md/r5cache: fix spelling mistake on "recoverying"
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
109e3765 40#include <trace/events/block.h>
43b2e5d8 41#include "md.h"
ef740c37
CH
42#include "raid1.h"
43#include "bitmap.h"
191ea9b2 44
1da177e4
LT
45/*
46 * Number of guaranteed r1bios in case of extreme VM load:
47 */
48#define NR_RAID1_BIOS 256
49
473e87ce
JB
50/* when we get a read error on a read-only array, we redirect to another
51 * device without failing the first device, or trying to over-write to
52 * correct the read error. To keep track of bad blocks on a per-bio
53 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 */
55#define IO_BLOCKED ((struct bio *)1)
56/* When we successfully write to a known bad-block, we need to remove the
57 * bad-block marking which must be done from process context. So we record
58 * the success by setting devs[n].bio to IO_MADE_GOOD
59 */
60#define IO_MADE_GOOD ((struct bio *)2)
61
62#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63
34db0cd6
N
64/* When there are this many requests queue to be written by
65 * the raid1 thread, we become 'congested' to provide back-pressure
66 * for writeback.
67 */
68static int max_queued_requests = 1024;
1da177e4 69
79ef3a8a 70static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
71 sector_t bi_sector);
e8096360 72static void lower_barrier(struct r1conf *conf);
1da177e4 73
578b54ad
N
74#define raid1_log(md, fmt, args...) \
75 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
76
dd0fc66f 77static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
78{
79 struct pool_info *pi = data;
9f2c9d12 80 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
81
82 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 83 return kzalloc(size, gfp_flags);
1da177e4
LT
84}
85
86static void r1bio_pool_free(void *r1_bio, void *data)
87{
88 kfree(r1_bio);
89}
90
91#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 92#define RESYNC_DEPTH 32
1da177e4
LT
93#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
94#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 95#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
96#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
97#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
98#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
8e005f7c 99#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 100
dd0fc66f 101static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
102{
103 struct pool_info *pi = data;
9f2c9d12 104 struct r1bio *r1_bio;
1da177e4 105 struct bio *bio;
da1aab3d 106 int need_pages;
1da177e4
LT
107 int i, j;
108
109 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 110 if (!r1_bio)
1da177e4 111 return NULL;
1da177e4
LT
112
113 /*
114 * Allocate bios : 1 for reading, n-1 for writing
115 */
116 for (j = pi->raid_disks ; j-- ; ) {
6746557f 117 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
118 if (!bio)
119 goto out_free_bio;
120 r1_bio->bios[j] = bio;
121 }
122 /*
123 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
124 * the first bio.
125 * If this is a user-requested check/repair, allocate
126 * RESYNC_PAGES for each bio.
1da177e4 127 */
d11c171e 128 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 129 need_pages = pi->raid_disks;
d11c171e 130 else
da1aab3d
N
131 need_pages = 1;
132 for (j = 0; j < need_pages; j++) {
d11c171e 133 bio = r1_bio->bios[j];
a0787606 134 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 135
a0787606 136 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 137 goto out_free_pages;
d11c171e
N
138 }
139 /* If not user-requests, copy the page pointers to all bios */
140 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
141 for (i=0; i<RESYNC_PAGES ; i++)
142 for (j=1; j<pi->raid_disks; j++)
143 r1_bio->bios[j]->bi_io_vec[i].bv_page =
144 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
145 }
146
147 r1_bio->master_bio = NULL;
148
149 return r1_bio;
150
da1aab3d 151out_free_pages:
491221f8
GJ
152 while (--j >= 0)
153 bio_free_pages(r1_bio->bios[j]);
da1aab3d 154
1da177e4 155out_free_bio:
8f19ccb2 156 while (++j < pi->raid_disks)
1da177e4
LT
157 bio_put(r1_bio->bios[j]);
158 r1bio_pool_free(r1_bio, data);
159 return NULL;
160}
161
162static void r1buf_pool_free(void *__r1_bio, void *data)
163{
164 struct pool_info *pi = data;
d11c171e 165 int i,j;
9f2c9d12 166 struct r1bio *r1bio = __r1_bio;
1da177e4 167
d11c171e
N
168 for (i = 0; i < RESYNC_PAGES; i++)
169 for (j = pi->raid_disks; j-- ;) {
170 if (j == 0 ||
171 r1bio->bios[j]->bi_io_vec[i].bv_page !=
172 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 173 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 174 }
1da177e4
LT
175 for (i=0 ; i < pi->raid_disks; i++)
176 bio_put(r1bio->bios[i]);
177
178 r1bio_pool_free(r1bio, data);
179}
180
e8096360 181static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
182{
183 int i;
184
8f19ccb2 185 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 186 struct bio **bio = r1_bio->bios + i;
4367af55 187 if (!BIO_SPECIAL(*bio))
1da177e4
LT
188 bio_put(*bio);
189 *bio = NULL;
190 }
191}
192
9f2c9d12 193static void free_r1bio(struct r1bio *r1_bio)
1da177e4 194{
e8096360 195 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 196
1da177e4
LT
197 put_all_bios(conf, r1_bio);
198 mempool_free(r1_bio, conf->r1bio_pool);
199}
200
9f2c9d12 201static void put_buf(struct r1bio *r1_bio)
1da177e4 202{
e8096360 203 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
204 int i;
205
8f19ccb2 206 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
207 struct bio *bio = r1_bio->bios[i];
208 if (bio->bi_end_io)
209 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 }
1da177e4
LT
211
212 mempool_free(r1_bio, conf->r1buf_pool);
213
17999be4 214 lower_barrier(conf);
1da177e4
LT
215}
216
9f2c9d12 217static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
218{
219 unsigned long flags;
fd01b88c 220 struct mddev *mddev = r1_bio->mddev;
e8096360 221 struct r1conf *conf = mddev->private;
1da177e4
LT
222
223 spin_lock_irqsave(&conf->device_lock, flags);
224 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 225 conf->nr_queued ++;
1da177e4
LT
226 spin_unlock_irqrestore(&conf->device_lock, flags);
227
17999be4 228 wake_up(&conf->wait_barrier);
1da177e4
LT
229 md_wakeup_thread(mddev->thread);
230}
231
232/*
233 * raid_end_bio_io() is called when we have finished servicing a mirrored
234 * operation and are ready to return a success/failure code to the buffer
235 * cache layer.
236 */
9f2c9d12 237static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
238{
239 struct bio *bio = r1_bio->master_bio;
240 int done;
e8096360 241 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 242 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 243 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
244
245 if (bio->bi_phys_segments) {
246 unsigned long flags;
247 spin_lock_irqsave(&conf->device_lock, flags);
248 bio->bi_phys_segments--;
249 done = (bio->bi_phys_segments == 0);
250 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 251 /*
252 * make_request() might be waiting for
253 * bi_phys_segments to decrease
254 */
255 wake_up(&conf->wait_barrier);
d2eb35ac
N
256 } else
257 done = 1;
258
259 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4246a0b6
CH
260 bio->bi_error = -EIO;
261
d2eb35ac 262 if (done) {
4246a0b6 263 bio_endio(bio);
d2eb35ac
N
264 /*
265 * Wake up any possible resync thread that waits for the device
266 * to go idle.
267 */
79ef3a8a 268 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
269 }
270}
271
9f2c9d12 272static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
273{
274 struct bio *bio = r1_bio->master_bio;
275
4b6d287f
N
276 /* if nobody has done the final endio yet, do it now */
277 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
278 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
280 (unsigned long long) bio->bi_iter.bi_sector,
281 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 282
d2eb35ac 283 call_bio_endio(r1_bio);
4b6d287f 284 }
1da177e4
LT
285 free_r1bio(r1_bio);
286}
287
288/*
289 * Update disk head position estimator based on IRQ completion info.
290 */
9f2c9d12 291static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 292{
e8096360 293 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
294
295 conf->mirrors[disk].head_position =
296 r1_bio->sector + (r1_bio->sectors);
297}
298
ba3ae3be
NK
299/*
300 * Find the disk number which triggered given bio
301 */
9f2c9d12 302static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
303{
304 int mirror;
30194636
N
305 struct r1conf *conf = r1_bio->mddev->private;
306 int raid_disks = conf->raid_disks;
ba3ae3be 307
8f19ccb2 308 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
309 if (r1_bio->bios[mirror] == bio)
310 break;
311
8f19ccb2 312 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
313 update_head_pos(mirror, r1_bio);
314
315 return mirror;
316}
317
4246a0b6 318static void raid1_end_read_request(struct bio *bio)
1da177e4 319{
4246a0b6 320 int uptodate = !bio->bi_error;
9f2c9d12 321 struct r1bio *r1_bio = bio->bi_private;
e8096360 322 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 323 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 324
1da177e4
LT
325 /*
326 * this branch is our 'one mirror IO has finished' event handler:
327 */
e5872d58 328 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 329
dd00a99e
N
330 if (uptodate)
331 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
332 else if (test_bit(FailFast, &rdev->flags) &&
333 test_bit(R1BIO_FailFast, &r1_bio->state))
334 /* This was a fail-fast read so we definitely
335 * want to retry */
336 ;
dd00a99e
N
337 else {
338 /* If all other devices have failed, we want to return
339 * the error upwards rather than fail the last device.
340 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 341 */
dd00a99e
N
342 unsigned long flags;
343 spin_lock_irqsave(&conf->device_lock, flags);
344 if (r1_bio->mddev->degraded == conf->raid_disks ||
345 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 346 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
347 uptodate = 1;
348 spin_unlock_irqrestore(&conf->device_lock, flags);
349 }
1da177e4 350
7ad4d4a6 351 if (uptodate) {
1da177e4 352 raid_end_bio_io(r1_bio);
e5872d58 353 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 354 } else {
1da177e4
LT
355 /*
356 * oops, read error:
357 */
358 char b[BDEVNAME_SIZE];
1d41c216
N
359 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
360 mdname(conf->mddev),
361 bdevname(rdev->bdev, b),
362 (unsigned long long)r1_bio->sector);
d2eb35ac 363 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 364 reschedule_retry(r1_bio);
7ad4d4a6 365 /* don't drop the reference on read_disk yet */
1da177e4 366 }
1da177e4
LT
367}
368
9f2c9d12 369static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
370{
371 /* it really is the end of this request */
372 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
373 /* free extra copy of the data pages */
374 int i = r1_bio->behind_page_count;
375 while (i--)
376 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
377 kfree(r1_bio->behind_bvecs);
378 r1_bio->behind_bvecs = NULL;
379 }
380 /* clear the bitmap if all writes complete successfully */
381 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
382 r1_bio->sectors,
383 !test_bit(R1BIO_Degraded, &r1_bio->state),
384 test_bit(R1BIO_BehindIO, &r1_bio->state));
385 md_write_end(r1_bio->mddev);
386}
387
9f2c9d12 388static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 389{
cd5ff9a1
N
390 if (!atomic_dec_and_test(&r1_bio->remaining))
391 return;
392
393 if (test_bit(R1BIO_WriteError, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else {
396 close_write(r1_bio);
4367af55
N
397 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
398 reschedule_retry(r1_bio);
399 else
400 raid_end_bio_io(r1_bio);
4e78064f
N
401 }
402}
403
4246a0b6 404static void raid1_end_write_request(struct bio *bio)
1da177e4 405{
9f2c9d12 406 struct r1bio *r1_bio = bio->bi_private;
e5872d58 407 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 408 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 409 struct bio *to_put = NULL;
e5872d58
N
410 int mirror = find_bio_disk(r1_bio, bio);
411 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd
SL
412 bool discard_error;
413
414 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 415
e9c7469b
TH
416 /*
417 * 'one mirror IO has finished' event handler:
418 */
e3f948cd 419 if (bio->bi_error && !discard_error) {
e5872d58
N
420 set_bit(WriteErrorSeen, &rdev->flags);
421 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
422 set_bit(MD_RECOVERY_NEEDED, &
423 conf->mddev->recovery);
424
212e7eb7
N
425 if (test_bit(FailFast, &rdev->flags) &&
426 (bio->bi_opf & MD_FAILFAST) &&
427 /* We never try FailFast to WriteMostly devices */
428 !test_bit(WriteMostly, &rdev->flags)) {
429 md_error(r1_bio->mddev, rdev);
430 if (!test_bit(Faulty, &rdev->flags))
431 /* This is the only remaining device,
432 * We need to retry the write without
433 * FailFast
434 */
435 set_bit(R1BIO_WriteError, &r1_bio->state);
436 else {
437 /* Finished with this branch */
438 r1_bio->bios[mirror] = NULL;
439 to_put = bio;
440 }
441 } else
442 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 443 } else {
1da177e4 444 /*
e9c7469b
TH
445 * Set R1BIO_Uptodate in our master bio, so that we
446 * will return a good error code for to the higher
447 * levels even if IO on some other mirrored buffer
448 * fails.
449 *
450 * The 'master' represents the composite IO operation
451 * to user-side. So if something waits for IO, then it
452 * will wait for the 'master' bio.
1da177e4 453 */
4367af55
N
454 sector_t first_bad;
455 int bad_sectors;
456
cd5ff9a1
N
457 r1_bio->bios[mirror] = NULL;
458 to_put = bio;
3056e3ae
AL
459 /*
460 * Do not set R1BIO_Uptodate if the current device is
461 * rebuilding or Faulty. This is because we cannot use
462 * such device for properly reading the data back (we could
463 * potentially use it, if the current write would have felt
464 * before rdev->recovery_offset, but for simplicity we don't
465 * check this here.
466 */
e5872d58
N
467 if (test_bit(In_sync, &rdev->flags) &&
468 !test_bit(Faulty, &rdev->flags))
3056e3ae 469 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 470
4367af55 471 /* Maybe we can clear some bad blocks. */
e5872d58 472 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 473 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
474 r1_bio->bios[mirror] = IO_MADE_GOOD;
475 set_bit(R1BIO_MadeGood, &r1_bio->state);
476 }
477 }
478
e9c7469b 479 if (behind) {
e5872d58 480 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
481 atomic_dec(&r1_bio->behind_remaining);
482
483 /*
484 * In behind mode, we ACK the master bio once the I/O
485 * has safely reached all non-writemostly
486 * disks. Setting the Returned bit ensures that this
487 * gets done only once -- we don't ever want to return
488 * -EIO here, instead we'll wait
489 */
490 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
491 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
492 /* Maybe we can return now */
493 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
494 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
495 pr_debug("raid1: behind end write sectors"
496 " %llu-%llu\n",
4f024f37
KO
497 (unsigned long long) mbio->bi_iter.bi_sector,
498 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 499 call_bio_endio(r1_bio);
4b6d287f
N
500 }
501 }
502 }
4367af55 503 if (r1_bio->bios[mirror] == NULL)
e5872d58 504 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 505
1da177e4 506 /*
1da177e4
LT
507 * Let's see if all mirrored write operations have finished
508 * already.
509 */
af6d7b76 510 r1_bio_write_done(r1_bio);
c70810b3 511
04b857f7
N
512 if (to_put)
513 bio_put(to_put);
1da177e4
LT
514}
515
1da177e4
LT
516/*
517 * This routine returns the disk from which the requested read should
518 * be done. There is a per-array 'next expected sequential IO' sector
519 * number - if this matches on the next IO then we use the last disk.
520 * There is also a per-disk 'last know head position' sector that is
521 * maintained from IRQ contexts, both the normal and the resync IO
522 * completion handlers update this position correctly. If there is no
523 * perfect sequential match then we pick the disk whose head is closest.
524 *
525 * If there are 2 mirrors in the same 2 devices, performance degrades
526 * because position is mirror, not device based.
527 *
528 * The rdev for the device selected will have nr_pending incremented.
529 */
e8096360 530static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 531{
af3a2cd6 532 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
533 int sectors;
534 int best_good_sectors;
9dedf603
SL
535 int best_disk, best_dist_disk, best_pending_disk;
536 int has_nonrot_disk;
be4d3280 537 int disk;
76073054 538 sector_t best_dist;
9dedf603 539 unsigned int min_pending;
3cb03002 540 struct md_rdev *rdev;
f3ac8bf7 541 int choose_first;
12cee5a8 542 int choose_next_idle;
1da177e4
LT
543
544 rcu_read_lock();
545 /*
8ddf9efe 546 * Check if we can balance. We can balance on the whole
1da177e4
LT
547 * device if no resync is going on, or below the resync window.
548 * We take the first readable disk when above the resync window.
549 */
550 retry:
d2eb35ac 551 sectors = r1_bio->sectors;
76073054 552 best_disk = -1;
9dedf603 553 best_dist_disk = -1;
76073054 554 best_dist = MaxSector;
9dedf603
SL
555 best_pending_disk = -1;
556 min_pending = UINT_MAX;
d2eb35ac 557 best_good_sectors = 0;
9dedf603 558 has_nonrot_disk = 0;
12cee5a8 559 choose_next_idle = 0;
2e52d449 560 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 561
7d49ffcf
GR
562 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
563 (mddev_is_clustered(conf->mddev) &&
90382ed9 564 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
565 this_sector + sectors)))
566 choose_first = 1;
567 else
568 choose_first = 0;
1da177e4 569
be4d3280 570 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 571 sector_t dist;
d2eb35ac
N
572 sector_t first_bad;
573 int bad_sectors;
9dedf603 574 unsigned int pending;
12cee5a8 575 bool nonrot;
d2eb35ac 576
f3ac8bf7
N
577 rdev = rcu_dereference(conf->mirrors[disk].rdev);
578 if (r1_bio->bios[disk] == IO_BLOCKED
579 || rdev == NULL
76073054 580 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 581 continue;
76073054
N
582 if (!test_bit(In_sync, &rdev->flags) &&
583 rdev->recovery_offset < this_sector + sectors)
1da177e4 584 continue;
76073054
N
585 if (test_bit(WriteMostly, &rdev->flags)) {
586 /* Don't balance among write-mostly, just
587 * use the first as a last resort */
d1901ef0 588 if (best_dist_disk < 0) {
307729c8
N
589 if (is_badblock(rdev, this_sector, sectors,
590 &first_bad, &bad_sectors)) {
816b0acf 591 if (first_bad <= this_sector)
307729c8
N
592 /* Cannot use this */
593 continue;
594 best_good_sectors = first_bad - this_sector;
595 } else
596 best_good_sectors = sectors;
d1901ef0
TH
597 best_dist_disk = disk;
598 best_pending_disk = disk;
307729c8 599 }
76073054
N
600 continue;
601 }
602 /* This is a reasonable device to use. It might
603 * even be best.
604 */
d2eb35ac
N
605 if (is_badblock(rdev, this_sector, sectors,
606 &first_bad, &bad_sectors)) {
607 if (best_dist < MaxSector)
608 /* already have a better device */
609 continue;
610 if (first_bad <= this_sector) {
611 /* cannot read here. If this is the 'primary'
612 * device, then we must not read beyond
613 * bad_sectors from another device..
614 */
615 bad_sectors -= (this_sector - first_bad);
616 if (choose_first && sectors > bad_sectors)
617 sectors = bad_sectors;
618 if (best_good_sectors > sectors)
619 best_good_sectors = sectors;
620
621 } else {
622 sector_t good_sectors = first_bad - this_sector;
623 if (good_sectors > best_good_sectors) {
624 best_good_sectors = good_sectors;
625 best_disk = disk;
626 }
627 if (choose_first)
628 break;
629 }
630 continue;
631 } else
632 best_good_sectors = sectors;
633
2e52d449
N
634 if (best_disk >= 0)
635 /* At least two disks to choose from so failfast is OK */
636 set_bit(R1BIO_FailFast, &r1_bio->state);
637
12cee5a8
SL
638 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
639 has_nonrot_disk |= nonrot;
9dedf603 640 pending = atomic_read(&rdev->nr_pending);
76073054 641 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 642 if (choose_first) {
76073054 643 best_disk = disk;
1da177e4
LT
644 break;
645 }
12cee5a8
SL
646 /* Don't change to another disk for sequential reads */
647 if (conf->mirrors[disk].next_seq_sect == this_sector
648 || dist == 0) {
649 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
650 struct raid1_info *mirror = &conf->mirrors[disk];
651
652 best_disk = disk;
653 /*
654 * If buffered sequential IO size exceeds optimal
655 * iosize, check if there is idle disk. If yes, choose
656 * the idle disk. read_balance could already choose an
657 * idle disk before noticing it's a sequential IO in
658 * this disk. This doesn't matter because this disk
659 * will idle, next time it will be utilized after the
660 * first disk has IO size exceeds optimal iosize. In
661 * this way, iosize of the first disk will be optimal
662 * iosize at least. iosize of the second disk might be
663 * small, but not a big deal since when the second disk
664 * starts IO, the first disk is likely still busy.
665 */
666 if (nonrot && opt_iosize > 0 &&
667 mirror->seq_start != MaxSector &&
668 mirror->next_seq_sect > opt_iosize &&
669 mirror->next_seq_sect - opt_iosize >=
670 mirror->seq_start) {
671 choose_next_idle = 1;
672 continue;
673 }
674 break;
675 }
12cee5a8
SL
676
677 if (choose_next_idle)
678 continue;
9dedf603
SL
679
680 if (min_pending > pending) {
681 min_pending = pending;
682 best_pending_disk = disk;
683 }
684
76073054
N
685 if (dist < best_dist) {
686 best_dist = dist;
9dedf603 687 best_dist_disk = disk;
1da177e4 688 }
f3ac8bf7 689 }
1da177e4 690
9dedf603
SL
691 /*
692 * If all disks are rotational, choose the closest disk. If any disk is
693 * non-rotational, choose the disk with less pending request even the
694 * disk is rotational, which might/might not be optimal for raids with
695 * mixed ratation/non-rotational disks depending on workload.
696 */
697 if (best_disk == -1) {
2e52d449 698 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
699 best_disk = best_pending_disk;
700 else
701 best_disk = best_dist_disk;
702 }
703
76073054
N
704 if (best_disk >= 0) {
705 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
706 if (!rdev)
707 goto retry;
708 atomic_inc(&rdev->nr_pending);
d2eb35ac 709 sectors = best_good_sectors;
12cee5a8
SL
710
711 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
712 conf->mirrors[best_disk].seq_start = this_sector;
713
be4d3280 714 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
715 }
716 rcu_read_unlock();
d2eb35ac 717 *max_sectors = sectors;
1da177e4 718
76073054 719 return best_disk;
1da177e4
LT
720}
721
5c675f83 722static int raid1_congested(struct mddev *mddev, int bits)
0d129228 723{
e8096360 724 struct r1conf *conf = mddev->private;
0d129228
N
725 int i, ret = 0;
726
4452226e 727 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
728 conf->pending_count >= max_queued_requests)
729 return 1;
730
0d129228 731 rcu_read_lock();
f53e29fc 732 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 733 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 734 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 735 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 736
1ed7242e
JB
737 BUG_ON(!q);
738
0d129228
N
739 /* Note the '|| 1' - when read_balance prefers
740 * non-congested targets, it can be removed
741 */
4452226e 742 if ((bits & (1 << WB_async_congested)) || 1)
0d129228
N
743 ret |= bdi_congested(&q->backing_dev_info, bits);
744 else
745 ret &= bdi_congested(&q->backing_dev_info, bits);
746 }
747 }
748 rcu_read_unlock();
749 return ret;
750}
0d129228 751
e8096360 752static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
753{
754 /* Any writes that have been queued but are awaiting
755 * bitmap updates get flushed here.
a35e63ef 756 */
a35e63ef
N
757 spin_lock_irq(&conf->device_lock);
758
759 if (conf->pending_bio_list.head) {
760 struct bio *bio;
761 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 762 conf->pending_count = 0;
a35e63ef
N
763 spin_unlock_irq(&conf->device_lock);
764 /* flush any pending bitmap writes to
765 * disk before proceeding w/ I/O */
766 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 767 wake_up(&conf->wait_barrier);
a35e63ef
N
768
769 while (bio) { /* submit pending writes */
770 struct bio *next = bio->bi_next;
5e2c7a36 771 struct md_rdev *rdev = (void*)bio->bi_bdev;
a35e63ef 772 bio->bi_next = NULL;
5e2c7a36
N
773 bio->bi_bdev = rdev->bdev;
774 if (test_bit(Faulty, &rdev->flags)) {
775 bio->bi_error = -EIO;
776 bio_endio(bio);
777 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
778 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
2ff8cc2c 779 /* Just ignore it */
4246a0b6 780 bio_endio(bio);
2ff8cc2c
SL
781 else
782 generic_make_request(bio);
a35e63ef
N
783 bio = next;
784 }
a35e63ef
N
785 } else
786 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
787}
788
17999be4
N
789/* Barriers....
790 * Sometimes we need to suspend IO while we do something else,
791 * either some resync/recovery, or reconfigure the array.
792 * To do this we raise a 'barrier'.
793 * The 'barrier' is a counter that can be raised multiple times
794 * to count how many activities are happening which preclude
795 * normal IO.
796 * We can only raise the barrier if there is no pending IO.
797 * i.e. if nr_pending == 0.
798 * We choose only to raise the barrier if no-one is waiting for the
799 * barrier to go down. This means that as soon as an IO request
800 * is ready, no other operations which require a barrier will start
801 * until the IO request has had a chance.
802 *
803 * So: regular IO calls 'wait_barrier'. When that returns there
804 * is no backgroup IO happening, It must arrange to call
805 * allow_barrier when it has finished its IO.
806 * backgroup IO calls must call raise_barrier. Once that returns
807 * there is no normal IO happeing. It must arrange to call
808 * lower_barrier when the particular background IO completes.
1da177e4 809 */
c2fd4c94 810static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
811{
812 spin_lock_irq(&conf->resync_lock);
17999be4
N
813
814 /* Wait until no block IO is waiting */
815 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 816 conf->resync_lock);
17999be4
N
817
818 /* block any new IO from starting */
819 conf->barrier++;
c2fd4c94 820 conf->next_resync = sector_nr;
17999be4 821
79ef3a8a 822 /* For these conditions we must wait:
823 * A: while the array is in frozen state
824 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
825 * the max count which allowed.
826 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
827 * next resync will reach to the window which normal bios are
828 * handling.
2f73d3c5 829 * D: while there are any active requests in the current window.
79ef3a8a 830 */
17999be4 831 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 832 !conf->array_frozen &&
79ef3a8a 833 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 834 conf->current_window_requests == 0 &&
79ef3a8a 835 (conf->start_next_window >=
836 conf->next_resync + RESYNC_SECTORS),
eed8c02e 837 conf->resync_lock);
17999be4 838
34e97f17 839 conf->nr_pending++;
17999be4
N
840 spin_unlock_irq(&conf->resync_lock);
841}
842
e8096360 843static void lower_barrier(struct r1conf *conf)
17999be4
N
844{
845 unsigned long flags;
709ae487 846 BUG_ON(conf->barrier <= 0);
17999be4
N
847 spin_lock_irqsave(&conf->resync_lock, flags);
848 conf->barrier--;
34e97f17 849 conf->nr_pending--;
17999be4
N
850 spin_unlock_irqrestore(&conf->resync_lock, flags);
851 wake_up(&conf->wait_barrier);
852}
853
79ef3a8a 854static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 855{
79ef3a8a 856 bool wait = false;
857
858 if (conf->array_frozen || !bio)
859 wait = true;
860 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
861 if ((conf->mddev->curr_resync_completed
862 >= bio_end_sector(bio)) ||
f2c771a6 863 (conf->start_next_window + NEXT_NORMALIO_DISTANCE
23554960 864 <= bio->bi_iter.bi_sector))
79ef3a8a 865 wait = false;
866 else
867 wait = true;
868 }
869
870 return wait;
871}
872
873static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
874{
875 sector_t sector = 0;
876
17999be4 877 spin_lock_irq(&conf->resync_lock);
79ef3a8a 878 if (need_to_wait_for_sync(conf, bio)) {
17999be4 879 conf->nr_waiting++;
d6b42dcb
N
880 /* Wait for the barrier to drop.
881 * However if there are already pending
882 * requests (preventing the barrier from
883 * rising completely), and the
5965b642 884 * per-process bio queue isn't empty,
d6b42dcb 885 * then don't wait, as we need to empty
5965b642
N
886 * that queue to allow conf->start_next_window
887 * to increase.
d6b42dcb 888 */
578b54ad 889 raid1_log(conf->mddev, "wait barrier");
d6b42dcb 890 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 891 !conf->array_frozen &&
892 (!conf->barrier ||
5965b642
N
893 ((conf->start_next_window <
894 conf->next_resync + RESYNC_SECTORS) &&
895 current->bio_list &&
896 !bio_list_empty(current->bio_list))),
eed8c02e 897 conf->resync_lock);
17999be4 898 conf->nr_waiting--;
1da177e4 899 }
79ef3a8a 900
901 if (bio && bio_data_dir(bio) == WRITE) {
e8ff8bf0 902 if (bio->bi_iter.bi_sector >= conf->next_resync) {
79ef3a8a 903 if (conf->start_next_window == MaxSector)
904 conf->start_next_window =
905 conf->next_resync +
906 NEXT_NORMALIO_DISTANCE;
907
908 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 909 <= bio->bi_iter.bi_sector)
79ef3a8a 910 conf->next_window_requests++;
911 else
912 conf->current_window_requests++;
79ef3a8a 913 sector = conf->start_next_window;
41a336e0 914 }
79ef3a8a 915 }
916
17999be4 917 conf->nr_pending++;
1da177e4 918 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 919 return sector;
1da177e4
LT
920}
921
79ef3a8a 922static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
923 sector_t bi_sector)
17999be4
N
924{
925 unsigned long flags;
79ef3a8a 926
17999be4
N
927 spin_lock_irqsave(&conf->resync_lock, flags);
928 conf->nr_pending--;
79ef3a8a 929 if (start_next_window) {
930 if (start_next_window == conf->start_next_window) {
931 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
932 <= bi_sector)
933 conf->next_window_requests--;
934 else
935 conf->current_window_requests--;
936 } else
937 conf->current_window_requests--;
938
939 if (!conf->current_window_requests) {
940 if (conf->next_window_requests) {
941 conf->current_window_requests =
942 conf->next_window_requests;
943 conf->next_window_requests = 0;
944 conf->start_next_window +=
945 NEXT_NORMALIO_DISTANCE;
946 } else
947 conf->start_next_window = MaxSector;
948 }
949 }
17999be4
N
950 spin_unlock_irqrestore(&conf->resync_lock, flags);
951 wake_up(&conf->wait_barrier);
952}
953
e2d59925 954static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
955{
956 /* stop syncio and normal IO and wait for everything to
957 * go quite.
b364e3d0 958 * We wait until nr_pending match nr_queued+extra
1c830532
N
959 * This is called in the context of one normal IO request
960 * that has failed. Thus any sync request that might be pending
961 * will be blocked by nr_pending, and we need to wait for
962 * pending IO requests to complete or be queued for re-try.
e2d59925 963 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
964 * must match the number of pending IOs (nr_pending) before
965 * we continue.
ddaf22ab
N
966 */
967 spin_lock_irq(&conf->resync_lock);
b364e3d0 968 conf->array_frozen = 1;
578b54ad 969 raid1_log(conf->mddev, "wait freeze");
eed8c02e 970 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 971 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
972 conf->resync_lock,
973 flush_pending_writes(conf));
ddaf22ab
N
974 spin_unlock_irq(&conf->resync_lock);
975}
e8096360 976static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
977{
978 /* reverse the effect of the freeze */
979 spin_lock_irq(&conf->resync_lock);
b364e3d0 980 conf->array_frozen = 0;
ddaf22ab
N
981 wake_up(&conf->wait_barrier);
982 spin_unlock_irq(&conf->resync_lock);
983}
984
f72ffdd6 985/* duplicate the data pages for behind I/O
4e78064f 986 */
9f2c9d12 987static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
988{
989 int i;
990 struct bio_vec *bvec;
2ca68f5e 991 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 992 GFP_NOIO);
2ca68f5e 993 if (unlikely(!bvecs))
af6d7b76 994 return;
4b6d287f 995
cb34e057 996 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
997 bvecs[i] = *bvec;
998 bvecs[i].bv_page = alloc_page(GFP_NOIO);
999 if (unlikely(!bvecs[i].bv_page))
4b6d287f 1000 goto do_sync_io;
2ca68f5e
N
1001 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1002 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1003 kunmap(bvecs[i].bv_page);
4b6d287f
N
1004 kunmap(bvec->bv_page);
1005 }
2ca68f5e 1006 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
1007 r1_bio->behind_page_count = bio->bi_vcnt;
1008 set_bit(R1BIO_BehindIO, &r1_bio->state);
1009 return;
4b6d287f
N
1010
1011do_sync_io:
af6d7b76 1012 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
1013 if (bvecs[i].bv_page)
1014 put_page(bvecs[i].bv_page);
1015 kfree(bvecs);
4f024f37
KO
1016 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1017 bio->bi_iter.bi_size);
4b6d287f
N
1018}
1019
f54a9d0e
N
1020struct raid1_plug_cb {
1021 struct blk_plug_cb cb;
1022 struct bio_list pending;
1023 int pending_cnt;
1024};
1025
1026static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1027{
1028 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1029 cb);
1030 struct mddev *mddev = plug->cb.data;
1031 struct r1conf *conf = mddev->private;
1032 struct bio *bio;
1033
874807a8 1034 if (from_schedule || current->bio_list) {
f54a9d0e
N
1035 spin_lock_irq(&conf->device_lock);
1036 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1037 conf->pending_count += plug->pending_cnt;
1038 spin_unlock_irq(&conf->device_lock);
ee0b0244 1039 wake_up(&conf->wait_barrier);
f54a9d0e
N
1040 md_wakeup_thread(mddev->thread);
1041 kfree(plug);
1042 return;
1043 }
1044
1045 /* we aren't scheduling, so we can do the write-out directly. */
1046 bio = bio_list_get(&plug->pending);
1047 bitmap_unplug(mddev->bitmap);
1048 wake_up(&conf->wait_barrier);
1049
1050 while (bio) { /* submit pending writes */
1051 struct bio *next = bio->bi_next;
5e2c7a36 1052 struct md_rdev *rdev = (void*)bio->bi_bdev;
f54a9d0e 1053 bio->bi_next = NULL;
5e2c7a36
N
1054 bio->bi_bdev = rdev->bdev;
1055 if (test_bit(Faulty, &rdev->flags)) {
1056 bio->bi_error = -EIO;
1057 bio_endio(bio);
1058 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1059 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
32f9f570 1060 /* Just ignore it */
4246a0b6 1061 bio_endio(bio);
32f9f570
SL
1062 else
1063 generic_make_request(bio);
f54a9d0e
N
1064 bio = next;
1065 }
1066 kfree(plug);
1067}
1068
3b046a97
RL
1069static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1070 struct r1bio *r1_bio)
1da177e4 1071{
e8096360 1072 struct r1conf *conf = mddev->private;
0eaf822c 1073 struct raid1_info *mirror;
1da177e4 1074 struct bio *read_bio;
3b046a97
RL
1075 struct bitmap *bitmap = mddev->bitmap;
1076 const int op = bio_op(bio);
1077 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1078 int sectors_handled;
1079 int max_sectors;
1080 int rdisk;
1081
1082 wait_barrier(conf, bio);
1083
1084read_again:
1085 rdisk = read_balance(conf, r1_bio, &max_sectors);
1086
1087 if (rdisk < 0) {
1088 /* couldn't find anywhere to read from */
1089 raid_end_bio_io(r1_bio);
1090 return;
1091 }
1092 mirror = conf->mirrors + rdisk;
1093
1094 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1095 bitmap) {
1096 /*
1097 * Reading from a write-mostly device must take care not to
1098 * over-take any writes that are 'behind'
1099 */
1100 raid1_log(mddev, "wait behind writes");
1101 wait_event(bitmap->behind_wait,
1102 atomic_read(&bitmap->behind_writes) == 0);
1103 }
1104 r1_bio->read_disk = rdisk;
1105 r1_bio->start_next_window = 0;
1106
1107 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1108 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1109 max_sectors);
1110
1111 r1_bio->bios[rdisk] = read_bio;
1112
1113 read_bio->bi_iter.bi_sector = r1_bio->sector +
1114 mirror->rdev->data_offset;
1115 read_bio->bi_bdev = mirror->rdev->bdev;
1116 read_bio->bi_end_io = raid1_end_read_request;
1117 bio_set_op_attrs(read_bio, op, do_sync);
1118 if (test_bit(FailFast, &mirror->rdev->flags) &&
1119 test_bit(R1BIO_FailFast, &r1_bio->state))
1120 read_bio->bi_opf |= MD_FAILFAST;
1121 read_bio->bi_private = r1_bio;
1122
1123 if (mddev->gendisk)
1124 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1125 read_bio, disk_devt(mddev->gendisk),
1126 r1_bio->sector);
1127
1128 if (max_sectors < r1_bio->sectors) {
1129 /*
1130 * could not read all from this device, so we will need another
1131 * r1_bio.
1132 */
1133 sectors_handled = (r1_bio->sector + max_sectors
1134 - bio->bi_iter.bi_sector);
1135 r1_bio->sectors = max_sectors;
1136 spin_lock_irq(&conf->device_lock);
1137 if (bio->bi_phys_segments == 0)
1138 bio->bi_phys_segments = 2;
1139 else
1140 bio->bi_phys_segments++;
1141 spin_unlock_irq(&conf->device_lock);
1142
1143 /*
1144 * Cannot call generic_make_request directly as that will be
1145 * queued in __make_request and subsequent mempool_alloc might
1146 * block waiting for it. So hand bio over to raid1d.
1147 */
1148 reschedule_retry(r1_bio);
1149
1150 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1151
1152 r1_bio->master_bio = bio;
1153 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1154 r1_bio->state = 0;
1155 r1_bio->mddev = mddev;
1156 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1157 goto read_again;
1158 } else
1159 generic_make_request(read_bio);
1160}
1161
1162static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1163 struct r1bio *r1_bio)
1164{
1165 struct r1conf *conf = mddev->private;
1f68f0c4 1166 int i, disks;
3b046a97 1167 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1168 unsigned long flags;
796a5cf0 1169 const int op = bio_op(bio);
1eff9d32
JA
1170 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1171 const unsigned long do_flush_fua = (bio->bi_opf &
28a8f0d3 1172 (REQ_PREFLUSH | REQ_FUA));
3cb03002 1173 struct md_rdev *blocked_rdev;
f54a9d0e
N
1174 struct blk_plug_cb *cb;
1175 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1176 int first_clone;
1177 int sectors_handled;
1178 int max_sectors;
79ef3a8a 1179 sector_t start_next_window;
191ea9b2 1180
1da177e4
LT
1181 /*
1182 * Register the new request and wait if the reconstruction
1183 * thread has put up a bar for new requests.
1184 * Continue immediately if no resync is active currently.
1185 */
62de608d 1186
3d310eb7
N
1187 md_write_start(mddev, bio); /* wait on superblock update early */
1188
3b046a97 1189 if ((bio_end_sector(bio) > mddev->suspend_lo &&
589a1c49
GR
1190 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1191 (mddev_is_clustered(mddev) &&
90382ed9 1192 md_cluster_ops->area_resyncing(mddev, WRITE,
3b046a97
RL
1193 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1194
1195 /*
1196 * As the suspend_* range is controlled by userspace, we want
1197 * an interruptible wait.
6eef4b21
N
1198 */
1199 DEFINE_WAIT(w);
1200 for (;;) {
1201 flush_signals(current);
1202 prepare_to_wait(&conf->wait_barrier,
1203 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1204 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1205 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1206 (mddev_is_clustered(mddev) &&
90382ed9 1207 !md_cluster_ops->area_resyncing(mddev, WRITE,
3b046a97
RL
1208 bio->bi_iter.bi_sector,
1209 bio_end_sector(bio))))
6eef4b21
N
1210 break;
1211 schedule();
1212 }
1213 finish_wait(&conf->wait_barrier, &w);
1214 }
79ef3a8a 1215 start_next_window = wait_barrier(conf, bio);
1da177e4 1216
34db0cd6
N
1217 if (conf->pending_count >= max_queued_requests) {
1218 md_wakeup_thread(mddev->thread);
578b54ad 1219 raid1_log(mddev, "wait queued");
34db0cd6
N
1220 wait_event(conf->wait_barrier,
1221 conf->pending_count < max_queued_requests);
1222 }
1f68f0c4 1223 /* first select target devices under rcu_lock and
1da177e4
LT
1224 * inc refcount on their rdev. Record them by setting
1225 * bios[x] to bio
1f68f0c4
N
1226 * If there are known/acknowledged bad blocks on any device on
1227 * which we have seen a write error, we want to avoid writing those
1228 * blocks.
1229 * This potentially requires several writes to write around
1230 * the bad blocks. Each set of writes gets it's own r1bio
1231 * with a set of bios attached.
1da177e4 1232 */
c3b328ac 1233
8f19ccb2 1234 disks = conf->raid_disks * 2;
6bfe0b49 1235 retry_write:
79ef3a8a 1236 r1_bio->start_next_window = start_next_window;
6bfe0b49 1237 blocked_rdev = NULL;
1da177e4 1238 rcu_read_lock();
1f68f0c4 1239 max_sectors = r1_bio->sectors;
1da177e4 1240 for (i = 0; i < disks; i++) {
3cb03002 1241 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1242 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1243 atomic_inc(&rdev->nr_pending);
1244 blocked_rdev = rdev;
1245 break;
1246 }
1f68f0c4 1247 r1_bio->bios[i] = NULL;
8ae12666 1248 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1249 if (i < conf->raid_disks)
1250 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1251 continue;
1252 }
1253
1254 atomic_inc(&rdev->nr_pending);
1255 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1256 sector_t first_bad;
1257 int bad_sectors;
1258 int is_bad;
1259
3b046a97 1260 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1261 &first_bad, &bad_sectors);
1262 if (is_bad < 0) {
1263 /* mustn't write here until the bad block is
1264 * acknowledged*/
1265 set_bit(BlockedBadBlocks, &rdev->flags);
1266 blocked_rdev = rdev;
1267 break;
1268 }
1269 if (is_bad && first_bad <= r1_bio->sector) {
1270 /* Cannot write here at all */
1271 bad_sectors -= (r1_bio->sector - first_bad);
1272 if (bad_sectors < max_sectors)
1273 /* mustn't write more than bad_sectors
1274 * to other devices yet
1275 */
1276 max_sectors = bad_sectors;
03c902e1 1277 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1278 /* We don't set R1BIO_Degraded as that
1279 * only applies if the disk is
1280 * missing, so it might be re-added,
1281 * and we want to know to recover this
1282 * chunk.
1283 * In this case the device is here,
1284 * and the fact that this chunk is not
1285 * in-sync is recorded in the bad
1286 * block log
1287 */
1288 continue;
964147d5 1289 }
1f68f0c4
N
1290 if (is_bad) {
1291 int good_sectors = first_bad - r1_bio->sector;
1292 if (good_sectors < max_sectors)
1293 max_sectors = good_sectors;
1294 }
1295 }
1296 r1_bio->bios[i] = bio;
1da177e4
LT
1297 }
1298 rcu_read_unlock();
1299
6bfe0b49
DW
1300 if (unlikely(blocked_rdev)) {
1301 /* Wait for this device to become unblocked */
1302 int j;
79ef3a8a 1303 sector_t old = start_next_window;
6bfe0b49
DW
1304
1305 for (j = 0; j < i; j++)
1306 if (r1_bio->bios[j])
1307 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1308 r1_bio->state = 0;
4f024f37 1309 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
578b54ad 1310 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1311 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1312 start_next_window = wait_barrier(conf, bio);
1313 /*
1314 * We must make sure the multi r1bios of bio have
1315 * the same value of bi_phys_segments
1316 */
1317 if (bio->bi_phys_segments && old &&
1318 old != start_next_window)
1319 /* Wait for the former r1bio(s) to complete */
1320 wait_event(conf->wait_barrier,
1321 bio->bi_phys_segments == 1);
6bfe0b49
DW
1322 goto retry_write;
1323 }
1324
1f68f0c4
N
1325 if (max_sectors < r1_bio->sectors) {
1326 /* We are splitting this write into multiple parts, so
1327 * we need to prepare for allocating another r1_bio.
1328 */
1329 r1_bio->sectors = max_sectors;
1330 spin_lock_irq(&conf->device_lock);
1331 if (bio->bi_phys_segments == 0)
1332 bio->bi_phys_segments = 2;
1333 else
1334 bio->bi_phys_segments++;
1335 spin_unlock_irq(&conf->device_lock);
191ea9b2 1336 }
4f024f37 1337 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1338
4e78064f 1339 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1340 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1341
1f68f0c4 1342 first_clone = 1;
1da177e4
LT
1343 for (i = 0; i < disks; i++) {
1344 struct bio *mbio;
1345 if (!r1_bio->bios[i])
1346 continue;
1347
a167f663 1348 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
3b046a97
RL
1349 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector,
1350 max_sectors);
1f68f0c4
N
1351
1352 if (first_clone) {
1353 /* do behind I/O ?
1354 * Not if there are too many, or cannot
1355 * allocate memory, or a reader on WriteMostly
1356 * is waiting for behind writes to flush */
1357 if (bitmap &&
1358 (atomic_read(&bitmap->behind_writes)
1359 < mddev->bitmap_info.max_write_behind) &&
1360 !waitqueue_active(&bitmap->behind_wait))
1361 alloc_behind_pages(mbio, r1_bio);
1362
1363 bitmap_startwrite(bitmap, r1_bio->sector,
1364 r1_bio->sectors,
1365 test_bit(R1BIO_BehindIO,
1366 &r1_bio->state));
1367 first_clone = 0;
1368 }
2ca68f5e 1369 if (r1_bio->behind_bvecs) {
4b6d287f
N
1370 struct bio_vec *bvec;
1371 int j;
1372
cb34e057
KO
1373 /*
1374 * We trimmed the bio, so _all is legit
4b6d287f 1375 */
d74c6d51 1376 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1377 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1378 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1379 atomic_inc(&r1_bio->behind_remaining);
1380 }
1381
1f68f0c4
N
1382 r1_bio->bios[i] = mbio;
1383
4f024f37 1384 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4 1385 conf->mirrors[i].rdev->data_offset);
109e3765 1386 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1f68f0c4 1387 mbio->bi_end_io = raid1_end_write_request;
288dab8a 1388 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
212e7eb7
N
1389 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1390 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1391 conf->raid_disks - mddev->degraded > 1)
1392 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1393 mbio->bi_private = r1_bio;
1394
1da177e4 1395 atomic_inc(&r1_bio->remaining);
f54a9d0e 1396
109e3765
N
1397 if (mddev->gendisk)
1398 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1399 mbio, disk_devt(mddev->gendisk),
1400 r1_bio->sector);
1401 /* flush_pending_writes() needs access to the rdev so...*/
1402 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1403
f54a9d0e
N
1404 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1405 if (cb)
1406 plug = container_of(cb, struct raid1_plug_cb, cb);
1407 else
1408 plug = NULL;
4e78064f 1409 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1410 if (plug) {
1411 bio_list_add(&plug->pending, mbio);
1412 plug->pending_cnt++;
1413 } else {
1414 bio_list_add(&conf->pending_bio_list, mbio);
1415 conf->pending_count++;
1416 }
4e78064f 1417 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1418 if (!plug)
b357f04a 1419 md_wakeup_thread(mddev->thread);
1da177e4 1420 }
079fa166
N
1421 /* Mustn't call r1_bio_write_done before this next test,
1422 * as it could result in the bio being freed.
1423 */
aa8b57aa 1424 if (sectors_handled < bio_sectors(bio)) {
079fa166 1425 r1_bio_write_done(r1_bio);
1f68f0c4
N
1426 /* We need another r1_bio. It has already been counted
1427 * in bio->bi_phys_segments
1428 */
1429 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1430 r1_bio->master_bio = bio;
aa8b57aa 1431 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1432 r1_bio->state = 0;
1433 r1_bio->mddev = mddev;
4f024f37 1434 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1435 goto retry_write;
1436 }
1437
079fa166
N
1438 r1_bio_write_done(r1_bio);
1439
1440 /* In case raid1d snuck in to freeze_array */
1441 wake_up(&conf->wait_barrier);
1da177e4
LT
1442}
1443
3b046a97
RL
1444static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1445{
1446 struct r1conf *conf = mddev->private;
1447 struct r1bio *r1_bio;
1448
1449 /*
1450 * make_request() can abort the operation when read-ahead is being
1451 * used and no empty request is available.
1452 *
1453 */
1454 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1455
1456 r1_bio->master_bio = bio;
1457 r1_bio->sectors = bio_sectors(bio);
1458 r1_bio->state = 0;
1459 r1_bio->mddev = mddev;
1460 r1_bio->sector = bio->bi_iter.bi_sector;
1461
1462 /*
1463 * We might need to issue multiple reads to different devices if there
1464 * are bad blocks around, so we keep track of the number of reads in
1465 * bio->bi_phys_segments. If this is 0, there is only one r1_bio and
1466 * no locking will be needed when requests complete. If it is
1467 * non-zero, then it is the number of not-completed requests.
1468 */
1469 bio->bi_phys_segments = 0;
1470 bio_clear_flag(bio, BIO_SEG_VALID);
1471
1472 if (bio_data_dir(bio) == READ)
1473 raid1_read_request(mddev, bio, r1_bio);
1474 else
1475 raid1_write_request(mddev, bio, r1_bio);
1476}
1477
849674e4 1478static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1479{
e8096360 1480 struct r1conf *conf = mddev->private;
1da177e4
LT
1481 int i;
1482
1483 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1484 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1485 rcu_read_lock();
1486 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1487 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1488 seq_printf(seq, "%s",
ddac7c7e
N
1489 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1490 }
1491 rcu_read_unlock();
1da177e4
LT
1492 seq_printf(seq, "]");
1493}
1494
849674e4 1495static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1496{
1497 char b[BDEVNAME_SIZE];
e8096360 1498 struct r1conf *conf = mddev->private;
423f04d6 1499 unsigned long flags;
1da177e4
LT
1500
1501 /*
1502 * If it is not operational, then we have already marked it as dead
1503 * else if it is the last working disks, ignore the error, let the
1504 * next level up know.
1505 * else mark the drive as failed
1506 */
2e52d449 1507 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1508 if (test_bit(In_sync, &rdev->flags)
4044ba58 1509 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1510 /*
1511 * Don't fail the drive, act as though we were just a
4044ba58
N
1512 * normal single drive.
1513 * However don't try a recovery from this drive as
1514 * it is very likely to fail.
1da177e4 1515 */
5389042f 1516 conf->recovery_disabled = mddev->recovery_disabled;
2e52d449 1517 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1518 return;
4044ba58 1519 }
de393cde 1520 set_bit(Blocked, &rdev->flags);
c04be0aa 1521 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1522 mddev->degraded++;
dd00a99e 1523 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1524 } else
1525 set_bit(Faulty, &rdev->flags);
423f04d6 1526 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1527 /*
1528 * if recovery is running, make sure it aborts.
1529 */
1530 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1531 set_mask_bits(&mddev->sb_flags, 0,
1532 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1d41c216
N
1533 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1534 "md/raid1:%s: Operation continuing on %d devices.\n",
1535 mdname(mddev), bdevname(rdev->bdev, b),
1536 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1537}
1538
e8096360 1539static void print_conf(struct r1conf *conf)
1da177e4
LT
1540{
1541 int i;
1da177e4 1542
1d41c216 1543 pr_debug("RAID1 conf printout:\n");
1da177e4 1544 if (!conf) {
1d41c216 1545 pr_debug("(!conf)\n");
1da177e4
LT
1546 return;
1547 }
1d41c216
N
1548 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1549 conf->raid_disks);
1da177e4 1550
ddac7c7e 1551 rcu_read_lock();
1da177e4
LT
1552 for (i = 0; i < conf->raid_disks; i++) {
1553 char b[BDEVNAME_SIZE];
3cb03002 1554 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1555 if (rdev)
1d41c216
N
1556 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1557 i, !test_bit(In_sync, &rdev->flags),
1558 !test_bit(Faulty, &rdev->flags),
1559 bdevname(rdev->bdev,b));
1da177e4 1560 }
ddac7c7e 1561 rcu_read_unlock();
1da177e4
LT
1562}
1563
e8096360 1564static void close_sync(struct r1conf *conf)
1da177e4 1565{
79ef3a8a 1566 wait_barrier(conf, NULL);
1567 allow_barrier(conf, 0, 0);
1da177e4
LT
1568
1569 mempool_destroy(conf->r1buf_pool);
1570 conf->r1buf_pool = NULL;
79ef3a8a 1571
669cc7ba 1572 spin_lock_irq(&conf->resync_lock);
e8ff8bf0 1573 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
79ef3a8a 1574 conf->start_next_window = MaxSector;
669cc7ba
N
1575 conf->current_window_requests +=
1576 conf->next_window_requests;
1577 conf->next_window_requests = 0;
1578 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1579}
1580
fd01b88c 1581static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1582{
1583 int i;
e8096360 1584 struct r1conf *conf = mddev->private;
6b965620
N
1585 int count = 0;
1586 unsigned long flags;
1da177e4
LT
1587
1588 /*
f72ffdd6 1589 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1590 * and mark them readable.
1591 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1592 * device_lock used to avoid races with raid1_end_read_request
1593 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1594 */
423f04d6 1595 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1596 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1597 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1598 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1599 if (repl
1aee41f6 1600 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1601 && repl->recovery_offset == MaxSector
1602 && !test_bit(Faulty, &repl->flags)
1603 && !test_and_set_bit(In_sync, &repl->flags)) {
1604 /* replacement has just become active */
1605 if (!rdev ||
1606 !test_and_clear_bit(In_sync, &rdev->flags))
1607 count++;
1608 if (rdev) {
1609 /* Replaced device not technically
1610 * faulty, but we need to be sure
1611 * it gets removed and never re-added
1612 */
1613 set_bit(Faulty, &rdev->flags);
1614 sysfs_notify_dirent_safe(
1615 rdev->sysfs_state);
1616 }
1617 }
ddac7c7e 1618 if (rdev
61e4947c 1619 && rdev->recovery_offset == MaxSector
ddac7c7e 1620 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1621 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1622 count++;
654e8b5a 1623 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1624 }
1625 }
6b965620
N
1626 mddev->degraded -= count;
1627 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1628
1629 print_conf(conf);
6b965620 1630 return count;
1da177e4
LT
1631}
1632
fd01b88c 1633static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1634{
e8096360 1635 struct r1conf *conf = mddev->private;
199050ea 1636 int err = -EEXIST;
41158c7e 1637 int mirror = 0;
0eaf822c 1638 struct raid1_info *p;
6c2fce2e 1639 int first = 0;
30194636 1640 int last = conf->raid_disks - 1;
1da177e4 1641
5389042f
N
1642 if (mddev->recovery_disabled == conf->recovery_disabled)
1643 return -EBUSY;
1644
1501efad
DW
1645 if (md_integrity_add_rdev(rdev, mddev))
1646 return -ENXIO;
1647
6c2fce2e
NB
1648 if (rdev->raid_disk >= 0)
1649 first = last = rdev->raid_disk;
1650
70bcecdb
GR
1651 /*
1652 * find the disk ... but prefer rdev->saved_raid_disk
1653 * if possible.
1654 */
1655 if (rdev->saved_raid_disk >= 0 &&
1656 rdev->saved_raid_disk >= first &&
1657 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1658 first = last = rdev->saved_raid_disk;
1659
7ef449d1
N
1660 for (mirror = first; mirror <= last; mirror++) {
1661 p = conf->mirrors+mirror;
1662 if (!p->rdev) {
1da177e4 1663
9092c02d
JB
1664 if (mddev->gendisk)
1665 disk_stack_limits(mddev->gendisk, rdev->bdev,
1666 rdev->data_offset << 9);
1da177e4
LT
1667
1668 p->head_position = 0;
1669 rdev->raid_disk = mirror;
199050ea 1670 err = 0;
6aea114a
N
1671 /* As all devices are equivalent, we don't need a full recovery
1672 * if this was recently any drive of the array
1673 */
1674 if (rdev->saved_raid_disk < 0)
41158c7e 1675 conf->fullsync = 1;
d6065f7b 1676 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1677 break;
1678 }
7ef449d1
N
1679 if (test_bit(WantReplacement, &p->rdev->flags) &&
1680 p[conf->raid_disks].rdev == NULL) {
1681 /* Add this device as a replacement */
1682 clear_bit(In_sync, &rdev->flags);
1683 set_bit(Replacement, &rdev->flags);
1684 rdev->raid_disk = mirror;
1685 err = 0;
1686 conf->fullsync = 1;
1687 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1688 break;
1689 }
1690 }
9092c02d 1691 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1692 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1693 print_conf(conf);
199050ea 1694 return err;
1da177e4
LT
1695}
1696
b8321b68 1697static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1698{
e8096360 1699 struct r1conf *conf = mddev->private;
1da177e4 1700 int err = 0;
b8321b68 1701 int number = rdev->raid_disk;
0eaf822c 1702 struct raid1_info *p = conf->mirrors + number;
1da177e4 1703
b014f14c
N
1704 if (rdev != p->rdev)
1705 p = conf->mirrors + conf->raid_disks + number;
1706
1da177e4 1707 print_conf(conf);
b8321b68 1708 if (rdev == p->rdev) {
b2d444d7 1709 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1710 atomic_read(&rdev->nr_pending)) {
1711 err = -EBUSY;
1712 goto abort;
1713 }
046abeed 1714 /* Only remove non-faulty devices if recovery
dfc70645
N
1715 * is not possible.
1716 */
1717 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1718 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1719 mddev->degraded < conf->raid_disks) {
1720 err = -EBUSY;
1721 goto abort;
1722 }
1da177e4 1723 p->rdev = NULL;
d787be40
N
1724 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1725 synchronize_rcu();
1726 if (atomic_read(&rdev->nr_pending)) {
1727 /* lost the race, try later */
1728 err = -EBUSY;
1729 p->rdev = rdev;
1730 goto abort;
1731 }
1732 }
1733 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1734 /* We just removed a device that is being replaced.
1735 * Move down the replacement. We drain all IO before
1736 * doing this to avoid confusion.
1737 */
1738 struct md_rdev *repl =
1739 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1740 freeze_array(conf, 0);
8c7a2c2b
N
1741 clear_bit(Replacement, &repl->flags);
1742 p->rdev = repl;
1743 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1744 unfreeze_array(conf);
8c7a2c2b
N
1745 clear_bit(WantReplacement, &rdev->flags);
1746 } else
b014f14c 1747 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1748 err = md_integrity_register(mddev);
1da177e4
LT
1749 }
1750abort:
1751
1752 print_conf(conf);
1753 return err;
1754}
1755
4246a0b6 1756static void end_sync_read(struct bio *bio)
1da177e4 1757{
9f2c9d12 1758 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1759
0fc280f6 1760 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1761
1da177e4
LT
1762 /*
1763 * we have read a block, now it needs to be re-written,
1764 * or re-read if the read failed.
1765 * We don't do much here, just schedule handling by raid1d
1766 */
4246a0b6 1767 if (!bio->bi_error)
1da177e4 1768 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1769
1770 if (atomic_dec_and_test(&r1_bio->remaining))
1771 reschedule_retry(r1_bio);
1da177e4
LT
1772}
1773
4246a0b6 1774static void end_sync_write(struct bio *bio)
1da177e4 1775{
4246a0b6 1776 int uptodate = !bio->bi_error;
9f2c9d12 1777 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1778 struct mddev *mddev = r1_bio->mddev;
e8096360 1779 struct r1conf *conf = mddev->private;
4367af55
N
1780 sector_t first_bad;
1781 int bad_sectors;
854abd75 1782 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1783
6b1117d5 1784 if (!uptodate) {
57dab0bd 1785 sector_t sync_blocks = 0;
6b1117d5
N
1786 sector_t s = r1_bio->sector;
1787 long sectors_to_go = r1_bio->sectors;
1788 /* make sure these bits doesn't get cleared. */
1789 do {
5e3db645 1790 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1791 &sync_blocks, 1);
1792 s += sync_blocks;
1793 sectors_to_go -= sync_blocks;
1794 } while (sectors_to_go > 0);
854abd75
N
1795 set_bit(WriteErrorSeen, &rdev->flags);
1796 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1797 set_bit(MD_RECOVERY_NEEDED, &
1798 mddev->recovery);
d8f05d29 1799 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1800 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1801 &first_bad, &bad_sectors) &&
1802 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1803 r1_bio->sector,
1804 r1_bio->sectors,
1805 &first_bad, &bad_sectors)
1806 )
4367af55 1807 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1808
1da177e4 1809 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1810 int s = r1_bio->sectors;
d8f05d29
N
1811 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1812 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1813 reschedule_retry(r1_bio);
1814 else {
1815 put_buf(r1_bio);
1816 md_done_sync(mddev, s, uptodate);
1817 }
1da177e4 1818 }
1da177e4
LT
1819}
1820
3cb03002 1821static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1822 int sectors, struct page *page, int rw)
1823{
796a5cf0 1824 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1825 /* success */
1826 return 1;
19d67169 1827 if (rw == WRITE) {
d8f05d29 1828 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1829 if (!test_and_set_bit(WantReplacement,
1830 &rdev->flags))
1831 set_bit(MD_RECOVERY_NEEDED, &
1832 rdev->mddev->recovery);
1833 }
d8f05d29
N
1834 /* need to record an error - either for the block or the device */
1835 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1836 md_error(rdev->mddev, rdev);
1837 return 0;
1838}
1839
9f2c9d12 1840static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1841{
a68e5870
N
1842 /* Try some synchronous reads of other devices to get
1843 * good data, much like with normal read errors. Only
1844 * read into the pages we already have so we don't
1845 * need to re-issue the read request.
1846 * We don't need to freeze the array, because being in an
1847 * active sync request, there is no normal IO, and
1848 * no overlapping syncs.
06f60385
N
1849 * We don't need to check is_badblock() again as we
1850 * made sure that anything with a bad block in range
1851 * will have bi_end_io clear.
a68e5870 1852 */
fd01b88c 1853 struct mddev *mddev = r1_bio->mddev;
e8096360 1854 struct r1conf *conf = mddev->private;
a68e5870
N
1855 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1856 sector_t sect = r1_bio->sector;
1857 int sectors = r1_bio->sectors;
1858 int idx = 0;
2e52d449
N
1859 struct md_rdev *rdev;
1860
1861 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1862 if (test_bit(FailFast, &rdev->flags)) {
1863 /* Don't try recovering from here - just fail it
1864 * ... unless it is the last working device of course */
1865 md_error(mddev, rdev);
1866 if (test_bit(Faulty, &rdev->flags))
1867 /* Don't try to read from here, but make sure
1868 * put_buf does it's thing
1869 */
1870 bio->bi_end_io = end_sync_write;
1871 }
a68e5870
N
1872
1873 while(sectors) {
1874 int s = sectors;
1875 int d = r1_bio->read_disk;
1876 int success = 0;
78d7f5f7 1877 int start;
a68e5870
N
1878
1879 if (s > (PAGE_SIZE>>9))
1880 s = PAGE_SIZE >> 9;
1881 do {
1882 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1883 /* No rcu protection needed here devices
1884 * can only be removed when no resync is
1885 * active, and resync is currently active
1886 */
1887 rdev = conf->mirrors[d].rdev;
9d3d8011 1888 if (sync_page_io(rdev, sect, s<<9,
a68e5870 1889 bio->bi_io_vec[idx].bv_page,
796a5cf0 1890 REQ_OP_READ, 0, false)) {
a68e5870
N
1891 success = 1;
1892 break;
1893 }
1894 }
1895 d++;
8f19ccb2 1896 if (d == conf->raid_disks * 2)
a68e5870
N
1897 d = 0;
1898 } while (!success && d != r1_bio->read_disk);
1899
78d7f5f7 1900 if (!success) {
a68e5870 1901 char b[BDEVNAME_SIZE];
3a9f28a5
N
1902 int abort = 0;
1903 /* Cannot read from anywhere, this block is lost.
1904 * Record a bad block on each device. If that doesn't
1905 * work just disable and interrupt the recovery.
1906 * Don't fail devices as that won't really help.
1907 */
1d41c216
N
1908 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1909 mdname(mddev),
1910 bdevname(bio->bi_bdev, b),
1911 (unsigned long long)r1_bio->sector);
8f19ccb2 1912 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1913 rdev = conf->mirrors[d].rdev;
1914 if (!rdev || test_bit(Faulty, &rdev->flags))
1915 continue;
1916 if (!rdev_set_badblocks(rdev, sect, s, 0))
1917 abort = 1;
1918 }
1919 if (abort) {
d890fa2b
N
1920 conf->recovery_disabled =
1921 mddev->recovery_disabled;
3a9f28a5
N
1922 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1923 md_done_sync(mddev, r1_bio->sectors, 0);
1924 put_buf(r1_bio);
1925 return 0;
1926 }
1927 /* Try next page */
1928 sectors -= s;
1929 sect += s;
1930 idx++;
1931 continue;
d11c171e 1932 }
78d7f5f7
N
1933
1934 start = d;
1935 /* write it back and re-read */
1936 while (d != r1_bio->read_disk) {
1937 if (d == 0)
8f19ccb2 1938 d = conf->raid_disks * 2;
78d7f5f7
N
1939 d--;
1940 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1941 continue;
1942 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1943 if (r1_sync_page_io(rdev, sect, s,
1944 bio->bi_io_vec[idx].bv_page,
1945 WRITE) == 0) {
78d7f5f7
N
1946 r1_bio->bios[d]->bi_end_io = NULL;
1947 rdev_dec_pending(rdev, mddev);
9d3d8011 1948 }
78d7f5f7
N
1949 }
1950 d = start;
1951 while (d != r1_bio->read_disk) {
1952 if (d == 0)
8f19ccb2 1953 d = conf->raid_disks * 2;
78d7f5f7
N
1954 d--;
1955 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1956 continue;
1957 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1958 if (r1_sync_page_io(rdev, sect, s,
1959 bio->bi_io_vec[idx].bv_page,
1960 READ) != 0)
9d3d8011 1961 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1962 }
a68e5870
N
1963 sectors -= s;
1964 sect += s;
1965 idx ++;
1966 }
78d7f5f7 1967 set_bit(R1BIO_Uptodate, &r1_bio->state);
4246a0b6 1968 bio->bi_error = 0;
a68e5870
N
1969 return 1;
1970}
1971
c95e6385 1972static void process_checks(struct r1bio *r1_bio)
a68e5870
N
1973{
1974 /* We have read all readable devices. If we haven't
1975 * got the block, then there is no hope left.
1976 * If we have, then we want to do a comparison
1977 * and skip the write if everything is the same.
1978 * If any blocks failed to read, then we need to
1979 * attempt an over-write
1980 */
fd01b88c 1981 struct mddev *mddev = r1_bio->mddev;
e8096360 1982 struct r1conf *conf = mddev->private;
a68e5870
N
1983 int primary;
1984 int i;
f4380a91 1985 int vcnt;
a68e5870 1986
30bc9b53
N
1987 /* Fix variable parts of all bios */
1988 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1989 for (i = 0; i < conf->raid_disks * 2; i++) {
1990 int j;
1991 int size;
4246a0b6 1992 int error;
30bc9b53
N
1993 struct bio *b = r1_bio->bios[i];
1994 if (b->bi_end_io != end_sync_read)
1995 continue;
4246a0b6
CH
1996 /* fixup the bio for reuse, but preserve errno */
1997 error = b->bi_error;
30bc9b53 1998 bio_reset(b);
4246a0b6 1999 b->bi_error = error;
30bc9b53 2000 b->bi_vcnt = vcnt;
4f024f37
KO
2001 b->bi_iter.bi_size = r1_bio->sectors << 9;
2002 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
2003 conf->mirrors[i].rdev->data_offset;
2004 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2005 b->bi_end_io = end_sync_read;
2006 b->bi_private = r1_bio;
2007
4f024f37 2008 size = b->bi_iter.bi_size;
30bc9b53
N
2009 for (j = 0; j < vcnt ; j++) {
2010 struct bio_vec *bi;
2011 bi = &b->bi_io_vec[j];
2012 bi->bv_offset = 0;
2013 if (size > PAGE_SIZE)
2014 bi->bv_len = PAGE_SIZE;
2015 else
2016 bi->bv_len = size;
2017 size -= PAGE_SIZE;
2018 }
2019 }
8f19ccb2 2020 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2021 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4246a0b6 2022 !r1_bio->bios[primary]->bi_error) {
a68e5870
N
2023 r1_bio->bios[primary]->bi_end_io = NULL;
2024 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2025 break;
2026 }
2027 r1_bio->read_disk = primary;
8f19ccb2 2028 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 2029 int j;
78d7f5f7
N
2030 struct bio *pbio = r1_bio->bios[primary];
2031 struct bio *sbio = r1_bio->bios[i];
4246a0b6 2032 int error = sbio->bi_error;
a68e5870 2033
2aabaa65 2034 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2035 continue;
4246a0b6
CH
2036 /* Now we can 'fixup' the error value */
2037 sbio->bi_error = 0;
78d7f5f7 2038
4246a0b6 2039 if (!error) {
78d7f5f7
N
2040 for (j = vcnt; j-- ; ) {
2041 struct page *p, *s;
2042 p = pbio->bi_io_vec[j].bv_page;
2043 s = sbio->bi_io_vec[j].bv_page;
2044 if (memcmp(page_address(p),
2045 page_address(s),
5020ad7d 2046 sbio->bi_io_vec[j].bv_len))
78d7f5f7 2047 break;
69382e85 2048 }
78d7f5f7
N
2049 } else
2050 j = 0;
2051 if (j >= 0)
7f7583d4 2052 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2053 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4246a0b6 2054 && !error)) {
78d7f5f7
N
2055 /* No need to write to this device. */
2056 sbio->bi_end_io = NULL;
2057 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2058 continue;
2059 }
d3b45c2a
KO
2060
2061 bio_copy_data(sbio, pbio);
78d7f5f7 2062 }
a68e5870
N
2063}
2064
9f2c9d12 2065static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2066{
e8096360 2067 struct r1conf *conf = mddev->private;
a68e5870 2068 int i;
8f19ccb2 2069 int disks = conf->raid_disks * 2;
a68e5870
N
2070 struct bio *bio, *wbio;
2071
2072 bio = r1_bio->bios[r1_bio->read_disk];
2073
a68e5870
N
2074 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2075 /* ouch - failed to read all of that. */
2076 if (!fix_sync_read_error(r1_bio))
2077 return;
7ca78d57
N
2078
2079 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2080 process_checks(r1_bio);
2081
d11c171e
N
2082 /*
2083 * schedule writes
2084 */
1da177e4
LT
2085 atomic_set(&r1_bio->remaining, 1);
2086 for (i = 0; i < disks ; i++) {
2087 wbio = r1_bio->bios[i];
3e198f78
N
2088 if (wbio->bi_end_io == NULL ||
2089 (wbio->bi_end_io == end_sync_read &&
2090 (i == r1_bio->read_disk ||
2091 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2092 continue;
2093
796a5cf0 2094 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
212e7eb7
N
2095 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2096 wbio->bi_opf |= MD_FAILFAST;
2097
3e198f78 2098 wbio->bi_end_io = end_sync_write;
1da177e4 2099 atomic_inc(&r1_bio->remaining);
aa8b57aa 2100 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2101
1da177e4
LT
2102 generic_make_request(wbio);
2103 }
2104
2105 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2106 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2107 int s = r1_bio->sectors;
2108 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2109 test_bit(R1BIO_WriteError, &r1_bio->state))
2110 reschedule_retry(r1_bio);
2111 else {
2112 put_buf(r1_bio);
2113 md_done_sync(mddev, s, 1);
2114 }
1da177e4
LT
2115 }
2116}
2117
2118/*
2119 * This is a kernel thread which:
2120 *
2121 * 1. Retries failed read operations on working mirrors.
2122 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2123 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2124 */
2125
e8096360 2126static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2127 sector_t sect, int sectors)
2128{
fd01b88c 2129 struct mddev *mddev = conf->mddev;
867868fb
N
2130 while(sectors) {
2131 int s = sectors;
2132 int d = read_disk;
2133 int success = 0;
2134 int start;
3cb03002 2135 struct md_rdev *rdev;
867868fb
N
2136
2137 if (s > (PAGE_SIZE>>9))
2138 s = PAGE_SIZE >> 9;
2139
2140 do {
d2eb35ac
N
2141 sector_t first_bad;
2142 int bad_sectors;
2143
707a6a42
N
2144 rcu_read_lock();
2145 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2146 if (rdev &&
da8840a7 2147 (test_bit(In_sync, &rdev->flags) ||
2148 (!test_bit(Faulty, &rdev->flags) &&
2149 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2150 is_badblock(rdev, sect, s,
707a6a42
N
2151 &first_bad, &bad_sectors) == 0) {
2152 atomic_inc(&rdev->nr_pending);
2153 rcu_read_unlock();
2154 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2155 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2156 success = 1;
2157 rdev_dec_pending(rdev, mddev);
2158 if (success)
2159 break;
2160 } else
2161 rcu_read_unlock();
2162 d++;
2163 if (d == conf->raid_disks * 2)
2164 d = 0;
867868fb
N
2165 } while (!success && d != read_disk);
2166
2167 if (!success) {
d8f05d29 2168 /* Cannot read from anywhere - mark it bad */
3cb03002 2169 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2170 if (!rdev_set_badblocks(rdev, sect, s, 0))
2171 md_error(mddev, rdev);
867868fb
N
2172 break;
2173 }
2174 /* write it back and re-read */
2175 start = d;
2176 while (d != read_disk) {
2177 if (d==0)
8f19ccb2 2178 d = conf->raid_disks * 2;
867868fb 2179 d--;
707a6a42
N
2180 rcu_read_lock();
2181 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2182 if (rdev &&
707a6a42
N
2183 !test_bit(Faulty, &rdev->flags)) {
2184 atomic_inc(&rdev->nr_pending);
2185 rcu_read_unlock();
d8f05d29
N
2186 r1_sync_page_io(rdev, sect, s,
2187 conf->tmppage, WRITE);
707a6a42
N
2188 rdev_dec_pending(rdev, mddev);
2189 } else
2190 rcu_read_unlock();
867868fb
N
2191 }
2192 d = start;
2193 while (d != read_disk) {
2194 char b[BDEVNAME_SIZE];
2195 if (d==0)
8f19ccb2 2196 d = conf->raid_disks * 2;
867868fb 2197 d--;
707a6a42
N
2198 rcu_read_lock();
2199 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2200 if (rdev &&
b8cb6b4c 2201 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2202 atomic_inc(&rdev->nr_pending);
2203 rcu_read_unlock();
d8f05d29
N
2204 if (r1_sync_page_io(rdev, sect, s,
2205 conf->tmppage, READ)) {
867868fb 2206 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2207 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2208 mdname(mddev), s,
2209 (unsigned long long)(sect +
2210 rdev->data_offset),
2211 bdevname(rdev->bdev, b));
867868fb 2212 }
707a6a42
N
2213 rdev_dec_pending(rdev, mddev);
2214 } else
2215 rcu_read_unlock();
867868fb
N
2216 }
2217 sectors -= s;
2218 sect += s;
2219 }
2220}
2221
9f2c9d12 2222static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2223{
fd01b88c 2224 struct mddev *mddev = r1_bio->mddev;
e8096360 2225 struct r1conf *conf = mddev->private;
3cb03002 2226 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2227
2228 /* bio has the data to be written to device 'i' where
2229 * we just recently had a write error.
2230 * We repeatedly clone the bio and trim down to one block,
2231 * then try the write. Where the write fails we record
2232 * a bad block.
2233 * It is conceivable that the bio doesn't exactly align with
2234 * blocks. We must handle this somehow.
2235 *
2236 * We currently own a reference on the rdev.
2237 */
2238
2239 int block_sectors;
2240 sector_t sector;
2241 int sectors;
2242 int sect_to_write = r1_bio->sectors;
2243 int ok = 1;
2244
2245 if (rdev->badblocks.shift < 0)
2246 return 0;
2247
ab713cdc
ND
2248 block_sectors = roundup(1 << rdev->badblocks.shift,
2249 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2250 sector = r1_bio->sector;
2251 sectors = ((sector + block_sectors)
2252 & ~(sector_t)(block_sectors - 1))
2253 - sector;
2254
cd5ff9a1
N
2255 while (sect_to_write) {
2256 struct bio *wbio;
2257 if (sectors > sect_to_write)
2258 sectors = sect_to_write;
2259 /* Write at 'sector' for 'sectors'*/
2260
b783863f
KO
2261 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2262 unsigned vcnt = r1_bio->behind_page_count;
2263 struct bio_vec *vec = r1_bio->behind_bvecs;
2264
2265 while (!vec->bv_page) {
2266 vec++;
2267 vcnt--;
2268 }
2269
2270 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2271 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2272
2273 wbio->bi_vcnt = vcnt;
2274 } else {
2275 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2276 }
2277
796a5cf0 2278 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2279 wbio->bi_iter.bi_sector = r1_bio->sector;
2280 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2281
6678d83f 2282 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2283 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1 2284 wbio->bi_bdev = rdev->bdev;
4e49ea4a
MC
2285
2286 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2287 /* failure! */
2288 ok = rdev_set_badblocks(rdev, sector,
2289 sectors, 0)
2290 && ok;
2291
2292 bio_put(wbio);
2293 sect_to_write -= sectors;
2294 sector += sectors;
2295 sectors = block_sectors;
2296 }
2297 return ok;
2298}
2299
e8096360 2300static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2301{
2302 int m;
2303 int s = r1_bio->sectors;
8f19ccb2 2304 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2305 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2306 struct bio *bio = r1_bio->bios[m];
2307 if (bio->bi_end_io == NULL)
2308 continue;
4246a0b6 2309 if (!bio->bi_error &&
62096bce 2310 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2311 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2312 }
4246a0b6 2313 if (bio->bi_error &&
62096bce
N
2314 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2315 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2316 md_error(conf->mddev, rdev);
2317 }
2318 }
2319 put_buf(r1_bio);
2320 md_done_sync(conf->mddev, s, 1);
2321}
2322
e8096360 2323static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2324{
2325 int m;
55ce74d4 2326 bool fail = false;
8f19ccb2 2327 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2328 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2329 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2330 rdev_clear_badblocks(rdev,
2331 r1_bio->sector,
c6563a8c 2332 r1_bio->sectors, 0);
62096bce
N
2333 rdev_dec_pending(rdev, conf->mddev);
2334 } else if (r1_bio->bios[m] != NULL) {
2335 /* This drive got a write error. We need to
2336 * narrow down and record precise write
2337 * errors.
2338 */
55ce74d4 2339 fail = true;
62096bce
N
2340 if (!narrow_write_error(r1_bio, m)) {
2341 md_error(conf->mddev,
2342 conf->mirrors[m].rdev);
2343 /* an I/O failed, we can't clear the bitmap */
2344 set_bit(R1BIO_Degraded, &r1_bio->state);
2345 }
2346 rdev_dec_pending(conf->mirrors[m].rdev,
2347 conf->mddev);
2348 }
55ce74d4
N
2349 if (fail) {
2350 spin_lock_irq(&conf->device_lock);
2351 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
ccfc7bf1 2352 conf->nr_queued++;
55ce74d4
N
2353 spin_unlock_irq(&conf->device_lock);
2354 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2355 } else {
2356 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2357 close_write(r1_bio);
55ce74d4 2358 raid_end_bio_io(r1_bio);
bd8688a1 2359 }
62096bce
N
2360}
2361
e8096360 2362static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2363{
2364 int disk;
2365 int max_sectors;
fd01b88c 2366 struct mddev *mddev = conf->mddev;
62096bce
N
2367 struct bio *bio;
2368 char b[BDEVNAME_SIZE];
3cb03002 2369 struct md_rdev *rdev;
109e3765
N
2370 dev_t bio_dev;
2371 sector_t bio_sector;
62096bce
N
2372
2373 clear_bit(R1BIO_ReadError, &r1_bio->state);
2374 /* we got a read error. Maybe the drive is bad. Maybe just
2375 * the block and we can fix it.
2376 * We freeze all other IO, and try reading the block from
2377 * other devices. When we find one, we re-write
2378 * and check it that fixes the read error.
2379 * This is all done synchronously while the array is
2380 * frozen
2381 */
7449f699
TM
2382
2383 bio = r1_bio->bios[r1_bio->read_disk];
2384 bdevname(bio->bi_bdev, b);
109e3765
N
2385 bio_dev = bio->bi_bdev->bd_dev;
2386 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
7449f699
TM
2387 bio_put(bio);
2388 r1_bio->bios[r1_bio->read_disk] = NULL;
2389
2e52d449
N
2390 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2391 if (mddev->ro == 0
2392 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2393 freeze_array(conf, 1);
62096bce
N
2394 fix_read_error(conf, r1_bio->read_disk,
2395 r1_bio->sector, r1_bio->sectors);
2396 unfreeze_array(conf);
7449f699
TM
2397 } else {
2398 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2399 }
2400
2e52d449 2401 rdev_dec_pending(rdev, conf->mddev);
62096bce 2402
62096bce
N
2403read_more:
2404 disk = read_balance(conf, r1_bio, &max_sectors);
2405 if (disk == -1) {
1d41c216
N
2406 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2407 mdname(mddev), b, (unsigned long long)r1_bio->sector);
62096bce
N
2408 raid_end_bio_io(r1_bio);
2409 } else {
2410 const unsigned long do_sync
1eff9d32 2411 = r1_bio->master_bio->bi_opf & REQ_SYNC;
62096bce
N
2412 r1_bio->read_disk = disk;
2413 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2414 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2415 max_sectors);
62096bce
N
2416 r1_bio->bios[r1_bio->read_disk] = bio;
2417 rdev = conf->mirrors[disk].rdev;
1d41c216
N
2418 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2419 mdname(mddev),
2420 (unsigned long long)r1_bio->sector,
2421 bdevname(rdev->bdev, b));
4f024f37 2422 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2423 bio->bi_bdev = rdev->bdev;
2424 bio->bi_end_io = raid1_end_read_request;
796a5cf0 2425 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2e52d449
N
2426 if (test_bit(FailFast, &rdev->flags) &&
2427 test_bit(R1BIO_FailFast, &r1_bio->state))
2428 bio->bi_opf |= MD_FAILFAST;
62096bce
N
2429 bio->bi_private = r1_bio;
2430 if (max_sectors < r1_bio->sectors) {
2431 /* Drat - have to split this up more */
2432 struct bio *mbio = r1_bio->master_bio;
2433 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2434 - mbio->bi_iter.bi_sector);
62096bce
N
2435 r1_bio->sectors = max_sectors;
2436 spin_lock_irq(&conf->device_lock);
2437 if (mbio->bi_phys_segments == 0)
2438 mbio->bi_phys_segments = 2;
2439 else
2440 mbio->bi_phys_segments++;
2441 spin_unlock_irq(&conf->device_lock);
109e3765
N
2442 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2443 bio, bio_dev, bio_sector);
62096bce
N
2444 generic_make_request(bio);
2445 bio = NULL;
2446
2447 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2448
2449 r1_bio->master_bio = mbio;
aa8b57aa 2450 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2451 r1_bio->state = 0;
2452 set_bit(R1BIO_ReadError, &r1_bio->state);
2453 r1_bio->mddev = mddev;
4f024f37
KO
2454 r1_bio->sector = mbio->bi_iter.bi_sector +
2455 sectors_handled;
62096bce
N
2456
2457 goto read_more;
109e3765
N
2458 } else {
2459 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2460 bio, bio_dev, bio_sector);
62096bce 2461 generic_make_request(bio);
109e3765 2462 }
62096bce
N
2463 }
2464}
2465
4ed8731d 2466static void raid1d(struct md_thread *thread)
1da177e4 2467{
4ed8731d 2468 struct mddev *mddev = thread->mddev;
9f2c9d12 2469 struct r1bio *r1_bio;
1da177e4 2470 unsigned long flags;
e8096360 2471 struct r1conf *conf = mddev->private;
1da177e4 2472 struct list_head *head = &conf->retry_list;
e1dfa0a2 2473 struct blk_plug plug;
1da177e4
LT
2474
2475 md_check_recovery(mddev);
e1dfa0a2 2476
55ce74d4 2477 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2478 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2479 LIST_HEAD(tmp);
2480 spin_lock_irqsave(&conf->device_lock, flags);
2953079c 2481 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
ccfc7bf1
ND
2482 while (!list_empty(&conf->bio_end_io_list)) {
2483 list_move(conf->bio_end_io_list.prev, &tmp);
2484 conf->nr_queued--;
2485 }
55ce74d4
N
2486 }
2487 spin_unlock_irqrestore(&conf->device_lock, flags);
2488 while (!list_empty(&tmp)) {
a452744b
MP
2489 r1_bio = list_first_entry(&tmp, struct r1bio,
2490 retry_list);
55ce74d4 2491 list_del(&r1_bio->retry_list);
bd8688a1
N
2492 if (mddev->degraded)
2493 set_bit(R1BIO_Degraded, &r1_bio->state);
2494 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2495 close_write(r1_bio);
55ce74d4
N
2496 raid_end_bio_io(r1_bio);
2497 }
2498 }
2499
e1dfa0a2 2500 blk_start_plug(&plug);
1da177e4 2501 for (;;) {
191ea9b2 2502
0021b7bc 2503 flush_pending_writes(conf);
191ea9b2 2504
a35e63ef
N
2505 spin_lock_irqsave(&conf->device_lock, flags);
2506 if (list_empty(head)) {
2507 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2508 break;
a35e63ef 2509 }
9f2c9d12 2510 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2511 list_del(head->prev);
ddaf22ab 2512 conf->nr_queued--;
1da177e4
LT
2513 spin_unlock_irqrestore(&conf->device_lock, flags);
2514
2515 mddev = r1_bio->mddev;
070ec55d 2516 conf = mddev->private;
4367af55 2517 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2518 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2519 test_bit(R1BIO_WriteError, &r1_bio->state))
2520 handle_sync_write_finished(conf, r1_bio);
2521 else
4367af55 2522 sync_request_write(mddev, r1_bio);
cd5ff9a1 2523 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2524 test_bit(R1BIO_WriteError, &r1_bio->state))
2525 handle_write_finished(conf, r1_bio);
2526 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2527 handle_read_error(conf, r1_bio);
2528 else
d2eb35ac
N
2529 /* just a partial read to be scheduled from separate
2530 * context
2531 */
2532 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2533
1d9d5241 2534 cond_resched();
2953079c 2535 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2536 md_check_recovery(mddev);
1da177e4 2537 }
e1dfa0a2 2538 blk_finish_plug(&plug);
1da177e4
LT
2539}
2540
e8096360 2541static int init_resync(struct r1conf *conf)
1da177e4
LT
2542{
2543 int buffs;
2544
2545 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2546 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2547 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2548 conf->poolinfo);
2549 if (!conf->r1buf_pool)
2550 return -ENOMEM;
2551 conf->next_resync = 0;
2552 return 0;
2553}
2554
2555/*
2556 * perform a "sync" on one "block"
2557 *
2558 * We need to make sure that no normal I/O request - particularly write
2559 * requests - conflict with active sync requests.
2560 *
2561 * This is achieved by tracking pending requests and a 'barrier' concept
2562 * that can be installed to exclude normal IO requests.
2563 */
2564
849674e4
SL
2565static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2566 int *skipped)
1da177e4 2567{
e8096360 2568 struct r1conf *conf = mddev->private;
9f2c9d12 2569 struct r1bio *r1_bio;
1da177e4
LT
2570 struct bio *bio;
2571 sector_t max_sector, nr_sectors;
3e198f78 2572 int disk = -1;
1da177e4 2573 int i;
3e198f78
N
2574 int wonly = -1;
2575 int write_targets = 0, read_targets = 0;
57dab0bd 2576 sector_t sync_blocks;
e3b9703e 2577 int still_degraded = 0;
06f60385
N
2578 int good_sectors = RESYNC_SECTORS;
2579 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2580
2581 if (!conf->r1buf_pool)
2582 if (init_resync(conf))
57afd89f 2583 return 0;
1da177e4 2584
58c0fed4 2585 max_sector = mddev->dev_sectors;
1da177e4 2586 if (sector_nr >= max_sector) {
191ea9b2
N
2587 /* If we aborted, we need to abort the
2588 * sync on the 'current' bitmap chunk (there will
2589 * only be one in raid1 resync.
2590 * We can find the current addess in mddev->curr_resync
2591 */
6a806c51
N
2592 if (mddev->curr_resync < max_sector) /* aborted */
2593 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2594 &sync_blocks, 1);
6a806c51 2595 else /* completed sync */
191ea9b2 2596 conf->fullsync = 0;
6a806c51
N
2597
2598 bitmap_close_sync(mddev->bitmap);
1da177e4 2599 close_sync(conf);
c40f341f
GR
2600
2601 if (mddev_is_clustered(mddev)) {
2602 conf->cluster_sync_low = 0;
2603 conf->cluster_sync_high = 0;
c40f341f 2604 }
1da177e4
LT
2605 return 0;
2606 }
2607
07d84d10
N
2608 if (mddev->bitmap == NULL &&
2609 mddev->recovery_cp == MaxSector &&
6394cca5 2610 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2611 conf->fullsync == 0) {
2612 *skipped = 1;
2613 return max_sector - sector_nr;
2614 }
6394cca5
N
2615 /* before building a request, check if we can skip these blocks..
2616 * This call the bitmap_start_sync doesn't actually record anything
2617 */
e3b9703e 2618 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2619 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2620 /* We can skip this block, and probably several more */
2621 *skipped = 1;
2622 return sync_blocks;
2623 }
17999be4 2624
7ac50447
TM
2625 /*
2626 * If there is non-resync activity waiting for a turn, then let it
2627 * though before starting on this new sync request.
2628 */
2629 if (conf->nr_waiting)
2630 schedule_timeout_uninterruptible(1);
2631
c40f341f
GR
2632 /* we are incrementing sector_nr below. To be safe, we check against
2633 * sector_nr + two times RESYNC_SECTORS
2634 */
2635
2636 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2637 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
1c4588e9 2638 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2639
c2fd4c94 2640 raise_barrier(conf, sector_nr);
1da177e4 2641
3e198f78 2642 rcu_read_lock();
1da177e4 2643 /*
3e198f78
N
2644 * If we get a correctably read error during resync or recovery,
2645 * we might want to read from a different device. So we
2646 * flag all drives that could conceivably be read from for READ,
2647 * and any others (which will be non-In_sync devices) for WRITE.
2648 * If a read fails, we try reading from something else for which READ
2649 * is OK.
1da177e4 2650 */
1da177e4 2651
1da177e4
LT
2652 r1_bio->mddev = mddev;
2653 r1_bio->sector = sector_nr;
191ea9b2 2654 r1_bio->state = 0;
1da177e4 2655 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2656
8f19ccb2 2657 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2658 struct md_rdev *rdev;
1da177e4 2659 bio = r1_bio->bios[i];
2aabaa65 2660 bio_reset(bio);
1da177e4 2661
3e198f78
N
2662 rdev = rcu_dereference(conf->mirrors[i].rdev);
2663 if (rdev == NULL ||
06f60385 2664 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2665 if (i < conf->raid_disks)
2666 still_degraded = 1;
3e198f78 2667 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2668 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2669 bio->bi_end_io = end_sync_write;
2670 write_targets ++;
3e198f78
N
2671 } else {
2672 /* may need to read from here */
06f60385
N
2673 sector_t first_bad = MaxSector;
2674 int bad_sectors;
2675
2676 if (is_badblock(rdev, sector_nr, good_sectors,
2677 &first_bad, &bad_sectors)) {
2678 if (first_bad > sector_nr)
2679 good_sectors = first_bad - sector_nr;
2680 else {
2681 bad_sectors -= (sector_nr - first_bad);
2682 if (min_bad == 0 ||
2683 min_bad > bad_sectors)
2684 min_bad = bad_sectors;
2685 }
2686 }
2687 if (sector_nr < first_bad) {
2688 if (test_bit(WriteMostly, &rdev->flags)) {
2689 if (wonly < 0)
2690 wonly = i;
2691 } else {
2692 if (disk < 0)
2693 disk = i;
2694 }
796a5cf0 2695 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2696 bio->bi_end_io = end_sync_read;
2697 read_targets++;
d57368af
AL
2698 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2699 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2700 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2701 /*
2702 * The device is suitable for reading (InSync),
2703 * but has bad block(s) here. Let's try to correct them,
2704 * if we are doing resync or repair. Otherwise, leave
2705 * this device alone for this sync request.
2706 */
796a5cf0 2707 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2708 bio->bi_end_io = end_sync_write;
2709 write_targets++;
3e198f78 2710 }
3e198f78 2711 }
06f60385
N
2712 if (bio->bi_end_io) {
2713 atomic_inc(&rdev->nr_pending);
4f024f37 2714 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2715 bio->bi_bdev = rdev->bdev;
2716 bio->bi_private = r1_bio;
2e52d449
N
2717 if (test_bit(FailFast, &rdev->flags))
2718 bio->bi_opf |= MD_FAILFAST;
06f60385 2719 }
1da177e4 2720 }
3e198f78
N
2721 rcu_read_unlock();
2722 if (disk < 0)
2723 disk = wonly;
2724 r1_bio->read_disk = disk;
191ea9b2 2725
06f60385
N
2726 if (read_targets == 0 && min_bad > 0) {
2727 /* These sectors are bad on all InSync devices, so we
2728 * need to mark them bad on all write targets
2729 */
2730 int ok = 1;
8f19ccb2 2731 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2732 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2733 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2734 ok = rdev_set_badblocks(rdev, sector_nr,
2735 min_bad, 0
2736 ) && ok;
2737 }
2953079c 2738 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2739 *skipped = 1;
2740 put_buf(r1_bio);
2741
2742 if (!ok) {
2743 /* Cannot record the badblocks, so need to
2744 * abort the resync.
2745 * If there are multiple read targets, could just
2746 * fail the really bad ones ???
2747 */
2748 conf->recovery_disabled = mddev->recovery_disabled;
2749 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2750 return 0;
2751 } else
2752 return min_bad;
2753
2754 }
2755 if (min_bad > 0 && min_bad < good_sectors) {
2756 /* only resync enough to reach the next bad->good
2757 * transition */
2758 good_sectors = min_bad;
2759 }
2760
3e198f78
N
2761 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2762 /* extra read targets are also write targets */
2763 write_targets += read_targets-1;
2764
2765 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2766 /* There is nowhere to write, so all non-sync
2767 * drives must be failed - so we are finished
2768 */
b7219ccb
N
2769 sector_t rv;
2770 if (min_bad > 0)
2771 max_sector = sector_nr + min_bad;
2772 rv = max_sector - sector_nr;
57afd89f 2773 *skipped = 1;
1da177e4 2774 put_buf(r1_bio);
1da177e4
LT
2775 return rv;
2776 }
2777
c6207277
N
2778 if (max_sector > mddev->resync_max)
2779 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2780 if (max_sector > sector_nr + good_sectors)
2781 max_sector = sector_nr + good_sectors;
1da177e4 2782 nr_sectors = 0;
289e99e8 2783 sync_blocks = 0;
1da177e4
LT
2784 do {
2785 struct page *page;
2786 int len = PAGE_SIZE;
2787 if (sector_nr + (len>>9) > max_sector)
2788 len = (max_sector - sector_nr) << 9;
2789 if (len == 0)
2790 break;
6a806c51
N
2791 if (sync_blocks == 0) {
2792 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2793 &sync_blocks, still_degraded) &&
2794 !conf->fullsync &&
2795 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2796 break;
7571ae88 2797 if ((len >> 9) > sync_blocks)
6a806c51 2798 len = sync_blocks<<9;
ab7a30c7 2799 }
191ea9b2 2800
8f19ccb2 2801 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2802 bio = r1_bio->bios[i];
2803 if (bio->bi_end_io) {
d11c171e 2804 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2805 if (bio_add_page(bio, page, len, 0) == 0) {
2806 /* stop here */
d11c171e 2807 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2808 while (i > 0) {
2809 i--;
2810 bio = r1_bio->bios[i];
6a806c51
N
2811 if (bio->bi_end_io==NULL)
2812 continue;
1da177e4
LT
2813 /* remove last page from this bio */
2814 bio->bi_vcnt--;
4f024f37 2815 bio->bi_iter.bi_size -= len;
b7c44ed9 2816 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4
LT
2817 }
2818 goto bio_full;
2819 }
2820 }
2821 }
2822 nr_sectors += len>>9;
2823 sector_nr += len>>9;
191ea9b2 2824 sync_blocks -= (len>>9);
1da177e4
LT
2825 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2826 bio_full:
1da177e4
LT
2827 r1_bio->sectors = nr_sectors;
2828
c40f341f
GR
2829 if (mddev_is_clustered(mddev) &&
2830 conf->cluster_sync_high < sector_nr + nr_sectors) {
2831 conf->cluster_sync_low = mddev->curr_resync_completed;
2832 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2833 /* Send resync message */
2834 md_cluster_ops->resync_info_update(mddev,
2835 conf->cluster_sync_low,
2836 conf->cluster_sync_high);
2837 }
2838
d11c171e
N
2839 /* For a user-requested sync, we read all readable devices and do a
2840 * compare
2841 */
2842 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2843 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2844 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2845 bio = r1_bio->bios[i];
2846 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2847 read_targets--;
ddac7c7e 2848 md_sync_acct(bio->bi_bdev, nr_sectors);
2e52d449
N
2849 if (read_targets == 1)
2850 bio->bi_opf &= ~MD_FAILFAST;
d11c171e
N
2851 generic_make_request(bio);
2852 }
2853 }
2854 } else {
2855 atomic_set(&r1_bio->remaining, 1);
2856 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2857 md_sync_acct(bio->bi_bdev, nr_sectors);
2e52d449
N
2858 if (read_targets == 1)
2859 bio->bi_opf &= ~MD_FAILFAST;
d11c171e 2860 generic_make_request(bio);
1da177e4 2861
d11c171e 2862 }
1da177e4
LT
2863 return nr_sectors;
2864}
2865
fd01b88c 2866static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2867{
2868 if (sectors)
2869 return sectors;
2870
2871 return mddev->dev_sectors;
2872}
2873
e8096360 2874static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2875{
e8096360 2876 struct r1conf *conf;
709ae487 2877 int i;
0eaf822c 2878 struct raid1_info *disk;
3cb03002 2879 struct md_rdev *rdev;
709ae487 2880 int err = -ENOMEM;
1da177e4 2881
e8096360 2882 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2883 if (!conf)
709ae487 2884 goto abort;
1da177e4 2885
0eaf822c 2886 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2887 * mddev->raid_disks * 2,
1da177e4
LT
2888 GFP_KERNEL);
2889 if (!conf->mirrors)
709ae487 2890 goto abort;
1da177e4 2891
ddaf22ab
N
2892 conf->tmppage = alloc_page(GFP_KERNEL);
2893 if (!conf->tmppage)
709ae487 2894 goto abort;
ddaf22ab 2895
709ae487 2896 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2897 if (!conf->poolinfo)
709ae487 2898 goto abort;
8f19ccb2 2899 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2900 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2901 r1bio_pool_free,
2902 conf->poolinfo);
2903 if (!conf->r1bio_pool)
709ae487
N
2904 goto abort;
2905
ed9bfdf1 2906 conf->poolinfo->mddev = mddev;
1da177e4 2907
c19d5798 2908 err = -EINVAL;
e7e72bf6 2909 spin_lock_init(&conf->device_lock);
dafb20fa 2910 rdev_for_each(rdev, mddev) {
aba336bd 2911 struct request_queue *q;
709ae487 2912 int disk_idx = rdev->raid_disk;
1da177e4
LT
2913 if (disk_idx >= mddev->raid_disks
2914 || disk_idx < 0)
2915 continue;
c19d5798 2916 if (test_bit(Replacement, &rdev->flags))
02b898f2 2917 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2918 else
2919 disk = conf->mirrors + disk_idx;
1da177e4 2920
c19d5798
N
2921 if (disk->rdev)
2922 goto abort;
1da177e4 2923 disk->rdev = rdev;
aba336bd 2924 q = bdev_get_queue(rdev->bdev);
1da177e4
LT
2925
2926 disk->head_position = 0;
12cee5a8 2927 disk->seq_start = MaxSector;
1da177e4
LT
2928 }
2929 conf->raid_disks = mddev->raid_disks;
2930 conf->mddev = mddev;
1da177e4 2931 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2932 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2933
2934 spin_lock_init(&conf->resync_lock);
17999be4 2935 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2936
191ea9b2 2937 bio_list_init(&conf->pending_bio_list);
34db0cd6 2938 conf->pending_count = 0;
d890fa2b 2939 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2940
79ef3a8a 2941 conf->start_next_window = MaxSector;
2942 conf->current_window_requests = conf->next_window_requests = 0;
2943
c19d5798 2944 err = -EIO;
8f19ccb2 2945 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2946
2947 disk = conf->mirrors + i;
2948
c19d5798
N
2949 if (i < conf->raid_disks &&
2950 disk[conf->raid_disks].rdev) {
2951 /* This slot has a replacement. */
2952 if (!disk->rdev) {
2953 /* No original, just make the replacement
2954 * a recovering spare
2955 */
2956 disk->rdev =
2957 disk[conf->raid_disks].rdev;
2958 disk[conf->raid_disks].rdev = NULL;
2959 } else if (!test_bit(In_sync, &disk->rdev->flags))
2960 /* Original is not in_sync - bad */
2961 goto abort;
2962 }
2963
5fd6c1dc
N
2964 if (!disk->rdev ||
2965 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2966 disk->head_position = 0;
4f0a5e01
JB
2967 if (disk->rdev &&
2968 (disk->rdev->saved_raid_disk < 0))
918f0238 2969 conf->fullsync = 1;
be4d3280 2970 }
1da177e4 2971 }
709ae487 2972
709ae487 2973 err = -ENOMEM;
0232605d 2974 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 2975 if (!conf->thread)
709ae487 2976 goto abort;
1da177e4 2977
709ae487
N
2978 return conf;
2979
2980 abort:
2981 if (conf) {
644df1a8 2982 mempool_destroy(conf->r1bio_pool);
709ae487
N
2983 kfree(conf->mirrors);
2984 safe_put_page(conf->tmppage);
2985 kfree(conf->poolinfo);
2986 kfree(conf);
2987 }
2988 return ERR_PTR(err);
2989}
2990
afa0f557 2991static void raid1_free(struct mddev *mddev, void *priv);
849674e4 2992static int raid1_run(struct mddev *mddev)
709ae487 2993{
e8096360 2994 struct r1conf *conf;
709ae487 2995 int i;
3cb03002 2996 struct md_rdev *rdev;
5220ea1e 2997 int ret;
2ff8cc2c 2998 bool discard_supported = false;
709ae487
N
2999
3000 if (mddev->level != 1) {
1d41c216
N
3001 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3002 mdname(mddev), mddev->level);
709ae487
N
3003 return -EIO;
3004 }
3005 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3006 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3007 mdname(mddev));
709ae487
N
3008 return -EIO;
3009 }
1da177e4 3010 /*
709ae487
N
3011 * copy the already verified devices into our private RAID1
3012 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3013 * should be freed in raid1_free()]
1da177e4 3014 */
709ae487
N
3015 if (mddev->private == NULL)
3016 conf = setup_conf(mddev);
3017 else
3018 conf = mddev->private;
1da177e4 3019
709ae487
N
3020 if (IS_ERR(conf))
3021 return PTR_ERR(conf);
1da177e4 3022
c8dc9c65 3023 if (mddev->queue)
5026d7a9
PA
3024 blk_queue_max_write_same_sectors(mddev->queue, 0);
3025
dafb20fa 3026 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3027 if (!mddev->gendisk)
3028 continue;
709ae487
N
3029 disk_stack_limits(mddev->gendisk, rdev->bdev,
3030 rdev->data_offset << 9);
2ff8cc2c
SL
3031 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3032 discard_supported = true;
1da177e4 3033 }
191ea9b2 3034
709ae487
N
3035 mddev->degraded = 0;
3036 for (i=0; i < conf->raid_disks; i++)
3037 if (conf->mirrors[i].rdev == NULL ||
3038 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3039 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3040 mddev->degraded++;
3041
3042 if (conf->raid_disks - mddev->degraded == 1)
3043 mddev->recovery_cp = MaxSector;
3044
8c6ac868 3045 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3046 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3047 mdname(mddev));
3048 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3049 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3050 mddev->raid_disks);
709ae487 3051
1da177e4
LT
3052 /*
3053 * Ok, everything is just fine now
3054 */
709ae487
N
3055 mddev->thread = conf->thread;
3056 conf->thread = NULL;
3057 mddev->private = conf;
46533ff7 3058 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3059
1f403624 3060 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3061
1ed7242e 3062 if (mddev->queue) {
2ff8cc2c
SL
3063 if (discard_supported)
3064 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3065 mddev->queue);
3066 else
3067 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3068 mddev->queue);
1ed7242e 3069 }
5220ea1e 3070
3071 ret = md_integrity_register(mddev);
5aa61f42
N
3072 if (ret) {
3073 md_unregister_thread(&mddev->thread);
afa0f557 3074 raid1_free(mddev, conf);
5aa61f42 3075 }
5220ea1e 3076 return ret;
1da177e4
LT
3077}
3078
afa0f557 3079static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3080{
afa0f557 3081 struct r1conf *conf = priv;
409c57f3 3082
644df1a8 3083 mempool_destroy(conf->r1bio_pool);
990a8baf 3084 kfree(conf->mirrors);
0fea7ed8 3085 safe_put_page(conf->tmppage);
990a8baf 3086 kfree(conf->poolinfo);
1da177e4 3087 kfree(conf);
1da177e4
LT
3088}
3089
fd01b88c 3090static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3091{
3092 /* no resync is happening, and there is enough space
3093 * on all devices, so we can resize.
3094 * We need to make sure resync covers any new space.
3095 * If the array is shrinking we should possibly wait until
3096 * any io in the removed space completes, but it hardly seems
3097 * worth it.
3098 */
a4a6125a
N
3099 sector_t newsize = raid1_size(mddev, sectors, 0);
3100 if (mddev->external_size &&
3101 mddev->array_sectors > newsize)
b522adcd 3102 return -EINVAL;
a4a6125a
N
3103 if (mddev->bitmap) {
3104 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3105 if (ret)
3106 return ret;
3107 }
3108 md_set_array_sectors(mddev, newsize);
f233ea5c 3109 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 3110 revalidate_disk(mddev->gendisk);
b522adcd 3111 if (sectors > mddev->dev_sectors &&
b098636c 3112 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3113 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3114 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3115 }
b522adcd 3116 mddev->dev_sectors = sectors;
4b5c7ae8 3117 mddev->resync_max_sectors = sectors;
1da177e4
LT
3118 return 0;
3119}
3120
fd01b88c 3121static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3122{
3123 /* We need to:
3124 * 1/ resize the r1bio_pool
3125 * 2/ resize conf->mirrors
3126 *
3127 * We allocate a new r1bio_pool if we can.
3128 * Then raise a device barrier and wait until all IO stops.
3129 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3130 *
3131 * At the same time, we "pack" the devices so that all the missing
3132 * devices have the higher raid_disk numbers.
1da177e4
LT
3133 */
3134 mempool_t *newpool, *oldpool;
3135 struct pool_info *newpoolinfo;
0eaf822c 3136 struct raid1_info *newmirrors;
e8096360 3137 struct r1conf *conf = mddev->private;
63c70c4f 3138 int cnt, raid_disks;
c04be0aa 3139 unsigned long flags;
b5470dc5 3140 int d, d2, err;
1da177e4 3141
63c70c4f 3142 /* Cannot change chunk_size, layout, or level */
664e7c41 3143 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3144 mddev->layout != mddev->new_layout ||
3145 mddev->level != mddev->new_level) {
664e7c41 3146 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3147 mddev->new_layout = mddev->layout;
3148 mddev->new_level = mddev->level;
3149 return -EINVAL;
3150 }
3151
28c1b9fd
GR
3152 if (!mddev_is_clustered(mddev)) {
3153 err = md_allow_write(mddev);
3154 if (err)
3155 return err;
3156 }
2a2275d6 3157
63c70c4f
N
3158 raid_disks = mddev->raid_disks + mddev->delta_disks;
3159
6ea9c07c
N
3160 if (raid_disks < conf->raid_disks) {
3161 cnt=0;
3162 for (d= 0; d < conf->raid_disks; d++)
3163 if (conf->mirrors[d].rdev)
3164 cnt++;
3165 if (cnt > raid_disks)
1da177e4 3166 return -EBUSY;
6ea9c07c 3167 }
1da177e4
LT
3168
3169 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3170 if (!newpoolinfo)
3171 return -ENOMEM;
3172 newpoolinfo->mddev = mddev;
8f19ccb2 3173 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3174
3175 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3176 r1bio_pool_free, newpoolinfo);
3177 if (!newpool) {
3178 kfree(newpoolinfo);
3179 return -ENOMEM;
3180 }
0eaf822c 3181 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3182 GFP_KERNEL);
1da177e4
LT
3183 if (!newmirrors) {
3184 kfree(newpoolinfo);
3185 mempool_destroy(newpool);
3186 return -ENOMEM;
3187 }
1da177e4 3188
e2d59925 3189 freeze_array(conf, 0);
1da177e4
LT
3190
3191 /* ok, everything is stopped */
3192 oldpool = conf->r1bio_pool;
3193 conf->r1bio_pool = newpool;
6ea9c07c 3194
a88aa786 3195 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3196 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3197 if (rdev && rdev->raid_disk != d2) {
36fad858 3198 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3199 rdev->raid_disk = d2;
36fad858
NK
3200 sysfs_unlink_rdev(mddev, rdev);
3201 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3202 pr_warn("md/raid1:%s: cannot register rd%d\n",
3203 mdname(mddev), rdev->raid_disk);
6ea9c07c 3204 }
a88aa786
N
3205 if (rdev)
3206 newmirrors[d2++].rdev = rdev;
3207 }
1da177e4
LT
3208 kfree(conf->mirrors);
3209 conf->mirrors = newmirrors;
3210 kfree(conf->poolinfo);
3211 conf->poolinfo = newpoolinfo;
3212
c04be0aa 3213 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3214 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3215 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3216 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3217 mddev->delta_disks = 0;
1da177e4 3218
e2d59925 3219 unfreeze_array(conf);
1da177e4 3220
985ca973 3221 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3222 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3223 md_wakeup_thread(mddev->thread);
3224
3225 mempool_destroy(oldpool);
3226 return 0;
3227}
3228
fd01b88c 3229static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3230{
e8096360 3231 struct r1conf *conf = mddev->private;
36fa3063
N
3232
3233 switch(state) {
6eef4b21
N
3234 case 2: /* wake for suspend */
3235 wake_up(&conf->wait_barrier);
3236 break;
9e6603da 3237 case 1:
07169fd4 3238 freeze_array(conf, 0);
36fa3063 3239 break;
9e6603da 3240 case 0:
07169fd4 3241 unfreeze_array(conf);
36fa3063
N
3242 break;
3243 }
36fa3063
N
3244}
3245
fd01b88c 3246static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3247{
3248 /* raid1 can take over:
3249 * raid5 with 2 devices, any layout or chunk size
3250 */
3251 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3252 struct r1conf *conf;
709ae487
N
3253 mddev->new_level = 1;
3254 mddev->new_layout = 0;
3255 mddev->new_chunk_sectors = 0;
3256 conf = setup_conf(mddev);
6995f0b2 3257 if (!IS_ERR(conf)) {
07169fd4 3258 /* Array must appear to be quiesced */
3259 conf->array_frozen = 1;
6995f0b2
SL
3260 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
3261 clear_bit(MD_JOURNAL_CLEAN, &mddev->flags);
3262 }
709ae487
N
3263 return conf;
3264 }
3265 return ERR_PTR(-EINVAL);
3266}
1da177e4 3267
84fc4b56 3268static struct md_personality raid1_personality =
1da177e4
LT
3269{
3270 .name = "raid1",
2604b703 3271 .level = 1,
1da177e4 3272 .owner = THIS_MODULE,
849674e4
SL
3273 .make_request = raid1_make_request,
3274 .run = raid1_run,
afa0f557 3275 .free = raid1_free,
849674e4
SL
3276 .status = raid1_status,
3277 .error_handler = raid1_error,
1da177e4
LT
3278 .hot_add_disk = raid1_add_disk,
3279 .hot_remove_disk= raid1_remove_disk,
3280 .spare_active = raid1_spare_active,
849674e4 3281 .sync_request = raid1_sync_request,
1da177e4 3282 .resize = raid1_resize,
80c3a6ce 3283 .size = raid1_size,
63c70c4f 3284 .check_reshape = raid1_reshape,
36fa3063 3285 .quiesce = raid1_quiesce,
709ae487 3286 .takeover = raid1_takeover,
5c675f83 3287 .congested = raid1_congested,
1da177e4
LT
3288};
3289
3290static int __init raid_init(void)
3291{
2604b703 3292 return register_md_personality(&raid1_personality);
1da177e4
LT
3293}
3294
3295static void raid_exit(void)
3296{
2604b703 3297 unregister_md_personality(&raid1_personality);
1da177e4
LT
3298}
3299
3300module_init(raid_init);
3301module_exit(raid_exit);
3302MODULE_LICENSE("GPL");
0efb9e61 3303MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3304MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3305MODULE_ALIAS("md-raid1");
2604b703 3306MODULE_ALIAS("md-level-1");
34db0cd6
N
3307
3308module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);