RDMA/cxgb3: cleanups
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / infiniband / hw / cxgb3 / iwch_cm.c
CommitLineData
b038ced7
SW
1/*
2 * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
b038ced7
SW
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32#include <linux/module.h>
33#include <linux/list.h>
34#include <linux/workqueue.h>
35#include <linux/skbuff.h>
36#include <linux/timer.h>
37#include <linux/notifier.h>
38
39#include <net/neighbour.h>
40#include <net/netevent.h>
41#include <net/route.h>
42
43#include "tcb.h"
44#include "cxgb3_offload.h"
45#include "iwch.h"
46#include "iwch_provider.h"
47#include "iwch_cm.h"
48
49static char *states[] = {
50 "idle",
51 "listen",
52 "connecting",
53 "mpa_wait_req",
54 "mpa_req_sent",
55 "mpa_req_rcvd",
56 "mpa_rep_sent",
57 "fpdu_mode",
58 "aborting",
59 "closing",
60 "moribund",
61 "dead",
62 NULL,
63};
64
65static int ep_timeout_secs = 10;
66module_param(ep_timeout_secs, int, 0444);
67MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
68 "in seconds (default=10)");
69
70static int mpa_rev = 1;
71module_param(mpa_rev, int, 0444);
72MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
73 "1 is spec compliant. (default=1)");
74
75static int markers_enabled = 0;
76module_param(markers_enabled, int, 0444);
77MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
78
79static int crc_enabled = 1;
80module_param(crc_enabled, int, 0444);
81MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
82
83static int rcv_win = 256 * 1024;
84module_param(rcv_win, int, 0444);
85MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256)");
86
87static int snd_win = 32 * 1024;
88module_param(snd_win, int, 0444);
89MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=32KB)");
90
91static unsigned int nocong = 0;
92module_param(nocong, uint, 0444);
93MODULE_PARM_DESC(nocong, "Turn off congestion control (default=0)");
94
95static unsigned int cong_flavor = 1;
96module_param(cong_flavor, uint, 0444);
97MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)");
98
99static void process_work(struct work_struct *work);
100static struct workqueue_struct *workq;
101static DECLARE_WORK(skb_work, process_work);
102
103static struct sk_buff_head rxq;
104static cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS];
105
106static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
107static void ep_timeout(unsigned long arg);
108static void connect_reply_upcall(struct iwch_ep *ep, int status);
109
110static void start_ep_timer(struct iwch_ep *ep)
111{
112 PDBG("%s ep %p\n", __FUNCTION__, ep);
113 if (timer_pending(&ep->timer)) {
114 PDBG("%s stopped / restarted timer ep %p\n", __FUNCTION__, ep);
115 del_timer_sync(&ep->timer);
116 } else
117 get_ep(&ep->com);
118 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
119 ep->timer.data = (unsigned long)ep;
120 ep->timer.function = ep_timeout;
121 add_timer(&ep->timer);
122}
123
124static void stop_ep_timer(struct iwch_ep *ep)
125{
126 PDBG("%s ep %p\n", __FUNCTION__, ep);
127 del_timer_sync(&ep->timer);
128 put_ep(&ep->com);
129}
130
131static void release_tid(struct t3cdev *tdev, u32 hwtid, struct sk_buff *skb)
132{
133 struct cpl_tid_release *req;
134
135 skb = get_skb(skb, sizeof *req, GFP_KERNEL);
136 if (!skb)
137 return;
138 req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
139 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
140 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
141 skb->priority = CPL_PRIORITY_SETUP;
142 tdev->send(tdev, skb);
143 return;
144}
145
146int iwch_quiesce_tid(struct iwch_ep *ep)
147{
148 struct cpl_set_tcb_field *req;
149 struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
150
151 if (!skb)
152 return -ENOMEM;
153 req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
154 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
155 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
156 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
157 req->reply = 0;
158 req->cpu_idx = 0;
159 req->word = htons(W_TCB_RX_QUIESCE);
160 req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
161 req->val = cpu_to_be64(1 << S_TCB_RX_QUIESCE);
162
163 skb->priority = CPL_PRIORITY_DATA;
164 ep->com.tdev->send(ep->com.tdev, skb);
165 return 0;
166}
167
168int iwch_resume_tid(struct iwch_ep *ep)
169{
170 struct cpl_set_tcb_field *req;
171 struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
172
173 if (!skb)
174 return -ENOMEM;
175 req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
176 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
177 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
178 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
179 req->reply = 0;
180 req->cpu_idx = 0;
181 req->word = htons(W_TCB_RX_QUIESCE);
182 req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
183 req->val = 0;
184
185 skb->priority = CPL_PRIORITY_DATA;
186 ep->com.tdev->send(ep->com.tdev, skb);
187 return 0;
188}
189
190static void set_emss(struct iwch_ep *ep, u16 opt)
191{
192 PDBG("%s ep %p opt %u\n", __FUNCTION__, ep, opt);
193 ep->emss = T3C_DATA(ep->com.tdev)->mtus[G_TCPOPT_MSS(opt)] - 40;
194 if (G_TCPOPT_TSTAMP(opt))
195 ep->emss -= 12;
196 if (ep->emss < 128)
197 ep->emss = 128;
198 PDBG("emss=%d\n", ep->emss);
199}
200
201static enum iwch_ep_state state_read(struct iwch_ep_common *epc)
202{
203 unsigned long flags;
204 enum iwch_ep_state state;
205
206 spin_lock_irqsave(&epc->lock, flags);
207 state = epc->state;
208 spin_unlock_irqrestore(&epc->lock, flags);
209 return state;
210}
211
2b540355 212static void __state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
b038ced7
SW
213{
214 epc->state = new;
215}
216
217static void state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
218{
219 unsigned long flags;
220
221 spin_lock_irqsave(&epc->lock, flags);
222 PDBG("%s - %s -> %s\n", __FUNCTION__, states[epc->state], states[new]);
223 __state_set(epc, new);
224 spin_unlock_irqrestore(&epc->lock, flags);
225 return;
226}
227
228static void *alloc_ep(int size, gfp_t gfp)
229{
230 struct iwch_ep_common *epc;
231
232 epc = kmalloc(size, gfp);
233 if (epc) {
234 memset(epc, 0, size);
235 kref_init(&epc->kref);
236 spin_lock_init(&epc->lock);
237 init_waitqueue_head(&epc->waitq);
238 }
239 PDBG("%s alloc ep %p\n", __FUNCTION__, epc);
240 return epc;
241}
242
243void __free_ep(struct kref *kref)
244{
245 struct iwch_ep_common *epc;
246 epc = container_of(kref, struct iwch_ep_common, kref);
247 PDBG("%s ep %p state %s\n", __FUNCTION__, epc, states[state_read(epc)]);
248 kfree(epc);
249}
250
251static void release_ep_resources(struct iwch_ep *ep)
252{
253 PDBG("%s ep %p tid %d\n", __FUNCTION__, ep, ep->hwtid);
254 cxgb3_remove_tid(ep->com.tdev, (void *)ep, ep->hwtid);
255 dst_release(ep->dst);
256 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
257 if (ep->com.tdev->type == T3B)
258 release_tid(ep->com.tdev, ep->hwtid, NULL);
259 put_ep(&ep->com);
260}
261
262static void process_work(struct work_struct *work)
263{
264 struct sk_buff *skb = NULL;
265 void *ep;
266 struct t3cdev *tdev;
267 int ret;
268
269 while ((skb = skb_dequeue(&rxq))) {
270 ep = *((void **) (skb->cb));
271 tdev = *((struct t3cdev **) (skb->cb + sizeof(void *)));
272 ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep);
273 if (ret & CPL_RET_BUF_DONE)
274 kfree_skb(skb);
275
276 /*
277 * ep was referenced in sched(), and is freed here.
278 */
279 put_ep((struct iwch_ep_common *)ep);
280 }
281}
282
283static int status2errno(int status)
284{
285 switch (status) {
286 case CPL_ERR_NONE:
287 return 0;
288 case CPL_ERR_CONN_RESET:
289 return -ECONNRESET;
290 case CPL_ERR_ARP_MISS:
291 return -EHOSTUNREACH;
292 case CPL_ERR_CONN_TIMEDOUT:
293 return -ETIMEDOUT;
294 case CPL_ERR_TCAM_FULL:
295 return -ENOMEM;
296 case CPL_ERR_CONN_EXIST:
297 return -EADDRINUSE;
298 default:
299 return -EIO;
300 }
301}
302
303/*
304 * Try and reuse skbs already allocated...
305 */
306static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
307{
308 if (skb) {
309 BUG_ON(skb_cloned(skb));
310 skb_trim(skb, 0);
311 skb_get(skb);
312 } else {
313 skb = alloc_skb(len, gfp);
314 }
315 return skb;
316}
317
318static struct rtable *find_route(struct t3cdev *dev, __be32 local_ip,
319 __be32 peer_ip, __be16 local_port,
320 __be16 peer_port, u8 tos)
321{
322 struct rtable *rt;
323 struct flowi fl = {
324 .oif = 0,
325 .nl_u = {
326 .ip4_u = {
327 .daddr = peer_ip,
328 .saddr = local_ip,
329 .tos = tos}
330 },
331 .proto = IPPROTO_TCP,
332 .uli_u = {
333 .ports = {
334 .sport = local_port,
335 .dport = peer_port}
336 }
337 };
338
339 if (ip_route_output_flow(&rt, &fl, NULL, 0))
340 return NULL;
341 return rt;
342}
343
344static unsigned int find_best_mtu(const struct t3c_data *d, unsigned short mtu)
345{
346 int i = 0;
347
348 while (i < d->nmtus - 1 && d->mtus[i + 1] <= mtu)
349 ++i;
350 return i;
351}
352
353static void arp_failure_discard(struct t3cdev *dev, struct sk_buff *skb)
354{
355 PDBG("%s t3cdev %p\n", __FUNCTION__, dev);
356 kfree_skb(skb);
357}
358
359/*
360 * Handle an ARP failure for an active open.
361 */
362static void act_open_req_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
363{
364 printk(KERN_ERR MOD "ARP failure duing connect\n");
365 kfree_skb(skb);
366}
367
368/*
369 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
370 * and send it along.
371 */
372static void abort_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
373{
374 struct cpl_abort_req *req = cplhdr(skb);
375
376 PDBG("%s t3cdev %p\n", __FUNCTION__, dev);
377 req->cmd = CPL_ABORT_NO_RST;
378 cxgb3_ofld_send(dev, skb);
379}
380
381static int send_halfclose(struct iwch_ep *ep, gfp_t gfp)
382{
383 struct cpl_close_con_req *req;
384 struct sk_buff *skb;
385
386 PDBG("%s ep %p\n", __FUNCTION__, ep);
387 skb = get_skb(NULL, sizeof(*req), gfp);
388 if (!skb) {
389 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __FUNCTION__);
390 return -ENOMEM;
391 }
392 skb->priority = CPL_PRIORITY_DATA;
393 set_arp_failure_handler(skb, arp_failure_discard);
394 req = (struct cpl_close_con_req *) skb_put(skb, sizeof(*req));
395 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON));
396 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
397 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, ep->hwtid));
398 l2t_send(ep->com.tdev, skb, ep->l2t);
399 return 0;
400}
401
402static int send_abort(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
403{
404 struct cpl_abort_req *req;
405
406 PDBG("%s ep %p\n", __FUNCTION__, ep);
407 skb = get_skb(skb, sizeof(*req), gfp);
408 if (!skb) {
409 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
410 __FUNCTION__);
411 return -ENOMEM;
412 }
413 skb->priority = CPL_PRIORITY_DATA;
414 set_arp_failure_handler(skb, abort_arp_failure);
415 req = (struct cpl_abort_req *) skb_put(skb, sizeof(*req));
416 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ));
417 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
418 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
419 req->cmd = CPL_ABORT_SEND_RST;
420 l2t_send(ep->com.tdev, skb, ep->l2t);
421 return 0;
422}
423
424static int send_connect(struct iwch_ep *ep)
425{
426 struct cpl_act_open_req *req;
427 struct sk_buff *skb;
428 u32 opt0h, opt0l, opt2;
429 unsigned int mtu_idx;
430 int wscale;
431
432 PDBG("%s ep %p\n", __FUNCTION__, ep);
433
434 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
435 if (!skb) {
436 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
437 __FUNCTION__);
438 return -ENOMEM;
439 }
440 mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
441 wscale = compute_wscale(rcv_win);
442 opt0h = V_NAGLE(0) |
443 V_NO_CONG(nocong) |
444 V_KEEP_ALIVE(1) |
445 F_TCAM_BYPASS |
446 V_WND_SCALE(wscale) |
447 V_MSS_IDX(mtu_idx) |
448 V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
449 opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
450 opt2 = V_FLAVORS_VALID(1) | V_CONG_CONTROL_FLAVOR(cong_flavor);
451 skb->priority = CPL_PRIORITY_SETUP;
452 set_arp_failure_handler(skb, act_open_req_arp_failure);
453
454 req = (struct cpl_act_open_req *) skb_put(skb, sizeof(*req));
455 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
456 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ep->atid));
457 req->local_port = ep->com.local_addr.sin_port;
458 req->peer_port = ep->com.remote_addr.sin_port;
459 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
460 req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
461 req->opt0h = htonl(opt0h);
462 req->opt0l = htonl(opt0l);
463 req->params = 0;
464 req->opt2 = htonl(opt2);
465 l2t_send(ep->com.tdev, skb, ep->l2t);
466 return 0;
467}
468
469static void send_mpa_req(struct iwch_ep *ep, struct sk_buff *skb)
470{
471 int mpalen;
472 struct tx_data_wr *req;
473 struct mpa_message *mpa;
474 int len;
475
476 PDBG("%s ep %p pd_len %d\n", __FUNCTION__, ep, ep->plen);
477
478 BUG_ON(skb_cloned(skb));
479
480 mpalen = sizeof(*mpa) + ep->plen;
481 if (skb->data + mpalen + sizeof(*req) > skb->end) {
482 kfree_skb(skb);
483 skb=alloc_skb(mpalen + sizeof(*req), GFP_KERNEL);
484 if (!skb) {
485 connect_reply_upcall(ep, -ENOMEM);
486 return;
487 }
488 }
489 skb_trim(skb, 0);
490 skb_reserve(skb, sizeof(*req));
491 skb_put(skb, mpalen);
492 skb->priority = CPL_PRIORITY_DATA;
493 mpa = (struct mpa_message *) skb->data;
494 memset(mpa, 0, sizeof(*mpa));
495 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
496 mpa->flags = (crc_enabled ? MPA_CRC : 0) |
497 (markers_enabled ? MPA_MARKERS : 0);
498 mpa->private_data_size = htons(ep->plen);
499 mpa->revision = mpa_rev;
500
501 if (ep->plen)
502 memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen);
503
504 /*
505 * Reference the mpa skb. This ensures the data area
506 * will remain in memory until the hw acks the tx.
507 * Function tx_ack() will deref it.
508 */
509 skb_get(skb);
510 set_arp_failure_handler(skb, arp_failure_discard);
511 skb->h.raw = skb->data;
512 len = skb->len;
513 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
514 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA));
515 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
516 req->len = htonl(len);
517 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
518 V_TX_SNDBUF(snd_win>>15));
519 req->flags = htonl(F_TX_IMM_ACK|F_TX_INIT);
520 req->sndseq = htonl(ep->snd_seq);
521 BUG_ON(ep->mpa_skb);
522 ep->mpa_skb = skb;
523 l2t_send(ep->com.tdev, skb, ep->l2t);
524 start_ep_timer(ep);
525 state_set(&ep->com, MPA_REQ_SENT);
526 return;
527}
528
529static int send_mpa_reject(struct iwch_ep *ep, const void *pdata, u8 plen)
530{
531 int mpalen;
532 struct tx_data_wr *req;
533 struct mpa_message *mpa;
534 struct sk_buff *skb;
535
536 PDBG("%s ep %p plen %d\n", __FUNCTION__, ep, plen);
537
538 mpalen = sizeof(*mpa) + plen;
539
540 skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
541 if (!skb) {
542 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __FUNCTION__);
543 return -ENOMEM;
544 }
545 skb_reserve(skb, sizeof(*req));
546 mpa = (struct mpa_message *) skb_put(skb, mpalen);
547 memset(mpa, 0, sizeof(*mpa));
548 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
549 mpa->flags = MPA_REJECT;
550 mpa->revision = mpa_rev;
551 mpa->private_data_size = htons(plen);
552 if (plen)
553 memcpy(mpa->private_data, pdata, plen);
554
555 /*
556 * Reference the mpa skb again. This ensures the data area
557 * will remain in memory until the hw acks the tx.
558 * Function tx_ack() will deref it.
559 */
560 skb_get(skb);
561 skb->priority = CPL_PRIORITY_DATA;
562 set_arp_failure_handler(skb, arp_failure_discard);
563 skb->h.raw = skb->data;
564 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
565 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA));
566 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
567 req->len = htonl(mpalen);
568 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
569 V_TX_SNDBUF(snd_win>>15));
570 req->flags = htonl(F_TX_IMM_ACK|F_TX_INIT);
571 req->sndseq = htonl(ep->snd_seq);
572 BUG_ON(ep->mpa_skb);
573 ep->mpa_skb = skb;
574 l2t_send(ep->com.tdev, skb, ep->l2t);
575 return 0;
576}
577
578static int send_mpa_reply(struct iwch_ep *ep, const void *pdata, u8 plen)
579{
580 int mpalen;
581 struct tx_data_wr *req;
582 struct mpa_message *mpa;
583 int len;
584 struct sk_buff *skb;
585
586 PDBG("%s ep %p plen %d\n", __FUNCTION__, ep, plen);
587
588 mpalen = sizeof(*mpa) + plen;
589
590 skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
591 if (!skb) {
592 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __FUNCTION__);
593 return -ENOMEM;
594 }
595 skb->priority = CPL_PRIORITY_DATA;
596 skb_reserve(skb, sizeof(*req));
597 mpa = (struct mpa_message *) skb_put(skb, mpalen);
598 memset(mpa, 0, sizeof(*mpa));
599 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
600 mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
601 (markers_enabled ? MPA_MARKERS : 0);
602 mpa->revision = mpa_rev;
603 mpa->private_data_size = htons(plen);
604 if (plen)
605 memcpy(mpa->private_data, pdata, plen);
606
607 /*
608 * Reference the mpa skb. This ensures the data area
609 * will remain in memory until the hw acks the tx.
610 * Function tx_ack() will deref it.
611 */
612 skb_get(skb);
613 set_arp_failure_handler(skb, arp_failure_discard);
614 skb->h.raw = skb->data;
615 len = skb->len;
616 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
617 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA));
618 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
619 req->len = htonl(len);
620 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
621 V_TX_SNDBUF(snd_win>>15));
622 req->flags = htonl(F_TX_MORE | F_TX_IMM_ACK | F_TX_INIT);
623 req->sndseq = htonl(ep->snd_seq);
624 ep->mpa_skb = skb;
625 state_set(&ep->com, MPA_REP_SENT);
626 l2t_send(ep->com.tdev, skb, ep->l2t);
627 return 0;
628}
629
630static int act_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
631{
632 struct iwch_ep *ep = ctx;
633 struct cpl_act_establish *req = cplhdr(skb);
634 unsigned int tid = GET_TID(req);
635
636 PDBG("%s ep %p tid %d\n", __FUNCTION__, ep, tid);
637
638 dst_confirm(ep->dst);
639
640 /* setup the hwtid for this connection */
641 ep->hwtid = tid;
642 cxgb3_insert_tid(ep->com.tdev, &t3c_client, ep, tid);
643
644 ep->snd_seq = ntohl(req->snd_isn);
645
646 set_emss(ep, ntohs(req->tcp_opt));
647
648 /* dealloc the atid */
649 cxgb3_free_atid(ep->com.tdev, ep->atid);
650
651 /* start MPA negotiation */
652 send_mpa_req(ep, skb);
653
654 return 0;
655}
656
657static void abort_connection(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
658{
659 PDBG("%s ep %p\n", __FILE__, ep);
660 state_set(&ep->com, ABORTING);
661 send_abort(ep, skb, gfp);
662}
663
664static void close_complete_upcall(struct iwch_ep *ep)
665{
666 struct iw_cm_event event;
667
668 PDBG("%s ep %p\n", __FUNCTION__, ep);
669 memset(&event, 0, sizeof(event));
670 event.event = IW_CM_EVENT_CLOSE;
671 if (ep->com.cm_id) {
672 PDBG("close complete delivered ep %p cm_id %p tid %d\n",
673 ep, ep->com.cm_id, ep->hwtid);
674 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
675 ep->com.cm_id->rem_ref(ep->com.cm_id);
676 ep->com.cm_id = NULL;
677 ep->com.qp = NULL;
678 }
679}
680
681static void peer_close_upcall(struct iwch_ep *ep)
682{
683 struct iw_cm_event event;
684
685 PDBG("%s ep %p\n", __FUNCTION__, ep);
686 memset(&event, 0, sizeof(event));
687 event.event = IW_CM_EVENT_DISCONNECT;
688 if (ep->com.cm_id) {
689 PDBG("peer close delivered ep %p cm_id %p tid %d\n",
690 ep, ep->com.cm_id, ep->hwtid);
691 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
692 }
693}
694
695static void peer_abort_upcall(struct iwch_ep *ep)
696{
697 struct iw_cm_event event;
698
699 PDBG("%s ep %p\n", __FUNCTION__, ep);
700 memset(&event, 0, sizeof(event));
701 event.event = IW_CM_EVENT_CLOSE;
702 event.status = -ECONNRESET;
703 if (ep->com.cm_id) {
704 PDBG("abort delivered ep %p cm_id %p tid %d\n", ep,
705 ep->com.cm_id, ep->hwtid);
706 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
707 ep->com.cm_id->rem_ref(ep->com.cm_id);
708 ep->com.cm_id = NULL;
709 ep->com.qp = NULL;
710 }
711}
712
713static void connect_reply_upcall(struct iwch_ep *ep, int status)
714{
715 struct iw_cm_event event;
716
717 PDBG("%s ep %p status %d\n", __FUNCTION__, ep, status);
718 memset(&event, 0, sizeof(event));
719 event.event = IW_CM_EVENT_CONNECT_REPLY;
720 event.status = status;
721 event.local_addr = ep->com.local_addr;
722 event.remote_addr = ep->com.remote_addr;
723
724 if ((status == 0) || (status == -ECONNREFUSED)) {
725 event.private_data_len = ep->plen;
726 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
727 }
728 if (ep->com.cm_id) {
729 PDBG("%s ep %p tid %d status %d\n", __FUNCTION__, ep,
730 ep->hwtid, status);
731 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
732 }
733 if (status < 0) {
734 ep->com.cm_id->rem_ref(ep->com.cm_id);
735 ep->com.cm_id = NULL;
736 ep->com.qp = NULL;
737 }
738}
739
740static void connect_request_upcall(struct iwch_ep *ep)
741{
742 struct iw_cm_event event;
743
744 PDBG("%s ep %p tid %d\n", __FUNCTION__, ep, ep->hwtid);
745 memset(&event, 0, sizeof(event));
746 event.event = IW_CM_EVENT_CONNECT_REQUEST;
747 event.local_addr = ep->com.local_addr;
748 event.remote_addr = ep->com.remote_addr;
749 event.private_data_len = ep->plen;
750 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
751 event.provider_data = ep;
752 if (state_read(&ep->parent_ep->com) != DEAD)
753 ep->parent_ep->com.cm_id->event_handler(
754 ep->parent_ep->com.cm_id,
755 &event);
756 put_ep(&ep->parent_ep->com);
757 ep->parent_ep = NULL;
758}
759
760static void established_upcall(struct iwch_ep *ep)
761{
762 struct iw_cm_event event;
763
764 PDBG("%s ep %p\n", __FUNCTION__, ep);
765 memset(&event, 0, sizeof(event));
766 event.event = IW_CM_EVENT_ESTABLISHED;
767 if (ep->com.cm_id) {
768 PDBG("%s ep %p tid %d\n", __FUNCTION__, ep, ep->hwtid);
769 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
770 }
771}
772
773static int update_rx_credits(struct iwch_ep *ep, u32 credits)
774{
775 struct cpl_rx_data_ack *req;
776 struct sk_buff *skb;
777
778 PDBG("%s ep %p credits %u\n", __FUNCTION__, ep, credits);
779 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
780 if (!skb) {
781 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
782 return 0;
783 }
784
785 req = (struct cpl_rx_data_ack *) skb_put(skb, sizeof(*req));
786 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
787 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK, ep->hwtid));
788 req->credit_dack = htonl(V_RX_CREDITS(credits) | V_RX_FORCE_ACK(1));
789 skb->priority = CPL_PRIORITY_ACK;
790 ep->com.tdev->send(ep->com.tdev, skb);
791 return credits;
792}
793
794static void process_mpa_reply(struct iwch_ep *ep, struct sk_buff *skb)
795{
796 struct mpa_message *mpa;
797 u16 plen;
798 struct iwch_qp_attributes attrs;
799 enum iwch_qp_attr_mask mask;
800 int err;
801
802 PDBG("%s ep %p\n", __FUNCTION__, ep);
803
804 /*
805 * Stop mpa timer. If it expired, then the state has
806 * changed and we bail since ep_timeout already aborted
807 * the connection.
808 */
809 stop_ep_timer(ep);
810 if (state_read(&ep->com) != MPA_REQ_SENT)
811 return;
812
813 /*
814 * If we get more than the supported amount of private data
815 * then we must fail this connection.
816 */
817 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
818 err = -EINVAL;
819 goto err;
820 }
821
822 /*
823 * copy the new data into our accumulation buffer.
824 */
825 memcpy(&(ep->mpa_pkt[ep->mpa_pkt_len]), skb->data, skb->len);
826 ep->mpa_pkt_len += skb->len;
827
828 /*
829 * if we don't even have the mpa message, then bail.
830 */
831 if (ep->mpa_pkt_len < sizeof(*mpa))
832 return;
833 mpa = (struct mpa_message *) ep->mpa_pkt;
834
835 /* Validate MPA header. */
836 if (mpa->revision != mpa_rev) {
837 err = -EPROTO;
838 goto err;
839 }
840 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
841 err = -EPROTO;
842 goto err;
843 }
844
845 plen = ntohs(mpa->private_data_size);
846
847 /*
848 * Fail if there's too much private data.
849 */
850 if (plen > MPA_MAX_PRIVATE_DATA) {
851 err = -EPROTO;
852 goto err;
853 }
854
855 /*
856 * If plen does not account for pkt size
857 */
858 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
859 err = -EPROTO;
860 goto err;
861 }
862
863 ep->plen = (u8) plen;
864
865 /*
866 * If we don't have all the pdata yet, then bail.
867 * We'll continue process when more data arrives.
868 */
869 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
870 return;
871
872 if (mpa->flags & MPA_REJECT) {
873 err = -ECONNREFUSED;
874 goto err;
875 }
876
877 /*
878 * If we get here we have accumulated the entire mpa
879 * start reply message including private data. And
880 * the MPA header is valid.
881 */
882 state_set(&ep->com, FPDU_MODE);
883 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
884 ep->mpa_attr.recv_marker_enabled = markers_enabled;
885 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
886 ep->mpa_attr.version = mpa_rev;
887 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
888 "xmit_marker_enabled=%d, version=%d\n", __FUNCTION__,
889 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
890 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
891
892 attrs.mpa_attr = ep->mpa_attr;
893 attrs.max_ird = ep->ird;
894 attrs.max_ord = ep->ord;
895 attrs.llp_stream_handle = ep;
896 attrs.next_state = IWCH_QP_STATE_RTS;
897
898 mask = IWCH_QP_ATTR_NEXT_STATE |
899 IWCH_QP_ATTR_LLP_STREAM_HANDLE | IWCH_QP_ATTR_MPA_ATTR |
900 IWCH_QP_ATTR_MAX_IRD | IWCH_QP_ATTR_MAX_ORD;
901
902 /* bind QP and TID with INIT_WR */
903 err = iwch_modify_qp(ep->com.qp->rhp,
904 ep->com.qp, mask, &attrs, 1);
905 if (!err)
906 goto out;
907err:
908 abort_connection(ep, skb, GFP_KERNEL);
909out:
910 connect_reply_upcall(ep, err);
911 return;
912}
913
914static void process_mpa_request(struct iwch_ep *ep, struct sk_buff *skb)
915{
916 struct mpa_message *mpa;
917 u16 plen;
918
919 PDBG("%s ep %p\n", __FUNCTION__, ep);
920
921 /*
922 * Stop mpa timer. If it expired, then the state has
923 * changed and we bail since ep_timeout already aborted
924 * the connection.
925 */
926 stop_ep_timer(ep);
927 if (state_read(&ep->com) != MPA_REQ_WAIT)
928 return;
929
930 /*
931 * If we get more than the supported amount of private data
932 * then we must fail this connection.
933 */
934 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
935 abort_connection(ep, skb, GFP_KERNEL);
936 return;
937 }
938
939 PDBG("%s enter (%s line %u)\n", __FUNCTION__, __FILE__, __LINE__);
940
941 /*
942 * Copy the new data into our accumulation buffer.
943 */
944 memcpy(&(ep->mpa_pkt[ep->mpa_pkt_len]), skb->data, skb->len);
945 ep->mpa_pkt_len += skb->len;
946
947 /*
948 * If we don't even have the mpa message, then bail.
949 * We'll continue process when more data arrives.
950 */
951 if (ep->mpa_pkt_len < sizeof(*mpa))
952 return;
953 PDBG("%s enter (%s line %u)\n", __FUNCTION__, __FILE__, __LINE__);
954 mpa = (struct mpa_message *) ep->mpa_pkt;
955
956 /*
957 * Validate MPA Header.
958 */
959 if (mpa->revision != mpa_rev) {
960 abort_connection(ep, skb, GFP_KERNEL);
961 return;
962 }
963
964 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
965 abort_connection(ep, skb, GFP_KERNEL);
966 return;
967 }
968
969 plen = ntohs(mpa->private_data_size);
970
971 /*
972 * Fail if there's too much private data.
973 */
974 if (plen > MPA_MAX_PRIVATE_DATA) {
975 abort_connection(ep, skb, GFP_KERNEL);
976 return;
977 }
978
979 /*
980 * If plen does not account for pkt size
981 */
982 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
983 abort_connection(ep, skb, GFP_KERNEL);
984 return;
985 }
986 ep->plen = (u8) plen;
987
988 /*
989 * If we don't have all the pdata yet, then bail.
990 */
991 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
992 return;
993
994 /*
995 * If we get here we have accumulated the entire mpa
996 * start reply message including private data.
997 */
998 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
999 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1000 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1001 ep->mpa_attr.version = mpa_rev;
1002 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1003 "xmit_marker_enabled=%d, version=%d\n", __FUNCTION__,
1004 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1005 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
1006
1007 state_set(&ep->com, MPA_REQ_RCVD);
1008
1009 /* drive upcall */
1010 connect_request_upcall(ep);
1011 return;
1012}
1013
1014static int rx_data(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1015{
1016 struct iwch_ep *ep = ctx;
1017 struct cpl_rx_data *hdr = cplhdr(skb);
1018 unsigned int dlen = ntohs(hdr->len);
1019
1020 PDBG("%s ep %p dlen %u\n", __FUNCTION__, ep, dlen);
1021
1022 skb_pull(skb, sizeof(*hdr));
1023 skb_trim(skb, dlen);
1024
1025 switch (state_read(&ep->com)) {
1026 case MPA_REQ_SENT:
1027 process_mpa_reply(ep, skb);
1028 break;
1029 case MPA_REQ_WAIT:
1030 process_mpa_request(ep, skb);
1031 break;
1032 case MPA_REP_SENT:
1033 break;
1034 default:
1035 printk(KERN_ERR MOD "%s Unexpected streaming data."
1036 " ep %p state %d tid %d\n",
1037 __FUNCTION__, ep, state_read(&ep->com), ep->hwtid);
1038
1039 /*
1040 * The ep will timeout and inform the ULP of the failure.
1041 * See ep_timeout().
1042 */
1043 break;
1044 }
1045
1046 /* update RX credits */
1047 update_rx_credits(ep, dlen);
1048
1049 return CPL_RET_BUF_DONE;
1050}
1051
1052/*
1053 * Upcall from the adapter indicating data has been transmitted.
1054 * For us its just the single MPA request or reply. We can now free
1055 * the skb holding the mpa message.
1056 */
1057static int tx_ack(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1058{
1059 struct iwch_ep *ep = ctx;
1060 struct cpl_wr_ack *hdr = cplhdr(skb);
1061 unsigned int credits = ntohs(hdr->credits);
1062 enum iwch_qp_attr_mask mask;
1063
1064 PDBG("%s ep %p credits %u\n", __FUNCTION__, ep, credits);
1065
1066 if (credits == 0)
1067 return CPL_RET_BUF_DONE;
1068 BUG_ON(credits != 1);
1069 BUG_ON(ep->mpa_skb == NULL);
1070 kfree_skb(ep->mpa_skb);
1071 ep->mpa_skb = NULL;
1072 dst_confirm(ep->dst);
1073 if (state_read(&ep->com) == MPA_REP_SENT) {
1074 struct iwch_qp_attributes attrs;
1075
1076 /* bind QP to EP and move to RTS */
1077 attrs.mpa_attr = ep->mpa_attr;
1078 attrs.max_ird = ep->ord;
1079 attrs.max_ord = ep->ord;
1080 attrs.llp_stream_handle = ep;
1081 attrs.next_state = IWCH_QP_STATE_RTS;
1082
1083 /* bind QP and TID with INIT_WR */
1084 mask = IWCH_QP_ATTR_NEXT_STATE |
1085 IWCH_QP_ATTR_LLP_STREAM_HANDLE |
1086 IWCH_QP_ATTR_MPA_ATTR |
1087 IWCH_QP_ATTR_MAX_IRD |
1088 IWCH_QP_ATTR_MAX_ORD;
1089
1090 ep->com.rpl_err = iwch_modify_qp(ep->com.qp->rhp,
1091 ep->com.qp, mask, &attrs, 1);
1092
1093 if (!ep->com.rpl_err) {
1094 state_set(&ep->com, FPDU_MODE);
1095 established_upcall(ep);
1096 }
1097
1098 ep->com.rpl_done = 1;
1099 PDBG("waking up ep %p\n", ep);
1100 wake_up(&ep->com.waitq);
1101 }
1102 return CPL_RET_BUF_DONE;
1103}
1104
1105static int abort_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1106{
1107 struct iwch_ep *ep = ctx;
1108
1109 PDBG("%s ep %p\n", __FUNCTION__, ep);
1110
1111 close_complete_upcall(ep);
1112 state_set(&ep->com, DEAD);
1113 release_ep_resources(ep);
1114 return CPL_RET_BUF_DONE;
1115}
1116
1117static int act_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1118{
1119 struct iwch_ep *ep = ctx;
1120 struct cpl_act_open_rpl *rpl = cplhdr(skb);
1121
1122 PDBG("%s ep %p status %u errno %d\n", __FUNCTION__, ep, rpl->status,
1123 status2errno(rpl->status));
1124 connect_reply_upcall(ep, status2errno(rpl->status));
1125 state_set(&ep->com, DEAD);
1126 if (ep->com.tdev->type == T3B)
1127 release_tid(ep->com.tdev, GET_TID(rpl), NULL);
1128 cxgb3_free_atid(ep->com.tdev, ep->atid);
1129 dst_release(ep->dst);
1130 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
1131 put_ep(&ep->com);
1132 return CPL_RET_BUF_DONE;
1133}
1134
1135static int listen_start(struct iwch_listen_ep *ep)
1136{
1137 struct sk_buff *skb;
1138 struct cpl_pass_open_req *req;
1139
1140 PDBG("%s ep %p\n", __FUNCTION__, ep);
1141 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1142 if (!skb) {
1143 printk(KERN_ERR MOD "t3c_listen_start failed to alloc skb!\n");
1144 return -ENOMEM;
1145 }
1146
1147 req = (struct cpl_pass_open_req *) skb_put(skb, sizeof(*req));
1148 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1149 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, ep->stid));
1150 req->local_port = ep->com.local_addr.sin_port;
1151 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
1152 req->peer_port = 0;
1153 req->peer_ip = 0;
1154 req->peer_netmask = 0;
1155 req->opt0h = htonl(F_DELACK | F_TCAM_BYPASS);
1156 req->opt0l = htonl(V_RCV_BUFSIZ(rcv_win>>10));
1157 req->opt1 = htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK));
1158
1159 skb->priority = 1;
1160 ep->com.tdev->send(ep->com.tdev, skb);
1161 return 0;
1162}
1163
1164static int pass_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1165{
1166 struct iwch_listen_ep *ep = ctx;
1167 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
1168
1169 PDBG("%s ep %p status %d error %d\n", __FUNCTION__, ep,
1170 rpl->status, status2errno(rpl->status));
1171 ep->com.rpl_err = status2errno(rpl->status);
1172 ep->com.rpl_done = 1;
1173 wake_up(&ep->com.waitq);
1174
1175 return CPL_RET_BUF_DONE;
1176}
1177
1178static int listen_stop(struct iwch_listen_ep *ep)
1179{
1180 struct sk_buff *skb;
1181 struct cpl_close_listserv_req *req;
1182
1183 PDBG("%s ep %p\n", __FUNCTION__, ep);
1184 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1185 if (!skb) {
1186 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __FUNCTION__);
1187 return -ENOMEM;
1188 }
1189 req = (struct cpl_close_listserv_req *) skb_put(skb, sizeof(*req));
1190 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1191 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, ep->stid));
1192 skb->priority = 1;
1193 ep->com.tdev->send(ep->com.tdev, skb);
1194 return 0;
1195}
1196
1197static int close_listsrv_rpl(struct t3cdev *tdev, struct sk_buff *skb,
1198 void *ctx)
1199{
1200 struct iwch_listen_ep *ep = ctx;
1201 struct cpl_close_listserv_rpl *rpl = cplhdr(skb);
1202
1203 PDBG("%s ep %p\n", __FUNCTION__, ep);
1204 ep->com.rpl_err = status2errno(rpl->status);
1205 ep->com.rpl_done = 1;
1206 wake_up(&ep->com.waitq);
1207 return CPL_RET_BUF_DONE;
1208}
1209
1210static void accept_cr(struct iwch_ep *ep, __be32 peer_ip, struct sk_buff *skb)
1211{
1212 struct cpl_pass_accept_rpl *rpl;
1213 unsigned int mtu_idx;
1214 u32 opt0h, opt0l, opt2;
1215 int wscale;
1216
1217 PDBG("%s ep %p\n", __FUNCTION__, ep);
1218 BUG_ON(skb_cloned(skb));
1219 skb_trim(skb, sizeof(*rpl));
1220 skb_get(skb);
1221 mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
1222 wscale = compute_wscale(rcv_win);
1223 opt0h = V_NAGLE(0) |
1224 V_NO_CONG(nocong) |
1225 V_KEEP_ALIVE(1) |
1226 F_TCAM_BYPASS |
1227 V_WND_SCALE(wscale) |
1228 V_MSS_IDX(mtu_idx) |
1229 V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
1230 opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
1231 opt2 = V_FLAVORS_VALID(1) | V_CONG_CONTROL_FLAVOR(cong_flavor);
1232
1233 rpl = cplhdr(skb);
1234 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1235 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid));
1236 rpl->peer_ip = peer_ip;
1237 rpl->opt0h = htonl(opt0h);
1238 rpl->opt0l_status = htonl(opt0l | CPL_PASS_OPEN_ACCEPT);
1239 rpl->opt2 = htonl(opt2);
1240 rpl->rsvd = rpl->opt2; /* workaround for HW bug */
1241 skb->priority = CPL_PRIORITY_SETUP;
1242 l2t_send(ep->com.tdev, skb, ep->l2t);
1243
1244 return;
1245}
1246
1247static void reject_cr(struct t3cdev *tdev, u32 hwtid, __be32 peer_ip,
1248 struct sk_buff *skb)
1249{
1250 PDBG("%s t3cdev %p tid %u peer_ip %x\n", __FUNCTION__, tdev, hwtid,
1251 peer_ip);
1252 BUG_ON(skb_cloned(skb));
1253 skb_trim(skb, sizeof(struct cpl_tid_release));
1254 skb_get(skb);
1255
1256 if (tdev->type == T3B)
1257 release_tid(tdev, hwtid, skb);
1258 else {
1259 struct cpl_pass_accept_rpl *rpl;
1260
1261 rpl = cplhdr(skb);
1262 skb->priority = CPL_PRIORITY_SETUP;
1263 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1264 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
1265 hwtid));
1266 rpl->peer_ip = peer_ip;
1267 rpl->opt0h = htonl(F_TCAM_BYPASS);
1268 rpl->opt0l_status = htonl(CPL_PASS_OPEN_REJECT);
1269 rpl->opt2 = 0;
1270 rpl->rsvd = rpl->opt2;
1271 tdev->send(tdev, skb);
1272 }
1273}
1274
1275static int pass_accept_req(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1276{
1277 struct iwch_ep *child_ep, *parent_ep = ctx;
1278 struct cpl_pass_accept_req *req = cplhdr(skb);
1279 unsigned int hwtid = GET_TID(req);
1280 struct dst_entry *dst;
1281 struct l2t_entry *l2t;
1282 struct rtable *rt;
1283 struct iff_mac tim;
1284
1285 PDBG("%s parent ep %p tid %u\n", __FUNCTION__, parent_ep, hwtid);
1286
1287 if (state_read(&parent_ep->com) != LISTEN) {
1288 printk(KERN_ERR "%s - listening ep not in LISTEN\n",
1289 __FUNCTION__);
1290 goto reject;
1291 }
1292
1293 /*
1294 * Find the netdev for this connection request.
1295 */
1296 tim.mac_addr = req->dst_mac;
1297 tim.vlan_tag = ntohs(req->vlan_tag);
1298 if (tdev->ctl(tdev, GET_IFF_FROM_MAC, &tim) < 0 || !tim.dev) {
1299 printk(KERN_ERR
1300 "%s bad dst mac %02x %02x %02x %02x %02x %02x\n",
1301 __FUNCTION__,
1302 req->dst_mac[0],
1303 req->dst_mac[1],
1304 req->dst_mac[2],
1305 req->dst_mac[3],
1306 req->dst_mac[4],
1307 req->dst_mac[5]);
1308 goto reject;
1309 }
1310
1311 /* Find output route */
1312 rt = find_route(tdev,
1313 req->local_ip,
1314 req->peer_ip,
1315 req->local_port,
1316 req->peer_port, G_PASS_OPEN_TOS(ntohl(req->tos_tid)));
1317 if (!rt) {
1318 printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
1319 __FUNCTION__);
1320 goto reject;
1321 }
1322 dst = &rt->u.dst;
1323 l2t = t3_l2t_get(tdev, dst->neighbour, dst->neighbour->dev);
1324 if (!l2t) {
1325 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
1326 __FUNCTION__);
1327 dst_release(dst);
1328 goto reject;
1329 }
1330 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
1331 if (!child_ep) {
1332 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
1333 __FUNCTION__);
1334 l2t_release(L2DATA(tdev), l2t);
1335 dst_release(dst);
1336 goto reject;
1337 }
1338 state_set(&child_ep->com, CONNECTING);
1339 child_ep->com.tdev = tdev;
1340 child_ep->com.cm_id = NULL;
1341 child_ep->com.local_addr.sin_family = PF_INET;
1342 child_ep->com.local_addr.sin_port = req->local_port;
1343 child_ep->com.local_addr.sin_addr.s_addr = req->local_ip;
1344 child_ep->com.remote_addr.sin_family = PF_INET;
1345 child_ep->com.remote_addr.sin_port = req->peer_port;
1346 child_ep->com.remote_addr.sin_addr.s_addr = req->peer_ip;
1347 get_ep(&parent_ep->com);
1348 child_ep->parent_ep = parent_ep;
1349 child_ep->tos = G_PASS_OPEN_TOS(ntohl(req->tos_tid));
1350 child_ep->l2t = l2t;
1351 child_ep->dst = dst;
1352 child_ep->hwtid = hwtid;
1353 init_timer(&child_ep->timer);
1354 cxgb3_insert_tid(tdev, &t3c_client, child_ep, hwtid);
1355 accept_cr(child_ep, req->peer_ip, skb);
1356 goto out;
1357reject:
1358 reject_cr(tdev, hwtid, req->peer_ip, skb);
1359out:
1360 return CPL_RET_BUF_DONE;
1361}
1362
1363static int pass_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1364{
1365 struct iwch_ep *ep = ctx;
1366 struct cpl_pass_establish *req = cplhdr(skb);
1367
1368 PDBG("%s ep %p\n", __FUNCTION__, ep);
1369 ep->snd_seq = ntohl(req->snd_isn);
1370
1371 set_emss(ep, ntohs(req->tcp_opt));
1372
1373 dst_confirm(ep->dst);
1374 state_set(&ep->com, MPA_REQ_WAIT);
1375 start_ep_timer(ep);
1376
1377 return CPL_RET_BUF_DONE;
1378}
1379
1380static int peer_close(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1381{
1382 struct iwch_ep *ep = ctx;
1383 struct iwch_qp_attributes attrs;
1384 unsigned long flags;
1385 int disconnect = 1;
1386 int release = 0;
1387
1388 PDBG("%s ep %p\n", __FUNCTION__, ep);
1389 dst_confirm(ep->dst);
1390
1391 spin_lock_irqsave(&ep->com.lock, flags);
1392 switch (ep->com.state) {
1393 case MPA_REQ_WAIT:
1394 __state_set(&ep->com, CLOSING);
1395 break;
1396 case MPA_REQ_SENT:
1397 __state_set(&ep->com, CLOSING);
1398 connect_reply_upcall(ep, -ECONNRESET);
1399 break;
1400 case MPA_REQ_RCVD:
1401
1402 /*
1403 * We're gonna mark this puppy DEAD, but keep
1404 * the reference on it until the ULP accepts or
1405 * rejects the CR.
1406 */
1407 __state_set(&ep->com, CLOSING);
1408 get_ep(&ep->com);
1409 break;
1410 case MPA_REP_SENT:
1411 __state_set(&ep->com, CLOSING);
1412 ep->com.rpl_done = 1;
1413 ep->com.rpl_err = -ECONNRESET;
1414 PDBG("waking up ep %p\n", ep);
1415 wake_up(&ep->com.waitq);
1416 break;
1417 case FPDU_MODE:
1418 __state_set(&ep->com, CLOSING);
1419 attrs.next_state = IWCH_QP_STATE_CLOSING;
1420 iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1421 IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1422 peer_close_upcall(ep);
1423 break;
1424 case ABORTING:
1425 disconnect = 0;
1426 break;
1427 case CLOSING:
1428 start_ep_timer(ep);
1429 __state_set(&ep->com, MORIBUND);
1430 disconnect = 0;
1431 break;
1432 case MORIBUND:
1433 stop_ep_timer(ep);
1434 if (ep->com.cm_id && ep->com.qp) {
1435 attrs.next_state = IWCH_QP_STATE_IDLE;
1436 iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1437 IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1438 }
1439 close_complete_upcall(ep);
1440 __state_set(&ep->com, DEAD);
1441 release = 1;
1442 disconnect = 0;
1443 break;
1444 case DEAD:
1445 disconnect = 0;
1446 break;
1447 default:
1448 BUG_ON(1);
1449 }
1450 spin_unlock_irqrestore(&ep->com.lock, flags);
1451 if (disconnect)
1452 iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1453 if (release)
1454 release_ep_resources(ep);
1455 return CPL_RET_BUF_DONE;
1456}
1457
1458/*
1459 * Returns whether an ABORT_REQ_RSS message is a negative advice.
1460 */
2b540355 1461static int is_neg_adv_abort(unsigned int status)
b038ced7
SW
1462{
1463 return status == CPL_ERR_RTX_NEG_ADVICE ||
1464 status == CPL_ERR_PERSIST_NEG_ADVICE;
1465}
1466
1467static int peer_abort(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1468{
1469 struct cpl_abort_req_rss *req = cplhdr(skb);
1470 struct iwch_ep *ep = ctx;
1471 struct cpl_abort_rpl *rpl;
1472 struct sk_buff *rpl_skb;
1473 struct iwch_qp_attributes attrs;
1474 int ret;
1475 int state;
1476
1477 if (is_neg_adv_abort(req->status)) {
1478 PDBG("%s neg_adv_abort ep %p tid %d\n", __FUNCTION__, ep,
1479 ep->hwtid);
1480 t3_l2t_send_event(ep->com.tdev, ep->l2t);
1481 return CPL_RET_BUF_DONE;
1482 }
1483
1484 state = state_read(&ep->com);
1485 PDBG("%s ep %p state %u\n", __FUNCTION__, ep, state);
1486 switch (state) {
1487 case CONNECTING:
1488 break;
1489 case MPA_REQ_WAIT:
1490 break;
1491 case MPA_REQ_SENT:
1492 connect_reply_upcall(ep, -ECONNRESET);
1493 break;
1494 case MPA_REP_SENT:
1495 ep->com.rpl_done = 1;
1496 ep->com.rpl_err = -ECONNRESET;
1497 PDBG("waking up ep %p\n", ep);
1498 wake_up(&ep->com.waitq);
1499 break;
1500 case MPA_REQ_RCVD:
1501
1502 /*
1503 * We're gonna mark this puppy DEAD, but keep
1504 * the reference on it until the ULP accepts or
1505 * rejects the CR.
1506 */
1507 get_ep(&ep->com);
1508 break;
1509 case MORIBUND:
1510 stop_ep_timer(ep);
1511 case FPDU_MODE:
1512 case CLOSING:
1513 if (ep->com.cm_id && ep->com.qp) {
1514 attrs.next_state = IWCH_QP_STATE_ERROR;
1515 ret = iwch_modify_qp(ep->com.qp->rhp,
1516 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1517 &attrs, 1);
1518 if (ret)
1519 printk(KERN_ERR MOD
1520 "%s - qp <- error failed!\n",
1521 __FUNCTION__);
1522 }
1523 peer_abort_upcall(ep);
1524 break;
1525 case ABORTING:
1526 break;
1527 case DEAD:
1528 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __FUNCTION__);
1529 return CPL_RET_BUF_DONE;
1530 default:
1531 BUG_ON(1);
1532 break;
1533 }
1534 dst_confirm(ep->dst);
1535
1536 rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
1537 if (!rpl_skb) {
1538 printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
1539 __FUNCTION__);
1540 dst_release(ep->dst);
1541 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
1542 put_ep(&ep->com);
1543 return CPL_RET_BUF_DONE;
1544 }
1545 rpl_skb->priority = CPL_PRIORITY_DATA;
1546 rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
1547 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
1548 rpl->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
1549 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
1550 rpl->cmd = CPL_ABORT_NO_RST;
1551 ep->com.tdev->send(ep->com.tdev, rpl_skb);
1552 if (state != ABORTING) {
1553 state_set(&ep->com, DEAD);
1554 release_ep_resources(ep);
1555 }
1556 return CPL_RET_BUF_DONE;
1557}
1558
1559static int close_con_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1560{
1561 struct iwch_ep *ep = ctx;
1562 struct iwch_qp_attributes attrs;
1563 unsigned long flags;
1564 int release = 0;
1565
1566 PDBG("%s ep %p\n", __FUNCTION__, ep);
1567 BUG_ON(!ep);
1568
1569 /* The cm_id may be null if we failed to connect */
1570 spin_lock_irqsave(&ep->com.lock, flags);
1571 switch (ep->com.state) {
1572 case CLOSING:
1573 start_ep_timer(ep);
1574 __state_set(&ep->com, MORIBUND);
1575 break;
1576 case MORIBUND:
1577 stop_ep_timer(ep);
1578 if ((ep->com.cm_id) && (ep->com.qp)) {
1579 attrs.next_state = IWCH_QP_STATE_IDLE;
1580 iwch_modify_qp(ep->com.qp->rhp,
1581 ep->com.qp,
1582 IWCH_QP_ATTR_NEXT_STATE,
1583 &attrs, 1);
1584 }
1585 close_complete_upcall(ep);
1586 __state_set(&ep->com, DEAD);
1587 release = 1;
1588 break;
1589 case DEAD:
1590 default:
1591 BUG_ON(1);
1592 break;
1593 }
1594 spin_unlock_irqrestore(&ep->com.lock, flags);
1595 if (release)
1596 release_ep_resources(ep);
1597 return CPL_RET_BUF_DONE;
1598}
1599
1600/*
1601 * T3A does 3 things when a TERM is received:
1602 * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1603 * 2) generate an async event on the QP with the TERMINATE opcode
1604 * 3) post a TERMINATE opcde cqe into the associated CQ.
1605 *
1606 * For (1), we save the message in the qp for later consumer consumption.
1607 * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1608 * For (3), we toss the CQE in cxio_poll_cq().
1609 *
1610 * terminate() handles case (1)...
1611 */
1612static int terminate(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1613{
1614 struct iwch_ep *ep = ctx;
1615
1616 PDBG("%s ep %p\n", __FUNCTION__, ep);
1617 skb_pull(skb, sizeof(struct cpl_rdma_terminate));
1618 PDBG("%s saving %d bytes of term msg\n", __FUNCTION__, skb->len);
1619 memcpy(ep->com.qp->attr.terminate_buffer, skb->data, skb->len);
1620 ep->com.qp->attr.terminate_msg_len = skb->len;
1621 ep->com.qp->attr.is_terminate_local = 0;
1622 return CPL_RET_BUF_DONE;
1623}
1624
1625static int ec_status(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1626{
1627 struct cpl_rdma_ec_status *rep = cplhdr(skb);
1628 struct iwch_ep *ep = ctx;
1629
1630 PDBG("%s ep %p tid %u status %d\n", __FUNCTION__, ep, ep->hwtid,
1631 rep->status);
1632 if (rep->status) {
1633 struct iwch_qp_attributes attrs;
1634
1635 printk(KERN_ERR MOD "%s BAD CLOSE - Aborting tid %u\n",
1636 __FUNCTION__, ep->hwtid);
1637 attrs.next_state = IWCH_QP_STATE_ERROR;
1638 iwch_modify_qp(ep->com.qp->rhp,
1639 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1640 &attrs, 1);
1641 abort_connection(ep, NULL, GFP_KERNEL);
1642 }
1643 return CPL_RET_BUF_DONE;
1644}
1645
1646static void ep_timeout(unsigned long arg)
1647{
1648 struct iwch_ep *ep = (struct iwch_ep *)arg;
1649 struct iwch_qp_attributes attrs;
1650 unsigned long flags;
1651
1652 spin_lock_irqsave(&ep->com.lock, flags);
1653 PDBG("%s ep %p tid %u state %d\n", __FUNCTION__, ep, ep->hwtid,
1654 ep->com.state);
1655 switch (ep->com.state) {
1656 case MPA_REQ_SENT:
1657 connect_reply_upcall(ep, -ETIMEDOUT);
1658 break;
1659 case MPA_REQ_WAIT:
1660 break;
1661 case MORIBUND:
1662 if (ep->com.cm_id && ep->com.qp) {
1663 attrs.next_state = IWCH_QP_STATE_ERROR;
1664 iwch_modify_qp(ep->com.qp->rhp,
1665 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1666 &attrs, 1);
1667 }
1668 break;
1669 default:
1670 BUG();
1671 }
1672 __state_set(&ep->com, CLOSING);
1673 spin_unlock_irqrestore(&ep->com.lock, flags);
1674 abort_connection(ep, NULL, GFP_ATOMIC);
1675 put_ep(&ep->com);
1676}
1677
1678int iwch_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
1679{
1680 int err;
1681 struct iwch_ep *ep = to_ep(cm_id);
1682 PDBG("%s ep %p tid %u\n", __FUNCTION__, ep, ep->hwtid);
1683
1684 if (state_read(&ep->com) == DEAD) {
1685 put_ep(&ep->com);
1686 return -ECONNRESET;
1687 }
1688 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1689 state_set(&ep->com, CLOSING);
1690 if (mpa_rev == 0)
1691 abort_connection(ep, NULL, GFP_KERNEL);
1692 else {
1693 err = send_mpa_reject(ep, pdata, pdata_len);
1694 err = send_halfclose(ep, GFP_KERNEL);
1695 }
1696 return 0;
1697}
1698
1699int iwch_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1700{
1701 int err;
1702 struct iwch_qp_attributes attrs;
1703 enum iwch_qp_attr_mask mask;
1704 struct iwch_ep *ep = to_ep(cm_id);
1705 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1706 struct iwch_qp *qp = get_qhp(h, conn_param->qpn);
1707
1708 PDBG("%s ep %p tid %u\n", __FUNCTION__, ep, ep->hwtid);
1709 if (state_read(&ep->com) == DEAD) {
1710 put_ep(&ep->com);
1711 return -ECONNRESET;
1712 }
1713
1714 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1715 BUG_ON(!qp);
1716
1717 if ((conn_param->ord > qp->rhp->attr.max_rdma_read_qp_depth) ||
1718 (conn_param->ird > qp->rhp->attr.max_rdma_reads_per_qp)) {
1719 abort_connection(ep, NULL, GFP_KERNEL);
1720 return -EINVAL;
1721 }
1722
1723 cm_id->add_ref(cm_id);
1724 ep->com.cm_id = cm_id;
1725 ep->com.qp = qp;
1726
1727 ep->com.rpl_done = 0;
1728 ep->com.rpl_err = 0;
1729 ep->ird = conn_param->ird;
1730 ep->ord = conn_param->ord;
1731 PDBG("%s %d ird %d ord %d\n", __FUNCTION__, __LINE__, ep->ird, ep->ord);
1732 get_ep(&ep->com);
1733 err = send_mpa_reply(ep, conn_param->private_data,
1734 conn_param->private_data_len);
1735 if (err) {
1736 ep->com.cm_id = NULL;
1737 ep->com.qp = NULL;
1738 cm_id->rem_ref(cm_id);
1739 abort_connection(ep, NULL, GFP_KERNEL);
1740 put_ep(&ep->com);
1741 return err;
1742 }
1743
1744 /* bind QP to EP and move to RTS */
1745 attrs.mpa_attr = ep->mpa_attr;
1746 attrs.max_ird = ep->ord;
1747 attrs.max_ord = ep->ord;
1748 attrs.llp_stream_handle = ep;
1749 attrs.next_state = IWCH_QP_STATE_RTS;
1750
1751 /* bind QP and TID with INIT_WR */
1752 mask = IWCH_QP_ATTR_NEXT_STATE |
1753 IWCH_QP_ATTR_LLP_STREAM_HANDLE |
1754 IWCH_QP_ATTR_MPA_ATTR |
1755 IWCH_QP_ATTR_MAX_IRD |
1756 IWCH_QP_ATTR_MAX_ORD;
1757
1758 err = iwch_modify_qp(ep->com.qp->rhp,
1759 ep->com.qp, mask, &attrs, 1);
1760
1761 if (err) {
1762 ep->com.cm_id = NULL;
1763 ep->com.qp = NULL;
1764 cm_id->rem_ref(cm_id);
1765 abort_connection(ep, NULL, GFP_KERNEL);
1766 } else {
1767 state_set(&ep->com, FPDU_MODE);
1768 established_upcall(ep);
1769 }
1770 put_ep(&ep->com);
1771 return err;
1772}
1773
1774int iwch_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1775{
1776 int err = 0;
1777 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1778 struct iwch_ep *ep;
1779 struct rtable *rt;
1780
1781 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1782 if (!ep) {
1783 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __FUNCTION__);
1784 err = -ENOMEM;
1785 goto out;
1786 }
1787 init_timer(&ep->timer);
1788 ep->plen = conn_param->private_data_len;
1789 if (ep->plen)
1790 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
1791 conn_param->private_data, ep->plen);
1792 ep->ird = conn_param->ird;
1793 ep->ord = conn_param->ord;
1794 ep->com.tdev = h->rdev.t3cdev_p;
1795
1796 cm_id->add_ref(cm_id);
1797 ep->com.cm_id = cm_id;
1798 ep->com.qp = get_qhp(h, conn_param->qpn);
1799 BUG_ON(!ep->com.qp);
1800 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __FUNCTION__, conn_param->qpn,
1801 ep->com.qp, cm_id);
1802
1803 /*
1804 * Allocate an active TID to initiate a TCP connection.
1805 */
1806 ep->atid = cxgb3_alloc_atid(h->rdev.t3cdev_p, &t3c_client, ep);
1807 if (ep->atid == -1) {
1808 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __FUNCTION__);
1809 err = -ENOMEM;
1810 goto fail2;
1811 }
1812
1813 /* find a route */
1814 rt = find_route(h->rdev.t3cdev_p,
1815 cm_id->local_addr.sin_addr.s_addr,
1816 cm_id->remote_addr.sin_addr.s_addr,
1817 cm_id->local_addr.sin_port,
1818 cm_id->remote_addr.sin_port, IPTOS_LOWDELAY);
1819 if (!rt) {
1820 printk(KERN_ERR MOD "%s - cannot find route.\n", __FUNCTION__);
1821 err = -EHOSTUNREACH;
1822 goto fail3;
1823 }
1824 ep->dst = &rt->u.dst;
1825
1826 /* get a l2t entry */
1827 ep->l2t = t3_l2t_get(ep->com.tdev, ep->dst->neighbour,
1828 ep->dst->neighbour->dev);
1829 if (!ep->l2t) {
1830 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __FUNCTION__);
1831 err = -ENOMEM;
1832 goto fail4;
1833 }
1834
1835 state_set(&ep->com, CONNECTING);
1836 ep->tos = IPTOS_LOWDELAY;
1837 ep->com.local_addr = cm_id->local_addr;
1838 ep->com.remote_addr = cm_id->remote_addr;
1839
1840 /* send connect request to rnic */
1841 err = send_connect(ep);
1842 if (!err)
1843 goto out;
1844
1845 l2t_release(L2DATA(h->rdev.t3cdev_p), ep->l2t);
1846fail4:
1847 dst_release(ep->dst);
1848fail3:
1849 cxgb3_free_atid(ep->com.tdev, ep->atid);
1850fail2:
1851 put_ep(&ep->com);
1852out:
1853 return err;
1854}
1855
1856int iwch_create_listen(struct iw_cm_id *cm_id, int backlog)
1857{
1858 int err = 0;
1859 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1860 struct iwch_listen_ep *ep;
1861
1862
1863 might_sleep();
1864
1865 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1866 if (!ep) {
1867 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __FUNCTION__);
1868 err = -ENOMEM;
1869 goto fail1;
1870 }
1871 PDBG("%s ep %p\n", __FUNCTION__, ep);
1872 ep->com.tdev = h->rdev.t3cdev_p;
1873 cm_id->add_ref(cm_id);
1874 ep->com.cm_id = cm_id;
1875 ep->backlog = backlog;
1876 ep->com.local_addr = cm_id->local_addr;
1877
1878 /*
1879 * Allocate a server TID.
1880 */
1881 ep->stid = cxgb3_alloc_stid(h->rdev.t3cdev_p, &t3c_client, ep);
1882 if (ep->stid == -1) {
1883 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __FUNCTION__);
1884 err = -ENOMEM;
1885 goto fail2;
1886 }
1887
1888 state_set(&ep->com, LISTEN);
1889 err = listen_start(ep);
1890 if (err)
1891 goto fail3;
1892
1893 /* wait for pass_open_rpl */
1894 wait_event(ep->com.waitq, ep->com.rpl_done);
1895 err = ep->com.rpl_err;
1896 if (!err) {
1897 cm_id->provider_data = ep;
1898 goto out;
1899 }
1900fail3:
1901 cxgb3_free_stid(ep->com.tdev, ep->stid);
1902fail2:
1903 put_ep(&ep->com);
1904fail1:
1905out:
1906 return err;
1907}
1908
1909int iwch_destroy_listen(struct iw_cm_id *cm_id)
1910{
1911 int err;
1912 struct iwch_listen_ep *ep = to_listen_ep(cm_id);
1913
1914 PDBG("%s ep %p\n", __FUNCTION__, ep);
1915
1916 might_sleep();
1917 state_set(&ep->com, DEAD);
1918 ep->com.rpl_done = 0;
1919 ep->com.rpl_err = 0;
1920 err = listen_stop(ep);
1921 wait_event(ep->com.waitq, ep->com.rpl_done);
1922 cxgb3_free_stid(ep->com.tdev, ep->stid);
1923 err = ep->com.rpl_err;
1924 cm_id->rem_ref(cm_id);
1925 put_ep(&ep->com);
1926 return err;
1927}
1928
1929int iwch_ep_disconnect(struct iwch_ep *ep, int abrupt, gfp_t gfp)
1930{
1931 int ret=0;
1932 unsigned long flags;
1933 int close = 0;
1934
1935 spin_lock_irqsave(&ep->com.lock, flags);
1936
1937 PDBG("%s ep %p state %s, abrupt %d\n", __FUNCTION__, ep,
1938 states[ep->com.state], abrupt);
1939
1940 if (ep->com.state == DEAD) {
1941 PDBG("%s already dead ep %p\n", __FUNCTION__, ep);
1942 goto out;
1943 }
1944
1945 if (abrupt) {
1946 if (ep->com.state != ABORTING) {
1947 ep->com.state = ABORTING;
1948 close = 1;
1949 }
1950 goto out;
1951 }
1952
1953 switch (ep->com.state) {
1954 case MPA_REQ_WAIT:
1955 case MPA_REQ_SENT:
1956 case MPA_REQ_RCVD:
1957 case MPA_REP_SENT:
1958 case FPDU_MODE:
1959 ep->com.state = CLOSING;
1960 close = 1;
1961 break;
1962 case CLOSING:
1963 start_ep_timer(ep);
1964 ep->com.state = MORIBUND;
1965 close = 1;
1966 break;
1967 case MORIBUND:
1968 break;
1969 default:
1970 BUG();
1971 break;
1972 }
1973out:
1974 spin_unlock_irqrestore(&ep->com.lock, flags);
1975 if (close) {
1976 if (abrupt)
1977 ret = send_abort(ep, NULL, gfp);
1978 else
1979 ret = send_halfclose(ep, gfp);
1980 }
1981 return ret;
1982}
1983
1984int iwch_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
1985 struct l2t_entry *l2t)
1986{
1987 struct iwch_ep *ep = ctx;
1988
1989 if (ep->dst != old)
1990 return 0;
1991
1992 PDBG("%s ep %p redirect to dst %p l2t %p\n", __FUNCTION__, ep, new,
1993 l2t);
1994 dst_hold(new);
1995 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
1996 ep->l2t = l2t;
1997 dst_release(old);
1998 ep->dst = new;
1999 return 1;
2000}
2001
2002/*
2003 * All the CM events are handled on a work queue to have a safe context.
2004 */
2005static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2006{
2007 struct iwch_ep_common *epc = ctx;
2008
2009 get_ep(epc);
2010
2011 /*
2012 * Save ctx and tdev in the skb->cb area.
2013 */
2014 *((void **) skb->cb) = ctx;
2015 *((struct t3cdev **) (skb->cb + sizeof(void *))) = tdev;
2016
2017 /*
2018 * Queue the skb and schedule the worker thread.
2019 */
2020 skb_queue_tail(&rxq, skb);
2021 queue_work(workq, &skb_work);
2022 return 0;
2023}
2024
2025int __init iwch_cm_init(void)
2026{
2027 skb_queue_head_init(&rxq);
2028
2029 workq = create_singlethread_workqueue("iw_cxgb3");
2030 if (!workq)
2031 return -ENOMEM;
2032
2033 /*
2034 * All upcalls from the T3 Core go to sched() to
2035 * schedule the processing on a work queue.
2036 */
2037 t3c_handlers[CPL_ACT_ESTABLISH] = sched;
2038 t3c_handlers[CPL_ACT_OPEN_RPL] = sched;
2039 t3c_handlers[CPL_RX_DATA] = sched;
2040 t3c_handlers[CPL_TX_DMA_ACK] = sched;
2041 t3c_handlers[CPL_ABORT_RPL_RSS] = sched;
2042 t3c_handlers[CPL_ABORT_RPL] = sched;
2043 t3c_handlers[CPL_PASS_OPEN_RPL] = sched;
2044 t3c_handlers[CPL_CLOSE_LISTSRV_RPL] = sched;
2045 t3c_handlers[CPL_PASS_ACCEPT_REQ] = sched;
2046 t3c_handlers[CPL_PASS_ESTABLISH] = sched;
2047 t3c_handlers[CPL_PEER_CLOSE] = sched;
2048 t3c_handlers[CPL_CLOSE_CON_RPL] = sched;
2049 t3c_handlers[CPL_ABORT_REQ_RSS] = sched;
2050 t3c_handlers[CPL_RDMA_TERMINATE] = sched;
2051 t3c_handlers[CPL_RDMA_EC_STATUS] = sched;
2052
2053 /*
2054 * These are the real handlers that are called from a
2055 * work queue.
2056 */
2057 work_handlers[CPL_ACT_ESTABLISH] = act_establish;
2058 work_handlers[CPL_ACT_OPEN_RPL] = act_open_rpl;
2059 work_handlers[CPL_RX_DATA] = rx_data;
2060 work_handlers[CPL_TX_DMA_ACK] = tx_ack;
2061 work_handlers[CPL_ABORT_RPL_RSS] = abort_rpl;
2062 work_handlers[CPL_ABORT_RPL] = abort_rpl;
2063 work_handlers[CPL_PASS_OPEN_RPL] = pass_open_rpl;
2064 work_handlers[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl;
2065 work_handlers[CPL_PASS_ACCEPT_REQ] = pass_accept_req;
2066 work_handlers[CPL_PASS_ESTABLISH] = pass_establish;
2067 work_handlers[CPL_PEER_CLOSE] = peer_close;
2068 work_handlers[CPL_ABORT_REQ_RSS] = peer_abort;
2069 work_handlers[CPL_CLOSE_CON_RPL] = close_con_rpl;
2070 work_handlers[CPL_RDMA_TERMINATE] = terminate;
2071 work_handlers[CPL_RDMA_EC_STATUS] = ec_status;
2072 return 0;
2073}
2074
2075void __exit iwch_cm_term(void)
2076{
2077 flush_workqueue(workq);
2078 destroy_workqueue(workq);
2079}