block: Convert some code to bio_for_each_segment_all()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
e8096360
N
69static void allow_barrier(struct r1conf *conf);
70static void lower_barrier(struct r1conf *conf);
1da177e4 71
dd0fc66f 72static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
73{
74 struct pool_info *pi = data;
9f2c9d12 75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
76
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 78 return kzalloc(size, gfp_flags);
1da177e4
LT
79}
80
81static void r1bio_pool_free(void *r1_bio, void *data)
82{
83 kfree(r1_bio);
84}
85
86#define RESYNC_BLOCK_SIZE (64*1024)
87//#define RESYNC_BLOCK_SIZE PAGE_SIZE
88#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90#define RESYNC_WINDOW (2048*1024)
91
dd0fc66f 92static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
93{
94 struct pool_info *pi = data;
95 struct page *page;
9f2c9d12 96 struct r1bio *r1_bio;
1da177e4
LT
97 struct bio *bio;
98 int i, j;
99
100 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 101 if (!r1_bio)
1da177e4 102 return NULL;
1da177e4
LT
103
104 /*
105 * Allocate bios : 1 for reading, n-1 for writing
106 */
107 for (j = pi->raid_disks ; j-- ; ) {
6746557f 108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
109 if (!bio)
110 goto out_free_bio;
111 r1_bio->bios[j] = bio;
112 }
113 /*
114 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
115 * the first bio.
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
1da177e4 118 */
d11c171e
N
119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120 j = pi->raid_disks;
121 else
122 j = 1;
123 while(j--) {
124 bio = r1_bio->bios[j];
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
129
130 bio->bi_io_vec[i].bv_page = page;
303a0e11 131 bio->bi_vcnt = i+1;
d11c171e
N
132 }
133 }
134 /* If not user-requests, copy the page pointers to all bios */
135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136 for (i=0; i<RESYNC_PAGES ; i++)
137 for (j=1; j<pi->raid_disks; j++)
138 r1_bio->bios[j]->bi_io_vec[i].bv_page =
139 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
140 }
141
142 r1_bio->master_bio = NULL;
143
144 return r1_bio;
145
146out_free_pages:
303a0e11
N
147 for (j=0 ; j < pi->raid_disks; j++)
148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 150 j = -1;
1da177e4 151out_free_bio:
8f19ccb2 152 while (++j < pi->raid_disks)
1da177e4
LT
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156}
157
158static void r1buf_pool_free(void *__r1_bio, void *data)
159{
160 struct pool_info *pi = data;
d11c171e 161 int i,j;
9f2c9d12 162 struct r1bio *r1bio = __r1_bio;
1da177e4 163
d11c171e
N
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 170 }
1da177e4
LT
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175}
176
e8096360 177static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
178{
179 int i;
180
8f19ccb2 181 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 182 struct bio **bio = r1_bio->bios + i;
4367af55 183 if (!BIO_SPECIAL(*bio))
1da177e4
LT
184 bio_put(*bio);
185 *bio = NULL;
186 }
187}
188
9f2c9d12 189static void free_r1bio(struct r1bio *r1_bio)
1da177e4 190{
e8096360 191 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 192
1da177e4
LT
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195}
196
9f2c9d12 197static void put_buf(struct r1bio *r1_bio)
1da177e4 198{
e8096360 199 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
200 int i;
201
8f19ccb2 202 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
1da177e4
LT
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
17999be4 210 lower_barrier(conf);
1da177e4
LT
211}
212
9f2c9d12 213static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
214{
215 unsigned long flags;
fd01b88c 216 struct mddev *mddev = r1_bio->mddev;
e8096360 217 struct r1conf *conf = mddev->private;
1da177e4
LT
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 221 conf->nr_queued ++;
1da177e4
LT
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
17999be4 224 wake_up(&conf->wait_barrier);
1da177e4
LT
225 md_wakeup_thread(mddev->thread);
226}
227
228/*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
9f2c9d12 233static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
234{
235 struct bio *bio = r1_bio->master_bio;
236 int done;
e8096360 237 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
238
239 if (bio->bi_phys_segments) {
240 unsigned long flags;
241 spin_lock_irqsave(&conf->device_lock, flags);
242 bio->bi_phys_segments--;
243 done = (bio->bi_phys_segments == 0);
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245 } else
246 done = 1;
247
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
252 /*
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
255 */
256 allow_barrier(conf);
257 }
258}
259
9f2c9d12 260static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
261{
262 struct bio *bio = r1_bio->master_bio;
263
4b6d287f
N
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
aa8b57aa 270 bio_sectors(bio) - 1);
4b6d287f 271
d2eb35ac 272 call_bio_endio(r1_bio);
4b6d287f 273 }
1da177e4
LT
274 free_r1bio(r1_bio);
275}
276
277/*
278 * Update disk head position estimator based on IRQ completion info.
279 */
9f2c9d12 280static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 281{
e8096360 282 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
283
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
286}
287
ba3ae3be
NK
288/*
289 * Find the disk number which triggered given bio
290 */
9f2c9d12 291static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
292{
293 int mirror;
30194636
N
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
ba3ae3be 296
8f19ccb2 297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
298 if (r1_bio->bios[mirror] == bio)
299 break;
300
8f19ccb2 301 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
302 update_head_pos(mirror, r1_bio);
303
304 return mirror;
305}
306
6712ecf8 307static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
308{
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 310 struct r1bio *r1_bio = bio->bi_private;
1da177e4 311 int mirror;
e8096360 312 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 313
1da177e4
LT
314 mirror = r1_bio->read_disk;
315 /*
316 * this branch is our 'one mirror IO has finished' event handler:
317 */
ddaf22ab
N
318 update_head_pos(mirror, r1_bio);
319
dd00a99e
N
320 if (uptodate)
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 else {
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 326 */
dd00a99e
N
327 unsigned long flags;
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 uptodate = 1;
333 spin_unlock_irqrestore(&conf->device_lock, flags);
334 }
1da177e4 335
7ad4d4a6 336 if (uptodate) {
1da177e4 337 raid_end_bio_io(r1_bio);
7ad4d4a6
N
338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
339 } else {
1da177e4
LT
340 /*
341 * oops, read error:
342 */
343 char b[BDEVNAME_SIZE];
8bda470e
CD
344 printk_ratelimited(
345 KERN_ERR "md/raid1:%s: %s: "
346 "rescheduling sector %llu\n",
347 mdname(conf->mddev),
348 bdevname(conf->mirrors[mirror].rdev->bdev,
349 b),
350 (unsigned long long)r1_bio->sector);
d2eb35ac 351 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 352 reschedule_retry(r1_bio);
7ad4d4a6 353 /* don't drop the reference on read_disk yet */
1da177e4 354 }
1da177e4
LT
355}
356
9f2c9d12 357static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
358{
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
363 while (i--)
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
367 }
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 r1_bio->sectors,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
374}
375
9f2c9d12 376static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 377{
cd5ff9a1
N
378 if (!atomic_dec_and_test(&r1_bio->remaining))
379 return;
380
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 close_write(r1_bio);
4367af55
N
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
387 else
388 raid_end_bio_io(r1_bio);
4e78064f
N
389 }
390}
391
6712ecf8 392static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
393{
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 395 struct r1bio *r1_bio = bio->bi_private;
a9701a30 396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 397 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 398 struct bio *to_put = NULL;
1da177e4 399
ba3ae3be 400 mirror = find_bio_disk(r1_bio, bio);
1da177e4 401
e9c7469b
TH
402 /*
403 * 'one mirror IO has finished' event handler:
404 */
e9c7469b 405 if (!uptodate) {
cd5ff9a1
N
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
19d67169
N
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
412
cd5ff9a1 413 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 414 } else {
1da177e4 415 /*
e9c7469b
TH
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
419 * fails.
420 *
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
1da177e4 424 */
4367af55
N
425 sector_t first_bad;
426 int bad_sectors;
427
cd5ff9a1
N
428 r1_bio->bios[mirror] = NULL;
429 to_put = bio;
e9c7469b
TH
430 set_bit(R1BIO_Uptodate, &r1_bio->state);
431
4367af55
N
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf->mirrors[mirror].rdev,
434 r1_bio->sector, r1_bio->sectors,
435 &first_bad, &bad_sectors)) {
436 r1_bio->bios[mirror] = IO_MADE_GOOD;
437 set_bit(R1BIO_MadeGood, &r1_bio->state);
438 }
439 }
440
e9c7469b
TH
441 if (behind) {
442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 atomic_dec(&r1_bio->behind_remaining);
444
445 /*
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
451 */
452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
457 pr_debug("raid1: behind end write sectors"
458 " %llu-%llu\n",
459 (unsigned long long) mbio->bi_sector,
460 (unsigned long long) mbio->bi_sector +
aa8b57aa 461 bio_sectors(mbio) - 1);
d2eb35ac 462 call_bio_endio(r1_bio);
4b6d287f
N
463 }
464 }
465 }
4367af55
N
466 if (r1_bio->bios[mirror] == NULL)
467 rdev_dec_pending(conf->mirrors[mirror].rdev,
468 conf->mddev);
e9c7469b 469
1da177e4 470 /*
1da177e4
LT
471 * Let's see if all mirrored write operations have finished
472 * already.
473 */
af6d7b76 474 r1_bio_write_done(r1_bio);
c70810b3 475
04b857f7
N
476 if (to_put)
477 bio_put(to_put);
1da177e4
LT
478}
479
480
481/*
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
489 *
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
492 *
493 * The rdev for the device selected will have nr_pending incremented.
494 */
e8096360 495static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 496{
af3a2cd6 497 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
498 int sectors;
499 int best_good_sectors;
9dedf603
SL
500 int best_disk, best_dist_disk, best_pending_disk;
501 int has_nonrot_disk;
be4d3280 502 int disk;
76073054 503 sector_t best_dist;
9dedf603 504 unsigned int min_pending;
3cb03002 505 struct md_rdev *rdev;
f3ac8bf7 506 int choose_first;
12cee5a8 507 int choose_next_idle;
1da177e4
LT
508
509 rcu_read_lock();
510 /*
8ddf9efe 511 * Check if we can balance. We can balance on the whole
1da177e4
LT
512 * device if no resync is going on, or below the resync window.
513 * We take the first readable disk when above the resync window.
514 */
515 retry:
d2eb35ac 516 sectors = r1_bio->sectors;
76073054 517 best_disk = -1;
9dedf603 518 best_dist_disk = -1;
76073054 519 best_dist = MaxSector;
9dedf603
SL
520 best_pending_disk = -1;
521 min_pending = UINT_MAX;
d2eb35ac 522 best_good_sectors = 0;
9dedf603 523 has_nonrot_disk = 0;
12cee5a8 524 choose_next_idle = 0;
d2eb35ac 525
1da177e4 526 if (conf->mddev->recovery_cp < MaxSector &&
be4d3280 527 (this_sector + sectors >= conf->next_resync))
f3ac8bf7 528 choose_first = 1;
be4d3280 529 else
f3ac8bf7 530 choose_first = 0;
1da177e4 531
be4d3280 532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 533 sector_t dist;
d2eb35ac
N
534 sector_t first_bad;
535 int bad_sectors;
9dedf603 536 unsigned int pending;
12cee5a8 537 bool nonrot;
d2eb35ac 538
f3ac8bf7
N
539 rdev = rcu_dereference(conf->mirrors[disk].rdev);
540 if (r1_bio->bios[disk] == IO_BLOCKED
541 || rdev == NULL
6b740b8d 542 || test_bit(Unmerged, &rdev->flags)
76073054 543 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 544 continue;
76073054
N
545 if (!test_bit(In_sync, &rdev->flags) &&
546 rdev->recovery_offset < this_sector + sectors)
1da177e4 547 continue;
76073054
N
548 if (test_bit(WriteMostly, &rdev->flags)) {
549 /* Don't balance among write-mostly, just
550 * use the first as a last resort */
307729c8
N
551 if (best_disk < 0) {
552 if (is_badblock(rdev, this_sector, sectors,
553 &first_bad, &bad_sectors)) {
554 if (first_bad < this_sector)
555 /* Cannot use this */
556 continue;
557 best_good_sectors = first_bad - this_sector;
558 } else
559 best_good_sectors = sectors;
76073054 560 best_disk = disk;
307729c8 561 }
76073054
N
562 continue;
563 }
564 /* This is a reasonable device to use. It might
565 * even be best.
566 */
d2eb35ac
N
567 if (is_badblock(rdev, this_sector, sectors,
568 &first_bad, &bad_sectors)) {
569 if (best_dist < MaxSector)
570 /* already have a better device */
571 continue;
572 if (first_bad <= this_sector) {
573 /* cannot read here. If this is the 'primary'
574 * device, then we must not read beyond
575 * bad_sectors from another device..
576 */
577 bad_sectors -= (this_sector - first_bad);
578 if (choose_first && sectors > bad_sectors)
579 sectors = bad_sectors;
580 if (best_good_sectors > sectors)
581 best_good_sectors = sectors;
582
583 } else {
584 sector_t good_sectors = first_bad - this_sector;
585 if (good_sectors > best_good_sectors) {
586 best_good_sectors = good_sectors;
587 best_disk = disk;
588 }
589 if (choose_first)
590 break;
591 }
592 continue;
593 } else
594 best_good_sectors = sectors;
595
12cee5a8
SL
596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
597 has_nonrot_disk |= nonrot;
9dedf603 598 pending = atomic_read(&rdev->nr_pending);
76073054 599 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 600 if (choose_first) {
76073054 601 best_disk = disk;
1da177e4
LT
602 break;
603 }
12cee5a8
SL
604 /* Don't change to another disk for sequential reads */
605 if (conf->mirrors[disk].next_seq_sect == this_sector
606 || dist == 0) {
607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
608 struct raid1_info *mirror = &conf->mirrors[disk];
609
610 best_disk = disk;
611 /*
612 * If buffered sequential IO size exceeds optimal
613 * iosize, check if there is idle disk. If yes, choose
614 * the idle disk. read_balance could already choose an
615 * idle disk before noticing it's a sequential IO in
616 * this disk. This doesn't matter because this disk
617 * will idle, next time it will be utilized after the
618 * first disk has IO size exceeds optimal iosize. In
619 * this way, iosize of the first disk will be optimal
620 * iosize at least. iosize of the second disk might be
621 * small, but not a big deal since when the second disk
622 * starts IO, the first disk is likely still busy.
623 */
624 if (nonrot && opt_iosize > 0 &&
625 mirror->seq_start != MaxSector &&
626 mirror->next_seq_sect > opt_iosize &&
627 mirror->next_seq_sect - opt_iosize >=
628 mirror->seq_start) {
629 choose_next_idle = 1;
630 continue;
631 }
632 break;
633 }
634 /* If device is idle, use it */
635 if (pending == 0) {
636 best_disk = disk;
637 break;
638 }
639
640 if (choose_next_idle)
641 continue;
9dedf603
SL
642
643 if (min_pending > pending) {
644 min_pending = pending;
645 best_pending_disk = disk;
646 }
647
76073054
N
648 if (dist < best_dist) {
649 best_dist = dist;
9dedf603 650 best_dist_disk = disk;
1da177e4 651 }
f3ac8bf7 652 }
1da177e4 653
9dedf603
SL
654 /*
655 * If all disks are rotational, choose the closest disk. If any disk is
656 * non-rotational, choose the disk with less pending request even the
657 * disk is rotational, which might/might not be optimal for raids with
658 * mixed ratation/non-rotational disks depending on workload.
659 */
660 if (best_disk == -1) {
661 if (has_nonrot_disk)
662 best_disk = best_pending_disk;
663 else
664 best_disk = best_dist_disk;
665 }
666
76073054
N
667 if (best_disk >= 0) {
668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
669 if (!rdev)
670 goto retry;
671 atomic_inc(&rdev->nr_pending);
76073054 672 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
673 /* cannot risk returning a device that failed
674 * before we inc'ed nr_pending
675 */
03c902e1 676 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
677 goto retry;
678 }
d2eb35ac 679 sectors = best_good_sectors;
12cee5a8
SL
680
681 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
682 conf->mirrors[best_disk].seq_start = this_sector;
683
be4d3280 684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
685 }
686 rcu_read_unlock();
d2eb35ac 687 *max_sectors = sectors;
1da177e4 688
76073054 689 return best_disk;
1da177e4
LT
690}
691
6b740b8d
N
692static int raid1_mergeable_bvec(struct request_queue *q,
693 struct bvec_merge_data *bvm,
694 struct bio_vec *biovec)
695{
696 struct mddev *mddev = q->queuedata;
697 struct r1conf *conf = mddev->private;
698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
699 int max = biovec->bv_len;
700
701 if (mddev->merge_check_needed) {
702 int disk;
703 rcu_read_lock();
704 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
705 struct md_rdev *rdev = rcu_dereference(
706 conf->mirrors[disk].rdev);
707 if (rdev && !test_bit(Faulty, &rdev->flags)) {
708 struct request_queue *q =
709 bdev_get_queue(rdev->bdev);
710 if (q->merge_bvec_fn) {
711 bvm->bi_sector = sector +
712 rdev->data_offset;
713 bvm->bi_bdev = rdev->bdev;
714 max = min(max, q->merge_bvec_fn(
715 q, bvm, biovec));
716 }
717 }
718 }
719 rcu_read_unlock();
720 }
721 return max;
722
723}
724
fd01b88c 725int md_raid1_congested(struct mddev *mddev, int bits)
0d129228 726{
e8096360 727 struct r1conf *conf = mddev->private;
0d129228
N
728 int i, ret = 0;
729
34db0cd6
N
730 if ((bits & (1 << BDI_async_congested)) &&
731 conf->pending_count >= max_queued_requests)
732 return 1;
733
0d129228 734 rcu_read_lock();
f53e29fc 735 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 737 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 738 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 739
1ed7242e
JB
740 BUG_ON(!q);
741
0d129228
N
742 /* Note the '|| 1' - when read_balance prefers
743 * non-congested targets, it can be removed
744 */
91a9e99d 745 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
746 ret |= bdi_congested(&q->backing_dev_info, bits);
747 else
748 ret &= bdi_congested(&q->backing_dev_info, bits);
749 }
750 }
751 rcu_read_unlock();
752 return ret;
753}
1ed7242e 754EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 755
1ed7242e
JB
756static int raid1_congested(void *data, int bits)
757{
fd01b88c 758 struct mddev *mddev = data;
1ed7242e
JB
759
760 return mddev_congested(mddev, bits) ||
761 md_raid1_congested(mddev, bits);
762}
0d129228 763
e8096360 764static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
765{
766 /* Any writes that have been queued but are awaiting
767 * bitmap updates get flushed here.
a35e63ef 768 */
a35e63ef
N
769 spin_lock_irq(&conf->device_lock);
770
771 if (conf->pending_bio_list.head) {
772 struct bio *bio;
773 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 774 conf->pending_count = 0;
a35e63ef
N
775 spin_unlock_irq(&conf->device_lock);
776 /* flush any pending bitmap writes to
777 * disk before proceeding w/ I/O */
778 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 779 wake_up(&conf->wait_barrier);
a35e63ef
N
780
781 while (bio) { /* submit pending writes */
782 struct bio *next = bio->bi_next;
783 bio->bi_next = NULL;
2ff8cc2c
SL
784 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
785 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
786 /* Just ignore it */
787 bio_endio(bio, 0);
788 else
789 generic_make_request(bio);
a35e63ef
N
790 bio = next;
791 }
a35e63ef
N
792 } else
793 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
794}
795
17999be4
N
796/* Barriers....
797 * Sometimes we need to suspend IO while we do something else,
798 * either some resync/recovery, or reconfigure the array.
799 * To do this we raise a 'barrier'.
800 * The 'barrier' is a counter that can be raised multiple times
801 * to count how many activities are happening which preclude
802 * normal IO.
803 * We can only raise the barrier if there is no pending IO.
804 * i.e. if nr_pending == 0.
805 * We choose only to raise the barrier if no-one is waiting for the
806 * barrier to go down. This means that as soon as an IO request
807 * is ready, no other operations which require a barrier will start
808 * until the IO request has had a chance.
809 *
810 * So: regular IO calls 'wait_barrier'. When that returns there
811 * is no backgroup IO happening, It must arrange to call
812 * allow_barrier when it has finished its IO.
813 * backgroup IO calls must call raise_barrier. Once that returns
814 * there is no normal IO happeing. It must arrange to call
815 * lower_barrier when the particular background IO completes.
1da177e4
LT
816 */
817#define RESYNC_DEPTH 32
818
e8096360 819static void raise_barrier(struct r1conf *conf)
1da177e4
LT
820{
821 spin_lock_irq(&conf->resync_lock);
17999be4
N
822
823 /* Wait until no block IO is waiting */
824 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 825 conf->resync_lock);
17999be4
N
826
827 /* block any new IO from starting */
828 conf->barrier++;
829
046abeed 830 /* Now wait for all pending IO to complete */
17999be4
N
831 wait_event_lock_irq(conf->wait_barrier,
832 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 833 conf->resync_lock);
17999be4
N
834
835 spin_unlock_irq(&conf->resync_lock);
836}
837
e8096360 838static void lower_barrier(struct r1conf *conf)
17999be4
N
839{
840 unsigned long flags;
709ae487 841 BUG_ON(conf->barrier <= 0);
17999be4
N
842 spin_lock_irqsave(&conf->resync_lock, flags);
843 conf->barrier--;
844 spin_unlock_irqrestore(&conf->resync_lock, flags);
845 wake_up(&conf->wait_barrier);
846}
847
e8096360 848static void wait_barrier(struct r1conf *conf)
17999be4
N
849{
850 spin_lock_irq(&conf->resync_lock);
851 if (conf->barrier) {
852 conf->nr_waiting++;
d6b42dcb
N
853 /* Wait for the barrier to drop.
854 * However if there are already pending
855 * requests (preventing the barrier from
856 * rising completely), and the
857 * pre-process bio queue isn't empty,
858 * then don't wait, as we need to empty
859 * that queue to get the nr_pending
860 * count down.
861 */
862 wait_event_lock_irq(conf->wait_barrier,
863 !conf->barrier ||
864 (conf->nr_pending &&
865 current->bio_list &&
866 !bio_list_empty(current->bio_list)),
eed8c02e 867 conf->resync_lock);
17999be4 868 conf->nr_waiting--;
1da177e4 869 }
17999be4 870 conf->nr_pending++;
1da177e4
LT
871 spin_unlock_irq(&conf->resync_lock);
872}
873
e8096360 874static void allow_barrier(struct r1conf *conf)
17999be4
N
875{
876 unsigned long flags;
877 spin_lock_irqsave(&conf->resync_lock, flags);
878 conf->nr_pending--;
879 spin_unlock_irqrestore(&conf->resync_lock, flags);
880 wake_up(&conf->wait_barrier);
881}
882
e8096360 883static void freeze_array(struct r1conf *conf)
ddaf22ab
N
884{
885 /* stop syncio and normal IO and wait for everything to
886 * go quite.
887 * We increment barrier and nr_waiting, and then
1c830532
N
888 * wait until nr_pending match nr_queued+1
889 * This is called in the context of one normal IO request
890 * that has failed. Thus any sync request that might be pending
891 * will be blocked by nr_pending, and we need to wait for
892 * pending IO requests to complete or be queued for re-try.
893 * Thus the number queued (nr_queued) plus this request (1)
894 * must match the number of pending IOs (nr_pending) before
895 * we continue.
ddaf22ab
N
896 */
897 spin_lock_irq(&conf->resync_lock);
898 conf->barrier++;
899 conf->nr_waiting++;
eed8c02e
LC
900 wait_event_lock_irq_cmd(conf->wait_barrier,
901 conf->nr_pending == conf->nr_queued+1,
902 conf->resync_lock,
903 flush_pending_writes(conf));
ddaf22ab
N
904 spin_unlock_irq(&conf->resync_lock);
905}
e8096360 906static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
907{
908 /* reverse the effect of the freeze */
909 spin_lock_irq(&conf->resync_lock);
910 conf->barrier--;
911 conf->nr_waiting--;
912 wake_up(&conf->wait_barrier);
913 spin_unlock_irq(&conf->resync_lock);
914}
915
17999be4 916
4e78064f 917/* duplicate the data pages for behind I/O
4e78064f 918 */
9f2c9d12 919static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
920{
921 int i;
922 struct bio_vec *bvec;
2ca68f5e 923 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 924 GFP_NOIO);
2ca68f5e 925 if (unlikely(!bvecs))
af6d7b76 926 return;
4b6d287f 927
cb34e057 928 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
929 bvecs[i] = *bvec;
930 bvecs[i].bv_page = alloc_page(GFP_NOIO);
931 if (unlikely(!bvecs[i].bv_page))
4b6d287f 932 goto do_sync_io;
2ca68f5e
N
933 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
934 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
935 kunmap(bvecs[i].bv_page);
4b6d287f
N
936 kunmap(bvec->bv_page);
937 }
2ca68f5e 938 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
939 r1_bio->behind_page_count = bio->bi_vcnt;
940 set_bit(R1BIO_BehindIO, &r1_bio->state);
941 return;
4b6d287f
N
942
943do_sync_io:
af6d7b76 944 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
945 if (bvecs[i].bv_page)
946 put_page(bvecs[i].bv_page);
947 kfree(bvecs);
36a4e1fe 948 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
4b6d287f
N
949}
950
f54a9d0e
N
951struct raid1_plug_cb {
952 struct blk_plug_cb cb;
953 struct bio_list pending;
954 int pending_cnt;
955};
956
957static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
958{
959 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
960 cb);
961 struct mddev *mddev = plug->cb.data;
962 struct r1conf *conf = mddev->private;
963 struct bio *bio;
964
874807a8 965 if (from_schedule || current->bio_list) {
f54a9d0e
N
966 spin_lock_irq(&conf->device_lock);
967 bio_list_merge(&conf->pending_bio_list, &plug->pending);
968 conf->pending_count += plug->pending_cnt;
969 spin_unlock_irq(&conf->device_lock);
ee0b0244 970 wake_up(&conf->wait_barrier);
f54a9d0e
N
971 md_wakeup_thread(mddev->thread);
972 kfree(plug);
973 return;
974 }
975
976 /* we aren't scheduling, so we can do the write-out directly. */
977 bio = bio_list_get(&plug->pending);
978 bitmap_unplug(mddev->bitmap);
979 wake_up(&conf->wait_barrier);
980
981 while (bio) { /* submit pending writes */
982 struct bio *next = bio->bi_next;
983 bio->bi_next = NULL;
984 generic_make_request(bio);
985 bio = next;
986 }
987 kfree(plug);
988}
989
b4fdcb02 990static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 991{
e8096360 992 struct r1conf *conf = mddev->private;
0eaf822c 993 struct raid1_info *mirror;
9f2c9d12 994 struct r1bio *r1_bio;
1da177e4 995 struct bio *read_bio;
1f68f0c4 996 int i, disks;
84255d10 997 struct bitmap *bitmap;
191ea9b2 998 unsigned long flags;
a362357b 999 const int rw = bio_data_dir(bio);
2c7d46ec 1000 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1001 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1002 const unsigned long do_discard = (bio->bi_rw
1003 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1004 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1005 struct md_rdev *blocked_rdev;
f54a9d0e
N
1006 struct blk_plug_cb *cb;
1007 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1008 int first_clone;
1009 int sectors_handled;
1010 int max_sectors;
191ea9b2 1011
1da177e4
LT
1012 /*
1013 * Register the new request and wait if the reconstruction
1014 * thread has put up a bar for new requests.
1015 * Continue immediately if no resync is active currently.
1016 */
62de608d 1017
3d310eb7
N
1018 md_write_start(mddev, bio); /* wait on superblock update early */
1019
6eef4b21 1020 if (bio_data_dir(bio) == WRITE &&
f73a1c7d 1021 bio_end_sector(bio) > mddev->suspend_lo &&
6eef4b21
N
1022 bio->bi_sector < mddev->suspend_hi) {
1023 /* As the suspend_* range is controlled by
1024 * userspace, we want an interruptible
1025 * wait.
1026 */
1027 DEFINE_WAIT(w);
1028 for (;;) {
1029 flush_signals(current);
1030 prepare_to_wait(&conf->wait_barrier,
1031 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1032 if (bio_end_sector(bio) <= mddev->suspend_lo ||
6eef4b21
N
1033 bio->bi_sector >= mddev->suspend_hi)
1034 break;
1035 schedule();
1036 }
1037 finish_wait(&conf->wait_barrier, &w);
1038 }
62de608d 1039
17999be4 1040 wait_barrier(conf);
1da177e4 1041
84255d10
N
1042 bitmap = mddev->bitmap;
1043
1da177e4
LT
1044 /*
1045 * make_request() can abort the operation when READA is being
1046 * used and no empty request is available.
1047 *
1048 */
1049 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1050
1051 r1_bio->master_bio = bio;
aa8b57aa 1052 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1053 r1_bio->state = 0;
1da177e4
LT
1054 r1_bio->mddev = mddev;
1055 r1_bio->sector = bio->bi_sector;
1056
d2eb35ac
N
1057 /* We might need to issue multiple reads to different
1058 * devices if there are bad blocks around, so we keep
1059 * track of the number of reads in bio->bi_phys_segments.
1060 * If this is 0, there is only one r1_bio and no locking
1061 * will be needed when requests complete. If it is
1062 * non-zero, then it is the number of not-completed requests.
1063 */
1064 bio->bi_phys_segments = 0;
1065 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1066
a362357b 1067 if (rw == READ) {
1da177e4
LT
1068 /*
1069 * read balancing logic:
1070 */
d2eb35ac
N
1071 int rdisk;
1072
1073read_again:
1074 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1075
1076 if (rdisk < 0) {
1077 /* couldn't find anywhere to read from */
1078 raid_end_bio_io(r1_bio);
5a7bbad2 1079 return;
1da177e4
LT
1080 }
1081 mirror = conf->mirrors + rdisk;
1082
e555190d
N
1083 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1084 bitmap) {
1085 /* Reading from a write-mostly device must
1086 * take care not to over-take any writes
1087 * that are 'behind'
1088 */
1089 wait_event(bitmap->behind_wait,
1090 atomic_read(&bitmap->behind_writes) == 0);
1091 }
1da177e4
LT
1092 r1_bio->read_disk = rdisk;
1093
a167f663 1094 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d2eb35ac
N
1095 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1096 max_sectors);
1da177e4
LT
1097
1098 r1_bio->bios[rdisk] = read_bio;
1099
1100 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1101 read_bio->bi_bdev = mirror->rdev->bdev;
1102 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1103 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1104 read_bio->bi_private = r1_bio;
1105
d2eb35ac
N
1106 if (max_sectors < r1_bio->sectors) {
1107 /* could not read all from this device, so we will
1108 * need another r1_bio.
1109 */
d2eb35ac
N
1110
1111 sectors_handled = (r1_bio->sector + max_sectors
1112 - bio->bi_sector);
1113 r1_bio->sectors = max_sectors;
1114 spin_lock_irq(&conf->device_lock);
1115 if (bio->bi_phys_segments == 0)
1116 bio->bi_phys_segments = 2;
1117 else
1118 bio->bi_phys_segments++;
1119 spin_unlock_irq(&conf->device_lock);
1120 /* Cannot call generic_make_request directly
1121 * as that will be queued in __make_request
1122 * and subsequent mempool_alloc might block waiting
1123 * for it. So hand bio over to raid1d.
1124 */
1125 reschedule_retry(r1_bio);
1126
1127 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1128
1129 r1_bio->master_bio = bio;
aa8b57aa 1130 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1131 r1_bio->state = 0;
1132 r1_bio->mddev = mddev;
1133 r1_bio->sector = bio->bi_sector + sectors_handled;
1134 goto read_again;
1135 } else
1136 generic_make_request(read_bio);
5a7bbad2 1137 return;
1da177e4
LT
1138 }
1139
1140 /*
1141 * WRITE:
1142 */
34db0cd6
N
1143 if (conf->pending_count >= max_queued_requests) {
1144 md_wakeup_thread(mddev->thread);
1145 wait_event(conf->wait_barrier,
1146 conf->pending_count < max_queued_requests);
1147 }
1f68f0c4 1148 /* first select target devices under rcu_lock and
1da177e4
LT
1149 * inc refcount on their rdev. Record them by setting
1150 * bios[x] to bio
1f68f0c4
N
1151 * If there are known/acknowledged bad blocks on any device on
1152 * which we have seen a write error, we want to avoid writing those
1153 * blocks.
1154 * This potentially requires several writes to write around
1155 * the bad blocks. Each set of writes gets it's own r1bio
1156 * with a set of bios attached.
1da177e4 1157 */
c3b328ac 1158
8f19ccb2 1159 disks = conf->raid_disks * 2;
6bfe0b49
DW
1160 retry_write:
1161 blocked_rdev = NULL;
1da177e4 1162 rcu_read_lock();
1f68f0c4 1163 max_sectors = r1_bio->sectors;
1da177e4 1164 for (i = 0; i < disks; i++) {
3cb03002 1165 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1166 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1167 atomic_inc(&rdev->nr_pending);
1168 blocked_rdev = rdev;
1169 break;
1170 }
1f68f0c4 1171 r1_bio->bios[i] = NULL;
6b740b8d
N
1172 if (!rdev || test_bit(Faulty, &rdev->flags)
1173 || test_bit(Unmerged, &rdev->flags)) {
8f19ccb2
N
1174 if (i < conf->raid_disks)
1175 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1176 continue;
1177 }
1178
1179 atomic_inc(&rdev->nr_pending);
1180 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1181 sector_t first_bad;
1182 int bad_sectors;
1183 int is_bad;
1184
1185 is_bad = is_badblock(rdev, r1_bio->sector,
1186 max_sectors,
1187 &first_bad, &bad_sectors);
1188 if (is_bad < 0) {
1189 /* mustn't write here until the bad block is
1190 * acknowledged*/
1191 set_bit(BlockedBadBlocks, &rdev->flags);
1192 blocked_rdev = rdev;
1193 break;
1194 }
1195 if (is_bad && first_bad <= r1_bio->sector) {
1196 /* Cannot write here at all */
1197 bad_sectors -= (r1_bio->sector - first_bad);
1198 if (bad_sectors < max_sectors)
1199 /* mustn't write more than bad_sectors
1200 * to other devices yet
1201 */
1202 max_sectors = bad_sectors;
03c902e1 1203 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1204 /* We don't set R1BIO_Degraded as that
1205 * only applies if the disk is
1206 * missing, so it might be re-added,
1207 * and we want to know to recover this
1208 * chunk.
1209 * In this case the device is here,
1210 * and the fact that this chunk is not
1211 * in-sync is recorded in the bad
1212 * block log
1213 */
1214 continue;
964147d5 1215 }
1f68f0c4
N
1216 if (is_bad) {
1217 int good_sectors = first_bad - r1_bio->sector;
1218 if (good_sectors < max_sectors)
1219 max_sectors = good_sectors;
1220 }
1221 }
1222 r1_bio->bios[i] = bio;
1da177e4
LT
1223 }
1224 rcu_read_unlock();
1225
6bfe0b49
DW
1226 if (unlikely(blocked_rdev)) {
1227 /* Wait for this device to become unblocked */
1228 int j;
1229
1230 for (j = 0; j < i; j++)
1231 if (r1_bio->bios[j])
1232 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1233 r1_bio->state = 0;
6bfe0b49
DW
1234 allow_barrier(conf);
1235 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1236 wait_barrier(conf);
1237 goto retry_write;
1238 }
1239
1f68f0c4
N
1240 if (max_sectors < r1_bio->sectors) {
1241 /* We are splitting this write into multiple parts, so
1242 * we need to prepare for allocating another r1_bio.
1243 */
1244 r1_bio->sectors = max_sectors;
1245 spin_lock_irq(&conf->device_lock);
1246 if (bio->bi_phys_segments == 0)
1247 bio->bi_phys_segments = 2;
1248 else
1249 bio->bi_phys_segments++;
1250 spin_unlock_irq(&conf->device_lock);
191ea9b2 1251 }
1f68f0c4 1252 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
4b6d287f 1253
4e78064f 1254 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1255 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1256
1f68f0c4 1257 first_clone = 1;
1da177e4
LT
1258 for (i = 0; i < disks; i++) {
1259 struct bio *mbio;
1260 if (!r1_bio->bios[i])
1261 continue;
1262
a167f663 1263 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1f68f0c4
N
1264 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1265
1266 if (first_clone) {
1267 /* do behind I/O ?
1268 * Not if there are too many, or cannot
1269 * allocate memory, or a reader on WriteMostly
1270 * is waiting for behind writes to flush */
1271 if (bitmap &&
1272 (atomic_read(&bitmap->behind_writes)
1273 < mddev->bitmap_info.max_write_behind) &&
1274 !waitqueue_active(&bitmap->behind_wait))
1275 alloc_behind_pages(mbio, r1_bio);
1276
1277 bitmap_startwrite(bitmap, r1_bio->sector,
1278 r1_bio->sectors,
1279 test_bit(R1BIO_BehindIO,
1280 &r1_bio->state));
1281 first_clone = 0;
1282 }
2ca68f5e 1283 if (r1_bio->behind_bvecs) {
4b6d287f
N
1284 struct bio_vec *bvec;
1285 int j;
1286
cb34e057
KO
1287 /*
1288 * We trimmed the bio, so _all is legit
4b6d287f 1289 */
d74c6d51 1290 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1291 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1292 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1293 atomic_inc(&r1_bio->behind_remaining);
1294 }
1295
1f68f0c4
N
1296 r1_bio->bios[i] = mbio;
1297
1298 mbio->bi_sector = (r1_bio->sector +
1299 conf->mirrors[i].rdev->data_offset);
1300 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1301 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1302 mbio->bi_rw =
1303 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1304 mbio->bi_private = r1_bio;
1305
1da177e4 1306 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1307
1308 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1309 if (cb)
1310 plug = container_of(cb, struct raid1_plug_cb, cb);
1311 else
1312 plug = NULL;
4e78064f 1313 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1314 if (plug) {
1315 bio_list_add(&plug->pending, mbio);
1316 plug->pending_cnt++;
1317 } else {
1318 bio_list_add(&conf->pending_bio_list, mbio);
1319 conf->pending_count++;
1320 }
4e78064f 1321 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1322 if (!plug)
b357f04a 1323 md_wakeup_thread(mddev->thread);
1da177e4 1324 }
079fa166
N
1325 /* Mustn't call r1_bio_write_done before this next test,
1326 * as it could result in the bio being freed.
1327 */
aa8b57aa 1328 if (sectors_handled < bio_sectors(bio)) {
079fa166 1329 r1_bio_write_done(r1_bio);
1f68f0c4
N
1330 /* We need another r1_bio. It has already been counted
1331 * in bio->bi_phys_segments
1332 */
1333 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1334 r1_bio->master_bio = bio;
aa8b57aa 1335 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1336 r1_bio->state = 0;
1337 r1_bio->mddev = mddev;
1338 r1_bio->sector = bio->bi_sector + sectors_handled;
1339 goto retry_write;
1340 }
1341
079fa166
N
1342 r1_bio_write_done(r1_bio);
1343
1344 /* In case raid1d snuck in to freeze_array */
1345 wake_up(&conf->wait_barrier);
1da177e4
LT
1346}
1347
fd01b88c 1348static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1349{
e8096360 1350 struct r1conf *conf = mddev->private;
1da177e4
LT
1351 int i;
1352
1353 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1354 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1355 rcu_read_lock();
1356 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1357 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1358 seq_printf(seq, "%s",
ddac7c7e
N
1359 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1360 }
1361 rcu_read_unlock();
1da177e4
LT
1362 seq_printf(seq, "]");
1363}
1364
1365
fd01b88c 1366static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1367{
1368 char b[BDEVNAME_SIZE];
e8096360 1369 struct r1conf *conf = mddev->private;
1da177e4
LT
1370
1371 /*
1372 * If it is not operational, then we have already marked it as dead
1373 * else if it is the last working disks, ignore the error, let the
1374 * next level up know.
1375 * else mark the drive as failed
1376 */
b2d444d7 1377 if (test_bit(In_sync, &rdev->flags)
4044ba58 1378 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1379 /*
1380 * Don't fail the drive, act as though we were just a
4044ba58
N
1381 * normal single drive.
1382 * However don't try a recovery from this drive as
1383 * it is very likely to fail.
1da177e4 1384 */
5389042f 1385 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1386 return;
4044ba58 1387 }
de393cde 1388 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1389 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1390 unsigned long flags;
1391 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1392 mddev->degraded++;
dd00a99e 1393 set_bit(Faulty, &rdev->flags);
c04be0aa 1394 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1395 /*
1396 * if recovery is running, make sure it aborts.
1397 */
dfc70645 1398 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1399 } else
1400 set_bit(Faulty, &rdev->flags);
850b2b42 1401 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1402 printk(KERN_ALERT
1403 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1404 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1405 mdname(mddev), bdevname(rdev->bdev, b),
1406 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1407}
1408
e8096360 1409static void print_conf(struct r1conf *conf)
1da177e4
LT
1410{
1411 int i;
1da177e4 1412
9dd1e2fa 1413 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1414 if (!conf) {
9dd1e2fa 1415 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1416 return;
1417 }
9dd1e2fa 1418 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1419 conf->raid_disks);
1420
ddac7c7e 1421 rcu_read_lock();
1da177e4
LT
1422 for (i = 0; i < conf->raid_disks; i++) {
1423 char b[BDEVNAME_SIZE];
3cb03002 1424 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1425 if (rdev)
9dd1e2fa 1426 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1427 i, !test_bit(In_sync, &rdev->flags),
1428 !test_bit(Faulty, &rdev->flags),
1429 bdevname(rdev->bdev,b));
1da177e4 1430 }
ddac7c7e 1431 rcu_read_unlock();
1da177e4
LT
1432}
1433
e8096360 1434static void close_sync(struct r1conf *conf)
1da177e4 1435{
17999be4
N
1436 wait_barrier(conf);
1437 allow_barrier(conf);
1da177e4
LT
1438
1439 mempool_destroy(conf->r1buf_pool);
1440 conf->r1buf_pool = NULL;
1441}
1442
fd01b88c 1443static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1444{
1445 int i;
e8096360 1446 struct r1conf *conf = mddev->private;
6b965620
N
1447 int count = 0;
1448 unsigned long flags;
1da177e4
LT
1449
1450 /*
1451 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1452 * and mark them readable.
1453 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1454 */
1455 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1456 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1457 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1458 if (repl
1459 && repl->recovery_offset == MaxSector
1460 && !test_bit(Faulty, &repl->flags)
1461 && !test_and_set_bit(In_sync, &repl->flags)) {
1462 /* replacement has just become active */
1463 if (!rdev ||
1464 !test_and_clear_bit(In_sync, &rdev->flags))
1465 count++;
1466 if (rdev) {
1467 /* Replaced device not technically
1468 * faulty, but we need to be sure
1469 * it gets removed and never re-added
1470 */
1471 set_bit(Faulty, &rdev->flags);
1472 sysfs_notify_dirent_safe(
1473 rdev->sysfs_state);
1474 }
1475 }
ddac7c7e
N
1476 if (rdev
1477 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1478 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1479 count++;
654e8b5a 1480 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1481 }
1482 }
6b965620
N
1483 spin_lock_irqsave(&conf->device_lock, flags);
1484 mddev->degraded -= count;
1485 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1486
1487 print_conf(conf);
6b965620 1488 return count;
1da177e4
LT
1489}
1490
1491
fd01b88c 1492static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1493{
e8096360 1494 struct r1conf *conf = mddev->private;
199050ea 1495 int err = -EEXIST;
41158c7e 1496 int mirror = 0;
0eaf822c 1497 struct raid1_info *p;
6c2fce2e 1498 int first = 0;
30194636 1499 int last = conf->raid_disks - 1;
6b740b8d 1500 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4 1501
5389042f
N
1502 if (mddev->recovery_disabled == conf->recovery_disabled)
1503 return -EBUSY;
1504
6c2fce2e
NB
1505 if (rdev->raid_disk >= 0)
1506 first = last = rdev->raid_disk;
1507
6b740b8d
N
1508 if (q->merge_bvec_fn) {
1509 set_bit(Unmerged, &rdev->flags);
1510 mddev->merge_check_needed = 1;
1511 }
1512
7ef449d1
N
1513 for (mirror = first; mirror <= last; mirror++) {
1514 p = conf->mirrors+mirror;
1515 if (!p->rdev) {
1da177e4 1516
8f6c2e4b
MP
1517 disk_stack_limits(mddev->gendisk, rdev->bdev,
1518 rdev->data_offset << 9);
1da177e4
LT
1519
1520 p->head_position = 0;
1521 rdev->raid_disk = mirror;
199050ea 1522 err = 0;
6aea114a
N
1523 /* As all devices are equivalent, we don't need a full recovery
1524 * if this was recently any drive of the array
1525 */
1526 if (rdev->saved_raid_disk < 0)
41158c7e 1527 conf->fullsync = 1;
d6065f7b 1528 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1529 break;
1530 }
7ef449d1
N
1531 if (test_bit(WantReplacement, &p->rdev->flags) &&
1532 p[conf->raid_disks].rdev == NULL) {
1533 /* Add this device as a replacement */
1534 clear_bit(In_sync, &rdev->flags);
1535 set_bit(Replacement, &rdev->flags);
1536 rdev->raid_disk = mirror;
1537 err = 0;
1538 conf->fullsync = 1;
1539 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1540 break;
1541 }
1542 }
6b740b8d
N
1543 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1544 /* Some requests might not have seen this new
1545 * merge_bvec_fn. We must wait for them to complete
1546 * before merging the device fully.
1547 * First we make sure any code which has tested
1548 * our function has submitted the request, then
1549 * we wait for all outstanding requests to complete.
1550 */
1551 synchronize_sched();
1552 raise_barrier(conf);
1553 lower_barrier(conf);
1554 clear_bit(Unmerged, &rdev->flags);
1555 }
ac5e7113 1556 md_integrity_add_rdev(rdev, mddev);
2ff8cc2c
SL
1557 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
1558 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1559 print_conf(conf);
199050ea 1560 return err;
1da177e4
LT
1561}
1562
b8321b68 1563static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1564{
e8096360 1565 struct r1conf *conf = mddev->private;
1da177e4 1566 int err = 0;
b8321b68 1567 int number = rdev->raid_disk;
0eaf822c 1568 struct raid1_info *p = conf->mirrors + number;
1da177e4 1569
b014f14c
N
1570 if (rdev != p->rdev)
1571 p = conf->mirrors + conf->raid_disks + number;
1572
1da177e4 1573 print_conf(conf);
b8321b68 1574 if (rdev == p->rdev) {
b2d444d7 1575 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1576 atomic_read(&rdev->nr_pending)) {
1577 err = -EBUSY;
1578 goto abort;
1579 }
046abeed 1580 /* Only remove non-faulty devices if recovery
dfc70645
N
1581 * is not possible.
1582 */
1583 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1584 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1585 mddev->degraded < conf->raid_disks) {
1586 err = -EBUSY;
1587 goto abort;
1588 }
1da177e4 1589 p->rdev = NULL;
fbd568a3 1590 synchronize_rcu();
1da177e4
LT
1591 if (atomic_read(&rdev->nr_pending)) {
1592 /* lost the race, try later */
1593 err = -EBUSY;
1594 p->rdev = rdev;
ac5e7113 1595 goto abort;
8c7a2c2b
N
1596 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1597 /* We just removed a device that is being replaced.
1598 * Move down the replacement. We drain all IO before
1599 * doing this to avoid confusion.
1600 */
1601 struct md_rdev *repl =
1602 conf->mirrors[conf->raid_disks + number].rdev;
1603 raise_barrier(conf);
1604 clear_bit(Replacement, &repl->flags);
1605 p->rdev = repl;
1606 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1607 lower_barrier(conf);
1608 clear_bit(WantReplacement, &rdev->flags);
1609 } else
b014f14c 1610 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1611 err = md_integrity_register(mddev);
1da177e4
LT
1612 }
1613abort:
1614
1615 print_conf(conf);
1616 return err;
1617}
1618
1619
6712ecf8 1620static void end_sync_read(struct bio *bio, int error)
1da177e4 1621{
9f2c9d12 1622 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1623
0fc280f6 1624 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1625
1da177e4
LT
1626 /*
1627 * we have read a block, now it needs to be re-written,
1628 * or re-read if the read failed.
1629 * We don't do much here, just schedule handling by raid1d
1630 */
69382e85 1631 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1632 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1633
1634 if (atomic_dec_and_test(&r1_bio->remaining))
1635 reschedule_retry(r1_bio);
1da177e4
LT
1636}
1637
6712ecf8 1638static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1639{
1640 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1641 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1642 struct mddev *mddev = r1_bio->mddev;
e8096360 1643 struct r1conf *conf = mddev->private;
1da177e4 1644 int mirror=0;
4367af55
N
1645 sector_t first_bad;
1646 int bad_sectors;
1da177e4 1647
ba3ae3be
NK
1648 mirror = find_bio_disk(r1_bio, bio);
1649
6b1117d5 1650 if (!uptodate) {
57dab0bd 1651 sector_t sync_blocks = 0;
6b1117d5
N
1652 sector_t s = r1_bio->sector;
1653 long sectors_to_go = r1_bio->sectors;
1654 /* make sure these bits doesn't get cleared. */
1655 do {
5e3db645 1656 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1657 &sync_blocks, 1);
1658 s += sync_blocks;
1659 sectors_to_go -= sync_blocks;
1660 } while (sectors_to_go > 0);
d8f05d29
N
1661 set_bit(WriteErrorSeen,
1662 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1663 if (!test_and_set_bit(WantReplacement,
1664 &conf->mirrors[mirror].rdev->flags))
1665 set_bit(MD_RECOVERY_NEEDED, &
1666 mddev->recovery);
d8f05d29 1667 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1668 } else if (is_badblock(conf->mirrors[mirror].rdev,
1669 r1_bio->sector,
1670 r1_bio->sectors,
3a9f28a5
N
1671 &first_bad, &bad_sectors) &&
1672 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1673 r1_bio->sector,
1674 r1_bio->sectors,
1675 &first_bad, &bad_sectors)
1676 )
4367af55 1677 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1678
1da177e4 1679 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1680 int s = r1_bio->sectors;
d8f05d29
N
1681 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1682 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1683 reschedule_retry(r1_bio);
1684 else {
1685 put_buf(r1_bio);
1686 md_done_sync(mddev, s, uptodate);
1687 }
1da177e4 1688 }
1da177e4
LT
1689}
1690
3cb03002 1691static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1692 int sectors, struct page *page, int rw)
1693{
1694 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1695 /* success */
1696 return 1;
19d67169 1697 if (rw == WRITE) {
d8f05d29 1698 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1699 if (!test_and_set_bit(WantReplacement,
1700 &rdev->flags))
1701 set_bit(MD_RECOVERY_NEEDED, &
1702 rdev->mddev->recovery);
1703 }
d8f05d29
N
1704 /* need to record an error - either for the block or the device */
1705 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1706 md_error(rdev->mddev, rdev);
1707 return 0;
1708}
1709
9f2c9d12 1710static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1711{
a68e5870
N
1712 /* Try some synchronous reads of other devices to get
1713 * good data, much like with normal read errors. Only
1714 * read into the pages we already have so we don't
1715 * need to re-issue the read request.
1716 * We don't need to freeze the array, because being in an
1717 * active sync request, there is no normal IO, and
1718 * no overlapping syncs.
06f60385
N
1719 * We don't need to check is_badblock() again as we
1720 * made sure that anything with a bad block in range
1721 * will have bi_end_io clear.
a68e5870 1722 */
fd01b88c 1723 struct mddev *mddev = r1_bio->mddev;
e8096360 1724 struct r1conf *conf = mddev->private;
a68e5870
N
1725 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1726 sector_t sect = r1_bio->sector;
1727 int sectors = r1_bio->sectors;
1728 int idx = 0;
1729
1730 while(sectors) {
1731 int s = sectors;
1732 int d = r1_bio->read_disk;
1733 int success = 0;
3cb03002 1734 struct md_rdev *rdev;
78d7f5f7 1735 int start;
a68e5870
N
1736
1737 if (s > (PAGE_SIZE>>9))
1738 s = PAGE_SIZE >> 9;
1739 do {
1740 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1741 /* No rcu protection needed here devices
1742 * can only be removed when no resync is
1743 * active, and resync is currently active
1744 */
1745 rdev = conf->mirrors[d].rdev;
9d3d8011 1746 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1747 bio->bi_io_vec[idx].bv_page,
1748 READ, false)) {
1749 success = 1;
1750 break;
1751 }
1752 }
1753 d++;
8f19ccb2 1754 if (d == conf->raid_disks * 2)
a68e5870
N
1755 d = 0;
1756 } while (!success && d != r1_bio->read_disk);
1757
78d7f5f7 1758 if (!success) {
a68e5870 1759 char b[BDEVNAME_SIZE];
3a9f28a5
N
1760 int abort = 0;
1761 /* Cannot read from anywhere, this block is lost.
1762 * Record a bad block on each device. If that doesn't
1763 * work just disable and interrupt the recovery.
1764 * Don't fail devices as that won't really help.
1765 */
a68e5870
N
1766 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1767 " for block %llu\n",
1768 mdname(mddev),
1769 bdevname(bio->bi_bdev, b),
1770 (unsigned long long)r1_bio->sector);
8f19ccb2 1771 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1772 rdev = conf->mirrors[d].rdev;
1773 if (!rdev || test_bit(Faulty, &rdev->flags))
1774 continue;
1775 if (!rdev_set_badblocks(rdev, sect, s, 0))
1776 abort = 1;
1777 }
1778 if (abort) {
d890fa2b
N
1779 conf->recovery_disabled =
1780 mddev->recovery_disabled;
3a9f28a5
N
1781 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1782 md_done_sync(mddev, r1_bio->sectors, 0);
1783 put_buf(r1_bio);
1784 return 0;
1785 }
1786 /* Try next page */
1787 sectors -= s;
1788 sect += s;
1789 idx++;
1790 continue;
d11c171e 1791 }
78d7f5f7
N
1792
1793 start = d;
1794 /* write it back and re-read */
1795 while (d != r1_bio->read_disk) {
1796 if (d == 0)
8f19ccb2 1797 d = conf->raid_disks * 2;
78d7f5f7
N
1798 d--;
1799 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1800 continue;
1801 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1802 if (r1_sync_page_io(rdev, sect, s,
1803 bio->bi_io_vec[idx].bv_page,
1804 WRITE) == 0) {
78d7f5f7
N
1805 r1_bio->bios[d]->bi_end_io = NULL;
1806 rdev_dec_pending(rdev, mddev);
9d3d8011 1807 }
78d7f5f7
N
1808 }
1809 d = start;
1810 while (d != r1_bio->read_disk) {
1811 if (d == 0)
8f19ccb2 1812 d = conf->raid_disks * 2;
78d7f5f7
N
1813 d--;
1814 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1815 continue;
1816 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1817 if (r1_sync_page_io(rdev, sect, s,
1818 bio->bi_io_vec[idx].bv_page,
1819 READ) != 0)
9d3d8011 1820 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1821 }
a68e5870
N
1822 sectors -= s;
1823 sect += s;
1824 idx ++;
1825 }
78d7f5f7 1826 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1827 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1828 return 1;
1829}
1830
9f2c9d12 1831static int process_checks(struct r1bio *r1_bio)
a68e5870
N
1832{
1833 /* We have read all readable devices. If we haven't
1834 * got the block, then there is no hope left.
1835 * If we have, then we want to do a comparison
1836 * and skip the write if everything is the same.
1837 * If any blocks failed to read, then we need to
1838 * attempt an over-write
1839 */
fd01b88c 1840 struct mddev *mddev = r1_bio->mddev;
e8096360 1841 struct r1conf *conf = mddev->private;
a68e5870
N
1842 int primary;
1843 int i;
f4380a91 1844 int vcnt;
a68e5870 1845
8f19ccb2 1846 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
1847 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1848 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1849 r1_bio->bios[primary]->bi_end_io = NULL;
1850 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1851 break;
1852 }
1853 r1_bio->read_disk = primary;
f4380a91 1854 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
8f19ccb2 1855 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1856 int j;
78d7f5f7
N
1857 struct bio *pbio = r1_bio->bios[primary];
1858 struct bio *sbio = r1_bio->bios[i];
1859 int size;
a68e5870 1860
2aabaa65 1861 if (sbio->bi_end_io != end_sync_read)
78d7f5f7
N
1862 continue;
1863
1864 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1865 for (j = vcnt; j-- ; ) {
1866 struct page *p, *s;
1867 p = pbio->bi_io_vec[j].bv_page;
1868 s = sbio->bi_io_vec[j].bv_page;
1869 if (memcmp(page_address(p),
1870 page_address(s),
5020ad7d 1871 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1872 break;
69382e85 1873 }
78d7f5f7
N
1874 } else
1875 j = 0;
1876 if (j >= 0)
7f7583d4 1877 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7
N
1878 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1879 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1880 /* No need to write to this device. */
1881 sbio->bi_end_io = NULL;
1882 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1883 continue;
1884 }
1885 /* fixup the bio for reuse */
2aabaa65 1886 bio_reset(sbio);
78d7f5f7
N
1887 sbio->bi_vcnt = vcnt;
1888 sbio->bi_size = r1_bio->sectors << 9;
78d7f5f7
N
1889 sbio->bi_sector = r1_bio->sector +
1890 conf->mirrors[i].rdev->data_offset;
1891 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
2aabaa65
KO
1892 sbio->bi_end_io = end_sync_read;
1893 sbio->bi_private = r1_bio;
1894
78d7f5f7
N
1895 size = sbio->bi_size;
1896 for (j = 0; j < vcnt ; j++) {
1897 struct bio_vec *bi;
1898 bi = &sbio->bi_io_vec[j];
1899 bi->bv_offset = 0;
1900 if (size > PAGE_SIZE)
1901 bi->bv_len = PAGE_SIZE;
1902 else
1903 bi->bv_len = size;
1904 size -= PAGE_SIZE;
69382e85 1905 }
d3b45c2a
KO
1906
1907 bio_copy_data(sbio, pbio);
78d7f5f7 1908 }
a68e5870
N
1909 return 0;
1910}
1911
9f2c9d12 1912static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1913{
e8096360 1914 struct r1conf *conf = mddev->private;
a68e5870 1915 int i;
8f19ccb2 1916 int disks = conf->raid_disks * 2;
a68e5870
N
1917 struct bio *bio, *wbio;
1918
1919 bio = r1_bio->bios[r1_bio->read_disk];
1920
a68e5870
N
1921 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1922 /* ouch - failed to read all of that. */
1923 if (!fix_sync_read_error(r1_bio))
1924 return;
7ca78d57
N
1925
1926 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1927 if (process_checks(r1_bio) < 0)
1928 return;
d11c171e
N
1929 /*
1930 * schedule writes
1931 */
1da177e4
LT
1932 atomic_set(&r1_bio->remaining, 1);
1933 for (i = 0; i < disks ; i++) {
1934 wbio = r1_bio->bios[i];
3e198f78
N
1935 if (wbio->bi_end_io == NULL ||
1936 (wbio->bi_end_io == end_sync_read &&
1937 (i == r1_bio->read_disk ||
1938 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1939 continue;
1940
3e198f78
N
1941 wbio->bi_rw = WRITE;
1942 wbio->bi_end_io = end_sync_write;
1da177e4 1943 atomic_inc(&r1_bio->remaining);
aa8b57aa 1944 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 1945
1da177e4
LT
1946 generic_make_request(wbio);
1947 }
1948
1949 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1950 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
1951 int s = r1_bio->sectors;
1952 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1953 test_bit(R1BIO_WriteError, &r1_bio->state))
1954 reschedule_retry(r1_bio);
1955 else {
1956 put_buf(r1_bio);
1957 md_done_sync(mddev, s, 1);
1958 }
1da177e4
LT
1959 }
1960}
1961
1962/*
1963 * This is a kernel thread which:
1964 *
1965 * 1. Retries failed read operations on working mirrors.
1966 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 1967 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1968 */
1969
e8096360 1970static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
1971 sector_t sect, int sectors)
1972{
fd01b88c 1973 struct mddev *mddev = conf->mddev;
867868fb
N
1974 while(sectors) {
1975 int s = sectors;
1976 int d = read_disk;
1977 int success = 0;
1978 int start;
3cb03002 1979 struct md_rdev *rdev;
867868fb
N
1980
1981 if (s > (PAGE_SIZE>>9))
1982 s = PAGE_SIZE >> 9;
1983
1984 do {
1985 /* Note: no rcu protection needed here
1986 * as this is synchronous in the raid1d thread
1987 * which is the thread that might remove
1988 * a device. If raid1d ever becomes multi-threaded....
1989 */
d2eb35ac
N
1990 sector_t first_bad;
1991 int bad_sectors;
1992
867868fb
N
1993 rdev = conf->mirrors[d].rdev;
1994 if (rdev &&
da8840a7 1995 (test_bit(In_sync, &rdev->flags) ||
1996 (!test_bit(Faulty, &rdev->flags) &&
1997 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
1998 is_badblock(rdev, sect, s,
1999 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2000 sync_page_io(rdev, sect, s<<9,
2001 conf->tmppage, READ, false))
867868fb
N
2002 success = 1;
2003 else {
2004 d++;
8f19ccb2 2005 if (d == conf->raid_disks * 2)
867868fb
N
2006 d = 0;
2007 }
2008 } while (!success && d != read_disk);
2009
2010 if (!success) {
d8f05d29 2011 /* Cannot read from anywhere - mark it bad */
3cb03002 2012 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2013 if (!rdev_set_badblocks(rdev, sect, s, 0))
2014 md_error(mddev, rdev);
867868fb
N
2015 break;
2016 }
2017 /* write it back and re-read */
2018 start = d;
2019 while (d != read_disk) {
2020 if (d==0)
8f19ccb2 2021 d = conf->raid_disks * 2;
867868fb
N
2022 d--;
2023 rdev = conf->mirrors[d].rdev;
2024 if (rdev &&
d8f05d29
N
2025 test_bit(In_sync, &rdev->flags))
2026 r1_sync_page_io(rdev, sect, s,
2027 conf->tmppage, WRITE);
867868fb
N
2028 }
2029 d = start;
2030 while (d != read_disk) {
2031 char b[BDEVNAME_SIZE];
2032 if (d==0)
8f19ccb2 2033 d = conf->raid_disks * 2;
867868fb
N
2034 d--;
2035 rdev = conf->mirrors[d].rdev;
2036 if (rdev &&
2037 test_bit(In_sync, &rdev->flags)) {
d8f05d29
N
2038 if (r1_sync_page_io(rdev, sect, s,
2039 conf->tmppage, READ)) {
867868fb
N
2040 atomic_add(s, &rdev->corrected_errors);
2041 printk(KERN_INFO
9dd1e2fa 2042 "md/raid1:%s: read error corrected "
867868fb
N
2043 "(%d sectors at %llu on %s)\n",
2044 mdname(mddev), s,
969b755a
RD
2045 (unsigned long long)(sect +
2046 rdev->data_offset),
867868fb
N
2047 bdevname(rdev->bdev, b));
2048 }
2049 }
2050 }
2051 sectors -= s;
2052 sect += s;
2053 }
2054}
2055
9f2c9d12 2056static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2057{
fd01b88c 2058 struct mddev *mddev = r1_bio->mddev;
e8096360 2059 struct r1conf *conf = mddev->private;
3cb03002 2060 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2061
2062 /* bio has the data to be written to device 'i' where
2063 * we just recently had a write error.
2064 * We repeatedly clone the bio and trim down to one block,
2065 * then try the write. Where the write fails we record
2066 * a bad block.
2067 * It is conceivable that the bio doesn't exactly align with
2068 * blocks. We must handle this somehow.
2069 *
2070 * We currently own a reference on the rdev.
2071 */
2072
2073 int block_sectors;
2074 sector_t sector;
2075 int sectors;
2076 int sect_to_write = r1_bio->sectors;
2077 int ok = 1;
2078
2079 if (rdev->badblocks.shift < 0)
2080 return 0;
2081
2082 block_sectors = 1 << rdev->badblocks.shift;
2083 sector = r1_bio->sector;
2084 sectors = ((sector + block_sectors)
2085 & ~(sector_t)(block_sectors - 1))
2086 - sector;
2087
cd5ff9a1
N
2088 while (sect_to_write) {
2089 struct bio *wbio;
2090 if (sectors > sect_to_write)
2091 sectors = sect_to_write;
2092 /* Write at 'sector' for 'sectors'*/
2093
b783863f
KO
2094 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2095 unsigned vcnt = r1_bio->behind_page_count;
2096 struct bio_vec *vec = r1_bio->behind_bvecs;
2097
2098 while (!vec->bv_page) {
2099 vec++;
2100 vcnt--;
2101 }
2102
2103 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2104 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2105
2106 wbio->bi_vcnt = vcnt;
2107 } else {
2108 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2109 }
2110
cd5ff9a1 2111 wbio->bi_rw = WRITE;
b783863f 2112 wbio->bi_sector = r1_bio->sector;
cd5ff9a1 2113 wbio->bi_size = r1_bio->sectors << 9;
cd5ff9a1
N
2114
2115 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2116 wbio->bi_sector += rdev->data_offset;
2117 wbio->bi_bdev = rdev->bdev;
2118 if (submit_bio_wait(WRITE, wbio) == 0)
2119 /* failure! */
2120 ok = rdev_set_badblocks(rdev, sector,
2121 sectors, 0)
2122 && ok;
2123
2124 bio_put(wbio);
2125 sect_to_write -= sectors;
2126 sector += sectors;
2127 sectors = block_sectors;
2128 }
2129 return ok;
2130}
2131
e8096360 2132static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2133{
2134 int m;
2135 int s = r1_bio->sectors;
8f19ccb2 2136 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2137 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2138 struct bio *bio = r1_bio->bios[m];
2139 if (bio->bi_end_io == NULL)
2140 continue;
2141 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2142 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2143 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce
N
2144 }
2145 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2146 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2147 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2148 md_error(conf->mddev, rdev);
2149 }
2150 }
2151 put_buf(r1_bio);
2152 md_done_sync(conf->mddev, s, 1);
2153}
2154
e8096360 2155static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2156{
2157 int m;
8f19ccb2 2158 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2159 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2160 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2161 rdev_clear_badblocks(rdev,
2162 r1_bio->sector,
c6563a8c 2163 r1_bio->sectors, 0);
62096bce
N
2164 rdev_dec_pending(rdev, conf->mddev);
2165 } else if (r1_bio->bios[m] != NULL) {
2166 /* This drive got a write error. We need to
2167 * narrow down and record precise write
2168 * errors.
2169 */
2170 if (!narrow_write_error(r1_bio, m)) {
2171 md_error(conf->mddev,
2172 conf->mirrors[m].rdev);
2173 /* an I/O failed, we can't clear the bitmap */
2174 set_bit(R1BIO_Degraded, &r1_bio->state);
2175 }
2176 rdev_dec_pending(conf->mirrors[m].rdev,
2177 conf->mddev);
2178 }
2179 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2180 close_write(r1_bio);
2181 raid_end_bio_io(r1_bio);
2182}
2183
e8096360 2184static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2185{
2186 int disk;
2187 int max_sectors;
fd01b88c 2188 struct mddev *mddev = conf->mddev;
62096bce
N
2189 struct bio *bio;
2190 char b[BDEVNAME_SIZE];
3cb03002 2191 struct md_rdev *rdev;
62096bce
N
2192
2193 clear_bit(R1BIO_ReadError, &r1_bio->state);
2194 /* we got a read error. Maybe the drive is bad. Maybe just
2195 * the block and we can fix it.
2196 * We freeze all other IO, and try reading the block from
2197 * other devices. When we find one, we re-write
2198 * and check it that fixes the read error.
2199 * This is all done synchronously while the array is
2200 * frozen
2201 */
2202 if (mddev->ro == 0) {
2203 freeze_array(conf);
2204 fix_read_error(conf, r1_bio->read_disk,
2205 r1_bio->sector, r1_bio->sectors);
2206 unfreeze_array(conf);
2207 } else
2208 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2209 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2210
2211 bio = r1_bio->bios[r1_bio->read_disk];
2212 bdevname(bio->bi_bdev, b);
2213read_more:
2214 disk = read_balance(conf, r1_bio, &max_sectors);
2215 if (disk == -1) {
2216 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2217 " read error for block %llu\n",
2218 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2219 raid_end_bio_io(r1_bio);
2220 } else {
2221 const unsigned long do_sync
2222 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2223 if (bio) {
2224 r1_bio->bios[r1_bio->read_disk] =
2225 mddev->ro ? IO_BLOCKED : NULL;
2226 bio_put(bio);
2227 }
2228 r1_bio->read_disk = disk;
2229 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2230 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2231 r1_bio->bios[r1_bio->read_disk] = bio;
2232 rdev = conf->mirrors[disk].rdev;
2233 printk_ratelimited(KERN_ERR
2234 "md/raid1:%s: redirecting sector %llu"
2235 " to other mirror: %s\n",
2236 mdname(mddev),
2237 (unsigned long long)r1_bio->sector,
2238 bdevname(rdev->bdev, b));
2239 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2240 bio->bi_bdev = rdev->bdev;
2241 bio->bi_end_io = raid1_end_read_request;
2242 bio->bi_rw = READ | do_sync;
2243 bio->bi_private = r1_bio;
2244 if (max_sectors < r1_bio->sectors) {
2245 /* Drat - have to split this up more */
2246 struct bio *mbio = r1_bio->master_bio;
2247 int sectors_handled = (r1_bio->sector + max_sectors
2248 - mbio->bi_sector);
2249 r1_bio->sectors = max_sectors;
2250 spin_lock_irq(&conf->device_lock);
2251 if (mbio->bi_phys_segments == 0)
2252 mbio->bi_phys_segments = 2;
2253 else
2254 mbio->bi_phys_segments++;
2255 spin_unlock_irq(&conf->device_lock);
2256 generic_make_request(bio);
2257 bio = NULL;
2258
2259 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2260
2261 r1_bio->master_bio = mbio;
aa8b57aa 2262 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2263 r1_bio->state = 0;
2264 set_bit(R1BIO_ReadError, &r1_bio->state);
2265 r1_bio->mddev = mddev;
2266 r1_bio->sector = mbio->bi_sector + sectors_handled;
2267
2268 goto read_more;
2269 } else
2270 generic_make_request(bio);
2271 }
2272}
2273
4ed8731d 2274static void raid1d(struct md_thread *thread)
1da177e4 2275{
4ed8731d 2276 struct mddev *mddev = thread->mddev;
9f2c9d12 2277 struct r1bio *r1_bio;
1da177e4 2278 unsigned long flags;
e8096360 2279 struct r1conf *conf = mddev->private;
1da177e4 2280 struct list_head *head = &conf->retry_list;
e1dfa0a2 2281 struct blk_plug plug;
1da177e4
LT
2282
2283 md_check_recovery(mddev);
e1dfa0a2
N
2284
2285 blk_start_plug(&plug);
1da177e4 2286 for (;;) {
191ea9b2 2287
0021b7bc 2288 flush_pending_writes(conf);
191ea9b2 2289
a35e63ef
N
2290 spin_lock_irqsave(&conf->device_lock, flags);
2291 if (list_empty(head)) {
2292 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2293 break;
a35e63ef 2294 }
9f2c9d12 2295 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2296 list_del(head->prev);
ddaf22ab 2297 conf->nr_queued--;
1da177e4
LT
2298 spin_unlock_irqrestore(&conf->device_lock, flags);
2299
2300 mddev = r1_bio->mddev;
070ec55d 2301 conf = mddev->private;
4367af55 2302 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2303 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2304 test_bit(R1BIO_WriteError, &r1_bio->state))
2305 handle_sync_write_finished(conf, r1_bio);
2306 else
4367af55 2307 sync_request_write(mddev, r1_bio);
cd5ff9a1 2308 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2309 test_bit(R1BIO_WriteError, &r1_bio->state))
2310 handle_write_finished(conf, r1_bio);
2311 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2312 handle_read_error(conf, r1_bio);
2313 else
d2eb35ac
N
2314 /* just a partial read to be scheduled from separate
2315 * context
2316 */
2317 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2318
1d9d5241 2319 cond_resched();
de393cde
N
2320 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2321 md_check_recovery(mddev);
1da177e4 2322 }
e1dfa0a2 2323 blk_finish_plug(&plug);
1da177e4
LT
2324}
2325
2326
e8096360 2327static int init_resync(struct r1conf *conf)
1da177e4
LT
2328{
2329 int buffs;
2330
2331 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2332 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2333 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2334 conf->poolinfo);
2335 if (!conf->r1buf_pool)
2336 return -ENOMEM;
2337 conf->next_resync = 0;
2338 return 0;
2339}
2340
2341/*
2342 * perform a "sync" on one "block"
2343 *
2344 * We need to make sure that no normal I/O request - particularly write
2345 * requests - conflict with active sync requests.
2346 *
2347 * This is achieved by tracking pending requests and a 'barrier' concept
2348 * that can be installed to exclude normal IO requests.
2349 */
2350
fd01b88c 2351static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2352{
e8096360 2353 struct r1conf *conf = mddev->private;
9f2c9d12 2354 struct r1bio *r1_bio;
1da177e4
LT
2355 struct bio *bio;
2356 sector_t max_sector, nr_sectors;
3e198f78 2357 int disk = -1;
1da177e4 2358 int i;
3e198f78
N
2359 int wonly = -1;
2360 int write_targets = 0, read_targets = 0;
57dab0bd 2361 sector_t sync_blocks;
e3b9703e 2362 int still_degraded = 0;
06f60385
N
2363 int good_sectors = RESYNC_SECTORS;
2364 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2365
2366 if (!conf->r1buf_pool)
2367 if (init_resync(conf))
57afd89f 2368 return 0;
1da177e4 2369
58c0fed4 2370 max_sector = mddev->dev_sectors;
1da177e4 2371 if (sector_nr >= max_sector) {
191ea9b2
N
2372 /* If we aborted, we need to abort the
2373 * sync on the 'current' bitmap chunk (there will
2374 * only be one in raid1 resync.
2375 * We can find the current addess in mddev->curr_resync
2376 */
6a806c51
N
2377 if (mddev->curr_resync < max_sector) /* aborted */
2378 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2379 &sync_blocks, 1);
6a806c51 2380 else /* completed sync */
191ea9b2 2381 conf->fullsync = 0;
6a806c51
N
2382
2383 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2384 close_sync(conf);
2385 return 0;
2386 }
2387
07d84d10
N
2388 if (mddev->bitmap == NULL &&
2389 mddev->recovery_cp == MaxSector &&
6394cca5 2390 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2391 conf->fullsync == 0) {
2392 *skipped = 1;
2393 return max_sector - sector_nr;
2394 }
6394cca5
N
2395 /* before building a request, check if we can skip these blocks..
2396 * This call the bitmap_start_sync doesn't actually record anything
2397 */
e3b9703e 2398 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2399 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2400 /* We can skip this block, and probably several more */
2401 *skipped = 1;
2402 return sync_blocks;
2403 }
1da177e4 2404 /*
17999be4
N
2405 * If there is non-resync activity waiting for a turn,
2406 * and resync is going fast enough,
2407 * then let it though before starting on this new sync request.
1da177e4 2408 */
17999be4 2409 if (!go_faster && conf->nr_waiting)
1da177e4 2410 msleep_interruptible(1000);
17999be4 2411
b47490c9 2412 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2413 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
2414 raise_barrier(conf);
2415
2416 conf->next_resync = sector_nr;
1da177e4 2417
3e198f78 2418 rcu_read_lock();
1da177e4 2419 /*
3e198f78
N
2420 * If we get a correctably read error during resync or recovery,
2421 * we might want to read from a different device. So we
2422 * flag all drives that could conceivably be read from for READ,
2423 * and any others (which will be non-In_sync devices) for WRITE.
2424 * If a read fails, we try reading from something else for which READ
2425 * is OK.
1da177e4 2426 */
1da177e4 2427
1da177e4
LT
2428 r1_bio->mddev = mddev;
2429 r1_bio->sector = sector_nr;
191ea9b2 2430 r1_bio->state = 0;
1da177e4 2431 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2432
8f19ccb2 2433 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2434 struct md_rdev *rdev;
1da177e4 2435 bio = r1_bio->bios[i];
2aabaa65 2436 bio_reset(bio);
1da177e4 2437
3e198f78
N
2438 rdev = rcu_dereference(conf->mirrors[i].rdev);
2439 if (rdev == NULL ||
06f60385 2440 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2441 if (i < conf->raid_disks)
2442 still_degraded = 1;
3e198f78 2443 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2444 bio->bi_rw = WRITE;
2445 bio->bi_end_io = end_sync_write;
2446 write_targets ++;
3e198f78
N
2447 } else {
2448 /* may need to read from here */
06f60385
N
2449 sector_t first_bad = MaxSector;
2450 int bad_sectors;
2451
2452 if (is_badblock(rdev, sector_nr, good_sectors,
2453 &first_bad, &bad_sectors)) {
2454 if (first_bad > sector_nr)
2455 good_sectors = first_bad - sector_nr;
2456 else {
2457 bad_sectors -= (sector_nr - first_bad);
2458 if (min_bad == 0 ||
2459 min_bad > bad_sectors)
2460 min_bad = bad_sectors;
2461 }
2462 }
2463 if (sector_nr < first_bad) {
2464 if (test_bit(WriteMostly, &rdev->flags)) {
2465 if (wonly < 0)
2466 wonly = i;
2467 } else {
2468 if (disk < 0)
2469 disk = i;
2470 }
2471 bio->bi_rw = READ;
2472 bio->bi_end_io = end_sync_read;
2473 read_targets++;
d57368af
AL
2474 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2475 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2476 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2477 /*
2478 * The device is suitable for reading (InSync),
2479 * but has bad block(s) here. Let's try to correct them,
2480 * if we are doing resync or repair. Otherwise, leave
2481 * this device alone for this sync request.
2482 */
2483 bio->bi_rw = WRITE;
2484 bio->bi_end_io = end_sync_write;
2485 write_targets++;
3e198f78 2486 }
3e198f78 2487 }
06f60385
N
2488 if (bio->bi_end_io) {
2489 atomic_inc(&rdev->nr_pending);
2490 bio->bi_sector = sector_nr + rdev->data_offset;
2491 bio->bi_bdev = rdev->bdev;
2492 bio->bi_private = r1_bio;
2493 }
1da177e4 2494 }
3e198f78
N
2495 rcu_read_unlock();
2496 if (disk < 0)
2497 disk = wonly;
2498 r1_bio->read_disk = disk;
191ea9b2 2499
06f60385
N
2500 if (read_targets == 0 && min_bad > 0) {
2501 /* These sectors are bad on all InSync devices, so we
2502 * need to mark them bad on all write targets
2503 */
2504 int ok = 1;
8f19ccb2 2505 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2506 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2507 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2508 ok = rdev_set_badblocks(rdev, sector_nr,
2509 min_bad, 0
2510 ) && ok;
2511 }
2512 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2513 *skipped = 1;
2514 put_buf(r1_bio);
2515
2516 if (!ok) {
2517 /* Cannot record the badblocks, so need to
2518 * abort the resync.
2519 * If there are multiple read targets, could just
2520 * fail the really bad ones ???
2521 */
2522 conf->recovery_disabled = mddev->recovery_disabled;
2523 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2524 return 0;
2525 } else
2526 return min_bad;
2527
2528 }
2529 if (min_bad > 0 && min_bad < good_sectors) {
2530 /* only resync enough to reach the next bad->good
2531 * transition */
2532 good_sectors = min_bad;
2533 }
2534
3e198f78
N
2535 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2536 /* extra read targets are also write targets */
2537 write_targets += read_targets-1;
2538
2539 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2540 /* There is nowhere to write, so all non-sync
2541 * drives must be failed - so we are finished
2542 */
b7219ccb
N
2543 sector_t rv;
2544 if (min_bad > 0)
2545 max_sector = sector_nr + min_bad;
2546 rv = max_sector - sector_nr;
57afd89f 2547 *skipped = 1;
1da177e4 2548 put_buf(r1_bio);
1da177e4
LT
2549 return rv;
2550 }
2551
c6207277
N
2552 if (max_sector > mddev->resync_max)
2553 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2554 if (max_sector > sector_nr + good_sectors)
2555 max_sector = sector_nr + good_sectors;
1da177e4 2556 nr_sectors = 0;
289e99e8 2557 sync_blocks = 0;
1da177e4
LT
2558 do {
2559 struct page *page;
2560 int len = PAGE_SIZE;
2561 if (sector_nr + (len>>9) > max_sector)
2562 len = (max_sector - sector_nr) << 9;
2563 if (len == 0)
2564 break;
6a806c51
N
2565 if (sync_blocks == 0) {
2566 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2567 &sync_blocks, still_degraded) &&
2568 !conf->fullsync &&
2569 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2570 break;
9e77c485 2571 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2572 if ((len >> 9) > sync_blocks)
6a806c51 2573 len = sync_blocks<<9;
ab7a30c7 2574 }
191ea9b2 2575
8f19ccb2 2576 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2577 bio = r1_bio->bios[i];
2578 if (bio->bi_end_io) {
d11c171e 2579 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2580 if (bio_add_page(bio, page, len, 0) == 0) {
2581 /* stop here */
d11c171e 2582 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2583 while (i > 0) {
2584 i--;
2585 bio = r1_bio->bios[i];
6a806c51
N
2586 if (bio->bi_end_io==NULL)
2587 continue;
1da177e4
LT
2588 /* remove last page from this bio */
2589 bio->bi_vcnt--;
2590 bio->bi_size -= len;
2591 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2592 }
2593 goto bio_full;
2594 }
2595 }
2596 }
2597 nr_sectors += len>>9;
2598 sector_nr += len>>9;
191ea9b2 2599 sync_blocks -= (len>>9);
1da177e4
LT
2600 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2601 bio_full:
1da177e4
LT
2602 r1_bio->sectors = nr_sectors;
2603
d11c171e
N
2604 /* For a user-requested sync, we read all readable devices and do a
2605 * compare
2606 */
2607 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2608 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2609 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2610 bio = r1_bio->bios[i];
2611 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2612 read_targets--;
ddac7c7e 2613 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2614 generic_make_request(bio);
2615 }
2616 }
2617 } else {
2618 atomic_set(&r1_bio->remaining, 1);
2619 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2620 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2621 generic_make_request(bio);
1da177e4 2622
d11c171e 2623 }
1da177e4
LT
2624 return nr_sectors;
2625}
2626
fd01b88c 2627static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2628{
2629 if (sectors)
2630 return sectors;
2631
2632 return mddev->dev_sectors;
2633}
2634
e8096360 2635static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2636{
e8096360 2637 struct r1conf *conf;
709ae487 2638 int i;
0eaf822c 2639 struct raid1_info *disk;
3cb03002 2640 struct md_rdev *rdev;
709ae487 2641 int err = -ENOMEM;
1da177e4 2642
e8096360 2643 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2644 if (!conf)
709ae487 2645 goto abort;
1da177e4 2646
0eaf822c 2647 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2648 * mddev->raid_disks * 2,
1da177e4
LT
2649 GFP_KERNEL);
2650 if (!conf->mirrors)
709ae487 2651 goto abort;
1da177e4 2652
ddaf22ab
N
2653 conf->tmppage = alloc_page(GFP_KERNEL);
2654 if (!conf->tmppage)
709ae487 2655 goto abort;
ddaf22ab 2656
709ae487 2657 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2658 if (!conf->poolinfo)
709ae487 2659 goto abort;
8f19ccb2 2660 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2661 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2662 r1bio_pool_free,
2663 conf->poolinfo);
2664 if (!conf->r1bio_pool)
709ae487
N
2665 goto abort;
2666
ed9bfdf1 2667 conf->poolinfo->mddev = mddev;
1da177e4 2668
c19d5798 2669 err = -EINVAL;
e7e72bf6 2670 spin_lock_init(&conf->device_lock);
dafb20fa 2671 rdev_for_each(rdev, mddev) {
aba336bd 2672 struct request_queue *q;
709ae487 2673 int disk_idx = rdev->raid_disk;
1da177e4
LT
2674 if (disk_idx >= mddev->raid_disks
2675 || disk_idx < 0)
2676 continue;
c19d5798 2677 if (test_bit(Replacement, &rdev->flags))
02b898f2 2678 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2679 else
2680 disk = conf->mirrors + disk_idx;
1da177e4 2681
c19d5798
N
2682 if (disk->rdev)
2683 goto abort;
1da177e4 2684 disk->rdev = rdev;
aba336bd
N
2685 q = bdev_get_queue(rdev->bdev);
2686 if (q->merge_bvec_fn)
2687 mddev->merge_check_needed = 1;
1da177e4
LT
2688
2689 disk->head_position = 0;
12cee5a8 2690 disk->seq_start = MaxSector;
1da177e4
LT
2691 }
2692 conf->raid_disks = mddev->raid_disks;
2693 conf->mddev = mddev;
1da177e4 2694 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2695
2696 spin_lock_init(&conf->resync_lock);
17999be4 2697 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2698
191ea9b2 2699 bio_list_init(&conf->pending_bio_list);
34db0cd6 2700 conf->pending_count = 0;
d890fa2b 2701 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2702
c19d5798 2703 err = -EIO;
8f19ccb2 2704 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2705
2706 disk = conf->mirrors + i;
2707
c19d5798
N
2708 if (i < conf->raid_disks &&
2709 disk[conf->raid_disks].rdev) {
2710 /* This slot has a replacement. */
2711 if (!disk->rdev) {
2712 /* No original, just make the replacement
2713 * a recovering spare
2714 */
2715 disk->rdev =
2716 disk[conf->raid_disks].rdev;
2717 disk[conf->raid_disks].rdev = NULL;
2718 } else if (!test_bit(In_sync, &disk->rdev->flags))
2719 /* Original is not in_sync - bad */
2720 goto abort;
2721 }
2722
5fd6c1dc
N
2723 if (!disk->rdev ||
2724 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2725 disk->head_position = 0;
4f0a5e01
JB
2726 if (disk->rdev &&
2727 (disk->rdev->saved_raid_disk < 0))
918f0238 2728 conf->fullsync = 1;
be4d3280 2729 }
1da177e4 2730 }
709ae487 2731
709ae487 2732 err = -ENOMEM;
0232605d 2733 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2734 if (!conf->thread) {
2735 printk(KERN_ERR
9dd1e2fa 2736 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2737 mdname(mddev));
2738 goto abort;
11ce99e6 2739 }
1da177e4 2740
709ae487
N
2741 return conf;
2742
2743 abort:
2744 if (conf) {
2745 if (conf->r1bio_pool)
2746 mempool_destroy(conf->r1bio_pool);
2747 kfree(conf->mirrors);
2748 safe_put_page(conf->tmppage);
2749 kfree(conf->poolinfo);
2750 kfree(conf);
2751 }
2752 return ERR_PTR(err);
2753}
2754
5220ea1e 2755static int stop(struct mddev *mddev);
fd01b88c 2756static int run(struct mddev *mddev)
709ae487 2757{
e8096360 2758 struct r1conf *conf;
709ae487 2759 int i;
3cb03002 2760 struct md_rdev *rdev;
5220ea1e 2761 int ret;
2ff8cc2c 2762 bool discard_supported = false;
709ae487
N
2763
2764 if (mddev->level != 1) {
9dd1e2fa 2765 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2766 mdname(mddev), mddev->level);
2767 return -EIO;
2768 }
2769 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2770 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2771 mdname(mddev));
2772 return -EIO;
2773 }
1da177e4 2774 /*
709ae487
N
2775 * copy the already verified devices into our private RAID1
2776 * bookkeeping area. [whatever we allocate in run(),
2777 * should be freed in stop()]
1da177e4 2778 */
709ae487
N
2779 if (mddev->private == NULL)
2780 conf = setup_conf(mddev);
2781 else
2782 conf = mddev->private;
1da177e4 2783
709ae487
N
2784 if (IS_ERR(conf))
2785 return PTR_ERR(conf);
1da177e4 2786
c8dc9c65
JL
2787 if (mddev->queue)
2788 blk_queue_max_write_same_sectors(mddev->queue,
2789 mddev->chunk_sectors);
dafb20fa 2790 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2791 if (!mddev->gendisk)
2792 continue;
709ae487
N
2793 disk_stack_limits(mddev->gendisk, rdev->bdev,
2794 rdev->data_offset << 9);
2ff8cc2c
SL
2795 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2796 discard_supported = true;
1da177e4 2797 }
191ea9b2 2798
709ae487
N
2799 mddev->degraded = 0;
2800 for (i=0; i < conf->raid_disks; i++)
2801 if (conf->mirrors[i].rdev == NULL ||
2802 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2803 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2804 mddev->degraded++;
2805
2806 if (conf->raid_disks - mddev->degraded == 1)
2807 mddev->recovery_cp = MaxSector;
2808
8c6ac868 2809 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2810 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2811 " -- starting background reconstruction\n",
2812 mdname(mddev));
1da177e4 2813 printk(KERN_INFO
9dd1e2fa 2814 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2815 mdname(mddev), mddev->raid_disks - mddev->degraded,
2816 mddev->raid_disks);
709ae487 2817
1da177e4
LT
2818 /*
2819 * Ok, everything is just fine now
2820 */
709ae487
N
2821 mddev->thread = conf->thread;
2822 conf->thread = NULL;
2823 mddev->private = conf;
2824
1f403624 2825 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2826
1ed7242e
JB
2827 if (mddev->queue) {
2828 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2829 mddev->queue->backing_dev_info.congested_data = mddev;
6b740b8d 2830 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2ff8cc2c
SL
2831
2832 if (discard_supported)
2833 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2834 mddev->queue);
2835 else
2836 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2837 mddev->queue);
1ed7242e 2838 }
5220ea1e 2839
2840 ret = md_integrity_register(mddev);
2841 if (ret)
2842 stop(mddev);
2843 return ret;
1da177e4
LT
2844}
2845
fd01b88c 2846static int stop(struct mddev *mddev)
1da177e4 2847{
e8096360 2848 struct r1conf *conf = mddev->private;
4b6d287f 2849 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2850
2851 /* wait for behind writes to complete */
e555190d 2852 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2853 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2854 mdname(mddev));
4b6d287f 2855 /* need to kick something here to make sure I/O goes? */
e555190d
N
2856 wait_event(bitmap->behind_wait,
2857 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2858 }
1da177e4 2859
409c57f3
N
2860 raise_barrier(conf);
2861 lower_barrier(conf);
2862
01f96c0a 2863 md_unregister_thread(&mddev->thread);
1da177e4
LT
2864 if (conf->r1bio_pool)
2865 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2866 kfree(conf->mirrors);
2867 kfree(conf->poolinfo);
1da177e4
LT
2868 kfree(conf);
2869 mddev->private = NULL;
2870 return 0;
2871}
2872
fd01b88c 2873static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2874{
2875 /* no resync is happening, and there is enough space
2876 * on all devices, so we can resize.
2877 * We need to make sure resync covers any new space.
2878 * If the array is shrinking we should possibly wait until
2879 * any io in the removed space completes, but it hardly seems
2880 * worth it.
2881 */
a4a6125a
N
2882 sector_t newsize = raid1_size(mddev, sectors, 0);
2883 if (mddev->external_size &&
2884 mddev->array_sectors > newsize)
b522adcd 2885 return -EINVAL;
a4a6125a
N
2886 if (mddev->bitmap) {
2887 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2888 if (ret)
2889 return ret;
2890 }
2891 md_set_array_sectors(mddev, newsize);
f233ea5c 2892 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2893 revalidate_disk(mddev->gendisk);
b522adcd 2894 if (sectors > mddev->dev_sectors &&
b098636c 2895 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2896 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2897 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2898 }
b522adcd 2899 mddev->dev_sectors = sectors;
4b5c7ae8 2900 mddev->resync_max_sectors = sectors;
1da177e4
LT
2901 return 0;
2902}
2903
fd01b88c 2904static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
2905{
2906 /* We need to:
2907 * 1/ resize the r1bio_pool
2908 * 2/ resize conf->mirrors
2909 *
2910 * We allocate a new r1bio_pool if we can.
2911 * Then raise a device barrier and wait until all IO stops.
2912 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2913 *
2914 * At the same time, we "pack" the devices so that all the missing
2915 * devices have the higher raid_disk numbers.
1da177e4
LT
2916 */
2917 mempool_t *newpool, *oldpool;
2918 struct pool_info *newpoolinfo;
0eaf822c 2919 struct raid1_info *newmirrors;
e8096360 2920 struct r1conf *conf = mddev->private;
63c70c4f 2921 int cnt, raid_disks;
c04be0aa 2922 unsigned long flags;
b5470dc5 2923 int d, d2, err;
1da177e4 2924
63c70c4f 2925 /* Cannot change chunk_size, layout, or level */
664e7c41 2926 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2927 mddev->layout != mddev->new_layout ||
2928 mddev->level != mddev->new_level) {
664e7c41 2929 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2930 mddev->new_layout = mddev->layout;
2931 mddev->new_level = mddev->level;
2932 return -EINVAL;
2933 }
2934
b5470dc5
DW
2935 err = md_allow_write(mddev);
2936 if (err)
2937 return err;
2a2275d6 2938
63c70c4f
N
2939 raid_disks = mddev->raid_disks + mddev->delta_disks;
2940
6ea9c07c
N
2941 if (raid_disks < conf->raid_disks) {
2942 cnt=0;
2943 for (d= 0; d < conf->raid_disks; d++)
2944 if (conf->mirrors[d].rdev)
2945 cnt++;
2946 if (cnt > raid_disks)
1da177e4 2947 return -EBUSY;
6ea9c07c 2948 }
1da177e4
LT
2949
2950 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2951 if (!newpoolinfo)
2952 return -ENOMEM;
2953 newpoolinfo->mddev = mddev;
8f19ccb2 2954 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
2955
2956 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2957 r1bio_pool_free, newpoolinfo);
2958 if (!newpool) {
2959 kfree(newpoolinfo);
2960 return -ENOMEM;
2961 }
0eaf822c 2962 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 2963 GFP_KERNEL);
1da177e4
LT
2964 if (!newmirrors) {
2965 kfree(newpoolinfo);
2966 mempool_destroy(newpool);
2967 return -ENOMEM;
2968 }
1da177e4 2969
17999be4 2970 raise_barrier(conf);
1da177e4
LT
2971
2972 /* ok, everything is stopped */
2973 oldpool = conf->r1bio_pool;
2974 conf->r1bio_pool = newpool;
6ea9c07c 2975
a88aa786 2976 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 2977 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 2978 if (rdev && rdev->raid_disk != d2) {
36fad858 2979 sysfs_unlink_rdev(mddev, rdev);
a88aa786 2980 rdev->raid_disk = d2;
36fad858
NK
2981 sysfs_unlink_rdev(mddev, rdev);
2982 if (sysfs_link_rdev(mddev, rdev))
a88aa786 2983 printk(KERN_WARNING
36fad858
NK
2984 "md/raid1:%s: cannot register rd%d\n",
2985 mdname(mddev), rdev->raid_disk);
6ea9c07c 2986 }
a88aa786
N
2987 if (rdev)
2988 newmirrors[d2++].rdev = rdev;
2989 }
1da177e4
LT
2990 kfree(conf->mirrors);
2991 conf->mirrors = newmirrors;
2992 kfree(conf->poolinfo);
2993 conf->poolinfo = newpoolinfo;
2994
c04be0aa 2995 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2996 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2997 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2998 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2999 mddev->delta_disks = 0;
1da177e4 3000
17999be4 3001 lower_barrier(conf);
1da177e4
LT
3002
3003 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3004 md_wakeup_thread(mddev->thread);
3005
3006 mempool_destroy(oldpool);
3007 return 0;
3008}
3009
fd01b88c 3010static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3011{
e8096360 3012 struct r1conf *conf = mddev->private;
36fa3063
N
3013
3014 switch(state) {
6eef4b21
N
3015 case 2: /* wake for suspend */
3016 wake_up(&conf->wait_barrier);
3017 break;
9e6603da 3018 case 1:
17999be4 3019 raise_barrier(conf);
36fa3063 3020 break;
9e6603da 3021 case 0:
17999be4 3022 lower_barrier(conf);
36fa3063
N
3023 break;
3024 }
36fa3063
N
3025}
3026
fd01b88c 3027static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3028{
3029 /* raid1 can take over:
3030 * raid5 with 2 devices, any layout or chunk size
3031 */
3032 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3033 struct r1conf *conf;
709ae487
N
3034 mddev->new_level = 1;
3035 mddev->new_layout = 0;
3036 mddev->new_chunk_sectors = 0;
3037 conf = setup_conf(mddev);
3038 if (!IS_ERR(conf))
3039 conf->barrier = 1;
3040 return conf;
3041 }
3042 return ERR_PTR(-EINVAL);
3043}
1da177e4 3044
84fc4b56 3045static struct md_personality raid1_personality =
1da177e4
LT
3046{
3047 .name = "raid1",
2604b703 3048 .level = 1,
1da177e4
LT
3049 .owner = THIS_MODULE,
3050 .make_request = make_request,
3051 .run = run,
3052 .stop = stop,
3053 .status = status,
3054 .error_handler = error,
3055 .hot_add_disk = raid1_add_disk,
3056 .hot_remove_disk= raid1_remove_disk,
3057 .spare_active = raid1_spare_active,
3058 .sync_request = sync_request,
3059 .resize = raid1_resize,
80c3a6ce 3060 .size = raid1_size,
63c70c4f 3061 .check_reshape = raid1_reshape,
36fa3063 3062 .quiesce = raid1_quiesce,
709ae487 3063 .takeover = raid1_takeover,
1da177e4
LT
3064};
3065
3066static int __init raid_init(void)
3067{
2604b703 3068 return register_md_personality(&raid1_personality);
1da177e4
LT
3069}
3070
3071static void raid_exit(void)
3072{
2604b703 3073 unregister_md_personality(&raid1_personality);
1da177e4
LT
3074}
3075
3076module_init(raid_init);
3077module_exit(raid_exit);
3078MODULE_LICENSE("GPL");
0efb9e61 3079MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3080MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3081MODULE_ALIAS("md-raid1");
2604b703 3082MODULE_ALIAS("md-level-1");
34db0cd6
N
3083
3084module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);