lguest: per-vcpu lguest pgdir management
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / lguest / page_tables.c
CommitLineData
f938d2c8
RR
1/*P:700 The pagetable code, on the other hand, still shows the scars of
2 * previous encounters. It's functional, and as neat as it can be in the
3 * circumstances, but be wary, for these things are subtle and break easily.
4 * The Guest provides a virtual to physical mapping, but we can neither trust
5 * it nor use it: we verify and convert it here to point the hardware to the
6 * actual Guest pages when running the Guest. :*/
7
8/* Copyright (C) Rusty Russell IBM Corporation 2006.
d7e28ffe
RR
9 * GPL v2 and any later version */
10#include <linux/mm.h>
11#include <linux/types.h>
12#include <linux/spinlock.h>
13#include <linux/random.h>
14#include <linux/percpu.h>
15#include <asm/tlbflush.h>
47436aa4 16#include <asm/uaccess.h>
d7e28ffe
RR
17#include "lg.h"
18
f56a384e
RR
19/*M:008 We hold reference to pages, which prevents them from being swapped.
20 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
21 * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
22 * could probably consider launching Guests as non-root. :*/
23
bff672e6
RR
24/*H:300
25 * The Page Table Code
26 *
27 * We use two-level page tables for the Guest. If you're not entirely
28 * comfortable with virtual addresses, physical addresses and page tables then
e1e72965
RR
29 * I recommend you review arch/x86/lguest/boot.c's "Page Table Handling" (with
30 * diagrams!).
bff672e6
RR
31 *
32 * The Guest keeps page tables, but we maintain the actual ones here: these are
33 * called "shadow" page tables. Which is a very Guest-centric name: these are
34 * the real page tables the CPU uses, although we keep them up to date to
35 * reflect the Guest's. (See what I mean about weird naming? Since when do
36 * shadows reflect anything?)
37 *
38 * Anyway, this is the most complicated part of the Host code. There are seven
39 * parts to this:
e1e72965
RR
40 * (i) Looking up a page table entry when the Guest faults,
41 * (ii) Making sure the Guest stack is mapped,
42 * (iii) Setting up a page table entry when the Guest tells us one has changed,
bff672e6 43 * (iv) Switching page tables,
e1e72965 44 * (v) Flushing (throwing away) page tables,
bff672e6
RR
45 * (vi) Mapping the Switcher when the Guest is about to run,
46 * (vii) Setting up the page tables initially.
47 :*/
48
bff672e6
RR
49
50/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
51 * conveniently placed at the top 4MB, so it uses a separate, complete PTE
52 * page. */
df29f43e 53#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
d7e28ffe 54
bff672e6
RR
55/* We actually need a separate PTE page for each CPU. Remember that after the
56 * Switcher code itself comes two pages for each CPU, and we don't want this
57 * CPU's guest to see the pages of any other CPU. */
df29f43e 58static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
d7e28ffe
RR
59#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
60
e1e72965
RR
61/*H:320 The page table code is curly enough to need helper functions to keep it
62 * clear and clean.
bff672e6 63 *
df29f43e 64 * There are two functions which return pointers to the shadow (aka "real")
bff672e6
RR
65 * page tables.
66 *
67 * spgd_addr() takes the virtual address and returns a pointer to the top-level
e1e72965
RR
68 * page directory entry (PGD) for that address. Since we keep track of several
69 * page tables, the "i" argument tells us which one we're interested in (it's
bff672e6 70 * usually the current one). */
df29f43e 71static pgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
d7e28ffe 72{
df29f43e 73 unsigned int index = pgd_index(vaddr);
d7e28ffe 74
bff672e6 75 /* We kill any Guest trying to touch the Switcher addresses. */
d7e28ffe
RR
76 if (index >= SWITCHER_PGD_INDEX) {
77 kill_guest(lg, "attempt to access switcher pages");
78 index = 0;
79 }
bff672e6 80 /* Return a pointer index'th pgd entry for the i'th page table. */
d7e28ffe
RR
81 return &lg->pgdirs[i].pgdir[index];
82}
83
e1e72965
RR
84/* This routine then takes the page directory entry returned above, which
85 * contains the address of the page table entry (PTE) page. It then returns a
86 * pointer to the PTE entry for the given address. */
df29f43e 87static pte_t *spte_addr(struct lguest *lg, pgd_t spgd, unsigned long vaddr)
d7e28ffe 88{
df29f43e 89 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
bff672e6 90 /* You should never call this if the PGD entry wasn't valid */
df29f43e
MZ
91 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
92 return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
d7e28ffe
RR
93}
94
bff672e6
RR
95/* These two functions just like the above two, except they access the Guest
96 * page tables. Hence they return a Guest address. */
1713608f 97static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 98{
df29f43e 99 unsigned int index = vaddr >> (PGDIR_SHIFT);
1713608f 100 return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
d7e28ffe
RR
101}
102
103static unsigned long gpte_addr(struct lguest *lg,
df29f43e 104 pgd_t gpgd, unsigned long vaddr)
d7e28ffe 105{
df29f43e
MZ
106 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
107 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
108 return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
d7e28ffe
RR
109}
110
bff672e6
RR
111/*H:350 This routine takes a page number given by the Guest and converts it to
112 * an actual, physical page number. It can fail for several reasons: the
113 * virtual address might not be mapped by the Launcher, the write flag is set
114 * and the page is read-only, or the write flag was set and the page was
115 * shared so had to be copied, but we ran out of memory.
116 *
117 * This holds a reference to the page, so release_pte() is careful to
118 * put that back. */
d7e28ffe
RR
119static unsigned long get_pfn(unsigned long virtpfn, int write)
120{
121 struct page *page;
bff672e6 122 /* This value indicates failure. */
d7e28ffe
RR
123 unsigned long ret = -1UL;
124
bff672e6
RR
125 /* get_user_pages() is a complex interface: it gets the "struct
126 * vm_area_struct" and "struct page" assocated with a range of pages.
127 * It also needs the task's mmap_sem held, and is not very quick.
128 * It returns the number of pages it got. */
d7e28ffe
RR
129 down_read(&current->mm->mmap_sem);
130 if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT,
131 1, write, 1, &page, NULL) == 1)
132 ret = page_to_pfn(page);
133 up_read(&current->mm->mmap_sem);
134 return ret;
135}
136
bff672e6
RR
137/*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
138 * entry can be a little tricky. The flags are (almost) the same, but the
139 * Guest PTE contains a virtual page number: the CPU needs the real page
140 * number. */
df29f43e 141static pte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int write)
d7e28ffe 142{
df29f43e 143 unsigned long pfn, base, flags;
d7e28ffe 144
bff672e6
RR
145 /* The Guest sets the global flag, because it thinks that it is using
146 * PGE. We only told it to use PGE so it would tell us whether it was
147 * flushing a kernel mapping or a userspace mapping. We don't actually
148 * use the global bit, so throw it away. */
df29f43e 149 flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
bff672e6 150
3c6b5bfa
RR
151 /* The Guest's pages are offset inside the Launcher. */
152 base = (unsigned long)lg->mem_base / PAGE_SIZE;
153
bff672e6
RR
154 /* We need a temporary "unsigned long" variable to hold the answer from
155 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
156 * fit in spte.pfn. get_pfn() finds the real physical number of the
157 * page, given the virtual number. */
df29f43e 158 pfn = get_pfn(base + pte_pfn(gpte), write);
d7e28ffe 159 if (pfn == -1UL) {
df29f43e 160 kill_guest(lg, "failed to get page %lu", pte_pfn(gpte));
bff672e6
RR
161 /* When we destroy the Guest, we'll go through the shadow page
162 * tables and release_pte() them. Make sure we don't think
163 * this one is valid! */
df29f43e 164 flags = 0;
d7e28ffe 165 }
df29f43e
MZ
166 /* Now we assemble our shadow PTE from the page number and flags. */
167 return pfn_pte(pfn, __pgprot(flags));
d7e28ffe
RR
168}
169
bff672e6 170/*H:460 And to complete the chain, release_pte() looks like this: */
df29f43e 171static void release_pte(pte_t pte)
d7e28ffe 172{
bff672e6
RR
173 /* Remember that get_user_pages() took a reference to the page, in
174 * get_pfn()? We have to put it back now. */
df29f43e
MZ
175 if (pte_flags(pte) & _PAGE_PRESENT)
176 put_page(pfn_to_page(pte_pfn(pte)));
d7e28ffe 177}
bff672e6 178/*:*/
d7e28ffe 179
df29f43e 180static void check_gpte(struct lguest *lg, pte_t gpte)
d7e28ffe 181{
df29f43e
MZ
182 if ((pte_flags(gpte) & (_PAGE_PWT|_PAGE_PSE))
183 || pte_pfn(gpte) >= lg->pfn_limit)
d7e28ffe
RR
184 kill_guest(lg, "bad page table entry");
185}
186
df29f43e 187static void check_gpgd(struct lguest *lg, pgd_t gpgd)
d7e28ffe 188{
df29f43e 189 if ((pgd_flags(gpgd) & ~_PAGE_TABLE) || pgd_pfn(gpgd) >= lg->pfn_limit)
d7e28ffe
RR
190 kill_guest(lg, "bad page directory entry");
191}
192
bff672e6 193/*H:330
e1e72965 194 * (i) Looking up a page table entry when the Guest faults.
bff672e6
RR
195 *
196 * We saw this call in run_guest(): when we see a page fault in the Guest, we
197 * come here. That's because we only set up the shadow page tables lazily as
198 * they're needed, so we get page faults all the time and quietly fix them up
199 * and return to the Guest without it knowing.
200 *
201 * If we fixed up the fault (ie. we mapped the address), this routine returns
e1e72965 202 * true. Otherwise, it was a real fault and we need to tell the Guest. */
1713608f 203int demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
d7e28ffe 204{
df29f43e
MZ
205 pgd_t gpgd;
206 pgd_t *spgd;
d7e28ffe 207 unsigned long gpte_ptr;
df29f43e
MZ
208 pte_t gpte;
209 pte_t *spte;
1713608f 210 struct lguest *lg = cpu->lg;
d7e28ffe 211
bff672e6 212 /* First step: get the top-level Guest page table entry. */
1713608f 213 gpgd = lgread(lg, gpgd_addr(cpu, vaddr), pgd_t);
bff672e6 214 /* Toplevel not present? We can't map it in. */
df29f43e 215 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
d7e28ffe
RR
216 return 0;
217
bff672e6 218 /* Now look at the matching shadow entry. */
1713608f 219 spgd = spgd_addr(lg, cpu->cpu_pgd, vaddr);
df29f43e 220 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
bff672e6 221 /* No shadow entry: allocate a new shadow PTE page. */
d7e28ffe 222 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
bff672e6
RR
223 /* This is not really the Guest's fault, but killing it is
224 * simple for this corner case. */
d7e28ffe
RR
225 if (!ptepage) {
226 kill_guest(lg, "out of memory allocating pte page");
227 return 0;
228 }
bff672e6 229 /* We check that the Guest pgd is OK. */
d7e28ffe 230 check_gpgd(lg, gpgd);
bff672e6
RR
231 /* And we copy the flags to the shadow PGD entry. The page
232 * number in the shadow PGD is the page we just allocated. */
df29f43e 233 *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
d7e28ffe
RR
234 }
235
bff672e6
RR
236 /* OK, now we look at the lower level in the Guest page table: keep its
237 * address, because we might update it later. */
d7e28ffe 238 gpte_ptr = gpte_addr(lg, gpgd, vaddr);
2d37f94a 239 gpte = lgread(lg, gpte_ptr, pte_t);
d7e28ffe 240
bff672e6 241 /* If this page isn't in the Guest page tables, we can't page it in. */
df29f43e 242 if (!(pte_flags(gpte) & _PAGE_PRESENT))
d7e28ffe
RR
243 return 0;
244
bff672e6
RR
245 /* Check they're not trying to write to a page the Guest wants
246 * read-only (bit 2 of errcode == write). */
df29f43e 247 if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
d7e28ffe
RR
248 return 0;
249
e1e72965 250 /* User access to a kernel-only page? (bit 3 == user access) */
df29f43e 251 if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
d7e28ffe
RR
252 return 0;
253
bff672e6
RR
254 /* Check that the Guest PTE flags are OK, and the page number is below
255 * the pfn_limit (ie. not mapping the Launcher binary). */
d7e28ffe 256 check_gpte(lg, gpte);
e1e72965 257
bff672e6 258 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
df29f43e 259 gpte = pte_mkyoung(gpte);
d7e28ffe 260 if (errcode & 2)
df29f43e 261 gpte = pte_mkdirty(gpte);
d7e28ffe 262
bff672e6 263 /* Get the pointer to the shadow PTE entry we're going to set. */
d7e28ffe 264 spte = spte_addr(lg, *spgd, vaddr);
bff672e6
RR
265 /* If there was a valid shadow PTE entry here before, we release it.
266 * This can happen with a write to a previously read-only entry. */
d7e28ffe
RR
267 release_pte(*spte);
268
bff672e6
RR
269 /* If this is a write, we insist that the Guest page is writable (the
270 * final arg to gpte_to_spte()). */
df29f43e 271 if (pte_dirty(gpte))
d7e28ffe 272 *spte = gpte_to_spte(lg, gpte, 1);
df29f43e 273 else
bff672e6
RR
274 /* If this is a read, don't set the "writable" bit in the page
275 * table entry, even if the Guest says it's writable. That way
e1e72965
RR
276 * we will come back here when a write does actually occur, so
277 * we can update the Guest's _PAGE_DIRTY flag. */
df29f43e 278 *spte = gpte_to_spte(lg, pte_wrprotect(gpte), 0);
d7e28ffe 279
bff672e6
RR
280 /* Finally, we write the Guest PTE entry back: we've set the
281 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
2d37f94a 282 lgwrite(lg, gpte_ptr, pte_t, gpte);
bff672e6 283
e1e72965
RR
284 /* The fault is fixed, the page table is populated, the mapping
285 * manipulated, the result returned and the code complete. A small
286 * delay and a trace of alliteration are the only indications the Guest
287 * has that a page fault occurred at all. */
d7e28ffe
RR
288 return 1;
289}
290
e1e72965
RR
291/*H:360
292 * (ii) Making sure the Guest stack is mapped.
bff672e6 293 *
e1e72965
RR
294 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
295 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
296 * we've seen that logic is quite long, and usually the stack pages are already
297 * mapped, so it's overkill.
bff672e6
RR
298 *
299 * This is a quick version which answers the question: is this virtual address
300 * mapped by the shadow page tables, and is it writable? */
1713608f 301static int page_writable(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 302{
df29f43e 303 pgd_t *spgd;
d7e28ffe
RR
304 unsigned long flags;
305
e1e72965 306 /* Look at the current top level entry: is it present? */
1713608f 307 spgd = spgd_addr(cpu->lg, cpu->cpu_pgd, vaddr);
df29f43e 308 if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
d7e28ffe
RR
309 return 0;
310
bff672e6
RR
311 /* Check the flags on the pte entry itself: it must be present and
312 * writable. */
1713608f 313 flags = pte_flags(*(spte_addr(cpu->lg, *spgd, vaddr)));
df29f43e 314
d7e28ffe
RR
315 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
316}
317
bff672e6
RR
318/* So, when pin_stack_pages() asks us to pin a page, we check if it's already
319 * in the page tables, and if not, we call demand_page() with error code 2
320 * (meaning "write"). */
1713608f 321void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 322{
1713608f
GOC
323 if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
324 kill_guest(cpu->lg, "bad stack page %#lx", vaddr);
d7e28ffe
RR
325}
326
bff672e6 327/*H:450 If we chase down the release_pgd() code, it looks like this: */
df29f43e 328static void release_pgd(struct lguest *lg, pgd_t *spgd)
d7e28ffe 329{
bff672e6 330 /* If the entry's not present, there's nothing to release. */
df29f43e 331 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
d7e28ffe 332 unsigned int i;
bff672e6
RR
333 /* Converting the pfn to find the actual PTE page is easy: turn
334 * the page number into a physical address, then convert to a
335 * virtual address (easy for kernel pages like this one). */
df29f43e 336 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
bff672e6 337 /* For each entry in the page, we might need to release it. */
df29f43e 338 for (i = 0; i < PTRS_PER_PTE; i++)
d7e28ffe 339 release_pte(ptepage[i]);
bff672e6 340 /* Now we can free the page of PTEs */
d7e28ffe 341 free_page((long)ptepage);
e1e72965 342 /* And zero out the PGD entry so we never release it twice. */
df29f43e 343 *spgd = __pgd(0);
d7e28ffe
RR
344 }
345}
346
e1e72965
RR
347/*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
348 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
349 * It simply releases every PTE page from 0 up to the Guest's kernel address. */
d7e28ffe
RR
350static void flush_user_mappings(struct lguest *lg, int idx)
351{
352 unsigned int i;
bff672e6 353 /* Release every pgd entry up to the kernel's address. */
47436aa4 354 for (i = 0; i < pgd_index(lg->kernel_address); i++)
d7e28ffe
RR
355 release_pgd(lg, lg->pgdirs[idx].pgdir + i);
356}
357
e1e72965
RR
358/*H:440 (v) Flushing (throwing away) page tables,
359 *
360 * The Guest has a hypercall to throw away the page tables: it's used when a
361 * large number of mappings have been changed. */
1713608f 362void guest_pagetable_flush_user(struct lg_cpu *cpu)
d7e28ffe 363{
bff672e6 364 /* Drop the userspace part of the current page table. */
1713608f 365 flush_user_mappings(cpu->lg, cpu->cpu_pgd);
d7e28ffe 366}
bff672e6 367/*:*/
d7e28ffe 368
47436aa4 369/* We walk down the guest page tables to get a guest-physical address */
1713608f 370unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
47436aa4
RR
371{
372 pgd_t gpgd;
373 pte_t gpte;
374
375 /* First step: get the top-level Guest page table entry. */
1713608f 376 gpgd = lgread(cpu->lg, gpgd_addr(cpu, vaddr), pgd_t);
47436aa4
RR
377 /* Toplevel not present? We can't map it in. */
378 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
1713608f 379 kill_guest(cpu->lg, "Bad address %#lx", vaddr);
47436aa4 380
1713608f 381 gpte = lgread(cpu->lg, gpte_addr(cpu->lg, gpgd, vaddr), pte_t);
47436aa4 382 if (!(pte_flags(gpte) & _PAGE_PRESENT))
1713608f 383 kill_guest(cpu->lg, "Bad address %#lx", vaddr);
47436aa4
RR
384
385 return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
386}
387
bff672e6
RR
388/* We keep several page tables. This is a simple routine to find the page
389 * table (if any) corresponding to this top-level address the Guest has given
390 * us. */
d7e28ffe
RR
391static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
392{
393 unsigned int i;
394 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
ee3db0f2 395 if (lg->pgdirs[i].gpgdir == pgtable)
d7e28ffe
RR
396 break;
397 return i;
398}
399
bff672e6
RR
400/*H:435 And this is us, creating the new page directory. If we really do
401 * allocate a new one (and so the kernel parts are not there), we set
402 * blank_pgdir. */
1713608f 403static unsigned int new_pgdir(struct lg_cpu *cpu,
ee3db0f2 404 unsigned long gpgdir,
d7e28ffe
RR
405 int *blank_pgdir)
406{
407 unsigned int next;
1713608f 408 struct lguest *lg = cpu->lg;
d7e28ffe 409
bff672e6
RR
410 /* We pick one entry at random to throw out. Choosing the Least
411 * Recently Used might be better, but this is easy. */
d7e28ffe 412 next = random32() % ARRAY_SIZE(lg->pgdirs);
bff672e6 413 /* If it's never been allocated at all before, try now. */
d7e28ffe 414 if (!lg->pgdirs[next].pgdir) {
df29f43e 415 lg->pgdirs[next].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
bff672e6 416 /* If the allocation fails, just keep using the one we have */
d7e28ffe 417 if (!lg->pgdirs[next].pgdir)
1713608f 418 next = cpu->cpu_pgd;
d7e28ffe 419 else
bff672e6
RR
420 /* This is a blank page, so there are no kernel
421 * mappings: caller must map the stack! */
d7e28ffe
RR
422 *blank_pgdir = 1;
423 }
bff672e6 424 /* Record which Guest toplevel this shadows. */
ee3db0f2 425 lg->pgdirs[next].gpgdir = gpgdir;
d7e28ffe
RR
426 /* Release all the non-kernel mappings. */
427 flush_user_mappings(lg, next);
428
429 return next;
430}
431
bff672e6
RR
432/*H:430 (iv) Switching page tables
433 *
e1e72965
RR
434 * Now we've seen all the page table setting and manipulation, let's see what
435 * what happens when the Guest changes page tables (ie. changes the top-level
436 * pgdir). This occurs on almost every context switch. */
4665ac8e 437void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
d7e28ffe
RR
438{
439 int newpgdir, repin = 0;
4665ac8e 440 struct lguest *lg = cpu->lg;
d7e28ffe 441
bff672e6 442 /* Look to see if we have this one already. */
d7e28ffe 443 newpgdir = find_pgdir(lg, pgtable);
bff672e6
RR
444 /* If not, we allocate or mug an existing one: if it's a fresh one,
445 * repin gets set to 1. */
d7e28ffe 446 if (newpgdir == ARRAY_SIZE(lg->pgdirs))
1713608f 447 newpgdir = new_pgdir(cpu, pgtable, &repin);
bff672e6 448 /* Change the current pgd index to the new one. */
1713608f 449 cpu->cpu_pgd = newpgdir;
bff672e6 450 /* If it was completely blank, we map in the Guest kernel stack */
d7e28ffe 451 if (repin)
4665ac8e 452 pin_stack_pages(cpu);
d7e28ffe
RR
453}
454
bff672e6 455/*H:470 Finally, a routine which throws away everything: all PGD entries in all
e1e72965
RR
456 * the shadow page tables, including the Guest's kernel mappings. This is used
457 * when we destroy the Guest. */
d7e28ffe
RR
458static void release_all_pagetables(struct lguest *lg)
459{
460 unsigned int i, j;
461
bff672e6 462 /* Every shadow pagetable this Guest has */
d7e28ffe
RR
463 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
464 if (lg->pgdirs[i].pgdir)
bff672e6 465 /* Every PGD entry except the Switcher at the top */
d7e28ffe
RR
466 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
467 release_pgd(lg, lg->pgdirs[i].pgdir + j);
468}
469
bff672e6
RR
470/* We also throw away everything when a Guest tells us it's changed a kernel
471 * mapping. Since kernel mappings are in every page table, it's easiest to
e1e72965
RR
472 * throw them all away. This traps the Guest in amber for a while as
473 * everything faults back in, but it's rare. */
4665ac8e 474void guest_pagetable_clear_all(struct lg_cpu *cpu)
d7e28ffe 475{
4665ac8e 476 release_all_pagetables(cpu->lg);
bff672e6 477 /* We need the Guest kernel stack mapped again. */
4665ac8e 478 pin_stack_pages(cpu);
d7e28ffe 479}
e1e72965
RR
480/*:*/
481/*M:009 Since we throw away all mappings when a kernel mapping changes, our
482 * performance sucks for guests using highmem. In fact, a guest with
483 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
484 * usually slower than a Guest with less memory.
485 *
486 * This, of course, cannot be fixed. It would take some kind of... well, I
487 * don't know, but the term "puissant code-fu" comes to mind. :*/
d7e28ffe 488
bff672e6
RR
489/*H:420 This is the routine which actually sets the page table entry for then
490 * "idx"'th shadow page table.
491 *
492 * Normally, we can just throw out the old entry and replace it with 0: if they
493 * use it demand_page() will put the new entry in. We need to do this anyway:
494 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
495 * is read from, and _PAGE_DIRTY when it's written to.
496 *
497 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
498 * these bits on PTEs immediately anyway. This is done to save the CPU from
499 * having to update them, but it helps us the same way: if they set
500 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
501 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
502 */
d7e28ffe 503static void do_set_pte(struct lguest *lg, int idx,
df29f43e 504 unsigned long vaddr, pte_t gpte)
d7e28ffe 505{
e1e72965 506 /* Look up the matching shadow page directory entry. */
df29f43e 507 pgd_t *spgd = spgd_addr(lg, idx, vaddr);
bff672e6
RR
508
509 /* If the top level isn't present, there's no entry to update. */
df29f43e 510 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
bff672e6 511 /* Otherwise, we start by releasing the existing entry. */
df29f43e 512 pte_t *spte = spte_addr(lg, *spgd, vaddr);
d7e28ffe 513 release_pte(*spte);
bff672e6
RR
514
515 /* If they're setting this entry as dirty or accessed, we might
516 * as well put that entry they've given us in now. This shaves
517 * 10% off a copy-on-write micro-benchmark. */
df29f43e 518 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
d7e28ffe 519 check_gpte(lg, gpte);
df29f43e
MZ
520 *spte = gpte_to_spte(lg, gpte,
521 pte_flags(gpte) & _PAGE_DIRTY);
d7e28ffe 522 } else
e1e72965
RR
523 /* Otherwise kill it and we can demand_page() it in
524 * later. */
df29f43e 525 *spte = __pte(0);
d7e28ffe
RR
526 }
527}
528
bff672e6
RR
529/*H:410 Updating a PTE entry is a little trickier.
530 *
531 * We keep track of several different page tables (the Guest uses one for each
532 * process, so it makes sense to cache at least a few). Each of these have
533 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
534 * all processes. So when the page table above that address changes, we update
535 * all the page tables, not just the current one. This is rare.
536 *
537 * The benefit is that when we have to track a new page table, we can copy keep
538 * all the kernel mappings. This speeds up context switch immensely. */
d7e28ffe 539void guest_set_pte(struct lguest *lg,
ee3db0f2 540 unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
d7e28ffe 541{
bff672e6
RR
542 /* Kernel mappings must be changed on all top levels. Slow, but
543 * doesn't happen often. */
47436aa4 544 if (vaddr >= lg->kernel_address) {
d7e28ffe
RR
545 unsigned int i;
546 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
547 if (lg->pgdirs[i].pgdir)
548 do_set_pte(lg, i, vaddr, gpte);
549 } else {
bff672e6 550 /* Is this page table one we have a shadow for? */
ee3db0f2 551 int pgdir = find_pgdir(lg, gpgdir);
d7e28ffe 552 if (pgdir != ARRAY_SIZE(lg->pgdirs))
bff672e6 553 /* If so, do the update. */
d7e28ffe
RR
554 do_set_pte(lg, pgdir, vaddr, gpte);
555 }
556}
557
bff672e6 558/*H:400
e1e72965 559 * (iii) Setting up a page table entry when the Guest tells us one has changed.
bff672e6
RR
560 *
561 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
562 * with the other side of page tables while we're here: what happens when the
563 * Guest asks for a page table to be updated?
564 *
565 * We already saw that demand_page() will fill in the shadow page tables when
566 * needed, so we can simply remove shadow page table entries whenever the Guest
567 * tells us they've changed. When the Guest tries to use the new entry it will
568 * fault and demand_page() will fix it up.
569 *
570 * So with that in mind here's our code to to update a (top-level) PGD entry:
571 */
ee3db0f2 572void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
d7e28ffe
RR
573{
574 int pgdir;
575
bff672e6
RR
576 /* The kernel seems to try to initialize this early on: we ignore its
577 * attempts to map over the Switcher. */
d7e28ffe
RR
578 if (idx >= SWITCHER_PGD_INDEX)
579 return;
580
bff672e6 581 /* If they're talking about a page table we have a shadow for... */
ee3db0f2 582 pgdir = find_pgdir(lg, gpgdir);
d7e28ffe 583 if (pgdir < ARRAY_SIZE(lg->pgdirs))
bff672e6 584 /* ... throw it away. */
d7e28ffe
RR
585 release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
586}
587
bff672e6
RR
588/*H:500 (vii) Setting up the page tables initially.
589 *
590 * When a Guest is first created, the Launcher tells us where the toplevel of
591 * its first page table is. We set some things up here: */
d7e28ffe
RR
592int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
593{
bff672e6
RR
594 /* We start on the first shadow page table, and give it a blank PGD
595 * page. */
1713608f
GOC
596 lg->pgdirs[0].gpgdir = pgtable;
597 lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
598 if (!lg->pgdirs[0].pgdir)
d7e28ffe 599 return -ENOMEM;
1713608f 600 lg->cpus[0].cpu_pgd = 0;
d7e28ffe
RR
601 return 0;
602}
603
47436aa4
RR
604/* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
605void page_table_guest_data_init(struct lguest *lg)
606{
607 /* We get the kernel address: above this is all kernel memory. */
608 if (get_user(lg->kernel_address, &lg->lguest_data->kernel_address)
609 /* We tell the Guest that it can't use the top 4MB of virtual
610 * addresses used by the Switcher. */
611 || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem)
1713608f 612 || put_user(lg->pgdirs[0].gpgdir, &lg->lguest_data->pgdir))
47436aa4
RR
613 kill_guest(lg, "bad guest page %p", lg->lguest_data);
614
615 /* In flush_user_mappings() we loop from 0 to
616 * "pgd_index(lg->kernel_address)". This assumes it won't hit the
617 * Switcher mappings, so check that now. */
618 if (pgd_index(lg->kernel_address) >= SWITCHER_PGD_INDEX)
619 kill_guest(lg, "bad kernel address %#lx", lg->kernel_address);
620}
621
bff672e6 622/* When a Guest dies, our cleanup is fairly simple. */
d7e28ffe
RR
623void free_guest_pagetable(struct lguest *lg)
624{
625 unsigned int i;
626
bff672e6 627 /* Throw away all page table pages. */
d7e28ffe 628 release_all_pagetables(lg);
bff672e6 629 /* Now free the top levels: free_page() can handle 0 just fine. */
d7e28ffe
RR
630 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
631 free_page((long)lg->pgdirs[i].pgdir);
632}
633
bff672e6
RR
634/*H:480 (vi) Mapping the Switcher when the Guest is about to run.
635 *
e1e72965 636 * The Switcher and the two pages for this CPU need to be visible in the
bff672e6 637 * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
e1e72965
RR
638 * for each CPU already set up, we just need to hook them in now we know which
639 * Guest is about to run on this CPU. */
0c78441c 640void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
d7e28ffe 641{
df29f43e
MZ
642 pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
643 pgd_t switcher_pgd;
644 pte_t regs_pte;
a53a35a8 645 unsigned long pfn;
d7e28ffe 646
bff672e6
RR
647 /* Make the last PGD entry for this Guest point to the Switcher's PTE
648 * page for this CPU (with appropriate flags). */
df29f43e
MZ
649 switcher_pgd = __pgd(__pa(switcher_pte_page) | _PAGE_KERNEL);
650
1713608f 651 cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
d7e28ffe 652
bff672e6
RR
653 /* We also change the Switcher PTE page. When we're running the Guest,
654 * we want the Guest's "regs" page to appear where the first Switcher
655 * page for this CPU is. This is an optimization: when the Switcher
656 * saves the Guest registers, it saves them into the first page of this
657 * CPU's "struct lguest_pages": if we make sure the Guest's register
658 * page is already mapped there, we don't have to copy them out
659 * again. */
a53a35a8
GOC
660 pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
661 regs_pte = pfn_pte(pfn, __pgprot(_PAGE_KERNEL));
df29f43e 662 switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
d7e28ffe 663}
bff672e6 664/*:*/
d7e28ffe
RR
665
666static void free_switcher_pte_pages(void)
667{
668 unsigned int i;
669
670 for_each_possible_cpu(i)
671 free_page((long)switcher_pte_page(i));
672}
673
bff672e6
RR
674/*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
675 * the CPU number and the "struct page"s for the Switcher code itself.
676 *
677 * Currently the Switcher is less than a page long, so "pages" is always 1. */
d7e28ffe
RR
678static __init void populate_switcher_pte_page(unsigned int cpu,
679 struct page *switcher_page[],
680 unsigned int pages)
681{
682 unsigned int i;
df29f43e 683 pte_t *pte = switcher_pte_page(cpu);
d7e28ffe 684
bff672e6 685 /* The first entries are easy: they map the Switcher code. */
d7e28ffe 686 for (i = 0; i < pages; i++) {
df29f43e
MZ
687 pte[i] = mk_pte(switcher_page[i],
688 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
d7e28ffe
RR
689 }
690
bff672e6 691 /* The only other thing we map is this CPU's pair of pages. */
d7e28ffe
RR
692 i = pages + cpu*2;
693
bff672e6 694 /* First page (Guest registers) is writable from the Guest */
df29f43e
MZ
695 pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
696 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
697
bff672e6
RR
698 /* The second page contains the "struct lguest_ro_state", and is
699 * read-only. */
df29f43e
MZ
700 pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
701 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
d7e28ffe
RR
702}
703
e1e72965
RR
704/* We've made it through the page table code. Perhaps our tired brains are
705 * still processing the details, or perhaps we're simply glad it's over.
706 *
707 * If nothing else, note that all this complexity in juggling shadow page
708 * tables in sync with the Guest's page tables is for one reason: for most
709 * Guests this page table dance determines how bad performance will be. This
710 * is why Xen uses exotic direct Guest pagetable manipulation, and why both
711 * Intel and AMD have implemented shadow page table support directly into
712 * hardware.
713 *
714 * There is just one file remaining in the Host. */
715
bff672e6
RR
716/*H:510 At boot or module load time, init_pagetables() allocates and populates
717 * the Switcher PTE page for each CPU. */
d7e28ffe
RR
718__init int init_pagetables(struct page **switcher_page, unsigned int pages)
719{
720 unsigned int i;
721
722 for_each_possible_cpu(i) {
df29f43e 723 switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
d7e28ffe
RR
724 if (!switcher_pte_page(i)) {
725 free_switcher_pte_pages();
726 return -ENOMEM;
727 }
728 populate_switcher_pte_page(i, switcher_page, pages);
729 }
730 return 0;
731}
bff672e6 732/*:*/
d7e28ffe 733
bff672e6 734/* Cleaning up simply involves freeing the PTE page for each CPU. */
d7e28ffe
RR
735void free_pagetables(void)
736{
737 free_switcher_pte_pages();
738}