include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm-service-time.c
CommitLineData
f392ba88
KU
1/*
2 * Copyright (C) 2007-2009 NEC Corporation. All Rights Reserved.
3 *
4 * Module Author: Kiyoshi Ueda
5 *
6 * This file is released under the GPL.
7 *
8 * Throughput oriented path selector.
9 */
10
11#include "dm.h"
12#include "dm-path-selector.h"
13
5a0e3ad6
TH
14#include <linux/slab.h>
15
f392ba88
KU
16#define DM_MSG_PREFIX "multipath service-time"
17#define ST_MIN_IO 1
18#define ST_MAX_RELATIVE_THROUGHPUT 100
19#define ST_MAX_RELATIVE_THROUGHPUT_SHIFT 7
20#define ST_MAX_INFLIGHT_SIZE ((size_t)-1 >> ST_MAX_RELATIVE_THROUGHPUT_SHIFT)
21#define ST_VERSION "0.2.0"
22
23struct selector {
24 struct list_head valid_paths;
25 struct list_head failed_paths;
26};
27
28struct path_info {
29 struct list_head list;
30 struct dm_path *path;
31 unsigned repeat_count;
32 unsigned relative_throughput;
33 atomic_t in_flight_size; /* Total size of in-flight I/Os */
34};
35
36static struct selector *alloc_selector(void)
37{
38 struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
39
40 if (s) {
41 INIT_LIST_HEAD(&s->valid_paths);
42 INIT_LIST_HEAD(&s->failed_paths);
43 }
44
45 return s;
46}
47
48static int st_create(struct path_selector *ps, unsigned argc, char **argv)
49{
50 struct selector *s = alloc_selector();
51
52 if (!s)
53 return -ENOMEM;
54
55 ps->context = s;
56 return 0;
57}
58
59static void free_paths(struct list_head *paths)
60{
61 struct path_info *pi, *next;
62
63 list_for_each_entry_safe(pi, next, paths, list) {
64 list_del(&pi->list);
65 kfree(pi);
66 }
67}
68
69static void st_destroy(struct path_selector *ps)
70{
71 struct selector *s = ps->context;
72
73 free_paths(&s->valid_paths);
74 free_paths(&s->failed_paths);
75 kfree(s);
76 ps->context = NULL;
77}
78
79static int st_status(struct path_selector *ps, struct dm_path *path,
80 status_type_t type, char *result, unsigned maxlen)
81{
82 unsigned sz = 0;
83 struct path_info *pi;
84
85 if (!path)
86 DMEMIT("0 ");
87 else {
88 pi = path->pscontext;
89
90 switch (type) {
91 case STATUSTYPE_INFO:
92 DMEMIT("%d %u ", atomic_read(&pi->in_flight_size),
93 pi->relative_throughput);
94 break;
95 case STATUSTYPE_TABLE:
96 DMEMIT("%u %u ", pi->repeat_count,
97 pi->relative_throughput);
98 break;
99 }
100 }
101
102 return sz;
103}
104
105static int st_add_path(struct path_selector *ps, struct dm_path *path,
106 int argc, char **argv, char **error)
107{
108 struct selector *s = ps->context;
109 struct path_info *pi;
110 unsigned repeat_count = ST_MIN_IO;
111 unsigned relative_throughput = 1;
112
113 /*
114 * Arguments: [<repeat_count> [<relative_throughput>]]
115 * <repeat_count>: The number of I/Os before switching path.
116 * If not given, default (ST_MIN_IO) is used.
117 * <relative_throughput>: The relative throughput value of
118 * the path among all paths in the path-group.
119 * The valid range: 0-<ST_MAX_RELATIVE_THROUGHPUT>
120 * If not given, minimum value '1' is used.
121 * If '0' is given, the path isn't selected while
122 * other paths having a positive value are
123 * available.
124 */
125 if (argc > 2) {
126 *error = "service-time ps: incorrect number of arguments";
127 return -EINVAL;
128 }
129
130 if (argc && (sscanf(argv[0], "%u", &repeat_count) != 1)) {
131 *error = "service-time ps: invalid repeat count";
132 return -EINVAL;
133 }
134
135 if ((argc == 2) &&
136 (sscanf(argv[1], "%u", &relative_throughput) != 1 ||
137 relative_throughput > ST_MAX_RELATIVE_THROUGHPUT)) {
138 *error = "service-time ps: invalid relative_throughput value";
139 return -EINVAL;
140 }
141
142 /* allocate the path */
143 pi = kmalloc(sizeof(*pi), GFP_KERNEL);
144 if (!pi) {
145 *error = "service-time ps: Error allocating path context";
146 return -ENOMEM;
147 }
148
149 pi->path = path;
150 pi->repeat_count = repeat_count;
151 pi->relative_throughput = relative_throughput;
152 atomic_set(&pi->in_flight_size, 0);
153
154 path->pscontext = pi;
155
156 list_add_tail(&pi->list, &s->valid_paths);
157
158 return 0;
159}
160
161static void st_fail_path(struct path_selector *ps, struct dm_path *path)
162{
163 struct selector *s = ps->context;
164 struct path_info *pi = path->pscontext;
165
166 list_move(&pi->list, &s->failed_paths);
167}
168
169static int st_reinstate_path(struct path_selector *ps, struct dm_path *path)
170{
171 struct selector *s = ps->context;
172 struct path_info *pi = path->pscontext;
173
174 list_move_tail(&pi->list, &s->valid_paths);
175
176 return 0;
177}
178
179/*
180 * Compare the estimated service time of 2 paths, pi1 and pi2,
181 * for the incoming I/O.
182 *
183 * Returns:
184 * < 0 : pi1 is better
185 * 0 : no difference between pi1 and pi2
186 * > 0 : pi2 is better
187 *
188 * Description:
189 * Basically, the service time is estimated by:
190 * ('pi->in-flight-size' + 'incoming') / 'pi->relative_throughput'
191 * To reduce the calculation, some optimizations are made.
192 * (See comments inline)
193 */
194static int st_compare_load(struct path_info *pi1, struct path_info *pi2,
195 size_t incoming)
196{
197 size_t sz1, sz2, st1, st2;
198
199 sz1 = atomic_read(&pi1->in_flight_size);
200 sz2 = atomic_read(&pi2->in_flight_size);
201
202 /*
203 * Case 1: Both have same throughput value. Choose less loaded path.
204 */
205 if (pi1->relative_throughput == pi2->relative_throughput)
206 return sz1 - sz2;
207
208 /*
209 * Case 2a: Both have same load. Choose higher throughput path.
210 * Case 2b: One path has no throughput value. Choose the other one.
211 */
212 if (sz1 == sz2 ||
213 !pi1->relative_throughput || !pi2->relative_throughput)
214 return pi2->relative_throughput - pi1->relative_throughput;
215
216 /*
217 * Case 3: Calculate service time. Choose faster path.
218 * Service time using pi1:
219 * st1 = (sz1 + incoming) / pi1->relative_throughput
220 * Service time using pi2:
221 * st2 = (sz2 + incoming) / pi2->relative_throughput
222 *
223 * To avoid the division, transform the expression to use
224 * multiplication.
225 * Because ->relative_throughput > 0 here, if st1 < st2,
226 * the expressions below are the same meaning:
227 * (sz1 + incoming) / pi1->relative_throughput <
228 * (sz2 + incoming) / pi2->relative_throughput
229 * (sz1 + incoming) * pi2->relative_throughput <
230 * (sz2 + incoming) * pi1->relative_throughput
231 * So use the later one.
232 */
233 sz1 += incoming;
234 sz2 += incoming;
235 if (unlikely(sz1 >= ST_MAX_INFLIGHT_SIZE ||
236 sz2 >= ST_MAX_INFLIGHT_SIZE)) {
237 /*
238 * Size may be too big for multiplying pi->relative_throughput
239 * and overflow.
240 * To avoid the overflow and mis-selection, shift down both.
241 */
242 sz1 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
243 sz2 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
244 }
245 st1 = sz1 * pi2->relative_throughput;
246 st2 = sz2 * pi1->relative_throughput;
247 if (st1 != st2)
248 return st1 - st2;
249
250 /*
251 * Case 4: Service time is equal. Choose higher throughput path.
252 */
253 return pi2->relative_throughput - pi1->relative_throughput;
254}
255
256static struct dm_path *st_select_path(struct path_selector *ps,
257 unsigned *repeat_count, size_t nr_bytes)
258{
259 struct selector *s = ps->context;
260 struct path_info *pi = NULL, *best = NULL;
261
262 if (list_empty(&s->valid_paths))
263 return NULL;
264
265 /* Change preferred (first in list) path to evenly balance. */
266 list_move_tail(s->valid_paths.next, &s->valid_paths);
267
268 list_for_each_entry(pi, &s->valid_paths, list)
269 if (!best || (st_compare_load(pi, best, nr_bytes) < 0))
270 best = pi;
271
272 if (!best)
273 return NULL;
274
275 *repeat_count = best->repeat_count;
276
277 return best->path;
278}
279
280static int st_start_io(struct path_selector *ps, struct dm_path *path,
281 size_t nr_bytes)
282{
283 struct path_info *pi = path->pscontext;
284
285 atomic_add(nr_bytes, &pi->in_flight_size);
286
287 return 0;
288}
289
290static int st_end_io(struct path_selector *ps, struct dm_path *path,
291 size_t nr_bytes)
292{
293 struct path_info *pi = path->pscontext;
294
295 atomic_sub(nr_bytes, &pi->in_flight_size);
296
297 return 0;
298}
299
300static struct path_selector_type st_ps = {
301 .name = "service-time",
302 .module = THIS_MODULE,
303 .table_args = 2,
304 .info_args = 2,
305 .create = st_create,
306 .destroy = st_destroy,
307 .status = st_status,
308 .add_path = st_add_path,
309 .fail_path = st_fail_path,
310 .reinstate_path = st_reinstate_path,
311 .select_path = st_select_path,
312 .start_io = st_start_io,
313 .end_io = st_end_io,
314};
315
316static int __init dm_st_init(void)
317{
318 int r = dm_register_path_selector(&st_ps);
319
320 if (r < 0)
321 DMERR("register failed %d", r);
322
323 DMINFO("version " ST_VERSION " loaded");
324
325 return r;
326}
327
328static void __exit dm_st_exit(void)
329{
330 int r = dm_unregister_path_selector(&st_ps);
331
332 if (r < 0)
333 DMERR("unregister failed %d", r);
334}
335
336module_init(dm_st_init);
337module_exit(dm_st_exit);
338
339MODULE_DESCRIPTION(DM_NAME " throughput oriented path selector");
340MODULE_AUTHOR("Kiyoshi Ueda <k-ueda@ct.jp.nec.com>");
341MODULE_LICENSE("GPL");