md-new-param-to-calc_dev_sboffset
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
bff61975 37#include <linux/seq_file.h>
43b2e5d8 38#include "md.h"
ef740c37
CH
39#include "raid1.h"
40#include "bitmap.h"
191ea9b2
N
41
42#define DEBUG 0
43#if DEBUG
44#define PRINTK(x...) printk(x)
45#else
46#define PRINTK(x...)
47#endif
1da177e4
LT
48
49/*
50 * Number of guaranteed r1bios in case of extreme VM load:
51 */
52#define NR_RAID1_BIOS 256
53
1da177e4
LT
54
55static void unplug_slaves(mddev_t *mddev);
56
17999be4
N
57static void allow_barrier(conf_t *conf);
58static void lower_barrier(conf_t *conf);
1da177e4 59
dd0fc66f 60static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
61{
62 struct pool_info *pi = data;
63 r1bio_t *r1_bio;
64 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
65
66 /* allocate a r1bio with room for raid_disks entries in the bios array */
9ffae0cf 67 r1_bio = kzalloc(size, gfp_flags);
ed9bfdf1 68 if (!r1_bio && pi->mddev)
1da177e4
LT
69 unplug_slaves(pi->mddev);
70
71 return r1_bio;
72}
73
74static void r1bio_pool_free(void *r1_bio, void *data)
75{
76 kfree(r1_bio);
77}
78
79#define RESYNC_BLOCK_SIZE (64*1024)
80//#define RESYNC_BLOCK_SIZE PAGE_SIZE
81#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83#define RESYNC_WINDOW (2048*1024)
84
dd0fc66f 85static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
86{
87 struct pool_info *pi = data;
88 struct page *page;
89 r1bio_t *r1_bio;
90 struct bio *bio;
91 int i, j;
92
93 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
94 if (!r1_bio) {
95 unplug_slaves(pi->mddev);
96 return NULL;
97 }
98
99 /*
100 * Allocate bios : 1 for reading, n-1 for writing
101 */
102 for (j = pi->raid_disks ; j-- ; ) {
6746557f 103 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
104 if (!bio)
105 goto out_free_bio;
106 r1_bio->bios[j] = bio;
107 }
108 /*
109 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
110 * the first bio.
111 * If this is a user-requested check/repair, allocate
112 * RESYNC_PAGES for each bio.
1da177e4 113 */
d11c171e
N
114 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
115 j = pi->raid_disks;
116 else
117 j = 1;
118 while(j--) {
119 bio = r1_bio->bios[j];
120 for (i = 0; i < RESYNC_PAGES; i++) {
121 page = alloc_page(gfp_flags);
122 if (unlikely(!page))
123 goto out_free_pages;
124
125 bio->bi_io_vec[i].bv_page = page;
303a0e11 126 bio->bi_vcnt = i+1;
d11c171e
N
127 }
128 }
129 /* If not user-requests, copy the page pointers to all bios */
130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 for (i=0; i<RESYNC_PAGES ; i++)
132 for (j=1; j<pi->raid_disks; j++)
133 r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
135 }
136
137 r1_bio->master_bio = NULL;
138
139 return r1_bio;
140
141out_free_pages:
303a0e11
N
142 for (j=0 ; j < pi->raid_disks; j++)
143 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
144 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 145 j = -1;
1da177e4
LT
146out_free_bio:
147 while ( ++j < pi->raid_disks )
148 bio_put(r1_bio->bios[j]);
149 r1bio_pool_free(r1_bio, data);
150 return NULL;
151}
152
153static void r1buf_pool_free(void *__r1_bio, void *data)
154{
155 struct pool_info *pi = data;
d11c171e 156 int i,j;
1da177e4 157 r1bio_t *r1bio = __r1_bio;
1da177e4 158
d11c171e
N
159 for (i = 0; i < RESYNC_PAGES; i++)
160 for (j = pi->raid_disks; j-- ;) {
161 if (j == 0 ||
162 r1bio->bios[j]->bi_io_vec[i].bv_page !=
163 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 164 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 165 }
1da177e4
LT
166 for (i=0 ; i < pi->raid_disks; i++)
167 bio_put(r1bio->bios[i]);
168
169 r1bio_pool_free(r1bio, data);
170}
171
172static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
173{
174 int i;
175
176 for (i = 0; i < conf->raid_disks; i++) {
177 struct bio **bio = r1_bio->bios + i;
cf30a473 178 if (*bio && *bio != IO_BLOCKED)
1da177e4
LT
179 bio_put(*bio);
180 *bio = NULL;
181 }
182}
183
858119e1 184static void free_r1bio(r1bio_t *r1_bio)
1da177e4 185{
070ec55d 186 conf_t *conf = r1_bio->mddev->private;
1da177e4
LT
187
188 /*
189 * Wake up any possible resync thread that waits for the device
190 * to go idle.
191 */
17999be4 192 allow_barrier(conf);
1da177e4
LT
193
194 put_all_bios(conf, r1_bio);
195 mempool_free(r1_bio, conf->r1bio_pool);
196}
197
858119e1 198static void put_buf(r1bio_t *r1_bio)
1da177e4 199{
070ec55d 200 conf_t *conf = r1_bio->mddev->private;
3e198f78
N
201 int i;
202
203 for (i=0; i<conf->raid_disks; i++) {
204 struct bio *bio = r1_bio->bios[i];
205 if (bio->bi_end_io)
206 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
207 }
1da177e4
LT
208
209 mempool_free(r1_bio, conf->r1buf_pool);
210
17999be4 211 lower_barrier(conf);
1da177e4
LT
212}
213
214static void reschedule_retry(r1bio_t *r1_bio)
215{
216 unsigned long flags;
217 mddev_t *mddev = r1_bio->mddev;
070ec55d 218 conf_t *conf = mddev->private;
1da177e4
LT
219
220 spin_lock_irqsave(&conf->device_lock, flags);
221 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 222 conf->nr_queued ++;
1da177e4
LT
223 spin_unlock_irqrestore(&conf->device_lock, flags);
224
17999be4 225 wake_up(&conf->wait_barrier);
1da177e4
LT
226 md_wakeup_thread(mddev->thread);
227}
228
229/*
230 * raid_end_bio_io() is called when we have finished servicing a mirrored
231 * operation and are ready to return a success/failure code to the buffer
232 * cache layer.
233 */
234static void raid_end_bio_io(r1bio_t *r1_bio)
235{
236 struct bio *bio = r1_bio->master_bio;
237
4b6d287f
N
238 /* if nobody has done the final endio yet, do it now */
239 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
240 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
241 (bio_data_dir(bio) == WRITE) ? "write" : "read",
242 (unsigned long long) bio->bi_sector,
243 (unsigned long long) bio->bi_sector +
244 (bio->bi_size >> 9) - 1);
245
6712ecf8 246 bio_endio(bio,
4b6d287f
N
247 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
248 }
1da177e4
LT
249 free_r1bio(r1_bio);
250}
251
252/*
253 * Update disk head position estimator based on IRQ completion info.
254 */
255static inline void update_head_pos(int disk, r1bio_t *r1_bio)
256{
070ec55d 257 conf_t *conf = r1_bio->mddev->private;
1da177e4
LT
258
259 conf->mirrors[disk].head_position =
260 r1_bio->sector + (r1_bio->sectors);
261}
262
6712ecf8 263static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
264{
265 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 266 r1bio_t *r1_bio = bio->bi_private;
1da177e4 267 int mirror;
070ec55d 268 conf_t *conf = r1_bio->mddev->private;
1da177e4 269
1da177e4
LT
270 mirror = r1_bio->read_disk;
271 /*
272 * this branch is our 'one mirror IO has finished' event handler:
273 */
ddaf22ab
N
274 update_head_pos(mirror, r1_bio);
275
dd00a99e
N
276 if (uptodate)
277 set_bit(R1BIO_Uptodate, &r1_bio->state);
278 else {
279 /* If all other devices have failed, we want to return
280 * the error upwards rather than fail the last device.
281 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 282 */
dd00a99e
N
283 unsigned long flags;
284 spin_lock_irqsave(&conf->device_lock, flags);
285 if (r1_bio->mddev->degraded == conf->raid_disks ||
286 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
287 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
288 uptodate = 1;
289 spin_unlock_irqrestore(&conf->device_lock, flags);
290 }
1da177e4 291
dd00a99e 292 if (uptodate)
1da177e4 293 raid_end_bio_io(r1_bio);
dd00a99e 294 else {
1da177e4
LT
295 /*
296 * oops, read error:
297 */
298 char b[BDEVNAME_SIZE];
299 if (printk_ratelimit())
9dd1e2fa
N
300 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
301 mdname(conf->mddev),
1da177e4
LT
302 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
303 reschedule_retry(r1_bio);
304 }
305
306 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
1da177e4
LT
307}
308
4e78064f
N
309static void r1_bio_write_done(r1bio_t *r1_bio, int vcnt, struct bio_vec *bv,
310 int behind)
311{
312 if (atomic_dec_and_test(&r1_bio->remaining))
313 {
314 /* it really is the end of this request */
315 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
316 /* free extra copy of the data pages */
317 int i = vcnt;
318 while (i--)
319 safe_put_page(bv[i].bv_page);
320 }
321 /* clear the bitmap if all writes complete successfully */
322 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
323 r1_bio->sectors,
324 !test_bit(R1BIO_Degraded, &r1_bio->state),
325 behind);
326 md_write_end(r1_bio->mddev);
327 raid_end_bio_io(r1_bio);
328 }
329}
330
6712ecf8 331static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
332{
333 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 334 r1bio_t *r1_bio = bio->bi_private;
a9701a30 335 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
070ec55d 336 conf_t *conf = r1_bio->mddev->private;
04b857f7 337 struct bio *to_put = NULL;
1da177e4 338
1da177e4
LT
339
340 for (mirror = 0; mirror < conf->raid_disks; mirror++)
341 if (r1_bio->bios[mirror] == bio)
342 break;
343
e9c7469b
TH
344 /*
345 * 'one mirror IO has finished' event handler:
346 */
347 r1_bio->bios[mirror] = NULL;
348 to_put = bio;
349 if (!uptodate) {
350 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
351 /* an I/O failed, we can't clear the bitmap */
352 set_bit(R1BIO_Degraded, &r1_bio->state);
353 } else
1da177e4 354 /*
e9c7469b
TH
355 * Set R1BIO_Uptodate in our master bio, so that we
356 * will return a good error code for to the higher
357 * levels even if IO on some other mirrored buffer
358 * fails.
359 *
360 * The 'master' represents the composite IO operation
361 * to user-side. So if something waits for IO, then it
362 * will wait for the 'master' bio.
1da177e4 363 */
e9c7469b
TH
364 set_bit(R1BIO_Uptodate, &r1_bio->state);
365
366 update_head_pos(mirror, r1_bio);
367
368 if (behind) {
369 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
370 atomic_dec(&r1_bio->behind_remaining);
371
372 /*
373 * In behind mode, we ACK the master bio once the I/O
374 * has safely reached all non-writemostly
375 * disks. Setting the Returned bit ensures that this
376 * gets done only once -- we don't ever want to return
377 * -EIO here, instead we'll wait
378 */
379 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
380 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
381 /* Maybe we can return now */
382 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
383 struct bio *mbio = r1_bio->master_bio;
384 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
385 (unsigned long long) mbio->bi_sector,
386 (unsigned long long) mbio->bi_sector +
387 (mbio->bi_size >> 9) - 1);
388 bio_endio(mbio, 0);
4b6d287f
N
389 }
390 }
391 }
e9c7469b
TH
392 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
393
1da177e4 394 /*
1da177e4
LT
395 * Let's see if all mirrored write operations have finished
396 * already.
397 */
4e78064f 398 r1_bio_write_done(r1_bio, bio->bi_vcnt, bio->bi_io_vec, behind);
c70810b3 399
04b857f7
N
400 if (to_put)
401 bio_put(to_put);
1da177e4
LT
402}
403
404
405/*
406 * This routine returns the disk from which the requested read should
407 * be done. There is a per-array 'next expected sequential IO' sector
408 * number - if this matches on the next IO then we use the last disk.
409 * There is also a per-disk 'last know head position' sector that is
410 * maintained from IRQ contexts, both the normal and the resync IO
411 * completion handlers update this position correctly. If there is no
412 * perfect sequential match then we pick the disk whose head is closest.
413 *
414 * If there are 2 mirrors in the same 2 devices, performance degrades
415 * because position is mirror, not device based.
416 *
417 * The rdev for the device selected will have nr_pending incremented.
418 */
419static int read_balance(conf_t *conf, r1bio_t *r1_bio)
420{
af3a2cd6 421 const sector_t this_sector = r1_bio->sector;
1da177e4 422 const int sectors = r1_bio->sectors;
f3ac8bf7
N
423 int new_disk = -1;
424 int start_disk;
425 int i;
1da177e4 426 sector_t new_distance, current_distance;
8ddf9efe 427 mdk_rdev_t *rdev;
f3ac8bf7 428 int choose_first;
1da177e4
LT
429
430 rcu_read_lock();
431 /*
8ddf9efe 432 * Check if we can balance. We can balance on the whole
1da177e4
LT
433 * device if no resync is going on, or below the resync window.
434 * We take the first readable disk when above the resync window.
435 */
436 retry:
437 if (conf->mddev->recovery_cp < MaxSector &&
438 (this_sector + sectors >= conf->next_resync)) {
f3ac8bf7
N
439 choose_first = 1;
440 start_disk = 0;
441 } else {
442 choose_first = 0;
443 start_disk = conf->last_used;
1da177e4
LT
444 }
445
1da177e4 446 /* make sure the disk is operational */
f3ac8bf7
N
447 for (i = 0 ; i < conf->raid_disks ; i++) {
448 int disk = start_disk + i;
449 if (disk >= conf->raid_disks)
450 disk -= conf->raid_disks;
451
452 rdev = rcu_dereference(conf->mirrors[disk].rdev);
453 if (r1_bio->bios[disk] == IO_BLOCKED
454 || rdev == NULL
455 || !test_bit(In_sync, &rdev->flags))
456 continue;
457
458 new_disk = disk;
459 if (!test_bit(WriteMostly, &rdev->flags))
8ddf9efe 460 break;
1da177e4 461 }
8ddf9efe 462
f3ac8bf7 463 if (new_disk < 0 || choose_first)
8ddf9efe
N
464 goto rb_out;
465
1da177e4
LT
466 /*
467 * Don't change to another disk for sequential reads:
468 */
469 if (conf->next_seq_sect == this_sector)
470 goto rb_out;
471 if (this_sector == conf->mirrors[new_disk].head_position)
472 goto rb_out;
473
f3ac8bf7
N
474 current_distance = abs(this_sector
475 - conf->mirrors[new_disk].head_position);
1da177e4 476
f3ac8bf7
N
477 /* look for a better disk - i.e. head is closer */
478 start_disk = new_disk;
479 for (i = 1; i < conf->raid_disks; i++) {
480 int disk = start_disk + 1;
481 if (disk >= conf->raid_disks)
482 disk -= conf->raid_disks;
1da177e4 483
d6065f7b 484 rdev = rcu_dereference(conf->mirrors[disk].rdev);
f3ac8bf7
N
485 if (r1_bio->bios[disk] == IO_BLOCKED
486 || rdev == NULL
487 || !test_bit(In_sync, &rdev->flags)
488 || test_bit(WriteMostly, &rdev->flags))
1da177e4
LT
489 continue;
490
491 if (!atomic_read(&rdev->nr_pending)) {
492 new_disk = disk;
1da177e4
LT
493 break;
494 }
495 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
496 if (new_distance < current_distance) {
497 current_distance = new_distance;
498 new_disk = disk;
1da177e4 499 }
f3ac8bf7 500 }
1da177e4 501
8ddf9efe 502 rb_out:
1da177e4 503 if (new_disk >= 0) {
d6065f7b 504 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
8ddf9efe
N
505 if (!rdev)
506 goto retry;
507 atomic_inc(&rdev->nr_pending);
b2d444d7 508 if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
509 /* cannot risk returning a device that failed
510 * before we inc'ed nr_pending
511 */
03c902e1 512 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
513 goto retry;
514 }
8ddf9efe
N
515 conf->next_seq_sect = this_sector + sectors;
516 conf->last_used = new_disk;
1da177e4
LT
517 }
518 rcu_read_unlock();
519
520 return new_disk;
521}
522
523static void unplug_slaves(mddev_t *mddev)
524{
070ec55d 525 conf_t *conf = mddev->private;
1da177e4
LT
526 int i;
527
528 rcu_read_lock();
529 for (i=0; i<mddev->raid_disks; i++) {
d6065f7b 530 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
b2d444d7 531 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 532 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
1da177e4
LT
533
534 atomic_inc(&rdev->nr_pending);
535 rcu_read_unlock();
536
2ad8b1ef 537 blk_unplug(r_queue);
1da177e4
LT
538
539 rdev_dec_pending(rdev, mddev);
540 rcu_read_lock();
541 }
542 }
543 rcu_read_unlock();
544}
545
165125e1 546static void raid1_unplug(struct request_queue *q)
1da177e4 547{
191ea9b2
N
548 mddev_t *mddev = q->queuedata;
549
550 unplug_slaves(mddev);
551 md_wakeup_thread(mddev->thread);
1da177e4
LT
552}
553
0d129228
N
554static int raid1_congested(void *data, int bits)
555{
556 mddev_t *mddev = data;
070ec55d 557 conf_t *conf = mddev->private;
0d129228
N
558 int i, ret = 0;
559
3fa841d7
N
560 if (mddev_congested(mddev, bits))
561 return 1;
562
0d129228
N
563 rcu_read_lock();
564 for (i = 0; i < mddev->raid_disks; i++) {
565 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
566 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 567 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
568
569 /* Note the '|| 1' - when read_balance prefers
570 * non-congested targets, it can be removed
571 */
91a9e99d 572 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
573 ret |= bdi_congested(&q->backing_dev_info, bits);
574 else
575 ret &= bdi_congested(&q->backing_dev_info, bits);
576 }
577 }
578 rcu_read_unlock();
579 return ret;
580}
581
582
a35e63ef
N
583static int flush_pending_writes(conf_t *conf)
584{
585 /* Any writes that have been queued but are awaiting
586 * bitmap updates get flushed here.
587 * We return 1 if any requests were actually submitted.
588 */
589 int rv = 0;
590
591 spin_lock_irq(&conf->device_lock);
592
593 if (conf->pending_bio_list.head) {
594 struct bio *bio;
595 bio = bio_list_get(&conf->pending_bio_list);
596 blk_remove_plug(conf->mddev->queue);
597 spin_unlock_irq(&conf->device_lock);
598 /* flush any pending bitmap writes to
599 * disk before proceeding w/ I/O */
600 bitmap_unplug(conf->mddev->bitmap);
601
602 while (bio) { /* submit pending writes */
603 struct bio *next = bio->bi_next;
604 bio->bi_next = NULL;
605 generic_make_request(bio);
606 bio = next;
607 }
608 rv = 1;
609 } else
610 spin_unlock_irq(&conf->device_lock);
611 return rv;
612}
613
17999be4
N
614/* Barriers....
615 * Sometimes we need to suspend IO while we do something else,
616 * either some resync/recovery, or reconfigure the array.
617 * To do this we raise a 'barrier'.
618 * The 'barrier' is a counter that can be raised multiple times
619 * to count how many activities are happening which preclude
620 * normal IO.
621 * We can only raise the barrier if there is no pending IO.
622 * i.e. if nr_pending == 0.
623 * We choose only to raise the barrier if no-one is waiting for the
624 * barrier to go down. This means that as soon as an IO request
625 * is ready, no other operations which require a barrier will start
626 * until the IO request has had a chance.
627 *
628 * So: regular IO calls 'wait_barrier'. When that returns there
629 * is no backgroup IO happening, It must arrange to call
630 * allow_barrier when it has finished its IO.
631 * backgroup IO calls must call raise_barrier. Once that returns
632 * there is no normal IO happeing. It must arrange to call
633 * lower_barrier when the particular background IO completes.
1da177e4
LT
634 */
635#define RESYNC_DEPTH 32
636
17999be4 637static void raise_barrier(conf_t *conf)
1da177e4
LT
638{
639 spin_lock_irq(&conf->resync_lock);
17999be4
N
640
641 /* Wait until no block IO is waiting */
642 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
643 conf->resync_lock,
644 raid1_unplug(conf->mddev->queue));
645
646 /* block any new IO from starting */
647 conf->barrier++;
648
046abeed 649 /* Now wait for all pending IO to complete */
17999be4
N
650 wait_event_lock_irq(conf->wait_barrier,
651 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
652 conf->resync_lock,
653 raid1_unplug(conf->mddev->queue));
654
655 spin_unlock_irq(&conf->resync_lock);
656}
657
658static void lower_barrier(conf_t *conf)
659{
660 unsigned long flags;
709ae487 661 BUG_ON(conf->barrier <= 0);
17999be4
N
662 spin_lock_irqsave(&conf->resync_lock, flags);
663 conf->barrier--;
664 spin_unlock_irqrestore(&conf->resync_lock, flags);
665 wake_up(&conf->wait_barrier);
666}
667
668static void wait_barrier(conf_t *conf)
669{
670 spin_lock_irq(&conf->resync_lock);
671 if (conf->barrier) {
672 conf->nr_waiting++;
673 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
674 conf->resync_lock,
675 raid1_unplug(conf->mddev->queue));
676 conf->nr_waiting--;
1da177e4 677 }
17999be4 678 conf->nr_pending++;
1da177e4
LT
679 spin_unlock_irq(&conf->resync_lock);
680}
681
17999be4
N
682static void allow_barrier(conf_t *conf)
683{
684 unsigned long flags;
685 spin_lock_irqsave(&conf->resync_lock, flags);
686 conf->nr_pending--;
687 spin_unlock_irqrestore(&conf->resync_lock, flags);
688 wake_up(&conf->wait_barrier);
689}
690
ddaf22ab
N
691static void freeze_array(conf_t *conf)
692{
693 /* stop syncio and normal IO and wait for everything to
694 * go quite.
695 * We increment barrier and nr_waiting, and then
1c830532
N
696 * wait until nr_pending match nr_queued+1
697 * This is called in the context of one normal IO request
698 * that has failed. Thus any sync request that might be pending
699 * will be blocked by nr_pending, and we need to wait for
700 * pending IO requests to complete or be queued for re-try.
701 * Thus the number queued (nr_queued) plus this request (1)
702 * must match the number of pending IOs (nr_pending) before
703 * we continue.
ddaf22ab
N
704 */
705 spin_lock_irq(&conf->resync_lock);
706 conf->barrier++;
707 conf->nr_waiting++;
708 wait_event_lock_irq(conf->wait_barrier,
1c830532 709 conf->nr_pending == conf->nr_queued+1,
ddaf22ab 710 conf->resync_lock,
a35e63ef
N
711 ({ flush_pending_writes(conf);
712 raid1_unplug(conf->mddev->queue); }));
ddaf22ab
N
713 spin_unlock_irq(&conf->resync_lock);
714}
715static void unfreeze_array(conf_t *conf)
716{
717 /* reverse the effect of the freeze */
718 spin_lock_irq(&conf->resync_lock);
719 conf->barrier--;
720 conf->nr_waiting--;
721 wake_up(&conf->wait_barrier);
722 spin_unlock_irq(&conf->resync_lock);
723}
724
17999be4 725
4e78064f
N
726/* duplicate the data pages for behind I/O
727 * We return a list of bio_vec rather than just page pointers
728 * as it makes freeing easier
729 */
730static struct bio_vec *alloc_behind_pages(struct bio *bio)
4b6d287f
N
731{
732 int i;
733 struct bio_vec *bvec;
4e78064f 734 struct bio_vec *pages = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f
N
735 GFP_NOIO);
736 if (unlikely(!pages))
737 goto do_sync_io;
738
4b6d287f 739 bio_for_each_segment(bvec, bio, i) {
4e78064f
N
740 pages[i].bv_page = alloc_page(GFP_NOIO);
741 if (unlikely(!pages[i].bv_page))
4b6d287f 742 goto do_sync_io;
4e78064f 743 memcpy(kmap(pages[i].bv_page) + bvec->bv_offset,
4b6d287f 744 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
4e78064f 745 kunmap(pages[i].bv_page);
4b6d287f
N
746 kunmap(bvec->bv_page);
747 }
748
749 return pages;
750
751do_sync_io:
752 if (pages)
4e78064f
N
753 for (i = 0; i < bio->bi_vcnt && pages[i].bv_page; i++)
754 put_page(pages[i].bv_page);
4b6d287f
N
755 kfree(pages);
756 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
757 return NULL;
758}
759
21a52c6d 760static int make_request(mddev_t *mddev, struct bio * bio)
1da177e4 761{
070ec55d 762 conf_t *conf = mddev->private;
1da177e4
LT
763 mirror_info_t *mirror;
764 r1bio_t *r1_bio;
765 struct bio *read_bio;
191ea9b2 766 int i, targets = 0, disks;
84255d10 767 struct bitmap *bitmap;
191ea9b2 768 unsigned long flags;
4e78064f 769 struct bio_vec *behind_pages = NULL;
a362357b 770 const int rw = bio_data_dir(bio);
2c7d46ec 771 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 772 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
6bfe0b49 773 mdk_rdev_t *blocked_rdev;
191ea9b2 774
1da177e4
LT
775 /*
776 * Register the new request and wait if the reconstruction
777 * thread has put up a bar for new requests.
778 * Continue immediately if no resync is active currently.
779 */
62de608d 780
3d310eb7
N
781 md_write_start(mddev, bio); /* wait on superblock update early */
782
6eef4b21
N
783 if (bio_data_dir(bio) == WRITE &&
784 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
785 bio->bi_sector < mddev->suspend_hi) {
786 /* As the suspend_* range is controlled by
787 * userspace, we want an interruptible
788 * wait.
789 */
790 DEFINE_WAIT(w);
791 for (;;) {
792 flush_signals(current);
793 prepare_to_wait(&conf->wait_barrier,
794 &w, TASK_INTERRUPTIBLE);
795 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
796 bio->bi_sector >= mddev->suspend_hi)
797 break;
798 schedule();
799 }
800 finish_wait(&conf->wait_barrier, &w);
801 }
62de608d 802
17999be4 803 wait_barrier(conf);
1da177e4 804
84255d10
N
805 bitmap = mddev->bitmap;
806
1da177e4
LT
807 /*
808 * make_request() can abort the operation when READA is being
809 * used and no empty request is available.
810 *
811 */
812 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
813
814 r1_bio->master_bio = bio;
815 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 816 r1_bio->state = 0;
1da177e4
LT
817 r1_bio->mddev = mddev;
818 r1_bio->sector = bio->bi_sector;
819
a362357b 820 if (rw == READ) {
1da177e4
LT
821 /*
822 * read balancing logic:
823 */
824 int rdisk = read_balance(conf, r1_bio);
825
826 if (rdisk < 0) {
827 /* couldn't find anywhere to read from */
828 raid_end_bio_io(r1_bio);
829 return 0;
830 }
831 mirror = conf->mirrors + rdisk;
832
e555190d
N
833 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
834 bitmap) {
835 /* Reading from a write-mostly device must
836 * take care not to over-take any writes
837 * that are 'behind'
838 */
839 wait_event(bitmap->behind_wait,
840 atomic_read(&bitmap->behind_writes) == 0);
841 }
1da177e4
LT
842 r1_bio->read_disk = rdisk;
843
a167f663 844 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1da177e4
LT
845
846 r1_bio->bios[rdisk] = read_bio;
847
848 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
849 read_bio->bi_bdev = mirror->rdev->bdev;
850 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 851 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
852 read_bio->bi_private = r1_bio;
853
854 generic_make_request(read_bio);
855 return 0;
856 }
857
858 /*
859 * WRITE:
860 */
861 /* first select target devices under spinlock and
862 * inc refcount on their rdev. Record them by setting
863 * bios[x] to bio
864 */
865 disks = conf->raid_disks;
6bfe0b49
DW
866 retry_write:
867 blocked_rdev = NULL;
1da177e4
LT
868 rcu_read_lock();
869 for (i = 0; i < disks; i++) {
6bfe0b49
DW
870 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
871 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
872 atomic_inc(&rdev->nr_pending);
873 blocked_rdev = rdev;
874 break;
875 }
876 if (rdev && !test_bit(Faulty, &rdev->flags)) {
1da177e4 877 atomic_inc(&rdev->nr_pending);
b2d444d7 878 if (test_bit(Faulty, &rdev->flags)) {
03c902e1 879 rdev_dec_pending(rdev, mddev);
1da177e4 880 r1_bio->bios[i] = NULL;
964147d5 881 } else {
1da177e4 882 r1_bio->bios[i] = bio;
964147d5
N
883 targets++;
884 }
1da177e4
LT
885 } else
886 r1_bio->bios[i] = NULL;
887 }
888 rcu_read_unlock();
889
6bfe0b49
DW
890 if (unlikely(blocked_rdev)) {
891 /* Wait for this device to become unblocked */
892 int j;
893
894 for (j = 0; j < i; j++)
895 if (r1_bio->bios[j])
896 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
897
898 allow_barrier(conf);
899 md_wait_for_blocked_rdev(blocked_rdev, mddev);
900 wait_barrier(conf);
901 goto retry_write;
902 }
903
4b6d287f
N
904 BUG_ON(targets == 0); /* we never fail the last device */
905
191ea9b2
N
906 if (targets < conf->raid_disks) {
907 /* array is degraded, we will not clear the bitmap
908 * on I/O completion (see raid1_end_write_request) */
909 set_bit(R1BIO_Degraded, &r1_bio->state);
910 }
911
e555190d
N
912 /* do behind I/O ?
913 * Not if there are too many, or cannot allocate memory,
914 * or a reader on WriteMostly is waiting for behind writes
915 * to flush */
4b6d287f 916 if (bitmap &&
42a04b50
N
917 (atomic_read(&bitmap->behind_writes)
918 < mddev->bitmap_info.max_write_behind) &&
e555190d 919 !waitqueue_active(&bitmap->behind_wait) &&
4b6d287f
N
920 (behind_pages = alloc_behind_pages(bio)) != NULL)
921 set_bit(R1BIO_BehindIO, &r1_bio->state);
922
4e78064f 923 atomic_set(&r1_bio->remaining, 1);
4b6d287f 924 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 925
4e78064f
N
926 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
927 test_bit(R1BIO_BehindIO, &r1_bio->state));
1da177e4
LT
928 for (i = 0; i < disks; i++) {
929 struct bio *mbio;
930 if (!r1_bio->bios[i])
931 continue;
932
a167f663 933 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1da177e4
LT
934 r1_bio->bios[i] = mbio;
935
936 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
937 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
938 mbio->bi_end_io = raid1_end_write_request;
e9c7469b 939 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1da177e4
LT
940 mbio->bi_private = r1_bio;
941
4b6d287f
N
942 if (behind_pages) {
943 struct bio_vec *bvec;
944 int j;
945
946 /* Yes, I really want the '__' version so that
947 * we clear any unused pointer in the io_vec, rather
948 * than leave them unchanged. This is important
949 * because when we come to free the pages, we won't
046abeed 950 * know the original bi_idx, so we just free
4b6d287f
N
951 * them all
952 */
953 __bio_for_each_segment(bvec, mbio, j, 0)
4e78064f 954 bvec->bv_page = behind_pages[j].bv_page;
4b6d287f
N
955 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
956 atomic_inc(&r1_bio->behind_remaining);
957 }
958
1da177e4 959 atomic_inc(&r1_bio->remaining);
4e78064f
N
960 spin_lock_irqsave(&conf->device_lock, flags);
961 bio_list_add(&conf->pending_bio_list, mbio);
962 blk_plug_device(mddev->queue);
963 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 964 }
4e78064f 965 r1_bio_write_done(r1_bio, bio->bi_vcnt, behind_pages, behind_pages != NULL);
4b6d287f 966 kfree(behind_pages); /* the behind pages are attached to the bios now */
1da177e4 967
4e78064f 968 /* In case raid1d snuck in to freeze_array */
a35e63ef
N
969 wake_up(&conf->wait_barrier);
970
e3881a68
LE
971 if (do_sync)
972 md_wakeup_thread(mddev->thread);
191ea9b2 973
1da177e4
LT
974 return 0;
975}
976
977static void status(struct seq_file *seq, mddev_t *mddev)
978{
070ec55d 979 conf_t *conf = mddev->private;
1da177e4
LT
980 int i;
981
982 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 983 conf->raid_disks - mddev->degraded);
ddac7c7e
N
984 rcu_read_lock();
985 for (i = 0; i < conf->raid_disks; i++) {
986 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 987 seq_printf(seq, "%s",
ddac7c7e
N
988 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
989 }
990 rcu_read_unlock();
1da177e4
LT
991 seq_printf(seq, "]");
992}
993
994
995static void error(mddev_t *mddev, mdk_rdev_t *rdev)
996{
997 char b[BDEVNAME_SIZE];
070ec55d 998 conf_t *conf = mddev->private;
1da177e4
LT
999
1000 /*
1001 * If it is not operational, then we have already marked it as dead
1002 * else if it is the last working disks, ignore the error, let the
1003 * next level up know.
1004 * else mark the drive as failed
1005 */
b2d444d7 1006 if (test_bit(In_sync, &rdev->flags)
4044ba58 1007 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1008 /*
1009 * Don't fail the drive, act as though we were just a
4044ba58
N
1010 * normal single drive.
1011 * However don't try a recovery from this drive as
1012 * it is very likely to fail.
1da177e4 1013 */
4044ba58 1014 mddev->recovery_disabled = 1;
1da177e4 1015 return;
4044ba58 1016 }
c04be0aa
N
1017 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1018 unsigned long flags;
1019 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1020 mddev->degraded++;
dd00a99e 1021 set_bit(Faulty, &rdev->flags);
c04be0aa 1022 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1023 /*
1024 * if recovery is running, make sure it aborts.
1025 */
dfc70645 1026 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1027 } else
1028 set_bit(Faulty, &rdev->flags);
850b2b42 1029 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1030 printk(KERN_ALERT
1031 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1032 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1033 mdname(mddev), bdevname(rdev->bdev, b),
1034 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1035}
1036
1037static void print_conf(conf_t *conf)
1038{
1039 int i;
1da177e4 1040
9dd1e2fa 1041 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1042 if (!conf) {
9dd1e2fa 1043 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1044 return;
1045 }
9dd1e2fa 1046 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1047 conf->raid_disks);
1048
ddac7c7e 1049 rcu_read_lock();
1da177e4
LT
1050 for (i = 0; i < conf->raid_disks; i++) {
1051 char b[BDEVNAME_SIZE];
ddac7c7e
N
1052 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1053 if (rdev)
9dd1e2fa 1054 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1055 i, !test_bit(In_sync, &rdev->flags),
1056 !test_bit(Faulty, &rdev->flags),
1057 bdevname(rdev->bdev,b));
1da177e4 1058 }
ddac7c7e 1059 rcu_read_unlock();
1da177e4
LT
1060}
1061
1062static void close_sync(conf_t *conf)
1063{
17999be4
N
1064 wait_barrier(conf);
1065 allow_barrier(conf);
1da177e4
LT
1066
1067 mempool_destroy(conf->r1buf_pool);
1068 conf->r1buf_pool = NULL;
1069}
1070
1071static int raid1_spare_active(mddev_t *mddev)
1072{
1073 int i;
1074 conf_t *conf = mddev->private;
6b965620
N
1075 int count = 0;
1076 unsigned long flags;
1da177e4
LT
1077
1078 /*
1079 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1080 * and mark them readable.
1081 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1082 */
1083 for (i = 0; i < conf->raid_disks; i++) {
ddac7c7e
N
1084 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1085 if (rdev
1086 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1087 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1088 count++;
e6ffbcb6 1089 sysfs_notify_dirent(rdev->sysfs_state);
1da177e4
LT
1090 }
1091 }
6b965620
N
1092 spin_lock_irqsave(&conf->device_lock, flags);
1093 mddev->degraded -= count;
1094 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1095
1096 print_conf(conf);
6b965620 1097 return count;
1da177e4
LT
1098}
1099
1100
1101static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1102{
1103 conf_t *conf = mddev->private;
199050ea 1104 int err = -EEXIST;
41158c7e 1105 int mirror = 0;
1da177e4 1106 mirror_info_t *p;
6c2fce2e
NB
1107 int first = 0;
1108 int last = mddev->raid_disks - 1;
1da177e4 1109
6c2fce2e
NB
1110 if (rdev->raid_disk >= 0)
1111 first = last = rdev->raid_disk;
1112
1113 for (mirror = first; mirror <= last; mirror++)
1da177e4
LT
1114 if ( !(p=conf->mirrors+mirror)->rdev) {
1115
8f6c2e4b
MP
1116 disk_stack_limits(mddev->gendisk, rdev->bdev,
1117 rdev->data_offset << 9);
627a2d3c
N
1118 /* as we don't honour merge_bvec_fn, we must
1119 * never risk violating it, so limit
1120 * ->max_segments to one lying with a single
1121 * page, as a one page request is never in
1122 * violation.
1da177e4 1123 */
627a2d3c
N
1124 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1125 blk_queue_max_segments(mddev->queue, 1);
1126 blk_queue_segment_boundary(mddev->queue,
1127 PAGE_CACHE_SIZE - 1);
1128 }
1da177e4
LT
1129
1130 p->head_position = 0;
1131 rdev->raid_disk = mirror;
199050ea 1132 err = 0;
6aea114a
N
1133 /* As all devices are equivalent, we don't need a full recovery
1134 * if this was recently any drive of the array
1135 */
1136 if (rdev->saved_raid_disk < 0)
41158c7e 1137 conf->fullsync = 1;
d6065f7b 1138 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1139 break;
1140 }
ac5e7113 1141 md_integrity_add_rdev(rdev, mddev);
1da177e4 1142 print_conf(conf);
199050ea 1143 return err;
1da177e4
LT
1144}
1145
1146static int raid1_remove_disk(mddev_t *mddev, int number)
1147{
1148 conf_t *conf = mddev->private;
1149 int err = 0;
1150 mdk_rdev_t *rdev;
1151 mirror_info_t *p = conf->mirrors+ number;
1152
1153 print_conf(conf);
1154 rdev = p->rdev;
1155 if (rdev) {
b2d444d7 1156 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1157 atomic_read(&rdev->nr_pending)) {
1158 err = -EBUSY;
1159 goto abort;
1160 }
046abeed 1161 /* Only remove non-faulty devices if recovery
dfc70645
N
1162 * is not possible.
1163 */
1164 if (!test_bit(Faulty, &rdev->flags) &&
8f9e0ee3 1165 !mddev->recovery_disabled &&
dfc70645
N
1166 mddev->degraded < conf->raid_disks) {
1167 err = -EBUSY;
1168 goto abort;
1169 }
1da177e4 1170 p->rdev = NULL;
fbd568a3 1171 synchronize_rcu();
1da177e4
LT
1172 if (atomic_read(&rdev->nr_pending)) {
1173 /* lost the race, try later */
1174 err = -EBUSY;
1175 p->rdev = rdev;
ac5e7113 1176 goto abort;
1da177e4 1177 }
ac5e7113 1178 md_integrity_register(mddev);
1da177e4
LT
1179 }
1180abort:
1181
1182 print_conf(conf);
1183 return err;
1184}
1185
1186
6712ecf8 1187static void end_sync_read(struct bio *bio, int error)
1da177e4 1188{
7b92813c 1189 r1bio_t *r1_bio = bio->bi_private;
d11c171e 1190 int i;
1da177e4 1191
d11c171e
N
1192 for (i=r1_bio->mddev->raid_disks; i--; )
1193 if (r1_bio->bios[i] == bio)
1194 break;
1195 BUG_ON(i < 0);
1196 update_head_pos(i, r1_bio);
1da177e4
LT
1197 /*
1198 * we have read a block, now it needs to be re-written,
1199 * or re-read if the read failed.
1200 * We don't do much here, just schedule handling by raid1d
1201 */
69382e85 1202 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1203 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1204
1205 if (atomic_dec_and_test(&r1_bio->remaining))
1206 reschedule_retry(r1_bio);
1da177e4
LT
1207}
1208
6712ecf8 1209static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1210{
1211 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 1212 r1bio_t *r1_bio = bio->bi_private;
1da177e4 1213 mddev_t *mddev = r1_bio->mddev;
070ec55d 1214 conf_t *conf = mddev->private;
1da177e4
LT
1215 int i;
1216 int mirror=0;
1217
1da177e4
LT
1218 for (i = 0; i < conf->raid_disks; i++)
1219 if (r1_bio->bios[i] == bio) {
1220 mirror = i;
1221 break;
1222 }
6b1117d5 1223 if (!uptodate) {
57dab0bd 1224 sector_t sync_blocks = 0;
6b1117d5
N
1225 sector_t s = r1_bio->sector;
1226 long sectors_to_go = r1_bio->sectors;
1227 /* make sure these bits doesn't get cleared. */
1228 do {
5e3db645 1229 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1230 &sync_blocks, 1);
1231 s += sync_blocks;
1232 sectors_to_go -= sync_blocks;
1233 } while (sectors_to_go > 0);
1da177e4 1234 md_error(mddev, conf->mirrors[mirror].rdev);
6b1117d5 1235 }
e3b9703e 1236
1da177e4
LT
1237 update_head_pos(mirror, r1_bio);
1238
1239 if (atomic_dec_and_test(&r1_bio->remaining)) {
73d5c38a 1240 sector_t s = r1_bio->sectors;
1da177e4 1241 put_buf(r1_bio);
73d5c38a 1242 md_done_sync(mddev, s, uptodate);
1da177e4 1243 }
1da177e4
LT
1244}
1245
1246static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1247{
070ec55d 1248 conf_t *conf = mddev->private;
1da177e4
LT
1249 int i;
1250 int disks = conf->raid_disks;
1251 struct bio *bio, *wbio;
1252
1253 bio = r1_bio->bios[r1_bio->read_disk];
1254
69382e85 1255
d11c171e
N
1256 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1257 /* We have read all readable devices. If we haven't
1258 * got the block, then there is no hope left.
1259 * If we have, then we want to do a comparison
1260 * and skip the write if everything is the same.
1261 * If any blocks failed to read, then we need to
1262 * attempt an over-write
1263 */
1264 int primary;
1265 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1266 for (i=0; i<mddev->raid_disks; i++)
1267 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1268 md_error(mddev, conf->mirrors[i].rdev);
1269
1270 md_done_sync(mddev, r1_bio->sectors, 1);
1271 put_buf(r1_bio);
1272 return;
1273 }
1274 for (primary=0; primary<mddev->raid_disks; primary++)
1275 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1276 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1277 r1_bio->bios[primary]->bi_end_io = NULL;
03c902e1 1278 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
d11c171e
N
1279 break;
1280 }
1281 r1_bio->read_disk = primary;
1282 for (i=0; i<mddev->raid_disks; i++)
ed456662 1283 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
d11c171e
N
1284 int j;
1285 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1286 struct bio *pbio = r1_bio->bios[primary];
1287 struct bio *sbio = r1_bio->bios[i];
ed456662
MA
1288
1289 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1290 for (j = vcnt; j-- ; ) {
1291 struct page *p, *s;
1292 p = pbio->bi_io_vec[j].bv_page;
1293 s = sbio->bi_io_vec[j].bv_page;
1294 if (memcmp(page_address(p),
1295 page_address(s),
1296 PAGE_SIZE))
1297 break;
1298 }
1299 } else
1300 j = 0;
d11c171e
N
1301 if (j >= 0)
1302 mddev->resync_mismatches += r1_bio->sectors;
cf7a4416
N
1303 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1304 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
d11c171e 1305 sbio->bi_end_io = NULL;
03c902e1
N
1306 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1307 } else {
d11c171e 1308 /* fixup the bio for reuse */
698b18c1 1309 int size;
d11c171e
N
1310 sbio->bi_vcnt = vcnt;
1311 sbio->bi_size = r1_bio->sectors << 9;
1312 sbio->bi_idx = 0;
1313 sbio->bi_phys_segments = 0;
d11c171e
N
1314 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1315 sbio->bi_flags |= 1 << BIO_UPTODATE;
1316 sbio->bi_next = NULL;
1317 sbio->bi_sector = r1_bio->sector +
1318 conf->mirrors[i].rdev->data_offset;
1319 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
698b18c1
N
1320 size = sbio->bi_size;
1321 for (j = 0; j < vcnt ; j++) {
1322 struct bio_vec *bi;
1323 bi = &sbio->bi_io_vec[j];
1324 bi->bv_offset = 0;
1325 if (size > PAGE_SIZE)
1326 bi->bv_len = PAGE_SIZE;
1327 else
1328 bi->bv_len = size;
1329 size -= PAGE_SIZE;
1330 memcpy(page_address(bi->bv_page),
3eda22d1
N
1331 page_address(pbio->bi_io_vec[j].bv_page),
1332 PAGE_SIZE);
698b18c1 1333 }
3eda22d1 1334
d11c171e
N
1335 }
1336 }
1337 }
1da177e4 1338 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
69382e85
N
1339 /* ouch - failed to read all of that.
1340 * Try some synchronous reads of other devices to get
1341 * good data, much like with normal read errors. Only
ddac7c7e 1342 * read into the pages we already have so we don't
69382e85
N
1343 * need to re-issue the read request.
1344 * We don't need to freeze the array, because being in an
1345 * active sync request, there is no normal IO, and
1346 * no overlapping syncs.
1da177e4 1347 */
69382e85
N
1348 sector_t sect = r1_bio->sector;
1349 int sectors = r1_bio->sectors;
1350 int idx = 0;
1351
1352 while(sectors) {
1353 int s = sectors;
1354 int d = r1_bio->read_disk;
1355 int success = 0;
1356 mdk_rdev_t *rdev;
1357
1358 if (s > (PAGE_SIZE>>9))
1359 s = PAGE_SIZE >> 9;
1360 do {
1361 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
ddac7c7e
N
1362 /* No rcu protection needed here devices
1363 * can only be removed when no resync is
1364 * active, and resync is currently active
1365 */
69382e85 1366 rdev = conf->mirrors[d].rdev;
2b193363 1367 if (sync_page_io(rdev,
69382e85
N
1368 sect + rdev->data_offset,
1369 s<<9,
1370 bio->bi_io_vec[idx].bv_page,
1371 READ)) {
1372 success = 1;
1373 break;
1374 }
1375 }
1376 d++;
1377 if (d == conf->raid_disks)
1378 d = 0;
1379 } while (!success && d != r1_bio->read_disk);
1380
1381 if (success) {
097426f6 1382 int start = d;
69382e85
N
1383 /* write it back and re-read */
1384 set_bit(R1BIO_Uptodate, &r1_bio->state);
1385 while (d != r1_bio->read_disk) {
1386 if (d == 0)
1387 d = conf->raid_disks;
1388 d--;
1389 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1390 continue;
1391 rdev = conf->mirrors[d].rdev;
4dbcdc75 1392 atomic_add(s, &rdev->corrected_errors);
2b193363 1393 if (sync_page_io(rdev,
69382e85
N
1394 sect + rdev->data_offset,
1395 s<<9,
1396 bio->bi_io_vec[idx].bv_page,
097426f6
N
1397 WRITE) == 0)
1398 md_error(mddev, rdev);
1399 }
1400 d = start;
1401 while (d != r1_bio->read_disk) {
1402 if (d == 0)
1403 d = conf->raid_disks;
1404 d--;
1405 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1406 continue;
1407 rdev = conf->mirrors[d].rdev;
2b193363 1408 if (sync_page_io(rdev,
69382e85
N
1409 sect + rdev->data_offset,
1410 s<<9,
1411 bio->bi_io_vec[idx].bv_page,
097426f6 1412 READ) == 0)
69382e85 1413 md_error(mddev, rdev);
69382e85
N
1414 }
1415 } else {
1416 char b[BDEVNAME_SIZE];
1417 /* Cannot read from anywhere, array is toast */
1418 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
9dd1e2fa 1419 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
69382e85 1420 " for block %llu\n",
9dd1e2fa
N
1421 mdname(mddev),
1422 bdevname(bio->bi_bdev, b),
69382e85
N
1423 (unsigned long long)r1_bio->sector);
1424 md_done_sync(mddev, r1_bio->sectors, 0);
1425 put_buf(r1_bio);
1426 return;
1427 }
1428 sectors -= s;
1429 sect += s;
1430 idx ++;
1431 }
1da177e4 1432 }
d11c171e
N
1433
1434 /*
1435 * schedule writes
1436 */
1da177e4
LT
1437 atomic_set(&r1_bio->remaining, 1);
1438 for (i = 0; i < disks ; i++) {
1439 wbio = r1_bio->bios[i];
3e198f78
N
1440 if (wbio->bi_end_io == NULL ||
1441 (wbio->bi_end_io == end_sync_read &&
1442 (i == r1_bio->read_disk ||
1443 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1444 continue;
1445
3e198f78
N
1446 wbio->bi_rw = WRITE;
1447 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1448 atomic_inc(&r1_bio->remaining);
1449 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1450
1da177e4
LT
1451 generic_make_request(wbio);
1452 }
1453
1454 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1455 /* if we're here, all write(s) have completed, so clean up */
1da177e4
LT
1456 md_done_sync(mddev, r1_bio->sectors, 1);
1457 put_buf(r1_bio);
1458 }
1459}
1460
1461/*
1462 * This is a kernel thread which:
1463 *
1464 * 1. Retries failed read operations on working mirrors.
1465 * 2. Updates the raid superblock when problems encounter.
1466 * 3. Performs writes following reads for array syncronising.
1467 */
1468
867868fb
N
1469static void fix_read_error(conf_t *conf, int read_disk,
1470 sector_t sect, int sectors)
1471{
1472 mddev_t *mddev = conf->mddev;
1473 while(sectors) {
1474 int s = sectors;
1475 int d = read_disk;
1476 int success = 0;
1477 int start;
1478 mdk_rdev_t *rdev;
1479
1480 if (s > (PAGE_SIZE>>9))
1481 s = PAGE_SIZE >> 9;
1482
1483 do {
1484 /* Note: no rcu protection needed here
1485 * as this is synchronous in the raid1d thread
1486 * which is the thread that might remove
1487 * a device. If raid1d ever becomes multi-threaded....
1488 */
1489 rdev = conf->mirrors[d].rdev;
1490 if (rdev &&
1491 test_bit(In_sync, &rdev->flags) &&
2b193363 1492 sync_page_io(rdev,
867868fb
N
1493 sect + rdev->data_offset,
1494 s<<9,
1495 conf->tmppage, READ))
1496 success = 1;
1497 else {
1498 d++;
1499 if (d == conf->raid_disks)
1500 d = 0;
1501 }
1502 } while (!success && d != read_disk);
1503
1504 if (!success) {
1505 /* Cannot read from anywhere -- bye bye array */
1506 md_error(mddev, conf->mirrors[read_disk].rdev);
1507 break;
1508 }
1509 /* write it back and re-read */
1510 start = d;
1511 while (d != read_disk) {
1512 if (d==0)
1513 d = conf->raid_disks;
1514 d--;
1515 rdev = conf->mirrors[d].rdev;
1516 if (rdev &&
1517 test_bit(In_sync, &rdev->flags)) {
2b193363 1518 if (sync_page_io(rdev,
867868fb
N
1519 sect + rdev->data_offset,
1520 s<<9, conf->tmppage, WRITE)
1521 == 0)
1522 /* Well, this device is dead */
1523 md_error(mddev, rdev);
1524 }
1525 }
1526 d = start;
1527 while (d != read_disk) {
1528 char b[BDEVNAME_SIZE];
1529 if (d==0)
1530 d = conf->raid_disks;
1531 d--;
1532 rdev = conf->mirrors[d].rdev;
1533 if (rdev &&
1534 test_bit(In_sync, &rdev->flags)) {
2b193363 1535 if (sync_page_io(rdev,
867868fb
N
1536 sect + rdev->data_offset,
1537 s<<9, conf->tmppage, READ)
1538 == 0)
1539 /* Well, this device is dead */
1540 md_error(mddev, rdev);
1541 else {
1542 atomic_add(s, &rdev->corrected_errors);
1543 printk(KERN_INFO
9dd1e2fa 1544 "md/raid1:%s: read error corrected "
867868fb
N
1545 "(%d sectors at %llu on %s)\n",
1546 mdname(mddev), s,
969b755a
RD
1547 (unsigned long long)(sect +
1548 rdev->data_offset),
867868fb
N
1549 bdevname(rdev->bdev, b));
1550 }
1551 }
1552 }
1553 sectors -= s;
1554 sect += s;
1555 }
1556}
1557
1da177e4
LT
1558static void raid1d(mddev_t *mddev)
1559{
1560 r1bio_t *r1_bio;
1561 struct bio *bio;
1562 unsigned long flags;
070ec55d 1563 conf_t *conf = mddev->private;
1da177e4
LT
1564 struct list_head *head = &conf->retry_list;
1565 int unplug=0;
1566 mdk_rdev_t *rdev;
1567
1568 md_check_recovery(mddev);
1da177e4
LT
1569
1570 for (;;) {
1571 char b[BDEVNAME_SIZE];
191ea9b2 1572
a35e63ef 1573 unplug += flush_pending_writes(conf);
191ea9b2 1574
a35e63ef
N
1575 spin_lock_irqsave(&conf->device_lock, flags);
1576 if (list_empty(head)) {
1577 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1578 break;
a35e63ef 1579 }
1da177e4
LT
1580 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1581 list_del(head->prev);
ddaf22ab 1582 conf->nr_queued--;
1da177e4
LT
1583 spin_unlock_irqrestore(&conf->device_lock, flags);
1584
1585 mddev = r1_bio->mddev;
070ec55d 1586 conf = mddev->private;
1da177e4
LT
1587 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1588 sync_request_write(mddev, r1_bio);
1589 unplug = 1;
1590 } else {
1591 int disk;
ddaf22ab
N
1592
1593 /* we got a read error. Maybe the drive is bad. Maybe just
1594 * the block and we can fix it.
1595 * We freeze all other IO, and try reading the block from
1596 * other devices. When we find one, we re-write
1597 * and check it that fixes the read error.
1598 * This is all done synchronously while the array is
1599 * frozen
1600 */
867868fb
N
1601 if (mddev->ro == 0) {
1602 freeze_array(conf);
1603 fix_read_error(conf, r1_bio->read_disk,
1604 r1_bio->sector,
1605 r1_bio->sectors);
1606 unfreeze_array(conf);
d0e26078
N
1607 } else
1608 md_error(mddev,
1609 conf->mirrors[r1_bio->read_disk].rdev);
ddaf22ab 1610
1da177e4 1611 bio = r1_bio->bios[r1_bio->read_disk];
d0e26078 1612 if ((disk=read_balance(conf, r1_bio)) == -1) {
9dd1e2fa 1613 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1da177e4 1614 " read error for block %llu\n",
9dd1e2fa 1615 mdname(mddev),
1da177e4
LT
1616 bdevname(bio->bi_bdev,b),
1617 (unsigned long long)r1_bio->sector);
1618 raid_end_bio_io(r1_bio);
1619 } else {
2c7d46ec 1620 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
cf30a473
N
1621 r1_bio->bios[r1_bio->read_disk] =
1622 mddev->ro ? IO_BLOCKED : NULL;
1da177e4
LT
1623 r1_bio->read_disk = disk;
1624 bio_put(bio);
a167f663
N
1625 bio = bio_clone_mddev(r1_bio->master_bio,
1626 GFP_NOIO, mddev);
1da177e4
LT
1627 r1_bio->bios[r1_bio->read_disk] = bio;
1628 rdev = conf->mirrors[disk].rdev;
1629 if (printk_ratelimit())
9dd1e2fa 1630 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
d754c5ae 1631 " other mirror: %s\n",
9dd1e2fa 1632 mdname(mddev),
d754c5ae
N
1633 (unsigned long long)r1_bio->sector,
1634 bdevname(rdev->bdev,b));
1da177e4
LT
1635 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1636 bio->bi_bdev = rdev->bdev;
1637 bio->bi_end_io = raid1_end_read_request;
7b6d91da 1638 bio->bi_rw = READ | do_sync;
1da177e4
LT
1639 bio->bi_private = r1_bio;
1640 unplug = 1;
1641 generic_make_request(bio);
1642 }
1643 }
1d9d5241 1644 cond_resched();
1da177e4 1645 }
1da177e4
LT
1646 if (unplug)
1647 unplug_slaves(mddev);
1648}
1649
1650
1651static int init_resync(conf_t *conf)
1652{
1653 int buffs;
1654
1655 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 1656 BUG_ON(conf->r1buf_pool);
1da177e4
LT
1657 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1658 conf->poolinfo);
1659 if (!conf->r1buf_pool)
1660 return -ENOMEM;
1661 conf->next_resync = 0;
1662 return 0;
1663}
1664
1665/*
1666 * perform a "sync" on one "block"
1667 *
1668 * We need to make sure that no normal I/O request - particularly write
1669 * requests - conflict with active sync requests.
1670 *
1671 * This is achieved by tracking pending requests and a 'barrier' concept
1672 * that can be installed to exclude normal IO requests.
1673 */
1674
57afd89f 1675static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 1676{
070ec55d 1677 conf_t *conf = mddev->private;
1da177e4
LT
1678 r1bio_t *r1_bio;
1679 struct bio *bio;
1680 sector_t max_sector, nr_sectors;
3e198f78 1681 int disk = -1;
1da177e4 1682 int i;
3e198f78
N
1683 int wonly = -1;
1684 int write_targets = 0, read_targets = 0;
57dab0bd 1685 sector_t sync_blocks;
e3b9703e 1686 int still_degraded = 0;
1da177e4
LT
1687
1688 if (!conf->r1buf_pool)
1689 if (init_resync(conf))
57afd89f 1690 return 0;
1da177e4 1691
58c0fed4 1692 max_sector = mddev->dev_sectors;
1da177e4 1693 if (sector_nr >= max_sector) {
191ea9b2
N
1694 /* If we aborted, we need to abort the
1695 * sync on the 'current' bitmap chunk (there will
1696 * only be one in raid1 resync.
1697 * We can find the current addess in mddev->curr_resync
1698 */
6a806c51
N
1699 if (mddev->curr_resync < max_sector) /* aborted */
1700 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 1701 &sync_blocks, 1);
6a806c51 1702 else /* completed sync */
191ea9b2 1703 conf->fullsync = 0;
6a806c51
N
1704
1705 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
1706 close_sync(conf);
1707 return 0;
1708 }
1709
07d84d10
N
1710 if (mddev->bitmap == NULL &&
1711 mddev->recovery_cp == MaxSector &&
6394cca5 1712 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
1713 conf->fullsync == 0) {
1714 *skipped = 1;
1715 return max_sector - sector_nr;
1716 }
6394cca5
N
1717 /* before building a request, check if we can skip these blocks..
1718 * This call the bitmap_start_sync doesn't actually record anything
1719 */
e3b9703e 1720 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 1721 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
1722 /* We can skip this block, and probably several more */
1723 *skipped = 1;
1724 return sync_blocks;
1725 }
1da177e4 1726 /*
17999be4
N
1727 * If there is non-resync activity waiting for a turn,
1728 * and resync is going fast enough,
1729 * then let it though before starting on this new sync request.
1da177e4 1730 */
17999be4 1731 if (!go_faster && conf->nr_waiting)
1da177e4 1732 msleep_interruptible(1000);
17999be4 1733
b47490c9 1734 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 1735 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
1736 raise_barrier(conf);
1737
1738 conf->next_resync = sector_nr;
1da177e4 1739
3e198f78 1740 rcu_read_lock();
1da177e4 1741 /*
3e198f78
N
1742 * If we get a correctably read error during resync or recovery,
1743 * we might want to read from a different device. So we
1744 * flag all drives that could conceivably be read from for READ,
1745 * and any others (which will be non-In_sync devices) for WRITE.
1746 * If a read fails, we try reading from something else for which READ
1747 * is OK.
1da177e4 1748 */
1da177e4 1749
1da177e4
LT
1750 r1_bio->mddev = mddev;
1751 r1_bio->sector = sector_nr;
191ea9b2 1752 r1_bio->state = 0;
1da177e4 1753 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4
LT
1754
1755 for (i=0; i < conf->raid_disks; i++) {
3e198f78 1756 mdk_rdev_t *rdev;
1da177e4
LT
1757 bio = r1_bio->bios[i];
1758
1759 /* take from bio_init */
1760 bio->bi_next = NULL;
db8d9d35 1761 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1da177e4 1762 bio->bi_flags |= 1 << BIO_UPTODATE;
db8d9d35 1763 bio->bi_comp_cpu = -1;
802ba064 1764 bio->bi_rw = READ;
1da177e4
LT
1765 bio->bi_vcnt = 0;
1766 bio->bi_idx = 0;
1767 bio->bi_phys_segments = 0;
1da177e4
LT
1768 bio->bi_size = 0;
1769 bio->bi_end_io = NULL;
1770 bio->bi_private = NULL;
1771
3e198f78
N
1772 rdev = rcu_dereference(conf->mirrors[i].rdev);
1773 if (rdev == NULL ||
1774 test_bit(Faulty, &rdev->flags)) {
e3b9703e
N
1775 still_degraded = 1;
1776 continue;
3e198f78 1777 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
1778 bio->bi_rw = WRITE;
1779 bio->bi_end_io = end_sync_write;
1780 write_targets ++;
3e198f78
N
1781 } else {
1782 /* may need to read from here */
1783 bio->bi_rw = READ;
1784 bio->bi_end_io = end_sync_read;
1785 if (test_bit(WriteMostly, &rdev->flags)) {
1786 if (wonly < 0)
1787 wonly = i;
1788 } else {
1789 if (disk < 0)
1790 disk = i;
1791 }
1792 read_targets++;
1793 }
1794 atomic_inc(&rdev->nr_pending);
1795 bio->bi_sector = sector_nr + rdev->data_offset;
1796 bio->bi_bdev = rdev->bdev;
1da177e4
LT
1797 bio->bi_private = r1_bio;
1798 }
3e198f78
N
1799 rcu_read_unlock();
1800 if (disk < 0)
1801 disk = wonly;
1802 r1_bio->read_disk = disk;
191ea9b2 1803
3e198f78
N
1804 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1805 /* extra read targets are also write targets */
1806 write_targets += read_targets-1;
1807
1808 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
1809 /* There is nowhere to write, so all non-sync
1810 * drives must be failed - so we are finished
1811 */
57afd89f
N
1812 sector_t rv = max_sector - sector_nr;
1813 *skipped = 1;
1da177e4 1814 put_buf(r1_bio);
1da177e4
LT
1815 return rv;
1816 }
1817
c6207277
N
1818 if (max_sector > mddev->resync_max)
1819 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1da177e4 1820 nr_sectors = 0;
289e99e8 1821 sync_blocks = 0;
1da177e4
LT
1822 do {
1823 struct page *page;
1824 int len = PAGE_SIZE;
1825 if (sector_nr + (len>>9) > max_sector)
1826 len = (max_sector - sector_nr) << 9;
1827 if (len == 0)
1828 break;
6a806c51
N
1829 if (sync_blocks == 0) {
1830 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
1831 &sync_blocks, still_degraded) &&
1832 !conf->fullsync &&
1833 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 1834 break;
9e77c485 1835 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 1836 if ((len >> 9) > sync_blocks)
6a806c51 1837 len = sync_blocks<<9;
ab7a30c7 1838 }
191ea9b2 1839
1da177e4
LT
1840 for (i=0 ; i < conf->raid_disks; i++) {
1841 bio = r1_bio->bios[i];
1842 if (bio->bi_end_io) {
d11c171e 1843 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
1844 if (bio_add_page(bio, page, len, 0) == 0) {
1845 /* stop here */
d11c171e 1846 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
1847 while (i > 0) {
1848 i--;
1849 bio = r1_bio->bios[i];
6a806c51
N
1850 if (bio->bi_end_io==NULL)
1851 continue;
1da177e4
LT
1852 /* remove last page from this bio */
1853 bio->bi_vcnt--;
1854 bio->bi_size -= len;
1855 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1856 }
1857 goto bio_full;
1858 }
1859 }
1860 }
1861 nr_sectors += len>>9;
1862 sector_nr += len>>9;
191ea9b2 1863 sync_blocks -= (len>>9);
1da177e4
LT
1864 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1865 bio_full:
1da177e4
LT
1866 r1_bio->sectors = nr_sectors;
1867
d11c171e
N
1868 /* For a user-requested sync, we read all readable devices and do a
1869 * compare
1870 */
1871 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1872 atomic_set(&r1_bio->remaining, read_targets);
1873 for (i=0; i<conf->raid_disks; i++) {
1874 bio = r1_bio->bios[i];
1875 if (bio->bi_end_io == end_sync_read) {
ddac7c7e 1876 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
1877 generic_make_request(bio);
1878 }
1879 }
1880 } else {
1881 atomic_set(&r1_bio->remaining, 1);
1882 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 1883 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 1884 generic_make_request(bio);
1da177e4 1885
d11c171e 1886 }
1da177e4
LT
1887 return nr_sectors;
1888}
1889
80c3a6ce
DW
1890static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1891{
1892 if (sectors)
1893 return sectors;
1894
1895 return mddev->dev_sectors;
1896}
1897
709ae487 1898static conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
1899{
1900 conf_t *conf;
709ae487 1901 int i;
1da177e4
LT
1902 mirror_info_t *disk;
1903 mdk_rdev_t *rdev;
709ae487 1904 int err = -ENOMEM;
1da177e4 1905
9ffae0cf 1906 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1da177e4 1907 if (!conf)
709ae487 1908 goto abort;
1da177e4 1909
9ffae0cf 1910 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1da177e4
LT
1911 GFP_KERNEL);
1912 if (!conf->mirrors)
709ae487 1913 goto abort;
1da177e4 1914
ddaf22ab
N
1915 conf->tmppage = alloc_page(GFP_KERNEL);
1916 if (!conf->tmppage)
709ae487 1917 goto abort;
ddaf22ab 1918
709ae487 1919 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 1920 if (!conf->poolinfo)
709ae487 1921 goto abort;
1da177e4
LT
1922 conf->poolinfo->raid_disks = mddev->raid_disks;
1923 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1924 r1bio_pool_free,
1925 conf->poolinfo);
1926 if (!conf->r1bio_pool)
709ae487
N
1927 goto abort;
1928
ed9bfdf1 1929 conf->poolinfo->mddev = mddev;
1da177e4 1930
e7e72bf6 1931 spin_lock_init(&conf->device_lock);
159ec1fc 1932 list_for_each_entry(rdev, &mddev->disks, same_set) {
709ae487 1933 int disk_idx = rdev->raid_disk;
1da177e4
LT
1934 if (disk_idx >= mddev->raid_disks
1935 || disk_idx < 0)
1936 continue;
1937 disk = conf->mirrors + disk_idx;
1938
1939 disk->rdev = rdev;
1da177e4
LT
1940
1941 disk->head_position = 0;
1da177e4
LT
1942 }
1943 conf->raid_disks = mddev->raid_disks;
1944 conf->mddev = mddev;
1da177e4 1945 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
1946
1947 spin_lock_init(&conf->resync_lock);
17999be4 1948 init_waitqueue_head(&conf->wait_barrier);
1da177e4 1949
191ea9b2 1950 bio_list_init(&conf->pending_bio_list);
191ea9b2 1951
709ae487 1952 conf->last_used = -1;
1da177e4
LT
1953 for (i = 0; i < conf->raid_disks; i++) {
1954
1955 disk = conf->mirrors + i;
1956
5fd6c1dc
N
1957 if (!disk->rdev ||
1958 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 1959 disk->head_position = 0;
918f0238
N
1960 if (disk->rdev)
1961 conf->fullsync = 1;
709ae487
N
1962 } else if (conf->last_used < 0)
1963 /*
1964 * The first working device is used as a
1965 * starting point to read balancing.
1966 */
1967 conf->last_used = i;
1da177e4 1968 }
709ae487
N
1969
1970 err = -EIO;
1971 if (conf->last_used < 0) {
9dd1e2fa 1972 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
709ae487
N
1973 mdname(mddev));
1974 goto abort;
1975 }
1976 err = -ENOMEM;
1977 conf->thread = md_register_thread(raid1d, mddev, NULL);
1978 if (!conf->thread) {
1979 printk(KERN_ERR
9dd1e2fa 1980 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
1981 mdname(mddev));
1982 goto abort;
11ce99e6 1983 }
1da177e4 1984
709ae487
N
1985 return conf;
1986
1987 abort:
1988 if (conf) {
1989 if (conf->r1bio_pool)
1990 mempool_destroy(conf->r1bio_pool);
1991 kfree(conf->mirrors);
1992 safe_put_page(conf->tmppage);
1993 kfree(conf->poolinfo);
1994 kfree(conf);
1995 }
1996 return ERR_PTR(err);
1997}
1998
1999static int run(mddev_t *mddev)
2000{
2001 conf_t *conf;
2002 int i;
2003 mdk_rdev_t *rdev;
2004
2005 if (mddev->level != 1) {
9dd1e2fa 2006 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2007 mdname(mddev), mddev->level);
2008 return -EIO;
2009 }
2010 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2011 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2012 mdname(mddev));
2013 return -EIO;
2014 }
1da177e4 2015 /*
709ae487
N
2016 * copy the already verified devices into our private RAID1
2017 * bookkeeping area. [whatever we allocate in run(),
2018 * should be freed in stop()]
1da177e4 2019 */
709ae487
N
2020 if (mddev->private == NULL)
2021 conf = setup_conf(mddev);
2022 else
2023 conf = mddev->private;
1da177e4 2024
709ae487
N
2025 if (IS_ERR(conf))
2026 return PTR_ERR(conf);
1da177e4 2027
709ae487
N
2028 mddev->queue->queue_lock = &conf->device_lock;
2029 list_for_each_entry(rdev, &mddev->disks, same_set) {
2030 disk_stack_limits(mddev->gendisk, rdev->bdev,
2031 rdev->data_offset << 9);
2032 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
2033 * violating it, so limit ->max_segments to 1 lying within
2034 * a single page, as a one page request is never in violation.
709ae487 2035 */
627a2d3c
N
2036 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2037 blk_queue_max_segments(mddev->queue, 1);
2038 blk_queue_segment_boundary(mddev->queue,
2039 PAGE_CACHE_SIZE - 1);
2040 }
1da177e4 2041 }
191ea9b2 2042
709ae487
N
2043 mddev->degraded = 0;
2044 for (i=0; i < conf->raid_disks; i++)
2045 if (conf->mirrors[i].rdev == NULL ||
2046 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2047 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2048 mddev->degraded++;
2049
2050 if (conf->raid_disks - mddev->degraded == 1)
2051 mddev->recovery_cp = MaxSector;
2052
8c6ac868 2053 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2054 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2055 " -- starting background reconstruction\n",
2056 mdname(mddev));
1da177e4 2057 printk(KERN_INFO
9dd1e2fa 2058 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2059 mdname(mddev), mddev->raid_disks - mddev->degraded,
2060 mddev->raid_disks);
709ae487 2061
1da177e4
LT
2062 /*
2063 * Ok, everything is just fine now
2064 */
709ae487
N
2065 mddev->thread = conf->thread;
2066 conf->thread = NULL;
2067 mddev->private = conf;
2068
1f403624 2069 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2070
7a5febe9 2071 mddev->queue->unplug_fn = raid1_unplug;
0d129228
N
2072 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2073 mddev->queue->backing_dev_info.congested_data = mddev;
ac5e7113 2074 md_integrity_register(mddev);
1da177e4 2075 return 0;
1da177e4
LT
2076}
2077
2078static int stop(mddev_t *mddev)
2079{
070ec55d 2080 conf_t *conf = mddev->private;
4b6d287f 2081 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2082
2083 /* wait for behind writes to complete */
e555190d 2084 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2085 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2086 mdname(mddev));
4b6d287f 2087 /* need to kick something here to make sure I/O goes? */
e555190d
N
2088 wait_event(bitmap->behind_wait,
2089 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2090 }
1da177e4 2091
409c57f3
N
2092 raise_barrier(conf);
2093 lower_barrier(conf);
2094
1da177e4
LT
2095 md_unregister_thread(mddev->thread);
2096 mddev->thread = NULL;
2097 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2098 if (conf->r1bio_pool)
2099 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2100 kfree(conf->mirrors);
2101 kfree(conf->poolinfo);
1da177e4
LT
2102 kfree(conf);
2103 mddev->private = NULL;
2104 return 0;
2105}
2106
2107static int raid1_resize(mddev_t *mddev, sector_t sectors)
2108{
2109 /* no resync is happening, and there is enough space
2110 * on all devices, so we can resize.
2111 * We need to make sure resync covers any new space.
2112 * If the array is shrinking we should possibly wait until
2113 * any io in the removed space completes, but it hardly seems
2114 * worth it.
2115 */
1f403624 2116 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
b522adcd
DW
2117 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2118 return -EINVAL;
f233ea5c 2119 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2120 revalidate_disk(mddev->gendisk);
b522adcd 2121 if (sectors > mddev->dev_sectors &&
f233ea5c 2122 mddev->recovery_cp == MaxSector) {
58c0fed4 2123 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2124 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2125 }
b522adcd 2126 mddev->dev_sectors = sectors;
4b5c7ae8 2127 mddev->resync_max_sectors = sectors;
1da177e4
LT
2128 return 0;
2129}
2130
63c70c4f 2131static int raid1_reshape(mddev_t *mddev)
1da177e4
LT
2132{
2133 /* We need to:
2134 * 1/ resize the r1bio_pool
2135 * 2/ resize conf->mirrors
2136 *
2137 * We allocate a new r1bio_pool if we can.
2138 * Then raise a device barrier and wait until all IO stops.
2139 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2140 *
2141 * At the same time, we "pack" the devices so that all the missing
2142 * devices have the higher raid_disk numbers.
1da177e4
LT
2143 */
2144 mempool_t *newpool, *oldpool;
2145 struct pool_info *newpoolinfo;
2146 mirror_info_t *newmirrors;
070ec55d 2147 conf_t *conf = mddev->private;
63c70c4f 2148 int cnt, raid_disks;
c04be0aa 2149 unsigned long flags;
b5470dc5 2150 int d, d2, err;
1da177e4 2151
63c70c4f 2152 /* Cannot change chunk_size, layout, or level */
664e7c41 2153 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2154 mddev->layout != mddev->new_layout ||
2155 mddev->level != mddev->new_level) {
664e7c41 2156 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2157 mddev->new_layout = mddev->layout;
2158 mddev->new_level = mddev->level;
2159 return -EINVAL;
2160 }
2161
b5470dc5
DW
2162 err = md_allow_write(mddev);
2163 if (err)
2164 return err;
2a2275d6 2165
63c70c4f
N
2166 raid_disks = mddev->raid_disks + mddev->delta_disks;
2167
6ea9c07c
N
2168 if (raid_disks < conf->raid_disks) {
2169 cnt=0;
2170 for (d= 0; d < conf->raid_disks; d++)
2171 if (conf->mirrors[d].rdev)
2172 cnt++;
2173 if (cnt > raid_disks)
1da177e4 2174 return -EBUSY;
6ea9c07c 2175 }
1da177e4
LT
2176
2177 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2178 if (!newpoolinfo)
2179 return -ENOMEM;
2180 newpoolinfo->mddev = mddev;
2181 newpoolinfo->raid_disks = raid_disks;
2182
2183 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2184 r1bio_pool_free, newpoolinfo);
2185 if (!newpool) {
2186 kfree(newpoolinfo);
2187 return -ENOMEM;
2188 }
9ffae0cf 2189 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1da177e4
LT
2190 if (!newmirrors) {
2191 kfree(newpoolinfo);
2192 mempool_destroy(newpool);
2193 return -ENOMEM;
2194 }
1da177e4 2195
17999be4 2196 raise_barrier(conf);
1da177e4
LT
2197
2198 /* ok, everything is stopped */
2199 oldpool = conf->r1bio_pool;
2200 conf->r1bio_pool = newpool;
6ea9c07c 2201
a88aa786
N
2202 for (d = d2 = 0; d < conf->raid_disks; d++) {
2203 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2204 if (rdev && rdev->raid_disk != d2) {
2205 char nm[20];
2206 sprintf(nm, "rd%d", rdev->raid_disk);
2207 sysfs_remove_link(&mddev->kobj, nm);
2208 rdev->raid_disk = d2;
2209 sprintf(nm, "rd%d", rdev->raid_disk);
2210 sysfs_remove_link(&mddev->kobj, nm);
2211 if (sysfs_create_link(&mddev->kobj,
2212 &rdev->kobj, nm))
2213 printk(KERN_WARNING
9dd1e2fa
N
2214 "md/raid1:%s: cannot register "
2215 "%s\n",
2216 mdname(mddev), nm);
6ea9c07c 2217 }
a88aa786
N
2218 if (rdev)
2219 newmirrors[d2++].rdev = rdev;
2220 }
1da177e4
LT
2221 kfree(conf->mirrors);
2222 conf->mirrors = newmirrors;
2223 kfree(conf->poolinfo);
2224 conf->poolinfo = newpoolinfo;
2225
c04be0aa 2226 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2227 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2228 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2229 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2230 mddev->delta_disks = 0;
1da177e4 2231
6ea9c07c 2232 conf->last_used = 0; /* just make sure it is in-range */
17999be4 2233 lower_barrier(conf);
1da177e4
LT
2234
2235 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2236 md_wakeup_thread(mddev->thread);
2237
2238 mempool_destroy(oldpool);
2239 return 0;
2240}
2241
500af87a 2242static void raid1_quiesce(mddev_t *mddev, int state)
36fa3063 2243{
070ec55d 2244 conf_t *conf = mddev->private;
36fa3063
N
2245
2246 switch(state) {
6eef4b21
N
2247 case 2: /* wake for suspend */
2248 wake_up(&conf->wait_barrier);
2249 break;
9e6603da 2250 case 1:
17999be4 2251 raise_barrier(conf);
36fa3063 2252 break;
9e6603da 2253 case 0:
17999be4 2254 lower_barrier(conf);
36fa3063
N
2255 break;
2256 }
36fa3063
N
2257}
2258
709ae487
N
2259static void *raid1_takeover(mddev_t *mddev)
2260{
2261 /* raid1 can take over:
2262 * raid5 with 2 devices, any layout or chunk size
2263 */
2264 if (mddev->level == 5 && mddev->raid_disks == 2) {
2265 conf_t *conf;
2266 mddev->new_level = 1;
2267 mddev->new_layout = 0;
2268 mddev->new_chunk_sectors = 0;
2269 conf = setup_conf(mddev);
2270 if (!IS_ERR(conf))
2271 conf->barrier = 1;
2272 return conf;
2273 }
2274 return ERR_PTR(-EINVAL);
2275}
1da177e4 2276
2604b703 2277static struct mdk_personality raid1_personality =
1da177e4
LT
2278{
2279 .name = "raid1",
2604b703 2280 .level = 1,
1da177e4
LT
2281 .owner = THIS_MODULE,
2282 .make_request = make_request,
2283 .run = run,
2284 .stop = stop,
2285 .status = status,
2286 .error_handler = error,
2287 .hot_add_disk = raid1_add_disk,
2288 .hot_remove_disk= raid1_remove_disk,
2289 .spare_active = raid1_spare_active,
2290 .sync_request = sync_request,
2291 .resize = raid1_resize,
80c3a6ce 2292 .size = raid1_size,
63c70c4f 2293 .check_reshape = raid1_reshape,
36fa3063 2294 .quiesce = raid1_quiesce,
709ae487 2295 .takeover = raid1_takeover,
1da177e4
LT
2296};
2297
2298static int __init raid_init(void)
2299{
2604b703 2300 return register_md_personality(&raid1_personality);
1da177e4
LT
2301}
2302
2303static void raid_exit(void)
2304{
2604b703 2305 unregister_md_personality(&raid1_personality);
1da177e4
LT
2306}
2307
2308module_init(raid_init);
2309module_exit(raid_exit);
2310MODULE_LICENSE("GPL");
0efb9e61 2311MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 2312MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 2313MODULE_ALIAS("md-raid1");
2604b703 2314MODULE_ALIAS("md-level-1");