[PATCH] md: Remove working_disks from raid1 state data
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
1da177e4
LT
46#include <linux/module.h>
47#include <linux/slab.h>
1da177e4
LT
48#include <linux/highmem.h>
49#include <linux/bitops.h>
f6705578 50#include <linux/kthread.h>
1da177e4 51#include <asm/atomic.h>
16a53ecc 52#include "raid6.h"
1da177e4 53
72626685
N
54#include <linux/raid/bitmap.h>
55
1da177e4
LT
56/*
57 * Stripe cache
58 */
59
60#define NR_STRIPES 256
61#define STRIPE_SIZE PAGE_SIZE
62#define STRIPE_SHIFT (PAGE_SHIFT - 9)
63#define STRIPE_SECTORS (STRIPE_SIZE>>9)
64#define IO_THRESHOLD 1
fccddba0 65#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
66#define HASH_MASK (NR_HASH - 1)
67
fccddba0 68#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
69
70/* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
75 * be valid.
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
78 */
79#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80/*
81 * The following can be used to debug the driver
82 */
83#define RAID5_DEBUG 0
84#define RAID5_PARANOIA 1
85#if RAID5_PARANOIA && defined(CONFIG_SMP)
86# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87#else
88# define CHECK_DEVLOCK()
89#endif
90
91#define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
92#if RAID5_DEBUG
93#define inline
94#define __inline__
95#endif
96
16a53ecc
N
97#if !RAID6_USE_EMPTY_ZERO_PAGE
98/* In .bss so it's zeroed */
99const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100#endif
101
102static inline int raid6_next_disk(int disk, int raid_disks)
103{
104 disk++;
105 return (disk < raid_disks) ? disk : 0;
106}
1da177e4
LT
107static void print_raid5_conf (raid5_conf_t *conf);
108
858119e1 109static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
110{
111 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
112 BUG_ON(!list_empty(&sh->lru));
113 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 114 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 115 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 116 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
117 blk_plug_device(conf->mddev->queue);
118 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 119 sh->bm_seq - conf->seq_write > 0) {
72626685 120 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
121 blk_plug_device(conf->mddev->queue);
122 } else {
72626685 123 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 124 list_add_tail(&sh->lru, &conf->handle_list);
72626685 125 }
1da177e4
LT
126 md_wakeup_thread(conf->mddev->thread);
127 } else {
128 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
129 atomic_dec(&conf->preread_active_stripes);
130 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
131 md_wakeup_thread(conf->mddev->thread);
132 }
1da177e4 133 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
134 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
135 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 136 wake_up(&conf->wait_for_stripe);
ccfcc3c1 137 }
1da177e4
LT
138 }
139 }
140}
141static void release_stripe(struct stripe_head *sh)
142{
143 raid5_conf_t *conf = sh->raid_conf;
144 unsigned long flags;
16a53ecc 145
1da177e4
LT
146 spin_lock_irqsave(&conf->device_lock, flags);
147 __release_stripe(conf, sh);
148 spin_unlock_irqrestore(&conf->device_lock, flags);
149}
150
fccddba0 151static inline void remove_hash(struct stripe_head *sh)
1da177e4
LT
152{
153 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
154
fccddba0 155 hlist_del_init(&sh->hash);
1da177e4
LT
156}
157
16a53ecc 158static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 159{
fccddba0 160 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4
LT
161
162 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
163
164 CHECK_DEVLOCK();
fccddba0 165 hlist_add_head(&sh->hash, hp);
1da177e4
LT
166}
167
168
169/* find an idle stripe, make sure it is unhashed, and return it. */
170static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
171{
172 struct stripe_head *sh = NULL;
173 struct list_head *first;
174
175 CHECK_DEVLOCK();
176 if (list_empty(&conf->inactive_list))
177 goto out;
178 first = conf->inactive_list.next;
179 sh = list_entry(first, struct stripe_head, lru);
180 list_del_init(first);
181 remove_hash(sh);
182 atomic_inc(&conf->active_stripes);
183out:
184 return sh;
185}
186
187static void shrink_buffers(struct stripe_head *sh, int num)
188{
189 struct page *p;
190 int i;
191
192 for (i=0; i<num ; i++) {
193 p = sh->dev[i].page;
194 if (!p)
195 continue;
196 sh->dev[i].page = NULL;
2d1f3b5d 197 put_page(p);
1da177e4
LT
198 }
199}
200
201static int grow_buffers(struct stripe_head *sh, int num)
202{
203 int i;
204
205 for (i=0; i<num; i++) {
206 struct page *page;
207
208 if (!(page = alloc_page(GFP_KERNEL))) {
209 return 1;
210 }
211 sh->dev[i].page = page;
212 }
213 return 0;
214}
215
216static void raid5_build_block (struct stripe_head *sh, int i);
217
7ecaa1e6 218static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
1da177e4
LT
219{
220 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 221 int i;
1da177e4 222
78bafebd
ES
223 BUG_ON(atomic_read(&sh->count) != 0);
224 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1da177e4
LT
225
226 CHECK_DEVLOCK();
227 PRINTK("init_stripe called, stripe %llu\n",
228 (unsigned long long)sh->sector);
229
230 remove_hash(sh);
16a53ecc 231
1da177e4
LT
232 sh->sector = sector;
233 sh->pd_idx = pd_idx;
234 sh->state = 0;
235
7ecaa1e6
N
236 sh->disks = disks;
237
238 for (i = sh->disks; i--; ) {
1da177e4
LT
239 struct r5dev *dev = &sh->dev[i];
240
241 if (dev->toread || dev->towrite || dev->written ||
242 test_bit(R5_LOCKED, &dev->flags)) {
243 printk("sector=%llx i=%d %p %p %p %d\n",
244 (unsigned long long)sh->sector, i, dev->toread,
245 dev->towrite, dev->written,
246 test_bit(R5_LOCKED, &dev->flags));
247 BUG();
248 }
249 dev->flags = 0;
250 raid5_build_block(sh, i);
251 }
252 insert_hash(conf, sh);
253}
254
7ecaa1e6 255static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
1da177e4
LT
256{
257 struct stripe_head *sh;
fccddba0 258 struct hlist_node *hn;
1da177e4
LT
259
260 CHECK_DEVLOCK();
261 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 262 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
7ecaa1e6 263 if (sh->sector == sector && sh->disks == disks)
1da177e4
LT
264 return sh;
265 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
266 return NULL;
267}
268
269static void unplug_slaves(mddev_t *mddev);
270static void raid5_unplug_device(request_queue_t *q);
271
7ecaa1e6
N
272static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
273 int pd_idx, int noblock)
1da177e4
LT
274{
275 struct stripe_head *sh;
276
277 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
278
279 spin_lock_irq(&conf->device_lock);
280
281 do {
72626685
N
282 wait_event_lock_irq(conf->wait_for_stripe,
283 conf->quiesce == 0,
284 conf->device_lock, /* nothing */);
7ecaa1e6 285 sh = __find_stripe(conf, sector, disks);
1da177e4
LT
286 if (!sh) {
287 if (!conf->inactive_blocked)
288 sh = get_free_stripe(conf);
289 if (noblock && sh == NULL)
290 break;
291 if (!sh) {
292 conf->inactive_blocked = 1;
293 wait_event_lock_irq(conf->wait_for_stripe,
294 !list_empty(&conf->inactive_list) &&
5036805b
N
295 (atomic_read(&conf->active_stripes)
296 < (conf->max_nr_stripes *3/4)
1da177e4
LT
297 || !conf->inactive_blocked),
298 conf->device_lock,
f4370781 299 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
300 );
301 conf->inactive_blocked = 0;
302 } else
7ecaa1e6 303 init_stripe(sh, sector, pd_idx, disks);
1da177e4
LT
304 } else {
305 if (atomic_read(&sh->count)) {
78bafebd 306 BUG_ON(!list_empty(&sh->lru));
1da177e4
LT
307 } else {
308 if (!test_bit(STRIPE_HANDLE, &sh->state))
309 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
310 if (list_empty(&sh->lru) &&
311 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
312 BUG();
313 list_del_init(&sh->lru);
1da177e4
LT
314 }
315 }
316 } while (sh == NULL);
317
318 if (sh)
319 atomic_inc(&sh->count);
320
321 spin_unlock_irq(&conf->device_lock);
322 return sh;
323}
324
3f294f4f 325static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
326{
327 struct stripe_head *sh;
3f294f4f
N
328 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
329 if (!sh)
330 return 0;
331 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
332 sh->raid_conf = conf;
333 spin_lock_init(&sh->lock);
334
335 if (grow_buffers(sh, conf->raid_disks)) {
336 shrink_buffers(sh, conf->raid_disks);
337 kmem_cache_free(conf->slab_cache, sh);
338 return 0;
339 }
7ecaa1e6 340 sh->disks = conf->raid_disks;
3f294f4f
N
341 /* we just created an active stripe so... */
342 atomic_set(&sh->count, 1);
343 atomic_inc(&conf->active_stripes);
344 INIT_LIST_HEAD(&sh->lru);
345 release_stripe(sh);
346 return 1;
347}
348
349static int grow_stripes(raid5_conf_t *conf, int num)
350{
1da177e4
LT
351 kmem_cache_t *sc;
352 int devs = conf->raid_disks;
353
ad01c9e3
N
354 sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
355 sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
356 conf->active_name = 0;
357 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4
LT
358 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
359 0, 0, NULL, NULL);
360 if (!sc)
361 return 1;
362 conf->slab_cache = sc;
ad01c9e3 363 conf->pool_size = devs;
16a53ecc 364 while (num--)
3f294f4f 365 if (!grow_one_stripe(conf))
1da177e4 366 return 1;
1da177e4
LT
367 return 0;
368}
29269553
N
369
370#ifdef CONFIG_MD_RAID5_RESHAPE
ad01c9e3
N
371static int resize_stripes(raid5_conf_t *conf, int newsize)
372{
373 /* Make all the stripes able to hold 'newsize' devices.
374 * New slots in each stripe get 'page' set to a new page.
375 *
376 * This happens in stages:
377 * 1/ create a new kmem_cache and allocate the required number of
378 * stripe_heads.
379 * 2/ gather all the old stripe_heads and tranfer the pages across
380 * to the new stripe_heads. This will have the side effect of
381 * freezing the array as once all stripe_heads have been collected,
382 * no IO will be possible. Old stripe heads are freed once their
383 * pages have been transferred over, and the old kmem_cache is
384 * freed when all stripes are done.
385 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
386 * we simple return a failre status - no need to clean anything up.
387 * 4/ allocate new pages for the new slots in the new stripe_heads.
388 * If this fails, we don't bother trying the shrink the
389 * stripe_heads down again, we just leave them as they are.
390 * As each stripe_head is processed the new one is released into
391 * active service.
392 *
393 * Once step2 is started, we cannot afford to wait for a write,
394 * so we use GFP_NOIO allocations.
395 */
396 struct stripe_head *osh, *nsh;
397 LIST_HEAD(newstripes);
398 struct disk_info *ndisks;
399 int err = 0;
400 kmem_cache_t *sc;
401 int i;
402
403 if (newsize <= conf->pool_size)
404 return 0; /* never bother to shrink */
405
406 /* Step 1 */
407 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
408 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
409 0, 0, NULL, NULL);
410 if (!sc)
411 return -ENOMEM;
412
413 for (i = conf->max_nr_stripes; i; i--) {
414 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
415 if (!nsh)
416 break;
417
418 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
419
420 nsh->raid_conf = conf;
421 spin_lock_init(&nsh->lock);
422
423 list_add(&nsh->lru, &newstripes);
424 }
425 if (i) {
426 /* didn't get enough, give up */
427 while (!list_empty(&newstripes)) {
428 nsh = list_entry(newstripes.next, struct stripe_head, lru);
429 list_del(&nsh->lru);
430 kmem_cache_free(sc, nsh);
431 }
432 kmem_cache_destroy(sc);
433 return -ENOMEM;
434 }
435 /* Step 2 - Must use GFP_NOIO now.
436 * OK, we have enough stripes, start collecting inactive
437 * stripes and copying them over
438 */
439 list_for_each_entry(nsh, &newstripes, lru) {
440 spin_lock_irq(&conf->device_lock);
441 wait_event_lock_irq(conf->wait_for_stripe,
442 !list_empty(&conf->inactive_list),
443 conf->device_lock,
b3b46be3 444 unplug_slaves(conf->mddev)
ad01c9e3
N
445 );
446 osh = get_free_stripe(conf);
447 spin_unlock_irq(&conf->device_lock);
448 atomic_set(&nsh->count, 1);
449 for(i=0; i<conf->pool_size; i++)
450 nsh->dev[i].page = osh->dev[i].page;
451 for( ; i<newsize; i++)
452 nsh->dev[i].page = NULL;
453 kmem_cache_free(conf->slab_cache, osh);
454 }
455 kmem_cache_destroy(conf->slab_cache);
456
457 /* Step 3.
458 * At this point, we are holding all the stripes so the array
459 * is completely stalled, so now is a good time to resize
460 * conf->disks.
461 */
462 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
463 if (ndisks) {
464 for (i=0; i<conf->raid_disks; i++)
465 ndisks[i] = conf->disks[i];
466 kfree(conf->disks);
467 conf->disks = ndisks;
468 } else
469 err = -ENOMEM;
470
471 /* Step 4, return new stripes to service */
472 while(!list_empty(&newstripes)) {
473 nsh = list_entry(newstripes.next, struct stripe_head, lru);
474 list_del_init(&nsh->lru);
475 for (i=conf->raid_disks; i < newsize; i++)
476 if (nsh->dev[i].page == NULL) {
477 struct page *p = alloc_page(GFP_NOIO);
478 nsh->dev[i].page = p;
479 if (!p)
480 err = -ENOMEM;
481 }
482 release_stripe(nsh);
483 }
484 /* critical section pass, GFP_NOIO no longer needed */
485
486 conf->slab_cache = sc;
487 conf->active_name = 1-conf->active_name;
488 conf->pool_size = newsize;
489 return err;
490}
29269553 491#endif
1da177e4 492
3f294f4f 493static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
494{
495 struct stripe_head *sh;
496
3f294f4f
N
497 spin_lock_irq(&conf->device_lock);
498 sh = get_free_stripe(conf);
499 spin_unlock_irq(&conf->device_lock);
500 if (!sh)
501 return 0;
78bafebd 502 BUG_ON(atomic_read(&sh->count));
ad01c9e3 503 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
504 kmem_cache_free(conf->slab_cache, sh);
505 atomic_dec(&conf->active_stripes);
506 return 1;
507}
508
509static void shrink_stripes(raid5_conf_t *conf)
510{
511 while (drop_one_stripe(conf))
512 ;
513
29fc7e3e
N
514 if (conf->slab_cache)
515 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
516 conf->slab_cache = NULL;
517}
518
4e5314b5 519static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
1da177e4
LT
520 int error)
521{
522 struct stripe_head *sh = bi->bi_private;
523 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 524 int disks = sh->disks, i;
1da177e4 525 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
526 char b[BDEVNAME_SIZE];
527 mdk_rdev_t *rdev;
1da177e4
LT
528
529 if (bi->bi_size)
530 return 1;
531
532 for (i=0 ; i<disks; i++)
533 if (bi == &sh->dev[i].req)
534 break;
535
536 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
537 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
538 uptodate);
539 if (i == disks) {
540 BUG();
541 return 0;
542 }
543
544 if (uptodate) {
545#if 0
546 struct bio *bio;
547 unsigned long flags;
548 spin_lock_irqsave(&conf->device_lock, flags);
549 /* we can return a buffer if we bypassed the cache or
550 * if the top buffer is not in highmem. If there are
551 * multiple buffers, leave the extra work to
552 * handle_stripe
553 */
554 buffer = sh->bh_read[i];
555 if (buffer &&
556 (!PageHighMem(buffer->b_page)
557 || buffer->b_page == bh->b_page )
558 ) {
559 sh->bh_read[i] = buffer->b_reqnext;
560 buffer->b_reqnext = NULL;
561 } else
562 buffer = NULL;
563 spin_unlock_irqrestore(&conf->device_lock, flags);
564 if (sh->bh_page[i]==bh->b_page)
565 set_buffer_uptodate(bh);
566 if (buffer) {
567 if (buffer->b_page != bh->b_page)
568 memcpy(buffer->b_data, bh->b_data, bh->b_size);
569 buffer->b_end_io(buffer, 1);
570 }
571#else
572 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5
N
573#endif
574 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432
N
575 rdev = conf->disks[i].rdev;
576 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
577 mdname(conf->mddev), STRIPE_SECTORS,
578 (unsigned long long)sh->sector + rdev->data_offset,
579 bdevname(rdev->bdev, b));
4e5314b5
N
580 clear_bit(R5_ReadError, &sh->dev[i].flags);
581 clear_bit(R5_ReWrite, &sh->dev[i].flags);
582 }
ba22dcbf
N
583 if (atomic_read(&conf->disks[i].rdev->read_errors))
584 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 585 } else {
d6950432 586 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 587 int retry = 0;
d6950432
N
588 rdev = conf->disks[i].rdev;
589
1da177e4 590 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 591 atomic_inc(&rdev->read_errors);
ba22dcbf 592 if (conf->mddev->degraded)
d6950432
N
593 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
594 mdname(conf->mddev),
595 (unsigned long long)sh->sector + rdev->data_offset,
596 bdn);
ba22dcbf 597 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 598 /* Oh, no!!! */
d6950432
N
599 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
600 mdname(conf->mddev),
601 (unsigned long long)sh->sector + rdev->data_offset,
602 bdn);
603 else if (atomic_read(&rdev->read_errors)
ba22dcbf 604 > conf->max_nr_stripes)
14f8d26b 605 printk(KERN_WARNING
d6950432
N
606 "raid5:%s: Too many read errors, failing device %s.\n",
607 mdname(conf->mddev), bdn);
ba22dcbf
N
608 else
609 retry = 1;
610 if (retry)
611 set_bit(R5_ReadError, &sh->dev[i].flags);
612 else {
4e5314b5
N
613 clear_bit(R5_ReadError, &sh->dev[i].flags);
614 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 615 md_error(conf->mddev, rdev);
ba22dcbf 616 }
1da177e4
LT
617 }
618 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
619#if 0
620 /* must restore b_page before unlocking buffer... */
621 if (sh->bh_page[i] != bh->b_page) {
622 bh->b_page = sh->bh_page[i];
623 bh->b_data = page_address(bh->b_page);
624 clear_buffer_uptodate(bh);
625 }
626#endif
627 clear_bit(R5_LOCKED, &sh->dev[i].flags);
628 set_bit(STRIPE_HANDLE, &sh->state);
629 release_stripe(sh);
630 return 0;
631}
632
633static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
634 int error)
635{
636 struct stripe_head *sh = bi->bi_private;
637 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 638 int disks = sh->disks, i;
1da177e4
LT
639 unsigned long flags;
640 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
641
642 if (bi->bi_size)
643 return 1;
644
645 for (i=0 ; i<disks; i++)
646 if (bi == &sh->dev[i].req)
647 break;
648
649 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
650 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
651 uptodate);
652 if (i == disks) {
653 BUG();
654 return 0;
655 }
656
657 spin_lock_irqsave(&conf->device_lock, flags);
658 if (!uptodate)
659 md_error(conf->mddev, conf->disks[i].rdev);
660
661 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
662
663 clear_bit(R5_LOCKED, &sh->dev[i].flags);
664 set_bit(STRIPE_HANDLE, &sh->state);
665 __release_stripe(conf, sh);
666 spin_unlock_irqrestore(&conf->device_lock, flags);
667 return 0;
668}
669
670
671static sector_t compute_blocknr(struct stripe_head *sh, int i);
672
673static void raid5_build_block (struct stripe_head *sh, int i)
674{
675 struct r5dev *dev = &sh->dev[i];
676
677 bio_init(&dev->req);
678 dev->req.bi_io_vec = &dev->vec;
679 dev->req.bi_vcnt++;
680 dev->req.bi_max_vecs++;
681 dev->vec.bv_page = dev->page;
682 dev->vec.bv_len = STRIPE_SIZE;
683 dev->vec.bv_offset = 0;
684
685 dev->req.bi_sector = sh->sector;
686 dev->req.bi_private = sh;
687
688 dev->flags = 0;
16a53ecc 689 dev->sector = compute_blocknr(sh, i);
1da177e4
LT
690}
691
692static void error(mddev_t *mddev, mdk_rdev_t *rdev)
693{
694 char b[BDEVNAME_SIZE];
695 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
696 PRINTK("raid5: error called\n");
697
b2d444d7 698 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 699 set_bit(MD_CHANGE_DEVS, &mddev->flags);
b2d444d7 700 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 701 mddev->degraded++;
b2d444d7 702 clear_bit(In_sync, &rdev->flags);
1da177e4
LT
703 /*
704 * if recovery was running, make sure it aborts.
705 */
706 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
707 }
b2d444d7 708 set_bit(Faulty, &rdev->flags);
1da177e4
LT
709 printk (KERN_ALERT
710 "raid5: Disk failure on %s, disabling device."
711 " Operation continuing on %d devices\n",
02c2de8c 712 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 713 }
16a53ecc 714}
1da177e4
LT
715
716/*
717 * Input: a 'big' sector number,
718 * Output: index of the data and parity disk, and the sector # in them.
719 */
720static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
721 unsigned int data_disks, unsigned int * dd_idx,
722 unsigned int * pd_idx, raid5_conf_t *conf)
723{
724 long stripe;
725 unsigned long chunk_number;
726 unsigned int chunk_offset;
727 sector_t new_sector;
728 int sectors_per_chunk = conf->chunk_size >> 9;
729
730 /* First compute the information on this sector */
731
732 /*
733 * Compute the chunk number and the sector offset inside the chunk
734 */
735 chunk_offset = sector_div(r_sector, sectors_per_chunk);
736 chunk_number = r_sector;
737 BUG_ON(r_sector != chunk_number);
738
739 /*
740 * Compute the stripe number
741 */
742 stripe = chunk_number / data_disks;
743
744 /*
745 * Compute the data disk and parity disk indexes inside the stripe
746 */
747 *dd_idx = chunk_number % data_disks;
748
749 /*
750 * Select the parity disk based on the user selected algorithm.
751 */
16a53ecc
N
752 switch(conf->level) {
753 case 4:
1da177e4 754 *pd_idx = data_disks;
16a53ecc
N
755 break;
756 case 5:
757 switch (conf->algorithm) {
1da177e4
LT
758 case ALGORITHM_LEFT_ASYMMETRIC:
759 *pd_idx = data_disks - stripe % raid_disks;
760 if (*dd_idx >= *pd_idx)
761 (*dd_idx)++;
762 break;
763 case ALGORITHM_RIGHT_ASYMMETRIC:
764 *pd_idx = stripe % raid_disks;
765 if (*dd_idx >= *pd_idx)
766 (*dd_idx)++;
767 break;
768 case ALGORITHM_LEFT_SYMMETRIC:
769 *pd_idx = data_disks - stripe % raid_disks;
770 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
771 break;
772 case ALGORITHM_RIGHT_SYMMETRIC:
773 *pd_idx = stripe % raid_disks;
774 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
775 break;
776 default:
14f8d26b 777 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1da177e4 778 conf->algorithm);
16a53ecc
N
779 }
780 break;
781 case 6:
782
783 /**** FIX THIS ****/
784 switch (conf->algorithm) {
785 case ALGORITHM_LEFT_ASYMMETRIC:
786 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
787 if (*pd_idx == raid_disks-1)
788 (*dd_idx)++; /* Q D D D P */
789 else if (*dd_idx >= *pd_idx)
790 (*dd_idx) += 2; /* D D P Q D */
791 break;
792 case ALGORITHM_RIGHT_ASYMMETRIC:
793 *pd_idx = stripe % raid_disks;
794 if (*pd_idx == raid_disks-1)
795 (*dd_idx)++; /* Q D D D P */
796 else if (*dd_idx >= *pd_idx)
797 (*dd_idx) += 2; /* D D P Q D */
798 break;
799 case ALGORITHM_LEFT_SYMMETRIC:
800 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
801 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
802 break;
803 case ALGORITHM_RIGHT_SYMMETRIC:
804 *pd_idx = stripe % raid_disks;
805 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
806 break;
807 default:
808 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
809 conf->algorithm);
810 }
811 break;
1da177e4
LT
812 }
813
814 /*
815 * Finally, compute the new sector number
816 */
817 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
818 return new_sector;
819}
820
821
822static sector_t compute_blocknr(struct stripe_head *sh, int i)
823{
824 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 825 int raid_disks = sh->disks, data_disks = raid_disks - 1;
1da177e4
LT
826 sector_t new_sector = sh->sector, check;
827 int sectors_per_chunk = conf->chunk_size >> 9;
828 sector_t stripe;
829 int chunk_offset;
830 int chunk_number, dummy1, dummy2, dd_idx = i;
831 sector_t r_sector;
832
16a53ecc 833
1da177e4
LT
834 chunk_offset = sector_div(new_sector, sectors_per_chunk);
835 stripe = new_sector;
836 BUG_ON(new_sector != stripe);
837
16a53ecc
N
838 if (i == sh->pd_idx)
839 return 0;
840 switch(conf->level) {
841 case 4: break;
842 case 5:
843 switch (conf->algorithm) {
1da177e4
LT
844 case ALGORITHM_LEFT_ASYMMETRIC:
845 case ALGORITHM_RIGHT_ASYMMETRIC:
846 if (i > sh->pd_idx)
847 i--;
848 break;
849 case ALGORITHM_LEFT_SYMMETRIC:
850 case ALGORITHM_RIGHT_SYMMETRIC:
851 if (i < sh->pd_idx)
852 i += raid_disks;
853 i -= (sh->pd_idx + 1);
854 break;
855 default:
14f8d26b 856 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
16a53ecc
N
857 conf->algorithm);
858 }
859 break;
860 case 6:
861 data_disks = raid_disks - 2;
862 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
863 return 0; /* It is the Q disk */
864 switch (conf->algorithm) {
865 case ALGORITHM_LEFT_ASYMMETRIC:
866 case ALGORITHM_RIGHT_ASYMMETRIC:
867 if (sh->pd_idx == raid_disks-1)
868 i--; /* Q D D D P */
869 else if (i > sh->pd_idx)
870 i -= 2; /* D D P Q D */
871 break;
872 case ALGORITHM_LEFT_SYMMETRIC:
873 case ALGORITHM_RIGHT_SYMMETRIC:
874 if (sh->pd_idx == raid_disks-1)
875 i--; /* Q D D D P */
876 else {
877 /* D D P Q D */
878 if (i < sh->pd_idx)
879 i += raid_disks;
880 i -= (sh->pd_idx + 2);
881 }
882 break;
883 default:
884 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1da177e4 885 conf->algorithm);
16a53ecc
N
886 }
887 break;
1da177e4
LT
888 }
889
890 chunk_number = stripe * data_disks + i;
891 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
892
893 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
894 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
14f8d26b 895 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
896 return 0;
897 }
898 return r_sector;
899}
900
901
902
903/*
16a53ecc
N
904 * Copy data between a page in the stripe cache, and one or more bion
905 * The page could align with the middle of the bio, or there could be
906 * several bion, each with several bio_vecs, which cover part of the page
907 * Multiple bion are linked together on bi_next. There may be extras
908 * at the end of this list. We ignore them.
1da177e4
LT
909 */
910static void copy_data(int frombio, struct bio *bio,
911 struct page *page,
912 sector_t sector)
913{
914 char *pa = page_address(page);
915 struct bio_vec *bvl;
916 int i;
917 int page_offset;
918
919 if (bio->bi_sector >= sector)
920 page_offset = (signed)(bio->bi_sector - sector) * 512;
921 else
922 page_offset = (signed)(sector - bio->bi_sector) * -512;
923 bio_for_each_segment(bvl, bio, i) {
924 int len = bio_iovec_idx(bio,i)->bv_len;
925 int clen;
926 int b_offset = 0;
927
928 if (page_offset < 0) {
929 b_offset = -page_offset;
930 page_offset += b_offset;
931 len -= b_offset;
932 }
933
934 if (len > 0 && page_offset + len > STRIPE_SIZE)
935 clen = STRIPE_SIZE - page_offset;
936 else clen = len;
16a53ecc 937
1da177e4
LT
938 if (clen > 0) {
939 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
940 if (frombio)
941 memcpy(pa+page_offset, ba+b_offset, clen);
942 else
943 memcpy(ba+b_offset, pa+page_offset, clen);
944 __bio_kunmap_atomic(ba, KM_USER0);
945 }
946 if (clen < len) /* hit end of page */
947 break;
948 page_offset += len;
949 }
950}
951
952#define check_xor() do { \
953 if (count == MAX_XOR_BLOCKS) { \
954 xor_block(count, STRIPE_SIZE, ptr); \
955 count = 1; \
956 } \
957 } while(0)
958
959
960static void compute_block(struct stripe_head *sh, int dd_idx)
961{
7ecaa1e6 962 int i, count, disks = sh->disks;
1da177e4
LT
963 void *ptr[MAX_XOR_BLOCKS], *p;
964
965 PRINTK("compute_block, stripe %llu, idx %d\n",
966 (unsigned long long)sh->sector, dd_idx);
967
968 ptr[0] = page_address(sh->dev[dd_idx].page);
969 memset(ptr[0], 0, STRIPE_SIZE);
970 count = 1;
971 for (i = disks ; i--; ) {
972 if (i == dd_idx)
973 continue;
974 p = page_address(sh->dev[i].page);
975 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
976 ptr[count++] = p;
977 else
14f8d26b 978 printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
1da177e4
LT
979 " not present\n", dd_idx,
980 (unsigned long long)sh->sector, i);
981
982 check_xor();
983 }
984 if (count != 1)
985 xor_block(count, STRIPE_SIZE, ptr);
986 set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
987}
988
16a53ecc 989static void compute_parity5(struct stripe_head *sh, int method)
1da177e4
LT
990{
991 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 992 int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
1da177e4
LT
993 void *ptr[MAX_XOR_BLOCKS];
994 struct bio *chosen;
995
16a53ecc 996 PRINTK("compute_parity5, stripe %llu, method %d\n",
1da177e4
LT
997 (unsigned long long)sh->sector, method);
998
999 count = 1;
1000 ptr[0] = page_address(sh->dev[pd_idx].page);
1001 switch(method) {
1002 case READ_MODIFY_WRITE:
78bafebd 1003 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
1da177e4
LT
1004 for (i=disks ; i-- ;) {
1005 if (i==pd_idx)
1006 continue;
1007 if (sh->dev[i].towrite &&
1008 test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1009 ptr[count++] = page_address(sh->dev[i].page);
1010 chosen = sh->dev[i].towrite;
1011 sh->dev[i].towrite = NULL;
1012
1013 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1014 wake_up(&conf->wait_for_overlap);
1015
78bafebd 1016 BUG_ON(sh->dev[i].written);
1da177e4
LT
1017 sh->dev[i].written = chosen;
1018 check_xor();
1019 }
1020 }
1021 break;
1022 case RECONSTRUCT_WRITE:
1023 memset(ptr[0], 0, STRIPE_SIZE);
1024 for (i= disks; i-- ;)
1025 if (i!=pd_idx && sh->dev[i].towrite) {
1026 chosen = sh->dev[i].towrite;
1027 sh->dev[i].towrite = NULL;
1028
1029 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1030 wake_up(&conf->wait_for_overlap);
1031
78bafebd 1032 BUG_ON(sh->dev[i].written);
1da177e4
LT
1033 sh->dev[i].written = chosen;
1034 }
1035 break;
1036 case CHECK_PARITY:
1037 break;
1038 }
1039 if (count>1) {
1040 xor_block(count, STRIPE_SIZE, ptr);
1041 count = 1;
1042 }
1043
1044 for (i = disks; i--;)
1045 if (sh->dev[i].written) {
1046 sector_t sector = sh->dev[i].sector;
1047 struct bio *wbi = sh->dev[i].written;
1048 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1049 copy_data(1, wbi, sh->dev[i].page, sector);
1050 wbi = r5_next_bio(wbi, sector);
1051 }
1052
1053 set_bit(R5_LOCKED, &sh->dev[i].flags);
1054 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1055 }
1056
1057 switch(method) {
1058 case RECONSTRUCT_WRITE:
1059 case CHECK_PARITY:
1060 for (i=disks; i--;)
1061 if (i != pd_idx) {
1062 ptr[count++] = page_address(sh->dev[i].page);
1063 check_xor();
1064 }
1065 break;
1066 case READ_MODIFY_WRITE:
1067 for (i = disks; i--;)
1068 if (sh->dev[i].written) {
1069 ptr[count++] = page_address(sh->dev[i].page);
1070 check_xor();
1071 }
1072 }
1073 if (count != 1)
1074 xor_block(count, STRIPE_SIZE, ptr);
1075
1076 if (method != CHECK_PARITY) {
1077 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1078 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1079 } else
1080 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1081}
1082
16a53ecc
N
1083static void compute_parity6(struct stripe_head *sh, int method)
1084{
1085 raid6_conf_t *conf = sh->raid_conf;
1086 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count;
1087 struct bio *chosen;
1088 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1089 void *ptrs[disks];
1090
1091 qd_idx = raid6_next_disk(pd_idx, disks);
1092 d0_idx = raid6_next_disk(qd_idx, disks);
1093
1094 PRINTK("compute_parity, stripe %llu, method %d\n",
1095 (unsigned long long)sh->sector, method);
1096
1097 switch(method) {
1098 case READ_MODIFY_WRITE:
1099 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1100 case RECONSTRUCT_WRITE:
1101 for (i= disks; i-- ;)
1102 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1103 chosen = sh->dev[i].towrite;
1104 sh->dev[i].towrite = NULL;
1105
1106 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1107 wake_up(&conf->wait_for_overlap);
1108
1109 if (sh->dev[i].written) BUG();
1110 sh->dev[i].written = chosen;
1111 }
1112 break;
1113 case CHECK_PARITY:
1114 BUG(); /* Not implemented yet */
1115 }
1116
1117 for (i = disks; i--;)
1118 if (sh->dev[i].written) {
1119 sector_t sector = sh->dev[i].sector;
1120 struct bio *wbi = sh->dev[i].written;
1121 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1122 copy_data(1, wbi, sh->dev[i].page, sector);
1123 wbi = r5_next_bio(wbi, sector);
1124 }
1125
1126 set_bit(R5_LOCKED, &sh->dev[i].flags);
1127 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1128 }
1129
1130// switch(method) {
1131// case RECONSTRUCT_WRITE:
1132// case CHECK_PARITY:
1133// case UPDATE_PARITY:
1134 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1135 /* FIX: Is this ordering of drives even remotely optimal? */
1136 count = 0;
1137 i = d0_idx;
1138 do {
1139 ptrs[count++] = page_address(sh->dev[i].page);
1140 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1141 printk("block %d/%d not uptodate on parity calc\n", i,count);
1142 i = raid6_next_disk(i, disks);
1143 } while ( i != d0_idx );
1144// break;
1145// }
1146
1147 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1148
1149 switch(method) {
1150 case RECONSTRUCT_WRITE:
1151 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1152 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1153 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1154 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1155 break;
1156 case UPDATE_PARITY:
1157 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1158 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1159 break;
1160 }
1161}
1162
1163
1164/* Compute one missing block */
1165static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1166{
1167 raid6_conf_t *conf = sh->raid_conf;
1168 int i, count, disks = conf->raid_disks;
1169 void *ptr[MAX_XOR_BLOCKS], *p;
1170 int pd_idx = sh->pd_idx;
1171 int qd_idx = raid6_next_disk(pd_idx, disks);
1172
1173 PRINTK("compute_block_1, stripe %llu, idx %d\n",
1174 (unsigned long long)sh->sector, dd_idx);
1175
1176 if ( dd_idx == qd_idx ) {
1177 /* We're actually computing the Q drive */
1178 compute_parity6(sh, UPDATE_PARITY);
1179 } else {
1180 ptr[0] = page_address(sh->dev[dd_idx].page);
1181 if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
1182 count = 1;
1183 for (i = disks ; i--; ) {
1184 if (i == dd_idx || i == qd_idx)
1185 continue;
1186 p = page_address(sh->dev[i].page);
1187 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1188 ptr[count++] = p;
1189 else
1190 printk("compute_block() %d, stripe %llu, %d"
1191 " not present\n", dd_idx,
1192 (unsigned long long)sh->sector, i);
1193
1194 check_xor();
1195 }
1196 if (count != 1)
1197 xor_block(count, STRIPE_SIZE, ptr);
1198 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1199 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1200 }
1201}
1202
1203/* Compute two missing blocks */
1204static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1205{
1206 raid6_conf_t *conf = sh->raid_conf;
1207 int i, count, disks = conf->raid_disks;
1208 int pd_idx = sh->pd_idx;
1209 int qd_idx = raid6_next_disk(pd_idx, disks);
1210 int d0_idx = raid6_next_disk(qd_idx, disks);
1211 int faila, failb;
1212
1213 /* faila and failb are disk numbers relative to d0_idx */
1214 /* pd_idx become disks-2 and qd_idx become disks-1 */
1215 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1216 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1217
1218 BUG_ON(faila == failb);
1219 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1220
1221 PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1222 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1223
1224 if ( failb == disks-1 ) {
1225 /* Q disk is one of the missing disks */
1226 if ( faila == disks-2 ) {
1227 /* Missing P+Q, just recompute */
1228 compute_parity6(sh, UPDATE_PARITY);
1229 return;
1230 } else {
1231 /* We're missing D+Q; recompute D from P */
1232 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1233 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1234 return;
1235 }
1236 }
1237
1238 /* We're missing D+P or D+D; build pointer table */
1239 {
1240 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1241 void *ptrs[disks];
1242
1243 count = 0;
1244 i = d0_idx;
1245 do {
1246 ptrs[count++] = page_address(sh->dev[i].page);
1247 i = raid6_next_disk(i, disks);
1248 if (i != dd_idx1 && i != dd_idx2 &&
1249 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1250 printk("compute_2 with missing block %d/%d\n", count, i);
1251 } while ( i != d0_idx );
1252
1253 if ( failb == disks-2 ) {
1254 /* We're missing D+P. */
1255 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1256 } else {
1257 /* We're missing D+D. */
1258 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1259 }
1260
1261 /* Both the above update both missing blocks */
1262 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1263 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1264 }
1265}
1266
1267
1268
1da177e4
LT
1269/*
1270 * Each stripe/dev can have one or more bion attached.
16a53ecc 1271 * toread/towrite point to the first in a chain.
1da177e4
LT
1272 * The bi_next chain must be in order.
1273 */
1274static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1275{
1276 struct bio **bip;
1277 raid5_conf_t *conf = sh->raid_conf;
72626685 1278 int firstwrite=0;
1da177e4
LT
1279
1280 PRINTK("adding bh b#%llu to stripe s#%llu\n",
1281 (unsigned long long)bi->bi_sector,
1282 (unsigned long long)sh->sector);
1283
1284
1285 spin_lock(&sh->lock);
1286 spin_lock_irq(&conf->device_lock);
72626685 1287 if (forwrite) {
1da177e4 1288 bip = &sh->dev[dd_idx].towrite;
72626685
N
1289 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1290 firstwrite = 1;
1291 } else
1da177e4
LT
1292 bip = &sh->dev[dd_idx].toread;
1293 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1294 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1295 goto overlap;
1296 bip = & (*bip)->bi_next;
1297 }
1298 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1299 goto overlap;
1300
78bafebd 1301 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1302 if (*bip)
1303 bi->bi_next = *bip;
1304 *bip = bi;
1305 bi->bi_phys_segments ++;
1306 spin_unlock_irq(&conf->device_lock);
1307 spin_unlock(&sh->lock);
1308
1309 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1310 (unsigned long long)bi->bi_sector,
1311 (unsigned long long)sh->sector, dd_idx);
1312
72626685 1313 if (conf->mddev->bitmap && firstwrite) {
72626685
N
1314 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1315 STRIPE_SECTORS, 0);
ae3c20cc 1316 sh->bm_seq = conf->seq_flush+1;
72626685
N
1317 set_bit(STRIPE_BIT_DELAY, &sh->state);
1318 }
1319
1da177e4
LT
1320 if (forwrite) {
1321 /* check if page is covered */
1322 sector_t sector = sh->dev[dd_idx].sector;
1323 for (bi=sh->dev[dd_idx].towrite;
1324 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1325 bi && bi->bi_sector <= sector;
1326 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1327 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1328 sector = bi->bi_sector + (bi->bi_size>>9);
1329 }
1330 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1331 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1332 }
1333 return 1;
1334
1335 overlap:
1336 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1337 spin_unlock_irq(&conf->device_lock);
1338 spin_unlock(&sh->lock);
1339 return 0;
1340}
1341
29269553
N
1342static void end_reshape(raid5_conf_t *conf);
1343
16a53ecc
N
1344static int page_is_zero(struct page *p)
1345{
1346 char *a = page_address(p);
1347 return ((*(u32*)a) == 0 &&
1348 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1349}
1350
ccfcc3c1
N
1351static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1352{
1353 int sectors_per_chunk = conf->chunk_size >> 9;
ccfcc3c1 1354 int pd_idx, dd_idx;
2d2063ce
CQH
1355 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1356
ccfcc3c1
N
1357 raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk
1358 + chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf);
1359 return pd_idx;
1360}
1361
1da177e4
LT
1362
1363/*
1364 * handle_stripe - do things to a stripe.
1365 *
1366 * We lock the stripe and then examine the state of various bits
1367 * to see what needs to be done.
1368 * Possible results:
1369 * return some read request which now have data
1370 * return some write requests which are safely on disc
1371 * schedule a read on some buffers
1372 * schedule a write of some buffers
1373 * return confirmation of parity correctness
1374 *
1375 * Parity calculations are done inside the stripe lock
1376 * buffers are taken off read_list or write_list, and bh_cache buffers
1377 * get BH_Lock set before the stripe lock is released.
1378 *
1379 */
1380
16a53ecc 1381static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
1382{
1383 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1384 int disks = sh->disks;
1da177e4
LT
1385 struct bio *return_bi= NULL;
1386 struct bio *bi;
1387 int i;
ccfcc3c1 1388 int syncing, expanding, expanded;
1da177e4
LT
1389 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1390 int non_overwrite = 0;
1391 int failed_num=0;
1392 struct r5dev *dev;
1393
1394 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1395 (unsigned long long)sh->sector, atomic_read(&sh->count),
1396 sh->pd_idx);
1397
1398 spin_lock(&sh->lock);
1399 clear_bit(STRIPE_HANDLE, &sh->state);
1400 clear_bit(STRIPE_DELAYED, &sh->state);
1401
1402 syncing = test_bit(STRIPE_SYNCING, &sh->state);
ccfcc3c1
N
1403 expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1404 expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1da177e4
LT
1405 /* Now to look around and see what can be done */
1406
9910f16a 1407 rcu_read_lock();
1da177e4
LT
1408 for (i=disks; i--; ) {
1409 mdk_rdev_t *rdev;
1410 dev = &sh->dev[i];
1411 clear_bit(R5_Insync, &dev->flags);
1da177e4
LT
1412
1413 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1414 i, dev->flags, dev->toread, dev->towrite, dev->written);
1415 /* maybe we can reply to a read */
1416 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1417 struct bio *rbi, *rbi2;
1418 PRINTK("Return read for disc %d\n", i);
1419 spin_lock_irq(&conf->device_lock);
1420 rbi = dev->toread;
1421 dev->toread = NULL;
1422 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1423 wake_up(&conf->wait_for_overlap);
1424 spin_unlock_irq(&conf->device_lock);
1425 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1426 copy_data(0, rbi, dev->page, dev->sector);
1427 rbi2 = r5_next_bio(rbi, dev->sector);
1428 spin_lock_irq(&conf->device_lock);
1429 if (--rbi->bi_phys_segments == 0) {
1430 rbi->bi_next = return_bi;
1431 return_bi = rbi;
1432 }
1433 spin_unlock_irq(&conf->device_lock);
1434 rbi = rbi2;
1435 }
1436 }
1437
1438 /* now count some things */
1439 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1440 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1441
1442
1443 if (dev->toread) to_read++;
1444 if (dev->towrite) {
1445 to_write++;
1446 if (!test_bit(R5_OVERWRITE, &dev->flags))
1447 non_overwrite++;
1448 }
1449 if (dev->written) written++;
9910f16a 1450 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 1451 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 1452 /* The ReadError flag will just be confusing now */
4e5314b5
N
1453 clear_bit(R5_ReadError, &dev->flags);
1454 clear_bit(R5_ReWrite, &dev->flags);
1455 }
b2d444d7 1456 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 1457 || test_bit(R5_ReadError, &dev->flags)) {
1da177e4
LT
1458 failed++;
1459 failed_num = i;
1460 } else
1461 set_bit(R5_Insync, &dev->flags);
1462 }
9910f16a 1463 rcu_read_unlock();
1da177e4
LT
1464 PRINTK("locked=%d uptodate=%d to_read=%d"
1465 " to_write=%d failed=%d failed_num=%d\n",
1466 locked, uptodate, to_read, to_write, failed, failed_num);
1467 /* check if the array has lost two devices and, if so, some requests might
1468 * need to be failed
1469 */
1470 if (failed > 1 && to_read+to_write+written) {
1da177e4 1471 for (i=disks; i--; ) {
72626685 1472 int bitmap_end = 0;
4e5314b5
N
1473
1474 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
9910f16a
N
1475 mdk_rdev_t *rdev;
1476 rcu_read_lock();
1477 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 1478 if (rdev && test_bit(In_sync, &rdev->flags))
4e5314b5
N
1479 /* multiple read failures in one stripe */
1480 md_error(conf->mddev, rdev);
9910f16a 1481 rcu_read_unlock();
4e5314b5
N
1482 }
1483
72626685 1484 spin_lock_irq(&conf->device_lock);
1da177e4
LT
1485 /* fail all writes first */
1486 bi = sh->dev[i].towrite;
1487 sh->dev[i].towrite = NULL;
72626685 1488 if (bi) { to_write--; bitmap_end = 1; }
1da177e4
LT
1489
1490 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1491 wake_up(&conf->wait_for_overlap);
1492
1493 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1494 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1495 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1496 if (--bi->bi_phys_segments == 0) {
1497 md_write_end(conf->mddev);
1498 bi->bi_next = return_bi;
1499 return_bi = bi;
1500 }
1501 bi = nextbi;
1502 }
1503 /* and fail all 'written' */
1504 bi = sh->dev[i].written;
1505 sh->dev[i].written = NULL;
72626685 1506 if (bi) bitmap_end = 1;
1da177e4
LT
1507 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1508 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1509 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1510 if (--bi->bi_phys_segments == 0) {
1511 md_write_end(conf->mddev);
1512 bi->bi_next = return_bi;
1513 return_bi = bi;
1514 }
1515 bi = bi2;
1516 }
1517
1518 /* fail any reads if this device is non-operational */
4e5314b5
N
1519 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1520 test_bit(R5_ReadError, &sh->dev[i].flags)) {
1da177e4
LT
1521 bi = sh->dev[i].toread;
1522 sh->dev[i].toread = NULL;
1523 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1524 wake_up(&conf->wait_for_overlap);
1525 if (bi) to_read--;
1526 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1527 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1528 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1529 if (--bi->bi_phys_segments == 0) {
1530 bi->bi_next = return_bi;
1531 return_bi = bi;
1532 }
1533 bi = nextbi;
1534 }
1535 }
72626685
N
1536 spin_unlock_irq(&conf->device_lock);
1537 if (bitmap_end)
1538 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1539 STRIPE_SECTORS, 0, 0);
1da177e4 1540 }
1da177e4
LT
1541 }
1542 if (failed > 1 && syncing) {
1543 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1544 clear_bit(STRIPE_SYNCING, &sh->state);
1545 syncing = 0;
1546 }
1547
1548 /* might be able to return some write requests if the parity block
1549 * is safe, or on a failed drive
1550 */
1551 dev = &sh->dev[sh->pd_idx];
1552 if ( written &&
1553 ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1554 test_bit(R5_UPTODATE, &dev->flags))
1555 || (failed == 1 && failed_num == sh->pd_idx))
1556 ) {
1557 /* any written block on an uptodate or failed drive can be returned.
1558 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1559 * never LOCKED, so we don't need to test 'failed' directly.
1560 */
1561 for (i=disks; i--; )
1562 if (sh->dev[i].written) {
1563 dev = &sh->dev[i];
1564 if (!test_bit(R5_LOCKED, &dev->flags) &&
1565 test_bit(R5_UPTODATE, &dev->flags) ) {
1566 /* We can return any write requests */
1567 struct bio *wbi, *wbi2;
72626685 1568 int bitmap_end = 0;
1da177e4
LT
1569 PRINTK("Return write for disc %d\n", i);
1570 spin_lock_irq(&conf->device_lock);
1571 wbi = dev->written;
1572 dev->written = NULL;
1573 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1574 wbi2 = r5_next_bio(wbi, dev->sector);
1575 if (--wbi->bi_phys_segments == 0) {
1576 md_write_end(conf->mddev);
1577 wbi->bi_next = return_bi;
1578 return_bi = wbi;
1579 }
1580 wbi = wbi2;
1581 }
72626685
N
1582 if (dev->towrite == NULL)
1583 bitmap_end = 1;
1da177e4 1584 spin_unlock_irq(&conf->device_lock);
72626685
N
1585 if (bitmap_end)
1586 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1587 STRIPE_SECTORS,
1588 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1da177e4
LT
1589 }
1590 }
1591 }
1592
1593 /* Now we might consider reading some blocks, either to check/generate
1594 * parity, or to satisfy requests
1595 * or to load a block that is being partially written.
1596 */
ccfcc3c1 1597 if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1da177e4
LT
1598 for (i=disks; i--;) {
1599 dev = &sh->dev[i];
1600 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1601 (dev->toread ||
1602 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1603 syncing ||
ccfcc3c1 1604 expanding ||
1da177e4
LT
1605 (failed && (sh->dev[failed_num].toread ||
1606 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1607 )
1608 ) {
1609 /* we would like to get this block, possibly
1610 * by computing it, but we might not be able to
1611 */
1612 if (uptodate == disks-1) {
1613 PRINTK("Computing block %d\n", i);
1614 compute_block(sh, i);
1615 uptodate++;
1616 } else if (test_bit(R5_Insync, &dev->flags)) {
1617 set_bit(R5_LOCKED, &dev->flags);
1618 set_bit(R5_Wantread, &dev->flags);
1619#if 0
1620 /* if I am just reading this block and we don't have
1621 a failed drive, or any pending writes then sidestep the cache */
1622 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1623 ! syncing && !failed && !to_write) {
1624 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
1625 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
1626 }
1627#endif
1628 locked++;
1629 PRINTK("Reading block %d (sync=%d)\n",
1630 i, syncing);
1da177e4
LT
1631 }
1632 }
1633 }
1634 set_bit(STRIPE_HANDLE, &sh->state);
1635 }
1636
1637 /* now to consider writing and what else, if anything should be read */
1638 if (to_write) {
1639 int rmw=0, rcw=0;
1640 for (i=disks ; i--;) {
1641 /* would I have to read this buffer for read_modify_write */
1642 dev = &sh->dev[i];
1643 if ((dev->towrite || i == sh->pd_idx) &&
1644 (!test_bit(R5_LOCKED, &dev->flags)
1645#if 0
1646|| sh->bh_page[i]!=bh->b_page
1647#endif
1648 ) &&
1649 !test_bit(R5_UPTODATE, &dev->flags)) {
1650 if (test_bit(R5_Insync, &dev->flags)
1651/* && !(!mddev->insync && i == sh->pd_idx) */
1652 )
1653 rmw++;
1654 else rmw += 2*disks; /* cannot read it */
1655 }
1656 /* Would I have to read this buffer for reconstruct_write */
1657 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1658 (!test_bit(R5_LOCKED, &dev->flags)
1659#if 0
1660|| sh->bh_page[i] != bh->b_page
1661#endif
1662 ) &&
1663 !test_bit(R5_UPTODATE, &dev->flags)) {
1664 if (test_bit(R5_Insync, &dev->flags)) rcw++;
1665 else rcw += 2*disks;
1666 }
1667 }
1668 PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1669 (unsigned long long)sh->sector, rmw, rcw);
1670 set_bit(STRIPE_HANDLE, &sh->state);
1671 if (rmw < rcw && rmw > 0)
1672 /* prefer read-modify-write, but need to get some data */
1673 for (i=disks; i--;) {
1674 dev = &sh->dev[i];
1675 if ((dev->towrite || i == sh->pd_idx) &&
1676 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1677 test_bit(R5_Insync, &dev->flags)) {
1678 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1679 {
1680 PRINTK("Read_old block %d for r-m-w\n", i);
1681 set_bit(R5_LOCKED, &dev->flags);
1682 set_bit(R5_Wantread, &dev->flags);
1683 locked++;
1684 } else {
1685 set_bit(STRIPE_DELAYED, &sh->state);
1686 set_bit(STRIPE_HANDLE, &sh->state);
1687 }
1688 }
1689 }
1690 if (rcw <= rmw && rcw > 0)
1691 /* want reconstruct write, but need to get some data */
1692 for (i=disks; i--;) {
1693 dev = &sh->dev[i];
1694 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1695 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1696 test_bit(R5_Insync, &dev->flags)) {
1697 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1698 {
1699 PRINTK("Read_old block %d for Reconstruct\n", i);
1700 set_bit(R5_LOCKED, &dev->flags);
1701 set_bit(R5_Wantread, &dev->flags);
1702 locked++;
1703 } else {
1704 set_bit(STRIPE_DELAYED, &sh->state);
1705 set_bit(STRIPE_HANDLE, &sh->state);
1706 }
1707 }
1708 }
1709 /* now if nothing is locked, and if we have enough data, we can start a write request */
72626685
N
1710 if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1711 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1da177e4 1712 PRINTK("Computing parity...\n");
16a53ecc 1713 compute_parity5(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1da177e4
LT
1714 /* now every locked buffer is ready to be written */
1715 for (i=disks; i--;)
1716 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1717 PRINTK("Writing block %d\n", i);
1718 locked++;
1719 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1720 if (!test_bit(R5_Insync, &sh->dev[i].flags)
1721 || (i==sh->pd_idx && failed == 0))
1722 set_bit(STRIPE_INSYNC, &sh->state);
1723 }
1724 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1725 atomic_dec(&conf->preread_active_stripes);
1726 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1727 md_wakeup_thread(conf->mddev->thread);
1728 }
1729 }
1730 }
1731
1732 /* maybe we need to check and possibly fix the parity for this stripe
1733 * Any reads will already have been scheduled, so we just see if enough data
1734 * is available
1735 */
1736 if (syncing && locked == 0 &&
14f8d26b 1737 !test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
1738 set_bit(STRIPE_HANDLE, &sh->state);
1739 if (failed == 0) {
78bafebd 1740 BUG_ON(uptodate != disks);
16a53ecc 1741 compute_parity5(sh, CHECK_PARITY);
1da177e4 1742 uptodate--;
16a53ecc 1743 if (page_is_zero(sh->dev[sh->pd_idx].page)) {
1da177e4
LT
1744 /* parity is correct (on disc, not in buffer any more) */
1745 set_bit(STRIPE_INSYNC, &sh->state);
9d88883e
N
1746 } else {
1747 conf->mddev->resync_mismatches += STRIPE_SECTORS;
1748 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1749 /* don't try to repair!! */
1750 set_bit(STRIPE_INSYNC, &sh->state);
14f8d26b
N
1751 else {
1752 compute_block(sh, sh->pd_idx);
1753 uptodate++;
1754 }
1da177e4
LT
1755 }
1756 }
1757 if (!test_bit(STRIPE_INSYNC, &sh->state)) {
14f8d26b 1758 /* either failed parity check, or recovery is happening */
1da177e4
LT
1759 if (failed==0)
1760 failed_num = sh->pd_idx;
1da177e4 1761 dev = &sh->dev[failed_num];
14f8d26b
N
1762 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1763 BUG_ON(uptodate != disks);
1764
1da177e4
LT
1765 set_bit(R5_LOCKED, &dev->flags);
1766 set_bit(R5_Wantwrite, &dev->flags);
72626685 1767 clear_bit(STRIPE_DEGRADED, &sh->state);
1da177e4
LT
1768 locked++;
1769 set_bit(STRIPE_INSYNC, &sh->state);
1da177e4
LT
1770 }
1771 }
1772 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1773 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1774 clear_bit(STRIPE_SYNCING, &sh->state);
1775 }
4e5314b5
N
1776
1777 /* If the failed drive is just a ReadError, then we might need to progress
1778 * the repair/check process
1779 */
ba22dcbf
N
1780 if (failed == 1 && ! conf->mddev->ro &&
1781 test_bit(R5_ReadError, &sh->dev[failed_num].flags)
4e5314b5
N
1782 && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1783 && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1784 ) {
1785 dev = &sh->dev[failed_num];
1786 if (!test_bit(R5_ReWrite, &dev->flags)) {
1787 set_bit(R5_Wantwrite, &dev->flags);
1788 set_bit(R5_ReWrite, &dev->flags);
1789 set_bit(R5_LOCKED, &dev->flags);
ccfcc3c1 1790 locked++;
4e5314b5
N
1791 } else {
1792 /* let's read it back */
1793 set_bit(R5_Wantread, &dev->flags);
1794 set_bit(R5_LOCKED, &dev->flags);
ccfcc3c1 1795 locked++;
4e5314b5
N
1796 }
1797 }
1798
ccfcc3c1
N
1799 if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1800 /* Need to write out all blocks after computing parity */
1801 sh->disks = conf->raid_disks;
1802 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
16a53ecc 1803 compute_parity5(sh, RECONSTRUCT_WRITE);
ccfcc3c1
N
1804 for (i= conf->raid_disks; i--;) {
1805 set_bit(R5_LOCKED, &sh->dev[i].flags);
1806 locked++;
1807 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1808 }
1809 clear_bit(STRIPE_EXPANDING, &sh->state);
1810 } else if (expanded) {
1811 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 1812 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
1813 wake_up(&conf->wait_for_overlap);
1814 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1815 }
1816
1817 if (expanding && locked == 0) {
1818 /* We have read all the blocks in this stripe and now we need to
1819 * copy some of them into a target stripe for expand.
1820 */
1821 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1822 for (i=0; i< sh->disks; i++)
1823 if (i != sh->pd_idx) {
1824 int dd_idx, pd_idx, j;
1825 struct stripe_head *sh2;
1826
1827 sector_t bn = compute_blocknr(sh, i);
1828 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1829 conf->raid_disks-1,
1830 &dd_idx, &pd_idx, conf);
1831 sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1832 if (sh2 == NULL)
1833 /* so far only the early blocks of this stripe
1834 * have been requested. When later blocks
1835 * get requested, we will try again
1836 */
1837 continue;
1838 if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1839 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1840 /* must have already done this block */
1841 release_stripe(sh2);
1842 continue;
1843 }
1844 memcpy(page_address(sh2->dev[dd_idx].page),
1845 page_address(sh->dev[i].page),
1846 STRIPE_SIZE);
1847 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1848 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1849 for (j=0; j<conf->raid_disks; j++)
1850 if (j != sh2->pd_idx &&
1851 !test_bit(R5_Expanded, &sh2->dev[j].flags))
1852 break;
1853 if (j == conf->raid_disks) {
1854 set_bit(STRIPE_EXPAND_READY, &sh2->state);
1855 set_bit(STRIPE_HANDLE, &sh2->state);
1856 }
1857 release_stripe(sh2);
1858 }
1859 }
1860
1da177e4
LT
1861 spin_unlock(&sh->lock);
1862
1863 while ((bi=return_bi)) {
1864 int bytes = bi->bi_size;
1865
1866 return_bi = bi->bi_next;
1867 bi->bi_next = NULL;
1868 bi->bi_size = 0;
1869 bi->bi_end_io(bi, bytes, 0);
1870 }
1871 for (i=disks; i-- ;) {
1872 int rw;
1873 struct bio *bi;
1874 mdk_rdev_t *rdev;
1875 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1876 rw = 1;
1877 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1878 rw = 0;
1879 else
1880 continue;
1881
1882 bi = &sh->dev[i].req;
1883
1884 bi->bi_rw = rw;
1885 if (rw)
1886 bi->bi_end_io = raid5_end_write_request;
1887 else
1888 bi->bi_end_io = raid5_end_read_request;
1889
1890 rcu_read_lock();
d6065f7b 1891 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 1892 if (rdev && test_bit(Faulty, &rdev->flags))
1da177e4
LT
1893 rdev = NULL;
1894 if (rdev)
1895 atomic_inc(&rdev->nr_pending);
1896 rcu_read_unlock();
1897
1898 if (rdev) {
ccfcc3c1 1899 if (syncing || expanding || expanded)
1da177e4
LT
1900 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1901
1902 bi->bi_bdev = rdev->bdev;
1903 PRINTK("for %llu schedule op %ld on disc %d\n",
1904 (unsigned long long)sh->sector, bi->bi_rw, i);
1905 atomic_inc(&sh->count);
1906 bi->bi_sector = sh->sector + rdev->data_offset;
1907 bi->bi_flags = 1 << BIO_UPTODATE;
1908 bi->bi_vcnt = 1;
1909 bi->bi_max_vecs = 1;
1910 bi->bi_idx = 0;
1911 bi->bi_io_vec = &sh->dev[i].vec;
1912 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1913 bi->bi_io_vec[0].bv_offset = 0;
1914 bi->bi_size = STRIPE_SIZE;
1915 bi->bi_next = NULL;
4dbcdc75
N
1916 if (rw == WRITE &&
1917 test_bit(R5_ReWrite, &sh->dev[i].flags))
1918 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1da177e4
LT
1919 generic_make_request(bi);
1920 } else {
72626685
N
1921 if (rw == 1)
1922 set_bit(STRIPE_DEGRADED, &sh->state);
1da177e4
LT
1923 PRINTK("skip op %ld on disc %d for sector %llu\n",
1924 bi->bi_rw, i, (unsigned long long)sh->sector);
1925 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1926 set_bit(STRIPE_HANDLE, &sh->state);
1927 }
1928 }
1929}
1930
16a53ecc 1931static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 1932{
16a53ecc
N
1933 raid6_conf_t *conf = sh->raid_conf;
1934 int disks = conf->raid_disks;
1935 struct bio *return_bi= NULL;
1936 struct bio *bi;
1937 int i;
1938 int syncing;
1939 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1940 int non_overwrite = 0;
1941 int failed_num[2] = {0, 0};
1942 struct r5dev *dev, *pdev, *qdev;
1943 int pd_idx = sh->pd_idx;
1944 int qd_idx = raid6_next_disk(pd_idx, disks);
1945 int p_failed, q_failed;
1da177e4 1946
16a53ecc
N
1947 PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1948 (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
1949 pd_idx, qd_idx);
72626685 1950
16a53ecc
N
1951 spin_lock(&sh->lock);
1952 clear_bit(STRIPE_HANDLE, &sh->state);
1953 clear_bit(STRIPE_DELAYED, &sh->state);
1954
1955 syncing = test_bit(STRIPE_SYNCING, &sh->state);
1956 /* Now to look around and see what can be done */
1da177e4
LT
1957
1958 rcu_read_lock();
16a53ecc
N
1959 for (i=disks; i--; ) {
1960 mdk_rdev_t *rdev;
1961 dev = &sh->dev[i];
1962 clear_bit(R5_Insync, &dev->flags);
1da177e4 1963
16a53ecc
N
1964 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1965 i, dev->flags, dev->toread, dev->towrite, dev->written);
1966 /* maybe we can reply to a read */
1967 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1968 struct bio *rbi, *rbi2;
1969 PRINTK("Return read for disc %d\n", i);
1970 spin_lock_irq(&conf->device_lock);
1971 rbi = dev->toread;
1972 dev->toread = NULL;
1973 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1974 wake_up(&conf->wait_for_overlap);
1975 spin_unlock_irq(&conf->device_lock);
1976 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1977 copy_data(0, rbi, dev->page, dev->sector);
1978 rbi2 = r5_next_bio(rbi, dev->sector);
1979 spin_lock_irq(&conf->device_lock);
1980 if (--rbi->bi_phys_segments == 0) {
1981 rbi->bi_next = return_bi;
1982 return_bi = rbi;
1983 }
1984 spin_unlock_irq(&conf->device_lock);
1985 rbi = rbi2;
1986 }
1987 }
1da177e4 1988
16a53ecc
N
1989 /* now count some things */
1990 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1991 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1da177e4 1992
16a53ecc
N
1993
1994 if (dev->toread) to_read++;
1995 if (dev->towrite) {
1996 to_write++;
1997 if (!test_bit(R5_OVERWRITE, &dev->flags))
1998 non_overwrite++;
1999 }
2000 if (dev->written) written++;
2001 rdev = rcu_dereference(conf->disks[i].rdev);
2002 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2003 /* The ReadError flag will just be confusing now */
2004 clear_bit(R5_ReadError, &dev->flags);
2005 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 2006 }
16a53ecc
N
2007 if (!rdev || !test_bit(In_sync, &rdev->flags)
2008 || test_bit(R5_ReadError, &dev->flags)) {
2009 if ( failed < 2 )
2010 failed_num[failed] = i;
2011 failed++;
2012 } else
2013 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
2014 }
2015 rcu_read_unlock();
16a53ecc
N
2016 PRINTK("locked=%d uptodate=%d to_read=%d"
2017 " to_write=%d failed=%d failed_num=%d,%d\n",
2018 locked, uptodate, to_read, to_write, failed,
2019 failed_num[0], failed_num[1]);
2020 /* check if the array has lost >2 devices and, if so, some requests might
2021 * need to be failed
2022 */
2023 if (failed > 2 && to_read+to_write+written) {
2024 for (i=disks; i--; ) {
2025 int bitmap_end = 0;
1da177e4 2026
16a53ecc
N
2027 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2028 mdk_rdev_t *rdev;
2029 rcu_read_lock();
2030 rdev = rcu_dereference(conf->disks[i].rdev);
2031 if (rdev && test_bit(In_sync, &rdev->flags))
2032 /* multiple read failures in one stripe */
2033 md_error(conf->mddev, rdev);
2034 rcu_read_unlock();
2035 }
1da177e4 2036
16a53ecc
N
2037 spin_lock_irq(&conf->device_lock);
2038 /* fail all writes first */
2039 bi = sh->dev[i].towrite;
2040 sh->dev[i].towrite = NULL;
2041 if (bi) { to_write--; bitmap_end = 1; }
1da177e4 2042
16a53ecc
N
2043 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2044 wake_up(&conf->wait_for_overlap);
2045
2046 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2047 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2048 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2049 if (--bi->bi_phys_segments == 0) {
2050 md_write_end(conf->mddev);
2051 bi->bi_next = return_bi;
2052 return_bi = bi;
2053 }
2054 bi = nextbi;
2055 }
2056 /* and fail all 'written' */
2057 bi = sh->dev[i].written;
2058 sh->dev[i].written = NULL;
2059 if (bi) bitmap_end = 1;
2060 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
2061 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2062 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2063 if (--bi->bi_phys_segments == 0) {
2064 md_write_end(conf->mddev);
2065 bi->bi_next = return_bi;
2066 return_bi = bi;
2067 }
2068 bi = bi2;
2069 }
2070
2071 /* fail any reads if this device is non-operational */
2072 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2073 test_bit(R5_ReadError, &sh->dev[i].flags)) {
2074 bi = sh->dev[i].toread;
2075 sh->dev[i].toread = NULL;
2076 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2077 wake_up(&conf->wait_for_overlap);
2078 if (bi) to_read--;
2079 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2080 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2081 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2082 if (--bi->bi_phys_segments == 0) {
2083 bi->bi_next = return_bi;
2084 return_bi = bi;
2085 }
2086 bi = nextbi;
2087 }
2088 }
2089 spin_unlock_irq(&conf->device_lock);
2090 if (bitmap_end)
2091 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2092 STRIPE_SECTORS, 0, 0);
2093 }
2094 }
2095 if (failed > 2 && syncing) {
2096 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2097 clear_bit(STRIPE_SYNCING, &sh->state);
2098 syncing = 0;
2099 }
2100
2101 /*
2102 * might be able to return some write requests if the parity blocks
2103 * are safe, or on a failed drive
2104 */
2105 pdev = &sh->dev[pd_idx];
2106 p_failed = (failed >= 1 && failed_num[0] == pd_idx)
2107 || (failed >= 2 && failed_num[1] == pd_idx);
2108 qdev = &sh->dev[qd_idx];
2109 q_failed = (failed >= 1 && failed_num[0] == qd_idx)
2110 || (failed >= 2 && failed_num[1] == qd_idx);
2111
2112 if ( written &&
2113 ( p_failed || ((test_bit(R5_Insync, &pdev->flags)
2114 && !test_bit(R5_LOCKED, &pdev->flags)
2115 && test_bit(R5_UPTODATE, &pdev->flags))) ) &&
2116 ( q_failed || ((test_bit(R5_Insync, &qdev->flags)
2117 && !test_bit(R5_LOCKED, &qdev->flags)
2118 && test_bit(R5_UPTODATE, &qdev->flags))) ) ) {
2119 /* any written block on an uptodate or failed drive can be
2120 * returned. Note that if we 'wrote' to a failed drive,
2121 * it will be UPTODATE, but never LOCKED, so we don't need
2122 * to test 'failed' directly.
2123 */
2124 for (i=disks; i--; )
2125 if (sh->dev[i].written) {
2126 dev = &sh->dev[i];
2127 if (!test_bit(R5_LOCKED, &dev->flags) &&
2128 test_bit(R5_UPTODATE, &dev->flags) ) {
2129 /* We can return any write requests */
2130 int bitmap_end = 0;
2131 struct bio *wbi, *wbi2;
2132 PRINTK("Return write for stripe %llu disc %d\n",
2133 (unsigned long long)sh->sector, i);
2134 spin_lock_irq(&conf->device_lock);
2135 wbi = dev->written;
2136 dev->written = NULL;
2137 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2138 wbi2 = r5_next_bio(wbi, dev->sector);
2139 if (--wbi->bi_phys_segments == 0) {
2140 md_write_end(conf->mddev);
2141 wbi->bi_next = return_bi;
2142 return_bi = wbi;
2143 }
2144 wbi = wbi2;
2145 }
2146 if (dev->towrite == NULL)
2147 bitmap_end = 1;
2148 spin_unlock_irq(&conf->device_lock);
2149 if (bitmap_end)
2150 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2151 STRIPE_SECTORS,
2152 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
2153 }
2154 }
2155 }
2156
2157 /* Now we might consider reading some blocks, either to check/generate
2158 * parity, or to satisfy requests
2159 * or to load a block that is being partially written.
2160 */
2161 if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) {
2162 for (i=disks; i--;) {
2163 dev = &sh->dev[i];
2164 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2165 (dev->toread ||
2166 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2167 syncing ||
2168 (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) ||
2169 (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write))
2170 )
2171 ) {
2172 /* we would like to get this block, possibly
2173 * by computing it, but we might not be able to
2174 */
2175 if (uptodate == disks-1) {
2176 PRINTK("Computing stripe %llu block %d\n",
2177 (unsigned long long)sh->sector, i);
2178 compute_block_1(sh, i, 0);
2179 uptodate++;
2180 } else if ( uptodate == disks-2 && failed >= 2 ) {
2181 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2182 int other;
2183 for (other=disks; other--;) {
2184 if ( other == i )
2185 continue;
2186 if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) )
2187 break;
2188 }
2189 BUG_ON(other < 0);
2190 PRINTK("Computing stripe %llu blocks %d,%d\n",
2191 (unsigned long long)sh->sector, i, other);
2192 compute_block_2(sh, i, other);
2193 uptodate += 2;
2194 } else if (test_bit(R5_Insync, &dev->flags)) {
2195 set_bit(R5_LOCKED, &dev->flags);
2196 set_bit(R5_Wantread, &dev->flags);
2197#if 0
2198 /* if I am just reading this block and we don't have
2199 a failed drive, or any pending writes then sidestep the cache */
2200 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
2201 ! syncing && !failed && !to_write) {
2202 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
2203 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
2204 }
2205#endif
2206 locked++;
2207 PRINTK("Reading block %d (sync=%d)\n",
2208 i, syncing);
2209 }
2210 }
2211 }
2212 set_bit(STRIPE_HANDLE, &sh->state);
2213 }
2214
2215 /* now to consider writing and what else, if anything should be read */
2216 if (to_write) {
2217 int rcw=0, must_compute=0;
2218 for (i=disks ; i--;) {
2219 dev = &sh->dev[i];
2220 /* Would I have to read this buffer for reconstruct_write */
2221 if (!test_bit(R5_OVERWRITE, &dev->flags)
2222 && i != pd_idx && i != qd_idx
2223 && (!test_bit(R5_LOCKED, &dev->flags)
2224#if 0
2225 || sh->bh_page[i] != bh->b_page
2226#endif
2227 ) &&
2228 !test_bit(R5_UPTODATE, &dev->flags)) {
2229 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2230 else {
2231 PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags);
2232 must_compute++;
2233 }
2234 }
2235 }
2236 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2237 (unsigned long long)sh->sector, rcw, must_compute);
2238 set_bit(STRIPE_HANDLE, &sh->state);
2239
2240 if (rcw > 0)
2241 /* want reconstruct write, but need to get some data */
2242 for (i=disks; i--;) {
2243 dev = &sh->dev[i];
2244 if (!test_bit(R5_OVERWRITE, &dev->flags)
2245 && !(failed == 0 && (i == pd_idx || i == qd_idx))
2246 && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2247 test_bit(R5_Insync, &dev->flags)) {
2248 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2249 {
2250 PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2251 (unsigned long long)sh->sector, i);
2252 set_bit(R5_LOCKED, &dev->flags);
2253 set_bit(R5_Wantread, &dev->flags);
2254 locked++;
2255 } else {
2256 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2257 (unsigned long long)sh->sector, i);
2258 set_bit(STRIPE_DELAYED, &sh->state);
2259 set_bit(STRIPE_HANDLE, &sh->state);
2260 }
2261 }
2262 }
2263 /* now if nothing is locked, and if we have enough data, we can start a write request */
2264 if (locked == 0 && rcw == 0 &&
2265 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2266 if ( must_compute > 0 ) {
2267 /* We have failed blocks and need to compute them */
2268 switch ( failed ) {
2269 case 0: BUG();
2270 case 1: compute_block_1(sh, failed_num[0], 0); break;
2271 case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
2272 default: BUG(); /* This request should have been failed? */
2273 }
2274 }
2275
2276 PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector);
2277 compute_parity6(sh, RECONSTRUCT_WRITE);
2278 /* now every locked buffer is ready to be written */
2279 for (i=disks; i--;)
2280 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2281 PRINTK("Writing stripe %llu block %d\n",
2282 (unsigned long long)sh->sector, i);
2283 locked++;
2284 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2285 }
2286 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2287 set_bit(STRIPE_INSYNC, &sh->state);
2288
2289 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2290 atomic_dec(&conf->preread_active_stripes);
2291 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
2292 md_wakeup_thread(conf->mddev->thread);
2293 }
2294 }
2295 }
2296
2297 /* maybe we need to check and possibly fix the parity for this stripe
2298 * Any reads will already have been scheduled, so we just see if enough data
2299 * is available
2300 */
2301 if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
2302 int update_p = 0, update_q = 0;
2303 struct r5dev *dev;
2304
2305 set_bit(STRIPE_HANDLE, &sh->state);
2306
2307 BUG_ON(failed>2);
2308 BUG_ON(uptodate < disks);
2309 /* Want to check and possibly repair P and Q.
2310 * However there could be one 'failed' device, in which
2311 * case we can only check one of them, possibly using the
2312 * other to generate missing data
2313 */
2314
2315 /* If !tmp_page, we cannot do the calculations,
2316 * but as we have set STRIPE_HANDLE, we will soon be called
2317 * by stripe_handle with a tmp_page - just wait until then.
2318 */
2319 if (tmp_page) {
2320 if (failed == q_failed) {
2321 /* The only possible failed device holds 'Q', so it makes
2322 * sense to check P (If anything else were failed, we would
2323 * have used P to recreate it).
2324 */
2325 compute_block_1(sh, pd_idx, 1);
2326 if (!page_is_zero(sh->dev[pd_idx].page)) {
2327 compute_block_1(sh,pd_idx,0);
2328 update_p = 1;
2329 }
2330 }
2331 if (!q_failed && failed < 2) {
2332 /* q is not failed, and we didn't use it to generate
2333 * anything, so it makes sense to check it
2334 */
2335 memcpy(page_address(tmp_page),
2336 page_address(sh->dev[qd_idx].page),
2337 STRIPE_SIZE);
2338 compute_parity6(sh, UPDATE_PARITY);
2339 if (memcmp(page_address(tmp_page),
2340 page_address(sh->dev[qd_idx].page),
2341 STRIPE_SIZE)!= 0) {
2342 clear_bit(STRIPE_INSYNC, &sh->state);
2343 update_q = 1;
2344 }
2345 }
2346 if (update_p || update_q) {
2347 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2348 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2349 /* don't try to repair!! */
2350 update_p = update_q = 0;
2351 }
2352
2353 /* now write out any block on a failed drive,
2354 * or P or Q if they need it
2355 */
2356
2357 if (failed == 2) {
2358 dev = &sh->dev[failed_num[1]];
2359 locked++;
2360 set_bit(R5_LOCKED, &dev->flags);
2361 set_bit(R5_Wantwrite, &dev->flags);
2362 }
2363 if (failed >= 1) {
2364 dev = &sh->dev[failed_num[0]];
2365 locked++;
2366 set_bit(R5_LOCKED, &dev->flags);
2367 set_bit(R5_Wantwrite, &dev->flags);
2368 }
2369
2370 if (update_p) {
2371 dev = &sh->dev[pd_idx];
2372 locked ++;
2373 set_bit(R5_LOCKED, &dev->flags);
2374 set_bit(R5_Wantwrite, &dev->flags);
2375 }
2376 if (update_q) {
2377 dev = &sh->dev[qd_idx];
2378 locked++;
2379 set_bit(R5_LOCKED, &dev->flags);
2380 set_bit(R5_Wantwrite, &dev->flags);
2381 }
2382 clear_bit(STRIPE_DEGRADED, &sh->state);
2383
2384 set_bit(STRIPE_INSYNC, &sh->state);
2385 }
2386 }
2387
2388 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2389 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2390 clear_bit(STRIPE_SYNCING, &sh->state);
2391 }
2392
2393 /* If the failed drives are just a ReadError, then we might need
2394 * to progress the repair/check process
2395 */
2396 if (failed <= 2 && ! conf->mddev->ro)
2397 for (i=0; i<failed;i++) {
2398 dev = &sh->dev[failed_num[i]];
2399 if (test_bit(R5_ReadError, &dev->flags)
2400 && !test_bit(R5_LOCKED, &dev->flags)
2401 && test_bit(R5_UPTODATE, &dev->flags)
2402 ) {
2403 if (!test_bit(R5_ReWrite, &dev->flags)) {
2404 set_bit(R5_Wantwrite, &dev->flags);
2405 set_bit(R5_ReWrite, &dev->flags);
2406 set_bit(R5_LOCKED, &dev->flags);
2407 } else {
2408 /* let's read it back */
2409 set_bit(R5_Wantread, &dev->flags);
2410 set_bit(R5_LOCKED, &dev->flags);
2411 }
2412 }
2413 }
2414 spin_unlock(&sh->lock);
2415
2416 while ((bi=return_bi)) {
2417 int bytes = bi->bi_size;
2418
2419 return_bi = bi->bi_next;
2420 bi->bi_next = NULL;
2421 bi->bi_size = 0;
2422 bi->bi_end_io(bi, bytes, 0);
2423 }
2424 for (i=disks; i-- ;) {
2425 int rw;
2426 struct bio *bi;
2427 mdk_rdev_t *rdev;
2428 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
2429 rw = 1;
2430 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
2431 rw = 0;
2432 else
2433 continue;
2434
2435 bi = &sh->dev[i].req;
2436
2437 bi->bi_rw = rw;
2438 if (rw)
2439 bi->bi_end_io = raid5_end_write_request;
2440 else
2441 bi->bi_end_io = raid5_end_read_request;
2442
2443 rcu_read_lock();
2444 rdev = rcu_dereference(conf->disks[i].rdev);
2445 if (rdev && test_bit(Faulty, &rdev->flags))
2446 rdev = NULL;
2447 if (rdev)
2448 atomic_inc(&rdev->nr_pending);
2449 rcu_read_unlock();
2450
2451 if (rdev) {
2452 if (syncing)
2453 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
2454
2455 bi->bi_bdev = rdev->bdev;
2456 PRINTK("for %llu schedule op %ld on disc %d\n",
2457 (unsigned long long)sh->sector, bi->bi_rw, i);
2458 atomic_inc(&sh->count);
2459 bi->bi_sector = sh->sector + rdev->data_offset;
2460 bi->bi_flags = 1 << BIO_UPTODATE;
2461 bi->bi_vcnt = 1;
2462 bi->bi_max_vecs = 1;
2463 bi->bi_idx = 0;
2464 bi->bi_io_vec = &sh->dev[i].vec;
2465 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
2466 bi->bi_io_vec[0].bv_offset = 0;
2467 bi->bi_size = STRIPE_SIZE;
2468 bi->bi_next = NULL;
2469 if (rw == WRITE &&
2470 test_bit(R5_ReWrite, &sh->dev[i].flags))
2471 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2472 generic_make_request(bi);
2473 } else {
2474 if (rw == 1)
2475 set_bit(STRIPE_DEGRADED, &sh->state);
2476 PRINTK("skip op %ld on disc %d for sector %llu\n",
2477 bi->bi_rw, i, (unsigned long long)sh->sector);
2478 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2479 set_bit(STRIPE_HANDLE, &sh->state);
2480 }
2481 }
2482}
2483
2484static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2485{
2486 if (sh->raid_conf->level == 6)
2487 handle_stripe6(sh, tmp_page);
2488 else
2489 handle_stripe5(sh);
2490}
2491
2492
2493
2494static void raid5_activate_delayed(raid5_conf_t *conf)
2495{
2496 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
2497 while (!list_empty(&conf->delayed_list)) {
2498 struct list_head *l = conf->delayed_list.next;
2499 struct stripe_head *sh;
2500 sh = list_entry(l, struct stripe_head, lru);
2501 list_del_init(l);
2502 clear_bit(STRIPE_DELAYED, &sh->state);
2503 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2504 atomic_inc(&conf->preread_active_stripes);
2505 list_add_tail(&sh->lru, &conf->handle_list);
2506 }
2507 }
2508}
2509
2510static void activate_bit_delay(raid5_conf_t *conf)
2511{
2512 /* device_lock is held */
2513 struct list_head head;
2514 list_add(&head, &conf->bitmap_list);
2515 list_del_init(&conf->bitmap_list);
2516 while (!list_empty(&head)) {
2517 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
2518 list_del_init(&sh->lru);
2519 atomic_inc(&sh->count);
2520 __release_stripe(conf, sh);
2521 }
2522}
2523
2524static void unplug_slaves(mddev_t *mddev)
2525{
2526 raid5_conf_t *conf = mddev_to_conf(mddev);
2527 int i;
2528
2529 rcu_read_lock();
2530 for (i=0; i<mddev->raid_disks; i++) {
2531 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2532 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
2533 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
2534
2535 atomic_inc(&rdev->nr_pending);
2536 rcu_read_unlock();
2537
2538 if (r_queue->unplug_fn)
2539 r_queue->unplug_fn(r_queue);
2540
2541 rdev_dec_pending(rdev, mddev);
2542 rcu_read_lock();
2543 }
2544 }
2545 rcu_read_unlock();
2546}
2547
2548static void raid5_unplug_device(request_queue_t *q)
2549{
2550 mddev_t *mddev = q->queuedata;
2551 raid5_conf_t *conf = mddev_to_conf(mddev);
2552 unsigned long flags;
2553
2554 spin_lock_irqsave(&conf->device_lock, flags);
2555
2556 if (blk_remove_plug(q)) {
2557 conf->seq_flush++;
2558 raid5_activate_delayed(conf);
72626685 2559 }
1da177e4
LT
2560 md_wakeup_thread(mddev->thread);
2561
2562 spin_unlock_irqrestore(&conf->device_lock, flags);
2563
2564 unplug_slaves(mddev);
2565}
2566
2567static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
2568 sector_t *error_sector)
2569{
2570 mddev_t *mddev = q->queuedata;
2571 raid5_conf_t *conf = mddev_to_conf(mddev);
2572 int i, ret = 0;
2573
2574 rcu_read_lock();
2575 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
d6065f7b 2576 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 2577 if (rdev && !test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
2578 struct block_device *bdev = rdev->bdev;
2579 request_queue_t *r_queue = bdev_get_queue(bdev);
2580
2581 if (!r_queue->issue_flush_fn)
2582 ret = -EOPNOTSUPP;
2583 else {
2584 atomic_inc(&rdev->nr_pending);
2585 rcu_read_unlock();
2586 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
2587 error_sector);
2588 rdev_dec_pending(rdev, mddev);
2589 rcu_read_lock();
2590 }
2591 }
2592 }
2593 rcu_read_unlock();
2594 return ret;
2595}
2596
7ecaa1e6 2597static int make_request(request_queue_t *q, struct bio * bi)
1da177e4
LT
2598{
2599 mddev_t *mddev = q->queuedata;
2600 raid5_conf_t *conf = mddev_to_conf(mddev);
1da177e4
LT
2601 unsigned int dd_idx, pd_idx;
2602 sector_t new_sector;
2603 sector_t logical_sector, last_sector;
2604 struct stripe_head *sh;
a362357b 2605 const int rw = bio_data_dir(bi);
f6344757 2606 int remaining;
1da177e4 2607
e5dcdd80
N
2608 if (unlikely(bio_barrier(bi))) {
2609 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
2610 return 0;
2611 }
2612
3d310eb7 2613 md_write_start(mddev, bi);
06d91a5f 2614
a362357b
JA
2615 disk_stat_inc(mddev->gendisk, ios[rw]);
2616 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1da177e4
LT
2617
2618 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
2619 last_sector = bi->bi_sector + (bi->bi_size>>9);
2620 bi->bi_next = NULL;
2621 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 2622
1da177e4
LT
2623 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
2624 DEFINE_WAIT(w);
16a53ecc 2625 int disks, data_disks;
b578d55f 2626
7ecaa1e6 2627 retry:
b578d55f 2628 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
7ecaa1e6
N
2629 if (likely(conf->expand_progress == MaxSector))
2630 disks = conf->raid_disks;
2631 else {
df8e7f76
N
2632 /* spinlock is needed as expand_progress may be
2633 * 64bit on a 32bit platform, and so it might be
2634 * possible to see a half-updated value
2635 * Ofcourse expand_progress could change after
2636 * the lock is dropped, so once we get a reference
2637 * to the stripe that we think it is, we will have
2638 * to check again.
2639 */
7ecaa1e6
N
2640 spin_lock_irq(&conf->device_lock);
2641 disks = conf->raid_disks;
2642 if (logical_sector >= conf->expand_progress)
2643 disks = conf->previous_raid_disks;
b578d55f
N
2644 else {
2645 if (logical_sector >= conf->expand_lo) {
2646 spin_unlock_irq(&conf->device_lock);
2647 schedule();
2648 goto retry;
2649 }
2650 }
7ecaa1e6
N
2651 spin_unlock_irq(&conf->device_lock);
2652 }
16a53ecc
N
2653 data_disks = disks - conf->max_degraded;
2654
2655 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
7ecaa1e6 2656 &dd_idx, &pd_idx, conf);
1da177e4
LT
2657 PRINTK("raid5: make_request, sector %llu logical %llu\n",
2658 (unsigned long long)new_sector,
2659 (unsigned long long)logical_sector);
2660
7ecaa1e6 2661 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
1da177e4 2662 if (sh) {
7ecaa1e6
N
2663 if (unlikely(conf->expand_progress != MaxSector)) {
2664 /* expansion might have moved on while waiting for a
df8e7f76
N
2665 * stripe, so we must do the range check again.
2666 * Expansion could still move past after this
2667 * test, but as we are holding a reference to
2668 * 'sh', we know that if that happens,
2669 * STRIPE_EXPANDING will get set and the expansion
2670 * won't proceed until we finish with the stripe.
7ecaa1e6
N
2671 */
2672 int must_retry = 0;
2673 spin_lock_irq(&conf->device_lock);
2674 if (logical_sector < conf->expand_progress &&
2675 disks == conf->previous_raid_disks)
2676 /* mismatch, need to try again */
2677 must_retry = 1;
2678 spin_unlock_irq(&conf->device_lock);
2679 if (must_retry) {
2680 release_stripe(sh);
2681 goto retry;
2682 }
2683 }
e464eafd
N
2684 /* FIXME what if we get a false positive because these
2685 * are being updated.
2686 */
2687 if (logical_sector >= mddev->suspend_lo &&
2688 logical_sector < mddev->suspend_hi) {
2689 release_stripe(sh);
2690 schedule();
2691 goto retry;
2692 }
7ecaa1e6
N
2693
2694 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
2695 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
2696 /* Stripe is busy expanding or
2697 * add failed due to overlap. Flush everything
1da177e4
LT
2698 * and wait a while
2699 */
2700 raid5_unplug_device(mddev->queue);
2701 release_stripe(sh);
2702 schedule();
2703 goto retry;
2704 }
2705 finish_wait(&conf->wait_for_overlap, &w);
16a53ecc 2706 handle_stripe(sh, NULL);
1da177e4 2707 release_stripe(sh);
1da177e4
LT
2708 } else {
2709 /* cannot get stripe for read-ahead, just give-up */
2710 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2711 finish_wait(&conf->wait_for_overlap, &w);
2712 break;
2713 }
2714
2715 }
2716 spin_lock_irq(&conf->device_lock);
f6344757
N
2717 remaining = --bi->bi_phys_segments;
2718 spin_unlock_irq(&conf->device_lock);
2719 if (remaining == 0) {
1da177e4
LT
2720 int bytes = bi->bi_size;
2721
16a53ecc 2722 if ( rw == WRITE )
1da177e4
LT
2723 md_write_end(mddev);
2724 bi->bi_size = 0;
2725 bi->bi_end_io(bi, bytes, 0);
2726 }
1da177e4
LT
2727 return 0;
2728}
2729
52c03291 2730static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 2731{
52c03291
N
2732 /* reshaping is quite different to recovery/resync so it is
2733 * handled quite separately ... here.
2734 *
2735 * On each call to sync_request, we gather one chunk worth of
2736 * destination stripes and flag them as expanding.
2737 * Then we find all the source stripes and request reads.
2738 * As the reads complete, handle_stripe will copy the data
2739 * into the destination stripe and release that stripe.
2740 */
1da177e4
LT
2741 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2742 struct stripe_head *sh;
ccfcc3c1
N
2743 int pd_idx;
2744 sector_t first_sector, last_sector;
52c03291
N
2745 int raid_disks;
2746 int data_disks;
2747 int i;
2748 int dd_idx;
2749 sector_t writepos, safepos, gap;
2750
2751 if (sector_nr == 0 &&
2752 conf->expand_progress != 0) {
2753 /* restarting in the middle, skip the initial sectors */
2754 sector_nr = conf->expand_progress;
2755 sector_div(sector_nr, conf->raid_disks-1);
2756 *skipped = 1;
2757 return sector_nr;
2758 }
2759
2760 /* we update the metadata when there is more than 3Meg
2761 * in the block range (that is rather arbitrary, should
2762 * probably be time based) or when the data about to be
2763 * copied would over-write the source of the data at
2764 * the front of the range.
2765 * i.e. one new_stripe forward from expand_progress new_maps
2766 * to after where expand_lo old_maps to
2767 */
2768 writepos = conf->expand_progress +
2769 conf->chunk_size/512*(conf->raid_disks-1);
2770 sector_div(writepos, conf->raid_disks-1);
2771 safepos = conf->expand_lo;
2772 sector_div(safepos, conf->previous_raid_disks-1);
2773 gap = conf->expand_progress - conf->expand_lo;
2774
2775 if (writepos >= safepos ||
2776 gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
2777 /* Cannot proceed until we've updated the superblock... */
2778 wait_event(conf->wait_for_overlap,
2779 atomic_read(&conf->reshape_stripes)==0);
2780 mddev->reshape_position = conf->expand_progress;
850b2b42 2781 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 2782 md_wakeup_thread(mddev->thread);
850b2b42 2783 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
2784 kthread_should_stop());
2785 spin_lock_irq(&conf->device_lock);
2786 conf->expand_lo = mddev->reshape_position;
2787 spin_unlock_irq(&conf->device_lock);
2788 wake_up(&conf->wait_for_overlap);
2789 }
2790
2791 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
2792 int j;
2793 int skipped = 0;
2794 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
2795 sh = get_active_stripe(conf, sector_nr+i,
2796 conf->raid_disks, pd_idx, 0);
2797 set_bit(STRIPE_EXPANDING, &sh->state);
2798 atomic_inc(&conf->reshape_stripes);
2799 /* If any of this stripe is beyond the end of the old
2800 * array, then we need to zero those blocks
2801 */
2802 for (j=sh->disks; j--;) {
2803 sector_t s;
2804 if (j == sh->pd_idx)
2805 continue;
2806 s = compute_blocknr(sh, j);
2807 if (s < (mddev->array_size<<1)) {
2808 skipped = 1;
2809 continue;
2810 }
2811 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
2812 set_bit(R5_Expanded, &sh->dev[j].flags);
2813 set_bit(R5_UPTODATE, &sh->dev[j].flags);
2814 }
2815 if (!skipped) {
2816 set_bit(STRIPE_EXPAND_READY, &sh->state);
2817 set_bit(STRIPE_HANDLE, &sh->state);
2818 }
2819 release_stripe(sh);
2820 }
2821 spin_lock_irq(&conf->device_lock);
2822 conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
2823 spin_unlock_irq(&conf->device_lock);
2824 /* Ok, those stripe are ready. We can start scheduling
2825 * reads on the source stripes.
2826 * The source stripes are determined by mapping the first and last
2827 * block on the destination stripes.
2828 */
2829 raid_disks = conf->previous_raid_disks;
2830 data_disks = raid_disks - 1;
2831 first_sector =
2832 raid5_compute_sector(sector_nr*(conf->raid_disks-1),
2833 raid_disks, data_disks,
2834 &dd_idx, &pd_idx, conf);
2835 last_sector =
2836 raid5_compute_sector((sector_nr+conf->chunk_size/512)
2837 *(conf->raid_disks-1) -1,
2838 raid_disks, data_disks,
2839 &dd_idx, &pd_idx, conf);
2840 if (last_sector >= (mddev->size<<1))
2841 last_sector = (mddev->size<<1)-1;
2842 while (first_sector <= last_sector) {
2843 pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
2844 sh = get_active_stripe(conf, first_sector,
2845 conf->previous_raid_disks, pd_idx, 0);
2846 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2847 set_bit(STRIPE_HANDLE, &sh->state);
2848 release_stripe(sh);
2849 first_sector += STRIPE_SECTORS;
2850 }
2851 return conf->chunk_size>>9;
2852}
2853
2854/* FIXME go_faster isn't used */
2855static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2856{
2857 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2858 struct stripe_head *sh;
2859 int pd_idx;
1da177e4 2860 int raid_disks = conf->raid_disks;
72626685
N
2861 sector_t max_sector = mddev->size << 1;
2862 int sync_blocks;
16a53ecc
N
2863 int still_degraded = 0;
2864 int i;
1da177e4 2865
72626685 2866 if (sector_nr >= max_sector) {
1da177e4
LT
2867 /* just being told to finish up .. nothing much to do */
2868 unplug_slaves(mddev);
29269553
N
2869 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2870 end_reshape(conf);
2871 return 0;
2872 }
72626685
N
2873
2874 if (mddev->curr_resync < max_sector) /* aborted */
2875 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2876 &sync_blocks, 1);
16a53ecc 2877 else /* completed sync */
72626685
N
2878 conf->fullsync = 0;
2879 bitmap_close_sync(mddev->bitmap);
2880
1da177e4
LT
2881 return 0;
2882 }
ccfcc3c1 2883
52c03291
N
2884 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2885 return reshape_request(mddev, sector_nr, skipped);
f6705578 2886
16a53ecc 2887 /* if there is too many failed drives and we are trying
1da177e4
LT
2888 * to resync, then assert that we are finished, because there is
2889 * nothing we can do.
2890 */
3285edf1 2891 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 2892 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
57afd89f
N
2893 sector_t rv = (mddev->size << 1) - sector_nr;
2894 *skipped = 1;
1da177e4
LT
2895 return rv;
2896 }
72626685 2897 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 2898 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
2899 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
2900 /* we can skip this block, and probably more */
2901 sync_blocks /= STRIPE_SECTORS;
2902 *skipped = 1;
2903 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
2904 }
1da177e4 2905
ccfcc3c1 2906 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
7ecaa1e6 2907 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
1da177e4 2908 if (sh == NULL) {
7ecaa1e6 2909 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
1da177e4 2910 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 2911 * is trying to get access
1da177e4 2912 */
66c006a5 2913 schedule_timeout_uninterruptible(1);
1da177e4 2914 }
16a53ecc
N
2915 /* Need to check if array will still be degraded after recovery/resync
2916 * We don't need to check the 'failed' flag as when that gets set,
2917 * recovery aborts.
2918 */
2919 for (i=0; i<mddev->raid_disks; i++)
2920 if (conf->disks[i].rdev == NULL)
2921 still_degraded = 1;
2922
2923 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
2924
2925 spin_lock(&sh->lock);
1da177e4
LT
2926 set_bit(STRIPE_SYNCING, &sh->state);
2927 clear_bit(STRIPE_INSYNC, &sh->state);
2928 spin_unlock(&sh->lock);
2929
16a53ecc 2930 handle_stripe(sh, NULL);
1da177e4
LT
2931 release_stripe(sh);
2932
2933 return STRIPE_SECTORS;
2934}
2935
2936/*
2937 * This is our raid5 kernel thread.
2938 *
2939 * We scan the hash table for stripes which can be handled now.
2940 * During the scan, completed stripes are saved for us by the interrupt
2941 * handler, so that they will not have to wait for our next wakeup.
2942 */
2943static void raid5d (mddev_t *mddev)
2944{
2945 struct stripe_head *sh;
2946 raid5_conf_t *conf = mddev_to_conf(mddev);
2947 int handled;
2948
2949 PRINTK("+++ raid5d active\n");
2950
2951 md_check_recovery(mddev);
1da177e4
LT
2952
2953 handled = 0;
2954 spin_lock_irq(&conf->device_lock);
2955 while (1) {
2956 struct list_head *first;
2957
ae3c20cc 2958 if (conf->seq_flush != conf->seq_write) {
72626685 2959 int seq = conf->seq_flush;
700e432d 2960 spin_unlock_irq(&conf->device_lock);
72626685 2961 bitmap_unplug(mddev->bitmap);
700e432d 2962 spin_lock_irq(&conf->device_lock);
72626685
N
2963 conf->seq_write = seq;
2964 activate_bit_delay(conf);
2965 }
2966
1da177e4
LT
2967 if (list_empty(&conf->handle_list) &&
2968 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
2969 !blk_queue_plugged(mddev->queue) &&
2970 !list_empty(&conf->delayed_list))
2971 raid5_activate_delayed(conf);
2972
2973 if (list_empty(&conf->handle_list))
2974 break;
2975
2976 first = conf->handle_list.next;
2977 sh = list_entry(first, struct stripe_head, lru);
2978
2979 list_del_init(first);
2980 atomic_inc(&sh->count);
78bafebd 2981 BUG_ON(atomic_read(&sh->count)!= 1);
1da177e4
LT
2982 spin_unlock_irq(&conf->device_lock);
2983
2984 handled++;
16a53ecc 2985 handle_stripe(sh, conf->spare_page);
1da177e4
LT
2986 release_stripe(sh);
2987
2988 spin_lock_irq(&conf->device_lock);
2989 }
2990 PRINTK("%d stripes handled\n", handled);
2991
2992 spin_unlock_irq(&conf->device_lock);
2993
2994 unplug_slaves(mddev);
2995
2996 PRINTK("--- raid5d inactive\n");
2997}
2998
3f294f4f 2999static ssize_t
007583c9 3000raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 3001{
007583c9 3002 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
3003 if (conf)
3004 return sprintf(page, "%d\n", conf->max_nr_stripes);
3005 else
3006 return 0;
3f294f4f
N
3007}
3008
3009static ssize_t
007583c9 3010raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 3011{
007583c9 3012 raid5_conf_t *conf = mddev_to_conf(mddev);
3f294f4f
N
3013 char *end;
3014 int new;
3015 if (len >= PAGE_SIZE)
3016 return -EINVAL;
96de1e66
N
3017 if (!conf)
3018 return -ENODEV;
3f294f4f
N
3019
3020 new = simple_strtoul(page, &end, 10);
3021 if (!*page || (*end && *end != '\n') )
3022 return -EINVAL;
3023 if (new <= 16 || new > 32768)
3024 return -EINVAL;
3025 while (new < conf->max_nr_stripes) {
3026 if (drop_one_stripe(conf))
3027 conf->max_nr_stripes--;
3028 else
3029 break;
3030 }
3031 while (new > conf->max_nr_stripes) {
3032 if (grow_one_stripe(conf))
3033 conf->max_nr_stripes++;
3034 else break;
3035 }
3036 return len;
3037}
007583c9 3038
96de1e66
N
3039static struct md_sysfs_entry
3040raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3041 raid5_show_stripe_cache_size,
3042 raid5_store_stripe_cache_size);
3f294f4f
N
3043
3044static ssize_t
96de1e66 3045stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 3046{
007583c9 3047 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
3048 if (conf)
3049 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3050 else
3051 return 0;
3f294f4f
N
3052}
3053
96de1e66
N
3054static struct md_sysfs_entry
3055raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 3056
007583c9 3057static struct attribute *raid5_attrs[] = {
3f294f4f
N
3058 &raid5_stripecache_size.attr,
3059 &raid5_stripecache_active.attr,
3060 NULL,
3061};
007583c9
N
3062static struct attribute_group raid5_attrs_group = {
3063 .name = NULL,
3064 .attrs = raid5_attrs,
3f294f4f
N
3065};
3066
72626685 3067static int run(mddev_t *mddev)
1da177e4
LT
3068{
3069 raid5_conf_t *conf;
3070 int raid_disk, memory;
3071 mdk_rdev_t *rdev;
3072 struct disk_info *disk;
3073 struct list_head *tmp;
02c2de8c 3074 int working_disks = 0;
1da177e4 3075
16a53ecc
N
3076 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3077 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
14f8d26b 3078 mdname(mddev), mddev->level);
1da177e4
LT
3079 return -EIO;
3080 }
3081
f6705578
N
3082 if (mddev->reshape_position != MaxSector) {
3083 /* Check that we can continue the reshape.
3084 * Currently only disks can change, it must
3085 * increase, and we must be past the point where
3086 * a stripe over-writes itself
3087 */
3088 sector_t here_new, here_old;
3089 int old_disks;
3090
3091 if (mddev->new_level != mddev->level ||
3092 mddev->new_layout != mddev->layout ||
3093 mddev->new_chunk != mddev->chunk_size) {
3094 printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
3095 mdname(mddev));
3096 return -EINVAL;
3097 }
3098 if (mddev->delta_disks <= 0) {
3099 printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
3100 mdname(mddev));
3101 return -EINVAL;
3102 }
3103 old_disks = mddev->raid_disks - mddev->delta_disks;
3104 /* reshape_position must be on a new-stripe boundary, and one
3105 * further up in new geometry must map after here in old geometry.
3106 */
3107 here_new = mddev->reshape_position;
3108 if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
3109 printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
3110 return -EINVAL;
3111 }
3112 /* here_new is the stripe we will write to */
3113 here_old = mddev->reshape_position;
3114 sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
3115 /* here_old is the first stripe that we might need to read from */
3116 if (here_new >= here_old) {
3117 /* Reading from the same stripe as writing to - bad */
3118 printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
3119 return -EINVAL;
3120 }
3121 printk(KERN_INFO "raid5: reshape will continue\n");
3122 /* OK, we should be able to continue; */
3123 }
3124
3125
b55e6bfc 3126 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
1da177e4
LT
3127 if ((conf = mddev->private) == NULL)
3128 goto abort;
f6705578
N
3129 if (mddev->reshape_position == MaxSector) {
3130 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
3131 } else {
3132 conf->raid_disks = mddev->raid_disks;
3133 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
3134 }
3135
3136 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
3137 GFP_KERNEL);
3138 if (!conf->disks)
3139 goto abort;
9ffae0cf 3140
1da177e4
LT
3141 conf->mddev = mddev;
3142
fccddba0 3143 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 3144 goto abort;
1da177e4 3145
16a53ecc
N
3146 if (mddev->level == 6) {
3147 conf->spare_page = alloc_page(GFP_KERNEL);
3148 if (!conf->spare_page)
3149 goto abort;
3150 }
1da177e4
LT
3151 spin_lock_init(&conf->device_lock);
3152 init_waitqueue_head(&conf->wait_for_stripe);
3153 init_waitqueue_head(&conf->wait_for_overlap);
3154 INIT_LIST_HEAD(&conf->handle_list);
3155 INIT_LIST_HEAD(&conf->delayed_list);
72626685 3156 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
3157 INIT_LIST_HEAD(&conf->inactive_list);
3158 atomic_set(&conf->active_stripes, 0);
3159 atomic_set(&conf->preread_active_stripes, 0);
3160
1da177e4
LT
3161 PRINTK("raid5: run(%s) called.\n", mdname(mddev));
3162
3163 ITERATE_RDEV(mddev,rdev,tmp) {
3164 raid_disk = rdev->raid_disk;
f6705578 3165 if (raid_disk >= conf->raid_disks
1da177e4
LT
3166 || raid_disk < 0)
3167 continue;
3168 disk = conf->disks + raid_disk;
3169
3170 disk->rdev = rdev;
3171
b2d444d7 3172 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
3173 char b[BDEVNAME_SIZE];
3174 printk(KERN_INFO "raid5: device %s operational as raid"
3175 " disk %d\n", bdevname(rdev->bdev,b),
3176 raid_disk);
02c2de8c 3177 working_disks++;
1da177e4
LT
3178 }
3179 }
3180
1da177e4 3181 /*
16a53ecc 3182 * 0 for a fully functional array, 1 or 2 for a degraded array.
1da177e4 3183 */
02c2de8c 3184 mddev->degraded = conf->raid_disks - working_disks;
1da177e4
LT
3185 conf->mddev = mddev;
3186 conf->chunk_size = mddev->chunk_size;
3187 conf->level = mddev->level;
16a53ecc
N
3188 if (conf->level == 6)
3189 conf->max_degraded = 2;
3190 else
3191 conf->max_degraded = 1;
1da177e4
LT
3192 conf->algorithm = mddev->layout;
3193 conf->max_nr_stripes = NR_STRIPES;
f6705578 3194 conf->expand_progress = mddev->reshape_position;
1da177e4
LT
3195
3196 /* device size must be a multiple of chunk size */
3197 mddev->size &= ~(mddev->chunk_size/1024 -1);
b1581566 3198 mddev->resync_max_sectors = mddev->size << 1;
1da177e4 3199
16a53ecc
N
3200 if (conf->level == 6 && conf->raid_disks < 4) {
3201 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
3202 mdname(mddev), conf->raid_disks);
3203 goto abort;
3204 }
1da177e4
LT
3205 if (!conf->chunk_size || conf->chunk_size % 4) {
3206 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
3207 conf->chunk_size, mdname(mddev));
3208 goto abort;
3209 }
3210 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
3211 printk(KERN_ERR
3212 "raid5: unsupported parity algorithm %d for %s\n",
3213 conf->algorithm, mdname(mddev));
3214 goto abort;
3215 }
16a53ecc 3216 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
3217 printk(KERN_ERR "raid5: not enough operational devices for %s"
3218 " (%d/%d failed)\n",
02c2de8c 3219 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
3220 goto abort;
3221 }
3222
16a53ecc 3223 if (mddev->degraded > 0 &&
1da177e4 3224 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
3225 if (mddev->ok_start_degraded)
3226 printk(KERN_WARNING
3227 "raid5: starting dirty degraded array: %s"
3228 "- data corruption possible.\n",
3229 mdname(mddev));
3230 else {
3231 printk(KERN_ERR
3232 "raid5: cannot start dirty degraded array for %s\n",
3233 mdname(mddev));
3234 goto abort;
3235 }
1da177e4
LT
3236 }
3237
3238 {
3239 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
3240 if (!mddev->thread) {
3241 printk(KERN_ERR
3242 "raid5: couldn't allocate thread for %s\n",
3243 mdname(mddev));
3244 goto abort;
3245 }
3246 }
5036805b 3247 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1da177e4
LT
3248 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
3249 if (grow_stripes(conf, conf->max_nr_stripes)) {
3250 printk(KERN_ERR
3251 "raid5: couldn't allocate %dkB for buffers\n", memory);
3252 shrink_stripes(conf);
3253 md_unregister_thread(mddev->thread);
3254 goto abort;
3255 } else
3256 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
3257 memory, mdname(mddev));
3258
3259 if (mddev->degraded == 0)
3260 printk("raid5: raid level %d set %s active with %d out of %d"
3261 " devices, algorithm %d\n", conf->level, mdname(mddev),
3262 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
3263 conf->algorithm);
3264 else
3265 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
3266 " out of %d devices, algorithm %d\n", conf->level,
3267 mdname(mddev), mddev->raid_disks - mddev->degraded,
3268 mddev->raid_disks, conf->algorithm);
3269
3270 print_raid5_conf(conf);
3271
f6705578
N
3272 if (conf->expand_progress != MaxSector) {
3273 printk("...ok start reshape thread\n");
b578d55f 3274 conf->expand_lo = conf->expand_progress;
f6705578
N
3275 atomic_set(&conf->reshape_stripes, 0);
3276 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3277 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3278 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3279 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3280 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3281 "%s_reshape");
f6705578
N
3282 }
3283
1da177e4 3284 /* read-ahead size must cover two whole stripes, which is
16a53ecc 3285 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
3286 */
3287 {
16a53ecc
N
3288 int data_disks = conf->previous_raid_disks - conf->max_degraded;
3289 int stripe = data_disks *
8932c2e0 3290 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
3291 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3292 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3293 }
3294
3295 /* Ok, everything is just fine now */
007583c9 3296 sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
7a5febe9
N
3297
3298 mddev->queue->unplug_fn = raid5_unplug_device;
3299 mddev->queue->issue_flush_fn = raid5_issue_flush;
16a53ecc
N
3300 mddev->array_size = mddev->size * (conf->previous_raid_disks -
3301 conf->max_degraded);
7a5febe9 3302
1da177e4
LT
3303 return 0;
3304abort:
3305 if (conf) {
3306 print_raid5_conf(conf);
16a53ecc 3307 safe_put_page(conf->spare_page);
b55e6bfc 3308 kfree(conf->disks);
fccddba0 3309 kfree(conf->stripe_hashtbl);
1da177e4
LT
3310 kfree(conf);
3311 }
3312 mddev->private = NULL;
3313 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
3314 return -EIO;
3315}
3316
3317
3318
3f294f4f 3319static int stop(mddev_t *mddev)
1da177e4
LT
3320{
3321 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3322
3323 md_unregister_thread(mddev->thread);
3324 mddev->thread = NULL;
3325 shrink_stripes(conf);
fccddba0 3326 kfree(conf->stripe_hashtbl);
1da177e4 3327 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 3328 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 3329 kfree(conf->disks);
96de1e66 3330 kfree(conf);
1da177e4
LT
3331 mddev->private = NULL;
3332 return 0;
3333}
3334
3335#if RAID5_DEBUG
16a53ecc 3336static void print_sh (struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
3337{
3338 int i;
3339
16a53ecc
N
3340 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
3341 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
3342 seq_printf(seq, "sh %llu, count %d.\n",
3343 (unsigned long long)sh->sector, atomic_read(&sh->count));
3344 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 3345 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
3346 seq_printf(seq, "(cache%d: %p %ld) ",
3347 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 3348 }
16a53ecc 3349 seq_printf(seq, "\n");
1da177e4
LT
3350}
3351
16a53ecc 3352static void printall (struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
3353{
3354 struct stripe_head *sh;
fccddba0 3355 struct hlist_node *hn;
1da177e4
LT
3356 int i;
3357
3358 spin_lock_irq(&conf->device_lock);
3359 for (i = 0; i < NR_HASH; i++) {
fccddba0 3360 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
3361 if (sh->raid_conf != conf)
3362 continue;
16a53ecc 3363 print_sh(seq, sh);
1da177e4
LT
3364 }
3365 }
3366 spin_unlock_irq(&conf->device_lock);
3367}
3368#endif
3369
3370static void status (struct seq_file *seq, mddev_t *mddev)
3371{
3372 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3373 int i;
3374
3375 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 3376 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
3377 for (i = 0; i < conf->raid_disks; i++)
3378 seq_printf (seq, "%s",
3379 conf->disks[i].rdev &&
b2d444d7 3380 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4
LT
3381 seq_printf (seq, "]");
3382#if RAID5_DEBUG
16a53ecc
N
3383 seq_printf (seq, "\n");
3384 printall(seq, conf);
1da177e4
LT
3385#endif
3386}
3387
3388static void print_raid5_conf (raid5_conf_t *conf)
3389{
3390 int i;
3391 struct disk_info *tmp;
3392
3393 printk("RAID5 conf printout:\n");
3394 if (!conf) {
3395 printk("(conf==NULL)\n");
3396 return;
3397 }
02c2de8c
N
3398 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
3399 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
3400
3401 for (i = 0; i < conf->raid_disks; i++) {
3402 char b[BDEVNAME_SIZE];
3403 tmp = conf->disks + i;
3404 if (tmp->rdev)
3405 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 3406 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
3407 bdevname(tmp->rdev->bdev,b));
3408 }
3409}
3410
3411static int raid5_spare_active(mddev_t *mddev)
3412{
3413 int i;
3414 raid5_conf_t *conf = mddev->private;
3415 struct disk_info *tmp;
3416
3417 for (i = 0; i < conf->raid_disks; i++) {
3418 tmp = conf->disks + i;
3419 if (tmp->rdev
b2d444d7
N
3420 && !test_bit(Faulty, &tmp->rdev->flags)
3421 && !test_bit(In_sync, &tmp->rdev->flags)) {
1da177e4 3422 mddev->degraded--;
b2d444d7 3423 set_bit(In_sync, &tmp->rdev->flags);
1da177e4
LT
3424 }
3425 }
3426 print_raid5_conf(conf);
3427 return 0;
3428}
3429
3430static int raid5_remove_disk(mddev_t *mddev, int number)
3431{
3432 raid5_conf_t *conf = mddev->private;
3433 int err = 0;
3434 mdk_rdev_t *rdev;
3435 struct disk_info *p = conf->disks + number;
3436
3437 print_raid5_conf(conf);
3438 rdev = p->rdev;
3439 if (rdev) {
b2d444d7 3440 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
3441 atomic_read(&rdev->nr_pending)) {
3442 err = -EBUSY;
3443 goto abort;
3444 }
3445 p->rdev = NULL;
fbd568a3 3446 synchronize_rcu();
1da177e4
LT
3447 if (atomic_read(&rdev->nr_pending)) {
3448 /* lost the race, try later */
3449 err = -EBUSY;
3450 p->rdev = rdev;
3451 }
3452 }
3453abort:
3454
3455 print_raid5_conf(conf);
3456 return err;
3457}
3458
3459static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
3460{
3461 raid5_conf_t *conf = mddev->private;
3462 int found = 0;
3463 int disk;
3464 struct disk_info *p;
3465
16a53ecc 3466 if (mddev->degraded > conf->max_degraded)
1da177e4
LT
3467 /* no point adding a device */
3468 return 0;
3469
3470 /*
16a53ecc
N
3471 * find the disk ... but prefer rdev->saved_raid_disk
3472 * if possible.
1da177e4 3473 */
16a53ecc
N
3474 if (rdev->saved_raid_disk >= 0 &&
3475 conf->disks[rdev->saved_raid_disk].rdev == NULL)
3476 disk = rdev->saved_raid_disk;
3477 else
3478 disk = 0;
3479 for ( ; disk < conf->raid_disks; disk++)
1da177e4 3480 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 3481 clear_bit(In_sync, &rdev->flags);
1da177e4
LT
3482 rdev->raid_disk = disk;
3483 found = 1;
72626685
N
3484 if (rdev->saved_raid_disk != disk)
3485 conf->fullsync = 1;
d6065f7b 3486 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
3487 break;
3488 }
3489 print_raid5_conf(conf);
3490 return found;
3491}
3492
3493static int raid5_resize(mddev_t *mddev, sector_t sectors)
3494{
3495 /* no resync is happening, and there is enough space
3496 * on all devices, so we can resize.
3497 * We need to make sure resync covers any new space.
3498 * If the array is shrinking we should possibly wait until
3499 * any io in the removed space completes, but it hardly seems
3500 * worth it.
3501 */
16a53ecc
N
3502 raid5_conf_t *conf = mddev_to_conf(mddev);
3503
1da177e4 3504 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
16a53ecc 3505 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
1da177e4
LT
3506 set_capacity(mddev->gendisk, mddev->array_size << 1);
3507 mddev->changed = 1;
3508 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
3509 mddev->recovery_cp = mddev->size << 1;
3510 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3511 }
3512 mddev->size = sectors /2;
4b5c7ae8 3513 mddev->resync_max_sectors = sectors;
1da177e4
LT
3514 return 0;
3515}
3516
29269553 3517#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f 3518static int raid5_check_reshape(mddev_t *mddev)
29269553
N
3519{
3520 raid5_conf_t *conf = mddev_to_conf(mddev);
3521 int err;
29269553 3522
63c70c4f
N
3523 if (mddev->delta_disks < 0 ||
3524 mddev->new_level != mddev->level)
3525 return -EINVAL; /* Cannot shrink array or change level yet */
3526 if (mddev->delta_disks == 0)
29269553
N
3527 return 0; /* nothing to do */
3528
3529 /* Can only proceed if there are plenty of stripe_heads.
3530 * We need a minimum of one full stripe,, and for sensible progress
3531 * it is best to have about 4 times that.
3532 * If we require 4 times, then the default 256 4K stripe_heads will
3533 * allow for chunk sizes up to 256K, which is probably OK.
3534 * If the chunk size is greater, user-space should request more
3535 * stripe_heads first.
3536 */
63c70c4f
N
3537 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
3538 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553
N
3539 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
3540 (mddev->chunk_size / STRIPE_SIZE)*4);
3541 return -ENOSPC;
3542 }
3543
63c70c4f
N
3544 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
3545 if (err)
3546 return err;
3547
3548 /* looks like we might be able to manage this */
3549 return 0;
3550}
3551
3552static int raid5_start_reshape(mddev_t *mddev)
3553{
3554 raid5_conf_t *conf = mddev_to_conf(mddev);
3555 mdk_rdev_t *rdev;
3556 struct list_head *rtmp;
3557 int spares = 0;
3558 int added_devices = 0;
3559
3560 if (mddev->degraded ||
3561 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3562 return -EBUSY;
3563
29269553
N
3564 ITERATE_RDEV(mddev, rdev, rtmp)
3565 if (rdev->raid_disk < 0 &&
3566 !test_bit(Faulty, &rdev->flags))
3567 spares++;
63c70c4f
N
3568
3569 if (spares < mddev->delta_disks-1)
29269553
N
3570 /* Not enough devices even to make a degraded array
3571 * of that size
3572 */
3573 return -EINVAL;
3574
f6705578 3575 atomic_set(&conf->reshape_stripes, 0);
29269553
N
3576 spin_lock_irq(&conf->device_lock);
3577 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 3578 conf->raid_disks += mddev->delta_disks;
29269553 3579 conf->expand_progress = 0;
b578d55f 3580 conf->expand_lo = 0;
29269553
N
3581 spin_unlock_irq(&conf->device_lock);
3582
3583 /* Add some new drives, as many as will fit.
3584 * We know there are enough to make the newly sized array work.
3585 */
3586 ITERATE_RDEV(mddev, rdev, rtmp)
3587 if (rdev->raid_disk < 0 &&
3588 !test_bit(Faulty, &rdev->flags)) {
3589 if (raid5_add_disk(mddev, rdev)) {
3590 char nm[20];
3591 set_bit(In_sync, &rdev->flags);
29269553 3592 added_devices++;
5fd6c1dc 3593 rdev->recovery_offset = 0;
29269553
N
3594 sprintf(nm, "rd%d", rdev->raid_disk);
3595 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3596 } else
3597 break;
3598 }
3599
63c70c4f
N
3600 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
3601 mddev->raid_disks = conf->raid_disks;
f6705578 3602 mddev->reshape_position = 0;
850b2b42 3603 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 3604
29269553
N
3605 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3606 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3607 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3608 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3609 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3610 "%s_reshape");
3611 if (!mddev->sync_thread) {
3612 mddev->recovery = 0;
3613 spin_lock_irq(&conf->device_lock);
3614 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
3615 conf->expand_progress = MaxSector;
3616 spin_unlock_irq(&conf->device_lock);
3617 return -EAGAIN;
3618 }
3619 md_wakeup_thread(mddev->sync_thread);
3620 md_new_event(mddev);
3621 return 0;
3622}
3623#endif
3624
3625static void end_reshape(raid5_conf_t *conf)
3626{
3627 struct block_device *bdev;
3628
f6705578
N
3629 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
3630 conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
3631 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
3632 conf->mddev->changed = 1;
3633
3634 bdev = bdget_disk(conf->mddev->gendisk, 0);
3635 if (bdev) {
3636 mutex_lock(&bdev->bd_inode->i_mutex);
3637 i_size_write(bdev->bd_inode, conf->mddev->array_size << 10);
3638 mutex_unlock(&bdev->bd_inode->i_mutex);
3639 bdput(bdev);
3640 }
3641 spin_lock_irq(&conf->device_lock);
3642 conf->expand_progress = MaxSector;
3643 spin_unlock_irq(&conf->device_lock);
3644 conf->mddev->reshape_position = MaxSector;
16a53ecc
N
3645
3646 /* read-ahead size must cover two whole stripes, which is
3647 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3648 */
3649 {
3650 int data_disks = conf->previous_raid_disks - conf->max_degraded;
3651 int stripe = data_disks *
3652 (conf->mddev->chunk_size / PAGE_SIZE);
3653 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3654 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3655 }
29269553 3656 }
29269553
N
3657}
3658
72626685
N
3659static void raid5_quiesce(mddev_t *mddev, int state)
3660{
3661 raid5_conf_t *conf = mddev_to_conf(mddev);
3662
3663 switch(state) {
e464eafd
N
3664 case 2: /* resume for a suspend */
3665 wake_up(&conf->wait_for_overlap);
3666 break;
3667
72626685
N
3668 case 1: /* stop all writes */
3669 spin_lock_irq(&conf->device_lock);
3670 conf->quiesce = 1;
3671 wait_event_lock_irq(conf->wait_for_stripe,
3672 atomic_read(&conf->active_stripes) == 0,
3673 conf->device_lock, /* nothing */);
3674 spin_unlock_irq(&conf->device_lock);
3675 break;
3676
3677 case 0: /* re-enable writes */
3678 spin_lock_irq(&conf->device_lock);
3679 conf->quiesce = 0;
3680 wake_up(&conf->wait_for_stripe);
e464eafd 3681 wake_up(&conf->wait_for_overlap);
72626685
N
3682 spin_unlock_irq(&conf->device_lock);
3683 break;
3684 }
72626685 3685}
b15c2e57 3686
16a53ecc
N
3687static struct mdk_personality raid6_personality =
3688{
3689 .name = "raid6",
3690 .level = 6,
3691 .owner = THIS_MODULE,
3692 .make_request = make_request,
3693 .run = run,
3694 .stop = stop,
3695 .status = status,
3696 .error_handler = error,
3697 .hot_add_disk = raid5_add_disk,
3698 .hot_remove_disk= raid5_remove_disk,
3699 .spare_active = raid5_spare_active,
3700 .sync_request = sync_request,
3701 .resize = raid5_resize,
3702 .quiesce = raid5_quiesce,
3703};
2604b703 3704static struct mdk_personality raid5_personality =
1da177e4
LT
3705{
3706 .name = "raid5",
2604b703 3707 .level = 5,
1da177e4
LT
3708 .owner = THIS_MODULE,
3709 .make_request = make_request,
3710 .run = run,
3711 .stop = stop,
3712 .status = status,
3713 .error_handler = error,
3714 .hot_add_disk = raid5_add_disk,
3715 .hot_remove_disk= raid5_remove_disk,
3716 .spare_active = raid5_spare_active,
3717 .sync_request = sync_request,
3718 .resize = raid5_resize,
29269553 3719#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f
N
3720 .check_reshape = raid5_check_reshape,
3721 .start_reshape = raid5_start_reshape,
29269553 3722#endif
72626685 3723 .quiesce = raid5_quiesce,
1da177e4
LT
3724};
3725
2604b703 3726static struct mdk_personality raid4_personality =
1da177e4 3727{
2604b703
N
3728 .name = "raid4",
3729 .level = 4,
3730 .owner = THIS_MODULE,
3731 .make_request = make_request,
3732 .run = run,
3733 .stop = stop,
3734 .status = status,
3735 .error_handler = error,
3736 .hot_add_disk = raid5_add_disk,
3737 .hot_remove_disk= raid5_remove_disk,
3738 .spare_active = raid5_spare_active,
3739 .sync_request = sync_request,
3740 .resize = raid5_resize,
3741 .quiesce = raid5_quiesce,
3742};
3743
3744static int __init raid5_init(void)
3745{
16a53ecc
N
3746 int e;
3747
3748 e = raid6_select_algo();
3749 if ( e )
3750 return e;
3751 register_md_personality(&raid6_personality);
2604b703
N
3752 register_md_personality(&raid5_personality);
3753 register_md_personality(&raid4_personality);
3754 return 0;
1da177e4
LT
3755}
3756
2604b703 3757static void raid5_exit(void)
1da177e4 3758{
16a53ecc 3759 unregister_md_personality(&raid6_personality);
2604b703
N
3760 unregister_md_personality(&raid5_personality);
3761 unregister_md_personality(&raid4_personality);
1da177e4
LT
3762}
3763
3764module_init(raid5_init);
3765module_exit(raid5_exit);
3766MODULE_LICENSE("GPL");
3767MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
3768MODULE_ALIAS("md-raid5");
3769MODULE_ALIAS("md-raid4");
2604b703
N
3770MODULE_ALIAS("md-level-5");
3771MODULE_ALIAS("md-level-4");
16a53ecc
N
3772MODULE_ALIAS("md-personality-8"); /* RAID6 */
3773MODULE_ALIAS("md-raid6");
3774MODULE_ALIAS("md-level-6");
3775
3776/* This used to be two separate modules, they were: */
3777MODULE_ALIAS("raid5");
3778MODULE_ALIAS("raid6");