Merge tag 'hwspinlock-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/ohad...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / lguest / lguest_user.c
CommitLineData
9f54288d
RR
1/*P:200 This contains all the /dev/lguest code, whereby the userspace
2 * launcher controls and communicates with the Guest. For example,
3 * the first write will tell us the Guest's memory layout and entry
4 * point. A read will run the Guest until something happens, such as
5 * a signal or the Guest doing a NOTIFY out to the Launcher. There is
6 * also a way for the Launcher to attach eventfds to particular NOTIFY
7 * values instead of returning from the read() call.
2e04ef76 8:*/
d7e28ffe
RR
9#include <linux/uaccess.h>
10#include <linux/miscdevice.h>
11#include <linux/fs.h>
ca94f2bd 12#include <linux/sched.h>
df60aeef
RR
13#include <linux/eventfd.h>
14#include <linux/file.h>
5a0e3ad6 15#include <linux/slab.h>
39a0e33d 16#include <linux/export.h>
d7e28ffe
RR
17#include "lg.h"
18
a91d74a3
RR
19/*L:056
20 * Before we move on, let's jump ahead and look at what the kernel does when
21 * it needs to look up the eventfds. That will complete our picture of how we
22 * use RCU.
23 *
24 * The notification value is in cpu->pending_notify: we return true if it went
25 * to an eventfd.
26 */
df60aeef
RR
27bool send_notify_to_eventfd(struct lg_cpu *cpu)
28{
29 unsigned int i;
30 struct lg_eventfd_map *map;
31
a91d74a3
RR
32 /*
33 * This "rcu_read_lock()" helps track when someone is still looking at
34 * the (RCU-using) eventfds array. It's not actually a lock at all;
35 * indeed it's a noop in many configurations. (You didn't expect me to
36 * explain all the RCU secrets here, did you?)
37 */
df60aeef 38 rcu_read_lock();
a91d74a3
RR
39 /*
40 * rcu_dereference is the counter-side of rcu_assign_pointer(); it
41 * makes sure we don't access the memory pointed to by
42 * cpu->lg->eventfds before cpu->lg->eventfds is set. Sounds crazy,
43 * but Alpha allows this! Paul McKenney points out that a really
44 * aggressive compiler could have the same effect:
45 * http://lists.ozlabs.org/pipermail/lguest/2009-July/001560.html
46 *
47 * So play safe, use rcu_dereference to get the rcu-protected pointer:
48 */
df60aeef 49 map = rcu_dereference(cpu->lg->eventfds);
a91d74a3
RR
50 /*
51 * Simple array search: even if they add an eventfd while we do this,
52 * we'll continue to use the old array and just won't see the new one.
53 */
df60aeef
RR
54 for (i = 0; i < map->num; i++) {
55 if (map->map[i].addr == cpu->pending_notify) {
56 eventfd_signal(map->map[i].event, 1);
57 cpu->pending_notify = 0;
58 break;
59 }
60 }
a91d74a3 61 /* We're done with the rcu-protected variable cpu->lg->eventfds. */
df60aeef 62 rcu_read_unlock();
a91d74a3
RR
63
64 /* If we cleared the notification, it's because we found a match. */
df60aeef
RR
65 return cpu->pending_notify == 0;
66}
67
a91d74a3
RR
68/*L:055
69 * One of the more tricksy tricks in the Linux Kernel is a technique called
70 * Read Copy Update. Since one point of lguest is to teach lguest journeyers
71 * about kernel coding, I use it here. (In case you're curious, other purposes
72 * include learning about virtualization and instilling a deep appreciation for
73 * simplicity and puppies).
74 *
75 * We keep a simple array which maps LHCALL_NOTIFY values to eventfds, but we
76 * add new eventfds without ever blocking readers from accessing the array.
77 * The current Launcher only does this during boot, so that never happens. But
78 * Read Copy Update is cool, and adding a lock risks damaging even more puppies
79 * than this code does.
80 *
81 * We allocate a brand new one-larger array, copy the old one and add our new
82 * element. Then we make the lg eventfd pointer point to the new array.
83 * That's the easy part: now we need to free the old one, but we need to make
84 * sure no slow CPU somewhere is still looking at it. That's what
85 * synchronize_rcu does for us: waits until every CPU has indicated that it has
86 * moved on to know it's no longer using the old one.
87 *
88 * If that's unclear, see http://en.wikipedia.org/wiki/Read-copy-update.
89 */
df60aeef
RR
90static int add_eventfd(struct lguest *lg, unsigned long addr, int fd)
91{
92 struct lg_eventfd_map *new, *old = lg->eventfds;
93
a91d74a3
RR
94 /*
95 * We don't allow notifications on value 0 anyway (pending_notify of
96 * 0 means "nothing pending").
97 */
df60aeef
RR
98 if (!addr)
99 return -EINVAL;
100
2e04ef76
RR
101 /*
102 * Replace the old array with the new one, carefully: others can
103 * be accessing it at the same time.
104 */
df60aeef
RR
105 new = kmalloc(sizeof(*new) + sizeof(new->map[0]) * (old->num + 1),
106 GFP_KERNEL);
107 if (!new)
108 return -ENOMEM;
109
110 /* First make identical copy. */
111 memcpy(new->map, old->map, sizeof(old->map[0]) * old->num);
112 new->num = old->num;
113
114 /* Now append new entry. */
115 new->map[new->num].addr = addr;
13389010 116 new->map[new->num].event = eventfd_ctx_fdget(fd);
df60aeef 117 if (IS_ERR(new->map[new->num].event)) {
f2945262 118 int err = PTR_ERR(new->map[new->num].event);
df60aeef 119 kfree(new);
f2945262 120 return err;
df60aeef
RR
121 }
122 new->num++;
123
a91d74a3
RR
124 /*
125 * Now put new one in place: rcu_assign_pointer() is a fancy way of
126 * doing "lg->eventfds = new", but it uses memory barriers to make
127 * absolutely sure that the contents of "new" written above is nailed
128 * down before we actually do the assignment.
129 *
130 * We have to think about these kinds of things when we're operating on
131 * live data without locks.
132 */
df60aeef
RR
133 rcu_assign_pointer(lg->eventfds, new);
134
2e04ef76 135 /*
25985edc 136 * We're not in a big hurry. Wait until no one's looking at old
a91d74a3 137 * version, then free it.
2e04ef76 138 */
df60aeef
RR
139 synchronize_rcu();
140 kfree(old);
141
142 return 0;
143}
144
a91d74a3
RR
145/*L:052
146 * Receiving notifications from the Guest is usually done by attaching a
147 * particular LHCALL_NOTIFY value to an event filedescriptor. The eventfd will
148 * become readable when the Guest does an LHCALL_NOTIFY with that value.
149 *
150 * This is really convenient for processing each virtqueue in a separate
151 * thread.
152 */
df60aeef
RR
153static int attach_eventfd(struct lguest *lg, const unsigned long __user *input)
154{
155 unsigned long addr, fd;
156 int err;
157
158 if (get_user(addr, input) != 0)
159 return -EFAULT;
160 input++;
161 if (get_user(fd, input) != 0)
162 return -EFAULT;
163
a91d74a3
RR
164 /*
165 * Just make sure two callers don't add eventfds at once. We really
166 * only need to lock against callers adding to the same Guest, so using
167 * the Big Lguest Lock is overkill. But this is setup, not a fast path.
168 */
df60aeef
RR
169 mutex_lock(&lguest_lock);
170 err = add_eventfd(lg, addr, fd);
171 mutex_unlock(&lguest_lock);
172
f2945262 173 return err;
df60aeef
RR
174}
175
2e04ef76
RR
176/*L:050
177 * Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
178 * number to /dev/lguest.
179 */
177e449d 180static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
d7e28ffe 181{
511801dc 182 unsigned long irq;
d7e28ffe
RR
183
184 if (get_user(irq, input) != 0)
185 return -EFAULT;
186 if (irq >= LGUEST_IRQS)
187 return -EINVAL;
9f155a9b 188
a91d74a3
RR
189 /*
190 * Next time the Guest runs, the core code will see if it can deliver
191 * this interrupt.
192 */
9f155a9b 193 set_interrupt(cpu, irq);
d7e28ffe
RR
194 return 0;
195}
196
2e04ef76
RR
197/*L:040
198 * Once our Guest is initialized, the Launcher makes it run by reading
199 * from /dev/lguest.
200 */
d7e28ffe
RR
201static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
202{
203 struct lguest *lg = file->private_data;
d0953d42
GOC
204 struct lg_cpu *cpu;
205 unsigned int cpu_id = *o;
d7e28ffe 206
dde79789 207 /* You must write LHREQ_INITIALIZE first! */
d7e28ffe
RR
208 if (!lg)
209 return -EINVAL;
210
d0953d42
GOC
211 /* Watch out for arbitrary vcpu indexes! */
212 if (cpu_id >= lg->nr_cpus)
213 return -EINVAL;
214
215 cpu = &lg->cpus[cpu_id];
216
e1e72965 217 /* If you're not the task which owns the Guest, go away. */
66686c2a 218 if (current != cpu->tsk)
d7e28ffe
RR
219 return -EPERM;
220
a6bd8e13 221 /* If the Guest is already dead, we indicate why */
d7e28ffe
RR
222 if (lg->dead) {
223 size_t len;
224
dde79789 225 /* lg->dead either contains an error code, or a string. */
d7e28ffe
RR
226 if (IS_ERR(lg->dead))
227 return PTR_ERR(lg->dead);
228
dde79789 229 /* We can only return as much as the buffer they read with. */
d7e28ffe
RR
230 len = min(size, strlen(lg->dead)+1);
231 if (copy_to_user(user, lg->dead, len) != 0)
232 return -EFAULT;
233 return len;
234 }
235
2e04ef76
RR
236 /*
237 * If we returned from read() last time because the Guest sent I/O,
238 * clear the flag.
239 */
5e232f4f
GOC
240 if (cpu->pending_notify)
241 cpu->pending_notify = 0;
d7e28ffe 242
dde79789 243 /* Run the Guest until something interesting happens. */
d0953d42 244 return run_guest(cpu, (unsigned long __user *)user);
d7e28ffe
RR
245}
246
2e04ef76
RR
247/*L:025
248 * This actually initializes a CPU. For the moment, a Guest is only
249 * uniprocessor, so "id" is always 0.
250 */
4dcc53da
GOC
251static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
252{
c2ecd515 253 /* We have a limited number of CPUs in the lguest struct. */
24adf127 254 if (id >= ARRAY_SIZE(cpu->lg->cpus))
4dcc53da
GOC
255 return -EINVAL;
256
a6bd8e13 257 /* Set up this CPU's id, and pointer back to the lguest struct. */
4dcc53da 258 cpu->id = id;
c2ecd515 259 cpu->lg = container_of(cpu, struct lguest, cpus[id]);
4dcc53da 260 cpu->lg->nr_cpus++;
a6bd8e13
RR
261
262 /* Each CPU has a timer it can set. */
ad8d8f3b 263 init_clockdev(cpu);
4dcc53da 264
2e04ef76
RR
265 /*
266 * We need a complete page for the Guest registers: they are accessible
267 * to the Guest and we can only grant it access to whole pages.
268 */
a53a35a8
GOC
269 cpu->regs_page = get_zeroed_page(GFP_KERNEL);
270 if (!cpu->regs_page)
271 return -ENOMEM;
272
c2ecd515 273 /* We actually put the registers at the end of the page. */
a53a35a8
GOC
274 cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
275
2e04ef76
RR
276 /*
277 * Now we initialize the Guest's registers, handing it the start
278 * address.
279 */
a53a35a8
GOC
280 lguest_arch_setup_regs(cpu, start_ip);
281
2e04ef76
RR
282 /*
283 * We keep a pointer to the Launcher task (ie. current task) for when
284 * other Guests want to wake this one (eg. console input).
285 */
66686c2a
GOC
286 cpu->tsk = current;
287
2e04ef76
RR
288 /*
289 * We need to keep a pointer to the Launcher's memory map, because if
66686c2a 290 * the Launcher dies we need to clean it up. If we don't keep a
2e04ef76
RR
291 * reference, it is destroyed before close() is called.
292 */
66686c2a
GOC
293 cpu->mm = get_task_mm(cpu->tsk);
294
2e04ef76
RR
295 /*
296 * We remember which CPU's pages this Guest used last, for optimization
297 * when the same Guest runs on the same CPU twice.
298 */
f34f8c5f
GOC
299 cpu->last_pages = NULL;
300
a6bd8e13 301 /* No error == success. */
4dcc53da
GOC
302 return 0;
303}
304
2e04ef76
RR
305/*L:020
306 * The initialization write supplies 3 pointer sized (32 or 64 bit) values (in
307 * addition to the LHREQ_INITIALIZE value). These are:
dde79789 308 *
3c6b5bfa
RR
309 * base: The start of the Guest-physical memory inside the Launcher memory.
310 *
dde79789 311 * pfnlimit: The highest (Guest-physical) page number the Guest should be
e1e72965
RR
312 * allowed to access. The Guest memory lives inside the Launcher, so it sets
313 * this to ensure the Guest can only reach its own memory.
dde79789 314 *
dde79789 315 * start: The first instruction to execute ("eip" in x86-speak).
dde79789 316 */
511801dc 317static int initialize(struct file *file, const unsigned long __user *input)
d7e28ffe 318{
2e04ef76 319 /* "struct lguest" contains all we (the Host) know about a Guest. */
d7e28ffe 320 struct lguest *lg;
48245cc0 321 int err;
58a24566 322 unsigned long args[3];
d7e28ffe 323
2e04ef76
RR
324 /*
325 * We grab the Big Lguest lock, which protects against multiple
326 * simultaneous initializations.
327 */
d7e28ffe 328 mutex_lock(&lguest_lock);
dde79789 329 /* You can't initialize twice! Close the device and start again... */
d7e28ffe
RR
330 if (file->private_data) {
331 err = -EBUSY;
332 goto unlock;
333 }
334
335 if (copy_from_user(args, input, sizeof(args)) != 0) {
336 err = -EFAULT;
337 goto unlock;
338 }
339
48245cc0
RR
340 lg = kzalloc(sizeof(*lg), GFP_KERNEL);
341 if (!lg) {
342 err = -ENOMEM;
d7e28ffe
RR
343 goto unlock;
344 }
dde79789 345
df60aeef
RR
346 lg->eventfds = kmalloc(sizeof(*lg->eventfds), GFP_KERNEL);
347 if (!lg->eventfds) {
348 err = -ENOMEM;
349 goto free_lg;
350 }
351 lg->eventfds->num = 0;
352
dde79789 353 /* Populate the easy fields of our "struct lguest" */
74dbf719 354 lg->mem_base = (void __user *)args[0];
3c6b5bfa 355 lg->pfn_limit = args[1];
dde79789 356
58a24566
MZ
357 /* This is the first cpu (cpu 0) and it will start booting at args[2] */
358 err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
4dcc53da 359 if (err)
df60aeef 360 goto free_eventfds;
4dcc53da 361
2e04ef76 362 /*
9f54288d
RR
363 * Initialize the Guest's shadow page tables. This allocates
364 * memory, so can fail.
2e04ef76 365 */
58a24566 366 err = init_guest_pagetable(lg);
d7e28ffe
RR
367 if (err)
368 goto free_regs;
369
dde79789 370 /* We keep our "struct lguest" in the file's private_data. */
d7e28ffe
RR
371 file->private_data = lg;
372
373 mutex_unlock(&lguest_lock);
374
dde79789 375 /* And because this is a write() call, we return the length used. */
d7e28ffe
RR
376 return sizeof(args);
377
378free_regs:
a53a35a8
GOC
379 /* FIXME: This should be in free_vcpu */
380 free_page(lg->cpus[0].regs_page);
df60aeef
RR
381free_eventfds:
382 kfree(lg->eventfds);
383free_lg:
43054412 384 kfree(lg);
d7e28ffe
RR
385unlock:
386 mutex_unlock(&lguest_lock);
387 return err;
388}
389
2e04ef76
RR
390/*L:010
391 * The first operation the Launcher does must be a write. All writes
e1e72965 392 * start with an unsigned long number: for the first write this must be
dde79789 393 * LHREQ_INITIALIZE to set up the Guest. After that the Launcher can use
a91d74a3 394 * writes of other values to send interrupts or set up receipt of notifications.
a6bd8e13
RR
395 *
396 * Note that we overload the "offset" in the /dev/lguest file to indicate what
a91d74a3 397 * CPU number we're dealing with. Currently this is always 0 since we only
a6bd8e13 398 * support uniprocessor Guests, but you can see the beginnings of SMP support
2e04ef76
RR
399 * here.
400 */
511801dc 401static ssize_t write(struct file *file, const char __user *in,
d7e28ffe
RR
402 size_t size, loff_t *off)
403{
2e04ef76
RR
404 /*
405 * Once the Guest is initialized, we hold the "struct lguest" in the
406 * file private data.
407 */
d7e28ffe 408 struct lguest *lg = file->private_data;
511801dc
JS
409 const unsigned long __user *input = (const unsigned long __user *)in;
410 unsigned long req;
177e449d 411 struct lg_cpu *uninitialized_var(cpu);
7ea07a15 412 unsigned int cpu_id = *off;
d7e28ffe 413
a6bd8e13 414 /* The first value tells us what this request is. */
d7e28ffe
RR
415 if (get_user(req, input) != 0)
416 return -EFAULT;
511801dc 417 input++;
d7e28ffe 418
dde79789 419 /* If you haven't initialized, you must do that first. */
7ea07a15
GOC
420 if (req != LHREQ_INITIALIZE) {
421 if (!lg || (cpu_id >= lg->nr_cpus))
422 return -EINVAL;
423 cpu = &lg->cpus[cpu_id];
dde79789 424
f73d1e6c
ET
425 /* Once the Guest is dead, you can only read() why it died. */
426 if (lg->dead)
427 return -ENOENT;
f73d1e6c 428 }
d7e28ffe
RR
429
430 switch (req) {
431 case LHREQ_INITIALIZE:
511801dc 432 return initialize(file, input);
d7e28ffe 433 case LHREQ_IRQ:
177e449d 434 return user_send_irq(cpu, input);
df60aeef
RR
435 case LHREQ_EVENTFD:
436 return attach_eventfd(lg, input);
d7e28ffe
RR
437 default:
438 return -EINVAL;
439 }
440}
441
2e04ef76
RR
442/*L:060
443 * The final piece of interface code is the close() routine. It reverses
dde79789
RR
444 * everything done in initialize(). This is usually called because the
445 * Launcher exited.
446 *
447 * Note that the close routine returns 0 or a negative error number: it can't
448 * really fail, but it can whine. I blame Sun for this wart, and K&R C for
2e04ef76
RR
449 * letting them do it.
450:*/
d7e28ffe
RR
451static int close(struct inode *inode, struct file *file)
452{
453 struct lguest *lg = file->private_data;
ad8d8f3b 454 unsigned int i;
d7e28ffe 455
dde79789 456 /* If we never successfully initialized, there's nothing to clean up */
d7e28ffe
RR
457 if (!lg)
458 return 0;
459
2e04ef76
RR
460 /*
461 * We need the big lock, to protect from inter-guest I/O and other
462 * Launchers initializing guests.
463 */
d7e28ffe 464 mutex_lock(&lguest_lock);
66686c2a
GOC
465
466 /* Free up the shadow page tables for the Guest. */
467 free_guest_pagetable(lg);
468
a53a35a8 469 for (i = 0; i < lg->nr_cpus; i++) {
ad8d8f3b
GOC
470 /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
471 hrtimer_cancel(&lg->cpus[i].hrt);
a53a35a8
GOC
472 /* We can free up the register page we allocated. */
473 free_page(lg->cpus[i].regs_page);
2e04ef76
RR
474 /*
475 * Now all the memory cleanups are done, it's safe to release
476 * the Launcher's memory management structure.
477 */
66686c2a 478 mmput(lg->cpus[i].mm);
a53a35a8 479 }
df60aeef
RR
480
481 /* Release any eventfds they registered. */
482 for (i = 0; i < lg->eventfds->num; i++)
13389010 483 eventfd_ctx_put(lg->eventfds->map[i].event);
df60aeef
RR
484 kfree(lg->eventfds);
485
2e04ef76
RR
486 /*
487 * If lg->dead doesn't contain an error code it will be NULL or a
488 * kmalloc()ed string, either of which is ok to hand to kfree().
489 */
d7e28ffe
RR
490 if (!IS_ERR(lg->dead))
491 kfree(lg->dead);
05dfdbbd
MW
492 /* Free the memory allocated to the lguest_struct */
493 kfree(lg);
dde79789 494 /* Release lock and exit. */
d7e28ffe 495 mutex_unlock(&lguest_lock);
dde79789 496
d7e28ffe
RR
497 return 0;
498}
499
dde79789
RR
500/*L:000
501 * Welcome to our journey through the Launcher!
502 *
503 * The Launcher is the Host userspace program which sets up, runs and services
504 * the Guest. In fact, many comments in the Drivers which refer to "the Host"
505 * doing things are inaccurate: the Launcher does all the device handling for
e1e72965 506 * the Guest, but the Guest can't know that.
dde79789
RR
507 *
508 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
509 * shall see more of that later.
510 *
511 * We begin our understanding with the Host kernel interface which the Launcher
512 * uses: reading and writing a character device called /dev/lguest. All the
2e04ef76
RR
513 * work happens in the read(), write() and close() routines:
514 */
828c0950 515static const struct file_operations lguest_fops = {
d7e28ffe
RR
516 .owner = THIS_MODULE,
517 .release = close,
518 .write = write,
519 .read = read,
6038f373 520 .llseek = default_llseek,
d7e28ffe 521};
9f54288d 522/*:*/
dde79789 523
2e04ef76
RR
524/*
525 * This is a textbook example of a "misc" character device. Populate a "struct
526 * miscdevice" and register it with misc_register().
527 */
d7e28ffe
RR
528static struct miscdevice lguest_dev = {
529 .minor = MISC_DYNAMIC_MINOR,
530 .name = "lguest",
531 .fops = &lguest_fops,
532};
533
534int __init lguest_device_init(void)
535{
536 return misc_register(&lguest_dev);
537}
538
539void __exit lguest_device_remove(void)
540{
541 misc_deregister(&lguest_dev);
542}