md: removing typedefs: mdk_rdev_t -> struct md_rdev
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
bff61975 37#include <linux/seq_file.h>
8bda470e 38#include <linux/ratelimit.h>
43b2e5d8 39#include "md.h"
ef740c37
CH
40#include "raid1.h"
41#include "bitmap.h"
191ea9b2 42
1da177e4
LT
43/*
44 * Number of guaranteed r1bios in case of extreme VM load:
45 */
46#define NR_RAID1_BIOS 256
47
1da177e4 48
17999be4
N
49static void allow_barrier(conf_t *conf);
50static void lower_barrier(conf_t *conf);
1da177e4 51
dd0fc66f 52static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
53{
54 struct pool_info *pi = data;
1da177e4
LT
55 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
56
57 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 58 return kzalloc(size, gfp_flags);
1da177e4
LT
59}
60
61static void r1bio_pool_free(void *r1_bio, void *data)
62{
63 kfree(r1_bio);
64}
65
66#define RESYNC_BLOCK_SIZE (64*1024)
67//#define RESYNC_BLOCK_SIZE PAGE_SIZE
68#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
69#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
70#define RESYNC_WINDOW (2048*1024)
71
dd0fc66f 72static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
73{
74 struct pool_info *pi = data;
75 struct page *page;
76 r1bio_t *r1_bio;
77 struct bio *bio;
78 int i, j;
79
80 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 81 if (!r1_bio)
1da177e4 82 return NULL;
1da177e4
LT
83
84 /*
85 * Allocate bios : 1 for reading, n-1 for writing
86 */
87 for (j = pi->raid_disks ; j-- ; ) {
6746557f 88 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
89 if (!bio)
90 goto out_free_bio;
91 r1_bio->bios[j] = bio;
92 }
93 /*
94 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
95 * the first bio.
96 * If this is a user-requested check/repair, allocate
97 * RESYNC_PAGES for each bio.
1da177e4 98 */
d11c171e
N
99 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
100 j = pi->raid_disks;
101 else
102 j = 1;
103 while(j--) {
104 bio = r1_bio->bios[j];
105 for (i = 0; i < RESYNC_PAGES; i++) {
106 page = alloc_page(gfp_flags);
107 if (unlikely(!page))
108 goto out_free_pages;
109
110 bio->bi_io_vec[i].bv_page = page;
303a0e11 111 bio->bi_vcnt = i+1;
d11c171e
N
112 }
113 }
114 /* If not user-requests, copy the page pointers to all bios */
115 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
116 for (i=0; i<RESYNC_PAGES ; i++)
117 for (j=1; j<pi->raid_disks; j++)
118 r1_bio->bios[j]->bi_io_vec[i].bv_page =
119 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
120 }
121
122 r1_bio->master_bio = NULL;
123
124 return r1_bio;
125
126out_free_pages:
303a0e11
N
127 for (j=0 ; j < pi->raid_disks; j++)
128 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
129 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 130 j = -1;
1da177e4
LT
131out_free_bio:
132 while ( ++j < pi->raid_disks )
133 bio_put(r1_bio->bios[j]);
134 r1bio_pool_free(r1_bio, data);
135 return NULL;
136}
137
138static void r1buf_pool_free(void *__r1_bio, void *data)
139{
140 struct pool_info *pi = data;
d11c171e 141 int i,j;
1da177e4 142 r1bio_t *r1bio = __r1_bio;
1da177e4 143
d11c171e
N
144 for (i = 0; i < RESYNC_PAGES; i++)
145 for (j = pi->raid_disks; j-- ;) {
146 if (j == 0 ||
147 r1bio->bios[j]->bi_io_vec[i].bv_page !=
148 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 149 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 150 }
1da177e4
LT
151 for (i=0 ; i < pi->raid_disks; i++)
152 bio_put(r1bio->bios[i]);
153
154 r1bio_pool_free(r1bio, data);
155}
156
157static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
158{
159 int i;
160
161 for (i = 0; i < conf->raid_disks; i++) {
162 struct bio **bio = r1_bio->bios + i;
4367af55 163 if (!BIO_SPECIAL(*bio))
1da177e4
LT
164 bio_put(*bio);
165 *bio = NULL;
166 }
167}
168
858119e1 169static void free_r1bio(r1bio_t *r1_bio)
1da177e4 170{
070ec55d 171 conf_t *conf = r1_bio->mddev->private;
1da177e4 172
1da177e4
LT
173 put_all_bios(conf, r1_bio);
174 mempool_free(r1_bio, conf->r1bio_pool);
175}
176
858119e1 177static void put_buf(r1bio_t *r1_bio)
1da177e4 178{
070ec55d 179 conf_t *conf = r1_bio->mddev->private;
3e198f78
N
180 int i;
181
182 for (i=0; i<conf->raid_disks; i++) {
183 struct bio *bio = r1_bio->bios[i];
184 if (bio->bi_end_io)
185 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
186 }
1da177e4
LT
187
188 mempool_free(r1_bio, conf->r1buf_pool);
189
17999be4 190 lower_barrier(conf);
1da177e4
LT
191}
192
193static void reschedule_retry(r1bio_t *r1_bio)
194{
195 unsigned long flags;
196 mddev_t *mddev = r1_bio->mddev;
070ec55d 197 conf_t *conf = mddev->private;
1da177e4
LT
198
199 spin_lock_irqsave(&conf->device_lock, flags);
200 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 201 conf->nr_queued ++;
1da177e4
LT
202 spin_unlock_irqrestore(&conf->device_lock, flags);
203
17999be4 204 wake_up(&conf->wait_barrier);
1da177e4
LT
205 md_wakeup_thread(mddev->thread);
206}
207
208/*
209 * raid_end_bio_io() is called when we have finished servicing a mirrored
210 * operation and are ready to return a success/failure code to the buffer
211 * cache layer.
212 */
d2eb35ac
N
213static void call_bio_endio(r1bio_t *r1_bio)
214{
215 struct bio *bio = r1_bio->master_bio;
216 int done;
217 conf_t *conf = r1_bio->mddev->private;
218
219 if (bio->bi_phys_segments) {
220 unsigned long flags;
221 spin_lock_irqsave(&conf->device_lock, flags);
222 bio->bi_phys_segments--;
223 done = (bio->bi_phys_segments == 0);
224 spin_unlock_irqrestore(&conf->device_lock, flags);
225 } else
226 done = 1;
227
228 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
229 clear_bit(BIO_UPTODATE, &bio->bi_flags);
230 if (done) {
231 bio_endio(bio, 0);
232 /*
233 * Wake up any possible resync thread that waits for the device
234 * to go idle.
235 */
236 allow_barrier(conf);
237 }
238}
239
1da177e4
LT
240static void raid_end_bio_io(r1bio_t *r1_bio)
241{
242 struct bio *bio = r1_bio->master_bio;
243
4b6d287f
N
244 /* if nobody has done the final endio yet, do it now */
245 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
246 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
247 (bio_data_dir(bio) == WRITE) ? "write" : "read",
248 (unsigned long long) bio->bi_sector,
249 (unsigned long long) bio->bi_sector +
250 (bio->bi_size >> 9) - 1);
4b6d287f 251
d2eb35ac 252 call_bio_endio(r1_bio);
4b6d287f 253 }
1da177e4
LT
254 free_r1bio(r1_bio);
255}
256
257/*
258 * Update disk head position estimator based on IRQ completion info.
259 */
260static inline void update_head_pos(int disk, r1bio_t *r1_bio)
261{
070ec55d 262 conf_t *conf = r1_bio->mddev->private;
1da177e4
LT
263
264 conf->mirrors[disk].head_position =
265 r1_bio->sector + (r1_bio->sectors);
266}
267
ba3ae3be
NK
268/*
269 * Find the disk number which triggered given bio
270 */
271static int find_bio_disk(r1bio_t *r1_bio, struct bio *bio)
272{
273 int mirror;
274 int raid_disks = r1_bio->mddev->raid_disks;
275
276 for (mirror = 0; mirror < raid_disks; mirror++)
277 if (r1_bio->bios[mirror] == bio)
278 break;
279
280 BUG_ON(mirror == raid_disks);
281 update_head_pos(mirror, r1_bio);
282
283 return mirror;
284}
285
6712ecf8 286static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
287{
288 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 289 r1bio_t *r1_bio = bio->bi_private;
1da177e4 290 int mirror;
070ec55d 291 conf_t *conf = r1_bio->mddev->private;
1da177e4 292
1da177e4
LT
293 mirror = r1_bio->read_disk;
294 /*
295 * this branch is our 'one mirror IO has finished' event handler:
296 */
ddaf22ab
N
297 update_head_pos(mirror, r1_bio);
298
dd00a99e
N
299 if (uptodate)
300 set_bit(R1BIO_Uptodate, &r1_bio->state);
301 else {
302 /* If all other devices have failed, we want to return
303 * the error upwards rather than fail the last device.
304 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 305 */
dd00a99e
N
306 unsigned long flags;
307 spin_lock_irqsave(&conf->device_lock, flags);
308 if (r1_bio->mddev->degraded == conf->raid_disks ||
309 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
310 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
311 uptodate = 1;
312 spin_unlock_irqrestore(&conf->device_lock, flags);
313 }
1da177e4 314
dd00a99e 315 if (uptodate)
1da177e4 316 raid_end_bio_io(r1_bio);
dd00a99e 317 else {
1da177e4
LT
318 /*
319 * oops, read error:
320 */
321 char b[BDEVNAME_SIZE];
8bda470e
CD
322 printk_ratelimited(
323 KERN_ERR "md/raid1:%s: %s: "
324 "rescheduling sector %llu\n",
325 mdname(conf->mddev),
326 bdevname(conf->mirrors[mirror].rdev->bdev,
327 b),
328 (unsigned long long)r1_bio->sector);
d2eb35ac 329 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4
LT
330 reschedule_retry(r1_bio);
331 }
332
333 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
1da177e4
LT
334}
335
cd5ff9a1
N
336static void close_write(r1bio_t *r1_bio)
337{
338 /* it really is the end of this request */
339 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
340 /* free extra copy of the data pages */
341 int i = r1_bio->behind_page_count;
342 while (i--)
343 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
344 kfree(r1_bio->behind_bvecs);
345 r1_bio->behind_bvecs = NULL;
346 }
347 /* clear the bitmap if all writes complete successfully */
348 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
349 r1_bio->sectors,
350 !test_bit(R1BIO_Degraded, &r1_bio->state),
351 test_bit(R1BIO_BehindIO, &r1_bio->state));
352 md_write_end(r1_bio->mddev);
353}
354
af6d7b76 355static void r1_bio_write_done(r1bio_t *r1_bio)
4e78064f 356{
cd5ff9a1
N
357 if (!atomic_dec_and_test(&r1_bio->remaining))
358 return;
359
360 if (test_bit(R1BIO_WriteError, &r1_bio->state))
361 reschedule_retry(r1_bio);
362 else {
363 close_write(r1_bio);
4367af55
N
364 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
365 reschedule_retry(r1_bio);
366 else
367 raid_end_bio_io(r1_bio);
4e78064f
N
368 }
369}
370
6712ecf8 371static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
372{
373 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 374 r1bio_t *r1_bio = bio->bi_private;
a9701a30 375 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
070ec55d 376 conf_t *conf = r1_bio->mddev->private;
04b857f7 377 struct bio *to_put = NULL;
1da177e4 378
ba3ae3be 379 mirror = find_bio_disk(r1_bio, bio);
1da177e4 380
e9c7469b
TH
381 /*
382 * 'one mirror IO has finished' event handler:
383 */
e9c7469b 384 if (!uptodate) {
cd5ff9a1
N
385 set_bit(WriteErrorSeen,
386 &conf->mirrors[mirror].rdev->flags);
387 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 388 } else {
1da177e4 389 /*
e9c7469b
TH
390 * Set R1BIO_Uptodate in our master bio, so that we
391 * will return a good error code for to the higher
392 * levels even if IO on some other mirrored buffer
393 * fails.
394 *
395 * The 'master' represents the composite IO operation
396 * to user-side. So if something waits for IO, then it
397 * will wait for the 'master' bio.
1da177e4 398 */
4367af55
N
399 sector_t first_bad;
400 int bad_sectors;
401
cd5ff9a1
N
402 r1_bio->bios[mirror] = NULL;
403 to_put = bio;
e9c7469b
TH
404 set_bit(R1BIO_Uptodate, &r1_bio->state);
405
4367af55
N
406 /* Maybe we can clear some bad blocks. */
407 if (is_badblock(conf->mirrors[mirror].rdev,
408 r1_bio->sector, r1_bio->sectors,
409 &first_bad, &bad_sectors)) {
410 r1_bio->bios[mirror] = IO_MADE_GOOD;
411 set_bit(R1BIO_MadeGood, &r1_bio->state);
412 }
413 }
414
e9c7469b
TH
415 if (behind) {
416 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
417 atomic_dec(&r1_bio->behind_remaining);
418
419 /*
420 * In behind mode, we ACK the master bio once the I/O
421 * has safely reached all non-writemostly
422 * disks. Setting the Returned bit ensures that this
423 * gets done only once -- we don't ever want to return
424 * -EIO here, instead we'll wait
425 */
426 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
427 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
428 /* Maybe we can return now */
429 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
430 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
431 pr_debug("raid1: behind end write sectors"
432 " %llu-%llu\n",
433 (unsigned long long) mbio->bi_sector,
434 (unsigned long long) mbio->bi_sector +
435 (mbio->bi_size >> 9) - 1);
d2eb35ac 436 call_bio_endio(r1_bio);
4b6d287f
N
437 }
438 }
439 }
4367af55
N
440 if (r1_bio->bios[mirror] == NULL)
441 rdev_dec_pending(conf->mirrors[mirror].rdev,
442 conf->mddev);
e9c7469b 443
1da177e4 444 /*
1da177e4
LT
445 * Let's see if all mirrored write operations have finished
446 * already.
447 */
af6d7b76 448 r1_bio_write_done(r1_bio);
c70810b3 449
04b857f7
N
450 if (to_put)
451 bio_put(to_put);
1da177e4
LT
452}
453
454
455/*
456 * This routine returns the disk from which the requested read should
457 * be done. There is a per-array 'next expected sequential IO' sector
458 * number - if this matches on the next IO then we use the last disk.
459 * There is also a per-disk 'last know head position' sector that is
460 * maintained from IRQ contexts, both the normal and the resync IO
461 * completion handlers update this position correctly. If there is no
462 * perfect sequential match then we pick the disk whose head is closest.
463 *
464 * If there are 2 mirrors in the same 2 devices, performance degrades
465 * because position is mirror, not device based.
466 *
467 * The rdev for the device selected will have nr_pending incremented.
468 */
d2eb35ac 469static int read_balance(conf_t *conf, r1bio_t *r1_bio, int *max_sectors)
1da177e4 470{
af3a2cd6 471 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
472 int sectors;
473 int best_good_sectors;
f3ac8bf7 474 int start_disk;
76073054 475 int best_disk;
f3ac8bf7 476 int i;
76073054 477 sector_t best_dist;
3cb03002 478 struct md_rdev *rdev;
f3ac8bf7 479 int choose_first;
1da177e4
LT
480
481 rcu_read_lock();
482 /*
8ddf9efe 483 * Check if we can balance. We can balance on the whole
1da177e4
LT
484 * device if no resync is going on, or below the resync window.
485 * We take the first readable disk when above the resync window.
486 */
487 retry:
d2eb35ac 488 sectors = r1_bio->sectors;
76073054
N
489 best_disk = -1;
490 best_dist = MaxSector;
d2eb35ac
N
491 best_good_sectors = 0;
492
1da177e4
LT
493 if (conf->mddev->recovery_cp < MaxSector &&
494 (this_sector + sectors >= conf->next_resync)) {
f3ac8bf7
N
495 choose_first = 1;
496 start_disk = 0;
497 } else {
498 choose_first = 0;
499 start_disk = conf->last_used;
1da177e4
LT
500 }
501
f3ac8bf7 502 for (i = 0 ; i < conf->raid_disks ; i++) {
76073054 503 sector_t dist;
d2eb35ac
N
504 sector_t first_bad;
505 int bad_sectors;
506
f3ac8bf7
N
507 int disk = start_disk + i;
508 if (disk >= conf->raid_disks)
509 disk -= conf->raid_disks;
510
511 rdev = rcu_dereference(conf->mirrors[disk].rdev);
512 if (r1_bio->bios[disk] == IO_BLOCKED
513 || rdev == NULL
76073054 514 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 515 continue;
76073054
N
516 if (!test_bit(In_sync, &rdev->flags) &&
517 rdev->recovery_offset < this_sector + sectors)
1da177e4 518 continue;
76073054
N
519 if (test_bit(WriteMostly, &rdev->flags)) {
520 /* Don't balance among write-mostly, just
521 * use the first as a last resort */
522 if (best_disk < 0)
523 best_disk = disk;
524 continue;
525 }
526 /* This is a reasonable device to use. It might
527 * even be best.
528 */
d2eb35ac
N
529 if (is_badblock(rdev, this_sector, sectors,
530 &first_bad, &bad_sectors)) {
531 if (best_dist < MaxSector)
532 /* already have a better device */
533 continue;
534 if (first_bad <= this_sector) {
535 /* cannot read here. If this is the 'primary'
536 * device, then we must not read beyond
537 * bad_sectors from another device..
538 */
539 bad_sectors -= (this_sector - first_bad);
540 if (choose_first && sectors > bad_sectors)
541 sectors = bad_sectors;
542 if (best_good_sectors > sectors)
543 best_good_sectors = sectors;
544
545 } else {
546 sector_t good_sectors = first_bad - this_sector;
547 if (good_sectors > best_good_sectors) {
548 best_good_sectors = good_sectors;
549 best_disk = disk;
550 }
551 if (choose_first)
552 break;
553 }
554 continue;
555 } else
556 best_good_sectors = sectors;
557
76073054
N
558 dist = abs(this_sector - conf->mirrors[disk].head_position);
559 if (choose_first
560 /* Don't change to another disk for sequential reads */
561 || conf->next_seq_sect == this_sector
562 || dist == 0
563 /* If device is idle, use it */
564 || atomic_read(&rdev->nr_pending) == 0) {
565 best_disk = disk;
1da177e4
LT
566 break;
567 }
76073054
N
568 if (dist < best_dist) {
569 best_dist = dist;
570 best_disk = disk;
1da177e4 571 }
f3ac8bf7 572 }
1da177e4 573
76073054
N
574 if (best_disk >= 0) {
575 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
576 if (!rdev)
577 goto retry;
578 atomic_inc(&rdev->nr_pending);
76073054 579 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
580 /* cannot risk returning a device that failed
581 * before we inc'ed nr_pending
582 */
03c902e1 583 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
584 goto retry;
585 }
d2eb35ac 586 sectors = best_good_sectors;
8ddf9efe 587 conf->next_seq_sect = this_sector + sectors;
76073054 588 conf->last_used = best_disk;
1da177e4
LT
589 }
590 rcu_read_unlock();
d2eb35ac 591 *max_sectors = sectors;
1da177e4 592
76073054 593 return best_disk;
1da177e4
LT
594}
595
1ed7242e 596int md_raid1_congested(mddev_t *mddev, int bits)
0d129228 597{
070ec55d 598 conf_t *conf = mddev->private;
0d129228
N
599 int i, ret = 0;
600
601 rcu_read_lock();
602 for (i = 0; i < mddev->raid_disks; i++) {
3cb03002 603 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 604 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 605 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 606
1ed7242e
JB
607 BUG_ON(!q);
608
0d129228
N
609 /* Note the '|| 1' - when read_balance prefers
610 * non-congested targets, it can be removed
611 */
91a9e99d 612 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
613 ret |= bdi_congested(&q->backing_dev_info, bits);
614 else
615 ret &= bdi_congested(&q->backing_dev_info, bits);
616 }
617 }
618 rcu_read_unlock();
619 return ret;
620}
1ed7242e 621EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 622
1ed7242e
JB
623static int raid1_congested(void *data, int bits)
624{
625 mddev_t *mddev = data;
626
627 return mddev_congested(mddev, bits) ||
628 md_raid1_congested(mddev, bits);
629}
0d129228 630
7eaceacc 631static void flush_pending_writes(conf_t *conf)
a35e63ef
N
632{
633 /* Any writes that have been queued but are awaiting
634 * bitmap updates get flushed here.
a35e63ef 635 */
a35e63ef
N
636 spin_lock_irq(&conf->device_lock);
637
638 if (conf->pending_bio_list.head) {
639 struct bio *bio;
640 bio = bio_list_get(&conf->pending_bio_list);
a35e63ef
N
641 spin_unlock_irq(&conf->device_lock);
642 /* flush any pending bitmap writes to
643 * disk before proceeding w/ I/O */
644 bitmap_unplug(conf->mddev->bitmap);
645
646 while (bio) { /* submit pending writes */
647 struct bio *next = bio->bi_next;
648 bio->bi_next = NULL;
649 generic_make_request(bio);
650 bio = next;
651 }
a35e63ef
N
652 } else
653 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
654}
655
17999be4
N
656/* Barriers....
657 * Sometimes we need to suspend IO while we do something else,
658 * either some resync/recovery, or reconfigure the array.
659 * To do this we raise a 'barrier'.
660 * The 'barrier' is a counter that can be raised multiple times
661 * to count how many activities are happening which preclude
662 * normal IO.
663 * We can only raise the barrier if there is no pending IO.
664 * i.e. if nr_pending == 0.
665 * We choose only to raise the barrier if no-one is waiting for the
666 * barrier to go down. This means that as soon as an IO request
667 * is ready, no other operations which require a barrier will start
668 * until the IO request has had a chance.
669 *
670 * So: regular IO calls 'wait_barrier'. When that returns there
671 * is no backgroup IO happening, It must arrange to call
672 * allow_barrier when it has finished its IO.
673 * backgroup IO calls must call raise_barrier. Once that returns
674 * there is no normal IO happeing. It must arrange to call
675 * lower_barrier when the particular background IO completes.
1da177e4
LT
676 */
677#define RESYNC_DEPTH 32
678
17999be4 679static void raise_barrier(conf_t *conf)
1da177e4
LT
680{
681 spin_lock_irq(&conf->resync_lock);
17999be4
N
682
683 /* Wait until no block IO is waiting */
684 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
c3b328ac 685 conf->resync_lock, );
17999be4
N
686
687 /* block any new IO from starting */
688 conf->barrier++;
689
046abeed 690 /* Now wait for all pending IO to complete */
17999be4
N
691 wait_event_lock_irq(conf->wait_barrier,
692 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 693 conf->resync_lock, );
17999be4
N
694
695 spin_unlock_irq(&conf->resync_lock);
696}
697
698static void lower_barrier(conf_t *conf)
699{
700 unsigned long flags;
709ae487 701 BUG_ON(conf->barrier <= 0);
17999be4
N
702 spin_lock_irqsave(&conf->resync_lock, flags);
703 conf->barrier--;
704 spin_unlock_irqrestore(&conf->resync_lock, flags);
705 wake_up(&conf->wait_barrier);
706}
707
708static void wait_barrier(conf_t *conf)
709{
710 spin_lock_irq(&conf->resync_lock);
711 if (conf->barrier) {
712 conf->nr_waiting++;
713 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
714 conf->resync_lock,
c3b328ac 715 );
17999be4 716 conf->nr_waiting--;
1da177e4 717 }
17999be4 718 conf->nr_pending++;
1da177e4
LT
719 spin_unlock_irq(&conf->resync_lock);
720}
721
17999be4
N
722static void allow_barrier(conf_t *conf)
723{
724 unsigned long flags;
725 spin_lock_irqsave(&conf->resync_lock, flags);
726 conf->nr_pending--;
727 spin_unlock_irqrestore(&conf->resync_lock, flags);
728 wake_up(&conf->wait_barrier);
729}
730
ddaf22ab
N
731static void freeze_array(conf_t *conf)
732{
733 /* stop syncio and normal IO and wait for everything to
734 * go quite.
735 * We increment barrier and nr_waiting, and then
1c830532
N
736 * wait until nr_pending match nr_queued+1
737 * This is called in the context of one normal IO request
738 * that has failed. Thus any sync request that might be pending
739 * will be blocked by nr_pending, and we need to wait for
740 * pending IO requests to complete or be queued for re-try.
741 * Thus the number queued (nr_queued) plus this request (1)
742 * must match the number of pending IOs (nr_pending) before
743 * we continue.
ddaf22ab
N
744 */
745 spin_lock_irq(&conf->resync_lock);
746 conf->barrier++;
747 conf->nr_waiting++;
748 wait_event_lock_irq(conf->wait_barrier,
1c830532 749 conf->nr_pending == conf->nr_queued+1,
ddaf22ab 750 conf->resync_lock,
c3b328ac 751 flush_pending_writes(conf));
ddaf22ab
N
752 spin_unlock_irq(&conf->resync_lock);
753}
754static void unfreeze_array(conf_t *conf)
755{
756 /* reverse the effect of the freeze */
757 spin_lock_irq(&conf->resync_lock);
758 conf->barrier--;
759 conf->nr_waiting--;
760 wake_up(&conf->wait_barrier);
761 spin_unlock_irq(&conf->resync_lock);
762}
763
17999be4 764
4e78064f 765/* duplicate the data pages for behind I/O
4e78064f 766 */
af6d7b76 767static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
4b6d287f
N
768{
769 int i;
770 struct bio_vec *bvec;
2ca68f5e 771 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 772 GFP_NOIO);
2ca68f5e 773 if (unlikely(!bvecs))
af6d7b76 774 return;
4b6d287f 775
4b6d287f 776 bio_for_each_segment(bvec, bio, i) {
2ca68f5e
N
777 bvecs[i] = *bvec;
778 bvecs[i].bv_page = alloc_page(GFP_NOIO);
779 if (unlikely(!bvecs[i].bv_page))
4b6d287f 780 goto do_sync_io;
2ca68f5e
N
781 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
782 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
783 kunmap(bvecs[i].bv_page);
4b6d287f
N
784 kunmap(bvec->bv_page);
785 }
2ca68f5e 786 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
787 r1_bio->behind_page_count = bio->bi_vcnt;
788 set_bit(R1BIO_BehindIO, &r1_bio->state);
789 return;
4b6d287f
N
790
791do_sync_io:
af6d7b76 792 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
793 if (bvecs[i].bv_page)
794 put_page(bvecs[i].bv_page);
795 kfree(bvecs);
36a4e1fe 796 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
4b6d287f
N
797}
798
21a52c6d 799static int make_request(mddev_t *mddev, struct bio * bio)
1da177e4 800{
070ec55d 801 conf_t *conf = mddev->private;
1da177e4
LT
802 mirror_info_t *mirror;
803 r1bio_t *r1_bio;
804 struct bio *read_bio;
1f68f0c4 805 int i, disks;
84255d10 806 struct bitmap *bitmap;
191ea9b2 807 unsigned long flags;
a362357b 808 const int rw = bio_data_dir(bio);
2c7d46ec 809 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 810 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
3cb03002 811 struct md_rdev *blocked_rdev;
c3b328ac 812 int plugged;
1f68f0c4
N
813 int first_clone;
814 int sectors_handled;
815 int max_sectors;
191ea9b2 816
1da177e4
LT
817 /*
818 * Register the new request and wait if the reconstruction
819 * thread has put up a bar for new requests.
820 * Continue immediately if no resync is active currently.
821 */
62de608d 822
3d310eb7
N
823 md_write_start(mddev, bio); /* wait on superblock update early */
824
6eef4b21
N
825 if (bio_data_dir(bio) == WRITE &&
826 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
827 bio->bi_sector < mddev->suspend_hi) {
828 /* As the suspend_* range is controlled by
829 * userspace, we want an interruptible
830 * wait.
831 */
832 DEFINE_WAIT(w);
833 for (;;) {
834 flush_signals(current);
835 prepare_to_wait(&conf->wait_barrier,
836 &w, TASK_INTERRUPTIBLE);
837 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
838 bio->bi_sector >= mddev->suspend_hi)
839 break;
840 schedule();
841 }
842 finish_wait(&conf->wait_barrier, &w);
843 }
62de608d 844
17999be4 845 wait_barrier(conf);
1da177e4 846
84255d10
N
847 bitmap = mddev->bitmap;
848
1da177e4
LT
849 /*
850 * make_request() can abort the operation when READA is being
851 * used and no empty request is available.
852 *
853 */
854 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
855
856 r1_bio->master_bio = bio;
857 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 858 r1_bio->state = 0;
1da177e4
LT
859 r1_bio->mddev = mddev;
860 r1_bio->sector = bio->bi_sector;
861
d2eb35ac
N
862 /* We might need to issue multiple reads to different
863 * devices if there are bad blocks around, so we keep
864 * track of the number of reads in bio->bi_phys_segments.
865 * If this is 0, there is only one r1_bio and no locking
866 * will be needed when requests complete. If it is
867 * non-zero, then it is the number of not-completed requests.
868 */
869 bio->bi_phys_segments = 0;
870 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
871
a362357b 872 if (rw == READ) {
1da177e4
LT
873 /*
874 * read balancing logic:
875 */
d2eb35ac
N
876 int rdisk;
877
878read_again:
879 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
880
881 if (rdisk < 0) {
882 /* couldn't find anywhere to read from */
883 raid_end_bio_io(r1_bio);
884 return 0;
885 }
886 mirror = conf->mirrors + rdisk;
887
e555190d
N
888 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
889 bitmap) {
890 /* Reading from a write-mostly device must
891 * take care not to over-take any writes
892 * that are 'behind'
893 */
894 wait_event(bitmap->behind_wait,
895 atomic_read(&bitmap->behind_writes) == 0);
896 }
1da177e4
LT
897 r1_bio->read_disk = rdisk;
898
a167f663 899 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d2eb35ac
N
900 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
901 max_sectors);
1da177e4
LT
902
903 r1_bio->bios[rdisk] = read_bio;
904
905 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
906 read_bio->bi_bdev = mirror->rdev->bdev;
907 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 908 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
909 read_bio->bi_private = r1_bio;
910
d2eb35ac
N
911 if (max_sectors < r1_bio->sectors) {
912 /* could not read all from this device, so we will
913 * need another r1_bio.
914 */
d2eb35ac
N
915
916 sectors_handled = (r1_bio->sector + max_sectors
917 - bio->bi_sector);
918 r1_bio->sectors = max_sectors;
919 spin_lock_irq(&conf->device_lock);
920 if (bio->bi_phys_segments == 0)
921 bio->bi_phys_segments = 2;
922 else
923 bio->bi_phys_segments++;
924 spin_unlock_irq(&conf->device_lock);
925 /* Cannot call generic_make_request directly
926 * as that will be queued in __make_request
927 * and subsequent mempool_alloc might block waiting
928 * for it. So hand bio over to raid1d.
929 */
930 reschedule_retry(r1_bio);
931
932 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
933
934 r1_bio->master_bio = bio;
935 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
936 r1_bio->state = 0;
937 r1_bio->mddev = mddev;
938 r1_bio->sector = bio->bi_sector + sectors_handled;
939 goto read_again;
940 } else
941 generic_make_request(read_bio);
1da177e4
LT
942 return 0;
943 }
944
945 /*
946 * WRITE:
947 */
1f68f0c4 948 /* first select target devices under rcu_lock and
1da177e4
LT
949 * inc refcount on their rdev. Record them by setting
950 * bios[x] to bio
1f68f0c4
N
951 * If there are known/acknowledged bad blocks on any device on
952 * which we have seen a write error, we want to avoid writing those
953 * blocks.
954 * This potentially requires several writes to write around
955 * the bad blocks. Each set of writes gets it's own r1bio
956 * with a set of bios attached.
1da177e4 957 */
c3b328ac
N
958 plugged = mddev_check_plugged(mddev);
959
1da177e4 960 disks = conf->raid_disks;
6bfe0b49
DW
961 retry_write:
962 blocked_rdev = NULL;
1da177e4 963 rcu_read_lock();
1f68f0c4 964 max_sectors = r1_bio->sectors;
1da177e4 965 for (i = 0; i < disks; i++) {
3cb03002 966 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
967 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
968 atomic_inc(&rdev->nr_pending);
969 blocked_rdev = rdev;
970 break;
971 }
1f68f0c4
N
972 r1_bio->bios[i] = NULL;
973 if (!rdev || test_bit(Faulty, &rdev->flags)) {
974 set_bit(R1BIO_Degraded, &r1_bio->state);
975 continue;
976 }
977
978 atomic_inc(&rdev->nr_pending);
979 if (test_bit(WriteErrorSeen, &rdev->flags)) {
980 sector_t first_bad;
981 int bad_sectors;
982 int is_bad;
983
984 is_bad = is_badblock(rdev, r1_bio->sector,
985 max_sectors,
986 &first_bad, &bad_sectors);
987 if (is_bad < 0) {
988 /* mustn't write here until the bad block is
989 * acknowledged*/
990 set_bit(BlockedBadBlocks, &rdev->flags);
991 blocked_rdev = rdev;
992 break;
993 }
994 if (is_bad && first_bad <= r1_bio->sector) {
995 /* Cannot write here at all */
996 bad_sectors -= (r1_bio->sector - first_bad);
997 if (bad_sectors < max_sectors)
998 /* mustn't write more than bad_sectors
999 * to other devices yet
1000 */
1001 max_sectors = bad_sectors;
03c902e1 1002 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1003 /* We don't set R1BIO_Degraded as that
1004 * only applies if the disk is
1005 * missing, so it might be re-added,
1006 * and we want to know to recover this
1007 * chunk.
1008 * In this case the device is here,
1009 * and the fact that this chunk is not
1010 * in-sync is recorded in the bad
1011 * block log
1012 */
1013 continue;
964147d5 1014 }
1f68f0c4
N
1015 if (is_bad) {
1016 int good_sectors = first_bad - r1_bio->sector;
1017 if (good_sectors < max_sectors)
1018 max_sectors = good_sectors;
1019 }
1020 }
1021 r1_bio->bios[i] = bio;
1da177e4
LT
1022 }
1023 rcu_read_unlock();
1024
6bfe0b49
DW
1025 if (unlikely(blocked_rdev)) {
1026 /* Wait for this device to become unblocked */
1027 int j;
1028
1029 for (j = 0; j < i; j++)
1030 if (r1_bio->bios[j])
1031 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1032 r1_bio->state = 0;
6bfe0b49
DW
1033 allow_barrier(conf);
1034 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1035 wait_barrier(conf);
1036 goto retry_write;
1037 }
1038
1f68f0c4
N
1039 if (max_sectors < r1_bio->sectors) {
1040 /* We are splitting this write into multiple parts, so
1041 * we need to prepare for allocating another r1_bio.
1042 */
1043 r1_bio->sectors = max_sectors;
1044 spin_lock_irq(&conf->device_lock);
1045 if (bio->bi_phys_segments == 0)
1046 bio->bi_phys_segments = 2;
1047 else
1048 bio->bi_phys_segments++;
1049 spin_unlock_irq(&conf->device_lock);
191ea9b2 1050 }
1f68f0c4 1051 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
4b6d287f 1052
4e78064f 1053 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1054 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1055
1f68f0c4 1056 first_clone = 1;
1da177e4
LT
1057 for (i = 0; i < disks; i++) {
1058 struct bio *mbio;
1059 if (!r1_bio->bios[i])
1060 continue;
1061
a167f663 1062 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1f68f0c4
N
1063 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1064
1065 if (first_clone) {
1066 /* do behind I/O ?
1067 * Not if there are too many, or cannot
1068 * allocate memory, or a reader on WriteMostly
1069 * is waiting for behind writes to flush */
1070 if (bitmap &&
1071 (atomic_read(&bitmap->behind_writes)
1072 < mddev->bitmap_info.max_write_behind) &&
1073 !waitqueue_active(&bitmap->behind_wait))
1074 alloc_behind_pages(mbio, r1_bio);
1075
1076 bitmap_startwrite(bitmap, r1_bio->sector,
1077 r1_bio->sectors,
1078 test_bit(R1BIO_BehindIO,
1079 &r1_bio->state));
1080 first_clone = 0;
1081 }
2ca68f5e 1082 if (r1_bio->behind_bvecs) {
4b6d287f
N
1083 struct bio_vec *bvec;
1084 int j;
1085
1086 /* Yes, I really want the '__' version so that
1087 * we clear any unused pointer in the io_vec, rather
1088 * than leave them unchanged. This is important
1089 * because when we come to free the pages, we won't
046abeed 1090 * know the original bi_idx, so we just free
4b6d287f
N
1091 * them all
1092 */
1093 __bio_for_each_segment(bvec, mbio, j, 0)
2ca68f5e 1094 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1095 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1096 atomic_inc(&r1_bio->behind_remaining);
1097 }
1098
1f68f0c4
N
1099 r1_bio->bios[i] = mbio;
1100
1101 mbio->bi_sector = (r1_bio->sector +
1102 conf->mirrors[i].rdev->data_offset);
1103 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1104 mbio->bi_end_io = raid1_end_write_request;
1105 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1106 mbio->bi_private = r1_bio;
1107
1da177e4 1108 atomic_inc(&r1_bio->remaining);
4e78064f
N
1109 spin_lock_irqsave(&conf->device_lock, flags);
1110 bio_list_add(&conf->pending_bio_list, mbio);
4e78064f 1111 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1112 }
079fa166
N
1113 /* Mustn't call r1_bio_write_done before this next test,
1114 * as it could result in the bio being freed.
1115 */
1f68f0c4 1116 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1117 r1_bio_write_done(r1_bio);
1f68f0c4
N
1118 /* We need another r1_bio. It has already been counted
1119 * in bio->bi_phys_segments
1120 */
1121 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1122 r1_bio->master_bio = bio;
1123 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1124 r1_bio->state = 0;
1125 r1_bio->mddev = mddev;
1126 r1_bio->sector = bio->bi_sector + sectors_handled;
1127 goto retry_write;
1128 }
1129
079fa166
N
1130 r1_bio_write_done(r1_bio);
1131
1132 /* In case raid1d snuck in to freeze_array */
1133 wake_up(&conf->wait_barrier);
1134
c3b328ac 1135 if (do_sync || !bitmap || !plugged)
e3881a68 1136 md_wakeup_thread(mddev->thread);
191ea9b2 1137
1da177e4
LT
1138 return 0;
1139}
1140
1141static void status(struct seq_file *seq, mddev_t *mddev)
1142{
070ec55d 1143 conf_t *conf = mddev->private;
1da177e4
LT
1144 int i;
1145
1146 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1147 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1148 rcu_read_lock();
1149 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1150 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1151 seq_printf(seq, "%s",
ddac7c7e
N
1152 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1153 }
1154 rcu_read_unlock();
1da177e4
LT
1155 seq_printf(seq, "]");
1156}
1157
1158
3cb03002 1159static void error(mddev_t *mddev, struct md_rdev *rdev)
1da177e4
LT
1160{
1161 char b[BDEVNAME_SIZE];
070ec55d 1162 conf_t *conf = mddev->private;
1da177e4
LT
1163
1164 /*
1165 * If it is not operational, then we have already marked it as dead
1166 * else if it is the last working disks, ignore the error, let the
1167 * next level up know.
1168 * else mark the drive as failed
1169 */
b2d444d7 1170 if (test_bit(In_sync, &rdev->flags)
4044ba58 1171 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1172 /*
1173 * Don't fail the drive, act as though we were just a
4044ba58
N
1174 * normal single drive.
1175 * However don't try a recovery from this drive as
1176 * it is very likely to fail.
1da177e4 1177 */
5389042f 1178 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1179 return;
4044ba58 1180 }
de393cde 1181 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1182 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1183 unsigned long flags;
1184 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1185 mddev->degraded++;
dd00a99e 1186 set_bit(Faulty, &rdev->flags);
c04be0aa 1187 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1188 /*
1189 * if recovery is running, make sure it aborts.
1190 */
dfc70645 1191 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1192 } else
1193 set_bit(Faulty, &rdev->flags);
850b2b42 1194 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1195 printk(KERN_ALERT
1196 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1197 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1198 mdname(mddev), bdevname(rdev->bdev, b),
1199 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1200}
1201
1202static void print_conf(conf_t *conf)
1203{
1204 int i;
1da177e4 1205
9dd1e2fa 1206 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1207 if (!conf) {
9dd1e2fa 1208 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1209 return;
1210 }
9dd1e2fa 1211 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1212 conf->raid_disks);
1213
ddac7c7e 1214 rcu_read_lock();
1da177e4
LT
1215 for (i = 0; i < conf->raid_disks; i++) {
1216 char b[BDEVNAME_SIZE];
3cb03002 1217 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1218 if (rdev)
9dd1e2fa 1219 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1220 i, !test_bit(In_sync, &rdev->flags),
1221 !test_bit(Faulty, &rdev->flags),
1222 bdevname(rdev->bdev,b));
1da177e4 1223 }
ddac7c7e 1224 rcu_read_unlock();
1da177e4
LT
1225}
1226
1227static void close_sync(conf_t *conf)
1228{
17999be4
N
1229 wait_barrier(conf);
1230 allow_barrier(conf);
1da177e4
LT
1231
1232 mempool_destroy(conf->r1buf_pool);
1233 conf->r1buf_pool = NULL;
1234}
1235
1236static int raid1_spare_active(mddev_t *mddev)
1237{
1238 int i;
1239 conf_t *conf = mddev->private;
6b965620
N
1240 int count = 0;
1241 unsigned long flags;
1da177e4
LT
1242
1243 /*
1244 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1245 * and mark them readable.
1246 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1247 */
1248 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1249 struct md_rdev *rdev = conf->mirrors[i].rdev;
ddac7c7e
N
1250 if (rdev
1251 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1252 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1253 count++;
654e8b5a 1254 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1255 }
1256 }
6b965620
N
1257 spin_lock_irqsave(&conf->device_lock, flags);
1258 mddev->degraded -= count;
1259 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1260
1261 print_conf(conf);
6b965620 1262 return count;
1da177e4
LT
1263}
1264
1265
3cb03002 1266static int raid1_add_disk(mddev_t *mddev, struct md_rdev *rdev)
1da177e4
LT
1267{
1268 conf_t *conf = mddev->private;
199050ea 1269 int err = -EEXIST;
41158c7e 1270 int mirror = 0;
1da177e4 1271 mirror_info_t *p;
6c2fce2e
NB
1272 int first = 0;
1273 int last = mddev->raid_disks - 1;
1da177e4 1274
5389042f
N
1275 if (mddev->recovery_disabled == conf->recovery_disabled)
1276 return -EBUSY;
1277
6c2fce2e
NB
1278 if (rdev->raid_disk >= 0)
1279 first = last = rdev->raid_disk;
1280
1281 for (mirror = first; mirror <= last; mirror++)
1da177e4
LT
1282 if ( !(p=conf->mirrors+mirror)->rdev) {
1283
8f6c2e4b
MP
1284 disk_stack_limits(mddev->gendisk, rdev->bdev,
1285 rdev->data_offset << 9);
627a2d3c
N
1286 /* as we don't honour merge_bvec_fn, we must
1287 * never risk violating it, so limit
1288 * ->max_segments to one lying with a single
1289 * page, as a one page request is never in
1290 * violation.
1da177e4 1291 */
627a2d3c
N
1292 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1293 blk_queue_max_segments(mddev->queue, 1);
1294 blk_queue_segment_boundary(mddev->queue,
1295 PAGE_CACHE_SIZE - 1);
1296 }
1da177e4
LT
1297
1298 p->head_position = 0;
1299 rdev->raid_disk = mirror;
199050ea 1300 err = 0;
6aea114a
N
1301 /* As all devices are equivalent, we don't need a full recovery
1302 * if this was recently any drive of the array
1303 */
1304 if (rdev->saved_raid_disk < 0)
41158c7e 1305 conf->fullsync = 1;
d6065f7b 1306 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1307 break;
1308 }
ac5e7113 1309 md_integrity_add_rdev(rdev, mddev);
1da177e4 1310 print_conf(conf);
199050ea 1311 return err;
1da177e4
LT
1312}
1313
1314static int raid1_remove_disk(mddev_t *mddev, int number)
1315{
1316 conf_t *conf = mddev->private;
1317 int err = 0;
3cb03002 1318 struct md_rdev *rdev;
1da177e4
LT
1319 mirror_info_t *p = conf->mirrors+ number;
1320
1321 print_conf(conf);
1322 rdev = p->rdev;
1323 if (rdev) {
b2d444d7 1324 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1325 atomic_read(&rdev->nr_pending)) {
1326 err = -EBUSY;
1327 goto abort;
1328 }
046abeed 1329 /* Only remove non-faulty devices if recovery
dfc70645
N
1330 * is not possible.
1331 */
1332 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1333 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1334 mddev->degraded < conf->raid_disks) {
1335 err = -EBUSY;
1336 goto abort;
1337 }
1da177e4 1338 p->rdev = NULL;
fbd568a3 1339 synchronize_rcu();
1da177e4
LT
1340 if (atomic_read(&rdev->nr_pending)) {
1341 /* lost the race, try later */
1342 err = -EBUSY;
1343 p->rdev = rdev;
ac5e7113 1344 goto abort;
1da177e4 1345 }
a91a2785 1346 err = md_integrity_register(mddev);
1da177e4
LT
1347 }
1348abort:
1349
1350 print_conf(conf);
1351 return err;
1352}
1353
1354
6712ecf8 1355static void end_sync_read(struct bio *bio, int error)
1da177e4 1356{
7b92813c 1357 r1bio_t *r1_bio = bio->bi_private;
1da177e4 1358
0fc280f6 1359 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1360
1da177e4
LT
1361 /*
1362 * we have read a block, now it needs to be re-written,
1363 * or re-read if the read failed.
1364 * We don't do much here, just schedule handling by raid1d
1365 */
69382e85 1366 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1367 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1368
1369 if (atomic_dec_and_test(&r1_bio->remaining))
1370 reschedule_retry(r1_bio);
1da177e4
LT
1371}
1372
6712ecf8 1373static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1374{
1375 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 1376 r1bio_t *r1_bio = bio->bi_private;
1da177e4 1377 mddev_t *mddev = r1_bio->mddev;
070ec55d 1378 conf_t *conf = mddev->private;
1da177e4 1379 int mirror=0;
4367af55
N
1380 sector_t first_bad;
1381 int bad_sectors;
1da177e4 1382
ba3ae3be
NK
1383 mirror = find_bio_disk(r1_bio, bio);
1384
6b1117d5 1385 if (!uptodate) {
57dab0bd 1386 sector_t sync_blocks = 0;
6b1117d5
N
1387 sector_t s = r1_bio->sector;
1388 long sectors_to_go = r1_bio->sectors;
1389 /* make sure these bits doesn't get cleared. */
1390 do {
5e3db645 1391 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1392 &sync_blocks, 1);
1393 s += sync_blocks;
1394 sectors_to_go -= sync_blocks;
1395 } while (sectors_to_go > 0);
d8f05d29
N
1396 set_bit(WriteErrorSeen,
1397 &conf->mirrors[mirror].rdev->flags);
1398 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1399 } else if (is_badblock(conf->mirrors[mirror].rdev,
1400 r1_bio->sector,
1401 r1_bio->sectors,
3a9f28a5
N
1402 &first_bad, &bad_sectors) &&
1403 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1404 r1_bio->sector,
1405 r1_bio->sectors,
1406 &first_bad, &bad_sectors)
1407 )
4367af55 1408 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1409
1da177e4 1410 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1411 int s = r1_bio->sectors;
d8f05d29
N
1412 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1413 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1414 reschedule_retry(r1_bio);
1415 else {
1416 put_buf(r1_bio);
1417 md_done_sync(mddev, s, uptodate);
1418 }
1da177e4 1419 }
1da177e4
LT
1420}
1421
3cb03002 1422static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1423 int sectors, struct page *page, int rw)
1424{
1425 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1426 /* success */
1427 return 1;
1428 if (rw == WRITE)
1429 set_bit(WriteErrorSeen, &rdev->flags);
1430 /* need to record an error - either for the block or the device */
1431 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1432 md_error(rdev->mddev, rdev);
1433 return 0;
1434}
1435
a68e5870 1436static int fix_sync_read_error(r1bio_t *r1_bio)
1da177e4 1437{
a68e5870
N
1438 /* Try some synchronous reads of other devices to get
1439 * good data, much like with normal read errors. Only
1440 * read into the pages we already have so we don't
1441 * need to re-issue the read request.
1442 * We don't need to freeze the array, because being in an
1443 * active sync request, there is no normal IO, and
1444 * no overlapping syncs.
06f60385
N
1445 * We don't need to check is_badblock() again as we
1446 * made sure that anything with a bad block in range
1447 * will have bi_end_io clear.
a68e5870
N
1448 */
1449 mddev_t *mddev = r1_bio->mddev;
070ec55d 1450 conf_t *conf = mddev->private;
a68e5870
N
1451 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1452 sector_t sect = r1_bio->sector;
1453 int sectors = r1_bio->sectors;
1454 int idx = 0;
1455
1456 while(sectors) {
1457 int s = sectors;
1458 int d = r1_bio->read_disk;
1459 int success = 0;
3cb03002 1460 struct md_rdev *rdev;
78d7f5f7 1461 int start;
a68e5870
N
1462
1463 if (s > (PAGE_SIZE>>9))
1464 s = PAGE_SIZE >> 9;
1465 do {
1466 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1467 /* No rcu protection needed here devices
1468 * can only be removed when no resync is
1469 * active, and resync is currently active
1470 */
1471 rdev = conf->mirrors[d].rdev;
9d3d8011 1472 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1473 bio->bi_io_vec[idx].bv_page,
1474 READ, false)) {
1475 success = 1;
1476 break;
1477 }
1478 }
1479 d++;
1480 if (d == conf->raid_disks)
1481 d = 0;
1482 } while (!success && d != r1_bio->read_disk);
1483
78d7f5f7 1484 if (!success) {
a68e5870 1485 char b[BDEVNAME_SIZE];
3a9f28a5
N
1486 int abort = 0;
1487 /* Cannot read from anywhere, this block is lost.
1488 * Record a bad block on each device. If that doesn't
1489 * work just disable and interrupt the recovery.
1490 * Don't fail devices as that won't really help.
1491 */
a68e5870
N
1492 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1493 " for block %llu\n",
1494 mdname(mddev),
1495 bdevname(bio->bi_bdev, b),
1496 (unsigned long long)r1_bio->sector);
3a9f28a5
N
1497 for (d = 0; d < conf->raid_disks; d++) {
1498 rdev = conf->mirrors[d].rdev;
1499 if (!rdev || test_bit(Faulty, &rdev->flags))
1500 continue;
1501 if (!rdev_set_badblocks(rdev, sect, s, 0))
1502 abort = 1;
1503 }
1504 if (abort) {
1505 mddev->recovery_disabled = 1;
1506 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1507 md_done_sync(mddev, r1_bio->sectors, 0);
1508 put_buf(r1_bio);
1509 return 0;
1510 }
1511 /* Try next page */
1512 sectors -= s;
1513 sect += s;
1514 idx++;
1515 continue;
d11c171e 1516 }
78d7f5f7
N
1517
1518 start = d;
1519 /* write it back and re-read */
1520 while (d != r1_bio->read_disk) {
1521 if (d == 0)
1522 d = conf->raid_disks;
1523 d--;
1524 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1525 continue;
1526 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1527 if (r1_sync_page_io(rdev, sect, s,
1528 bio->bi_io_vec[idx].bv_page,
1529 WRITE) == 0) {
78d7f5f7
N
1530 r1_bio->bios[d]->bi_end_io = NULL;
1531 rdev_dec_pending(rdev, mddev);
9d3d8011 1532 }
78d7f5f7
N
1533 }
1534 d = start;
1535 while (d != r1_bio->read_disk) {
1536 if (d == 0)
1537 d = conf->raid_disks;
1538 d--;
1539 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1540 continue;
1541 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1542 if (r1_sync_page_io(rdev, sect, s,
1543 bio->bi_io_vec[idx].bv_page,
1544 READ) != 0)
9d3d8011 1545 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1546 }
a68e5870
N
1547 sectors -= s;
1548 sect += s;
1549 idx ++;
1550 }
78d7f5f7 1551 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1552 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1553 return 1;
1554}
1555
1556static int process_checks(r1bio_t *r1_bio)
1557{
1558 /* We have read all readable devices. If we haven't
1559 * got the block, then there is no hope left.
1560 * If we have, then we want to do a comparison
1561 * and skip the write if everything is the same.
1562 * If any blocks failed to read, then we need to
1563 * attempt an over-write
1564 */
1565 mddev_t *mddev = r1_bio->mddev;
1566 conf_t *conf = mddev->private;
1567 int primary;
1568 int i;
1569
78d7f5f7 1570 for (primary = 0; primary < conf->raid_disks; primary++)
a68e5870
N
1571 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1572 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1573 r1_bio->bios[primary]->bi_end_io = NULL;
1574 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1575 break;
1576 }
1577 r1_bio->read_disk = primary;
78d7f5f7
N
1578 for (i = 0; i < conf->raid_disks; i++) {
1579 int j;
1580 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1581 struct bio *pbio = r1_bio->bios[primary];
1582 struct bio *sbio = r1_bio->bios[i];
1583 int size;
a68e5870 1584
78d7f5f7
N
1585 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1586 continue;
1587
1588 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1589 for (j = vcnt; j-- ; ) {
1590 struct page *p, *s;
1591 p = pbio->bi_io_vec[j].bv_page;
1592 s = sbio->bi_io_vec[j].bv_page;
1593 if (memcmp(page_address(p),
1594 page_address(s),
1595 PAGE_SIZE))
1596 break;
69382e85 1597 }
78d7f5f7
N
1598 } else
1599 j = 0;
1600 if (j >= 0)
1601 mddev->resync_mismatches += r1_bio->sectors;
1602 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1603 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1604 /* No need to write to this device. */
1605 sbio->bi_end_io = NULL;
1606 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1607 continue;
1608 }
1609 /* fixup the bio for reuse */
1610 sbio->bi_vcnt = vcnt;
1611 sbio->bi_size = r1_bio->sectors << 9;
1612 sbio->bi_idx = 0;
1613 sbio->bi_phys_segments = 0;
1614 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1615 sbio->bi_flags |= 1 << BIO_UPTODATE;
1616 sbio->bi_next = NULL;
1617 sbio->bi_sector = r1_bio->sector +
1618 conf->mirrors[i].rdev->data_offset;
1619 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1620 size = sbio->bi_size;
1621 for (j = 0; j < vcnt ; j++) {
1622 struct bio_vec *bi;
1623 bi = &sbio->bi_io_vec[j];
1624 bi->bv_offset = 0;
1625 if (size > PAGE_SIZE)
1626 bi->bv_len = PAGE_SIZE;
1627 else
1628 bi->bv_len = size;
1629 size -= PAGE_SIZE;
1630 memcpy(page_address(bi->bv_page),
1631 page_address(pbio->bi_io_vec[j].bv_page),
1632 PAGE_SIZE);
69382e85 1633 }
78d7f5f7 1634 }
a68e5870
N
1635 return 0;
1636}
1637
1638static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1639{
1640 conf_t *conf = mddev->private;
1641 int i;
1642 int disks = conf->raid_disks;
1643 struct bio *bio, *wbio;
1644
1645 bio = r1_bio->bios[r1_bio->read_disk];
1646
a68e5870
N
1647 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1648 /* ouch - failed to read all of that. */
1649 if (!fix_sync_read_error(r1_bio))
1650 return;
7ca78d57
N
1651
1652 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1653 if (process_checks(r1_bio) < 0)
1654 return;
d11c171e
N
1655 /*
1656 * schedule writes
1657 */
1da177e4
LT
1658 atomic_set(&r1_bio->remaining, 1);
1659 for (i = 0; i < disks ; i++) {
1660 wbio = r1_bio->bios[i];
3e198f78
N
1661 if (wbio->bi_end_io == NULL ||
1662 (wbio->bi_end_io == end_sync_read &&
1663 (i == r1_bio->read_disk ||
1664 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1665 continue;
1666
3e198f78
N
1667 wbio->bi_rw = WRITE;
1668 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1669 atomic_inc(&r1_bio->remaining);
1670 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1671
1da177e4
LT
1672 generic_make_request(wbio);
1673 }
1674
1675 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1676 /* if we're here, all write(s) have completed, so clean up */
1da177e4
LT
1677 md_done_sync(mddev, r1_bio->sectors, 1);
1678 put_buf(r1_bio);
1679 }
1680}
1681
1682/*
1683 * This is a kernel thread which:
1684 *
1685 * 1. Retries failed read operations on working mirrors.
1686 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 1687 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1688 */
1689
867868fb
N
1690static void fix_read_error(conf_t *conf, int read_disk,
1691 sector_t sect, int sectors)
1692{
1693 mddev_t *mddev = conf->mddev;
1694 while(sectors) {
1695 int s = sectors;
1696 int d = read_disk;
1697 int success = 0;
1698 int start;
3cb03002 1699 struct md_rdev *rdev;
867868fb
N
1700
1701 if (s > (PAGE_SIZE>>9))
1702 s = PAGE_SIZE >> 9;
1703
1704 do {
1705 /* Note: no rcu protection needed here
1706 * as this is synchronous in the raid1d thread
1707 * which is the thread that might remove
1708 * a device. If raid1d ever becomes multi-threaded....
1709 */
d2eb35ac
N
1710 sector_t first_bad;
1711 int bad_sectors;
1712
867868fb
N
1713 rdev = conf->mirrors[d].rdev;
1714 if (rdev &&
1715 test_bit(In_sync, &rdev->flags) &&
d2eb35ac
N
1716 is_badblock(rdev, sect, s,
1717 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
1718 sync_page_io(rdev, sect, s<<9,
1719 conf->tmppage, READ, false))
867868fb
N
1720 success = 1;
1721 else {
1722 d++;
1723 if (d == conf->raid_disks)
1724 d = 0;
1725 }
1726 } while (!success && d != read_disk);
1727
1728 if (!success) {
d8f05d29 1729 /* Cannot read from anywhere - mark it bad */
3cb03002 1730 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
1731 if (!rdev_set_badblocks(rdev, sect, s, 0))
1732 md_error(mddev, rdev);
867868fb
N
1733 break;
1734 }
1735 /* write it back and re-read */
1736 start = d;
1737 while (d != read_disk) {
1738 if (d==0)
1739 d = conf->raid_disks;
1740 d--;
1741 rdev = conf->mirrors[d].rdev;
1742 if (rdev &&
d8f05d29
N
1743 test_bit(In_sync, &rdev->flags))
1744 r1_sync_page_io(rdev, sect, s,
1745 conf->tmppage, WRITE);
867868fb
N
1746 }
1747 d = start;
1748 while (d != read_disk) {
1749 char b[BDEVNAME_SIZE];
1750 if (d==0)
1751 d = conf->raid_disks;
1752 d--;
1753 rdev = conf->mirrors[d].rdev;
1754 if (rdev &&
1755 test_bit(In_sync, &rdev->flags)) {
d8f05d29
N
1756 if (r1_sync_page_io(rdev, sect, s,
1757 conf->tmppage, READ)) {
867868fb
N
1758 atomic_add(s, &rdev->corrected_errors);
1759 printk(KERN_INFO
9dd1e2fa 1760 "md/raid1:%s: read error corrected "
867868fb
N
1761 "(%d sectors at %llu on %s)\n",
1762 mdname(mddev), s,
969b755a
RD
1763 (unsigned long long)(sect +
1764 rdev->data_offset),
867868fb
N
1765 bdevname(rdev->bdev, b));
1766 }
1767 }
1768 }
1769 sectors -= s;
1770 sect += s;
1771 }
1772}
1773
cd5ff9a1
N
1774static void bi_complete(struct bio *bio, int error)
1775{
1776 complete((struct completion *)bio->bi_private);
1777}
1778
1779static int submit_bio_wait(int rw, struct bio *bio)
1780{
1781 struct completion event;
1782 rw |= REQ_SYNC;
1783
1784 init_completion(&event);
1785 bio->bi_private = &event;
1786 bio->bi_end_io = bi_complete;
1787 submit_bio(rw, bio);
1788 wait_for_completion(&event);
1789
1790 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1791}
1792
1793static int narrow_write_error(r1bio_t *r1_bio, int i)
1794{
1795 mddev_t *mddev = r1_bio->mddev;
1796 conf_t *conf = mddev->private;
3cb03002 1797 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
1798 int vcnt, idx;
1799 struct bio_vec *vec;
1800
1801 /* bio has the data to be written to device 'i' where
1802 * we just recently had a write error.
1803 * We repeatedly clone the bio and trim down to one block,
1804 * then try the write. Where the write fails we record
1805 * a bad block.
1806 * It is conceivable that the bio doesn't exactly align with
1807 * blocks. We must handle this somehow.
1808 *
1809 * We currently own a reference on the rdev.
1810 */
1811
1812 int block_sectors;
1813 sector_t sector;
1814 int sectors;
1815 int sect_to_write = r1_bio->sectors;
1816 int ok = 1;
1817
1818 if (rdev->badblocks.shift < 0)
1819 return 0;
1820
1821 block_sectors = 1 << rdev->badblocks.shift;
1822 sector = r1_bio->sector;
1823 sectors = ((sector + block_sectors)
1824 & ~(sector_t)(block_sectors - 1))
1825 - sector;
1826
1827 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1828 vcnt = r1_bio->behind_page_count;
1829 vec = r1_bio->behind_bvecs;
1830 idx = 0;
1831 while (vec[idx].bv_page == NULL)
1832 idx++;
1833 } else {
1834 vcnt = r1_bio->master_bio->bi_vcnt;
1835 vec = r1_bio->master_bio->bi_io_vec;
1836 idx = r1_bio->master_bio->bi_idx;
1837 }
1838 while (sect_to_write) {
1839 struct bio *wbio;
1840 if (sectors > sect_to_write)
1841 sectors = sect_to_write;
1842 /* Write at 'sector' for 'sectors'*/
1843
1844 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1845 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1846 wbio->bi_sector = r1_bio->sector;
1847 wbio->bi_rw = WRITE;
1848 wbio->bi_vcnt = vcnt;
1849 wbio->bi_size = r1_bio->sectors << 9;
1850 wbio->bi_idx = idx;
1851
1852 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1853 wbio->bi_sector += rdev->data_offset;
1854 wbio->bi_bdev = rdev->bdev;
1855 if (submit_bio_wait(WRITE, wbio) == 0)
1856 /* failure! */
1857 ok = rdev_set_badblocks(rdev, sector,
1858 sectors, 0)
1859 && ok;
1860
1861 bio_put(wbio);
1862 sect_to_write -= sectors;
1863 sector += sectors;
1864 sectors = block_sectors;
1865 }
1866 return ok;
1867}
1868
62096bce
N
1869static void handle_sync_write_finished(conf_t *conf, r1bio_t *r1_bio)
1870{
1871 int m;
1872 int s = r1_bio->sectors;
1873 for (m = 0; m < conf->raid_disks ; m++) {
3cb03002 1874 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
1875 struct bio *bio = r1_bio->bios[m];
1876 if (bio->bi_end_io == NULL)
1877 continue;
1878 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1879 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1880 rdev_clear_badblocks(rdev, r1_bio->sector, s);
1881 }
1882 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1883 test_bit(R1BIO_WriteError, &r1_bio->state)) {
1884 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1885 md_error(conf->mddev, rdev);
1886 }
1887 }
1888 put_buf(r1_bio);
1889 md_done_sync(conf->mddev, s, 1);
1890}
1891
1892static void handle_write_finished(conf_t *conf, r1bio_t *r1_bio)
1893{
1894 int m;
1895 for (m = 0; m < conf->raid_disks ; m++)
1896 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 1897 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
1898 rdev_clear_badblocks(rdev,
1899 r1_bio->sector,
1900 r1_bio->sectors);
1901 rdev_dec_pending(rdev, conf->mddev);
1902 } else if (r1_bio->bios[m] != NULL) {
1903 /* This drive got a write error. We need to
1904 * narrow down and record precise write
1905 * errors.
1906 */
1907 if (!narrow_write_error(r1_bio, m)) {
1908 md_error(conf->mddev,
1909 conf->mirrors[m].rdev);
1910 /* an I/O failed, we can't clear the bitmap */
1911 set_bit(R1BIO_Degraded, &r1_bio->state);
1912 }
1913 rdev_dec_pending(conf->mirrors[m].rdev,
1914 conf->mddev);
1915 }
1916 if (test_bit(R1BIO_WriteError, &r1_bio->state))
1917 close_write(r1_bio);
1918 raid_end_bio_io(r1_bio);
1919}
1920
1921static void handle_read_error(conf_t *conf, r1bio_t *r1_bio)
1922{
1923 int disk;
1924 int max_sectors;
1925 mddev_t *mddev = conf->mddev;
1926 struct bio *bio;
1927 char b[BDEVNAME_SIZE];
3cb03002 1928 struct md_rdev *rdev;
62096bce
N
1929
1930 clear_bit(R1BIO_ReadError, &r1_bio->state);
1931 /* we got a read error. Maybe the drive is bad. Maybe just
1932 * the block and we can fix it.
1933 * We freeze all other IO, and try reading the block from
1934 * other devices. When we find one, we re-write
1935 * and check it that fixes the read error.
1936 * This is all done synchronously while the array is
1937 * frozen
1938 */
1939 if (mddev->ro == 0) {
1940 freeze_array(conf);
1941 fix_read_error(conf, r1_bio->read_disk,
1942 r1_bio->sector, r1_bio->sectors);
1943 unfreeze_array(conf);
1944 } else
1945 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1946
1947 bio = r1_bio->bios[r1_bio->read_disk];
1948 bdevname(bio->bi_bdev, b);
1949read_more:
1950 disk = read_balance(conf, r1_bio, &max_sectors);
1951 if (disk == -1) {
1952 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1953 " read error for block %llu\n",
1954 mdname(mddev), b, (unsigned long long)r1_bio->sector);
1955 raid_end_bio_io(r1_bio);
1956 } else {
1957 const unsigned long do_sync
1958 = r1_bio->master_bio->bi_rw & REQ_SYNC;
1959 if (bio) {
1960 r1_bio->bios[r1_bio->read_disk] =
1961 mddev->ro ? IO_BLOCKED : NULL;
1962 bio_put(bio);
1963 }
1964 r1_bio->read_disk = disk;
1965 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1966 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1967 r1_bio->bios[r1_bio->read_disk] = bio;
1968 rdev = conf->mirrors[disk].rdev;
1969 printk_ratelimited(KERN_ERR
1970 "md/raid1:%s: redirecting sector %llu"
1971 " to other mirror: %s\n",
1972 mdname(mddev),
1973 (unsigned long long)r1_bio->sector,
1974 bdevname(rdev->bdev, b));
1975 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1976 bio->bi_bdev = rdev->bdev;
1977 bio->bi_end_io = raid1_end_read_request;
1978 bio->bi_rw = READ | do_sync;
1979 bio->bi_private = r1_bio;
1980 if (max_sectors < r1_bio->sectors) {
1981 /* Drat - have to split this up more */
1982 struct bio *mbio = r1_bio->master_bio;
1983 int sectors_handled = (r1_bio->sector + max_sectors
1984 - mbio->bi_sector);
1985 r1_bio->sectors = max_sectors;
1986 spin_lock_irq(&conf->device_lock);
1987 if (mbio->bi_phys_segments == 0)
1988 mbio->bi_phys_segments = 2;
1989 else
1990 mbio->bi_phys_segments++;
1991 spin_unlock_irq(&conf->device_lock);
1992 generic_make_request(bio);
1993 bio = NULL;
1994
1995 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1996
1997 r1_bio->master_bio = mbio;
1998 r1_bio->sectors = (mbio->bi_size >> 9)
1999 - sectors_handled;
2000 r1_bio->state = 0;
2001 set_bit(R1BIO_ReadError, &r1_bio->state);
2002 r1_bio->mddev = mddev;
2003 r1_bio->sector = mbio->bi_sector + sectors_handled;
2004
2005 goto read_more;
2006 } else
2007 generic_make_request(bio);
2008 }
2009}
2010
1da177e4
LT
2011static void raid1d(mddev_t *mddev)
2012{
2013 r1bio_t *r1_bio;
1da177e4 2014 unsigned long flags;
070ec55d 2015 conf_t *conf = mddev->private;
1da177e4 2016 struct list_head *head = &conf->retry_list;
e1dfa0a2 2017 struct blk_plug plug;
1da177e4
LT
2018
2019 md_check_recovery(mddev);
e1dfa0a2
N
2020
2021 blk_start_plug(&plug);
1da177e4 2022 for (;;) {
191ea9b2 2023
c3b328ac
N
2024 if (atomic_read(&mddev->plug_cnt) == 0)
2025 flush_pending_writes(conf);
191ea9b2 2026
a35e63ef
N
2027 spin_lock_irqsave(&conf->device_lock, flags);
2028 if (list_empty(head)) {
2029 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2030 break;
a35e63ef 2031 }
1da177e4
LT
2032 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
2033 list_del(head->prev);
ddaf22ab 2034 conf->nr_queued--;
1da177e4
LT
2035 spin_unlock_irqrestore(&conf->device_lock, flags);
2036
2037 mddev = r1_bio->mddev;
070ec55d 2038 conf = mddev->private;
4367af55 2039 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2040 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2041 test_bit(R1BIO_WriteError, &r1_bio->state))
2042 handle_sync_write_finished(conf, r1_bio);
2043 else
4367af55 2044 sync_request_write(mddev, r1_bio);
cd5ff9a1 2045 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2046 test_bit(R1BIO_WriteError, &r1_bio->state))
2047 handle_write_finished(conf, r1_bio);
2048 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2049 handle_read_error(conf, r1_bio);
2050 else
d2eb35ac
N
2051 /* just a partial read to be scheduled from separate
2052 * context
2053 */
2054 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2055
1d9d5241 2056 cond_resched();
de393cde
N
2057 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2058 md_check_recovery(mddev);
1da177e4 2059 }
e1dfa0a2 2060 blk_finish_plug(&plug);
1da177e4
LT
2061}
2062
2063
2064static int init_resync(conf_t *conf)
2065{
2066 int buffs;
2067
2068 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2069 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2070 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2071 conf->poolinfo);
2072 if (!conf->r1buf_pool)
2073 return -ENOMEM;
2074 conf->next_resync = 0;
2075 return 0;
2076}
2077
2078/*
2079 * perform a "sync" on one "block"
2080 *
2081 * We need to make sure that no normal I/O request - particularly write
2082 * requests - conflict with active sync requests.
2083 *
2084 * This is achieved by tracking pending requests and a 'barrier' concept
2085 * that can be installed to exclude normal IO requests.
2086 */
2087
57afd89f 2088static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2089{
070ec55d 2090 conf_t *conf = mddev->private;
1da177e4
LT
2091 r1bio_t *r1_bio;
2092 struct bio *bio;
2093 sector_t max_sector, nr_sectors;
3e198f78 2094 int disk = -1;
1da177e4 2095 int i;
3e198f78
N
2096 int wonly = -1;
2097 int write_targets = 0, read_targets = 0;
57dab0bd 2098 sector_t sync_blocks;
e3b9703e 2099 int still_degraded = 0;
06f60385
N
2100 int good_sectors = RESYNC_SECTORS;
2101 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2102
2103 if (!conf->r1buf_pool)
2104 if (init_resync(conf))
57afd89f 2105 return 0;
1da177e4 2106
58c0fed4 2107 max_sector = mddev->dev_sectors;
1da177e4 2108 if (sector_nr >= max_sector) {
191ea9b2
N
2109 /* If we aborted, we need to abort the
2110 * sync on the 'current' bitmap chunk (there will
2111 * only be one in raid1 resync.
2112 * We can find the current addess in mddev->curr_resync
2113 */
6a806c51
N
2114 if (mddev->curr_resync < max_sector) /* aborted */
2115 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2116 &sync_blocks, 1);
6a806c51 2117 else /* completed sync */
191ea9b2 2118 conf->fullsync = 0;
6a806c51
N
2119
2120 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2121 close_sync(conf);
2122 return 0;
2123 }
2124
07d84d10
N
2125 if (mddev->bitmap == NULL &&
2126 mddev->recovery_cp == MaxSector &&
6394cca5 2127 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2128 conf->fullsync == 0) {
2129 *skipped = 1;
2130 return max_sector - sector_nr;
2131 }
6394cca5
N
2132 /* before building a request, check if we can skip these blocks..
2133 * This call the bitmap_start_sync doesn't actually record anything
2134 */
e3b9703e 2135 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2136 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2137 /* We can skip this block, and probably several more */
2138 *skipped = 1;
2139 return sync_blocks;
2140 }
1da177e4 2141 /*
17999be4
N
2142 * If there is non-resync activity waiting for a turn,
2143 * and resync is going fast enough,
2144 * then let it though before starting on this new sync request.
1da177e4 2145 */
17999be4 2146 if (!go_faster && conf->nr_waiting)
1da177e4 2147 msleep_interruptible(1000);
17999be4 2148
b47490c9 2149 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2150 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
2151 raise_barrier(conf);
2152
2153 conf->next_resync = sector_nr;
1da177e4 2154
3e198f78 2155 rcu_read_lock();
1da177e4 2156 /*
3e198f78
N
2157 * If we get a correctably read error during resync or recovery,
2158 * we might want to read from a different device. So we
2159 * flag all drives that could conceivably be read from for READ,
2160 * and any others (which will be non-In_sync devices) for WRITE.
2161 * If a read fails, we try reading from something else for which READ
2162 * is OK.
1da177e4 2163 */
1da177e4 2164
1da177e4
LT
2165 r1_bio->mddev = mddev;
2166 r1_bio->sector = sector_nr;
191ea9b2 2167 r1_bio->state = 0;
1da177e4 2168 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4
LT
2169
2170 for (i=0; i < conf->raid_disks; i++) {
3cb03002 2171 struct md_rdev *rdev;
1da177e4
LT
2172 bio = r1_bio->bios[i];
2173
2174 /* take from bio_init */
2175 bio->bi_next = NULL;
db8d9d35 2176 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1da177e4 2177 bio->bi_flags |= 1 << BIO_UPTODATE;
db8d9d35 2178 bio->bi_comp_cpu = -1;
802ba064 2179 bio->bi_rw = READ;
1da177e4
LT
2180 bio->bi_vcnt = 0;
2181 bio->bi_idx = 0;
2182 bio->bi_phys_segments = 0;
1da177e4
LT
2183 bio->bi_size = 0;
2184 bio->bi_end_io = NULL;
2185 bio->bi_private = NULL;
2186
3e198f78
N
2187 rdev = rcu_dereference(conf->mirrors[i].rdev);
2188 if (rdev == NULL ||
06f60385 2189 test_bit(Faulty, &rdev->flags)) {
e3b9703e 2190 still_degraded = 1;
3e198f78 2191 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2192 bio->bi_rw = WRITE;
2193 bio->bi_end_io = end_sync_write;
2194 write_targets ++;
3e198f78
N
2195 } else {
2196 /* may need to read from here */
06f60385
N
2197 sector_t first_bad = MaxSector;
2198 int bad_sectors;
2199
2200 if (is_badblock(rdev, sector_nr, good_sectors,
2201 &first_bad, &bad_sectors)) {
2202 if (first_bad > sector_nr)
2203 good_sectors = first_bad - sector_nr;
2204 else {
2205 bad_sectors -= (sector_nr - first_bad);
2206 if (min_bad == 0 ||
2207 min_bad > bad_sectors)
2208 min_bad = bad_sectors;
2209 }
2210 }
2211 if (sector_nr < first_bad) {
2212 if (test_bit(WriteMostly, &rdev->flags)) {
2213 if (wonly < 0)
2214 wonly = i;
2215 } else {
2216 if (disk < 0)
2217 disk = i;
2218 }
2219 bio->bi_rw = READ;
2220 bio->bi_end_io = end_sync_read;
2221 read_targets++;
3e198f78 2222 }
3e198f78 2223 }
06f60385
N
2224 if (bio->bi_end_io) {
2225 atomic_inc(&rdev->nr_pending);
2226 bio->bi_sector = sector_nr + rdev->data_offset;
2227 bio->bi_bdev = rdev->bdev;
2228 bio->bi_private = r1_bio;
2229 }
1da177e4 2230 }
3e198f78
N
2231 rcu_read_unlock();
2232 if (disk < 0)
2233 disk = wonly;
2234 r1_bio->read_disk = disk;
191ea9b2 2235
06f60385
N
2236 if (read_targets == 0 && min_bad > 0) {
2237 /* These sectors are bad on all InSync devices, so we
2238 * need to mark them bad on all write targets
2239 */
2240 int ok = 1;
2241 for (i = 0 ; i < conf->raid_disks ; i++)
2242 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
3cb03002 2243 struct md_rdev *rdev =
06f60385
N
2244 rcu_dereference(conf->mirrors[i].rdev);
2245 ok = rdev_set_badblocks(rdev, sector_nr,
2246 min_bad, 0
2247 ) && ok;
2248 }
2249 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2250 *skipped = 1;
2251 put_buf(r1_bio);
2252
2253 if (!ok) {
2254 /* Cannot record the badblocks, so need to
2255 * abort the resync.
2256 * If there are multiple read targets, could just
2257 * fail the really bad ones ???
2258 */
2259 conf->recovery_disabled = mddev->recovery_disabled;
2260 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2261 return 0;
2262 } else
2263 return min_bad;
2264
2265 }
2266 if (min_bad > 0 && min_bad < good_sectors) {
2267 /* only resync enough to reach the next bad->good
2268 * transition */
2269 good_sectors = min_bad;
2270 }
2271
3e198f78
N
2272 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2273 /* extra read targets are also write targets */
2274 write_targets += read_targets-1;
2275
2276 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2277 /* There is nowhere to write, so all non-sync
2278 * drives must be failed - so we are finished
2279 */
57afd89f
N
2280 sector_t rv = max_sector - sector_nr;
2281 *skipped = 1;
1da177e4 2282 put_buf(r1_bio);
1da177e4
LT
2283 return rv;
2284 }
2285
c6207277
N
2286 if (max_sector > mddev->resync_max)
2287 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2288 if (max_sector > sector_nr + good_sectors)
2289 max_sector = sector_nr + good_sectors;
1da177e4 2290 nr_sectors = 0;
289e99e8 2291 sync_blocks = 0;
1da177e4
LT
2292 do {
2293 struct page *page;
2294 int len = PAGE_SIZE;
2295 if (sector_nr + (len>>9) > max_sector)
2296 len = (max_sector - sector_nr) << 9;
2297 if (len == 0)
2298 break;
6a806c51
N
2299 if (sync_blocks == 0) {
2300 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2301 &sync_blocks, still_degraded) &&
2302 !conf->fullsync &&
2303 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2304 break;
9e77c485 2305 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2306 if ((len >> 9) > sync_blocks)
6a806c51 2307 len = sync_blocks<<9;
ab7a30c7 2308 }
191ea9b2 2309
1da177e4
LT
2310 for (i=0 ; i < conf->raid_disks; i++) {
2311 bio = r1_bio->bios[i];
2312 if (bio->bi_end_io) {
d11c171e 2313 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2314 if (bio_add_page(bio, page, len, 0) == 0) {
2315 /* stop here */
d11c171e 2316 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2317 while (i > 0) {
2318 i--;
2319 bio = r1_bio->bios[i];
6a806c51
N
2320 if (bio->bi_end_io==NULL)
2321 continue;
1da177e4
LT
2322 /* remove last page from this bio */
2323 bio->bi_vcnt--;
2324 bio->bi_size -= len;
2325 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2326 }
2327 goto bio_full;
2328 }
2329 }
2330 }
2331 nr_sectors += len>>9;
2332 sector_nr += len>>9;
191ea9b2 2333 sync_blocks -= (len>>9);
1da177e4
LT
2334 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2335 bio_full:
1da177e4
LT
2336 r1_bio->sectors = nr_sectors;
2337
d11c171e
N
2338 /* For a user-requested sync, we read all readable devices and do a
2339 * compare
2340 */
2341 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2342 atomic_set(&r1_bio->remaining, read_targets);
2343 for (i=0; i<conf->raid_disks; i++) {
2344 bio = r1_bio->bios[i];
2345 if (bio->bi_end_io == end_sync_read) {
ddac7c7e 2346 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2347 generic_make_request(bio);
2348 }
2349 }
2350 } else {
2351 atomic_set(&r1_bio->remaining, 1);
2352 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2353 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2354 generic_make_request(bio);
1da177e4 2355
d11c171e 2356 }
1da177e4
LT
2357 return nr_sectors;
2358}
2359
80c3a6ce
DW
2360static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2361{
2362 if (sectors)
2363 return sectors;
2364
2365 return mddev->dev_sectors;
2366}
2367
709ae487 2368static conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
2369{
2370 conf_t *conf;
709ae487 2371 int i;
1da177e4 2372 mirror_info_t *disk;
3cb03002 2373 struct md_rdev *rdev;
709ae487 2374 int err = -ENOMEM;
1da177e4 2375
9ffae0cf 2376 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1da177e4 2377 if (!conf)
709ae487 2378 goto abort;
1da177e4 2379
9ffae0cf 2380 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1da177e4
LT
2381 GFP_KERNEL);
2382 if (!conf->mirrors)
709ae487 2383 goto abort;
1da177e4 2384
ddaf22ab
N
2385 conf->tmppage = alloc_page(GFP_KERNEL);
2386 if (!conf->tmppage)
709ae487 2387 goto abort;
ddaf22ab 2388
709ae487 2389 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2390 if (!conf->poolinfo)
709ae487 2391 goto abort;
1da177e4
LT
2392 conf->poolinfo->raid_disks = mddev->raid_disks;
2393 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2394 r1bio_pool_free,
2395 conf->poolinfo);
2396 if (!conf->r1bio_pool)
709ae487
N
2397 goto abort;
2398
ed9bfdf1 2399 conf->poolinfo->mddev = mddev;
1da177e4 2400
e7e72bf6 2401 spin_lock_init(&conf->device_lock);
159ec1fc 2402 list_for_each_entry(rdev, &mddev->disks, same_set) {
709ae487 2403 int disk_idx = rdev->raid_disk;
1da177e4
LT
2404 if (disk_idx >= mddev->raid_disks
2405 || disk_idx < 0)
2406 continue;
2407 disk = conf->mirrors + disk_idx;
2408
2409 disk->rdev = rdev;
1da177e4
LT
2410
2411 disk->head_position = 0;
1da177e4
LT
2412 }
2413 conf->raid_disks = mddev->raid_disks;
2414 conf->mddev = mddev;
1da177e4 2415 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2416
2417 spin_lock_init(&conf->resync_lock);
17999be4 2418 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2419
191ea9b2 2420 bio_list_init(&conf->pending_bio_list);
191ea9b2 2421
709ae487 2422 conf->last_used = -1;
1da177e4
LT
2423 for (i = 0; i < conf->raid_disks; i++) {
2424
2425 disk = conf->mirrors + i;
2426
5fd6c1dc
N
2427 if (!disk->rdev ||
2428 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2429 disk->head_position = 0;
918f0238
N
2430 if (disk->rdev)
2431 conf->fullsync = 1;
709ae487
N
2432 } else if (conf->last_used < 0)
2433 /*
2434 * The first working device is used as a
2435 * starting point to read balancing.
2436 */
2437 conf->last_used = i;
1da177e4 2438 }
709ae487
N
2439
2440 err = -EIO;
2441 if (conf->last_used < 0) {
9dd1e2fa 2442 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
709ae487
N
2443 mdname(mddev));
2444 goto abort;
2445 }
2446 err = -ENOMEM;
2447 conf->thread = md_register_thread(raid1d, mddev, NULL);
2448 if (!conf->thread) {
2449 printk(KERN_ERR
9dd1e2fa 2450 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2451 mdname(mddev));
2452 goto abort;
11ce99e6 2453 }
1da177e4 2454
709ae487
N
2455 return conf;
2456
2457 abort:
2458 if (conf) {
2459 if (conf->r1bio_pool)
2460 mempool_destroy(conf->r1bio_pool);
2461 kfree(conf->mirrors);
2462 safe_put_page(conf->tmppage);
2463 kfree(conf->poolinfo);
2464 kfree(conf);
2465 }
2466 return ERR_PTR(err);
2467}
2468
2469static int run(mddev_t *mddev)
2470{
2471 conf_t *conf;
2472 int i;
3cb03002 2473 struct md_rdev *rdev;
709ae487
N
2474
2475 if (mddev->level != 1) {
9dd1e2fa 2476 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2477 mdname(mddev), mddev->level);
2478 return -EIO;
2479 }
2480 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2481 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2482 mdname(mddev));
2483 return -EIO;
2484 }
1da177e4 2485 /*
709ae487
N
2486 * copy the already verified devices into our private RAID1
2487 * bookkeeping area. [whatever we allocate in run(),
2488 * should be freed in stop()]
1da177e4 2489 */
709ae487
N
2490 if (mddev->private == NULL)
2491 conf = setup_conf(mddev);
2492 else
2493 conf = mddev->private;
1da177e4 2494
709ae487
N
2495 if (IS_ERR(conf))
2496 return PTR_ERR(conf);
1da177e4 2497
709ae487 2498 list_for_each_entry(rdev, &mddev->disks, same_set) {
1ed7242e
JB
2499 if (!mddev->gendisk)
2500 continue;
709ae487
N
2501 disk_stack_limits(mddev->gendisk, rdev->bdev,
2502 rdev->data_offset << 9);
2503 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
2504 * violating it, so limit ->max_segments to 1 lying within
2505 * a single page, as a one page request is never in violation.
709ae487 2506 */
627a2d3c
N
2507 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2508 blk_queue_max_segments(mddev->queue, 1);
2509 blk_queue_segment_boundary(mddev->queue,
2510 PAGE_CACHE_SIZE - 1);
2511 }
1da177e4 2512 }
191ea9b2 2513
709ae487
N
2514 mddev->degraded = 0;
2515 for (i=0; i < conf->raid_disks; i++)
2516 if (conf->mirrors[i].rdev == NULL ||
2517 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2518 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2519 mddev->degraded++;
2520
2521 if (conf->raid_disks - mddev->degraded == 1)
2522 mddev->recovery_cp = MaxSector;
2523
8c6ac868 2524 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2525 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2526 " -- starting background reconstruction\n",
2527 mdname(mddev));
1da177e4 2528 printk(KERN_INFO
9dd1e2fa 2529 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2530 mdname(mddev), mddev->raid_disks - mddev->degraded,
2531 mddev->raid_disks);
709ae487 2532
1da177e4
LT
2533 /*
2534 * Ok, everything is just fine now
2535 */
709ae487
N
2536 mddev->thread = conf->thread;
2537 conf->thread = NULL;
2538 mddev->private = conf;
2539
1f403624 2540 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2541
1ed7242e
JB
2542 if (mddev->queue) {
2543 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2544 mddev->queue->backing_dev_info.congested_data = mddev;
2545 }
a91a2785 2546 return md_integrity_register(mddev);
1da177e4
LT
2547}
2548
2549static int stop(mddev_t *mddev)
2550{
070ec55d 2551 conf_t *conf = mddev->private;
4b6d287f 2552 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2553
2554 /* wait for behind writes to complete */
e555190d 2555 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2556 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2557 mdname(mddev));
4b6d287f 2558 /* need to kick something here to make sure I/O goes? */
e555190d
N
2559 wait_event(bitmap->behind_wait,
2560 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2561 }
1da177e4 2562
409c57f3
N
2563 raise_barrier(conf);
2564 lower_barrier(conf);
2565
01f96c0a 2566 md_unregister_thread(&mddev->thread);
1da177e4
LT
2567 if (conf->r1bio_pool)
2568 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2569 kfree(conf->mirrors);
2570 kfree(conf->poolinfo);
1da177e4
LT
2571 kfree(conf);
2572 mddev->private = NULL;
2573 return 0;
2574}
2575
2576static int raid1_resize(mddev_t *mddev, sector_t sectors)
2577{
2578 /* no resync is happening, and there is enough space
2579 * on all devices, so we can resize.
2580 * We need to make sure resync covers any new space.
2581 * If the array is shrinking we should possibly wait until
2582 * any io in the removed space completes, but it hardly seems
2583 * worth it.
2584 */
1f403624 2585 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
b522adcd
DW
2586 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2587 return -EINVAL;
f233ea5c 2588 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2589 revalidate_disk(mddev->gendisk);
b522adcd 2590 if (sectors > mddev->dev_sectors &&
b098636c 2591 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2592 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2593 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2594 }
b522adcd 2595 mddev->dev_sectors = sectors;
4b5c7ae8 2596 mddev->resync_max_sectors = sectors;
1da177e4
LT
2597 return 0;
2598}
2599
63c70c4f 2600static int raid1_reshape(mddev_t *mddev)
1da177e4
LT
2601{
2602 /* We need to:
2603 * 1/ resize the r1bio_pool
2604 * 2/ resize conf->mirrors
2605 *
2606 * We allocate a new r1bio_pool if we can.
2607 * Then raise a device barrier and wait until all IO stops.
2608 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2609 *
2610 * At the same time, we "pack" the devices so that all the missing
2611 * devices have the higher raid_disk numbers.
1da177e4
LT
2612 */
2613 mempool_t *newpool, *oldpool;
2614 struct pool_info *newpoolinfo;
2615 mirror_info_t *newmirrors;
070ec55d 2616 conf_t *conf = mddev->private;
63c70c4f 2617 int cnt, raid_disks;
c04be0aa 2618 unsigned long flags;
b5470dc5 2619 int d, d2, err;
1da177e4 2620
63c70c4f 2621 /* Cannot change chunk_size, layout, or level */
664e7c41 2622 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2623 mddev->layout != mddev->new_layout ||
2624 mddev->level != mddev->new_level) {
664e7c41 2625 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2626 mddev->new_layout = mddev->layout;
2627 mddev->new_level = mddev->level;
2628 return -EINVAL;
2629 }
2630
b5470dc5
DW
2631 err = md_allow_write(mddev);
2632 if (err)
2633 return err;
2a2275d6 2634
63c70c4f
N
2635 raid_disks = mddev->raid_disks + mddev->delta_disks;
2636
6ea9c07c
N
2637 if (raid_disks < conf->raid_disks) {
2638 cnt=0;
2639 for (d= 0; d < conf->raid_disks; d++)
2640 if (conf->mirrors[d].rdev)
2641 cnt++;
2642 if (cnt > raid_disks)
1da177e4 2643 return -EBUSY;
6ea9c07c 2644 }
1da177e4
LT
2645
2646 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2647 if (!newpoolinfo)
2648 return -ENOMEM;
2649 newpoolinfo->mddev = mddev;
2650 newpoolinfo->raid_disks = raid_disks;
2651
2652 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2653 r1bio_pool_free, newpoolinfo);
2654 if (!newpool) {
2655 kfree(newpoolinfo);
2656 return -ENOMEM;
2657 }
9ffae0cf 2658 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1da177e4
LT
2659 if (!newmirrors) {
2660 kfree(newpoolinfo);
2661 mempool_destroy(newpool);
2662 return -ENOMEM;
2663 }
1da177e4 2664
17999be4 2665 raise_barrier(conf);
1da177e4
LT
2666
2667 /* ok, everything is stopped */
2668 oldpool = conf->r1bio_pool;
2669 conf->r1bio_pool = newpool;
6ea9c07c 2670
a88aa786 2671 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 2672 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 2673 if (rdev && rdev->raid_disk != d2) {
36fad858 2674 sysfs_unlink_rdev(mddev, rdev);
a88aa786 2675 rdev->raid_disk = d2;
36fad858
NK
2676 sysfs_unlink_rdev(mddev, rdev);
2677 if (sysfs_link_rdev(mddev, rdev))
a88aa786 2678 printk(KERN_WARNING
36fad858
NK
2679 "md/raid1:%s: cannot register rd%d\n",
2680 mdname(mddev), rdev->raid_disk);
6ea9c07c 2681 }
a88aa786
N
2682 if (rdev)
2683 newmirrors[d2++].rdev = rdev;
2684 }
1da177e4
LT
2685 kfree(conf->mirrors);
2686 conf->mirrors = newmirrors;
2687 kfree(conf->poolinfo);
2688 conf->poolinfo = newpoolinfo;
2689
c04be0aa 2690 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2691 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2692 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2693 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2694 mddev->delta_disks = 0;
1da177e4 2695
6ea9c07c 2696 conf->last_used = 0; /* just make sure it is in-range */
17999be4 2697 lower_barrier(conf);
1da177e4
LT
2698
2699 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2700 md_wakeup_thread(mddev->thread);
2701
2702 mempool_destroy(oldpool);
2703 return 0;
2704}
2705
500af87a 2706static void raid1_quiesce(mddev_t *mddev, int state)
36fa3063 2707{
070ec55d 2708 conf_t *conf = mddev->private;
36fa3063
N
2709
2710 switch(state) {
6eef4b21
N
2711 case 2: /* wake for suspend */
2712 wake_up(&conf->wait_barrier);
2713 break;
9e6603da 2714 case 1:
17999be4 2715 raise_barrier(conf);
36fa3063 2716 break;
9e6603da 2717 case 0:
17999be4 2718 lower_barrier(conf);
36fa3063
N
2719 break;
2720 }
36fa3063
N
2721}
2722
709ae487
N
2723static void *raid1_takeover(mddev_t *mddev)
2724{
2725 /* raid1 can take over:
2726 * raid5 with 2 devices, any layout or chunk size
2727 */
2728 if (mddev->level == 5 && mddev->raid_disks == 2) {
2729 conf_t *conf;
2730 mddev->new_level = 1;
2731 mddev->new_layout = 0;
2732 mddev->new_chunk_sectors = 0;
2733 conf = setup_conf(mddev);
2734 if (!IS_ERR(conf))
2735 conf->barrier = 1;
2736 return conf;
2737 }
2738 return ERR_PTR(-EINVAL);
2739}
1da177e4 2740
2604b703 2741static struct mdk_personality raid1_personality =
1da177e4
LT
2742{
2743 .name = "raid1",
2604b703 2744 .level = 1,
1da177e4
LT
2745 .owner = THIS_MODULE,
2746 .make_request = make_request,
2747 .run = run,
2748 .stop = stop,
2749 .status = status,
2750 .error_handler = error,
2751 .hot_add_disk = raid1_add_disk,
2752 .hot_remove_disk= raid1_remove_disk,
2753 .spare_active = raid1_spare_active,
2754 .sync_request = sync_request,
2755 .resize = raid1_resize,
80c3a6ce 2756 .size = raid1_size,
63c70c4f 2757 .check_reshape = raid1_reshape,
36fa3063 2758 .quiesce = raid1_quiesce,
709ae487 2759 .takeover = raid1_takeover,
1da177e4
LT
2760};
2761
2762static int __init raid_init(void)
2763{
2604b703 2764 return register_md_personality(&raid1_personality);
1da177e4
LT
2765}
2766
2767static void raid_exit(void)
2768{
2604b703 2769 unregister_md_personality(&raid1_personality);
1da177e4
LT
2770}
2771
2772module_init(raid_init);
2773module_exit(raid_exit);
2774MODULE_LICENSE("GPL");
0efb9e61 2775MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 2776MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 2777MODULE_ALIAS("md-raid1");
2604b703 2778MODULE_ALIAS("md-level-1");