Merge branch 'bind_unbind' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
56e51bf0 193#define CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
71562919
MT
209#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
210#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 211
0e93cdd4
CW
212/* Typical size of the average request (2 pipecontrols and a MI_BB) */
213#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
214
a3aabe86
CW
215#define WA_TAIL_DWORDS 2
216
e2efd130 217static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 218 struct intel_engine_cs *engine);
a3aabe86
CW
219static void execlists_init_reg_state(u32 *reg_state,
220 struct i915_gem_context *ctx,
221 struct intel_engine_cs *engine,
222 struct intel_ring *ring);
7ba717cf 223
73e4d07f
OM
224/**
225 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 226 * @dev_priv: i915 device private
73e4d07f
OM
227 * @enable_execlists: value of i915.enable_execlists module parameter.
228 *
229 * Only certain platforms support Execlists (the prerequisites being
27401d12 230 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
231 *
232 * Return: 1 if Execlists is supported and has to be enabled.
233 */
c033666a 234int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 235{
a0bd6c31
ZL
236 /* On platforms with execlist available, vGPU will only
237 * support execlist mode, no ring buffer mode.
238 */
c033666a 239 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
240 return 1;
241
c033666a 242 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
243 return 1;
244
127f1003
OM
245 if (enable_execlists == 0)
246 return 0;
247
5a21b665
DV
248 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
249 USES_PPGTT(dev_priv) &&
250 i915.use_mmio_flip >= 0)
127f1003
OM
251 return 1;
252
253 return 0;
254}
ede7d42b 255
73e4d07f 256/**
ca82580c
TU
257 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
258 * descriptor for a pinned context
ca82580c 259 * @ctx: Context to work on
9021ad03 260 * @engine: Engine the descriptor will be used with
73e4d07f 261 *
ca82580c
TU
262 * The context descriptor encodes various attributes of a context,
263 * including its GTT address and some flags. Because it's fairly
264 * expensive to calculate, we'll just do it once and cache the result,
265 * which remains valid until the context is unpinned.
266 *
6e5248b5
DV
267 * This is what a descriptor looks like, from LSB to MSB::
268 *
2355cf08 269 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
6e5248b5
DV
270 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
271 * bits 32-52: ctx ID, a globally unique tag
272 * bits 53-54: mbz, reserved for use by hardware
273 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 274 */
ca82580c 275static void
e2efd130 276intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 277 struct intel_engine_cs *engine)
84b790f8 278{
9021ad03 279 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 280 u64 desc;
84b790f8 281
7069b144 282 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 283
2355cf08 284 desc = ctx->desc_template; /* bits 0-11 */
bde13ebd 285 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 286 /* bits 12-31 */
7069b144 287 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 288
9021ad03 289 ce->lrc_desc = desc;
5af05fef
MT
290}
291
e2efd130 292uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 293 struct intel_engine_cs *engine)
84b790f8 294{
0bc40be8 295 return ctx->engine[engine->id].lrc_desc;
ca82580c 296}
203a571b 297
bbd6c47e
CW
298static inline void
299execlists_context_status_change(struct drm_i915_gem_request *rq,
300 unsigned long status)
84b790f8 301{
bbd6c47e
CW
302 /*
303 * Only used when GVT-g is enabled now. When GVT-g is disabled,
304 * The compiler should eliminate this function as dead-code.
305 */
306 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
307 return;
6daccb0b 308
3fc03069
CD
309 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
310 status, rq);
84b790f8
BW
311}
312
c6a2ac71
TU
313static void
314execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
315{
316 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
317 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
318 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
319 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
320}
321
70c2a24d 322static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 323{
70c2a24d 324 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
04da811b
ZW
325 struct i915_hw_ppgtt *ppgtt =
326 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
70c2a24d 327 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 328
a21ef715 329 reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
ae1250b9 330
c6a2ac71
TU
331 /* True 32b PPGTT with dynamic page allocation: update PDP
332 * registers and point the unallocated PDPs to scratch page.
333 * PML4 is allocated during ppgtt init, so this is not needed
334 * in 48-bit mode.
335 */
949e8ab3 336 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
c6a2ac71 337 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
338
339 return ce->lrc_desc;
ae1250b9
OM
340}
341
70c2a24d 342static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 343{
70c2a24d
CW
344 struct drm_i915_private *dev_priv = engine->i915;
345 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
346 u32 __iomem *elsp =
347 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
348 u64 desc[2];
349
c816e605 350 GEM_BUG_ON(port[0].count > 1);
70c2a24d
CW
351 if (!port[0].count)
352 execlists_context_status_change(port[0].request,
353 INTEL_CONTEXT_SCHEDULE_IN);
354 desc[0] = execlists_update_context(port[0].request);
ae9a043b 355 GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
816ee798 356 port[0].count++;
70c2a24d
CW
357
358 if (port[1].request) {
359 GEM_BUG_ON(port[1].count);
360 execlists_context_status_change(port[1].request,
361 INTEL_CONTEXT_SCHEDULE_IN);
362 desc[1] = execlists_update_context(port[1].request);
ae9a043b 363 GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
70c2a24d 364 port[1].count = 1;
bbd6c47e
CW
365 } else {
366 desc[1] = 0;
367 }
70c2a24d 368 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
369
370 /* You must always write both descriptors in the order below. */
371 writel(upper_32_bits(desc[1]), elsp);
372 writel(lower_32_bits(desc[1]), elsp);
373
374 writel(upper_32_bits(desc[0]), elsp);
375 /* The context is automatically loaded after the following */
376 writel(lower_32_bits(desc[0]), elsp);
377}
378
70c2a24d 379static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 380{
70c2a24d 381 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
6095868a 382 i915_gem_context_force_single_submission(ctx));
70c2a24d 383}
84b790f8 384
70c2a24d
CW
385static bool can_merge_ctx(const struct i915_gem_context *prev,
386 const struct i915_gem_context *next)
387{
388 if (prev != next)
389 return false;
26720ab9 390
70c2a24d
CW
391 if (ctx_single_port_submission(prev))
392 return false;
26720ab9 393
70c2a24d 394 return true;
84b790f8
BW
395}
396
70c2a24d 397static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 398{
20311bd3 399 struct drm_i915_gem_request *last;
70c2a24d 400 struct execlist_port *port = engine->execlist_port;
20311bd3 401 struct rb_node *rb;
70c2a24d
CW
402 bool submit = false;
403
404 last = port->request;
405 if (last)
406 /* WaIdleLiteRestore:bdw,skl
407 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 408 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
409 * for where we prepare the padding after the end of the
410 * request.
411 */
412 last->tail = last->wa_tail;
e981e7b1 413
70c2a24d 414 GEM_BUG_ON(port[1].request);
acdd884a 415
70c2a24d
CW
416 /* Hardware submission is through 2 ports. Conceptually each port
417 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
418 * static for a context, and unique to each, so we only execute
419 * requests belonging to a single context from each ring. RING_HEAD
420 * is maintained by the CS in the context image, it marks the place
421 * where it got up to last time, and through RING_TAIL we tell the CS
422 * where we want to execute up to this time.
423 *
424 * In this list the requests are in order of execution. Consecutive
425 * requests from the same context are adjacent in the ringbuffer. We
426 * can combine these requests into a single RING_TAIL update:
427 *
428 * RING_HEAD...req1...req2
429 * ^- RING_TAIL
430 * since to execute req2 the CS must first execute req1.
431 *
432 * Our goal then is to point each port to the end of a consecutive
433 * sequence of requests as being the most optimal (fewest wake ups
434 * and context switches) submission.
779949f4 435 */
acdd884a 436
9f7886d0 437 spin_lock_irq(&engine->timeline->lock);
20311bd3
CW
438 rb = engine->execlist_first;
439 while (rb) {
440 struct drm_i915_gem_request *cursor =
441 rb_entry(rb, typeof(*cursor), priotree.node);
442
70c2a24d
CW
443 /* Can we combine this request with the current port? It has to
444 * be the same context/ringbuffer and not have any exceptions
445 * (e.g. GVT saying never to combine contexts).
c6a2ac71 446 *
70c2a24d
CW
447 * If we can combine the requests, we can execute both by
448 * updating the RING_TAIL to point to the end of the second
449 * request, and so we never need to tell the hardware about
450 * the first.
53292cdb 451 */
70c2a24d
CW
452 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
453 /* If we are on the second port and cannot combine
454 * this request with the last, then we are done.
455 */
456 if (port != engine->execlist_port)
457 break;
458
459 /* If GVT overrides us we only ever submit port[0],
460 * leaving port[1] empty. Note that we also have
461 * to be careful that we don't queue the same
462 * context (even though a different request) to
463 * the second port.
464 */
d7ab992c
MH
465 if (ctx_single_port_submission(last->ctx) ||
466 ctx_single_port_submission(cursor->ctx))
70c2a24d
CW
467 break;
468
469 GEM_BUG_ON(last->ctx == cursor->ctx);
470
471 i915_gem_request_assign(&port->request, last);
472 port++;
473 }
d55ac5bf 474
20311bd3
CW
475 rb = rb_next(rb);
476 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
477 RB_CLEAR_NODE(&cursor->priotree.node);
478 cursor->priotree.priority = INT_MAX;
479
d55ac5bf 480 __i915_gem_request_submit(cursor);
d7d96833 481 trace_i915_gem_request_in(cursor, port - engine->execlist_port);
70c2a24d
CW
482 last = cursor;
483 submit = true;
484 }
485 if (submit) {
70c2a24d 486 i915_gem_request_assign(&port->request, last);
20311bd3 487 engine->execlist_first = rb;
53292cdb 488 }
9f7886d0 489 spin_unlock_irq(&engine->timeline->lock);
53292cdb 490
70c2a24d
CW
491 if (submit)
492 execlists_submit_ports(engine);
acdd884a
MT
493}
494
70c2a24d 495static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 496{
70c2a24d 497 return !engine->execlist_port[0].request;
e981e7b1
TD
498}
499
816ee798 500static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
91a41032 501{
816ee798 502 const struct execlist_port *port = engine->execlist_port;
91a41032 503
816ee798 504 return port[0].count + port[1].count < 2;
91a41032
BW
505}
506
6e5248b5 507/*
73e4d07f
OM
508 * Check the unread Context Status Buffers and manage the submission of new
509 * contexts to the ELSP accordingly.
510 */
27af5eea 511static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 512{
27af5eea 513 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 514 struct execlist_port *port = engine->execlist_port;
c033666a 515 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 516
3756685a 517 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 518
899f6204
CW
519 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
520 * imposing the cost of a locked atomic transaction when submitting a
521 * new request (outside of the context-switch interrupt).
522 */
523 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
70c2a24d
CW
524 u32 __iomem *csb_mmio =
525 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
526 u32 __iomem *buf =
527 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
4af0d727 528 unsigned int head, tail;
70c2a24d 529
2e70b8c6
CW
530 /* The write will be ordered by the uncached read (itself
531 * a memory barrier), so we do not need another in the form
532 * of a locked instruction. The race between the interrupt
533 * handler and the split test/clear is harmless as we order
534 * our clear before the CSB read. If the interrupt arrived
535 * first between the test and the clear, we read the updated
536 * CSB and clear the bit. If the interrupt arrives as we read
537 * the CSB or later (i.e. after we had cleared the bit) the bit
538 * is set and we do a new loop.
539 */
540 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
4af0d727
CW
541 head = readl(csb_mmio);
542 tail = GEN8_CSB_WRITE_PTR(head);
543 head = GEN8_CSB_READ_PTR(head);
544 while (head != tail) {
545 unsigned int status;
546
547 if (++head == GEN8_CSB_ENTRIES)
548 head = 0;
70c2a24d 549
2ffe80aa
CW
550 /* We are flying near dragons again.
551 *
552 * We hold a reference to the request in execlist_port[]
553 * but no more than that. We are operating in softirq
554 * context and so cannot hold any mutex or sleep. That
555 * prevents us stopping the requests we are processing
556 * in port[] from being retired simultaneously (the
557 * breadcrumb will be complete before we see the
558 * context-switch). As we only hold the reference to the
559 * request, any pointer chasing underneath the request
560 * is subject to a potential use-after-free. Thus we
561 * store all of the bookkeeping within port[] as
562 * required, and avoid using unguarded pointers beneath
563 * request itself. The same applies to the atomic
564 * status notifier.
565 */
566
4af0d727 567 status = readl(buf + 2 * head);
70c2a24d
CW
568 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
569 continue;
570
86aa7e76 571 /* Check the context/desc id for this event matches */
4af0d727 572 GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
ae9a043b 573 port[0].context_id);
86aa7e76 574
70c2a24d
CW
575 GEM_BUG_ON(port[0].count == 0);
576 if (--port[0].count == 0) {
577 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
fe9ae7a3 578 GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
70c2a24d
CW
579 execlists_context_status_change(port[0].request,
580 INTEL_CONTEXT_SCHEDULE_OUT);
581
d7d96833 582 trace_i915_gem_request_out(port[0].request);
70c2a24d
CW
583 i915_gem_request_put(port[0].request);
584 port[0] = port[1];
585 memset(&port[1], 0, sizeof(port[1]));
70c2a24d 586 }
26720ab9 587
70c2a24d
CW
588 GEM_BUG_ON(port[0].count == 0 &&
589 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
4af0d727 590 }
e1fee72c 591
4af0d727 592 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
70c2a24d 593 csb_mmio);
e981e7b1
TD
594 }
595
70c2a24d
CW
596 if (execlists_elsp_ready(engine))
597 execlists_dequeue(engine);
c6a2ac71 598
70c2a24d 599 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
600}
601
20311bd3
CW
602static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
603{
604 struct rb_node **p, *rb;
605 bool first = true;
606
607 /* most positive priority is scheduled first, equal priorities fifo */
608 rb = NULL;
609 p = &root->rb_node;
610 while (*p) {
611 struct i915_priotree *pos;
612
613 rb = *p;
614 pos = rb_entry(rb, typeof(*pos), node);
615 if (pt->priority > pos->priority) {
616 p = &rb->rb_left;
617 } else {
618 p = &rb->rb_right;
619 first = false;
620 }
621 }
622 rb_link_node(&pt->node, rb, p);
623 rb_insert_color(&pt->node, root);
624
625 return first;
626}
627
f4ea6bdd 628static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 629{
4a570db5 630 struct intel_engine_cs *engine = request->engine;
5590af3e 631 unsigned long flags;
acdd884a 632
663f71e7
CW
633 /* Will be called from irq-context when using foreign fences. */
634 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 635
3833281a 636 if (insert_request(&request->priotree, &engine->execlist_queue)) {
20311bd3 637 engine->execlist_first = &request->priotree.node;
48ea2554 638 if (execlists_elsp_ready(engine))
3833281a
CW
639 tasklet_hi_schedule(&engine->irq_tasklet);
640 }
acdd884a 641
663f71e7 642 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
643}
644
20311bd3
CW
645static struct intel_engine_cs *
646pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
647{
a79a524e
CW
648 struct intel_engine_cs *engine =
649 container_of(pt, struct drm_i915_gem_request, priotree)->engine;
650
651 GEM_BUG_ON(!locked);
20311bd3 652
20311bd3 653 if (engine != locked) {
a79a524e
CW
654 spin_unlock(&locked->timeline->lock);
655 spin_lock(&engine->timeline->lock);
20311bd3
CW
656 }
657
658 return engine;
659}
660
661static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
662{
a79a524e 663 struct intel_engine_cs *engine;
20311bd3
CW
664 struct i915_dependency *dep, *p;
665 struct i915_dependency stack;
666 LIST_HEAD(dfs);
667
668 if (prio <= READ_ONCE(request->priotree.priority))
669 return;
670
70cd1476
CW
671 /* Need BKL in order to use the temporary link inside i915_dependency */
672 lockdep_assert_held(&request->i915->drm.struct_mutex);
20311bd3
CW
673
674 stack.signaler = &request->priotree;
675 list_add(&stack.dfs_link, &dfs);
676
677 /* Recursively bump all dependent priorities to match the new request.
678 *
679 * A naive approach would be to use recursion:
680 * static void update_priorities(struct i915_priotree *pt, prio) {
681 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
682 * update_priorities(dep->signal, prio)
683 * insert_request(pt);
684 * }
685 * but that may have unlimited recursion depth and so runs a very
686 * real risk of overunning the kernel stack. Instead, we build
687 * a flat list of all dependencies starting with the current request.
688 * As we walk the list of dependencies, we add all of its dependencies
689 * to the end of the list (this may include an already visited
690 * request) and continue to walk onwards onto the new dependencies. The
691 * end result is a topological list of requests in reverse order, the
692 * last element in the list is the request we must execute first.
693 */
694 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
695 struct i915_priotree *pt = dep->signaler;
696
a79a524e
CW
697 /* Within an engine, there can be no cycle, but we may
698 * refer to the same dependency chain multiple times
699 * (redundant dependencies are not eliminated) and across
700 * engines.
701 */
702 list_for_each_entry(p, &pt->signalers_list, signal_link) {
703 GEM_BUG_ON(p->signaler->priority < pt->priority);
20311bd3
CW
704 if (prio > READ_ONCE(p->signaler->priority))
705 list_move_tail(&p->dfs_link, &dfs);
a79a524e 706 }
20311bd3 707
0798cff4 708 list_safe_reset_next(dep, p, dfs_link);
20311bd3
CW
709 }
710
a79a524e
CW
711 engine = request->engine;
712 spin_lock_irq(&engine->timeline->lock);
713
20311bd3
CW
714 /* Fifo and depth-first replacement ensure our deps execute before us */
715 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
716 struct i915_priotree *pt = dep->signaler;
717
718 INIT_LIST_HEAD(&dep->dfs_link);
719
720 engine = pt_lock_engine(pt, engine);
721
722 if (prio <= pt->priority)
723 continue;
724
20311bd3 725 pt->priority = prio;
a79a524e
CW
726 if (!RB_EMPTY_NODE(&pt->node)) {
727 rb_erase(&pt->node, &engine->execlist_queue);
728 if (insert_request(pt, &engine->execlist_queue))
729 engine->execlist_first = &pt->node;
730 }
20311bd3
CW
731 }
732
a79a524e 733 spin_unlock_irq(&engine->timeline->lock);
20311bd3
CW
734
735 /* XXX Do we need to preempt to make room for us and our deps? */
736}
737
e8a9c58f
CW
738static int execlists_context_pin(struct intel_engine_cs *engine,
739 struct i915_gem_context *ctx)
dcb4c12a 740{
9021ad03 741 struct intel_context *ce = &ctx->engine[engine->id];
2947e408 742 unsigned int flags;
7d774cac 743 void *vaddr;
ca82580c 744 int ret;
dcb4c12a 745
91c8a326 746 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 747
9021ad03 748 if (ce->pin_count++)
24f1d3cc 749 return 0;
a533b4ba 750 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
24f1d3cc 751
e8a9c58f
CW
752 if (!ce->state) {
753 ret = execlists_context_deferred_alloc(ctx, engine);
754 if (ret)
755 goto err;
756 }
56f6e0a7 757 GEM_BUG_ON(!ce->state);
e8a9c58f 758
72b72ae4 759 flags = PIN_GLOBAL | PIN_HIGH;
feef2a7c
DCS
760 if (ctx->ggtt_offset_bias)
761 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
2947e408
CW
762
763 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
e84fe803 764 if (ret)
24f1d3cc 765 goto err;
7ba717cf 766
bf3783e5 767 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
768 if (IS_ERR(vaddr)) {
769 ret = PTR_ERR(vaddr);
bf3783e5 770 goto unpin_vma;
82352e90
TU
771 }
772
d3ef1af6 773 ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
e84fe803 774 if (ret)
7d774cac 775 goto unpin_map;
d1675198 776
0bc40be8 777 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 778
a3aabe86
CW
779 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
780 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 781 i915_ggtt_offset(ce->ring->vma);
a3aabe86 782
a4f5ea64 783 ce->state->obj->mm.dirty = true;
e93c28f3 784
9a6feaf0 785 i915_gem_context_get(ctx);
24f1d3cc 786 return 0;
7ba717cf 787
7d774cac 788unpin_map:
bf3783e5
CW
789 i915_gem_object_unpin_map(ce->state->obj);
790unpin_vma:
791 __i915_vma_unpin(ce->state);
24f1d3cc 792err:
9021ad03 793 ce->pin_count = 0;
e84fe803
NH
794 return ret;
795}
796
e8a9c58f
CW
797static void execlists_context_unpin(struct intel_engine_cs *engine,
798 struct i915_gem_context *ctx)
e84fe803 799{
9021ad03 800 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 801
91c8a326 802 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 803 GEM_BUG_ON(ce->pin_count == 0);
321fe304 804
9021ad03 805 if (--ce->pin_count)
24f1d3cc 806 return;
e84fe803 807
aad29fbb 808 intel_ring_unpin(ce->ring);
dcb4c12a 809
bf3783e5
CW
810 i915_gem_object_unpin_map(ce->state->obj);
811 i915_vma_unpin(ce->state);
321fe304 812
9a6feaf0 813 i915_gem_context_put(ctx);
dcb4c12a
OM
814}
815
f73e7399 816static int execlists_request_alloc(struct drm_i915_gem_request *request)
ef11c01d
CW
817{
818 struct intel_engine_cs *engine = request->engine;
819 struct intel_context *ce = &request->ctx->engine[engine->id];
73dec95e 820 u32 *cs;
ef11c01d
CW
821 int ret;
822
e8a9c58f
CW
823 GEM_BUG_ON(!ce->pin_count);
824
ef11c01d
CW
825 /* Flush enough space to reduce the likelihood of waiting after
826 * we start building the request - in which case we will just
827 * have to repeat work.
828 */
829 request->reserved_space += EXECLISTS_REQUEST_SIZE;
830
e8a9c58f 831 GEM_BUG_ON(!ce->ring);
ef11c01d
CW
832 request->ring = ce->ring;
833
ef11c01d
CW
834 if (i915.enable_guc_submission) {
835 /*
836 * Check that the GuC has space for the request before
837 * going any further, as the i915_add_request() call
838 * later on mustn't fail ...
839 */
840 ret = i915_guc_wq_reserve(request);
841 if (ret)
e8a9c58f 842 goto err;
ef11c01d
CW
843 }
844
73dec95e
TU
845 cs = intel_ring_begin(request, 0);
846 if (IS_ERR(cs)) {
847 ret = PTR_ERR(cs);
ef11c01d 848 goto err_unreserve;
73dec95e 849 }
ef11c01d
CW
850
851 if (!ce->initialised) {
852 ret = engine->init_context(request);
853 if (ret)
854 goto err_unreserve;
855
856 ce->initialised = true;
857 }
858
859 /* Note that after this point, we have committed to using
860 * this request as it is being used to both track the
861 * state of engine initialisation and liveness of the
862 * golden renderstate above. Think twice before you try
863 * to cancel/unwind this request now.
864 */
865
866 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
867 return 0;
868
869err_unreserve:
870 if (i915.enable_guc_submission)
871 i915_guc_wq_unreserve(request);
e8a9c58f 872err:
ef11c01d
CW
873 return ret;
874}
875
9e000847
AS
876/*
877 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
878 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
879 * but there is a slight complication as this is applied in WA batch where the
880 * values are only initialized once so we cannot take register value at the
881 * beginning and reuse it further; hence we save its value to memory, upload a
882 * constant value with bit21 set and then we restore it back with the saved value.
883 * To simplify the WA, a constant value is formed by using the default value
884 * of this register. This shouldn't be a problem because we are only modifying
885 * it for a short period and this batch in non-premptible. We can ofcourse
886 * use additional instructions that read the actual value of the register
887 * at that time and set our bit of interest but it makes the WA complicated.
888 *
889 * This WA is also required for Gen9 so extracting as a function avoids
890 * code duplication.
891 */
097d4f1c
TU
892static u32 *
893gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
17ee950d 894{
097d4f1c
TU
895 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
896 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
897 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
898 *batch++ = 0;
899
900 *batch++ = MI_LOAD_REGISTER_IMM(1);
901 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
902 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
903
9f235dfa
TU
904 batch = gen8_emit_pipe_control(batch,
905 PIPE_CONTROL_CS_STALL |
906 PIPE_CONTROL_DC_FLUSH_ENABLE,
907 0);
097d4f1c
TU
908
909 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
910 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
911 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
912 *batch++ = 0;
913
914 return batch;
17ee950d
AS
915}
916
6e5248b5
DV
917/*
918 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
919 * initialized at the beginning and shared across all contexts but this field
920 * helps us to have multiple batches at different offsets and select them based
921 * on a criteria. At the moment this batch always start at the beginning of the page
922 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 923 *
6e5248b5
DV
924 * The number of WA applied are not known at the beginning; we use this field
925 * to return the no of DWORDS written.
17ee950d 926 *
6e5248b5
DV
927 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
928 * so it adds NOOPs as padding to make it cacheline aligned.
929 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
930 * makes a complete batch buffer.
17ee950d 931 */
097d4f1c 932static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 933{
7ad00d1a 934 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c 935 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
17ee950d 936
c82435bb 937 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
097d4f1c
TU
938 if (IS_BROADWELL(engine->i915))
939 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
c82435bb 940
0160f055
AS
941 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
942 /* Actual scratch location is at 128 bytes offset */
9f235dfa
TU
943 batch = gen8_emit_pipe_control(batch,
944 PIPE_CONTROL_FLUSH_L3 |
945 PIPE_CONTROL_GLOBAL_GTT_IVB |
946 PIPE_CONTROL_CS_STALL |
947 PIPE_CONTROL_QW_WRITE,
948 i915_ggtt_offset(engine->scratch) +
949 2 * CACHELINE_BYTES);
0160f055 950
17ee950d 951 /* Pad to end of cacheline */
097d4f1c
TU
952 while ((unsigned long)batch % CACHELINE_BYTES)
953 *batch++ = MI_NOOP;
17ee950d
AS
954
955 /*
956 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
957 * execution depends on the length specified in terms of cache lines
958 * in the register CTX_RCS_INDIRECT_CTX
959 */
960
097d4f1c 961 return batch;
17ee950d
AS
962}
963
6e5248b5
DV
964/*
965 * This batch is started immediately after indirect_ctx batch. Since we ensure
966 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 967 *
6e5248b5 968 * The number of DWORDS written are returned using this field.
17ee950d
AS
969 *
970 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
971 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
972 */
097d4f1c 973static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 974{
7ad00d1a 975 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c
TU
976 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
977 *batch++ = MI_BATCH_BUFFER_END;
17ee950d 978
097d4f1c 979 return batch;
17ee950d
AS
980}
981
097d4f1c 982static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 983{
9fb5026f 984 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
097d4f1c 985 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
a4106a78 986
9fb5026f 987 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
097d4f1c
TU
988 *batch++ = MI_LOAD_REGISTER_IMM(1);
989 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
990 *batch++ = _MASKED_BIT_DISABLE(
991 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
992 *batch++ = MI_NOOP;
873e8171 993
066d4628
MK
994 /* WaClearSlmSpaceAtContextSwitch:kbl */
995 /* Actual scratch location is at 128 bytes offset */
097d4f1c 996 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
9f235dfa
TU
997 batch = gen8_emit_pipe_control(batch,
998 PIPE_CONTROL_FLUSH_L3 |
999 PIPE_CONTROL_GLOBAL_GTT_IVB |
1000 PIPE_CONTROL_CS_STALL |
1001 PIPE_CONTROL_QW_WRITE,
1002 i915_ggtt_offset(engine->scratch)
1003 + 2 * CACHELINE_BYTES);
066d4628 1004 }
3485d99e 1005
9fb5026f 1006 /* WaMediaPoolStateCmdInWABB:bxt,glk */
3485d99e
TG
1007 if (HAS_POOLED_EU(engine->i915)) {
1008 /*
1009 * EU pool configuration is setup along with golden context
1010 * during context initialization. This value depends on
1011 * device type (2x6 or 3x6) and needs to be updated based
1012 * on which subslice is disabled especially for 2x6
1013 * devices, however it is safe to load default
1014 * configuration of 3x6 device instead of masking off
1015 * corresponding bits because HW ignores bits of a disabled
1016 * subslice and drops down to appropriate config. Please
1017 * see render_state_setup() in i915_gem_render_state.c for
1018 * possible configurations, to avoid duplication they are
1019 * not shown here again.
1020 */
097d4f1c
TU
1021 *batch++ = GEN9_MEDIA_POOL_STATE;
1022 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1023 *batch++ = 0x00777000;
1024 *batch++ = 0;
1025 *batch++ = 0;
1026 *batch++ = 0;
3485d99e
TG
1027 }
1028
0504cffc 1029 /* Pad to end of cacheline */
097d4f1c
TU
1030 while ((unsigned long)batch % CACHELINE_BYTES)
1031 *batch++ = MI_NOOP;
0504cffc 1032
097d4f1c 1033 return batch;
0504cffc
AS
1034}
1035
097d4f1c 1036static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1037{
097d4f1c 1038 *batch++ = MI_BATCH_BUFFER_END;
0504cffc 1039
097d4f1c 1040 return batch;
0504cffc
AS
1041}
1042
097d4f1c
TU
1043#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1044
1045static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1046{
48bb74e4
CW
1047 struct drm_i915_gem_object *obj;
1048 struct i915_vma *vma;
1049 int err;
17ee950d 1050
097d4f1c 1051 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
48bb74e4
CW
1052 if (IS_ERR(obj))
1053 return PTR_ERR(obj);
17ee950d 1054
a01cb37a 1055 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
48bb74e4
CW
1056 if (IS_ERR(vma)) {
1057 err = PTR_ERR(vma);
1058 goto err;
17ee950d
AS
1059 }
1060
48bb74e4
CW
1061 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1062 if (err)
1063 goto err;
1064
1065 engine->wa_ctx.vma = vma;
17ee950d 1066 return 0;
48bb74e4
CW
1067
1068err:
1069 i915_gem_object_put(obj);
1070 return err;
17ee950d
AS
1071}
1072
097d4f1c 1073static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1074{
19880c4a 1075 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1076}
1077
097d4f1c
TU
1078typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1079
0bc40be8 1080static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1081{
48bb74e4 1082 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
097d4f1c
TU
1083 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1084 &wa_ctx->per_ctx };
1085 wa_bb_func_t wa_bb_fn[2];
17ee950d 1086 struct page *page;
097d4f1c
TU
1087 void *batch, *batch_ptr;
1088 unsigned int i;
48bb74e4 1089 int ret;
17ee950d 1090
097d4f1c
TU
1091 if (WARN_ON(engine->id != RCS || !engine->scratch))
1092 return -EINVAL;
17ee950d 1093
097d4f1c
TU
1094 switch (INTEL_GEN(engine->i915)) {
1095 case 9:
1096 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1097 wa_bb_fn[1] = gen9_init_perctx_bb;
1098 break;
1099 case 8:
1100 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1101 wa_bb_fn[1] = gen8_init_perctx_bb;
1102 break;
1103 default:
1104 MISSING_CASE(INTEL_GEN(engine->i915));
5e60d790 1105 return 0;
0504cffc 1106 }
5e60d790 1107
097d4f1c 1108 ret = lrc_setup_wa_ctx(engine);
17ee950d
AS
1109 if (ret) {
1110 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1111 return ret;
1112 }
1113
48bb74e4 1114 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
097d4f1c 1115 batch = batch_ptr = kmap_atomic(page);
17ee950d 1116
097d4f1c
TU
1117 /*
1118 * Emit the two workaround batch buffers, recording the offset from the
1119 * start of the workaround batch buffer object for each and their
1120 * respective sizes.
1121 */
1122 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1123 wa_bb[i]->offset = batch_ptr - batch;
1124 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1125 ret = -EINVAL;
1126 break;
1127 }
1128 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1129 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
17ee950d
AS
1130 }
1131
097d4f1c
TU
1132 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1133
17ee950d
AS
1134 kunmap_atomic(batch);
1135 if (ret)
097d4f1c 1136 lrc_destroy_wa_ctx(engine);
17ee950d
AS
1137
1138 return ret;
1139}
1140
22cc440e
CW
1141static u32 port_seqno(struct execlist_port *port)
1142{
1143 return port->request ? port->request->global_seqno : 0;
1144}
1145
0bc40be8 1146static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1147{
c033666a 1148 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1149 int ret;
1150
1151 ret = intel_mocs_init_engine(engine);
1152 if (ret)
1153 return ret;
9b1136d5 1154
ad07dfcd 1155 intel_engine_reset_breadcrumbs(engine);
f3b8f912 1156 intel_engine_init_hangcheck(engine);
821ed7df 1157
0bc40be8 1158 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
0bc40be8 1159 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5 1160 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
f3b8f912
CW
1161 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1162 engine->status_page.ggtt_offset);
1163 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
dfc53c5e 1164
0bc40be8 1165 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1166
c87d50cc 1167 /* After a GPU reset, we may have requests to replay */
f747026c 1168 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
31de7350 1169 if (!i915.enable_guc_submission && !execlists_elsp_idle(engine)) {
22cc440e
CW
1170 DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
1171 engine->name,
1172 port_seqno(&engine->execlist_port[0]),
1173 port_seqno(&engine->execlist_port[1]));
c87d50cc
CW
1174 engine->execlist_port[0].count = 0;
1175 engine->execlist_port[1].count = 0;
821ed7df 1176 execlists_submit_ports(engine);
c87d50cc 1177 }
821ed7df
CW
1178
1179 return 0;
9b1136d5
OM
1180}
1181
0bc40be8 1182static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1183{
c033666a 1184 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1185 int ret;
1186
0bc40be8 1187 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1188 if (ret)
1189 return ret;
1190
1191 /* We need to disable the AsyncFlip performance optimisations in order
1192 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1193 * programmed to '1' on all products.
1194 *
1195 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1196 */
1197 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1198
9b1136d5
OM
1199 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1200
0bc40be8 1201 return init_workarounds_ring(engine);
9b1136d5
OM
1202}
1203
0bc40be8 1204static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1205{
1206 int ret;
1207
0bc40be8 1208 ret = gen8_init_common_ring(engine);
82ef822e
DL
1209 if (ret)
1210 return ret;
1211
0bc40be8 1212 return init_workarounds_ring(engine);
82ef822e
DL
1213}
1214
821ed7df
CW
1215static void reset_common_ring(struct intel_engine_cs *engine,
1216 struct drm_i915_gem_request *request)
1217{
821ed7df 1218 struct execlist_port *port = engine->execlist_port;
c0dcb203
CW
1219 struct intel_context *ce;
1220
1221 /* If the request was innocent, we leave the request in the ELSP
1222 * and will try to replay it on restarting. The context image may
1223 * have been corrupted by the reset, in which case we may have
1224 * to service a new GPU hang, but more likely we can continue on
1225 * without impact.
1226 *
1227 * If the request was guilty, we presume the context is corrupt
1228 * and have to at least restore the RING register in the context
1229 * image back to the expected values to skip over the guilty request.
1230 */
1231 if (!request || request->fence.error != -EIO)
1232 return;
821ed7df 1233
a3aabe86
CW
1234 /* We want a simple context + ring to execute the breadcrumb update.
1235 * We cannot rely on the context being intact across the GPU hang,
1236 * so clear it and rebuild just what we need for the breadcrumb.
1237 * All pending requests for this context will be zapped, and any
1238 * future request will be after userspace has had the opportunity
1239 * to recreate its own state.
1240 */
c0dcb203 1241 ce = &request->ctx->engine[engine->id];
a3aabe86
CW
1242 execlists_init_reg_state(ce->lrc_reg_state,
1243 request->ctx, engine, ce->ring);
1244
821ed7df 1245 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1246 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1247 i915_ggtt_offset(ce->ring->vma);
821ed7df 1248 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1249
821ed7df 1250 request->ring->head = request->postfix;
821ed7df
CW
1251 intel_ring_update_space(request->ring);
1252
821ed7df 1253 /* Catch up with any missed context-switch interrupts */
821ed7df
CW
1254 if (request->ctx != port[0].request->ctx) {
1255 i915_gem_request_put(port[0].request);
1256 port[0] = port[1];
1257 memset(&port[1], 0, sizeof(port[1]));
1258 }
1259
821ed7df 1260 GEM_BUG_ON(request->ctx != port[0].request->ctx);
a3aabe86
CW
1261
1262 /* Reset WaIdleLiteRestore:bdw,skl as well */
450362d3
CW
1263 request->tail =
1264 intel_ring_wrap(request->ring,
1265 request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
ed1501d4 1266 assert_ring_tail_valid(request->ring, request->tail);
821ed7df
CW
1267}
1268
7a01a0a2
MT
1269static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1270{
1271 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1272 struct intel_engine_cs *engine = req->engine;
e7167769 1273 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
73dec95e
TU
1274 u32 *cs;
1275 int i;
7a01a0a2 1276
73dec95e
TU
1277 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1278 if (IS_ERR(cs))
1279 return PTR_ERR(cs);
7a01a0a2 1280
73dec95e 1281 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
e7167769 1282 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
7a01a0a2
MT
1283 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1284
73dec95e
TU
1285 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1286 *cs++ = upper_32_bits(pd_daddr);
1287 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1288 *cs++ = lower_32_bits(pd_daddr);
7a01a0a2
MT
1289 }
1290
73dec95e
TU
1291 *cs++ = MI_NOOP;
1292 intel_ring_advance(req, cs);
7a01a0a2
MT
1293
1294 return 0;
1295}
1296
be795fc1 1297static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba 1298 u64 offset, u32 len,
54af56db 1299 const unsigned int flags)
15648585 1300{
73dec95e 1301 u32 *cs;
15648585
OM
1302 int ret;
1303
7a01a0a2
MT
1304 /* Don't rely in hw updating PDPs, specially in lite-restore.
1305 * Ideally, we should set Force PD Restore in ctx descriptor,
1306 * but we can't. Force Restore would be a second option, but
1307 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1308 * not idle). PML4 is allocated during ppgtt init so this is
1309 * not needed in 48-bit.*/
7a01a0a2 1310 if (req->ctx->ppgtt &&
54af56db
MK
1311 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1312 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1313 !intel_vgpu_active(req->i915)) {
1314 ret = intel_logical_ring_emit_pdps(req);
1315 if (ret)
1316 return ret;
7a01a0a2 1317
666796da 1318 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1319 }
1320
73dec95e
TU
1321 cs = intel_ring_begin(req, 4);
1322 if (IS_ERR(cs))
1323 return PTR_ERR(cs);
15648585
OM
1324
1325 /* FIXME(BDW): Address space and security selectors. */
54af56db
MK
1326 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1327 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1328 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
73dec95e
TU
1329 *cs++ = lower_32_bits(offset);
1330 *cs++ = upper_32_bits(offset);
1331 *cs++ = MI_NOOP;
1332 intel_ring_advance(req, cs);
15648585
OM
1333
1334 return 0;
1335}
1336
31bb59cc 1337static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1338{
c033666a 1339 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1340 I915_WRITE_IMR(engine,
1341 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1342 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1343}
1344
31bb59cc 1345static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1346{
c033666a 1347 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1348 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1349}
1350
7c9cf4e3 1351static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1352{
73dec95e 1353 u32 cmd, *cs;
4712274c 1354
73dec95e
TU
1355 cs = intel_ring_begin(request, 4);
1356 if (IS_ERR(cs))
1357 return PTR_ERR(cs);
4712274c
OM
1358
1359 cmd = MI_FLUSH_DW + 1;
1360
f0a1fb10
CW
1361 /* We always require a command barrier so that subsequent
1362 * commands, such as breadcrumb interrupts, are strictly ordered
1363 * wrt the contents of the write cache being flushed to memory
1364 * (and thus being coherent from the CPU).
1365 */
1366 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1367
7c9cf4e3 1368 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1369 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1370 if (request->engine->id == VCS)
f0a1fb10 1371 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1372 }
1373
73dec95e
TU
1374 *cs++ = cmd;
1375 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1376 *cs++ = 0; /* upper addr */
1377 *cs++ = 0; /* value */
1378 intel_ring_advance(request, cs);
4712274c
OM
1379
1380 return 0;
1381}
1382
7deb4d39 1383static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1384 u32 mode)
4712274c 1385{
b5321f30 1386 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1387 u32 scratch_addr =
1388 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1389 bool vf_flush_wa = false, dc_flush_wa = false;
73dec95e 1390 u32 *cs, flags = 0;
0b2d0934 1391 int len;
4712274c
OM
1392
1393 flags |= PIPE_CONTROL_CS_STALL;
1394
7c9cf4e3 1395 if (mode & EMIT_FLUSH) {
4712274c
OM
1396 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1397 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1398 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1399 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1400 }
1401
7c9cf4e3 1402 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1403 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1404 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1405 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1406 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1407 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1408 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1409 flags |= PIPE_CONTROL_QW_WRITE;
1410 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1411
1a5a9ce7
BW
1412 /*
1413 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1414 * pipe control.
1415 */
c033666a 1416 if (IS_GEN9(request->i915))
1a5a9ce7 1417 vf_flush_wa = true;
0b2d0934
MK
1418
1419 /* WaForGAMHang:kbl */
1420 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1421 dc_flush_wa = true;
1a5a9ce7 1422 }
9647ff36 1423
0b2d0934
MK
1424 len = 6;
1425
1426 if (vf_flush_wa)
1427 len += 6;
1428
1429 if (dc_flush_wa)
1430 len += 12;
1431
73dec95e
TU
1432 cs = intel_ring_begin(request, len);
1433 if (IS_ERR(cs))
1434 return PTR_ERR(cs);
4712274c 1435
9f235dfa
TU
1436 if (vf_flush_wa)
1437 cs = gen8_emit_pipe_control(cs, 0, 0);
9647ff36 1438
9f235dfa
TU
1439 if (dc_flush_wa)
1440 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1441 0);
0b2d0934 1442
9f235dfa 1443 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
0b2d0934 1444
9f235dfa
TU
1445 if (dc_flush_wa)
1446 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
0b2d0934 1447
73dec95e 1448 intel_ring_advance(request, cs);
4712274c
OM
1449
1450 return 0;
1451}
1452
7c17d377
CW
1453/*
1454 * Reserve space for 2 NOOPs at the end of each request to be
1455 * used as a workaround for not being allowed to do lite
1456 * restore with HEAD==TAIL (WaIdleLiteRestore).
1457 */
73dec95e 1458static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
4da46e1e 1459{
73dec95e
TU
1460 *cs++ = MI_NOOP;
1461 *cs++ = MI_NOOP;
1462 request->wa_tail = intel_ring_offset(request, cs);
caddfe71 1463}
4da46e1e 1464
73dec95e 1465static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
caddfe71 1466{
7c17d377
CW
1467 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1468 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1469
73dec95e
TU
1470 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1471 *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1472 *cs++ = 0;
1473 *cs++ = request->global_seqno;
1474 *cs++ = MI_USER_INTERRUPT;
1475 *cs++ = MI_NOOP;
1476 request->tail = intel_ring_offset(request, cs);
ed1501d4 1477 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1478
73dec95e 1479 gen8_emit_wa_tail(request, cs);
7c17d377 1480}
4da46e1e 1481
98f29e8d
CW
1482static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1483
caddfe71 1484static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
73dec95e 1485 u32 *cs)
7c17d377 1486{
ce81a65c
MW
1487 /* We're using qword write, seqno should be aligned to 8 bytes. */
1488 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1489
7c17d377
CW
1490 /* w/a for post sync ops following a GPGPU operation we
1491 * need a prior CS_STALL, which is emitted by the flush
1492 * following the batch.
1493 */
73dec95e
TU
1494 *cs++ = GFX_OP_PIPE_CONTROL(6);
1495 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1496 PIPE_CONTROL_QW_WRITE;
1497 *cs++ = intel_hws_seqno_address(request->engine);
1498 *cs++ = 0;
1499 *cs++ = request->global_seqno;
ce81a65c 1500 /* We're thrashing one dword of HWS. */
73dec95e
TU
1501 *cs++ = 0;
1502 *cs++ = MI_USER_INTERRUPT;
1503 *cs++ = MI_NOOP;
1504 request->tail = intel_ring_offset(request, cs);
ed1501d4 1505 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1506
73dec95e 1507 gen8_emit_wa_tail(request, cs);
4da46e1e
OM
1508}
1509
98f29e8d
CW
1510static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1511
8753181e 1512static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1513{
1514 int ret;
1515
4ac9659e 1516 ret = intel_ring_workarounds_emit(req);
e7778be1
TD
1517 if (ret)
1518 return ret;
1519
3bbaba0c
PA
1520 ret = intel_rcs_context_init_mocs(req);
1521 /*
1522 * Failing to program the MOCS is non-fatal.The system will not
1523 * run at peak performance. So generate an error and carry on.
1524 */
1525 if (ret)
1526 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1527
4e50f082 1528 return i915_gem_render_state_emit(req);
e7778be1
TD
1529}
1530
73e4d07f
OM
1531/**
1532 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1533 * @engine: Engine Command Streamer.
73e4d07f 1534 */
0bc40be8 1535void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1536{
6402c330 1537 struct drm_i915_private *dev_priv;
9832b9da 1538
27af5eea
TU
1539 /*
1540 * Tasklet cannot be active at this point due intel_mark_active/idle
1541 * so this is just for documentation.
1542 */
1543 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1544 tasklet_kill(&engine->irq_tasklet);
1545
c033666a 1546 dev_priv = engine->i915;
6402c330 1547
0bc40be8 1548 if (engine->buffer) {
0bc40be8 1549 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1550 }
48d82387 1551
0bc40be8
TU
1552 if (engine->cleanup)
1553 engine->cleanup(engine);
48d82387 1554
57e88531
CW
1555 if (engine->status_page.vma) {
1556 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1557 engine->status_page.vma = NULL;
48d82387 1558 }
e8a9c58f
CW
1559
1560 intel_engine_cleanup_common(engine);
17ee950d 1561
097d4f1c 1562 lrc_destroy_wa_ctx(engine);
c033666a 1563 engine->i915 = NULL;
3b3f1650
AG
1564 dev_priv->engine[engine->id] = NULL;
1565 kfree(engine);
454afebd
OM
1566}
1567
ff44ad51 1568static void execlists_set_default_submission(struct intel_engine_cs *engine)
ddd66c51 1569{
ff44ad51
CW
1570 engine->submit_request = execlists_submit_request;
1571 engine->schedule = execlists_schedule;
c9203e82 1572 engine->irq_tasklet.func = intel_lrc_irq_handler;
ddd66c51
CW
1573}
1574
c9cacf93 1575static void
e1382efb 1576logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1577{
1578 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1579 engine->init_hw = gen8_init_common_ring;
821ed7df 1580 engine->reset_hw = reset_common_ring;
e8a9c58f
CW
1581
1582 engine->context_pin = execlists_context_pin;
1583 engine->context_unpin = execlists_context_unpin;
1584
f73e7399
CW
1585 engine->request_alloc = execlists_request_alloc;
1586
0bc40be8 1587 engine->emit_flush = gen8_emit_flush;
9b81d556 1588 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1589 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
ff44ad51
CW
1590
1591 engine->set_default_submission = execlists_set_default_submission;
ddd66c51 1592
31bb59cc
CW
1593 engine->irq_enable = gen8_logical_ring_enable_irq;
1594 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1595 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93
TU
1596}
1597
d9f3af96 1598static inline void
c2c7f240 1599logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1600{
c2c7f240 1601 unsigned shift = engine->irq_shift;
0bc40be8
TU
1602 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1603 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1604}
1605
7d774cac 1606static int
bf3783e5 1607lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1608{
57e88531 1609 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1610 void *hws;
04794adb
TU
1611
1612 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1613 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1614 if (IS_ERR(hws))
1615 return PTR_ERR(hws);
57e88531
CW
1616
1617 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1618 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1619 engine->status_page.vma = vma;
7d774cac
TU
1620
1621 return 0;
04794adb
TU
1622}
1623
bb45438f
TU
1624static void
1625logical_ring_setup(struct intel_engine_cs *engine)
1626{
1627 struct drm_i915_private *dev_priv = engine->i915;
1628 enum forcewake_domains fw_domains;
1629
019bf277
TU
1630 intel_engine_setup_common(engine);
1631
bb45438f
TU
1632 /* Intentionally left blank. */
1633 engine->buffer = NULL;
1634
1635 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1636 RING_ELSP(engine),
1637 FW_REG_WRITE);
1638
1639 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1640 RING_CONTEXT_STATUS_PTR(engine),
1641 FW_REG_READ | FW_REG_WRITE);
1642
1643 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1644 RING_CONTEXT_STATUS_BUF_BASE(engine),
1645 FW_REG_READ);
1646
1647 engine->fw_domains = fw_domains;
1648
bb45438f
TU
1649 tasklet_init(&engine->irq_tasklet,
1650 intel_lrc_irq_handler, (unsigned long)engine);
1651
bb45438f
TU
1652 logical_ring_default_vfuncs(engine);
1653 logical_ring_default_irqs(engine);
bb45438f
TU
1654}
1655
a19d6ff2
TU
1656static int
1657logical_ring_init(struct intel_engine_cs *engine)
1658{
1659 struct i915_gem_context *dctx = engine->i915->kernel_context;
1660 int ret;
1661
019bf277 1662 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1663 if (ret)
1664 goto error;
1665
a19d6ff2
TU
1666 /* And setup the hardware status page. */
1667 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1668 if (ret) {
1669 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1670 goto error;
1671 }
1672
1673 return 0;
1674
1675error:
1676 intel_logical_ring_cleanup(engine);
1677 return ret;
1678}
1679
88d2ba2e 1680int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1681{
1682 struct drm_i915_private *dev_priv = engine->i915;
1683 int ret;
1684
bb45438f
TU
1685 logical_ring_setup(engine);
1686
a19d6ff2
TU
1687 if (HAS_L3_DPF(dev_priv))
1688 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1689
1690 /* Override some for render ring. */
1691 if (INTEL_GEN(dev_priv) >= 9)
1692 engine->init_hw = gen9_init_render_ring;
1693 else
1694 engine->init_hw = gen8_init_render_ring;
1695 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1696 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1697 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1698 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1699
f51455d4 1700 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
a19d6ff2
TU
1701 if (ret)
1702 return ret;
1703
1704 ret = intel_init_workaround_bb(engine);
1705 if (ret) {
1706 /*
1707 * We continue even if we fail to initialize WA batch
1708 * because we only expect rare glitches but nothing
1709 * critical to prevent us from using GPU
1710 */
1711 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1712 ret);
1713 }
1714
d038fc7e 1715 return logical_ring_init(engine);
a19d6ff2
TU
1716}
1717
88d2ba2e 1718int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1719{
1720 logical_ring_setup(engine);
1721
1722 return logical_ring_init(engine);
454afebd
OM
1723}
1724
0cea6502 1725static u32
c033666a 1726make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1727{
1728 u32 rpcs = 0;
1729
1730 /*
1731 * No explicit RPCS request is needed to ensure full
1732 * slice/subslice/EU enablement prior to Gen9.
1733 */
c033666a 1734 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1735 return 0;
1736
1737 /*
1738 * Starting in Gen9, render power gating can leave
1739 * slice/subslice/EU in a partially enabled state. We
1740 * must make an explicit request through RPCS for full
1741 * enablement.
1742 */
43b67998 1743 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1744 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1745 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1746 GEN8_RPCS_S_CNT_SHIFT;
1747 rpcs |= GEN8_RPCS_ENABLE;
1748 }
1749
43b67998 1750 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1751 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1752 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1753 GEN8_RPCS_SS_CNT_SHIFT;
1754 rpcs |= GEN8_RPCS_ENABLE;
1755 }
1756
43b67998
ID
1757 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1758 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1759 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1760 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1761 GEN8_RPCS_EU_MAX_SHIFT;
1762 rpcs |= GEN8_RPCS_ENABLE;
1763 }
1764
1765 return rpcs;
1766}
1767
0bc40be8 1768static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1769{
1770 u32 indirect_ctx_offset;
1771
c033666a 1772 switch (INTEL_GEN(engine->i915)) {
71562919 1773 default:
c033666a 1774 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1775 /* fall through */
1776 case 9:
1777 indirect_ctx_offset =
1778 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1779 break;
1780 case 8:
1781 indirect_ctx_offset =
1782 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1783 break;
1784 }
1785
1786 return indirect_ctx_offset;
1787}
1788
56e51bf0 1789static void execlists_init_reg_state(u32 *regs,
a3aabe86
CW
1790 struct i915_gem_context *ctx,
1791 struct intel_engine_cs *engine,
1792 struct intel_ring *ring)
8670d6f9 1793{
a3aabe86
CW
1794 struct drm_i915_private *dev_priv = engine->i915;
1795 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
56e51bf0
TU
1796 u32 base = engine->mmio_base;
1797 bool rcs = engine->id == RCS;
1798
1799 /* A context is actually a big batch buffer with several
1800 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1801 * values we are setting here are only for the first context restore:
1802 * on a subsequent save, the GPU will recreate this batchbuffer with new
1803 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1804 * we are not initializing here).
1805 */
1806 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1807 MI_LRI_FORCE_POSTED;
1808
1809 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1810 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1811 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1812 (HAS_RESOURCE_STREAMER(dev_priv) ?
1813 CTX_CTRL_RS_CTX_ENABLE : 0)));
1814 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1815 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1816 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1817 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1818 RING_CTL_SIZE(ring->size) | RING_VALID);
1819 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1820 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1821 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1822 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1823 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1824 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1825 if (rcs) {
1826 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1827 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1828 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1829 RING_INDIRECT_CTX_OFFSET(base), 0);
8670d6f9 1830
48bb74e4 1831 if (engine->wa_ctx.vma) {
0bc40be8 1832 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1833 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 1834
56e51bf0 1835 regs[CTX_RCS_INDIRECT_CTX + 1] =
097d4f1c
TU
1836 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1837 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
17ee950d 1838
56e51bf0 1839 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
0bc40be8 1840 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d 1841
56e51bf0 1842 regs[CTX_BB_PER_CTX_PTR + 1] =
097d4f1c 1843 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
17ee950d 1844 }
8670d6f9 1845 }
56e51bf0
TU
1846
1847 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1848
1849 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
0d925ea0 1850 /* PDP values well be assigned later if needed */
56e51bf0
TU
1851 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
1852 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
1853 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
1854 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
1855 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
1856 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
1857 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
1858 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
d7b2633d 1859
949e8ab3 1860 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2dba3239
MT
1861 /* 64b PPGTT (48bit canonical)
1862 * PDP0_DESCRIPTOR contains the base address to PML4 and
1863 * other PDP Descriptors are ignored.
1864 */
56e51bf0 1865 ASSIGN_CTX_PML4(ppgtt, regs);
2dba3239
MT
1866 }
1867
56e51bf0
TU
1868 if (rcs) {
1869 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1870 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1871 make_rpcs(dev_priv));
8670d6f9 1872 }
a3aabe86
CW
1873}
1874
1875static int
1876populate_lr_context(struct i915_gem_context *ctx,
1877 struct drm_i915_gem_object *ctx_obj,
1878 struct intel_engine_cs *engine,
1879 struct intel_ring *ring)
1880{
1881 void *vaddr;
1882 int ret;
1883
1884 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1885 if (ret) {
1886 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1887 return ret;
1888 }
1889
1890 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1891 if (IS_ERR(vaddr)) {
1892 ret = PTR_ERR(vaddr);
1893 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1894 return ret;
1895 }
a4f5ea64 1896 ctx_obj->mm.dirty = true;
a3aabe86
CW
1897
1898 /* The second page of the context object contains some fields which must
1899 * be set up prior to the first execution. */
1900
1901 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
1902 ctx, engine, ring);
8670d6f9 1903
7d774cac 1904 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
1905
1906 return 0;
1907}
1908
c5d46ee2
DG
1909/**
1910 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 1911 * @engine: which engine to find the context size for
c5d46ee2
DG
1912 *
1913 * Each engine may require a different amount of space for a context image,
1914 * so when allocating (or copying) an image, this function can be used to
1915 * find the right size for the specific engine.
1916 *
1917 * Return: size (in bytes) of an engine-specific context image
1918 *
1919 * Note: this size includes the HWSP, which is part of the context image
1920 * in LRC mode, but does not include the "shared data page" used with
1921 * GuC submission. The caller should account for this if using the GuC.
1922 */
0bc40be8 1923uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
1924{
1925 int ret = 0;
1926
c033666a 1927 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 1928
0bc40be8 1929 switch (engine->id) {
8c857917 1930 case RCS:
c033666a 1931 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
1932 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1933 else
1934 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
1935 break;
1936 case VCS:
1937 case BCS:
1938 case VECS:
1939 case VCS2:
1940 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1941 break;
1942 }
1943
1944 return ret;
ede7d42b
OM
1945}
1946
e2efd130 1947static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 1948 struct intel_engine_cs *engine)
ede7d42b 1949{
8c857917 1950 struct drm_i915_gem_object *ctx_obj;
9021ad03 1951 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 1952 struct i915_vma *vma;
8c857917 1953 uint32_t context_size;
7e37f889 1954 struct intel_ring *ring;
8c857917
OM
1955 int ret;
1956
9021ad03 1957 WARN_ON(ce->state);
ede7d42b 1958
f51455d4
CW
1959 context_size = round_up(intel_lr_context_size(engine),
1960 I915_GTT_PAGE_SIZE);
8c857917 1961
d1675198
AD
1962 /* One extra page as the sharing data between driver and GuC */
1963 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
1964
12d79d78 1965 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
fe3db79b 1966 if (IS_ERR(ctx_obj)) {
3126a660 1967 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 1968 return PTR_ERR(ctx_obj);
8c857917
OM
1969 }
1970
a01cb37a 1971 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
bf3783e5
CW
1972 if (IS_ERR(vma)) {
1973 ret = PTR_ERR(vma);
1974 goto error_deref_obj;
1975 }
1976
7e37f889 1977 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
1978 if (IS_ERR(ring)) {
1979 ret = PTR_ERR(ring);
e84fe803 1980 goto error_deref_obj;
8670d6f9
OM
1981 }
1982
dca33ecc 1983 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
1984 if (ret) {
1985 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 1986 goto error_ring_free;
84c2377f
OM
1987 }
1988
dca33ecc 1989 ce->ring = ring;
bf3783e5 1990 ce->state = vma;
46cd902f 1991 ce->initialised |= engine->init_context == NULL;
ede7d42b
OM
1992
1993 return 0;
8670d6f9 1994
dca33ecc 1995error_ring_free:
7e37f889 1996 intel_ring_free(ring);
e84fe803 1997error_deref_obj:
f8c417cd 1998 i915_gem_object_put(ctx_obj);
8670d6f9 1999 return ret;
ede7d42b 2000}
3e5b6f05 2001
821ed7df 2002void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2003{
e2f80391 2004 struct intel_engine_cs *engine;
bafb2f7d 2005 struct i915_gem_context *ctx;
3b3f1650 2006 enum intel_engine_id id;
bafb2f7d
CW
2007
2008 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2009 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2010 * that stored in context. As we only write new commands from
2011 * ce->ring->tail onwards, everything before that is junk. If the GPU
2012 * starts reading from its RING_HEAD from the context, it may try to
2013 * execute that junk and die.
2014 *
2015 * So to avoid that we reset the context images upon resume. For
2016 * simplicity, we just zero everything out.
2017 */
2018 list_for_each_entry(ctx, &dev_priv->context_list, link) {
3b3f1650 2019 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2020 struct intel_context *ce = &ctx->engine[engine->id];
2021 u32 *reg;
3e5b6f05 2022
bafb2f7d
CW
2023 if (!ce->state)
2024 continue;
7d774cac 2025
bafb2f7d
CW
2026 reg = i915_gem_object_pin_map(ce->state->obj,
2027 I915_MAP_WB);
2028 if (WARN_ON(IS_ERR(reg)))
2029 continue;
3e5b6f05 2030
bafb2f7d
CW
2031 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2032 reg[CTX_RING_HEAD+1] = 0;
2033 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2034
a4f5ea64 2035 ce->state->obj->mm.dirty = true;
bafb2f7d 2036 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2037
a21ef715 2038 intel_ring_reset(ce->ring, 0);
bafb2f7d 2039 }
3e5b6f05
TD
2040 }
2041}