piix: add Asus Eee 701 controller to short cable list
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ide / ide-iops.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
4 *
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hdreg.h>
22#include <linux/ide.h>
23#include <linux/bitops.h>
1e86240f 24#include <linux/nmi.h>
1da177e4
LT
25
26#include <asm/byteorder.h>
27#include <asm/irq.h>
28#include <asm/uaccess.h>
29#include <asm/io.h>
30
31/*
32 * Conventional PIO operations for ATA devices
33 */
34
35static u8 ide_inb (unsigned long port)
36{
37 return (u8) inb(port);
38}
39
1da177e4
LT
40static void ide_outb (u8 val, unsigned long port)
41{
42 outb(val, port);
43}
44
45static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
46{
47 outb(addr, port);
48}
49
1da177e4
LT
50void default_hwif_iops (ide_hwif_t *hwif)
51{
52 hwif->OUTB = ide_outb;
53 hwif->OUTBSYNC = ide_outbsync;
1da177e4 54 hwif->INB = ide_inb;
1da177e4
LT
55}
56
1da177e4
LT
57/*
58 * MMIO operations, typically used for SATA controllers
59 */
60
61static u8 ide_mm_inb (unsigned long port)
62{
63 return (u8) readb((void __iomem *) port);
64}
65
1da177e4
LT
66static void ide_mm_outb (u8 value, unsigned long port)
67{
68 writeb(value, (void __iomem *) port);
69}
70
71static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
72{
73 writeb(value, (void __iomem *) port);
74}
75
1da177e4
LT
76void default_hwif_mmiops (ide_hwif_t *hwif)
77{
78 hwif->OUTB = ide_mm_outb;
79 /* Most systems will need to override OUTBSYNC, alas however
80 this one is controller specific! */
81 hwif->OUTBSYNC = ide_mm_outbsync;
1da177e4 82 hwif->INB = ide_mm_inb;
1da177e4
LT
83}
84
85EXPORT_SYMBOL(default_hwif_mmiops);
86
1da177e4
LT
87void SELECT_DRIVE (ide_drive_t *drive)
88{
23579a2a 89 ide_hwif_t *hwif = drive->hwif;
ac95beed 90 const struct ide_port_ops *port_ops = hwif->port_ops;
23579a2a 91
ac95beed
BZ
92 if (port_ops && port_ops->selectproc)
93 port_ops->selectproc(drive);
23579a2a 94
4c3032d8 95 hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
1da177e4
LT
96}
97
1da177e4
LT
98void SELECT_MASK (ide_drive_t *drive, int mask)
99{
ac95beed
BZ
100 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
101
102 if (port_ops && port_ops->maskproc)
103 port_ops->maskproc(drive, mask);
1da177e4
LT
104}
105
94cd5b62 106static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
d309e0bb
BZ
107{
108 ide_hwif_t *hwif = drive->hwif;
109 struct ide_io_ports *io_ports = &hwif->io_ports;
110 struct ide_taskfile *tf = &task->tf;
ca545c1e
BZ
111 void (*tf_outb)(u8 addr, unsigned long port);
112 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
d309e0bb
BZ
113 u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
114
ca545c1e
BZ
115 if (mmio)
116 tf_outb = ide_mm_outb;
117 else
118 tf_outb = ide_outb;
119
d309e0bb
BZ
120 if (task->tf_flags & IDE_TFLAG_FLAGGED)
121 HIHI = 0xFF;
122
123 ide_set_irq(drive, 1);
124
125 if ((task->tf_flags & IDE_TFLAG_NO_SELECT_MASK) == 0)
126 SELECT_MASK(drive, 0);
127
ca545c1e
BZ
128 if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
129 u16 data = (tf->hob_data << 8) | tf->data;
130
131 if (mmio)
132 writew(data, (void __iomem *)io_ports->data_addr);
133 else
134 outw(data, io_ports->data_addr);
135 }
d309e0bb
BZ
136
137 if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
ca545c1e 138 tf_outb(tf->hob_feature, io_ports->feature_addr);
d309e0bb 139 if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
ca545c1e 140 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
d309e0bb 141 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
ca545c1e 142 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
d309e0bb 143 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
ca545c1e 144 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
d309e0bb 145 if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
ca545c1e 146 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
d309e0bb
BZ
147
148 if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
ca545c1e 149 tf_outb(tf->feature, io_ports->feature_addr);
d309e0bb 150 if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
ca545c1e 151 tf_outb(tf->nsect, io_ports->nsect_addr);
d309e0bb 152 if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
ca545c1e 153 tf_outb(tf->lbal, io_ports->lbal_addr);
d309e0bb 154 if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
ca545c1e 155 tf_outb(tf->lbam, io_ports->lbam_addr);
d309e0bb 156 if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
ca545c1e 157 tf_outb(tf->lbah, io_ports->lbah_addr);
d309e0bb
BZ
158
159 if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
ca545c1e
BZ
160 tf_outb((tf->device & HIHI) | drive->select.all,
161 io_ports->device_addr);
d309e0bb
BZ
162}
163
94cd5b62 164static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
d309e0bb
BZ
165{
166 ide_hwif_t *hwif = drive->hwif;
167 struct ide_io_ports *io_ports = &hwif->io_ports;
168 struct ide_taskfile *tf = &task->tf;
ca545c1e
BZ
169 void (*tf_outb)(u8 addr, unsigned long port);
170 u8 (*tf_inb)(unsigned long port);
171 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
172
173 if (mmio) {
174 tf_outb = ide_mm_outb;
175 tf_inb = ide_mm_inb;
176 } else {
177 tf_outb = ide_outb;
178 tf_inb = ide_inb;
179 }
d309e0bb
BZ
180
181 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
ca545c1e
BZ
182 u16 data;
183
184 if (mmio)
185 data = readw((void __iomem *)io_ports->data_addr);
186 else
187 data = inw(io_ports->data_addr);
d309e0bb
BZ
188
189 tf->data = data & 0xff;
190 tf->hob_data = (data >> 8) & 0xff;
191 }
192
193 /* be sure we're looking at the low order bits */
ca545c1e 194 tf_outb(drive->ctl & ~0x80, io_ports->ctl_addr);
d309e0bb
BZ
195
196 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
ca545c1e 197 tf->nsect = tf_inb(io_ports->nsect_addr);
d309e0bb 198 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
ca545c1e 199 tf->lbal = tf_inb(io_ports->lbal_addr);
d309e0bb 200 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
ca545c1e 201 tf->lbam = tf_inb(io_ports->lbam_addr);
d309e0bb 202 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
ca545c1e 203 tf->lbah = tf_inb(io_ports->lbah_addr);
d309e0bb 204 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
ca545c1e 205 tf->device = tf_inb(io_ports->device_addr);
d309e0bb
BZ
206
207 if (task->tf_flags & IDE_TFLAG_LBA48) {
ca545c1e 208 tf_outb(drive->ctl | 0x80, io_ports->ctl_addr);
d309e0bb
BZ
209
210 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
ca545c1e 211 tf->hob_feature = tf_inb(io_ports->feature_addr);
d309e0bb 212 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
ca545c1e 213 tf->hob_nsect = tf_inb(io_ports->nsect_addr);
d309e0bb 214 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
ca545c1e 215 tf->hob_lbal = tf_inb(io_ports->lbal_addr);
d309e0bb 216 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
ca545c1e 217 tf->hob_lbam = tf_inb(io_ports->lbam_addr);
d309e0bb 218 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
ca545c1e 219 tf->hob_lbah = tf_inb(io_ports->lbah_addr);
d309e0bb
BZ
220 }
221}
222
1da177e4
LT
223/*
224 * Some localbus EIDE interfaces require a special access sequence
225 * when using 32-bit I/O instructions to transfer data. We call this
226 * the "vlb_sync" sequence, which consists of three successive reads
227 * of the sector count register location, with interrupts disabled
228 * to ensure that the reads all happen together.
229 */
22cdd6ce 230static void ata_vlb_sync(unsigned long port)
1da177e4 231{
22cdd6ce
BZ
232 (void)inb(port);
233 (void)inb(port);
234 (void)inb(port);
1da177e4
LT
235}
236
237/*
238 * This is used for most PIO data transfers *from* the IDE interface
9567b349
BZ
239 *
240 * These routines will round up any request for an odd number of bytes,
241 * so if an odd len is specified, be sure that there's at least one
242 * extra byte allocated for the buffer.
1da177e4 243 */
92d3ab27 244static void ata_input_data(ide_drive_t *drive, struct request *rq,
9567b349 245 void *buf, unsigned int len)
1da177e4 246{
4c3032d8
BZ
247 ide_hwif_t *hwif = drive->hwif;
248 struct ide_io_ports *io_ports = &hwif->io_ports;
9567b349 249 unsigned long data_addr = io_ports->data_addr;
4c3032d8 250 u8 io_32bit = drive->io_32bit;
16bb69c1 251 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
1da177e4 252
9567b349
BZ
253 len++;
254
1da177e4 255 if (io_32bit) {
16bb69c1 256 unsigned long uninitialized_var(flags);
23579a2a 257
22cdd6ce 258 if ((io_32bit & 2) && !mmio) {
1da177e4 259 local_irq_save(flags);
22cdd6ce 260 ata_vlb_sync(io_ports->nsect_addr);
16bb69c1
BZ
261 }
262
263 if (mmio)
264 __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
265 else
266 insl(data_addr, buf, len / 4);
267
22cdd6ce 268 if ((io_32bit & 2) && !mmio)
1da177e4 269 local_irq_restore(flags);
9567b349 270
16bb69c1
BZ
271 if ((len & 3) >= 2) {
272 if (mmio)
273 __ide_mm_insw((void __iomem *)data_addr,
274 (u8 *)buf + (len & ~3), 1);
275 else
276 insw(data_addr, (u8 *)buf + (len & ~3), 1);
277 }
278 } else {
279 if (mmio)
280 __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
281 else
282 insw(data_addr, buf, len / 2);
283 }
1da177e4
LT
284}
285
286/*
287 * This is used for most PIO data transfers *to* the IDE interface
288 */
92d3ab27 289static void ata_output_data(ide_drive_t *drive, struct request *rq,
9567b349 290 void *buf, unsigned int len)
1da177e4 291{
4c3032d8
BZ
292 ide_hwif_t *hwif = drive->hwif;
293 struct ide_io_ports *io_ports = &hwif->io_ports;
9567b349 294 unsigned long data_addr = io_ports->data_addr;
4c3032d8 295 u8 io_32bit = drive->io_32bit;
16bb69c1 296 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
1da177e4
LT
297
298 if (io_32bit) {
16bb69c1 299 unsigned long uninitialized_var(flags);
23579a2a 300
22cdd6ce 301 if ((io_32bit & 2) && !mmio) {
1da177e4 302 local_irq_save(flags);
22cdd6ce 303 ata_vlb_sync(io_ports->nsect_addr);
16bb69c1
BZ
304 }
305
306 if (mmio)
307 __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
308 else
309 outsl(data_addr, buf, len / 4);
310
22cdd6ce 311 if ((io_32bit & 2) && !mmio)
1da177e4 312 local_irq_restore(flags);
1da177e4 313
16bb69c1
BZ
314 if ((len & 3) >= 2) {
315 if (mmio)
316 __ide_mm_outsw((void __iomem *)data_addr,
317 (u8 *)buf + (len & ~3), 1);
318 else
319 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
320 }
321 } else {
322 if (mmio)
323 __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
324 else
325 outsw(data_addr, buf, len / 2);
326 }
1da177e4
LT
327}
328
329void default_hwif_transport(ide_hwif_t *hwif)
330{
94cd5b62
BZ
331 hwif->tf_load = ide_tf_load;
332 hwif->tf_read = ide_tf_read;
333
9567b349
BZ
334 hwif->input_data = ata_input_data;
335 hwif->output_data = ata_output_data;
1da177e4
LT
336}
337
1da177e4
LT
338void ide_fix_driveid (struct hd_driveid *id)
339{
340#ifndef __LITTLE_ENDIAN
341# ifdef __BIG_ENDIAN
342 int i;
343 u16 *stringcast;
344
345 id->config = __le16_to_cpu(id->config);
346 id->cyls = __le16_to_cpu(id->cyls);
347 id->reserved2 = __le16_to_cpu(id->reserved2);
348 id->heads = __le16_to_cpu(id->heads);
349 id->track_bytes = __le16_to_cpu(id->track_bytes);
350 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
351 id->sectors = __le16_to_cpu(id->sectors);
352 id->vendor0 = __le16_to_cpu(id->vendor0);
353 id->vendor1 = __le16_to_cpu(id->vendor1);
354 id->vendor2 = __le16_to_cpu(id->vendor2);
355 stringcast = (u16 *)&id->serial_no[0];
356 for (i = 0; i < (20/2); i++)
357 stringcast[i] = __le16_to_cpu(stringcast[i]);
358 id->buf_type = __le16_to_cpu(id->buf_type);
359 id->buf_size = __le16_to_cpu(id->buf_size);
360 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
361 stringcast = (u16 *)&id->fw_rev[0];
362 for (i = 0; i < (8/2); i++)
363 stringcast[i] = __le16_to_cpu(stringcast[i]);
364 stringcast = (u16 *)&id->model[0];
365 for (i = 0; i < (40/2); i++)
366 stringcast[i] = __le16_to_cpu(stringcast[i]);
367 id->dword_io = __le16_to_cpu(id->dword_io);
368 id->reserved50 = __le16_to_cpu(id->reserved50);
369 id->field_valid = __le16_to_cpu(id->field_valid);
370 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
371 id->cur_heads = __le16_to_cpu(id->cur_heads);
372 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
373 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
374 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
375 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
376 id->dma_1word = __le16_to_cpu(id->dma_1word);
377 id->dma_mword = __le16_to_cpu(id->dma_mword);
378 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
379 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
380 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
381 id->eide_pio = __le16_to_cpu(id->eide_pio);
382 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
383 for (i = 0; i < 2; ++i)
384 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
385 for (i = 0; i < 4; ++i)
386 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
387 id->queue_depth = __le16_to_cpu(id->queue_depth);
388 for (i = 0; i < 4; ++i)
389 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
390 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
391 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
392 id->command_set_1 = __le16_to_cpu(id->command_set_1);
393 id->command_set_2 = __le16_to_cpu(id->command_set_2);
394 id->cfsse = __le16_to_cpu(id->cfsse);
395 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
396 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
397 id->csf_default = __le16_to_cpu(id->csf_default);
398 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
399 id->trseuc = __le16_to_cpu(id->trseuc);
400 id->trsEuc = __le16_to_cpu(id->trsEuc);
401 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
402 id->mprc = __le16_to_cpu(id->mprc);
403 id->hw_config = __le16_to_cpu(id->hw_config);
404 id->acoustic = __le16_to_cpu(id->acoustic);
405 id->msrqs = __le16_to_cpu(id->msrqs);
406 id->sxfert = __le16_to_cpu(id->sxfert);
407 id->sal = __le16_to_cpu(id->sal);
408 id->spg = __le32_to_cpu(id->spg);
409 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
410 for (i = 0; i < 22; i++)
411 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
412 id->last_lun = __le16_to_cpu(id->last_lun);
413 id->word127 = __le16_to_cpu(id->word127);
414 id->dlf = __le16_to_cpu(id->dlf);
415 id->csfo = __le16_to_cpu(id->csfo);
416 for (i = 0; i < 26; i++)
417 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
418 id->word156 = __le16_to_cpu(id->word156);
419 for (i = 0; i < 3; i++)
420 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
421 id->cfa_power = __le16_to_cpu(id->cfa_power);
422 for (i = 0; i < 14; i++)
423 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
424 for (i = 0; i < 31; i++)
425 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
426 for (i = 0; i < 48; i++)
427 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
428 id->integrity_word = __le16_to_cpu(id->integrity_word);
429# else
430# error "Please fix <asm/byteorder.h>"
431# endif
432#endif
433}
434
01745112
BZ
435/*
436 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
437 * removing leading/trailing blanks and compressing internal blanks.
438 * It is primarily used to tidy up the model name/number fields as
439 * returned by the WIN_[P]IDENTIFY commands.
440 */
441
1da177e4
LT
442void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
443{
444 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
445
446 if (byteswap) {
447 /* convert from big-endian to host byte order */
448 for (p = end ; p != s;) {
449 unsigned short *pp = (unsigned short *) (p -= 2);
450 *pp = ntohs(*pp);
451 }
452 }
453 /* strip leading blanks */
454 while (s != end && *s == ' ')
455 ++s;
456 /* compress internal blanks and strip trailing blanks */
457 while (s != end && *s) {
458 if (*s++ != ' ' || (s != end && *s && *s != ' '))
459 *p++ = *(s-1);
460 }
461 /* wipe out trailing garbage */
462 while (p != end)
463 *p++ = '\0';
464}
465
466EXPORT_SYMBOL(ide_fixstring);
467
468/*
469 * Needed for PCI irq sharing
470 */
471int drive_is_ready (ide_drive_t *drive)
472{
473 ide_hwif_t *hwif = HWIF(drive);
474 u8 stat = 0;
475
476 if (drive->waiting_for_dma)
5e37bdc0 477 return hwif->dma_ops->dma_test_irq(drive);
1da177e4
LT
478
479#if 0
480 /* need to guarantee 400ns since last command was issued */
481 udelay(1);
482#endif
483
1da177e4
LT
484 /*
485 * We do a passive status test under shared PCI interrupts on
486 * cards that truly share the ATA side interrupt, but may also share
487 * an interrupt with another pci card/device. We make no assumptions
488 * about possible isa-pnp and pci-pnp issues yet.
489 */
4c3032d8 490 if (hwif->io_ports.ctl_addr)
c47137a9 491 stat = ide_read_altstatus(drive);
1da177e4 492 else
1da177e4 493 /* Note: this may clear a pending IRQ!! */
c47137a9 494 stat = ide_read_status(drive);
1da177e4
LT
495
496 if (stat & BUSY_STAT)
497 /* drive busy: definitely not interrupting */
498 return 0;
499
500 /* drive ready: *might* be interrupting */
501 return 1;
502}
503
504EXPORT_SYMBOL(drive_is_ready);
505
1da177e4
LT
506/*
507 * This routine busy-waits for the drive status to be not "busy".
508 * It then checks the status for all of the "good" bits and none
509 * of the "bad" bits, and if all is okay it returns 0. All other
74af21cf 510 * cases return error -- caller may then invoke ide_error().
1da177e4
LT
511 *
512 * This routine should get fixed to not hog the cpu during extra long waits..
513 * That could be done by busy-waiting for the first jiffy or two, and then
514 * setting a timer to wake up at half second intervals thereafter,
515 * until timeout is achieved, before timing out.
516 */
aedea591 517static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
1da177e4 518{
1da177e4 519 unsigned long flags;
74af21cf
BZ
520 int i;
521 u8 stat;
1da177e4
LT
522
523 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
c47137a9
BZ
524 stat = ide_read_status(drive);
525
526 if (stat & BUSY_STAT) {
1da177e4
LT
527 local_irq_set(flags);
528 timeout += jiffies;
c47137a9 529 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
1da177e4
LT
530 if (time_after(jiffies, timeout)) {
531 /*
532 * One last read after the timeout in case
533 * heavy interrupt load made us not make any
534 * progress during the timeout..
535 */
c47137a9 536 stat = ide_read_status(drive);
1da177e4
LT
537 if (!(stat & BUSY_STAT))
538 break;
539
540 local_irq_restore(flags);
74af21cf
BZ
541 *rstat = stat;
542 return -EBUSY;
1da177e4
LT
543 }
544 }
545 local_irq_restore(flags);
546 }
547 /*
548 * Allow status to settle, then read it again.
549 * A few rare drives vastly violate the 400ns spec here,
550 * so we'll wait up to 10usec for a "good" status
551 * rather than expensively fail things immediately.
552 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
553 */
554 for (i = 0; i < 10; i++) {
555 udelay(1);
c47137a9
BZ
556 stat = ide_read_status(drive);
557
558 if (OK_STAT(stat, good, bad)) {
74af21cf 559 *rstat = stat;
1da177e4 560 return 0;
74af21cf 561 }
1da177e4 562 }
74af21cf
BZ
563 *rstat = stat;
564 return -EFAULT;
565}
566
567/*
568 * In case of error returns error value after doing "*startstop = ide_error()".
569 * The caller should return the updated value of "startstop" in this case,
570 * "startstop" is unchanged when the function returns 0.
571 */
572int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
573{
574 int err;
575 u8 stat;
576
577 /* bail early if we've exceeded max_failures */
578 if (drive->max_failures && (drive->failures > drive->max_failures)) {
579 *startstop = ide_stopped;
580 return 1;
581 }
582
583 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
584
585 if (err) {
586 char *s = (err == -EBUSY) ? "status timeout" : "status error";
587 *startstop = ide_error(drive, s, stat);
588 }
589
590 return err;
1da177e4
LT
591}
592
593EXPORT_SYMBOL(ide_wait_stat);
594
a5b7e70d
BZ
595/**
596 * ide_in_drive_list - look for drive in black/white list
597 * @id: drive identifier
598 * @drive_table: list to inspect
599 *
600 * Look for a drive in the blacklist and the whitelist tables
601 * Returns 1 if the drive is found in the table.
602 */
603
604int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
605{
606 for ( ; drive_table->id_model; drive_table++)
607 if ((!strcmp(drive_table->id_model, id->model)) &&
608 (!drive_table->id_firmware ||
609 strstr(id->fw_rev, drive_table->id_firmware)))
610 return 1;
611 return 0;
612}
613
b0244a00
BZ
614EXPORT_SYMBOL_GPL(ide_in_drive_list);
615
a5b7e70d
BZ
616/*
617 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
618 * We list them here and depend on the device side cable detection for them.
8588a2b7
BZ
619 *
620 * Some optical devices with the buggy firmwares have the same problem.
a5b7e70d
BZ
621 */
622static const struct drive_list_entry ivb_list[] = {
623 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
8588a2b7 624 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
e97564f3
PM
625 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
626 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
627 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
a5b7e70d
BZ
628 { NULL , NULL }
629};
630
1da177e4
LT
631/*
632 * All hosts that use the 80c ribbon must use!
633 * The name is derived from upper byte of word 93 and the 80c ribbon.
634 */
635u8 eighty_ninty_three (ide_drive_t *drive)
636{
7f8f48af
BZ
637 ide_hwif_t *hwif = drive->hwif;
638 struct hd_driveid *id = drive->id;
a5b7e70d 639 int ivb = ide_in_drive_list(id, ivb_list);
7f8f48af 640
49521f97
BZ
641 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
642 return 1;
643
a5b7e70d
BZ
644 if (ivb)
645 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
646 drive->name);
647
b98f8803
GK
648 if (ide_dev_is_sata(id) && !ivb)
649 return 1;
650
a5b7e70d 651 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
7f8f48af 652 goto no_80w;
1a1276e7 653
f68d9320
BZ
654 /*
655 * FIXME:
f367bed0 656 * - change master/slave IDENTIFY order
a5b7e70d 657 * - force bit13 (80c cable present) check also for !ivb devices
f68d9320
BZ
658 * (unless the slave device is pre-ATA3)
659 */
a5b7e70d 660 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
7f8f48af
BZ
661 return 1;
662
663no_80w:
664 if (drive->udma33_warned == 1)
665 return 0;
666
667 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
668 "limiting max speed to UDMA33\n",
49521f97
BZ
669 drive->name,
670 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
7f8f48af
BZ
671
672 drive->udma33_warned = 1;
673
674 return 0;
1da177e4
LT
675}
676
8a455134 677int ide_driveid_update(ide_drive_t *drive)
1da177e4 678{
8a455134 679 ide_hwif_t *hwif = drive->hwif;
1da177e4 680 struct hd_driveid *id;
8a455134 681 unsigned long timeout, flags;
c47137a9 682 u8 stat;
1da177e4 683
1da177e4
LT
684 /*
685 * Re-read drive->id for possible DMA mode
686 * change (copied from ide-probe.c)
687 */
1da177e4
LT
688
689 SELECT_MASK(drive, 1);
81ca6919 690 ide_set_irq(drive, 1);
1da177e4 691 msleep(50);
32b3fe4f 692 hwif->OUTBSYNC(drive, WIN_IDENTIFY, hwif->io_ports.command_addr);
1da177e4
LT
693 timeout = jiffies + WAIT_WORSTCASE;
694 do {
695 if (time_after(jiffies, timeout)) {
696 SELECT_MASK(drive, 0);
697 return 0; /* drive timed-out */
698 }
c47137a9 699
1da177e4 700 msleep(50); /* give drive a breather */
c47137a9
BZ
701 stat = ide_read_altstatus(drive);
702 } while (stat & BUSY_STAT);
703
1da177e4 704 msleep(50); /* wait for IRQ and DRQ_STAT */
c47137a9
BZ
705 stat = ide_read_status(drive);
706
707 if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
1da177e4
LT
708 SELECT_MASK(drive, 0);
709 printk("%s: CHECK for good STATUS\n", drive->name);
710 return 0;
711 }
712 local_irq_save(flags);
713 SELECT_MASK(drive, 0);
714 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
715 if (!id) {
716 local_irq_restore(flags);
717 return 0;
718 }
9567b349 719 hwif->input_data(drive, NULL, id, SECTOR_SIZE);
c47137a9 720 (void)ide_read_status(drive); /* clear drive IRQ */
1da177e4
LT
721 local_irq_enable();
722 local_irq_restore(flags);
723 ide_fix_driveid(id);
724 if (id) {
725 drive->id->dma_ultra = id->dma_ultra;
726 drive->id->dma_mword = id->dma_mword;
727 drive->id->dma_1word = id->dma_1word;
728 /* anything more ? */
729 kfree(id);
3ab7efe8
BZ
730
731 if (drive->using_dma && ide_id_dma_bug(drive))
732 ide_dma_off(drive);
1da177e4
LT
733 }
734
735 return 1;
1da177e4
LT
736}
737
74af21cf 738int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
1da177e4 739{
74af21cf 740 ide_hwif_t *hwif = drive->hwif;
4c3032d8 741 struct ide_io_ports *io_ports = &hwif->io_ports;
89613e66 742 int error = 0;
1da177e4
LT
743 u8 stat;
744
745// while (HWGROUP(drive)->busy)
746// msleep(50);
747
748#ifdef CONFIG_BLK_DEV_IDEDMA
5e37bdc0
BZ
749 if (hwif->dma_ops) /* check if host supports DMA */
750 hwif->dma_ops->dma_host_set(drive, 0);
1da177e4
LT
751#endif
752
89613e66
SS
753 /* Skip setting PIO flow-control modes on pre-EIDE drives */
754 if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
755 goto skip;
756
1da177e4
LT
757 /*
758 * Don't use ide_wait_cmd here - it will
759 * attempt to set_geometry and recalibrate,
760 * but for some reason these don't work at
761 * this point (lost interrupt).
762 */
763 /*
764 * Select the drive, and issue the SETFEATURES command
765 */
766 disable_irq_nosync(hwif->irq);
767
768 /*
769 * FIXME: we race against the running IRQ here if
770 * this is called from non IRQ context. If we use
771 * disable_irq() we hang on the error path. Work
772 * is needed.
773 */
774
775 udelay(1);
776 SELECT_DRIVE(drive);
777 SELECT_MASK(drive, 0);
778 udelay(1);
81ca6919 779 ide_set_irq(drive, 0);
4c3032d8
BZ
780 hwif->OUTB(speed, io_ports->nsect_addr);
781 hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
782 hwif->OUTBSYNC(drive, WIN_SETFEATURES, io_ports->command_addr);
81ca6919
BZ
783 if (drive->quirk_list == 2)
784 ide_set_irq(drive, 1);
1da177e4 785
74af21cf
BZ
786 error = __ide_wait_stat(drive, drive->ready_stat,
787 BUSY_STAT|DRQ_STAT|ERR_STAT,
788 WAIT_CMD, &stat);
1da177e4
LT
789
790 SELECT_MASK(drive, 0);
791
792 enable_irq(hwif->irq);
793
794 if (error) {
795 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
796 return error;
797 }
798
799 drive->id->dma_ultra &= ~0xFF00;
800 drive->id->dma_mword &= ~0x0F00;
801 drive->id->dma_1word &= ~0x0F00;
802
89613e66 803 skip:
1da177e4 804#ifdef CONFIG_BLK_DEV_IDEDMA
f37aaf9e
BZ
805 if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
806 drive->using_dma)
5e37bdc0
BZ
807 hwif->dma_ops->dma_host_set(drive, 1);
808 else if (hwif->dma_ops) /* check if host supports DMA */
4a546e04 809 ide_dma_off_quietly(drive);
1da177e4
LT
810#endif
811
812 switch(speed) {
813 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
814 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
815 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
816 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
817 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
818 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
819 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
820 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
821 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
822 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
823 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
824 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
825 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
826 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
827 default: break;
828 }
829 if (!drive->init_speed)
830 drive->init_speed = speed;
831 drive->current_speed = speed;
832 return error;
833}
834
1da177e4
LT
835/*
836 * This should get invoked any time we exit the driver to
837 * wait for an interrupt response from a drive. handler() points
838 * at the appropriate code to handle the next interrupt, and a
839 * timer is started to prevent us from waiting forever in case
840 * something goes wrong (see the ide_timer_expiry() handler later on).
841 *
842 * See also ide_execute_command
843 */
844static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
845 unsigned int timeout, ide_expiry_t *expiry)
846{
847 ide_hwgroup_t *hwgroup = HWGROUP(drive);
848
d30a426d 849 BUG_ON(hwgroup->handler);
1da177e4
LT
850 hwgroup->handler = handler;
851 hwgroup->expiry = expiry;
852 hwgroup->timer.expires = jiffies + timeout;
d30a426d 853 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
854 add_timer(&hwgroup->timer);
855}
856
857void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
858 unsigned int timeout, ide_expiry_t *expiry)
859{
860 unsigned long flags;
861 spin_lock_irqsave(&ide_lock, flags);
862 __ide_set_handler(drive, handler, timeout, expiry);
863 spin_unlock_irqrestore(&ide_lock, flags);
864}
865
866EXPORT_SYMBOL(ide_set_handler);
867
868/**
869 * ide_execute_command - execute an IDE command
870 * @drive: IDE drive to issue the command against
871 * @command: command byte to write
872 * @handler: handler for next phase
873 * @timeout: timeout for command
874 * @expiry: handler to run on timeout
875 *
876 * Helper function to issue an IDE command. This handles the
877 * atomicity requirements, command timing and ensures that the
878 * handler and IRQ setup do not race. All IDE command kick off
879 * should go via this function or do equivalent locking.
880 */
cd2a2d96
BZ
881
882void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
883 unsigned timeout, ide_expiry_t *expiry)
1da177e4
LT
884{
885 unsigned long flags;
1da177e4 886 ide_hwif_t *hwif = HWIF(drive);
629f944b 887
1da177e4 888 spin_lock_irqsave(&ide_lock, flags);
629f944b 889 __ide_set_handler(drive, handler, timeout, expiry);
4c3032d8 890 hwif->OUTBSYNC(drive, cmd, hwif->io_ports.command_addr);
629f944b
BZ
891 /*
892 * Drive takes 400nS to respond, we must avoid the IRQ being
893 * serviced before that.
894 *
895 * FIXME: we could skip this delay with care on non shared devices
896 */
1da177e4
LT
897 ndelay(400);
898 spin_unlock_irqrestore(&ide_lock, flags);
899}
1da177e4
LT
900EXPORT_SYMBOL(ide_execute_command);
901
1fc14258
BZ
902void ide_execute_pkt_cmd(ide_drive_t *drive)
903{
904 ide_hwif_t *hwif = drive->hwif;
905 unsigned long flags;
906
907 spin_lock_irqsave(&ide_lock, flags);
908 hwif->OUTBSYNC(drive, WIN_PACKETCMD, hwif->io_ports.command_addr);
909 ndelay(400);
910 spin_unlock_irqrestore(&ide_lock, flags);
911}
912EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
1da177e4
LT
913
914/* needed below */
915static ide_startstop_t do_reset1 (ide_drive_t *, int);
916
917/*
918 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
919 * during an atapi drive reset operation. If the drive has not yet responded,
920 * and we have not yet hit our maximum waiting time, then the timer is restarted
921 * for another 50ms.
922 */
923static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
924{
925 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1da177e4
LT
926 u8 stat;
927
928 SELECT_DRIVE(drive);
929 udelay (10);
c47137a9 930 stat = ide_read_status(drive);
1da177e4 931
c47137a9 932 if (OK_STAT(stat, 0, BUSY_STAT))
1da177e4 933 printk("%s: ATAPI reset complete\n", drive->name);
c47137a9 934 else {
1da177e4 935 if (time_before(jiffies, hwgroup->poll_timeout)) {
1da177e4
LT
936 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
937 /* continue polling */
938 return ide_started;
939 }
940 /* end of polling */
941 hwgroup->polling = 0;
942 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
943 drive->name, stat);
944 /* do it the old fashioned way */
945 return do_reset1(drive, 1);
946 }
947 /* done polling */
948 hwgroup->polling = 0;
913759ac 949 hwgroup->resetting = 0;
1da177e4
LT
950 return ide_stopped;
951}
952
953/*
954 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
955 * during an ide reset operation. If the drives have not yet responded,
956 * and we have not yet hit our maximum waiting time, then the timer is restarted
957 * for another 50ms.
958 */
959static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
960{
961 ide_hwgroup_t *hwgroup = HWGROUP(drive);
962 ide_hwif_t *hwif = HWIF(drive);
ac95beed 963 const struct ide_port_ops *port_ops = hwif->port_ops;
1da177e4
LT
964 u8 tmp;
965
ac95beed
BZ
966 if (port_ops && port_ops->reset_poll) {
967 if (port_ops->reset_poll(drive)) {
1da177e4
LT
968 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
969 hwif->name, drive->name);
970 return ide_stopped;
971 }
972 }
973
c47137a9
BZ
974 tmp = ide_read_status(drive);
975
976 if (!OK_STAT(tmp, 0, BUSY_STAT)) {
1da177e4 977 if (time_before(jiffies, hwgroup->poll_timeout)) {
1da177e4
LT
978 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
979 /* continue polling */
980 return ide_started;
981 }
982 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
983 drive->failures++;
984 } else {
985 printk("%s: reset: ", hwif->name);
64a57fe4
BZ
986 tmp = ide_read_error(drive);
987
988 if (tmp == 1) {
1da177e4
LT
989 printk("success\n");
990 drive->failures = 0;
991 } else {
992 drive->failures++;
993 printk("master: ");
994 switch (tmp & 0x7f) {
995 case 1: printk("passed");
996 break;
997 case 2: printk("formatter device error");
998 break;
999 case 3: printk("sector buffer error");
1000 break;
1001 case 4: printk("ECC circuitry error");
1002 break;
1003 case 5: printk("controlling MPU error");
1004 break;
1005 default:printk("error (0x%02x?)", tmp);
1006 }
1007 if (tmp & 0x80)
1008 printk("; slave: failed");
1009 printk("\n");
1010 }
1011 }
1012 hwgroup->polling = 0; /* done polling */
913759ac 1013 hwgroup->resetting = 0; /* done reset attempt */
1da177e4
LT
1014 return ide_stopped;
1015}
1016
1da177e4
LT
1017static void ide_disk_pre_reset(ide_drive_t *drive)
1018{
1019 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1020
1021 drive->special.all = 0;
1022 drive->special.b.set_geometry = legacy;
1023 drive->special.b.recalibrate = legacy;
4ee06b7e 1024 drive->mult_count = 0;
1da177e4
LT
1025 if (!drive->keep_settings && !drive->using_dma)
1026 drive->mult_req = 0;
1027 if (drive->mult_req != drive->mult_count)
1028 drive->special.b.set_multmode = 1;
1029}
1030
1031static void pre_reset(ide_drive_t *drive)
1032{
ac95beed
BZ
1033 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1034
1da177e4
LT
1035 if (drive->media == ide_disk)
1036 ide_disk_pre_reset(drive);
1037 else
1038 drive->post_reset = 1;
1039
99ffbe0e
BZ
1040 if (drive->using_dma) {
1041 if (drive->crc_count)
578cfa0d 1042 ide_check_dma_crc(drive);
99ffbe0e
BZ
1043 else
1044 ide_dma_off(drive);
1045 }
1046
1047 if (!drive->keep_settings) {
1048 if (!drive->using_dma) {
1da177e4
LT
1049 drive->unmask = 0;
1050 drive->io_32bit = 0;
1051 }
1052 return;
1053 }
1da177e4 1054
ac95beed
BZ
1055 if (port_ops && port_ops->pre_reset)
1056 port_ops->pre_reset(drive);
1da177e4 1057
513daadd
SS
1058 if (drive->current_speed != 0xff)
1059 drive->desired_speed = drive->current_speed;
1060 drive->current_speed = 0xff;
1da177e4
LT
1061}
1062
1063/*
1064 * do_reset1() attempts to recover a confused drive by resetting it.
1065 * Unfortunately, resetting a disk drive actually resets all devices on
1066 * the same interface, so it can really be thought of as resetting the
1067 * interface rather than resetting the drive.
1068 *
1069 * ATAPI devices have their own reset mechanism which allows them to be
1070 * individually reset without clobbering other devices on the same interface.
1071 *
1072 * Unfortunately, the IDE interface does not generate an interrupt to let
1073 * us know when the reset operation has finished, so we must poll for this.
1074 * Equally poor, though, is the fact that this may a very long time to complete,
1075 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1076 * we set a timer to poll at 50ms intervals.
1077 */
1078static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1079{
1080 unsigned int unit;
1081 unsigned long flags;
1082 ide_hwif_t *hwif;
1083 ide_hwgroup_t *hwgroup;
4c3032d8 1084 struct ide_io_ports *io_ports;
ac95beed 1085 const struct ide_port_ops *port_ops;
23579a2a
BZ
1086 u8 ctl;
1087
1da177e4
LT
1088 spin_lock_irqsave(&ide_lock, flags);
1089 hwif = HWIF(drive);
1090 hwgroup = HWGROUP(drive);
1091
4c3032d8
BZ
1092 io_ports = &hwif->io_ports;
1093
1da177e4 1094 /* We must not reset with running handlers */
125e1874 1095 BUG_ON(hwgroup->handler != NULL);
1da177e4
LT
1096
1097 /* For an ATAPI device, first try an ATAPI SRST. */
1098 if (drive->media != ide_disk && !do_not_try_atapi) {
913759ac 1099 hwgroup->resetting = 1;
1da177e4
LT
1100 pre_reset(drive);
1101 SELECT_DRIVE(drive);
1102 udelay (20);
4c3032d8 1103 hwif->OUTBSYNC(drive, WIN_SRST, io_ports->command_addr);
68ad9910 1104 ndelay(400);
1da177e4
LT
1105 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1106 hwgroup->polling = 1;
1107 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1108 spin_unlock_irqrestore(&ide_lock, flags);
1109 return ide_started;
1110 }
1111
1112 /*
1113 * First, reset any device state data we were maintaining
1114 * for any of the drives on this interface.
1115 */
1116 for (unit = 0; unit < MAX_DRIVES; ++unit)
1117 pre_reset(&hwif->drives[unit]);
1118
4c3032d8 1119 if (io_ports->ctl_addr == 0) {
1da177e4
LT
1120 spin_unlock_irqrestore(&ide_lock, flags);
1121 return ide_stopped;
1122 }
1123
913759ac 1124 hwgroup->resetting = 1;
1da177e4
LT
1125 /*
1126 * Note that we also set nIEN while resetting the device,
1127 * to mask unwanted interrupts from the interface during the reset.
1128 * However, due to the design of PC hardware, this will cause an
1129 * immediate interrupt due to the edge transition it produces.
1130 * This single interrupt gives us a "fast poll" for drives that
1131 * recover from reset very quickly, saving us the first 50ms wait time.
1132 */
1133 /* set SRST and nIEN */
4c3032d8 1134 hwif->OUTBSYNC(drive, drive->ctl|6, io_ports->ctl_addr);
1da177e4
LT
1135 /* more than enough time */
1136 udelay(10);
23579a2a
BZ
1137 if (drive->quirk_list == 2)
1138 ctl = drive->ctl; /* clear SRST and nIEN */
1139 else
1140 ctl = drive->ctl | 2; /* clear SRST, leave nIEN */
4c3032d8 1141 hwif->OUTBSYNC(drive, ctl, io_ports->ctl_addr);
1da177e4
LT
1142 /* more than enough time */
1143 udelay(10);
1144 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1145 hwgroup->polling = 1;
1146 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1147
1148 /*
1149 * Some weird controller like resetting themselves to a strange
1150 * state when the disks are reset this way. At least, the Winbond
1151 * 553 documentation says that
1152 */
ac95beed
BZ
1153 port_ops = hwif->port_ops;
1154 if (port_ops && port_ops->resetproc)
1155 port_ops->resetproc(drive);
1da177e4
LT
1156
1157 spin_unlock_irqrestore(&ide_lock, flags);
1158 return ide_started;
1159}
1160
1161/*
1162 * ide_do_reset() is the entry point to the drive/interface reset code.
1163 */
1164
1165ide_startstop_t ide_do_reset (ide_drive_t *drive)
1166{
1167 return do_reset1(drive, 0);
1168}
1169
1170EXPORT_SYMBOL(ide_do_reset);
1171
1172/*
1173 * ide_wait_not_busy() waits for the currently selected device on the hwif
9d501529 1174 * to report a non-busy status, see comments in ide_probe_port().
1da177e4
LT
1175 */
1176int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1177{
1178 u8 stat = 0;
1179
1180 while(timeout--) {
1181 /*
1182 * Turn this into a schedule() sleep once I'm sure
1183 * about locking issues (2.5 work ?).
1184 */
1185 mdelay(1);
4c3032d8 1186 stat = hwif->INB(hwif->io_ports.status_addr);
1da177e4
LT
1187 if ((stat & BUSY_STAT) == 0)
1188 return 0;
1189 /*
1190 * Assume a value of 0xff means nothing is connected to
1191 * the interface and it doesn't implement the pull-down
1192 * resistor on D7.
1193 */
1194 if (stat == 0xff)
1195 return -ENODEV;
6842f8c8 1196 touch_softlockup_watchdog();
1e86240f 1197 touch_nmi_watchdog();
1da177e4
LT
1198 }
1199 return -EBUSY;
1200}
1201
1202EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1203