bcache: Don't use op->insert_collision
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / md / bcache / writeback.c
CommitLineData
cafe5635
KO
1/*
2 * background writeback - scan btree for dirty data and write it to the backing
3 * device
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9#include "bcache.h"
10#include "btree.h"
11#include "debug.h"
279afbad 12#include "writeback.h"
cafe5635 13
5e6926da
KO
14#include <linux/delay.h>
15#include <linux/freezer.h>
16#include <linux/kthread.h>
c37511b8
KO
17#include <trace/events/bcache.h>
18
cafe5635
KO
19/* Rate limiting */
20
21static void __update_writeback_rate(struct cached_dev *dc)
22{
23 struct cache_set *c = dc->disk.c;
24 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
25 uint64_t cache_dirty_target =
26 div_u64(cache_sectors * dc->writeback_percent, 100);
27
28 int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
29 c->cached_dev_sectors);
30
31 /* PD controller */
32
33 int change = 0;
34 int64_t error;
279afbad 35 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
cafe5635
KO
36 int64_t derivative = dirty - dc->disk.sectors_dirty_last;
37
38 dc->disk.sectors_dirty_last = dirty;
39
40 derivative *= dc->writeback_rate_d_term;
41 derivative = clamp(derivative, -dirty, dirty);
42
43 derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
44 dc->writeback_rate_d_smooth, 0);
45
46 /* Avoid divide by zero */
47 if (!target)
48 goto out;
49
50 error = div64_s64((dirty + derivative - target) << 8, target);
51
52 change = div_s64((dc->writeback_rate.rate * error) >> 8,
53 dc->writeback_rate_p_term_inverse);
54
55 /* Don't increase writeback rate if the device isn't keeping up */
56 if (change > 0 &&
57 time_after64(local_clock(),
58 dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
59 change = 0;
60
61 dc->writeback_rate.rate =
62 clamp_t(int64_t, dc->writeback_rate.rate + change,
63 1, NSEC_PER_MSEC);
64out:
65 dc->writeback_rate_derivative = derivative;
66 dc->writeback_rate_change = change;
67 dc->writeback_rate_target = target;
cafe5635
KO
68}
69
70static void update_writeback_rate(struct work_struct *work)
71{
72 struct cached_dev *dc = container_of(to_delayed_work(work),
73 struct cached_dev,
74 writeback_rate_update);
75
76 down_read(&dc->writeback_lock);
77
78 if (atomic_read(&dc->has_dirty) &&
79 dc->writeback_percent)
80 __update_writeback_rate(dc);
81
82 up_read(&dc->writeback_lock);
5e6926da
KO
83
84 schedule_delayed_work(&dc->writeback_rate_update,
85 dc->writeback_rate_update_seconds * HZ);
cafe5635
KO
86}
87
88static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
89{
c2a4f318
KO
90 uint64_t ret;
91
cafe5635
KO
92 if (atomic_read(&dc->disk.detaching) ||
93 !dc->writeback_percent)
94 return 0;
95
c2a4f318
KO
96 ret = bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
97
98 return min_t(uint64_t, ret, HZ);
cafe5635
KO
99}
100
5e6926da
KO
101struct dirty_io {
102 struct closure cl;
103 struct cached_dev *dc;
104 struct bio bio;
105};
72c27061 106
cafe5635
KO
107static void dirty_init(struct keybuf_key *w)
108{
109 struct dirty_io *io = w->private;
110 struct bio *bio = &io->bio;
111
112 bio_init(bio);
113 if (!io->dc->writeback_percent)
114 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
115
116 bio->bi_size = KEY_SIZE(&w->key) << 9;
117 bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
118 bio->bi_private = w;
119 bio->bi_io_vec = bio->bi_inline_vecs;
169ef1cf 120 bch_bio_map(bio, NULL);
cafe5635
KO
121}
122
cafe5635
KO
123static void dirty_io_destructor(struct closure *cl)
124{
125 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
126 kfree(io);
127}
128
129static void write_dirty_finish(struct closure *cl)
130{
131 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
132 struct keybuf_key *w = io->bio.bi_private;
133 struct cached_dev *dc = io->dc;
8e51e414
KO
134 struct bio_vec *bv;
135 int i;
cafe5635 136
8e51e414 137 bio_for_each_segment_all(bv, &io->bio, i)
cafe5635
KO
138 __free_page(bv->bv_page);
139
140 /* This is kind of a dumb way of signalling errors. */
141 if (KEY_DIRTY(&w->key)) {
142 unsigned i;
143 struct btree_op op;
0b93207a 144 struct keylist keys;
6054c6d4 145 int ret;
0b93207a 146
b54d6934 147 bch_btree_op_init(&op, -1);
0b93207a 148 bch_keylist_init(&keys);
cafe5635 149
1b207d80
KO
150 bkey_copy(keys.top, &w->key);
151 SET_KEY_DIRTY(keys.top, false);
152 bch_keylist_push(&keys);
cafe5635
KO
153
154 for (i = 0; i < KEY_PTRS(&w->key); i++)
155 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
156
6054c6d4 157 ret = bch_btree_insert(&op, dc->disk.c, &keys, NULL, &w->key);
cafe5635 158
6054c6d4 159 if (ret)
c37511b8
KO
160 trace_bcache_writeback_collision(&w->key);
161
6054c6d4 162 atomic_long_inc(ret
cafe5635
KO
163 ? &dc->disk.c->writeback_keys_failed
164 : &dc->disk.c->writeback_keys_done);
165 }
166
167 bch_keybuf_del(&dc->writeback_keys, w);
c2a4f318 168 up(&dc->in_flight);
cafe5635
KO
169
170 closure_return_with_destructor(cl, dirty_io_destructor);
171}
172
173static void dirty_endio(struct bio *bio, int error)
174{
175 struct keybuf_key *w = bio->bi_private;
176 struct dirty_io *io = w->private;
177
178 if (error)
179 SET_KEY_DIRTY(&w->key, false);
180
181 closure_put(&io->cl);
182}
183
184static void write_dirty(struct closure *cl)
185{
186 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
187 struct keybuf_key *w = io->bio.bi_private;
188
189 dirty_init(w);
190 io->bio.bi_rw = WRITE;
191 io->bio.bi_sector = KEY_START(&w->key);
192 io->bio.bi_bdev = io->dc->bdev;
193 io->bio.bi_end_io = dirty_endio;
194
cafe5635
KO
195 closure_bio_submit(&io->bio, cl, &io->dc->disk);
196
c2a4f318 197 continue_at(cl, write_dirty_finish, system_wq);
cafe5635
KO
198}
199
200static void read_dirty_endio(struct bio *bio, int error)
201{
202 struct keybuf_key *w = bio->bi_private;
203 struct dirty_io *io = w->private;
204
205 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
206 error, "reading dirty data from cache");
207
208 dirty_endio(bio, error);
209}
210
211static void read_dirty_submit(struct closure *cl)
212{
213 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
214
cafe5635
KO
215 closure_bio_submit(&io->bio, cl, &io->dc->disk);
216
c2a4f318 217 continue_at(cl, write_dirty, system_wq);
cafe5635
KO
218}
219
5e6926da 220static void read_dirty(struct cached_dev *dc)
cafe5635 221{
5e6926da 222 unsigned delay = 0;
cafe5635
KO
223 struct keybuf_key *w;
224 struct dirty_io *io;
5e6926da
KO
225 struct closure cl;
226
227 closure_init_stack(&cl);
cafe5635
KO
228
229 /*
230 * XXX: if we error, background writeback just spins. Should use some
231 * mempools.
232 */
233
5e6926da
KO
234 while (!kthread_should_stop()) {
235 try_to_freeze();
236
cafe5635
KO
237 w = bch_keybuf_next(&dc->writeback_keys);
238 if (!w)
239 break;
240
241 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
242
5e6926da
KO
243 if (KEY_START(&w->key) != dc->last_read ||
244 jiffies_to_msecs(delay) > 50)
245 while (!kthread_should_stop() && delay)
246 delay = schedule_timeout_interruptible(delay);
cafe5635
KO
247
248 dc->last_read = KEY_OFFSET(&w->key);
249
250 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
251 * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
252 GFP_KERNEL);
253 if (!io)
254 goto err;
255
256 w->private = io;
257 io->dc = dc;
258
259 dirty_init(w);
260 io->bio.bi_sector = PTR_OFFSET(&w->key, 0);
261 io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
262 &w->key, 0)->bdev;
263 io->bio.bi_rw = READ;
264 io->bio.bi_end_io = read_dirty_endio;
265
8e51e414 266 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
cafe5635
KO
267 goto err_free;
268
c37511b8 269 trace_bcache_writeback(&w->key);
cafe5635 270
c2a4f318 271 down(&dc->in_flight);
5e6926da 272 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
cafe5635
KO
273
274 delay = writeback_delay(dc, KEY_SIZE(&w->key));
cafe5635
KO
275 }
276
277 if (0) {
278err_free:
279 kfree(w->private);
280err:
281 bch_keybuf_del(&dc->writeback_keys, w);
282 }
283
c2a4f318
KO
284 /*
285 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
286 * freed) before refilling again
287 */
5e6926da
KO
288 closure_sync(&cl);
289}
290
291/* Scan for dirty data */
292
293void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
294 uint64_t offset, int nr_sectors)
295{
296 struct bcache_device *d = c->devices[inode];
297 unsigned stripe_offset;
298 uint64_t stripe = offset;
299
300 if (!d)
301 return;
302
303 do_div(stripe, d->stripe_size);
304
305 stripe_offset = offset & (d->stripe_size - 1);
306
307 while (nr_sectors) {
308 int s = min_t(unsigned, abs(nr_sectors),
309 d->stripe_size - stripe_offset);
310
311 if (nr_sectors < 0)
312 s = -s;
313
314 atomic_add(s, d->stripe_sectors_dirty + stripe);
315 nr_sectors -= s;
316 stripe_offset = 0;
317 stripe++;
318 }
319}
320
321static bool dirty_pred(struct keybuf *buf, struct bkey *k)
322{
323 return KEY_DIRTY(k);
324}
325
326static bool dirty_full_stripe_pred(struct keybuf *buf, struct bkey *k)
327{
328 uint64_t stripe = KEY_START(k);
329 unsigned nr_sectors = KEY_SIZE(k);
330 struct cached_dev *dc = container_of(buf, struct cached_dev,
331 writeback_keys);
332
333 if (!KEY_DIRTY(k))
334 return false;
335
336 do_div(stripe, dc->disk.stripe_size);
337
338 while (1) {
339 if (atomic_read(dc->disk.stripe_sectors_dirty + stripe) ==
340 dc->disk.stripe_size)
341 return true;
342
343 if (nr_sectors <= dc->disk.stripe_size)
344 return false;
345
346 nr_sectors -= dc->disk.stripe_size;
347 stripe++;
348 }
349}
350
351static bool refill_dirty(struct cached_dev *dc)
352{
353 struct keybuf *buf = &dc->writeback_keys;
354 bool searched_from_start = false;
355 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
356
357 if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
358 buf->last_scanned = KEY(dc->disk.id, 0, 0);
359 searched_from_start = true;
360 }
361
362 if (dc->partial_stripes_expensive) {
363 uint64_t i;
364
365 for (i = 0; i < dc->disk.nr_stripes; i++)
366 if (atomic_read(dc->disk.stripe_sectors_dirty + i) ==
367 dc->disk.stripe_size)
368 goto full_stripes;
369
370 goto normal_refill;
371full_stripes:
372 searched_from_start = false; /* not searching entire btree */
373 bch_refill_keybuf(dc->disk.c, buf, &end,
374 dirty_full_stripe_pred);
375 } else {
376normal_refill:
377 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
378 }
379
380 return bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start;
381}
382
383static int bch_writeback_thread(void *arg)
384{
385 struct cached_dev *dc = arg;
386 bool searched_full_index;
387
388 while (!kthread_should_stop()) {
389 down_write(&dc->writeback_lock);
390 if (!atomic_read(&dc->has_dirty) ||
391 (!atomic_read(&dc->disk.detaching) &&
392 !dc->writeback_running)) {
393 up_write(&dc->writeback_lock);
394 set_current_state(TASK_INTERRUPTIBLE);
395
396 if (kthread_should_stop())
397 return 0;
398
399 try_to_freeze();
400 schedule();
401 continue;
402 }
403
404 searched_full_index = refill_dirty(dc);
405
406 if (searched_full_index &&
407 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
408 atomic_set(&dc->has_dirty, 0);
409 cached_dev_put(dc);
410 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
411 bch_write_bdev_super(dc, NULL);
412 }
413
414 up_write(&dc->writeback_lock);
415
416 bch_ratelimit_reset(&dc->writeback_rate);
417 read_dirty(dc);
418
419 if (searched_full_index) {
420 unsigned delay = dc->writeback_delay * HZ;
421
422 while (delay &&
423 !kthread_should_stop() &&
424 !atomic_read(&dc->disk.detaching))
425 delay = schedule_timeout_interruptible(delay);
426 }
427 }
428
429 return 0;
cafe5635
KO
430}
431
444fc0b6
KO
432/* Init */
433
c18536a7
KO
434struct sectors_dirty_init {
435 struct btree_op op;
436 unsigned inode;
437};
438
439static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
48dad8ba 440 struct bkey *k)
444fc0b6 441{
c18536a7
KO
442 struct sectors_dirty_init *op = container_of(_op,
443 struct sectors_dirty_init, op);
48dad8ba
KO
444 if (KEY_INODE(k) > op->inode)
445 return MAP_DONE;
444fc0b6 446
48dad8ba
KO
447 if (KEY_DIRTY(k))
448 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
449 KEY_START(k), KEY_SIZE(k));
450
451 return MAP_CONTINUE;
444fc0b6
KO
452}
453
454void bch_sectors_dirty_init(struct cached_dev *dc)
455{
c18536a7 456 struct sectors_dirty_init op;
444fc0b6 457
b54d6934 458 bch_btree_op_init(&op.op, -1);
48dad8ba
KO
459 op.inode = dc->disk.id;
460
c18536a7 461 bch_btree_map_keys(&op.op, dc->disk.c, &KEY(op.inode, 0, 0),
48dad8ba 462 sectors_dirty_init_fn, 0);
444fc0b6
KO
463}
464
5e6926da 465int bch_cached_dev_writeback_init(struct cached_dev *dc)
cafe5635 466{
c2a4f318 467 sema_init(&dc->in_flight, 64);
cafe5635 468 init_rwsem(&dc->writeback_lock);
72c27061 469 bch_keybuf_init(&dc->writeback_keys);
cafe5635
KO
470
471 dc->writeback_metadata = true;
472 dc->writeback_running = true;
473 dc->writeback_percent = 10;
474 dc->writeback_delay = 30;
475 dc->writeback_rate.rate = 1024;
476
477 dc->writeback_rate_update_seconds = 30;
478 dc->writeback_rate_d_term = 16;
479 dc->writeback_rate_p_term_inverse = 64;
480 dc->writeback_rate_d_smooth = 8;
481
5e6926da
KO
482 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
483 "bcache_writeback");
484 if (IS_ERR(dc->writeback_thread))
485 return PTR_ERR(dc->writeback_thread);
486
487 set_task_state(dc->writeback_thread, TASK_INTERRUPTIBLE);
488
cafe5635
KO
489 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
490 schedule_delayed_work(&dc->writeback_rate_update,
491 dc->writeback_rate_update_seconds * HZ);
cafe5635
KO
492
493 return 0;
494}