_RAHEAD), 0);
1da177e4 5621 if (sh) {
b0f9ec04 5622 if (unlikely(previous)) {
7ecaa1e6 5623 /* expansion might have moved on while waiting for a
df8e7f76
N
5624 * stripe, so we must do the range check again.
5625 * Expansion could still move past after this
5626 * test, but as we are holding a reference to
5627 * 'sh', we know that if that happens,
5628 * STRIPE_EXPANDING will get set and the expansion
5629 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5630 */
5631 int must_retry = 0;
5632 spin_lock_irq(&conf->device_lock);
2c810cdd 5633 if (mddev->reshape_backwards
b0f9ec04
N
5634 ? logical_sector >= conf->reshape_progress
5635 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5636 /* mismatch, need to try again */
5637 must_retry = 1;
5638 spin_unlock_irq(&conf->device_lock);
5639 if (must_retry) {
6d036f7d 5640 raid5_release_stripe(sh);
7a3ab908 5641 schedule();
27c0f68f 5642 do_prepare = true;
7ecaa1e6
N
5643 goto retry;
5644 }
5645 }
c46501b2
N
5646 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5647 /* Might have got the wrong stripe_head
5648 * by accident
5649 */
6d036f7d 5650 raid5_release_stripe(sh);
c46501b2
N
5651 goto retry;
5652 }
e62e58a5 5653
ffd96e35 5654 if (rw == WRITE &&
a5c308d4 5655 logical_sector >= mddev->suspend_lo &&
e464eafd 5656 logical_sector < mddev->suspend_hi) {
6d036f7d 5657 raid5_release_stripe(sh);
e62e58a5
N
5658 /* As the suspend_* range is controlled by
5659 * userspace, we want an interruptible
5660 * wait.
5661 */
5662 flush_signals(current);
5663 prepare_to_wait(&conf->wait_for_overlap,
5664 &w, TASK_INTERRUPTIBLE);
5665 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5666 logical_sector < mddev->suspend_hi) {
e62e58a5 5667 schedule();
27c0f68f
SL
5668 do_prepare = true;
5669 }
e464eafd
N
5670 goto retry;
5671 }
7ecaa1e6
N
5672
5673 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5674 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5675 /* Stripe is busy expanding or
5676 * add failed due to overlap. Flush everything
1da177e4
LT
5677 * and wait a while
5678 */
482c0834 5679 md_wakeup_thread(mddev->thread);
6d036f7d 5680 raid5_release_stripe(sh);
1da177e4 5681 schedule();
27c0f68f 5682 do_prepare = true;
1da177e4
LT
5683 goto retry;
5684 }
3bddb7f8
SL
5685 if (do_flush) {
5686 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5687 /* we only need flush for one stripe */
5688 do_flush = false;
5689 }
5690
6ed3003c
N
5691 set_bit(STRIPE_HANDLE, &sh->state);
5692 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5693 if ((!sh->batch_head || sh == sh->batch_head) &&
1eff9d32 5694 (bi->bi_opf & REQ_SYNC) &&
729a1866
N
5695 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5696 atomic_inc(&conf->preread_active_stripes);
8811b596 5697 release_stripe_plug(mddev, sh);
1da177e4
LT
5698 } else {
5699 /* cannot get stripe for read-ahead, just give-up */
4246a0b6 5700 bi->bi_error = -EIO;
1da177e4
LT
5701 break;
5702 }
1da177e4 5703 }
27c0f68f 5704 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5705
49728050
N
5706 if (rw == WRITE)
5707 md_write_end(mddev);
016c76ac 5708 bio_endio(bi);
1da177e4
LT
5709}
5710
fd01b88c 5711static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5712
fd01b88c 5713static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5714{
52c03291
N
5715 /* reshaping is quite different to recovery/resync so it is
5716 * handled quite separately ... here.
5717 *
5718 * On each call to sync_request, we gather one chunk worth of
5719 * destination stripes and flag them as expanding.
5720 * Then we find all the source stripes and request reads.
5721 * As the reads complete, handle_stripe will copy the data
5722 * into the destination stripe and release that stripe.
5723 */
d1688a6d 5724 struct r5conf *conf = mddev->private;
1da177e4 5725 struct stripe_head *sh;
ccfcc3c1 5726 sector_t first_sector, last_sector;
f416885e
N
5727 int raid_disks = conf->previous_raid_disks;
5728 int data_disks = raid_disks - conf->max_degraded;
5729 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5730 int i;
5731 int dd_idx;
c8f517c4 5732 sector_t writepos, readpos, safepos;
ec32a2bd 5733 sector_t stripe_addr;
7a661381 5734 int reshape_sectors;
ab69ae12 5735 struct list_head stripes;
92140480 5736 sector_t retn;
52c03291 5737
fef9c61f
N
5738 if (sector_nr == 0) {
5739 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5740 if (mddev->reshape_backwards &&
fef9c61f
N
5741 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5742 sector_nr = raid5_size(mddev, 0, 0)
5743 - conf->reshape_progress;
6cbd8148
N
5744 } else if (mddev->reshape_backwards &&
5745 conf->reshape_progress == MaxSector) {
5746 /* shouldn't happen, but just in case, finish up.*/
5747 sector_nr = MaxSector;
2c810cdd 5748 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5749 conf->reshape_progress > 0)
5750 sector_nr = conf->reshape_progress;
f416885e 5751 sector_div(sector_nr, new_data_disks);
fef9c61f 5752 if (sector_nr) {
8dee7211
N
5753 mddev->curr_resync_completed = sector_nr;
5754 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f 5755 *skipped = 1;
92140480
N
5756 retn = sector_nr;
5757 goto finish;
fef9c61f 5758 }
52c03291
N
5759 }
5760
7a661381
N
5761 /* We need to process a full chunk at a time.
5762 * If old and new chunk sizes differ, we need to process the
5763 * largest of these
5764 */
3cb5edf4
N
5765
5766 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5767
b5254dd5
N
5768 /* We update the metadata at least every 10 seconds, or when
5769 * the data about to be copied would over-write the source of
5770 * the data at the front of the range. i.e. one new_stripe
5771 * along from reshape_progress new_maps to after where
5772 * reshape_safe old_maps to
52c03291 5773 */
fef9c61f 5774 writepos = conf->reshape_progress;
f416885e 5775 sector_div(writepos, new_data_disks);
c8f517c4
N
5776 readpos = conf->reshape_progress;
5777 sector_div(readpos, data_disks);
fef9c61f 5778 safepos = conf->reshape_safe;
f416885e 5779 sector_div(safepos, data_disks);
2c810cdd 5780 if (mddev->reshape_backwards) {
c74c0d76
N
5781 BUG_ON(writepos < reshape_sectors);
5782 writepos -= reshape_sectors;
c8f517c4 5783 readpos += reshape_sectors;
7a661381 5784 safepos += reshape_sectors;
fef9c61f 5785 } else {
7a661381 5786 writepos += reshape_sectors;
c74c0d76
N
5787 /* readpos and safepos are worst-case calculations.
5788 * A negative number is overly pessimistic, and causes
5789 * obvious problems for unsigned storage. So clip to 0.
5790 */
ed37d83e
N
5791 readpos -= min_t(sector_t, reshape_sectors, readpos);
5792 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5793 }
52c03291 5794
b5254dd5
N
5795 /* Having calculated the 'writepos' possibly use it
5796 * to set 'stripe_addr' which is where we will write to.
5797 */
5798 if (mddev->reshape_backwards) {
5799 BUG_ON(conf->reshape_progress == 0);
5800 stripe_addr = writepos;
5801 BUG_ON((mddev->dev_sectors &
5802 ~((sector_t)reshape_sectors - 1))
5803 - reshape_sectors - stripe_addr
5804 != sector_nr);
5805 } else {
5806 BUG_ON(writepos != sector_nr + reshape_sectors);
5807 stripe_addr = sector_nr;
5808 }
5809
c8f517c4
N
5810 /* 'writepos' is the most advanced device address we might write.
5811 * 'readpos' is the least advanced device address we might read.
5812 * 'safepos' is the least address recorded in the metadata as having
5813 * been reshaped.
b5254dd5
N
5814 * If there is a min_offset_diff, these are adjusted either by
5815 * increasing the safepos/readpos if diff is negative, or
5816 * increasing writepos if diff is positive.
5817 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5818 * ensure safety in the face of a crash - that must be done by userspace
5819 * making a backup of the data. So in that case there is no particular
5820 * rush to update metadata.
5821 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5822 * update the metadata to advance 'safepos' to match 'readpos' so that
5823 * we can be safe in the event of a crash.
5824 * So we insist on updating metadata if safepos is behind writepos and
5825 * readpos is beyond writepos.
5826 * In any case, update the metadata every 10 seconds.
5827 * Maybe that number should be configurable, but I'm not sure it is
5828 * worth it.... maybe it could be a multiple of safemode_delay???
5829 */
b5254dd5
N
5830 if (conf->min_offset_diff < 0) {
5831 safepos += -conf->min_offset_diff;
5832 readpos += -conf->min_offset_diff;
5833 } else
5834 writepos += conf->min_offset_diff;
5835
2c810cdd 5836 if ((mddev->reshape_backwards
c8f517c4
N
5837 ? (safepos > writepos && readpos < writepos)
5838 : (safepos < writepos && readpos > writepos)) ||
5839 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5840 /* Cannot proceed until we've updated the superblock... */
5841 wait_event(conf->wait_for_overlap,
c91abf5a
N
5842 atomic_read(&conf->reshape_stripes)==0
5843 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5844 if (atomic_read(&conf->reshape_stripes) != 0)
5845 return 0;
fef9c61f 5846 mddev->reshape_position = conf->reshape_progress;
75d3da43 5847 mddev->curr_resync_completed = sector_nr;
c8f517c4 5848 conf->reshape_checkpoint = jiffies;
2953079c 5849 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
52c03291 5850 md_wakeup_thread(mddev->thread);
2953079c 5851 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
5852 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5853 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5854 return 0;
52c03291 5855 spin_lock_irq(&conf->device_lock);
fef9c61f 5856 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5857 spin_unlock_irq(&conf->device_lock);
5858 wake_up(&conf->wait_for_overlap);
acb180b0 5859 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5860 }
5861
ab69ae12 5862 INIT_LIST_HEAD(&stripes);
7a661381 5863 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5864 int j;
a9f326eb 5865 int skipped_disk = 0;
6d036f7d 5866 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5867 set_bit(STRIPE_EXPANDING, &sh->state);
5868 atomic_inc(&conf->reshape_stripes);
5869 /* If any of this stripe is beyond the end of the old
5870 * array, then we need to zero those blocks
5871 */
5872 for (j=sh->disks; j--;) {
5873 sector_t s;
5874 if (j == sh->pd_idx)
5875 continue;
f416885e 5876 if (conf->level == 6 &&
d0dabf7e 5877 j == sh->qd_idx)
f416885e 5878 continue;
6d036f7d 5879 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5880 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5881 skipped_disk = 1;
52c03291
N
5882 continue;
5883 }
5884 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5885 set_bit(R5_Expanded, &sh->dev[j].flags);
5886 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5887 }
a9f326eb 5888 if (!skipped_disk) {
52c03291
N
5889 set_bit(STRIPE_EXPAND_READY, &sh->state);
5890 set_bit(STRIPE_HANDLE, &sh->state);
5891 }
ab69ae12 5892 list_add(&sh->lru, &stripes);
52c03291
N
5893 }
5894 spin_lock_irq(&conf->device_lock);
2c810cdd 5895 if (mddev->reshape_backwards)
7a661381 5896 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5897 else
7a661381 5898 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5899 spin_unlock_irq(&conf->device_lock);
5900 /* Ok, those stripe are ready. We can start scheduling
5901 * reads on the source stripes.
5902 * The source stripes are determined by mapping the first and last
5903 * block on the destination stripes.
5904 */
52c03291 5905 first_sector =
ec32a2bd 5906 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5907 1, &dd_idx, NULL);
52c03291 5908 last_sector =
0e6e0271 5909 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5910 * new_data_disks - 1),
911d4ee8 5911 1, &dd_idx, NULL);
58c0fed4
AN
5912 if (last_sector >= mddev->dev_sectors)
5913 last_sector = mddev->dev_sectors - 1;
52c03291 5914 while (first_sector <= last_sector) {
6d036f7d 5915 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5916 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5917 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5918 raid5_release_stripe(sh);
52c03291
N
5919 first_sector += STRIPE_SECTORS;
5920 }
ab69ae12
N
5921 /* Now that the sources are clearly marked, we can release
5922 * the destination stripes
5923 */
5924 while (!list_empty(&stripes)) {
5925 sh = list_entry(stripes.next, struct stripe_head, lru);
5926 list_del_init(&sh->lru);
6d036f7d 5927 raid5_release_stripe(sh);
ab69ae12 5928 }
c6207277
N
5929 /* If this takes us to the resync_max point where we have to pause,
5930 * then we need to write out the superblock.
5931 */
7a661381 5932 sector_nr += reshape_sectors;
92140480
N
5933 retn = reshape_sectors;
5934finish:
c5e19d90
N
5935 if (mddev->curr_resync_completed > mddev->resync_max ||
5936 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5937 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5938 /* Cannot proceed until we've updated the superblock... */
5939 wait_event(conf->wait_for_overlap,
c91abf5a
N
5940 atomic_read(&conf->reshape_stripes) == 0
5941 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5942 if (atomic_read(&conf->reshape_stripes) != 0)
5943 goto ret;
fef9c61f 5944 mddev->reshape_position = conf->reshape_progress;
75d3da43 5945 mddev->curr_resync_completed = sector_nr;
c8f517c4 5946 conf->reshape_checkpoint = jiffies;
2953079c 5947 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
c6207277
N
5948 md_wakeup_thread(mddev->thread);
5949 wait_event(mddev->sb_wait,
2953079c 5950 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
c91abf5a
N
5951 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5952 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5953 goto ret;
c6207277 5954 spin_lock_irq(&conf->device_lock);
fef9c61f 5955 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5956 spin_unlock_irq(&conf->device_lock);
5957 wake_up(&conf->wait_for_overlap);
acb180b0 5958 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5959 }
c91abf5a 5960ret:
92140480 5961 return retn;
52c03291
N
5962}
5963
849674e4
SL
5964static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5965 int *skipped)
52c03291 5966{
d1688a6d 5967 struct r5conf *conf = mddev->private;
52c03291 5968 struct stripe_head *sh;
58c0fed4 5969 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5970 sector_t sync_blocks;
16a53ecc
N
5971 int still_degraded = 0;
5972 int i;
1da177e4 5973
72626685 5974 if (sector_nr >= max_sector) {
1da177e4 5975 /* just being told to finish up .. nothing much to do */
cea9c228 5976
29269553
N
5977 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5978 end_reshape(conf);
5979 return 0;
5980 }
72626685
N
5981
5982 if (mddev->curr_resync < max_sector) /* aborted */
5983 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5984 &sync_blocks, 1);
16a53ecc 5985 else /* completed sync */
72626685
N
5986 conf->fullsync = 0;
5987 bitmap_close_sync(mddev->bitmap);
5988
1da177e4
LT
5989 return 0;
5990 }
ccfcc3c1 5991
64bd660b
N
5992 /* Allow raid5_quiesce to complete */
5993 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5994
52c03291
N
5995 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5996 return reshape_request(mddev, sector_nr, skipped);
f6705578 5997
c6207277
N
5998 /* No need to check resync_max as we never do more than one
5999 * stripe, and as resync_max will always be on a chunk boundary,
6000 * if the check in md_do_sync didn't fire, there is no chance
6001 * of overstepping resync_max here
6002 */
6003
16a53ecc 6004 /* if there is too many failed drives and we are trying
1da177e4
LT
6005 * to resync, then assert that we are finished, because there is
6006 * nothing we can do.
6007 */
3285edf1 6008 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 6009 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 6010 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 6011 *skipped = 1;
1da177e4
LT
6012 return rv;
6013 }
6f608040 6014 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6015 !conf->fullsync &&
6016 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6017 sync_blocks >= STRIPE_SECTORS) {
72626685
N
6018 /* we can skip this block, and probably more */
6019 sync_blocks /= STRIPE_SECTORS;
6020 *skipped = 1;
6021 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6022 }
1da177e4 6023
c40f341f 6024 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 6025
6d036f7d 6026 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 6027 if (sh == NULL) {
6d036f7d 6028 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 6029 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 6030 * is trying to get access
1da177e4 6031 */
66c006a5 6032 schedule_timeout_uninterruptible(1);
1da177e4 6033 }
16a53ecc 6034 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
6035 * Note in case of > 1 drive failures it's possible we're rebuilding
6036 * one drive while leaving another faulty drive in array.
16a53ecc 6037 */
16d9cfab
EM
6038 rcu_read_lock();
6039 for (i = 0; i < conf->raid_disks; i++) {
6040 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6041
6042 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 6043 still_degraded = 1;
16d9cfab
EM
6044 }
6045 rcu_read_unlock();
16a53ecc
N
6046
6047 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6048
83206d66 6049 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 6050 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 6051
6d036f7d 6052 raid5_release_stripe(sh);
1da177e4
LT
6053
6054 return STRIPE_SECTORS;
6055}
6056
0472a42b
N
6057static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6058 unsigned int offset)
46031f9a
RBJ
6059{
6060 /* We may not be able to submit a whole bio at once as there
6061 * may not be enough stripe_heads available.
6062 * We cannot pre-allocate enough stripe_heads as we may need
6063 * more than exist in the cache (if we allow ever large chunks).
6064 * So we do one stripe head at a time and record in
6065 * ->bi_hw_segments how many have been done.
6066 *
6067 * We *know* that this entire raid_bio is in one chunk, so
6068 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6069 */
6070 struct stripe_head *sh;
911d4ee8 6071 int dd_idx;
46031f9a
RBJ
6072 sector_t sector, logical_sector, last_sector;
6073 int scnt = 0;
46031f9a
RBJ
6074 int handled = 0;
6075
4f024f37
KO
6076 logical_sector = raid_bio->bi_iter.bi_sector &
6077 ~((sector_t)STRIPE_SECTORS-1);
112bf897 6078 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 6079 0, &dd_idx, NULL);
f73a1c7d 6080 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
6081
6082 for (; logical_sector < last_sector;
387bb173
NB
6083 logical_sector += STRIPE_SECTORS,
6084 sector += STRIPE_SECTORS,
6085 scnt++) {
46031f9a 6086
0472a42b 6087 if (scnt < offset)
46031f9a
RBJ
6088 /* already done this stripe */
6089 continue;
6090
6d036f7d 6091 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
6092
6093 if (!sh) {
6094 /* failed to get a stripe - must wait */
46031f9a 6095 conf->retry_read_aligned = raid_bio;
0472a42b 6096 conf->retry_read_offset = scnt;
46031f9a
RBJ
6097 return handled;
6098 }
6099
da41ba65 6100 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 6101 raid5_release_stripe(sh);
387bb173 6102 conf->retry_read_aligned = raid_bio;
0472a42b 6103 conf->retry_read_offset = scnt;
387bb173
NB
6104 return handled;
6105 }
6106
3f9e7c14 6107 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 6108 handle_stripe(sh);
6d036f7d 6109 raid5_release_stripe(sh);
46031f9a
RBJ
6110 handled++;
6111 }
016c76ac
N
6112
6113 bio_endio(raid_bio);
6114
46031f9a 6115 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 6116 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
6117 return handled;
6118}
6119
bfc90cb0 6120static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
6121 struct r5worker *worker,
6122 struct list_head *temp_inactive_list)
46a06401
SL
6123{
6124 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
6125 int i, batch_size = 0, hash;
6126 bool release_inactive = false;
46a06401
SL
6127
6128 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 6129 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
6130 batch[batch_size++] = sh;
6131
566c09c5
SL
6132 if (batch_size == 0) {
6133 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6134 if (!list_empty(temp_inactive_list + i))
6135 break;
a8c34f91
SL
6136 if (i == NR_STRIPE_HASH_LOCKS) {
6137 spin_unlock_irq(&conf->device_lock);
6138 r5l_flush_stripe_to_raid(conf->log);
6139 spin_lock_irq(&conf->device_lock);
566c09c5 6140 return batch_size;
a8c34f91 6141 }
566c09c5
SL
6142 release_inactive = true;
6143 }
46a06401
SL
6144 spin_unlock_irq(&conf->device_lock);
6145
566c09c5
SL
6146 release_inactive_stripe_list(conf, temp_inactive_list,
6147 NR_STRIPE_HASH_LOCKS);
6148
a8c34f91 6149 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
6150 if (release_inactive) {
6151 spin_lock_irq(&conf->device_lock);
6152 return 0;
6153 }
6154
46a06401
SL
6155 for (i = 0; i < batch_size; i++)
6156 handle_stripe(batch[i]);
ff875738 6157 log_write_stripe_run(conf);
46a06401
SL
6158
6159 cond_resched();
6160
6161 spin_lock_irq(&conf->device_lock);
566c09c5
SL
6162 for (i = 0; i < batch_size; i++) {
6163 hash = batch[i]->hash_lock_index;
6164 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6165 }
46a06401
SL
6166 return batch_size;
6167}
46031f9a 6168
851c30c9
SL
6169static void raid5_do_work(struct work_struct *work)
6170{
6171 struct r5worker *worker = container_of(work, struct r5worker, work);
6172 struct r5worker_group *group = worker->group;
6173 struct r5conf *conf = group->conf;
16d997b7 6174 struct mddev *mddev = conf->mddev;
851c30c9
SL
6175 int group_id = group - conf->worker_groups;
6176 int handled;
6177 struct blk_plug plug;
6178
6179 pr_debug("+++ raid5worker active\n");
6180
6181 blk_start_plug(&plug);
6182 handled = 0;
6183 spin_lock_irq(&conf->device_lock);
6184 while (1) {
6185 int batch_size, released;
6186
566c09c5 6187 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 6188
566c09c5
SL
6189 batch_size = handle_active_stripes(conf, group_id, worker,
6190 worker->temp_inactive_list);
bfc90cb0 6191 worker->working = false;
851c30c9
SL
6192 if (!batch_size && !released)
6193 break;
6194 handled += batch_size;
16d997b7
N
6195 wait_event_lock_irq(mddev->sb_wait,
6196 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6197 conf->device_lock);
851c30c9
SL
6198 }
6199 pr_debug("%d stripes handled\n", handled);
6200
6201 spin_unlock_irq(&conf->device_lock);
6202 blk_finish_plug(&plug);
6203
6204 pr_debug("--- raid5worker inactive\n");
6205}
6206
1da177e4
LT
6207/*
6208 * This is our raid5 kernel thread.
6209 *
6210 * We scan the hash table for stripes which can be handled now.
6211 * During the scan, completed stripes are saved for us by the interrupt
6212 * handler, so that they will not have to wait for our next wakeup.
6213 */
4ed8731d 6214static void raid5d(struct md_thread *thread)
1da177e4 6215{
4ed8731d 6216 struct mddev *mddev = thread->mddev;
d1688a6d 6217 struct r5conf *conf = mddev->private;
1da177e4 6218 int handled;
e1dfa0a2 6219 struct blk_plug plug;
1da177e4 6220
45b4233c 6221 pr_debug("+++ raid5d active\n");
1da177e4
LT
6222
6223 md_check_recovery(mddev);
1da177e4 6224
e1dfa0a2 6225 blk_start_plug(&plug);
1da177e4
LT
6226 handled = 0;
6227 spin_lock_irq(&conf->device_lock);
6228 while (1) {
46031f9a 6229 struct bio *bio;
773ca82f 6230 int batch_size, released;
0472a42b 6231 unsigned int offset;
773ca82f 6232
566c09c5 6233 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
6234 if (released)
6235 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 6236
0021b7bc 6237 if (
7c13edc8
N
6238 !list_empty(&conf->bitmap_list)) {
6239 /* Now is a good time to flush some bitmap updates */
6240 conf->seq_flush++;
700e432d 6241 spin_unlock_irq(&conf->device_lock);
72626685 6242 bitmap_unplug(mddev->bitmap);
700e432d 6243 spin_lock_irq(&conf->device_lock);
7c13edc8 6244 conf->seq_write = conf->seq_flush;
566c09c5 6245 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 6246 }
0021b7bc 6247 raid5_activate_delayed(conf);
72626685 6248
0472a42b 6249 while ((bio = remove_bio_from_retry(conf, &offset))) {
46031f9a
RBJ
6250 int ok;
6251 spin_unlock_irq(&conf->device_lock);
0472a42b 6252 ok = retry_aligned_read(conf, bio, offset);
46031f9a
RBJ
6253 spin_lock_irq(&conf->device_lock);
6254 if (!ok)
6255 break;
6256 handled++;
6257 }
6258
566c09c5
SL
6259 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6260 conf->temp_inactive_list);
773ca82f 6261 if (!batch_size && !released)
1da177e4 6262 break;
46a06401 6263 handled += batch_size;
1da177e4 6264
2953079c 6265 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
46a06401 6266 spin_unlock_irq(&conf->device_lock);
de393cde 6267 md_check_recovery(mddev);
46a06401
SL
6268 spin_lock_irq(&conf->device_lock);
6269 }
1da177e4 6270 }
45b4233c 6271 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
6272
6273 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
6274 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6275 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
6276 grow_one_stripe(conf, __GFP_NOWARN);
6277 /* Set flag even if allocation failed. This helps
6278 * slow down allocation requests when mem is short
6279 */
6280 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 6281 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 6282 }
1da177e4 6283
765d704d
SL
6284 flush_deferred_bios(conf);
6285
0576b1c6
SL
6286 r5l_flush_stripe_to_raid(conf->log);
6287
c9f21aaf 6288 async_tx_issue_pending_all();
e1dfa0a2 6289 blk_finish_plug(&plug);
1da177e4 6290
45b4233c 6291 pr_debug("--- raid5d inactive\n");
1da177e4
LT
6292}
6293
3f294f4f 6294static ssize_t
fd01b88c 6295raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 6296{
7b1485ba
N
6297 struct r5conf *conf;
6298 int ret = 0;
6299 spin_lock(&mddev->lock);
6300 conf = mddev->private;
96de1e66 6301 if (conf)
edbe83ab 6302 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
6303 spin_unlock(&mddev->lock);
6304 return ret;
3f294f4f
N
6305}
6306
c41d4ac4 6307int
fd01b88c 6308raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 6309{
d1688a6d 6310 struct r5conf *conf = mddev->private;
b5470dc5 6311
c41d4ac4 6312 if (size <= 16 || size > 32768)
3f294f4f 6313 return -EINVAL;
486f0644 6314
edbe83ab 6315 conf->min_nr_stripes = size;
2d5b569b 6316 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6317 while (size < conf->max_nr_stripes &&
6318 drop_one_stripe(conf))
6319 ;
2d5b569b 6320 mutex_unlock(&conf->cache_size_mutex);
486f0644 6321
2214c260 6322 md_allow_write(mddev);
486f0644 6323
2d5b569b 6324 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6325 while (size > conf->max_nr_stripes)
6326 if (!grow_one_stripe(conf, GFP_KERNEL))
6327 break;
2d5b569b 6328 mutex_unlock(&conf->cache_size_mutex);
486f0644 6329
c41d4ac4
N
6330 return 0;
6331}
6332EXPORT_SYMBOL(raid5_set_cache_size);
6333
6334static ssize_t
fd01b88c 6335raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 6336{
6791875e 6337 struct r5conf *conf;
c41d4ac4
N
6338 unsigned long new;
6339 int err;
6340
6341 if (len >= PAGE_SIZE)
6342 return -EINVAL;
b29bebd6 6343 if (kstrtoul(page, 10, &new))
c41d4ac4 6344 return -EINVAL;
6791875e 6345 err = mddev_lock(mddev);
c41d4ac4
N
6346 if (err)
6347 return err;
6791875e
N
6348 conf = mddev->private;
6349 if (!conf)
6350 err = -ENODEV;
6351 else
6352 err = raid5_set_cache_size(mddev, new);
6353 mddev_unlock(mddev);
6354
6355 return err ?: len;
3f294f4f 6356}
007583c9 6357
96de1e66
N
6358static struct md_sysfs_entry
6359raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6360 raid5_show_stripe_cache_size,
6361 raid5_store_stripe_cache_size);
3f294f4f 6362
d06f191f
MS
6363static ssize_t
6364raid5_show_rmw_level(struct mddev *mddev, char *page)
6365{
6366 struct r5conf *conf = mddev->private;
6367 if (conf)
6368 return sprintf(page, "%d\n", conf->rmw_level);
6369 else
6370 return 0;
6371}
6372
6373static ssize_t
6374raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6375{
6376 struct r5conf *conf = mddev->private;
6377 unsigned long new;
6378
6379 if (!conf)
6380 return -ENODEV;
6381
6382 if (len >= PAGE_SIZE)
6383 return -EINVAL;
6384
6385 if (kstrtoul(page, 10, &new))
6386 return -EINVAL;
6387
6388 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6389 return -EINVAL;
6390
6391 if (new != PARITY_DISABLE_RMW &&
6392 new != PARITY_ENABLE_RMW &&
6393 new != PARITY_PREFER_RMW)
6394 return -EINVAL;
6395
6396 conf->rmw_level = new;
6397 return len;
6398}
6399
6400static struct md_sysfs_entry
6401raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6402 raid5_show_rmw_level,
6403 raid5_store_rmw_level);
6404
6405
8b3e6cdc 6406static ssize_t
fd01b88c 6407raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6408{
7b1485ba
N
6409 struct r5conf *conf;
6410 int ret = 0;
6411 spin_lock(&mddev->lock);
6412 conf = mddev->private;
8b3e6cdc 6413 if (conf)
7b1485ba
N
6414 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6415 spin_unlock(&mddev->lock);
6416 return ret;
8b3e6cdc
DW
6417}
6418
6419static ssize_t
fd01b88c 6420raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6421{
6791875e 6422 struct r5conf *conf;
4ef197d8 6423 unsigned long new;
6791875e
N
6424 int err;
6425
8b3e6cdc
DW
6426 if (len >= PAGE_SIZE)
6427 return -EINVAL;
b29bebd6 6428 if (kstrtoul(page, 10, &new))
8b3e6cdc 6429 return -EINVAL;
6791875e
N
6430
6431 err = mddev_lock(mddev);
6432 if (err)
6433 return err;
6434 conf = mddev->private;
6435 if (!conf)
6436 err = -ENODEV;
edbe83ab 6437 else if (new > conf->min_nr_stripes)
6791875e
N
6438 err = -EINVAL;
6439 else
6440 conf->bypass_threshold = new;
6441 mddev_unlock(mddev);
6442 return err ?: len;
8b3e6cdc
DW
6443}
6444
6445static struct md_sysfs_entry
6446raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6447 S_IRUGO | S_IWUSR,
6448 raid5_show_preread_threshold,
6449 raid5_store_preread_threshold);
6450
d592a996
SL
6451static ssize_t
6452raid5_show_skip_copy(struct mddev *mddev, char *page)
6453{
7b1485ba
N
6454 struct r5conf *conf;
6455 int ret = 0;
6456 spin_lock(&mddev->lock);
6457 conf = mddev->private;
d592a996 6458 if (conf)
7b1485ba
N
6459 ret = sprintf(page, "%d\n", conf->skip_copy);
6460 spin_unlock(&mddev->lock);
6461 return ret;
d592a996
SL
6462}
6463
6464static ssize_t
6465raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6466{
6791875e 6467 struct r5conf *conf;
d592a996 6468 unsigned long new;
6791875e
N
6469 int err;
6470
d592a996
SL
6471 if (len >= PAGE_SIZE)
6472 return -EINVAL;
d592a996
SL
6473 if (kstrtoul(page, 10, &new))
6474 return -EINVAL;
6475 new = !!new;
6791875e
N
6476
6477 err = mddev_lock(mddev);
6478 if (err)
6479 return err;
6480 conf = mddev->private;
6481 if (!conf)
6482 err = -ENODEV;
6483 else if (new != conf->skip_copy) {
6484 mddev_suspend(mddev);
6485 conf->skip_copy = new;
6486 if (new)
dc3b17cc 6487 mddev->queue->backing_dev_info->capabilities |=
6791875e
N
6488 BDI_CAP_STABLE_WRITES;
6489 else
dc3b17cc 6490 mddev->queue->backing_dev_info->capabilities &=
6791875e
N
6491 ~BDI_CAP_STABLE_WRITES;
6492 mddev_resume(mddev);
6493 }
6494 mddev_unlock(mddev);
6495 return err ?: len;
d592a996
SL
6496}
6497
6498static struct md_sysfs_entry
6499raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6500 raid5_show_skip_copy,
6501 raid5_store_skip_copy);
6502
3f294f4f 6503static ssize_t
fd01b88c 6504stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6505{
d1688a6d 6506 struct r5conf *conf = mddev->private;
96de1e66
N
6507 if (conf)
6508 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6509 else
6510 return 0;
3f294f4f
N
6511}
6512
96de1e66
N
6513static struct md_sysfs_entry
6514raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6515
b721420e
SL
6516static ssize_t
6517raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6518{
7b1485ba
N
6519 struct r5conf *conf;
6520 int ret = 0;
6521 spin_lock(&mddev->lock);
6522 conf = mddev->private;
b721420e 6523 if (conf)
7b1485ba
N
6524 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6525 spin_unlock(&mddev->lock);
6526 return ret;
b721420e
SL
6527}
6528
60aaf933 6529static int alloc_thread_groups(struct r5conf *conf, int cnt,
6530 int *group_cnt,
6531 int *worker_cnt_per_group,
6532 struct r5worker_group **worker_groups);
b721420e
SL
6533static ssize_t
6534raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6535{
6791875e 6536 struct r5conf *conf;
b721420e
SL
6537 unsigned long new;
6538 int err;
60aaf933 6539 struct r5worker_group *new_groups, *old_groups;
6540 int group_cnt, worker_cnt_per_group;
b721420e
SL
6541
6542 if (len >= PAGE_SIZE)
6543 return -EINVAL;
b721420e
SL
6544 if (kstrtoul(page, 10, &new))
6545 return -EINVAL;
6546
6791875e
N
6547 err = mddev_lock(mddev);
6548 if (err)
6549 return err;
6550 conf = mddev->private;
6551 if (!conf)
6552 err = -ENODEV;
6553 else if (new != conf->worker_cnt_per_group) {
6554 mddev_suspend(mddev);
b721420e 6555
6791875e
N
6556 old_groups = conf->worker_groups;
6557 if (old_groups)
6558 flush_workqueue(raid5_wq);
d206dcfa 6559
6791875e
N
6560 err = alloc_thread_groups(conf, new,
6561 &group_cnt, &worker_cnt_per_group,
6562 &new_groups);
6563 if (!err) {
6564 spin_lock_irq(&conf->device_lock);
6565 conf->group_cnt = group_cnt;
6566 conf->worker_cnt_per_group = worker_cnt_per_group;
6567 conf->worker_groups = new_groups;
6568 spin_unlock_irq(&conf->device_lock);
b721420e 6569
6791875e
N
6570 if (old_groups)
6571 kfree(old_groups[0].workers);
6572 kfree(old_groups);
6573 }
6574 mddev_resume(mddev);
b721420e 6575 }
6791875e 6576 mddev_unlock(mddev);
b721420e 6577
6791875e 6578 return err ?: len;
b721420e
SL
6579}
6580
6581static struct md_sysfs_entry
6582raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6583 raid5_show_group_thread_cnt,
6584 raid5_store_group_thread_cnt);
6585
007583c9 6586static struct attribute *raid5_attrs[] = {
3f294f4f
N
6587 &raid5_stripecache_size.attr,
6588 &raid5_stripecache_active.attr,
8b3e6cdc 6589 &raid5_preread_bypass_threshold.attr,
b721420e 6590 &raid5_group_thread_cnt.attr,
d592a996 6591 &raid5_skip_copy.attr,
d06f191f 6592 &raid5_rmw_level.attr,
2c7da14b 6593 &r5c_journal_mode.attr,
3f294f4f
N
6594 NULL,
6595};
007583c9
N
6596static struct attribute_group raid5_attrs_group = {
6597 .name = NULL,
6598 .attrs = raid5_attrs,
3f294f4f
N
6599};
6600
60aaf933 6601static int alloc_thread_groups(struct r5conf *conf, int cnt,
6602 int *group_cnt,
6603 int *worker_cnt_per_group,
6604 struct r5worker_group **worker_groups)
851c30c9 6605{
566c09c5 6606 int i, j, k;
851c30c9
SL
6607 ssize_t size;
6608 struct r5worker *workers;
6609
60aaf933 6610 *worker_cnt_per_group = cnt;
851c30c9 6611 if (cnt == 0) {
60aaf933 6612 *group_cnt = 0;
6613 *worker_groups = NULL;
851c30c9
SL
6614 return 0;
6615 }
60aaf933 6616 *group_cnt = num_possible_nodes();
851c30c9 6617 size = sizeof(struct r5worker) * cnt;
60aaf933 6618 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6619 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6620 *group_cnt, GFP_NOIO);
6621 if (!*worker_groups || !workers) {
851c30c9 6622 kfree(workers);
60aaf933 6623 kfree(*worker_groups);
851c30c9
SL
6624 return -ENOMEM;
6625 }
6626
60aaf933 6627 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6628 struct r5worker_group *group;
6629
0c775d52 6630 group = &(*worker_groups)[i];
851c30c9 6631 INIT_LIST_HEAD(&group->handle_list);
535ae4eb 6632 INIT_LIST_HEAD(&group->loprio_list);
851c30c9
SL
6633 group->conf = conf;
6634 group->workers = workers + i * cnt;
6635
6636 for (j = 0; j < cnt; j++) {
566c09c5
SL
6637 struct r5worker *worker = group->workers + j;
6638 worker->group = group;
6639 INIT_WORK(&worker->work, raid5_do_work);
6640
6641 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6642 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6643 }
6644 }
6645
6646 return 0;
6647}
6648
6649static void free_thread_groups(struct r5conf *conf)
6650{
6651 if (conf->worker_groups)
6652 kfree(conf->worker_groups[0].workers);
6653 kfree(conf->worker_groups);
6654 conf->worker_groups = NULL;
6655}
6656
80c3a6ce 6657static sector_t
fd01b88c 6658raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6659{
d1688a6d 6660 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6661
6662 if (!sectors)
6663 sectors = mddev->dev_sectors;
5e5e3e78 6664 if (!raid_disks)
7ec05478 6665 /* size is defined by the smallest of previous and new size */
5e5e3e78 6666 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6667
3cb5edf4
N
6668 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6669 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6670 return sectors * (raid_disks - conf->max_degraded);
6671}
6672
789b5e03
ON
6673static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6674{
6675 safe_put_page(percpu->spare_page);
46d5b785 6676 if (percpu->scribble)
6677 flex_array_free(percpu->scribble);
789b5e03
ON
6678 percpu->spare_page = NULL;
6679 percpu->scribble = NULL;
6680}
6681
6682static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6683{
6684 if (conf->level == 6 && !percpu->spare_page)
6685 percpu->spare_page = alloc_page(GFP_KERNEL);
6686 if (!percpu->scribble)
46d5b785 6687 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6688 conf->previous_raid_disks),
6689 max(conf->chunk_sectors,
6690 conf->prev_chunk_sectors)
6691 / STRIPE_SECTORS,
6692 GFP_KERNEL);
789b5e03
ON
6693
6694 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6695 free_scratch_buffer(conf, percpu);
6696 return -ENOMEM;
6697 }
6698
6699 return 0;
6700}
6701
29c6d1bb 6702static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
36d1c647 6703{
29c6d1bb
SAS
6704 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6705
6706 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6707 return 0;
6708}
36d1c647 6709
29c6d1bb
SAS
6710static void raid5_free_percpu(struct r5conf *conf)
6711{
36d1c647
DW
6712 if (!conf->percpu)
6713 return;
6714
29c6d1bb 6715 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
36d1c647
DW
6716 free_percpu(conf->percpu);
6717}
6718
d1688a6d 6719static void free_conf(struct r5conf *conf)
95fc17aa 6720{
d7bd398e
SL
6721 int i;
6722
ff875738
AP
6723 log_exit(conf);
6724
30c89465 6725 if (conf->shrinker.nr_deferred)
edbe83ab 6726 unregister_shrinker(&conf->shrinker);
5c7e81c3 6727
851c30c9 6728 free_thread_groups(conf);
95fc17aa 6729 shrink_stripes(conf);
36d1c647 6730 raid5_free_percpu(conf);
d7bd398e
SL
6731 for (i = 0; i < conf->pool_size; i++)
6732 if (conf->disks[i].extra_page)
6733 put_page(conf->disks[i].extra_page);
95fc17aa 6734 kfree(conf->disks);
dd7a8f5d
N
6735 if (conf->bio_split)
6736 bioset_free(conf->bio_split);
95fc17aa 6737 kfree(conf->stripe_hashtbl);
aaf9f12e 6738 kfree(conf->pending_data);
95fc17aa
DW
6739 kfree(conf);
6740}
6741
29c6d1bb 6742static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
36d1c647 6743{
29c6d1bb 6744 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
36d1c647
DW
6745 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6746
29c6d1bb 6747 if (alloc_scratch_buffer(conf, percpu)) {
cc6167b4
N
6748 pr_warn("%s: failed memory allocation for cpu%u\n",
6749 __func__, cpu);
29c6d1bb 6750 return -ENOMEM;
36d1c647 6751 }
29c6d1bb 6752 return 0;
36d1c647 6753}
36d1c647 6754
d1688a6d 6755static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647 6756{
789b5e03 6757 int err = 0;
36d1c647 6758
789b5e03
ON
6759 conf->percpu = alloc_percpu(struct raid5_percpu);
6760 if (!conf->percpu)
36d1c647 6761 return -ENOMEM;
789b5e03 6762
29c6d1bb 6763 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
27a353c0
SL
6764 if (!err) {
6765 conf->scribble_disks = max(conf->raid_disks,
6766 conf->previous_raid_disks);
6767 conf->scribble_sectors = max(conf->chunk_sectors,
6768 conf->prev_chunk_sectors);
6769 }
36d1c647
DW
6770 return err;
6771}
6772
edbe83ab
N
6773static unsigned long raid5_cache_scan(struct shrinker *shrink,
6774 struct shrink_control *sc)
6775{
6776 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6777 unsigned long ret = SHRINK_STOP;
6778
6779 if (mutex_trylock(&conf->cache_size_mutex)) {
6780 ret= 0;
49895bcc
N
6781 while (ret < sc->nr_to_scan &&
6782 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6783 if (drop_one_stripe(conf) == 0) {
6784 ret = SHRINK_STOP;
6785 break;
6786 }
6787 ret++;
6788 }
6789 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6790 }
6791 return ret;
6792}
6793
6794static unsigned long raid5_cache_count(struct shrinker *shrink,
6795 struct shrink_control *sc)
6796{
6797 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6798
6799 if (conf->max_nr_stripes < conf->min_nr_stripes)
6800 /* unlikely, but not impossible */
6801 return 0;
6802 return conf->max_nr_stripes - conf->min_nr_stripes;
6803}
6804
d1688a6d 6805static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6806{
d1688a6d 6807 struct r5conf *conf;
5e5e3e78 6808 int raid_disk, memory, max_disks;
3cb03002 6809 struct md_rdev *rdev;
1da177e4 6810 struct disk_info *disk;
0232605d 6811 char pers_name[6];
566c09c5 6812 int i;
60aaf933 6813 int group_cnt, worker_cnt_per_group;
6814 struct r5worker_group *new_group;
1da177e4 6815
91adb564
N
6816 if (mddev->new_level != 5
6817 && mddev->new_level != 4
6818 && mddev->new_level != 6) {
cc6167b4
N
6819 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6820 mdname(mddev), mddev->new_level);
91adb564 6821 return ERR_PTR(-EIO);
1da177e4 6822 }
91adb564
N
6823 if ((mddev->new_level == 5
6824 && !algorithm_valid_raid5(mddev->new_layout)) ||
6825 (mddev->new_level == 6
6826 && !algorithm_valid_raid6(mddev->new_layout))) {
cc6167b4
N
6827 pr_warn("md/raid:%s: layout %d not supported\n",
6828 mdname(mddev), mddev->new_layout);
91adb564 6829 return ERR_PTR(-EIO);
99c0fb5f 6830 }
91adb564 6831 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
cc6167b4
N
6832 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6833 mdname(mddev), mddev->raid_disks);
91adb564 6834 return ERR_PTR(-EINVAL);
4bbf3771
N
6835 }
6836
664e7c41
AN
6837 if (!mddev->new_chunk_sectors ||
6838 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6839 !is_power_of_2(mddev->new_chunk_sectors)) {
cc6167b4
N
6840 pr_warn("md/raid:%s: invalid chunk size %d\n",
6841 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6842 return ERR_PTR(-EINVAL);
f6705578
N
6843 }
6844
d1688a6d 6845 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6846 if (conf == NULL)
1da177e4 6847 goto abort;
aaf9f12e
SL
6848 INIT_LIST_HEAD(&conf->free_list);
6849 INIT_LIST_HEAD(&conf->pending_list);
6850 conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6851 PENDING_IO_MAX, GFP_KERNEL);
6852 if (!conf->pending_data)
6853 goto abort;
6854 for (i = 0; i < PENDING_IO_MAX; i++)
6855 list_add(&conf->pending_data[i].sibling, &conf->free_list);
851c30c9 6856 /* Don't enable multi-threading by default*/
60aaf933 6857 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6858 &new_group)) {
6859 conf->group_cnt = group_cnt;
6860 conf->worker_cnt_per_group = worker_cnt_per_group;
6861 conf->worker_groups = new_group;
6862 } else
851c30c9 6863 goto abort;
f5efd45a 6864 spin_lock_init(&conf->device_lock);
c46501b2 6865 seqcount_init(&conf->gen_lock);
2d5b569b 6866 mutex_init(&conf->cache_size_mutex);
b1b46486 6867 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 6868 init_waitqueue_head(&conf->wait_for_stripe);
f5efd45a
DW
6869 init_waitqueue_head(&conf->wait_for_overlap);
6870 INIT_LIST_HEAD(&conf->handle_list);
535ae4eb 6871 INIT_LIST_HEAD(&conf->loprio_list);
f5efd45a
DW
6872 INIT_LIST_HEAD(&conf->hold_list);
6873 INIT_LIST_HEAD(&conf->delayed_list);
6874 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6875 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6876 atomic_set(&conf->active_stripes, 0);
6877 atomic_set(&conf->preread_active_stripes, 0);
6878 atomic_set(&conf->active_aligned_reads, 0);
765d704d
SL
6879 spin_lock_init(&conf->pending_bios_lock);
6880 conf->batch_bio_dispatch = true;
6881 rdev_for_each(rdev, mddev) {
6882 if (test_bit(Journal, &rdev->flags))
6883 continue;
6884 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6885 conf->batch_bio_dispatch = false;
6886 break;
6887 }
6888 }
6889
f5efd45a 6890 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6891 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6892
6893 conf->raid_disks = mddev->raid_disks;
6894 if (mddev->reshape_position == MaxSector)
6895 conf->previous_raid_disks = mddev->raid_disks;
6896 else
f6705578 6897 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6898 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6899
5e5e3e78 6900 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc 6901 GFP_KERNEL);
d7bd398e 6902
b55e6bfc
N
6903 if (!conf->disks)
6904 goto abort;
9ffae0cf 6905
d7bd398e
SL
6906 for (i = 0; i < max_disks; i++) {
6907 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6908 if (!conf->disks[i].extra_page)
6909 goto abort;
6910 }
6911
dd7a8f5d
N
6912 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
6913 if (!conf->bio_split)
6914 goto abort;
1da177e4
LT
6915 conf->mddev = mddev;
6916
fccddba0 6917 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6918 goto abort;
1da177e4 6919
566c09c5
SL
6920 /* We init hash_locks[0] separately to that it can be used
6921 * as the reference lock in the spin_lock_nest_lock() call
6922 * in lock_all_device_hash_locks_irq in order to convince
6923 * lockdep that we know what we are doing.
6924 */
6925 spin_lock_init(conf->hash_locks);
6926 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6927 spin_lock_init(conf->hash_locks + i);
6928
6929 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6930 INIT_LIST_HEAD(conf->inactive_list + i);
6931
6932 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6933 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6934
1e6d690b
SL
6935 atomic_set(&conf->r5c_cached_full_stripes, 0);
6936 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6937 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6938 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
e33fbb9c
SL
6939 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6940 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
1e6d690b 6941
36d1c647 6942 conf->level = mddev->new_level;
46d5b785 6943 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6944 if (raid5_alloc_percpu(conf) != 0)
6945 goto abort;
6946
0c55e022 6947 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6948
dafb20fa 6949 rdev_for_each(rdev, mddev) {
1da177e4 6950 raid_disk = rdev->raid_disk;
5e5e3e78 6951 if (raid_disk >= max_disks
f2076e7d 6952 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
6953 continue;
6954 disk = conf->disks + raid_disk;
6955
17045f52
N
6956 if (test_bit(Replacement, &rdev->flags)) {
6957 if (disk->replacement)
6958 goto abort;
6959 disk->replacement = rdev;
6960 } else {
6961 if (disk->rdev)
6962 goto abort;
6963 disk->rdev = rdev;
6964 }
1da177e4 6965
b2d444d7 6966 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6967 char b[BDEVNAME_SIZE];
cc6167b4
N
6968 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6969 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6970 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6971 /* Cannot rely on bitmap to complete recovery */
6972 conf->fullsync = 1;
1da177e4
LT
6973 }
6974
91adb564 6975 conf->level = mddev->new_level;
584acdd4 6976 if (conf->level == 6) {
16a53ecc 6977 conf->max_degraded = 2;
584acdd4
MS
6978 if (raid6_call.xor_syndrome)
6979 conf->rmw_level = PARITY_ENABLE_RMW;
6980 else
6981 conf->rmw_level = PARITY_DISABLE_RMW;
6982 } else {
16a53ecc 6983 conf->max_degraded = 1;
584acdd4
MS
6984 conf->rmw_level = PARITY_ENABLE_RMW;
6985 }
91adb564 6986 conf->algorithm = mddev->new_layout;
fef9c61f 6987 conf->reshape_progress = mddev->reshape_position;
e183eaed 6988 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6989 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 6990 conf->prev_algo = mddev->layout;
5cac6bcb
N
6991 } else {
6992 conf->prev_chunk_sectors = conf->chunk_sectors;
6993 conf->prev_algo = conf->algorithm;
e183eaed 6994 }
1da177e4 6995
edbe83ab 6996 conf->min_nr_stripes = NR_STRIPES;
ad5b0f76
SL
6997 if (mddev->reshape_position != MaxSector) {
6998 int stripes = max_t(int,
6999 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7000 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7001 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7002 if (conf->min_nr_stripes != NR_STRIPES)
cc6167b4 7003 pr_info("md/raid:%s: force stripe size %d for reshape\n",
ad5b0f76
SL
7004 mdname(mddev), conf->min_nr_stripes);
7005 }
edbe83ab 7006 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 7007 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 7008 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 7009 if (grow_stripes(conf, conf->min_nr_stripes)) {
cc6167b4
N
7010 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7011 mdname(mddev), memory);
91adb564
N
7012 goto abort;
7013 } else
cc6167b4 7014 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
edbe83ab
N
7015 /*
7016 * Losing a stripe head costs more than the time to refill it,
7017 * it reduces the queue depth and so can hurt throughput.
7018 * So set it rather large, scaled by number of devices.
7019 */
7020 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7021 conf->shrinker.scan_objects = raid5_cache_scan;
7022 conf->shrinker.count_objects = raid5_cache_count;
7023 conf->shrinker.batch = 128;
7024 conf->shrinker.flags = 0;
6a0f53ff 7025 if (register_shrinker(&conf->shrinker)) {
cc6167b4
N
7026 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7027 mdname(mddev));
6a0f53ff
CY
7028 goto abort;
7029 }
1da177e4 7030
0232605d
N
7031 sprintf(pers_name, "raid%d", mddev->new_level);
7032 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564 7033 if (!conf->thread) {
cc6167b4
N
7034 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7035 mdname(mddev));
16a53ecc
N
7036 goto abort;
7037 }
91adb564
N
7038
7039 return conf;
7040
7041 abort:
7042 if (conf) {
95fc17aa 7043 free_conf(conf);
91adb564
N
7044 return ERR_PTR(-EIO);
7045 } else
7046 return ERR_PTR(-ENOMEM);
7047}
7048
c148ffdc
N
7049static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7050{
7051 switch (algo) {
7052 case ALGORITHM_PARITY_0:
7053 if (raid_disk < max_degraded)
7054 return 1;
7055 break;
7056 case ALGORITHM_PARITY_N:
7057 if (raid_disk >= raid_disks - max_degraded)
7058 return 1;
7059 break;
7060 case ALGORITHM_PARITY_0_6:
f72ffdd6 7061 if (raid_disk == 0 ||
c148ffdc
N
7062 raid_disk == raid_disks - 1)
7063 return 1;
7064 break;
7065 case ALGORITHM_LEFT_ASYMMETRIC_6:
7066 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7067 case ALGORITHM_LEFT_SYMMETRIC_6:
7068 case ALGORITHM_RIGHT_SYMMETRIC_6:
7069 if (raid_disk == raid_disks - 1)
7070 return 1;
7071 }
7072 return 0;
7073}
7074
849674e4 7075static int raid5_run(struct mddev *mddev)
91adb564 7076{
d1688a6d 7077 struct r5conf *conf;
9f7c2220 7078 int working_disks = 0;
c148ffdc 7079 int dirty_parity_disks = 0;
3cb03002 7080 struct md_rdev *rdev;
713cf5a6 7081 struct md_rdev *journal_dev = NULL;
c148ffdc 7082 sector_t reshape_offset = 0;
17045f52 7083 int i;
b5254dd5
N
7084 long long min_offset_diff = 0;
7085 int first = 1;
91adb564 7086
8c6ac868 7087 if (mddev->recovery_cp != MaxSector)
cc6167b4
N
7088 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7089 mdname(mddev));
b5254dd5
N
7090
7091 rdev_for_each(rdev, mddev) {
7092 long long diff;
713cf5a6 7093
f2076e7d 7094 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 7095 journal_dev = rdev;
f2076e7d
SL
7096 continue;
7097 }
b5254dd5
N
7098 if (rdev->raid_disk < 0)
7099 continue;
7100 diff = (rdev->new_data_offset - rdev->data_offset);
7101 if (first) {
7102 min_offset_diff = diff;
7103 first = 0;
7104 } else if (mddev->reshape_backwards &&
7105 diff < min_offset_diff)
7106 min_offset_diff = diff;
7107 else if (!mddev->reshape_backwards &&
7108 diff > min_offset_diff)
7109 min_offset_diff = diff;
7110 }
7111
91adb564
N
7112 if (mddev->reshape_position != MaxSector) {
7113 /* Check that we can continue the reshape.
b5254dd5
N
7114 * Difficulties arise if the stripe we would write to
7115 * next is at or after the stripe we would read from next.
7116 * For a reshape that changes the number of devices, this
7117 * is only possible for a very short time, and mdadm makes
7118 * sure that time appears to have past before assembling
7119 * the array. So we fail if that time hasn't passed.
7120 * For a reshape that keeps the number of devices the same
7121 * mdadm must be monitoring the reshape can keeping the
7122 * critical areas read-only and backed up. It will start
7123 * the array in read-only mode, so we check for that.
91adb564
N
7124 */
7125 sector_t here_new, here_old;
7126 int old_disks;
18b00334 7127 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
7128 int chunk_sectors;
7129 int new_data_disks;
91adb564 7130
713cf5a6 7131 if (journal_dev) {
cc6167b4
N
7132 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7133 mdname(mddev));
713cf5a6
SL
7134 return -EINVAL;
7135 }
7136
88ce4930 7137 if (mddev->new_level != mddev->level) {
cc6167b4
N
7138 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7139 mdname(mddev));
91adb564
N
7140 return -EINVAL;
7141 }
91adb564
N
7142 old_disks = mddev->raid_disks - mddev->delta_disks;
7143 /* reshape_position must be on a new-stripe boundary, and one
7144 * further up in new geometry must map after here in old
7145 * geometry.
05256d98
N
7146 * If the chunk sizes are different, then as we perform reshape
7147 * in units of the largest of the two, reshape_position needs
7148 * be a multiple of the largest chunk size times new data disks.
91adb564
N
7149 */
7150 here_new = mddev->reshape_position;
05256d98
N
7151 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7152 new_data_disks = mddev->raid_disks - max_degraded;
7153 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
cc6167b4
N
7154 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7155 mdname(mddev));
91adb564
N
7156 return -EINVAL;
7157 }
05256d98 7158 reshape_offset = here_new * chunk_sectors;
91adb564
N
7159 /* here_new is the stripe we will write to */
7160 here_old = mddev->reshape_position;
05256d98 7161 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
7162 /* here_old is the first stripe that we might need to read
7163 * from */
67ac6011
N
7164 if (mddev->delta_disks == 0) {
7165 /* We cannot be sure it is safe to start an in-place
b5254dd5 7166 * reshape. It is only safe if user-space is monitoring
67ac6011
N
7167 * and taking constant backups.
7168 * mdadm always starts a situation like this in
7169 * readonly mode so it can take control before
7170 * allowing any writes. So just check for that.
7171 */
b5254dd5
N
7172 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7173 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7174 /* not really in-place - so OK */;
7175 else if (mddev->ro == 0) {
cc6167b4
N
7176 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7177 mdname(mddev));
67ac6011
N
7178 return -EINVAL;
7179 }
2c810cdd 7180 } else if (mddev->reshape_backwards
05256d98
N
7181 ? (here_new * chunk_sectors + min_offset_diff <=
7182 here_old * chunk_sectors)
7183 : (here_new * chunk_sectors >=
7184 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 7185 /* Reading from the same stripe as writing to - bad */
cc6167b4
N
7186 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7187 mdname(mddev));
91adb564
N
7188 return -EINVAL;
7189 }
cc6167b4 7190 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
91adb564
N
7191 /* OK, we should be able to continue; */
7192 } else {
7193 BUG_ON(mddev->level != mddev->new_level);
7194 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 7195 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 7196 BUG_ON(mddev->delta_disks != 0);
1da177e4 7197 }
91adb564 7198
3418d036
AP
7199 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7200 test_bit(MD_HAS_PPL, &mddev->flags)) {
7201 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7202 mdname(mddev));
7203 clear_bit(MD_HAS_PPL, &mddev->flags);
7204 }
7205
245f46c2
N
7206 if (mddev->private == NULL)
7207 conf = setup_conf(mddev);
7208 else
7209 conf = mddev->private;
7210
91adb564
N
7211 if (IS_ERR(conf))
7212 return PTR_ERR(conf);
7213
486b0f7b
SL
7214 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7215 if (!journal_dev) {
cc6167b4
N
7216 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7217 mdname(mddev));
486b0f7b
SL
7218 mddev->ro = 1;
7219 set_disk_ro(mddev->gendisk, 1);
7220 } else if (mddev->recovery_cp == MaxSector)
7221 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7dde2ad3
SL
7222 }
7223
b5254dd5 7224 conf->min_offset_diff = min_offset_diff;
91adb564
N
7225 mddev->thread = conf->thread;
7226 conf->thread = NULL;
7227 mddev->private = conf;
7228
17045f52
N
7229 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7230 i++) {
7231 rdev = conf->disks[i].rdev;
7232 if (!rdev && conf->disks[i].replacement) {
7233 /* The replacement is all we have yet */
7234 rdev = conf->disks[i].replacement;
7235 conf->disks[i].replacement = NULL;
7236 clear_bit(Replacement, &rdev->flags);
7237 conf->disks[i].rdev = rdev;
7238 }
7239 if (!rdev)
c148ffdc 7240 continue;
17045f52
N
7241 if (conf->disks[i].replacement &&
7242 conf->reshape_progress != MaxSector) {
7243 /* replacements and reshape simply do not mix. */
cc6167b4 7244 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
17045f52
N
7245 goto abort;
7246 }
2f115882 7247 if (test_bit(In_sync, &rdev->flags)) {
91adb564 7248 working_disks++;
2f115882
N
7249 continue;
7250 }
c148ffdc
N
7251 /* This disc is not fully in-sync. However if it
7252 * just stored parity (beyond the recovery_offset),
7253 * when we don't need to be concerned about the
7254 * array being dirty.
7255 * When reshape goes 'backwards', we never have
7256 * partially completed devices, so we only need
7257 * to worry about reshape going forwards.
7258 */
7259 /* Hack because v0.91 doesn't store recovery_offset properly. */
7260 if (mddev->major_version == 0 &&
7261 mddev->minor_version > 90)
7262 rdev->recovery_offset = reshape_offset;
5026d7a9 7263
c148ffdc
N
7264 if (rdev->recovery_offset < reshape_offset) {
7265 /* We need to check old and new layout */
7266 if (!only_parity(rdev->raid_disk,
7267 conf->algorithm,
7268 conf->raid_disks,
7269 conf->max_degraded))
7270 continue;
7271 }
7272 if (!only_parity(rdev->raid_disk,
7273 conf->prev_algo,
7274 conf->previous_raid_disks,
7275 conf->max_degraded))
7276 continue;
7277 dirty_parity_disks++;
7278 }
91adb564 7279
17045f52
N
7280 /*
7281 * 0 for a fully functional array, 1 or 2 for a degraded array.
7282 */
2e38a37f 7283 mddev->degraded = raid5_calc_degraded(conf);
91adb564 7284
674806d6 7285 if (has_failed(conf)) {
cc6167b4 7286 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
02c2de8c 7287 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
7288 goto abort;
7289 }
7290
91adb564 7291 /* device size must be a multiple of chunk size */
9d8f0363 7292 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
7293 mddev->resync_max_sectors = mddev->dev_sectors;
7294
c148ffdc 7295 if (mddev->degraded > dirty_parity_disks &&
1da177e4 7296 mddev->recovery_cp != MaxSector) {
4536bf9b
AP
7297 if (test_bit(MD_HAS_PPL, &mddev->flags))
7298 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7299 mdname(mddev));
7300 else if (mddev->ok_start_degraded)
cc6167b4
N
7301 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7302 mdname(mddev));
6ff8d8ec 7303 else {
cc6167b4
N
7304 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7305 mdname(mddev));
6ff8d8ec
N
7306 goto abort;
7307 }
1da177e4
LT
7308 }
7309
cc6167b4
N
7310 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7311 mdname(mddev), conf->level,
7312 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7313 mddev->new_layout);
1da177e4
LT
7314
7315 print_raid5_conf(conf);
7316
fef9c61f 7317 if (conf->reshape_progress != MaxSector) {
fef9c61f 7318 conf->reshape_safe = conf->reshape_progress;
f6705578
N
7319 atomic_set(&conf->reshape_stripes, 0);
7320 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7321 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7322 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7323 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7324 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7325 "reshape");
f6705578
N
7326 }
7327
1da177e4 7328 /* Ok, everything is just fine now */
a64c876f
N
7329 if (mddev->to_remove == &raid5_attrs_group)
7330 mddev->to_remove = NULL;
00bcb4ac
N
7331 else if (mddev->kobj.sd &&
7332 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
cc6167b4
N
7333 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7334 mdname(mddev));
4a5add49 7335 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 7336
4a5add49 7337 if (mddev->queue) {
9f7c2220 7338 int chunk_size;
4a5add49
N
7339 /* read-ahead size must cover two whole stripes, which
7340 * is 2 * (datadisks) * chunksize where 'n' is the
7341 * number of raid devices
7342 */
7343 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7344 int stripe = data_disks *
7345 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
dc3b17cc
JK
7346 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7347 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
91adb564 7348
9f7c2220
N
7349 chunk_size = mddev->chunk_sectors << 9;
7350 blk_queue_io_min(mddev->queue, chunk_size);
7351 blk_queue_io_opt(mddev->queue, chunk_size *
7352 (conf->raid_disks - conf->max_degraded));
c78afc62 7353 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
7354 /*
7355 * We can only discard a whole stripe. It doesn't make sense to
7356 * discard data disk but write parity disk
7357 */
7358 stripe = stripe * PAGE_SIZE;
4ac6875e
N
7359 /* Round up to power of 2, as discard handling
7360 * currently assumes that */
7361 while ((stripe-1) & stripe)
7362 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
7363 mddev->queue->limits.discard_alignment = stripe;
7364 mddev->queue->limits.discard_granularity = stripe;
e8d7c332 7365
5026d7a9 7366 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7 7367 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
5026d7a9 7368
05616be5 7369 rdev_for_each(rdev, mddev) {
9f7c2220
N
7370 disk_stack_limits(mddev->gendisk, rdev->bdev,
7371 rdev->data_offset << 9);
05616be5
N
7372 disk_stack_limits(mddev->gendisk, rdev->bdev,
7373 rdev->new_data_offset << 9);
7374 }
620125f2 7375
48920ff2
CH
7376 /*
7377 * zeroing is required, otherwise data
7378 * could be lost. Consider a scenario: discard a stripe
7379 * (the stripe could be inconsistent if
7380 * discard_zeroes_data is 0); write one disk of the
7381 * stripe (the stripe could be inconsistent again
7382 * depending on which disks are used to calculate
7383 * parity); the disk is broken; The stripe data of this
7384 * disk is lost.
7385 *
7386 * We only allow DISCARD if the sysadmin has confirmed that
7387 * only safe devices are in use by setting a module parameter.
7388 * A better idea might be to turn DISCARD into WRITE_ZEROES
7389 * requests, as that is required to be safe.
7390 */
7391 if (devices_handle_discard_safely &&
e7597e69
JS
7392 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7393 mddev->queue->limits.discard_granularity >= stripe)
620125f2
SL
7394 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7395 mddev->queue);
7396 else
7397 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7398 mddev->queue);
1dffdddd
SL
7399
7400 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
9f7c2220 7401 }
23032a0e 7402
845b9e22 7403 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
ff875738 7404 goto abort;
5c7e81c3 7405
1da177e4
LT
7406 return 0;
7407abort:
01f96c0a 7408 md_unregister_thread(&mddev->thread);
e4f869d9
N
7409 print_raid5_conf(conf);
7410 free_conf(conf);
1da177e4 7411 mddev->private = NULL;
cc6167b4 7412 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
7413 return -EIO;
7414}
7415
afa0f557 7416static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 7417{
afa0f557 7418 struct r5conf *conf = priv;
1da177e4 7419
95fc17aa 7420 free_conf(conf);
a64c876f 7421 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7422}
7423
849674e4 7424static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7425{
d1688a6d 7426 struct r5conf *conf = mddev->private;
1da177e4
LT
7427 int i;
7428
9d8f0363 7429 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7430 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7431 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5fd13351
N
7432 rcu_read_lock();
7433 for (i = 0; i < conf->raid_disks; i++) {
7434 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7435 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7436 }
7437 rcu_read_unlock();
1da177e4 7438 seq_printf (seq, "]");
1da177e4
LT
7439}
7440
d1688a6d 7441static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7442{
7443 int i;
7444 struct disk_info *tmp;
7445
cc6167b4 7446 pr_debug("RAID conf printout:\n");
1da177e4 7447 if (!conf) {
cc6167b4 7448 pr_debug("(conf==NULL)\n");
1da177e4
LT
7449 return;
7450 }
cc6167b4 7451 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
0c55e022
N
7452 conf->raid_disks,
7453 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7454
7455 for (i = 0; i < conf->raid_disks; i++) {
7456 char b[BDEVNAME_SIZE];
7457 tmp = conf->disks + i;
7458 if (tmp->rdev)
cc6167b4 7459 pr_debug(" disk %d, o:%d, dev:%s\n",
0c55e022
N
7460 i, !test_bit(Faulty, &tmp->rdev->flags),
7461 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7462 }
7463}
7464
fd01b88c 7465static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7466{
7467 int i;
d1688a6d 7468 struct r5conf *conf = mddev->private;
1da177e4 7469 struct disk_info *tmp;
6b965620
N
7470 int count = 0;
7471 unsigned long flags;
1da177e4
LT
7472
7473 for (i = 0; i < conf->raid_disks; i++) {
7474 tmp = conf->disks + i;
dd054fce
N
7475 if (tmp->replacement
7476 && tmp->replacement->recovery_offset == MaxSector
7477 && !test_bit(Faulty, &tmp->replacement->flags)
7478 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7479 /* Replacement has just become active. */
7480 if (!tmp->rdev
7481 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7482 count++;
7483 if (tmp->rdev) {
7484 /* Replaced device not technically faulty,
7485 * but we need to be sure it gets removed
7486 * and never re-added.
7487 */
7488 set_bit(Faulty, &tmp->rdev->flags);
7489 sysfs_notify_dirent_safe(
7490 tmp->rdev->sysfs_state);
7491 }
7492 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7493 } else if (tmp->rdev
70fffd0b 7494 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7495 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7496 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7497 count++;
43c73ca4 7498 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7499 }
7500 }
6b965620 7501 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7502 mddev->degraded = raid5_calc_degraded(conf);
6b965620 7503 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7504 print_raid5_conf(conf);
6b965620 7505 return count;
1da177e4
LT
7506}
7507
b8321b68 7508static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7509{
d1688a6d 7510 struct r5conf *conf = mddev->private;
1da177e4 7511 int err = 0;
b8321b68 7512 int number = rdev->raid_disk;
657e3e4d 7513 struct md_rdev **rdevp;
1da177e4
LT
7514 struct disk_info *p = conf->disks + number;
7515
7516 print_raid5_conf(conf);
f6b6ec5c 7517 if (test_bit(Journal, &rdev->flags) && conf->log) {
c2bb6242 7518 /*
f6b6ec5c
SL
7519 * we can't wait pending write here, as this is called in
7520 * raid5d, wait will deadlock.
84dd97a6
N
7521 * neilb: there is no locking about new writes here,
7522 * so this cannot be safe.
c2bb6242 7523 */
84dd97a6 7524 if (atomic_read(&conf->active_stripes)) {
f6b6ec5c 7525 return -EBUSY;
84dd97a6 7526 }
ff875738 7527 log_exit(conf);
f6b6ec5c 7528 return 0;
c2bb6242 7529 }
657e3e4d
N
7530 if (rdev == p->rdev)
7531 rdevp = &p->rdev;
7532 else if (rdev == p->replacement)
7533 rdevp = &p->replacement;
7534 else
7535 return 0;
7536
7537 if (number >= conf->raid_disks &&
7538 conf->reshape_progress == MaxSector)
7539 clear_bit(In_sync, &rdev->flags);
7540
7541 if (test_bit(In_sync, &rdev->flags) ||
7542 atomic_read(&rdev->nr_pending)) {
7543 err = -EBUSY;
7544 goto abort;
7545 }
7546 /* Only remove non-faulty devices if recovery
7547 * isn't possible.
7548 */
7549 if (!test_bit(Faulty, &rdev->flags) &&
7550 mddev->recovery_disabled != conf->recovery_disabled &&
7551 !has_failed(conf) &&
dd054fce 7552 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7553 number < conf->raid_disks) {
7554 err = -EBUSY;
7555 goto abort;
7556 }
7557 *rdevp = NULL;
d787be40
N
7558 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7559 synchronize_rcu();
7560 if (atomic_read(&rdev->nr_pending)) {
7561 /* lost the race, try later */
7562 err = -EBUSY;
7563 *rdevp = rdev;
7564 }
7565 }
6358c239
AP
7566 if (!err) {
7567 err = log_modify(conf, rdev, false);
7568 if (err)
7569 goto abort;
7570 }
d787be40 7571 if (p->replacement) {
dd054fce
N
7572 /* We must have just cleared 'rdev' */
7573 p->rdev = p->replacement;
7574 clear_bit(Replacement, &p->replacement->flags);
7575 smp_mb(); /* Make sure other CPUs may see both as identical
7576 * but will never see neither - if they are careful
7577 */
7578 p->replacement = NULL;
6358c239
AP
7579
7580 if (!err)
7581 err = log_modify(conf, p->rdev, true);
e5bc9c3c
GJ
7582 }
7583
7584 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7585abort:
7586
7587 print_raid5_conf(conf);
7588 return err;
7589}
7590
fd01b88c 7591static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7592{
d1688a6d 7593 struct r5conf *conf = mddev->private;
199050ea 7594 int err = -EEXIST;
1da177e4
LT
7595 int disk;
7596 struct disk_info *p;
6c2fce2e
NB
7597 int first = 0;
7598 int last = conf->raid_disks - 1;
1da177e4 7599
f6b6ec5c 7600 if (test_bit(Journal, &rdev->flags)) {
f6b6ec5c
SL
7601 if (conf->log)
7602 return -EBUSY;
7603
7604 rdev->raid_disk = 0;
7605 /*
7606 * The array is in readonly mode if journal is missing, so no
7607 * write requests running. We should be safe
7608 */
845b9e22 7609 log_init(conf, rdev, false);
f6b6ec5c
SL
7610 return 0;
7611 }
7f0da59b
N
7612 if (mddev->recovery_disabled == conf->recovery_disabled)
7613 return -EBUSY;
7614
dc10c643 7615 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7616 /* no point adding a device */
199050ea 7617 return -EINVAL;
1da177e4 7618
6c2fce2e
NB
7619 if (rdev->raid_disk >= 0)
7620 first = last = rdev->raid_disk;
1da177e4
LT
7621
7622 /*
16a53ecc
N
7623 * find the disk ... but prefer rdev->saved_raid_disk
7624 * if possible.
1da177e4 7625 */
16a53ecc 7626 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7627 rdev->saved_raid_disk >= first &&
16a53ecc 7628 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7629 first = rdev->saved_raid_disk;
7630
7631 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7632 p = conf->disks + disk;
7633 if (p->rdev == NULL) {
b2d444d7 7634 clear_bit(In_sync, &rdev->flags);
1da177e4 7635 rdev->raid_disk = disk;
72626685
N
7636 if (rdev->saved_raid_disk != disk)
7637 conf->fullsync = 1;
d6065f7b 7638 rcu_assign_pointer(p->rdev, rdev);
6358c239
AP
7639
7640 err = log_modify(conf, rdev, true);
7641
5cfb22a1 7642 goto out;
1da177e4 7643 }
5cfb22a1
N
7644 }
7645 for (disk = first; disk <= last; disk++) {
7646 p = conf->disks + disk;
7bfec5f3
N
7647 if (test_bit(WantReplacement, &p->rdev->flags) &&
7648 p->replacement == NULL) {
7649 clear_bit(In_sync, &rdev->flags);
7650 set_bit(Replacement, &rdev->flags);
7651 rdev->raid_disk = disk;
7652 err = 0;
7653 conf->fullsync = 1;
7654 rcu_assign_pointer(p->replacement, rdev);
7655 break;
7656 }
7657 }
5cfb22a1 7658out:
1da177e4 7659 print_raid5_conf(conf);
199050ea 7660 return err;
1da177e4
LT
7661}
7662
fd01b88c 7663static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7664{
7665 /* no resync is happening, and there is enough space
7666 * on all devices, so we can resize.
7667 * We need to make sure resync covers any new space.
7668 * If the array is shrinking we should possibly wait until
7669 * any io in the removed space completes, but it hardly seems
7670 * worth it.
7671 */
a4a6125a 7672 sector_t newsize;
3cb5edf4
N
7673 struct r5conf *conf = mddev->private;
7674
3418d036 7675 if (conf->log || raid5_has_ppl(conf))
713cf5a6 7676 return -EINVAL;
3cb5edf4 7677 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7678 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7679 if (mddev->external_size &&
7680 mddev->array_sectors > newsize)
b522adcd 7681 return -EINVAL;
a4a6125a
N
7682 if (mddev->bitmap) {
7683 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7684 if (ret)
7685 return ret;
7686 }
7687 md_set_array_sectors(mddev, newsize);
b098636c
N
7688 if (sectors > mddev->dev_sectors &&
7689 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7690 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7691 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7692 }
58c0fed4 7693 mddev->dev_sectors = sectors;
4b5c7ae8 7694 mddev->resync_max_sectors = sectors;
1da177e4
LT
7695 return 0;
7696}
7697
fd01b88c 7698static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7699{
7700 /* Can only proceed if there are plenty of stripe_heads.
7701 * We need a minimum of one full stripe,, and for sensible progress
7702 * it is best to have about 4 times that.
7703 * If we require 4 times, then the default 256 4K stripe_heads will
7704 * allow for chunk sizes up to 256K, which is probably OK.
7705 * If the chunk size is greater, user-space should request more
7706 * stripe_heads first.
7707 */
d1688a6d 7708 struct r5conf *conf = mddev->private;
01ee22b4 7709 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7710 > conf->min_nr_stripes ||
01ee22b4 7711 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7712 > conf->min_nr_stripes) {
cc6167b4
N
7713 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7714 mdname(mddev),
7715 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7716 / STRIPE_SIZE)*4);
01ee22b4
N
7717 return 0;
7718 }
7719 return 1;
7720}
7721
fd01b88c 7722static int check_reshape(struct mddev *mddev)
29269553 7723{
d1688a6d 7724 struct r5conf *conf = mddev->private;
29269553 7725
3418d036 7726 if (conf->log || raid5_has_ppl(conf))
713cf5a6 7727 return -EINVAL;
88ce4930
N
7728 if (mddev->delta_disks == 0 &&
7729 mddev->new_layout == mddev->layout &&
664e7c41 7730 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7731 return 0; /* nothing to do */
674806d6 7732 if (has_failed(conf))
ec32a2bd 7733 return -EINVAL;
fdcfbbb6 7734 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7735 /* We might be able to shrink, but the devices must
7736 * be made bigger first.
7737 * For raid6, 4 is the minimum size.
7738 * Otherwise 2 is the minimum
7739 */
7740 int min = 2;
7741 if (mddev->level == 6)
7742 min = 4;
7743 if (mddev->raid_disks + mddev->delta_disks < min)
7744 return -EINVAL;
7745 }
29269553 7746
01ee22b4 7747 if (!check_stripe_cache(mddev))
29269553 7748 return -ENOSPC;
29269553 7749
738a2738
N
7750 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7751 mddev->delta_disks > 0)
7752 if (resize_chunks(conf,
7753 conf->previous_raid_disks
7754 + max(0, mddev->delta_disks),
7755 max(mddev->new_chunk_sectors,
7756 mddev->chunk_sectors)
7757 ) < 0)
7758 return -ENOMEM;
845b9e22
AP
7759
7760 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7761 return 0; /* never bother to shrink */
e56108d6
N
7762 return resize_stripes(conf, (conf->previous_raid_disks
7763 + mddev->delta_disks));
63c70c4f
N
7764}
7765
fd01b88c 7766static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7767{
d1688a6d 7768 struct r5conf *conf = mddev->private;
3cb03002 7769 struct md_rdev *rdev;
63c70c4f 7770 int spares = 0;
c04be0aa 7771 unsigned long flags;
63c70c4f 7772
f416885e 7773 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7774 return -EBUSY;
7775
01ee22b4
N
7776 if (!check_stripe_cache(mddev))
7777 return -ENOSPC;
7778
30b67645
N
7779 if (has_failed(conf))
7780 return -EINVAL;
7781
c6563a8c 7782 rdev_for_each(rdev, mddev) {
469518a3
N
7783 if (!test_bit(In_sync, &rdev->flags)
7784 && !test_bit(Faulty, &rdev->flags))
29269553 7785 spares++;
c6563a8c 7786 }
63c70c4f 7787
f416885e 7788 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7789 /* Not enough devices even to make a degraded array
7790 * of that size
7791 */
7792 return -EINVAL;
7793
ec32a2bd
N
7794 /* Refuse to reduce size of the array. Any reductions in
7795 * array size must be through explicit setting of array_size
7796 * attribute.
7797 */
7798 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7799 < mddev->array_sectors) {
cc6167b4
N
7800 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7801 mdname(mddev));
ec32a2bd
N
7802 return -EINVAL;
7803 }
7804
f6705578 7805 atomic_set(&conf->reshape_stripes, 0);
29269553 7806 spin_lock_irq(&conf->device_lock);
c46501b2 7807 write_seqcount_begin(&conf->gen_lock);
29269553 7808 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7809 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7810 conf->prev_chunk_sectors = conf->chunk_sectors;
7811 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7812 conf->prev_algo = conf->algorithm;
7813 conf->algorithm = mddev->new_layout;
05616be5
N
7814 conf->generation++;
7815 /* Code that selects data_offset needs to see the generation update
7816 * if reshape_progress has been set - so a memory barrier needed.
7817 */
7818 smp_mb();
2c810cdd 7819 if (mddev->reshape_backwards)
fef9c61f
N
7820 conf->reshape_progress = raid5_size(mddev, 0, 0);
7821 else
7822 conf->reshape_progress = 0;
7823 conf->reshape_safe = conf->reshape_progress;
c46501b2 7824 write_seqcount_end(&conf->gen_lock);
29269553
N
7825 spin_unlock_irq(&conf->device_lock);
7826
4d77e3ba
N
7827 /* Now make sure any requests that proceeded on the assumption
7828 * the reshape wasn't running - like Discard or Read - have
7829 * completed.
7830 */
7831 mddev_suspend(mddev);
7832 mddev_resume(mddev);
7833
29269553
N
7834 /* Add some new drives, as many as will fit.
7835 * We know there are enough to make the newly sized array work.
3424bf6a
N
7836 * Don't add devices if we are reducing the number of
7837 * devices in the array. This is because it is not possible
7838 * to correctly record the "partially reconstructed" state of
7839 * such devices during the reshape and confusion could result.
29269553 7840 */
87a8dec9 7841 if (mddev->delta_disks >= 0) {
dafb20fa 7842 rdev_for_each(rdev, mddev)
87a8dec9
N
7843 if (rdev->raid_disk < 0 &&
7844 !test_bit(Faulty, &rdev->flags)) {
7845 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7846 if (rdev->raid_disk
9d4c7d87 7847 >= conf->previous_raid_disks)
87a8dec9 7848 set_bit(In_sync, &rdev->flags);
9d4c7d87 7849 else
87a8dec9 7850 rdev->recovery_offset = 0;
36fad858
NK
7851
7852 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7853 /* Failure here is OK */;
50da0840 7854 }
87a8dec9
N
7855 } else if (rdev->raid_disk >= conf->previous_raid_disks
7856 && !test_bit(Faulty, &rdev->flags)) {
7857 /* This is a spare that was manually added */
7858 set_bit(In_sync, &rdev->flags);
87a8dec9 7859 }
29269553 7860
87a8dec9
N
7861 /* When a reshape changes the number of devices,
7862 * ->degraded is measured against the larger of the
7863 * pre and post number of devices.
7864 */
ec32a2bd 7865 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7866 mddev->degraded = raid5_calc_degraded(conf);
ec32a2bd
N
7867 spin_unlock_irqrestore(&conf->device_lock, flags);
7868 }
63c70c4f 7869 mddev->raid_disks = conf->raid_disks;
e516402c 7870 mddev->reshape_position = conf->reshape_progress;
2953079c 7871 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6705578 7872
29269553
N
7873 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7874 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7875 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7876 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7877 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7878 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7879 "reshape");
29269553
N
7880 if (!mddev->sync_thread) {
7881 mddev->recovery = 0;
7882 spin_lock_irq(&conf->device_lock);
ba8805b9 7883 write_seqcount_begin(&conf->gen_lock);
29269553 7884 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7885 mddev->new_chunk_sectors =
7886 conf->chunk_sectors = conf->prev_chunk_sectors;
7887 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7888 rdev_for_each(rdev, mddev)
7889 rdev->new_data_offset = rdev->data_offset;
7890 smp_wmb();
ba8805b9 7891 conf->generation --;
fef9c61f 7892 conf->reshape_progress = MaxSector;
1e3fa9bd 7893 mddev->reshape_position = MaxSector;
ba8805b9 7894 write_seqcount_end(&conf->gen_lock);
29269553
N
7895 spin_unlock_irq(&conf->device_lock);
7896 return -EAGAIN;
7897 }
c8f517c4 7898 conf->reshape_checkpoint = jiffies;
29269553
N
7899 md_wakeup_thread(mddev->sync_thread);
7900 md_new_event(mddev);
7901 return 0;
7902}
29269553 7903
ec32a2bd
N
7904/* This is called from the reshape thread and should make any
7905 * changes needed in 'conf'
7906 */
d1688a6d 7907static void end_reshape(struct r5conf *conf)
29269553 7908{
29269553 7909
f6705578 7910 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7911 struct md_rdev *rdev;
f6705578 7912
f6705578 7913 spin_lock_irq(&conf->device_lock);
cea9c228 7914 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7915 rdev_for_each(rdev, conf->mddev)
7916 rdev->data_offset = rdev->new_data_offset;
7917 smp_wmb();
fef9c61f 7918 conf->reshape_progress = MaxSector;
6cbd8148 7919 conf->mddev->reshape_position = MaxSector;
f6705578 7920 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7921 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7922
7923 /* read-ahead size must cover two whole stripes, which is
7924 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7925 */
4a5add49 7926 if (conf->mddev->queue) {
cea9c228 7927 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7928 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7929 / PAGE_SIZE);
dc3b17cc
JK
7930 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7931 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
16a53ecc 7932 }
29269553 7933 }
29269553
N
7934}
7935
ec32a2bd
N
7936/* This is called from the raid5d thread with mddev_lock held.
7937 * It makes config changes to the device.
7938 */
fd01b88c 7939static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7940{
d1688a6d 7941 struct r5conf *conf = mddev->private;
cea9c228
N
7942
7943 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7944
ec32a2bd
N
7945 if (mddev->delta_disks > 0) {
7946 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
fe67d19a
HM
7947 if (mddev->queue) {
7948 set_capacity(mddev->gendisk, mddev->array_sectors);
7949 revalidate_disk(mddev->gendisk);
7950 }
ec32a2bd
N
7951 } else {
7952 int d;
908f4fbd 7953 spin_lock_irq(&conf->device_lock);
2e38a37f 7954 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd 7955 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7956 for (d = conf->raid_disks ;
7957 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7958 d++) {
3cb03002 7959 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7960 if (rdev)
7961 clear_bit(In_sync, &rdev->flags);
7962 rdev = conf->disks[d].replacement;
7963 if (rdev)
7964 clear_bit(In_sync, &rdev->flags);
1a67dde0 7965 }
cea9c228 7966 }
88ce4930 7967 mddev->layout = conf->algorithm;
09c9e5fa 7968 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7969 mddev->reshape_position = MaxSector;
7970 mddev->delta_disks = 0;
2c810cdd 7971 mddev->reshape_backwards = 0;
cea9c228
N
7972 }
7973}
7974
fd01b88c 7975static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7976{
d1688a6d 7977 struct r5conf *conf = mddev->private;
72626685
N
7978
7979 switch(state) {
e464eafd
N
7980 case 2: /* resume for a suspend */
7981 wake_up(&conf->wait_for_overlap);
7982 break;
7983
72626685 7984 case 1: /* stop all writes */
566c09c5 7985 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7986 /* '2' tells resync/reshape to pause so that all
7987 * active stripes can drain
7988 */
a39f7afd 7989 r5c_flush_cache(conf, INT_MAX);
64bd660b 7990 conf->quiesce = 2;
b1b46486 7991 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
7992 atomic_read(&conf->active_stripes) == 0 &&
7993 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7994 unlock_all_device_hash_locks_irq(conf),
7995 lock_all_device_hash_locks_irq(conf));
64bd660b 7996 conf->quiesce = 1;
566c09c5 7997 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7998 /* allow reshape to continue */
7999 wake_up(&conf->wait_for_overlap);
72626685
N
8000 break;
8001
8002 case 0: /* re-enable writes */
566c09c5 8003 lock_all_device_hash_locks_irq(conf);
72626685 8004 conf->quiesce = 0;
b1b46486 8005 wake_up(&conf->wait_for_quiescent);
e464eafd 8006 wake_up(&conf->wait_for_overlap);
566c09c5 8007 unlock_all_device_hash_locks_irq(conf);
72626685
N
8008 break;
8009 }
e6c033f7 8010 r5l_quiesce(conf->log, state);
72626685 8011}
b15c2e57 8012
fd01b88c 8013static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 8014{
e373ab10 8015 struct r0conf *raid0_conf = mddev->private;
d76c8420 8016 sector_t sectors;
54071b38 8017
f1b29bca 8018 /* for raid0 takeover only one zone is supported */
e373ab10 8019 if (raid0_conf->nr_strip_zones > 1) {
cc6167b4
N
8020 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8021 mdname(mddev));
f1b29bca
DW
8022 return ERR_PTR(-EINVAL);
8023 }
8024
e373ab10
N
8025 sectors = raid0_conf->strip_zone[0].zone_end;
8026 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 8027 mddev->dev_sectors = sectors;
f1b29bca 8028 mddev->new_level = level;
54071b38
TM
8029 mddev->new_layout = ALGORITHM_PARITY_N;
8030 mddev->new_chunk_sectors = mddev->chunk_sectors;
8031 mddev->raid_disks += 1;
8032 mddev->delta_disks = 1;
8033 /* make sure it will be not marked as dirty */
8034 mddev->recovery_cp = MaxSector;
8035
8036 return setup_conf(mddev);
8037}
8038
fd01b88c 8039static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
8040{
8041 int chunksect;
6995f0b2 8042 void *ret;
d562b0c4
N
8043
8044 if (mddev->raid_disks != 2 ||
8045 mddev->degraded > 1)
8046 return ERR_PTR(-EINVAL);
8047
8048 /* Should check if there are write-behind devices? */
8049
8050 chunksect = 64*2; /* 64K by default */
8051
8052 /* The array must be an exact multiple of chunksize */
8053 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8054 chunksect >>= 1;
8055
8056 if ((chunksect<<9) < STRIPE_SIZE)
8057 /* array size does not allow a suitable chunk size */
8058 return ERR_PTR(-EINVAL);
8059
8060 mddev->new_level = 5;
8061 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 8062 mddev->new_chunk_sectors = chunksect;
d562b0c4 8063
6995f0b2 8064 ret = setup_conf(mddev);
32cd7cbb 8065 if (!IS_ERR(ret))
394ed8e4
SL
8066 mddev_clear_unsupported_flags(mddev,
8067 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 8068 return ret;
d562b0c4
N
8069}
8070
fd01b88c 8071static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
8072{
8073 int new_layout;
8074
8075 switch (mddev->layout) {
8076 case ALGORITHM_LEFT_ASYMMETRIC_6:
8077 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8078 break;
8079 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8080 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8081 break;
8082 case ALGORITHM_LEFT_SYMMETRIC_6:
8083 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8084 break;
8085 case ALGORITHM_RIGHT_SYMMETRIC_6:
8086 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8087 break;
8088 case ALGORITHM_PARITY_0_6:
8089 new_layout = ALGORITHM_PARITY_0;
8090 break;
8091 case ALGORITHM_PARITY_N:
8092 new_layout = ALGORITHM_PARITY_N;
8093 break;
8094 default:
8095 return ERR_PTR(-EINVAL);
8096 }
8097 mddev->new_level = 5;
8098 mddev->new_layout = new_layout;
8099 mddev->delta_disks = -1;
8100 mddev->raid_disks -= 1;
8101 return setup_conf(mddev);
8102}
8103
fd01b88c 8104static int raid5_check_reshape(struct mddev *mddev)
b3546035 8105{
88ce4930
N
8106 /* For a 2-drive array, the layout and chunk size can be changed
8107 * immediately as not restriping is needed.
8108 * For larger arrays we record the new value - after validation
8109 * to be used by a reshape pass.
b3546035 8110 */
d1688a6d 8111 struct r5conf *conf = mddev->private;
597a711b 8112 int new_chunk = mddev->new_chunk_sectors;
b3546035 8113
597a711b 8114 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
8115 return -EINVAL;
8116 if (new_chunk > 0) {
0ba459d2 8117 if (!is_power_of_2(new_chunk))
b3546035 8118 return -EINVAL;
597a711b 8119 if (new_chunk < (PAGE_SIZE>>9))
b3546035 8120 return -EINVAL;
597a711b 8121 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
8122 /* not factor of array size */
8123 return -EINVAL;
8124 }
8125
8126 /* They look valid */
8127
88ce4930 8128 if (mddev->raid_disks == 2) {
597a711b
N
8129 /* can make the change immediately */
8130 if (mddev->new_layout >= 0) {
8131 conf->algorithm = mddev->new_layout;
8132 mddev->layout = mddev->new_layout;
88ce4930
N
8133 }
8134 if (new_chunk > 0) {
597a711b
N
8135 conf->chunk_sectors = new_chunk ;
8136 mddev->chunk_sectors = new_chunk;
88ce4930 8137 }
2953079c 8138 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
88ce4930 8139 md_wakeup_thread(mddev->thread);
b3546035 8140 }
50ac168a 8141 return check_reshape(mddev);
88ce4930
N
8142}
8143
fd01b88c 8144static int raid6_check_reshape(struct mddev *mddev)
88ce4930 8145{
597a711b 8146 int new_chunk = mddev->new_chunk_sectors;
50ac168a 8147
597a711b 8148 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 8149 return -EINVAL;
b3546035 8150 if (new_chunk > 0) {
0ba459d2 8151 if (!is_power_of_2(new_chunk))
88ce4930 8152 return -EINVAL;
597a711b 8153 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 8154 return -EINVAL;
597a711b 8155 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
8156 /* not factor of array size */
8157 return -EINVAL;
b3546035 8158 }
88ce4930
N
8159
8160 /* They look valid */
50ac168a 8161 return check_reshape(mddev);
b3546035
N
8162}
8163
fd01b88c 8164static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
8165{
8166 /* raid5 can take over:
f1b29bca 8167 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
8168 * raid1 - if there are two drives. We need to know the chunk size
8169 * raid4 - trivial - just use a raid4 layout.
8170 * raid6 - Providing it is a *_6 layout
d562b0c4 8171 */
f1b29bca
DW
8172 if (mddev->level == 0)
8173 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
8174 if (mddev->level == 1)
8175 return raid5_takeover_raid1(mddev);
e9d4758f
N
8176 if (mddev->level == 4) {
8177 mddev->new_layout = ALGORITHM_PARITY_N;
8178 mddev->new_level = 5;
8179 return setup_conf(mddev);
8180 }
fc9739c6
N
8181 if (mddev->level == 6)
8182 return raid5_takeover_raid6(mddev);
d562b0c4
N
8183
8184 return ERR_PTR(-EINVAL);
8185}
8186
fd01b88c 8187static void *raid4_takeover(struct mddev *mddev)
a78d38a1 8188{
f1b29bca
DW
8189 /* raid4 can take over:
8190 * raid0 - if there is only one strip zone
8191 * raid5 - if layout is right
a78d38a1 8192 */
f1b29bca
DW
8193 if (mddev->level == 0)
8194 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
8195 if (mddev->level == 5 &&
8196 mddev->layout == ALGORITHM_PARITY_N) {
8197 mddev->new_layout = 0;
8198 mddev->new_level = 4;
8199 return setup_conf(mddev);
8200 }
8201 return ERR_PTR(-EINVAL);
8202}
d562b0c4 8203
84fc4b56 8204static struct md_personality raid5_personality;
245f46c2 8205
fd01b88c 8206static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
8207{
8208 /* Currently can only take over a raid5. We map the
8209 * personality to an equivalent raid6 personality
8210 * with the Q block at the end.
8211 */
8212 int new_layout;
8213
8214 if (mddev->pers != &raid5_personality)
8215 return ERR_PTR(-EINVAL);
8216 if (mddev->degraded > 1)
8217 return ERR_PTR(-EINVAL);
8218 if (mddev->raid_disks > 253)
8219 return ERR_PTR(-EINVAL);
8220 if (mddev->raid_disks < 3)
8221 return ERR_PTR(-EINVAL);
8222
8223 switch (mddev->layout) {
8224 case ALGORITHM_LEFT_ASYMMETRIC:
8225 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8226 break;
8227 case ALGORITHM_RIGHT_ASYMMETRIC:
8228 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8229 break;
8230 case ALGORITHM_LEFT_SYMMETRIC:
8231 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8232 break;
8233 case ALGORITHM_RIGHT_SYMMETRIC:
8234 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8235 break;
8236 case ALGORITHM_PARITY_0:
8237 new_layout = ALGORITHM_PARITY_0_6;
8238 break;
8239 case ALGORITHM_PARITY_N:
8240 new_layout = ALGORITHM_PARITY_N;
8241 break;
8242 default:
8243 return ERR_PTR(-EINVAL);
8244 }
8245 mddev->new_level = 6;
8246 mddev->new_layout = new_layout;
8247 mddev->delta_disks = 1;
8248 mddev->raid_disks += 1;
8249 return setup_conf(mddev);
8250}
8251
ba903a3e
AP
8252static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8253{
8254 struct r5conf *conf;
8255 int err;
8256
8257 err = mddev_lock(mddev);
8258 if (err)
8259 return err;
8260 conf = mddev->private;
8261 if (!conf) {
8262 mddev_unlock(mddev);
8263 return -ENODEV;
8264 }
8265
845b9e22 8266 if (strncmp(buf, "ppl", 3) == 0) {
0bb0c105 8267 /* ppl only works with RAID 5 */
845b9e22
AP
8268 if (!raid5_has_ppl(conf) && conf->level == 5) {
8269 err = log_init(conf, NULL, true);
8270 if (!err) {
8271 err = resize_stripes(conf, conf->pool_size);
8272 if (err)
8273 log_exit(conf);
8274 }
0bb0c105
SL
8275 } else
8276 err = -EINVAL;
8277 } else if (strncmp(buf, "resync", 6) == 0) {
8278 if (raid5_has_ppl(conf)) {
8279 mddev_suspend(mddev);
8280 log_exit(conf);
0bb0c105 8281 mddev_resume(mddev);
845b9e22 8282 err = resize_stripes(conf, conf->pool_size);
0bb0c105
SL
8283 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8284 r5l_log_disk_error(conf)) {
8285 bool journal_dev_exists = false;
8286 struct md_rdev *rdev;
8287
8288 rdev_for_each(rdev, mddev)
8289 if (test_bit(Journal, &rdev->flags)) {
8290 journal_dev_exists = true;
8291 break;
8292 }
8293
8294 if (!journal_dev_exists) {
8295 mddev_suspend(mddev);
8296 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8297 mddev_resume(mddev);
8298 } else /* need remove journal device first */
8299 err = -EBUSY;
8300 } else
8301 err = -EINVAL;
ba903a3e
AP
8302 } else {
8303 err = -EINVAL;
8304 }
8305
8306 if (!err)
8307 md_update_sb(mddev, 1);
8308
8309 mddev_unlock(mddev);
8310
8311 return err;
8312}
8313
84fc4b56 8314static struct md_personality raid6_personality =
16a53ecc
N
8315{
8316 .name = "raid6",
8317 .level = 6,
8318 .owner = THIS_MODULE,
849674e4
SL
8319 .make_request = raid5_make_request,
8320 .run = raid5_run,
afa0f557 8321 .free = raid5_free,
849674e4
SL
8322 .status = raid5_status,
8323 .error_handler = raid5_error,
16a53ecc
N
8324 .hot_add_disk = raid5_add_disk,
8325 .hot_remove_disk= raid5_remove_disk,
8326 .spare_active = raid5_spare_active,
849674e4 8327 .sync_request = raid5_sync_request,
16a53ecc 8328 .resize = raid5_resize,
80c3a6ce 8329 .size = raid5_size,
50ac168a 8330 .check_reshape = raid6_check_reshape,
f416885e 8331 .start_reshape = raid5_start_reshape,
cea9c228 8332 .finish_reshape = raid5_finish_reshape,
16a53ecc 8333 .quiesce = raid5_quiesce,
245f46c2 8334 .takeover = raid6_takeover,
5c675f83 8335 .congested = raid5_congested,
0bb0c105 8336 .change_consistency_policy = raid5_change_consistency_policy,
16a53ecc 8337};
84fc4b56 8338static struct md_personality raid5_personality =
1da177e4
LT
8339{
8340 .name = "raid5",
2604b703 8341 .level = 5,
1da177e4 8342 .owner = THIS_MODULE,
849674e4
SL
8343 .make_request = raid5_make_request,
8344 .run = raid5_run,
afa0f557 8345 .free = raid5_free,
849674e4
SL
8346 .status = raid5_status,
8347 .error_handler = raid5_error,
1da177e4
LT
8348 .hot_add_disk = raid5_add_disk,
8349 .hot_remove_disk= raid5_remove_disk,
8350 .spare_active = raid5_spare_active,
849674e4 8351 .sync_request = raid5_sync_request,
1da177e4 8352 .resize = raid5_resize,
80c3a6ce 8353 .size = raid5_size,
63c70c4f
N
8354 .check_reshape = raid5_check_reshape,
8355 .start_reshape = raid5_start_reshape,
cea9c228 8356 .finish_reshape = raid5_finish_reshape,
72626685 8357 .quiesce = raid5_quiesce,
d562b0c4 8358 .takeover = raid5_takeover,
5c675f83 8359 .congested = raid5_congested,
ba903a3e 8360 .change_consistency_policy = raid5_change_consistency_policy,
1da177e4
LT
8361};
8362
84fc4b56 8363static struct md_personality raid4_personality =
1da177e4 8364{
2604b703
N
8365 .name = "raid4",
8366 .level = 4,
8367 .owner = THIS_MODULE,
849674e4
SL
8368 .make_request = raid5_make_request,
8369 .run = raid5_run,
afa0f557 8370 .free = raid5_free,
849674e4
SL
8371 .status = raid5_status,
8372 .error_handler = raid5_error,
2604b703
N
8373 .hot_add_disk = raid5_add_disk,
8374 .hot_remove_disk= raid5_remove_disk,
8375 .spare_active = raid5_spare_active,
849674e4 8376 .sync_request = raid5_sync_request,
2604b703 8377 .resize = raid5_resize,
80c3a6ce 8378 .size = raid5_size,
3d37890b
N
8379 .check_reshape = raid5_check_reshape,
8380 .start_reshape = raid5_start_reshape,
cea9c228 8381 .finish_reshape = raid5_finish_reshape,
2604b703 8382 .quiesce = raid5_quiesce,
a78d38a1 8383 .takeover = raid4_takeover,
5c675f83 8384 .congested = raid5_congested,
0bb0c105 8385 .change_consistency_policy = raid5_change_consistency_policy,
2604b703
N
8386};
8387
8388static int __init raid5_init(void)
8389{
29c6d1bb
SAS
8390 int ret;
8391
851c30c9
SL
8392 raid5_wq = alloc_workqueue("raid5wq",
8393 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8394 if (!raid5_wq)
8395 return -ENOMEM;
29c6d1bb
SAS
8396
8397 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8398 "md/raid5:prepare",
8399 raid456_cpu_up_prepare,
8400 raid456_cpu_dead);
8401 if (ret) {
8402 destroy_workqueue(raid5_wq);
8403 return ret;
8404 }
16a53ecc 8405 register_md_personality(&raid6_personality);
2604b703
N
8406 register_md_personality(&raid5_personality);
8407 register_md_personality(&raid4_personality);
8408 return 0;
1da177e4
LT
8409}
8410
2604b703 8411static void raid5_exit(void)
1da177e4 8412{
16a53ecc 8413 unregister_md_personality(&raid6_personality);
2604b703
N
8414 unregister_md_personality(&raid5_personality);
8415 unregister_md_personality(&raid4_personality);
29c6d1bb 8416 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
851c30c9 8417 destroy_workqueue(raid5_wq);
1da177e4
LT
8418}
8419
8420module_init(raid5_init);
8421module_exit(raid5_exit);
8422MODULE_LICENSE("GPL");
0efb9e61 8423MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 8424MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
8425MODULE_ALIAS("md-raid5");
8426MODULE_ALIAS("md-raid4");
2604b703
N
8427MODULE_ALIAS("md-level-5");
8428MODULE_ALIAS("md-level-4");
16a53ecc
N
8429MODULE_ALIAS("md-personality-8"); /* RAID6 */
8430MODULE_ALIAS("md-raid6");
8431MODULE_ALIAS("md-level-6");
8432
8433/* This used to be two separate modules, they were: */
8434MODULE_ALIAS("raid5");
8435MODULE_ALIAS("raid6");