[PATCH] ide: remove dma_base2 field from ide_hwif_t
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ide / ide-io.c
CommitLineData
1da177e4
LT
1/*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
1da177e4
LT
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50
51#include <asm/byteorder.h>
52#include <asm/irq.h>
53#include <asm/uaccess.h>
54#include <asm/io.h>
55#include <asm/bitops.h>
56
a7ff7d41
AB
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, int nr_sectors)
1da177e4
LT
59{
60 int ret = 1;
61
1da177e4
LT
62 /*
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
65 */
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
67 nr_sectors = rq->hard_nr_sectors;
68
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70 rq->errors = -EIO;
71
72 /*
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
75 */
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77 drive->state = 0;
78 HWGROUP(drive)->hwif->ide_dma_on(drive);
79 }
80
ba027def
JA
81 if (!end_that_request_first(rq, uptodate, nr_sectors)) {
82 add_disk_randomness(rq->rq_disk);
ce42f191
HZ
83 if (!list_empty(&rq->queuelist))
84 blkdev_dequeue_request(rq);
1da177e4 85 HWGROUP(drive)->rq = NULL;
ba027def 86 end_that_request_last(rq, uptodate);
1da177e4
LT
87 ret = 0;
88 }
8672d571 89
1da177e4
LT
90 return ret;
91}
1da177e4
LT
92
93/**
94 * ide_end_request - complete an IDE I/O
95 * @drive: IDE device for the I/O
96 * @uptodate:
97 * @nr_sectors: number of sectors completed
98 *
99 * This is our end_request wrapper function. We complete the I/O
100 * update random number input and dequeue the request, which if
101 * it was tagged may be out of order.
102 */
103
104int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
105{
106 struct request *rq;
107 unsigned long flags;
108 int ret = 1;
109
8672d571
JA
110 /*
111 * room for locking improvements here, the calls below don't
112 * need the queue lock held at all
113 */
1da177e4
LT
114 spin_lock_irqsave(&ide_lock, flags);
115 rq = HWGROUP(drive)->rq;
116
117 if (!nr_sectors)
118 nr_sectors = rq->hard_cur_sectors;
119
3e087b57 120 ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
1da177e4
LT
121
122 spin_unlock_irqrestore(&ide_lock, flags);
123 return ret;
124}
125EXPORT_SYMBOL(ide_end_request);
126
127/*
128 * Power Management state machine. This one is rather trivial for now,
129 * we should probably add more, like switching back to PIO on suspend
130 * to help some BIOSes, re-do the door locking on resume, etc...
131 */
132
133enum {
134 ide_pm_flush_cache = ide_pm_state_start_suspend,
135 idedisk_pm_standby,
136
137 idedisk_pm_idle = ide_pm_state_start_resume,
138 ide_pm_restore_dma,
139};
140
141static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
142{
c00895ab 143 struct request_pm_state *pm = rq->data;
ad3cadda 144
1da177e4
LT
145 if (drive->media != ide_disk)
146 return;
147
ad3cadda 148 switch (pm->pm_step) {
1da177e4 149 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
ad3cadda
JA
150 if (pm->pm_state == PM_EVENT_FREEZE)
151 pm->pm_step = ide_pm_state_completed;
1da177e4 152 else
ad3cadda 153 pm->pm_step = idedisk_pm_standby;
1da177e4
LT
154 break;
155 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
ad3cadda 156 pm->pm_step = ide_pm_state_completed;
1da177e4
LT
157 break;
158 case idedisk_pm_idle: /* Resume step 1 (idle) complete */
ad3cadda 159 pm->pm_step = ide_pm_restore_dma;
1da177e4
LT
160 break;
161 }
162}
163
164static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
165{
c00895ab 166 struct request_pm_state *pm = rq->data;
1da177e4
LT
167 ide_task_t *args = rq->special;
168
169 memset(args, 0, sizeof(*args));
170
171 if (drive->media != ide_disk) {
172 /* skip idedisk_pm_idle for ATAPI devices */
ad3cadda
JA
173 if (pm->pm_step == idedisk_pm_idle)
174 pm->pm_step = ide_pm_restore_dma;
1da177e4
LT
175 }
176
ad3cadda 177 switch (pm->pm_step) {
1da177e4
LT
178 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
179 if (drive->media != ide_disk)
180 break;
181 /* Not supported? Switch to next step now. */
182 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
183 ide_complete_power_step(drive, rq, 0, 0);
184 return ide_stopped;
185 }
186 if (ide_id_has_flush_cache_ext(drive->id))
187 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
188 else
189 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
190 args->command_type = IDE_DRIVE_TASK_NO_DATA;
191 args->handler = &task_no_data_intr;
192 return do_rw_taskfile(drive, args);
193
194 case idedisk_pm_standby: /* Suspend step 2 (standby) */
195 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
196 args->command_type = IDE_DRIVE_TASK_NO_DATA;
197 args->handler = &task_no_data_intr;
198 return do_rw_taskfile(drive, args);
199
200 case idedisk_pm_idle: /* Resume step 1 (idle) */
201 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
202 args->command_type = IDE_DRIVE_TASK_NO_DATA;
203 args->handler = task_no_data_intr;
204 return do_rw_taskfile(drive, args);
205
206 case ide_pm_restore_dma: /* Resume step 2 (restore DMA) */
207 /*
208 * Right now, all we do is call hwif->ide_dma_check(drive),
209 * we could be smarter and check for current xfer_speed
210 * in struct drive etc...
211 */
212 if ((drive->id->capability & 1) == 0)
213 break;
214 if (drive->hwif->ide_dma_check == NULL)
215 break;
216 drive->hwif->ide_dma_check(drive);
217 break;
218 }
ad3cadda 219 pm->pm_step = ide_pm_state_completed;
1da177e4
LT
220 return ide_stopped;
221}
222
dbe217af
AC
223/**
224 * ide_end_dequeued_request - complete an IDE I/O
225 * @drive: IDE device for the I/O
226 * @uptodate:
227 * @nr_sectors: number of sectors completed
228 *
229 * Complete an I/O that is no longer on the request queue. This
230 * typically occurs when we pull the request and issue a REQUEST_SENSE.
231 * We must still finish the old request but we must not tamper with the
232 * queue in the meantime.
233 *
234 * NOTE: This path does not handle barrier, but barrier is not supported
235 * on ide-cd anyway.
236 */
237
238int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
239 int uptodate, int nr_sectors)
240{
241 unsigned long flags;
242 int ret = 1;
243
244 spin_lock_irqsave(&ide_lock, flags);
245
4aff5e23 246 BUG_ON(!blk_rq_started(rq));
dbe217af
AC
247
248 /*
249 * if failfast is set on a request, override number of sectors and
250 * complete the whole request right now
251 */
252 if (blk_noretry_request(rq) && end_io_error(uptodate))
253 nr_sectors = rq->hard_nr_sectors;
254
255 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
256 rq->errors = -EIO;
257
258 /*
259 * decide whether to reenable DMA -- 3 is a random magic for now,
260 * if we DMA timeout more than 3 times, just stay in PIO
261 */
262 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
263 drive->state = 0;
264 HWGROUP(drive)->hwif->ide_dma_on(drive);
265 }
266
267 if (!end_that_request_first(rq, uptodate, nr_sectors)) {
268 add_disk_randomness(rq->rq_disk);
269 if (blk_rq_tagged(rq))
270 blk_queue_end_tag(drive->queue, rq);
271 end_that_request_last(rq, uptodate);
272 ret = 0;
273 }
274 spin_unlock_irqrestore(&ide_lock, flags);
275 return ret;
276}
277EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
278
279
1da177e4
LT
280/**
281 * ide_complete_pm_request - end the current Power Management request
282 * @drive: target drive
283 * @rq: request
284 *
285 * This function cleans up the current PM request and stops the queue
286 * if necessary.
287 */
288static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
289{
290 unsigned long flags;
291
292#ifdef DEBUG_PM
293 printk("%s: completing PM request, %s\n", drive->name,
294 blk_pm_suspend_request(rq) ? "suspend" : "resume");
295#endif
296 spin_lock_irqsave(&ide_lock, flags);
297 if (blk_pm_suspend_request(rq)) {
298 blk_stop_queue(drive->queue);
299 } else {
300 drive->blocked = 0;
301 blk_start_queue(drive->queue);
302 }
303 blkdev_dequeue_request(rq);
304 HWGROUP(drive)->rq = NULL;
8ffdc655 305 end_that_request_last(rq, 1);
1da177e4
LT
306 spin_unlock_irqrestore(&ide_lock, flags);
307}
308
309/*
310 * FIXME: probably move this somewhere else, name is bad too :)
311 */
312u64 ide_get_error_location(ide_drive_t *drive, char *args)
313{
314 u32 high, low;
315 u8 hcyl, lcyl, sect;
316 u64 sector;
317
318 high = 0;
319 hcyl = args[5];
320 lcyl = args[4];
321 sect = args[3];
322
323 if (ide_id_has_flush_cache_ext(drive->id)) {
324 low = (hcyl << 16) | (lcyl << 8) | sect;
325 HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
326 high = ide_read_24(drive);
327 } else {
328 u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
329 if (cur & 0x40) {
330 high = cur & 0xf;
331 low = (hcyl << 16) | (lcyl << 8) | sect;
332 } else {
333 low = hcyl * drive->head * drive->sect;
334 low += lcyl * drive->sect;
335 low += sect - 1;
336 }
337 }
338
339 sector = ((u64) high << 24) | low;
340 return sector;
341}
342EXPORT_SYMBOL(ide_get_error_location);
343
344/**
345 * ide_end_drive_cmd - end an explicit drive command
346 * @drive: command
347 * @stat: status bits
348 * @err: error bits
349 *
350 * Clean up after success/failure of an explicit drive command.
351 * These get thrown onto the queue so they are synchronized with
352 * real I/O operations on the drive.
353 *
354 * In LBA48 mode we have to read the register set twice to get
355 * all the extra information out.
356 */
357
358void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
359{
360 ide_hwif_t *hwif = HWIF(drive);
361 unsigned long flags;
362 struct request *rq;
363
364 spin_lock_irqsave(&ide_lock, flags);
365 rq = HWGROUP(drive)->rq;
366 spin_unlock_irqrestore(&ide_lock, flags);
367
4aff5e23 368 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
1da177e4
LT
369 u8 *args = (u8 *) rq->buffer;
370 if (rq->errors == 0)
371 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
372
373 if (args) {
374 args[0] = stat;
375 args[1] = err;
376 args[2] = hwif->INB(IDE_NSECTOR_REG);
377 }
4aff5e23 378 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
1da177e4
LT
379 u8 *args = (u8 *) rq->buffer;
380 if (rq->errors == 0)
381 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
382
383 if (args) {
384 args[0] = stat;
385 args[1] = err;
386 args[2] = hwif->INB(IDE_NSECTOR_REG);
387 args[3] = hwif->INB(IDE_SECTOR_REG);
388 args[4] = hwif->INB(IDE_LCYL_REG);
389 args[5] = hwif->INB(IDE_HCYL_REG);
390 args[6] = hwif->INB(IDE_SELECT_REG);
391 }
4aff5e23 392 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
393 ide_task_t *args = (ide_task_t *) rq->special;
394 if (rq->errors == 0)
395 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
396
397 if (args) {
398 if (args->tf_in_flags.b.data) {
399 u16 data = hwif->INW(IDE_DATA_REG);
400 args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
401 args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF;
402 }
403 args->tfRegister[IDE_ERROR_OFFSET] = err;
404 /* be sure we're looking at the low order bits */
405 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
406 args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
407 args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
408 args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
409 args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
410 args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
411 args->tfRegister[IDE_STATUS_OFFSET] = stat;
412
413 if (drive->addressing == 1) {
414 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
415 args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG);
416 args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
417 args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
418 args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
419 args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
420 }
421 }
422 } else if (blk_pm_request(rq)) {
c00895ab 423 struct request_pm_state *pm = rq->data;
1da177e4
LT
424#ifdef DEBUG_PM
425 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
426 drive->name, rq->pm->pm_step, stat, err);
427#endif
428 ide_complete_power_step(drive, rq, stat, err);
ad3cadda 429 if (pm->pm_step == ide_pm_state_completed)
1da177e4
LT
430 ide_complete_pm_request(drive, rq);
431 return;
432 }
433
434 spin_lock_irqsave(&ide_lock, flags);
435 blkdev_dequeue_request(rq);
436 HWGROUP(drive)->rq = NULL;
437 rq->errors = err;
8ffdc655 438 end_that_request_last(rq, !rq->errors);
1da177e4
LT
439 spin_unlock_irqrestore(&ide_lock, flags);
440}
441
442EXPORT_SYMBOL(ide_end_drive_cmd);
443
444/**
445 * try_to_flush_leftover_data - flush junk
446 * @drive: drive to flush
447 *
448 * try_to_flush_leftover_data() is invoked in response to a drive
449 * unexpectedly having its DRQ_STAT bit set. As an alternative to
450 * resetting the drive, this routine tries to clear the condition
451 * by read a sector's worth of data from the drive. Of course,
452 * this may not help if the drive is *waiting* for data from *us*.
453 */
454static void try_to_flush_leftover_data (ide_drive_t *drive)
455{
456 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
457
458 if (drive->media != ide_disk)
459 return;
460 while (i > 0) {
461 u32 buffer[16];
462 u32 wcount = (i > 16) ? 16 : i;
463
464 i -= wcount;
465 HWIF(drive)->ata_input_data(drive, buffer, wcount);
466 }
467}
468
469static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
470{
471 if (rq->rq_disk) {
472 ide_driver_t *drv;
473
474 drv = *(ide_driver_t **)rq->rq_disk->private_data;
475 drv->end_request(drive, 0, 0);
476 } else
477 ide_end_request(drive, 0, 0);
478}
479
480static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
481{
482 ide_hwif_t *hwif = drive->hwif;
483
484 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
485 /* other bits are useless when BUSY */
486 rq->errors |= ERROR_RESET;
487 } else if (stat & ERR_STAT) {
488 /* err has different meaning on cdrom and tape */
489 if (err == ABRT_ERR) {
490 if (drive->select.b.lba &&
491 /* some newer drives don't support WIN_SPECIFY */
492 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
493 return ide_stopped;
494 } else if ((err & BAD_CRC) == BAD_CRC) {
495 /* UDMA crc error, just retry the operation */
496 drive->crc_count++;
497 } else if (err & (BBD_ERR | ECC_ERR)) {
498 /* retries won't help these */
499 rq->errors = ERROR_MAX;
500 } else if (err & TRK0_ERR) {
501 /* help it find track zero */
502 rq->errors |= ERROR_RECAL;
503 }
504 }
505
da574af7 506 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0)
1da177e4
LT
507 try_to_flush_leftover_data(drive);
508
509 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
510 /* force an abort */
511 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
512
513 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq))
514 ide_kill_rq(drive, rq);
515 else {
516 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
517 ++rq->errors;
518 return ide_do_reset(drive);
519 }
520 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
521 drive->special.b.recalibrate = 1;
522 ++rq->errors;
523 }
524 return ide_stopped;
525}
526
527static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
528{
529 ide_hwif_t *hwif = drive->hwif;
530
531 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
532 /* other bits are useless when BUSY */
533 rq->errors |= ERROR_RESET;
534 } else {
535 /* add decoding error stuff */
536 }
537
538 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
539 /* force an abort */
540 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
541
542 if (rq->errors >= ERROR_MAX) {
543 ide_kill_rq(drive, rq);
544 } else {
545 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
546 ++rq->errors;
547 return ide_do_reset(drive);
548 }
549 ++rq->errors;
550 }
551
552 return ide_stopped;
553}
554
555ide_startstop_t
556__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
557{
558 if (drive->media == ide_disk)
559 return ide_ata_error(drive, rq, stat, err);
560 return ide_atapi_error(drive, rq, stat, err);
561}
562
563EXPORT_SYMBOL_GPL(__ide_error);
564
565/**
566 * ide_error - handle an error on the IDE
567 * @drive: drive the error occurred on
568 * @msg: message to report
569 * @stat: status bits
570 *
571 * ide_error() takes action based on the error returned by the drive.
572 * For normal I/O that may well include retries. We deal with
573 * both new-style (taskfile) and old style command handling here.
574 * In the case of taskfile command handling there is work left to
575 * do
576 */
577
578ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
579{
580 struct request *rq;
581 u8 err;
582
583 err = ide_dump_status(drive, msg, stat);
584
585 if ((rq = HWGROUP(drive)->rq) == NULL)
586 return ide_stopped;
587
588 /* retry only "normal" I/O: */
4aff5e23 589 if (!blk_fs_request(rq)) {
1da177e4
LT
590 rq->errors = 1;
591 ide_end_drive_cmd(drive, stat, err);
592 return ide_stopped;
593 }
594
595 if (rq->rq_disk) {
596 ide_driver_t *drv;
597
598 drv = *(ide_driver_t **)rq->rq_disk->private_data;
599 return drv->error(drive, rq, stat, err);
600 } else
601 return __ide_error(drive, rq, stat, err);
602}
603
604EXPORT_SYMBOL_GPL(ide_error);
605
606ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
607{
608 if (drive->media != ide_disk)
609 rq->errors |= ERROR_RESET;
610
611 ide_kill_rq(drive, rq);
612
613 return ide_stopped;
614}
615
616EXPORT_SYMBOL_GPL(__ide_abort);
617
618/**
338cec32 619 * ide_abort - abort pending IDE operations
1da177e4
LT
620 * @drive: drive the error occurred on
621 * @msg: message to report
622 *
623 * ide_abort kills and cleans up when we are about to do a
624 * host initiated reset on active commands. Longer term we
625 * want handlers to have sensible abort handling themselves
626 *
627 * This differs fundamentally from ide_error because in
628 * this case the command is doing just fine when we
629 * blow it away.
630 */
631
632ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
633{
634 struct request *rq;
635
636 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
637 return ide_stopped;
638
639 /* retry only "normal" I/O: */
4aff5e23 640 if (!blk_fs_request(rq)) {
1da177e4
LT
641 rq->errors = 1;
642 ide_end_drive_cmd(drive, BUSY_STAT, 0);
643 return ide_stopped;
644 }
645
646 if (rq->rq_disk) {
647 ide_driver_t *drv;
648
649 drv = *(ide_driver_t **)rq->rq_disk->private_data;
650 return drv->abort(drive, rq);
651 } else
652 return __ide_abort(drive, rq);
653}
654
655/**
656 * ide_cmd - issue a simple drive command
657 * @drive: drive the command is for
658 * @cmd: command byte
659 * @nsect: sector byte
660 * @handler: handler for the command completion
661 *
662 * Issue a simple drive command with interrupts.
663 * The drive must be selected beforehand.
664 */
665
666static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
667 ide_handler_t *handler)
668{
669 ide_hwif_t *hwif = HWIF(drive);
670 if (IDE_CONTROL_REG)
671 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
672 SELECT_MASK(drive,0);
673 hwif->OUTB(nsect,IDE_NSECTOR_REG);
674 ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
675}
676
677/**
678 * drive_cmd_intr - drive command completion interrupt
679 * @drive: drive the completion interrupt occurred on
680 *
681 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
338cec32 682 * We do any necessary data reading and then wait for the drive to
1da177e4
LT
683 * go non busy. At that point we may read the error data and complete
684 * the request
685 */
686
687static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
688{
689 struct request *rq = HWGROUP(drive)->rq;
690 ide_hwif_t *hwif = HWIF(drive);
691 u8 *args = (u8 *) rq->buffer;
692 u8 stat = hwif->INB(IDE_STATUS_REG);
693 int retries = 10;
694
366c7f55 695 local_irq_enable_in_hardirq();
1da177e4
LT
696 if ((stat & DRQ_STAT) && args && args[3]) {
697 u8 io_32bit = drive->io_32bit;
698 drive->io_32bit = 0;
699 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
700 drive->io_32bit = io_32bit;
701 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
702 udelay(100);
703 }
704
705 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
706 return ide_error(drive, "drive_cmd", stat);
707 /* calls ide_end_drive_cmd */
708 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
709 return ide_stopped;
710}
711
712static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
713{
714 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
715 task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect;
716 task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl;
717 task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8;
718 task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF;
719 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
720
721 task->handler = &set_geometry_intr;
722}
723
724static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
725{
726 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
727 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
728
729 task->handler = &recal_intr;
730}
731
732static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
733{
734 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
735 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
736
737 task->handler = &set_multmode_intr;
738}
739
740static ide_startstop_t ide_disk_special(ide_drive_t *drive)
741{
742 special_t *s = &drive->special;
743 ide_task_t args;
744
745 memset(&args, 0, sizeof(ide_task_t));
746 args.command_type = IDE_DRIVE_TASK_NO_DATA;
747
748 if (s->b.set_geometry) {
749 s->b.set_geometry = 0;
750 ide_init_specify_cmd(drive, &args);
751 } else if (s->b.recalibrate) {
752 s->b.recalibrate = 0;
753 ide_init_restore_cmd(drive, &args);
754 } else if (s->b.set_multmode) {
755 s->b.set_multmode = 0;
756 if (drive->mult_req > drive->id->max_multsect)
757 drive->mult_req = drive->id->max_multsect;
758 ide_init_setmult_cmd(drive, &args);
759 } else if (s->all) {
760 int special = s->all;
761 s->all = 0;
762 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
763 return ide_stopped;
764 }
765
766 do_rw_taskfile(drive, &args);
767
768 return ide_started;
769}
770
771/**
772 * do_special - issue some special commands
773 * @drive: drive the command is for
774 *
775 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
776 * commands to a drive. It used to do much more, but has been scaled
777 * back.
778 */
779
780static ide_startstop_t do_special (ide_drive_t *drive)
781{
782 special_t *s = &drive->special;
783
784#ifdef DEBUG
785 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
786#endif
787 if (s->b.set_tune) {
788 s->b.set_tune = 0;
789 if (HWIF(drive)->tuneproc != NULL)
790 HWIF(drive)->tuneproc(drive, drive->tune_req);
791 return ide_stopped;
792 } else {
793 if (drive->media == ide_disk)
794 return ide_disk_special(drive);
795
796 s->all = 0;
797 drive->mult_req = 0;
798 return ide_stopped;
799 }
800}
801
802void ide_map_sg(ide_drive_t *drive, struct request *rq)
803{
804 ide_hwif_t *hwif = drive->hwif;
805 struct scatterlist *sg = hwif->sg_table;
806
807 if (hwif->sg_mapped) /* needed by ide-scsi */
808 return;
809
4aff5e23 810 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
811 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
812 } else {
813 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
814 hwif->sg_nents = 1;
815 }
816}
817
818EXPORT_SYMBOL_GPL(ide_map_sg);
819
820void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
821{
822 ide_hwif_t *hwif = drive->hwif;
823
824 hwif->nsect = hwif->nleft = rq->nr_sectors;
825 hwif->cursg = hwif->cursg_ofs = 0;
826}
827
828EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
829
830/**
831 * execute_drive_command - issue special drive command
338cec32 832 * @drive: the drive to issue the command on
1da177e4
LT
833 * @rq: the request structure holding the command
834 *
835 * execute_drive_cmd() issues a special drive command, usually
836 * initiated by ioctl() from the external hdparm program. The
837 * command can be a drive command, drive task or taskfile
838 * operation. Weirdly you can call it with NULL to wait for
839 * all commands to finish. Don't do this as that is due to change
840 */
841
842static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
843 struct request *rq)
844{
845 ide_hwif_t *hwif = HWIF(drive);
4aff5e23 846 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
847 ide_task_t *args = rq->special;
848
849 if (!args)
850 goto done;
851
852 hwif->data_phase = args->data_phase;
853
854 switch (hwif->data_phase) {
855 case TASKFILE_MULTI_OUT:
856 case TASKFILE_OUT:
857 case TASKFILE_MULTI_IN:
858 case TASKFILE_IN:
859 ide_init_sg_cmd(drive, rq);
860 ide_map_sg(drive, rq);
861 default:
862 break;
863 }
864
865 if (args->tf_out_flags.all != 0)
866 return flagged_taskfile(drive, args);
867 return do_rw_taskfile(drive, args);
4aff5e23 868 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
1da177e4
LT
869 u8 *args = rq->buffer;
870 u8 sel;
871
872 if (!args)
873 goto done;
874#ifdef DEBUG
875 printk("%s: DRIVE_TASK_CMD ", drive->name);
876 printk("cmd=0x%02x ", args[0]);
877 printk("fr=0x%02x ", args[1]);
878 printk("ns=0x%02x ", args[2]);
879 printk("sc=0x%02x ", args[3]);
880 printk("lcyl=0x%02x ", args[4]);
881 printk("hcyl=0x%02x ", args[5]);
882 printk("sel=0x%02x\n", args[6]);
883#endif
884 hwif->OUTB(args[1], IDE_FEATURE_REG);
885 hwif->OUTB(args[3], IDE_SECTOR_REG);
886 hwif->OUTB(args[4], IDE_LCYL_REG);
887 hwif->OUTB(args[5], IDE_HCYL_REG);
888 sel = (args[6] & ~0x10);
889 if (drive->select.b.unit)
890 sel |= 0x10;
891 hwif->OUTB(sel, IDE_SELECT_REG);
892 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
893 return ide_started;
4aff5e23 894 } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
1da177e4
LT
895 u8 *args = rq->buffer;
896
897 if (!args)
898 goto done;
899#ifdef DEBUG
900 printk("%s: DRIVE_CMD ", drive->name);
901 printk("cmd=0x%02x ", args[0]);
902 printk("sc=0x%02x ", args[1]);
903 printk("fr=0x%02x ", args[2]);
904 printk("xx=0x%02x\n", args[3]);
905#endif
906 if (args[0] == WIN_SMART) {
907 hwif->OUTB(0x4f, IDE_LCYL_REG);
908 hwif->OUTB(0xc2, IDE_HCYL_REG);
909 hwif->OUTB(args[2],IDE_FEATURE_REG);
910 hwif->OUTB(args[1],IDE_SECTOR_REG);
911 ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
912 return ide_started;
913 }
914 hwif->OUTB(args[2],IDE_FEATURE_REG);
915 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
916 return ide_started;
917 }
918
919done:
920 /*
921 * NULL is actually a valid way of waiting for
922 * all current requests to be flushed from the queue.
923 */
924#ifdef DEBUG
925 printk("%s: DRIVE_CMD (null)\n", drive->name);
926#endif
927 ide_end_drive_cmd(drive,
928 hwif->INB(IDE_STATUS_REG),
929 hwif->INB(IDE_ERROR_REG));
930 return ide_stopped;
931}
932
ad3cadda
JA
933static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
934{
c00895ab 935 struct request_pm_state *pm = rq->data;
ad3cadda
JA
936
937 if (blk_pm_suspend_request(rq) &&
938 pm->pm_step == ide_pm_state_start_suspend)
939 /* Mark drive blocked when starting the suspend sequence. */
940 drive->blocked = 1;
941 else if (blk_pm_resume_request(rq) &&
942 pm->pm_step == ide_pm_state_start_resume) {
943 /*
944 * The first thing we do on wakeup is to wait for BSY bit to
945 * go away (with a looong timeout) as a drive on this hwif may
946 * just be POSTing itself.
947 * We do that before even selecting as the "other" device on
948 * the bus may be broken enough to walk on our toes at this
949 * point.
950 */
951 int rc;
952#ifdef DEBUG_PM
953 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
954#endif
955 rc = ide_wait_not_busy(HWIF(drive), 35000);
956 if (rc)
957 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
958 SELECT_DRIVE(drive);
959 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
178184b6 960 rc = ide_wait_not_busy(HWIF(drive), 100000);
ad3cadda
JA
961 if (rc)
962 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
963 }
964}
965
1da177e4
LT
966/**
967 * start_request - start of I/O and command issuing for IDE
968 *
969 * start_request() initiates handling of a new I/O request. It
970 * accepts commands and I/O (read/write) requests. It also does
971 * the final remapping for weird stuff like EZDrive. Once
972 * device mapper can work sector level the EZDrive stuff can go away
973 *
974 * FIXME: this function needs a rename
975 */
976
977static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
978{
979 ide_startstop_t startstop;
980 sector_t block;
981
4aff5e23 982 BUG_ON(!blk_rq_started(rq));
1da177e4
LT
983
984#ifdef DEBUG
985 printk("%s: start_request: current=0x%08lx\n",
986 HWIF(drive)->name, (unsigned long) rq);
987#endif
988
989 /* bail early if we've exceeded max_failures */
990 if (drive->max_failures && (drive->failures > drive->max_failures)) {
991 goto kill_rq;
992 }
993
994 block = rq->sector;
995 if (blk_fs_request(rq) &&
996 (drive->media == ide_disk || drive->media == ide_floppy)) {
997 block += drive->sect0;
998 }
999 /* Yecch - this will shift the entire interval,
1000 possibly killing some innocent following sector */
1001 if (block == 0 && drive->remap_0_to_1 == 1)
1002 block = 1; /* redirect MBR access to EZ-Drive partn table */
1003
ad3cadda
JA
1004 if (blk_pm_request(rq))
1005 ide_check_pm_state(drive, rq);
1da177e4
LT
1006
1007 SELECT_DRIVE(drive);
1008 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1009 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1010 return startstop;
1011 }
1012 if (!drive->special.all) {
1013 ide_driver_t *drv;
1014
4aff5e23
JA
1015 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1016 rq->cmd_type == REQ_TYPE_ATA_TASK ||
1017 rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1da177e4
LT
1018 return execute_drive_cmd(drive, rq);
1019 else if (blk_pm_request(rq)) {
c00895ab 1020 struct request_pm_state *pm = rq->data;
1da177e4
LT
1021#ifdef DEBUG_PM
1022 printk("%s: start_power_step(step: %d)\n",
1023 drive->name, rq->pm->pm_step);
1024#endif
1025 startstop = ide_start_power_step(drive, rq);
1026 if (startstop == ide_stopped &&
ad3cadda 1027 pm->pm_step == ide_pm_state_completed)
1da177e4
LT
1028 ide_complete_pm_request(drive, rq);
1029 return startstop;
1030 }
1031
1032 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1033 return drv->do_request(drive, rq, block);
1034 }
1035 return do_special(drive);
1036kill_rq:
1037 ide_kill_rq(drive, rq);
1038 return ide_stopped;
1039}
1040
1041/**
1042 * ide_stall_queue - pause an IDE device
1043 * @drive: drive to stall
1044 * @timeout: time to stall for (jiffies)
1045 *
1046 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1047 * to the hwgroup by sleeping for timeout jiffies.
1048 */
1049
1050void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1051{
1052 if (timeout > WAIT_WORSTCASE)
1053 timeout = WAIT_WORSTCASE;
1054 drive->sleep = timeout + jiffies;
1055 drive->sleeping = 1;
1056}
1057
1058EXPORT_SYMBOL(ide_stall_queue);
1059
1060#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1061
1062/**
1063 * choose_drive - select a drive to service
1064 * @hwgroup: hardware group to select on
1065 *
1066 * choose_drive() selects the next drive which will be serviced.
1067 * This is necessary because the IDE layer can't issue commands
1068 * to both drives on the same cable, unlike SCSI.
1069 */
1070
1071static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1072{
1073 ide_drive_t *drive, *best;
1074
1075repeat:
1076 best = NULL;
1077 drive = hwgroup->drive;
1078
1079 /*
1080 * drive is doing pre-flush, ordered write, post-flush sequence. even
1081 * though that is 3 requests, it must be seen as a single transaction.
1082 * we must not preempt this drive until that is complete
1083 */
1084 if (blk_queue_flushing(drive->queue)) {
1085 /*
1086 * small race where queue could get replugged during
1087 * the 3-request flush cycle, just yank the plug since
1088 * we want it to finish asap
1089 */
1090 blk_remove_plug(drive->queue);
1091 return drive;
1092 }
1093
1094 do {
1095 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1096 && !elv_queue_empty(drive->queue)) {
1097 if (!best
1098 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1099 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1100 {
1101 if (!blk_queue_plugged(drive->queue))
1102 best = drive;
1103 }
1104 }
1105 } while ((drive = drive->next) != hwgroup->drive);
1106 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1107 long t = (signed long)(WAKEUP(best) - jiffies);
1108 if (t >= WAIT_MIN_SLEEP) {
1109 /*
1110 * We *may* have some time to spare, but first let's see if
1111 * someone can potentially benefit from our nice mood today..
1112 */
1113 drive = best->next;
1114 do {
1115 if (!drive->sleeping
1116 && time_before(jiffies - best->service_time, WAKEUP(drive))
1117 && time_before(WAKEUP(drive), jiffies + t))
1118 {
1119 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1120 goto repeat;
1121 }
1122 } while ((drive = drive->next) != best);
1123 }
1124 }
1125 return best;
1126}
1127
1128/*
1129 * Issue a new request to a drive from hwgroup
1130 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1131 *
1132 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1133 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1134 * may have both interfaces in a single hwgroup to "serialize" access.
1135 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1136 * together into one hwgroup for serialized access.
1137 *
1138 * Note also that several hwgroups can end up sharing a single IRQ,
1139 * possibly along with many other devices. This is especially common in
1140 * PCI-based systems with off-board IDE controller cards.
1141 *
1142 * The IDE driver uses the single global ide_lock spinlock to protect
1143 * access to the request queues, and to protect the hwgroup->busy flag.
1144 *
1145 * The first thread into the driver for a particular hwgroup sets the
1146 * hwgroup->busy flag to indicate that this hwgroup is now active,
1147 * and then initiates processing of the top request from the request queue.
1148 *
1149 * Other threads attempting entry notice the busy setting, and will simply
1150 * queue their new requests and exit immediately. Note that hwgroup->busy
1151 * remains set even when the driver is merely awaiting the next interrupt.
1152 * Thus, the meaning is "this hwgroup is busy processing a request".
1153 *
1154 * When processing of a request completes, the completing thread or IRQ-handler
1155 * will start the next request from the queue. If no more work remains,
1156 * the driver will clear the hwgroup->busy flag and exit.
1157 *
1158 * The ide_lock (spinlock) is used to protect all access to the
1159 * hwgroup->busy flag, but is otherwise not needed for most processing in
1160 * the driver. This makes the driver much more friendlier to shared IRQs
1161 * than previous designs, while remaining 100% (?) SMP safe and capable.
1162 */
1163static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1164{
1165 ide_drive_t *drive;
1166 ide_hwif_t *hwif;
1167 struct request *rq;
1168 ide_startstop_t startstop;
867f8b4e 1169 int loops = 0;
1da177e4
LT
1170
1171 /* for atari only: POSSIBLY BROKEN HERE(?) */
1172 ide_get_lock(ide_intr, hwgroup);
1173
1174 /* caller must own ide_lock */
1175 BUG_ON(!irqs_disabled());
1176
1177 while (!hwgroup->busy) {
1178 hwgroup->busy = 1;
1179 drive = choose_drive(hwgroup);
1180 if (drive == NULL) {
1181 int sleeping = 0;
1182 unsigned long sleep = 0; /* shut up, gcc */
1183 hwgroup->rq = NULL;
1184 drive = hwgroup->drive;
1185 do {
1186 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1187 sleeping = 1;
1188 sleep = drive->sleep;
1189 }
1190 } while ((drive = drive->next) != hwgroup->drive);
1191 if (sleeping) {
1192 /*
1193 * Take a short snooze, and then wake up this hwgroup again.
1194 * This gives other hwgroups on the same a chance to
1195 * play fairly with us, just in case there are big differences
1196 * in relative throughputs.. don't want to hog the cpu too much.
1197 */
1198 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1199 sleep = jiffies + WAIT_MIN_SLEEP;
1200#if 1
1201 if (timer_pending(&hwgroup->timer))
1202 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1203#endif
1204 /* so that ide_timer_expiry knows what to do */
1205 hwgroup->sleeping = 1;
1206 mod_timer(&hwgroup->timer, sleep);
1207 /* we purposely leave hwgroup->busy==1
1208 * while sleeping */
1209 } else {
1210 /* Ugly, but how can we sleep for the lock
1211 * otherwise? perhaps from tq_disk?
1212 */
1213
1214 /* for atari only */
1215 ide_release_lock();
1216 hwgroup->busy = 0;
1217 }
1218
1219 /* no more work for this hwgroup (for now) */
1220 return;
1221 }
867f8b4e 1222 again:
1da177e4
LT
1223 hwif = HWIF(drive);
1224 if (hwgroup->hwif->sharing_irq &&
1225 hwif != hwgroup->hwif &&
1226 hwif->io_ports[IDE_CONTROL_OFFSET]) {
1227 /* set nIEN for previous hwif */
1228 SELECT_INTERRUPT(drive);
1229 }
1230 hwgroup->hwif = hwif;
1231 hwgroup->drive = drive;
1232 drive->sleeping = 0;
1233 drive->service_start = jiffies;
1234
1235 if (blk_queue_plugged(drive->queue)) {
1236 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1237 break;
1238 }
1239
1240 /*
1241 * we know that the queue isn't empty, but this can happen
1242 * if the q->prep_rq_fn() decides to kill a request
1243 */
1244 rq = elv_next_request(drive->queue);
1245 if (!rq) {
1246 hwgroup->busy = 0;
1247 break;
1248 }
1249
1250 /*
1251 * Sanity: don't accept a request that isn't a PM request
1252 * if we are currently power managed. This is very important as
1253 * blk_stop_queue() doesn't prevent the elv_next_request()
1254 * above to return us whatever is in the queue. Since we call
1255 * ide_do_request() ourselves, we end up taking requests while
1256 * the queue is blocked...
1257 *
1258 * We let requests forced at head of queue with ide-preempt
1259 * though. I hope that doesn't happen too much, hopefully not
1260 * unless the subdriver triggers such a thing in its own PM
1261 * state machine.
867f8b4e
BH
1262 *
1263 * We count how many times we loop here to make sure we service
1264 * all drives in the hwgroup without looping for ever
1da177e4 1265 */
4aff5e23 1266 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
867f8b4e
BH
1267 drive = drive->next ? drive->next : hwgroup->drive;
1268 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1269 goto again;
1da177e4
LT
1270 /* We clear busy, there should be no pending ATA command at this point. */
1271 hwgroup->busy = 0;
1272 break;
1273 }
1274
1275 hwgroup->rq = rq;
1276
1277 /*
1278 * Some systems have trouble with IDE IRQs arriving while
1279 * the driver is still setting things up. So, here we disable
1280 * the IRQ used by this interface while the request is being started.
1281 * This may look bad at first, but pretty much the same thing
1282 * happens anyway when any interrupt comes in, IDE or otherwise
1283 * -- the kernel masks the IRQ while it is being handled.
1284 */
1285 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1286 disable_irq_nosync(hwif->irq);
1287 spin_unlock(&ide_lock);
366c7f55 1288 local_irq_enable_in_hardirq();
1da177e4
LT
1289 /* allow other IRQs while we start this request */
1290 startstop = start_request(drive, rq);
1291 spin_lock_irq(&ide_lock);
1292 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1293 enable_irq(hwif->irq);
1294 if (startstop == ide_stopped)
1295 hwgroup->busy = 0;
1296 }
1297}
1298
1299/*
1300 * Passes the stuff to ide_do_request
1301 */
1302void do_ide_request(request_queue_t *q)
1303{
1304 ide_drive_t *drive = q->queuedata;
1305
1306 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1307}
1308
1309/*
1310 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1311 * retry the current request in pio mode instead of risking tossing it
1312 * all away
1313 */
1314static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1315{
1316 ide_hwif_t *hwif = HWIF(drive);
1317 struct request *rq;
1318 ide_startstop_t ret = ide_stopped;
1319
1320 /*
1321 * end current dma transaction
1322 */
1323
1324 if (error < 0) {
1325 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1326 (void)HWIF(drive)->ide_dma_end(drive);
1327 ret = ide_error(drive, "dma timeout error",
1328 hwif->INB(IDE_STATUS_REG));
1329 } else {
1330 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1331 (void) hwif->ide_dma_timeout(drive);
1332 }
1333
1334 /*
1335 * disable dma for now, but remember that we did so because of
1336 * a timeout -- we'll reenable after we finish this next request
1337 * (or rather the first chunk of it) in pio.
1338 */
1339 drive->retry_pio++;
1340 drive->state = DMA_PIO_RETRY;
1341 (void) hwif->ide_dma_off_quietly(drive);
1342
1343 /*
1344 * un-busy drive etc (hwgroup->busy is cleared on return) and
1345 * make sure request is sane
1346 */
1347 rq = HWGROUP(drive)->rq;
ce42f191
HZ
1348
1349 if (!rq)
1350 goto out;
1351
1da177e4
LT
1352 HWGROUP(drive)->rq = NULL;
1353
1354 rq->errors = 0;
1355
1356 if (!rq->bio)
1357 goto out;
1358
1359 rq->sector = rq->bio->bi_sector;
1360 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1361 rq->hard_cur_sectors = rq->current_nr_sectors;
1362 rq->buffer = bio_data(rq->bio);
1363out:
1364 return ret;
1365}
1366
1367/**
1368 * ide_timer_expiry - handle lack of an IDE interrupt
1369 * @data: timer callback magic (hwgroup)
1370 *
1371 * An IDE command has timed out before the expected drive return
1372 * occurred. At this point we attempt to clean up the current
1373 * mess. If the current handler includes an expiry handler then
1374 * we invoke the expiry handler, and providing it is happy the
1375 * work is done. If that fails we apply generic recovery rules
1376 * invoking the handler and checking the drive DMA status. We
1377 * have an excessively incestuous relationship with the DMA
1378 * logic that wants cleaning up.
1379 */
1380
1381void ide_timer_expiry (unsigned long data)
1382{
1383 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1384 ide_handler_t *handler;
1385 ide_expiry_t *expiry;
1386 unsigned long flags;
1387 unsigned long wait = -1;
1388
1389 spin_lock_irqsave(&ide_lock, flags);
1390
1391 if ((handler = hwgroup->handler) == NULL) {
1392 /*
1393 * Either a marginal timeout occurred
1394 * (got the interrupt just as timer expired),
1395 * or we were "sleeping" to give other devices a chance.
1396 * Either way, we don't really want to complain about anything.
1397 */
1398 if (hwgroup->sleeping) {
1399 hwgroup->sleeping = 0;
1400 hwgroup->busy = 0;
1401 }
1402 } else {
1403 ide_drive_t *drive = hwgroup->drive;
1404 if (!drive) {
1405 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1406 hwgroup->handler = NULL;
1407 } else {
1408 ide_hwif_t *hwif;
1409 ide_startstop_t startstop = ide_stopped;
1410 if (!hwgroup->busy) {
1411 hwgroup->busy = 1; /* paranoia */
1412 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1413 }
1414 if ((expiry = hwgroup->expiry) != NULL) {
1415 /* continue */
1416 if ((wait = expiry(drive)) > 0) {
1417 /* reset timer */
1418 hwgroup->timer.expires = jiffies + wait;
1419 add_timer(&hwgroup->timer);
1420 spin_unlock_irqrestore(&ide_lock, flags);
1421 return;
1422 }
1423 }
1424 hwgroup->handler = NULL;
1425 /*
1426 * We need to simulate a real interrupt when invoking
1427 * the handler() function, which means we need to
1428 * globally mask the specific IRQ:
1429 */
1430 spin_unlock(&ide_lock);
1431 hwif = HWIF(drive);
1432#if DISABLE_IRQ_NOSYNC
1433 disable_irq_nosync(hwif->irq);
1434#else
1435 /* disable_irq_nosync ?? */
1436 disable_irq(hwif->irq);
1437#endif /* DISABLE_IRQ_NOSYNC */
1438 /* local CPU only,
1439 * as if we were handling an interrupt */
1440 local_irq_disable();
1441 if (hwgroup->polling) {
1442 startstop = handler(drive);
1443 } else if (drive_is_ready(drive)) {
1444 if (drive->waiting_for_dma)
1445 (void) hwgroup->hwif->ide_dma_lostirq(drive);
1446 (void)ide_ack_intr(hwif);
1447 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1448 startstop = handler(drive);
1449 } else {
1450 if (drive->waiting_for_dma) {
1451 startstop = ide_dma_timeout_retry(drive, wait);
1452 } else
1453 startstop =
1454 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1455 }
1456 drive->service_time = jiffies - drive->service_start;
1457 spin_lock_irq(&ide_lock);
1458 enable_irq(hwif->irq);
1459 if (startstop == ide_stopped)
1460 hwgroup->busy = 0;
1461 }
1462 }
1463 ide_do_request(hwgroup, IDE_NO_IRQ);
1464 spin_unlock_irqrestore(&ide_lock, flags);
1465}
1466
1467/**
1468 * unexpected_intr - handle an unexpected IDE interrupt
1469 * @irq: interrupt line
1470 * @hwgroup: hwgroup being processed
1471 *
1472 * There's nothing really useful we can do with an unexpected interrupt,
1473 * other than reading the status register (to clear it), and logging it.
1474 * There should be no way that an irq can happen before we're ready for it,
1475 * so we needn't worry much about losing an "important" interrupt here.
1476 *
1477 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1478 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1479 * looks "good", we just ignore the interrupt completely.
1480 *
1481 * This routine assumes __cli() is in effect when called.
1482 *
1483 * If an unexpected interrupt happens on irq15 while we are handling irq14
1484 * and if the two interfaces are "serialized" (CMD640), then it looks like
1485 * we could screw up by interfering with a new request being set up for
1486 * irq15.
1487 *
1488 * In reality, this is a non-issue. The new command is not sent unless
1489 * the drive is ready to accept one, in which case we know the drive is
1490 * not trying to interrupt us. And ide_set_handler() is always invoked
1491 * before completing the issuance of any new drive command, so we will not
1492 * be accidentally invoked as a result of any valid command completion
1493 * interrupt.
1494 *
1495 * Note that we must walk the entire hwgroup here. We know which hwif
1496 * is doing the current command, but we don't know which hwif burped
1497 * mysteriously.
1498 */
1499
1500static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1501{
1502 u8 stat;
1503 ide_hwif_t *hwif = hwgroup->hwif;
1504
1505 /*
1506 * handle the unexpected interrupt
1507 */
1508 do {
1509 if (hwif->irq == irq) {
1510 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1511 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1512 /* Try to not flood the console with msgs */
1513 static unsigned long last_msgtime, count;
1514 ++count;
1515 if (time_after(jiffies, last_msgtime + HZ)) {
1516 last_msgtime = jiffies;
1517 printk(KERN_ERR "%s%s: unexpected interrupt, "
1518 "status=0x%02x, count=%ld\n",
1519 hwif->name,
1520 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1521 }
1522 }
1523 }
1524 } while ((hwif = hwif->next) != hwgroup->hwif);
1525}
1526
1527/**
1528 * ide_intr - default IDE interrupt handler
1529 * @irq: interrupt number
1530 * @dev_id: hwif group
1531 * @regs: unused weirdness from the kernel irq layer
1532 *
1533 * This is the default IRQ handler for the IDE layer. You should
1534 * not need to override it. If you do be aware it is subtle in
1535 * places
1536 *
1537 * hwgroup->hwif is the interface in the group currently performing
1538 * a command. hwgroup->drive is the drive and hwgroup->handler is
1539 * the IRQ handler to call. As we issue a command the handlers
1540 * step through multiple states, reassigning the handler to the
1541 * next step in the process. Unlike a smart SCSI controller IDE
1542 * expects the main processor to sequence the various transfer
1543 * stages. We also manage a poll timer to catch up with most
1544 * timeout situations. There are still a few where the handlers
1545 * don't ever decide to give up.
1546 *
1547 * The handler eventually returns ide_stopped to indicate the
1548 * request completed. At this point we issue the next request
1549 * on the hwgroup and the process begins again.
1550 */
1551
1552irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs)
1553{
1554 unsigned long flags;
1555 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1556 ide_hwif_t *hwif;
1557 ide_drive_t *drive;
1558 ide_handler_t *handler;
1559 ide_startstop_t startstop;
1560
1561 spin_lock_irqsave(&ide_lock, flags);
1562 hwif = hwgroup->hwif;
1563
1564 if (!ide_ack_intr(hwif)) {
1565 spin_unlock_irqrestore(&ide_lock, flags);
1566 return IRQ_NONE;
1567 }
1568
1569 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1570 /*
1571 * Not expecting an interrupt from this drive.
1572 * That means this could be:
1573 * (1) an interrupt from another PCI device
1574 * sharing the same PCI INT# as us.
1575 * or (2) a drive just entered sleep or standby mode,
1576 * and is interrupting to let us know.
1577 * or (3) a spurious interrupt of unknown origin.
1578 *
1579 * For PCI, we cannot tell the difference,
1580 * so in that case we just ignore it and hope it goes away.
1581 *
1582 * FIXME: unexpected_intr should be hwif-> then we can
1583 * remove all the ifdef PCI crap
1584 */
1585#ifdef CONFIG_BLK_DEV_IDEPCI
1586 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1587#endif /* CONFIG_BLK_DEV_IDEPCI */
1588 {
1589 /*
1590 * Probably not a shared PCI interrupt,
1591 * so we can safely try to do something about it:
1592 */
1593 unexpected_intr(irq, hwgroup);
1594#ifdef CONFIG_BLK_DEV_IDEPCI
1595 } else {
1596 /*
1597 * Whack the status register, just in case
1598 * we have a leftover pending IRQ.
1599 */
1600 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1601#endif /* CONFIG_BLK_DEV_IDEPCI */
1602 }
1603 spin_unlock_irqrestore(&ide_lock, flags);
1604 return IRQ_NONE;
1605 }
1606 drive = hwgroup->drive;
1607 if (!drive) {
1608 /*
1609 * This should NEVER happen, and there isn't much
1610 * we could do about it here.
1611 *
1612 * [Note - this can occur if the drive is hot unplugged]
1613 */
1614 spin_unlock_irqrestore(&ide_lock, flags);
1615 return IRQ_HANDLED;
1616 }
1617 if (!drive_is_ready(drive)) {
1618 /*
1619 * This happens regularly when we share a PCI IRQ with
1620 * another device. Unfortunately, it can also happen
1621 * with some buggy drives that trigger the IRQ before
1622 * their status register is up to date. Hopefully we have
1623 * enough advance overhead that the latter isn't a problem.
1624 */
1625 spin_unlock_irqrestore(&ide_lock, flags);
1626 return IRQ_NONE;
1627 }
1628 if (!hwgroup->busy) {
1629 hwgroup->busy = 1; /* paranoia */
1630 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1631 }
1632 hwgroup->handler = NULL;
1633 del_timer(&hwgroup->timer);
1634 spin_unlock(&ide_lock);
1635
1636 if (drive->unmask)
366c7f55 1637 local_irq_enable_in_hardirq();
1da177e4
LT
1638 /* service this interrupt, may set handler for next interrupt */
1639 startstop = handler(drive);
1640 spin_lock_irq(&ide_lock);
1641
1642 /*
1643 * Note that handler() may have set things up for another
1644 * interrupt to occur soon, but it cannot happen until
1645 * we exit from this routine, because it will be the
1646 * same irq as is currently being serviced here, and Linux
1647 * won't allow another of the same (on any CPU) until we return.
1648 */
1649 drive->service_time = jiffies - drive->service_start;
1650 if (startstop == ide_stopped) {
1651 if (hwgroup->handler == NULL) { /* paranoia */
1652 hwgroup->busy = 0;
1653 ide_do_request(hwgroup, hwif->irq);
1654 } else {
1655 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1656 "on exit\n", drive->name);
1657 }
1658 }
1659 spin_unlock_irqrestore(&ide_lock, flags);
1660 return IRQ_HANDLED;
1661}
1662
1663/**
1664 * ide_init_drive_cmd - initialize a drive command request
1665 * @rq: request object
1666 *
1667 * Initialize a request before we fill it in and send it down to
1668 * ide_do_drive_cmd. Commands must be set up by this function. Right
1669 * now it doesn't do a lot, but if that changes abusers will have a
d6e05edc 1670 * nasty surprise.
1da177e4
LT
1671 */
1672
1673void ide_init_drive_cmd (struct request *rq)
1674{
1675 memset(rq, 0, sizeof(*rq));
4aff5e23 1676 rq->cmd_type = REQ_TYPE_ATA_CMD;
1da177e4
LT
1677 rq->ref_count = 1;
1678}
1679
1680EXPORT_SYMBOL(ide_init_drive_cmd);
1681
1682/**
1683 * ide_do_drive_cmd - issue IDE special command
1684 * @drive: device to issue command
1685 * @rq: request to issue
1686 * @action: action for processing
1687 *
1688 * This function issues a special IDE device request
1689 * onto the request queue.
1690 *
1691 * If action is ide_wait, then the rq is queued at the end of the
1692 * request queue, and the function sleeps until it has been processed.
1693 * This is for use when invoked from an ioctl handler.
1694 *
1695 * If action is ide_preempt, then the rq is queued at the head of
1696 * the request queue, displacing the currently-being-processed
1697 * request and this function returns immediately without waiting
1698 * for the new rq to be completed. This is VERY DANGEROUS, and is
1699 * intended for careful use by the ATAPI tape/cdrom driver code.
1700 *
1da177e4
LT
1701 * If action is ide_end, then the rq is queued at the end of the
1702 * request queue, and the function returns immediately without waiting
1703 * for the new rq to be completed. This is again intended for careful
1704 * use by the ATAPI tape/cdrom driver code.
1705 */
1706
1707int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1708{
1709 unsigned long flags;
1710 ide_hwgroup_t *hwgroup = HWGROUP(drive);
60be6b9a 1711 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
1712 int where = ELEVATOR_INSERT_BACK, err;
1713 int must_wait = (action == ide_wait || action == ide_head_wait);
1714
1715 rq->errors = 0;
1da177e4
LT
1716
1717 /*
1718 * we need to hold an extra reference to request for safe inspection
1719 * after completion
1720 */
1721 if (must_wait) {
1722 rq->ref_count++;
c00895ab 1723 rq->end_io_data = &wait;
1da177e4
LT
1724 rq->end_io = blk_end_sync_rq;
1725 }
1726
1727 spin_lock_irqsave(&ide_lock, flags);
1728 if (action == ide_preempt)
1729 hwgroup->rq = NULL;
1730 if (action == ide_preempt || action == ide_head_wait) {
1731 where = ELEVATOR_INSERT_FRONT;
4aff5e23 1732 rq->cmd_flags |= REQ_PREEMPT;
1da177e4
LT
1733 }
1734 __elv_add_request(drive->queue, rq, where, 0);
1735 ide_do_request(hwgroup, IDE_NO_IRQ);
1736 spin_unlock_irqrestore(&ide_lock, flags);
1737
1738 err = 0;
1739 if (must_wait) {
1740 wait_for_completion(&wait);
1da177e4
LT
1741 if (rq->errors)
1742 err = -EIO;
1743
1744 blk_put_request(rq);
1745 }
1746
1747 return err;
1748}
1749
1750EXPORT_SYMBOL(ide_do_drive_cmd);