drm/i915: Use documented PLL timing limits for G4X platform
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27#include <linux/i2c.h>
28#include "drmP.h"
29#include "intel_drv.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32
33#include "drm_crtc_helper.h"
34
35bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
36
37typedef struct {
38 /* given values */
39 int n;
40 int m1, m2;
41 int p1, p2;
42 /* derived values */
43 int dot;
44 int vco;
45 int m;
46 int p;
47} intel_clock_t;
48
49typedef struct {
50 int min, max;
51} intel_range_t;
52
53typedef struct {
54 int dot_limit;
55 int p2_slow, p2_fast;
56} intel_p2_t;
57
58#define INTEL_P2_NUM 2
59
60typedef struct {
61 intel_range_t dot, vco, n, m, m1, m2, p, p1;
62 intel_p2_t p2;
63} intel_limit_t;
64
65#define I8XX_DOT_MIN 25000
66#define I8XX_DOT_MAX 350000
67#define I8XX_VCO_MIN 930000
68#define I8XX_VCO_MAX 1400000
69#define I8XX_N_MIN 3
70#define I8XX_N_MAX 16
71#define I8XX_M_MIN 96
72#define I8XX_M_MAX 140
73#define I8XX_M1_MIN 18
74#define I8XX_M1_MAX 26
75#define I8XX_M2_MIN 6
76#define I8XX_M2_MAX 16
77#define I8XX_P_MIN 4
78#define I8XX_P_MAX 128
79#define I8XX_P1_MIN 2
80#define I8XX_P1_MAX 33
81#define I8XX_P1_LVDS_MIN 1
82#define I8XX_P1_LVDS_MAX 6
83#define I8XX_P2_SLOW 4
84#define I8XX_P2_FAST 2
85#define I8XX_P2_LVDS_SLOW 14
86#define I8XX_P2_LVDS_FAST 14 /* No fast option */
87#define I8XX_P2_SLOW_LIMIT 165000
88
89#define I9XX_DOT_MIN 20000
90#define I9XX_DOT_MAX 400000
91#define I9XX_VCO_MIN 1400000
92#define I9XX_VCO_MAX 2800000
f3cade5c
KH
93#define I9XX_N_MIN 1
94#define I9XX_N_MAX 6
79e53945
JB
95#define I9XX_M_MIN 70
96#define I9XX_M_MAX 120
97#define I9XX_M1_MIN 10
f3cade5c 98#define I9XX_M1_MAX 22
79e53945
JB
99#define I9XX_M2_MIN 5
100#define I9XX_M2_MAX 9
101#define I9XX_P_SDVO_DAC_MIN 5
102#define I9XX_P_SDVO_DAC_MAX 80
103#define I9XX_P_LVDS_MIN 7
104#define I9XX_P_LVDS_MAX 98
105#define I9XX_P1_MIN 1
106#define I9XX_P1_MAX 8
107#define I9XX_P2_SDVO_DAC_SLOW 10
108#define I9XX_P2_SDVO_DAC_FAST 5
109#define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
110#define I9XX_P2_LVDS_SLOW 14
111#define I9XX_P2_LVDS_FAST 7
112#define I9XX_P2_LVDS_SLOW_LIMIT 112000
113
114#define INTEL_LIMIT_I8XX_DVO_DAC 0
115#define INTEL_LIMIT_I8XX_LVDS 1
116#define INTEL_LIMIT_I9XX_SDVO_DAC 2
117#define INTEL_LIMIT_I9XX_LVDS 3
044c7c41
ML
118#define INTEL_LIMIT_G4X_SDVO 4
119#define INTEL_LIMIT_G4X_HDMI_DAC 5
120#define INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS 6
121#define INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS 7
122
123/*The parameter is for SDVO on G4x platform*/
124#define G4X_DOT_SDVO_MIN 25000
125#define G4X_DOT_SDVO_MAX 270000
126#define G4X_VCO_MIN 1750000
127#define G4X_VCO_MAX 3500000
128#define G4X_N_SDVO_MIN 1
129#define G4X_N_SDVO_MAX 4
130#define G4X_M_SDVO_MIN 104
131#define G4X_M_SDVO_MAX 138
132#define G4X_M1_SDVO_MIN 17
133#define G4X_M1_SDVO_MAX 23
134#define G4X_M2_SDVO_MIN 5
135#define G4X_M2_SDVO_MAX 11
136#define G4X_P_SDVO_MIN 10
137#define G4X_P_SDVO_MAX 30
138#define G4X_P1_SDVO_MIN 1
139#define G4X_P1_SDVO_MAX 3
140#define G4X_P2_SDVO_SLOW 10
141#define G4X_P2_SDVO_FAST 10
142#define G4X_P2_SDVO_LIMIT 270000
143
144/*The parameter is for HDMI_DAC on G4x platform*/
145#define G4X_DOT_HDMI_DAC_MIN 22000
146#define G4X_DOT_HDMI_DAC_MAX 400000
147#define G4X_N_HDMI_DAC_MIN 1
148#define G4X_N_HDMI_DAC_MAX 4
149#define G4X_M_HDMI_DAC_MIN 104
150#define G4X_M_HDMI_DAC_MAX 138
151#define G4X_M1_HDMI_DAC_MIN 16
152#define G4X_M1_HDMI_DAC_MAX 23
153#define G4X_M2_HDMI_DAC_MIN 5
154#define G4X_M2_HDMI_DAC_MAX 11
155#define G4X_P_HDMI_DAC_MIN 5
156#define G4X_P_HDMI_DAC_MAX 80
157#define G4X_P1_HDMI_DAC_MIN 1
158#define G4X_P1_HDMI_DAC_MAX 8
159#define G4X_P2_HDMI_DAC_SLOW 10
160#define G4X_P2_HDMI_DAC_FAST 5
161#define G4X_P2_HDMI_DAC_LIMIT 165000
162
163/*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
164#define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
165#define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
166#define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
167#define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
168#define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
169#define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
170#define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
171#define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
172#define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
173#define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
174#define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
175#define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
176#define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
177#define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
178#define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
179#define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
180#define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
181
182/*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
183#define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
184#define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
185#define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
186#define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
187#define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
188#define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
189#define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
190#define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
191#define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
192#define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
193#define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
194#define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
195#define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
196#define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
197#define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
198#define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
199#define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
200
79e53945
JB
201
202static const intel_limit_t intel_limits[] = {
203 { /* INTEL_LIMIT_I8XX_DVO_DAC */
204 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
205 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
206 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
207 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
208 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
209 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
210 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
211 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
212 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
213 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
214 },
215 { /* INTEL_LIMIT_I8XX_LVDS */
216 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
217 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
218 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
219 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
220 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
221 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
222 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
223 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
224 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
225 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
226 },
227 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
228 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
229 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
230 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
231 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
232 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
233 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
234 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
235 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
236 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
237 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
238 },
239 { /* INTEL_LIMIT_I9XX_LVDS */
240 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
241 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
242 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
243 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
244 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
245 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
246 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
247 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
248 /* The single-channel range is 25-112Mhz, and dual-channel
249 * is 80-224Mhz. Prefer single channel as much as possible.
250 */
251 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
252 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
253 },
044c7c41
ML
254 /* below parameter and function is for G4X Chipset Family*/
255 { /* INTEL_LIMIT_G4X_SDVO */
256 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
257 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
258 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
259 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
260 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
261 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
262 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
263 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
264 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
265 .p2_slow = G4X_P2_SDVO_SLOW,
266 .p2_fast = G4X_P2_SDVO_FAST
267 },
268 },
269 { /* INTEL_LIMIT_G4X_HDMI_DAC */
270 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
271 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
272 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
273 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
274 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
275 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
276 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
277 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
278 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
279 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
280 .p2_fast = G4X_P2_HDMI_DAC_FAST
281 },
282 },
283 { /* INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS */
284 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
285 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
286 .vco = { .min = G4X_VCO_MIN,
287 .max = G4X_VCO_MAX },
288 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
289 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
290 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
291 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
292 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
293 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
294 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
295 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
296 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
297 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
298 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
299 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
300 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
301 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
302 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
303 },
304 },
305 { /* INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS */
306 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
307 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
308 .vco = { .min = G4X_VCO_MIN,
309 .max = G4X_VCO_MAX },
310 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
311 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
312 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
313 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
314 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
315 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
316 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
317 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
318 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
319 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
320 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
321 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
322 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
323 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
324 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
325 },
326 },
79e53945
JB
327};
328
044c7c41
ML
329static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
330{
331 struct drm_device *dev = crtc->dev;
332 struct drm_i915_private *dev_priv = dev->dev_private;
333 const intel_limit_t *limit;
334
335 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
336 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
337 LVDS_CLKB_POWER_UP)
338 /* LVDS with dual channel */
339 limit = &intel_limits
340 [INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS];
341 else
342 /* LVDS with dual channel */
343 limit = &intel_limits
344 [INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS];
345 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
346 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
347 limit = &intel_limits[INTEL_LIMIT_G4X_HDMI_DAC];
348 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
349 limit = &intel_limits[INTEL_LIMIT_G4X_SDVO];
350 } else /* The option is for other outputs */
351 limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
352
353 return limit;
354}
355
79e53945
JB
356static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
357{
358 struct drm_device *dev = crtc->dev;
359 const intel_limit_t *limit;
360
044c7c41
ML
361 if (IS_G4X(dev)) {
362 limit = intel_g4x_limit(crtc);
363 } else if (IS_I9XX(dev)) {
79e53945
JB
364 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
365 limit = &intel_limits[INTEL_LIMIT_I9XX_LVDS];
366 else
367 limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
368 } else {
369 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
370 limit = &intel_limits[INTEL_LIMIT_I8XX_LVDS];
371 else
372 limit = &intel_limits[INTEL_LIMIT_I8XX_DVO_DAC];
373 }
374 return limit;
375}
376
a29f5ca3 377static void intel_clock(int refclk, intel_clock_t *clock)
79e53945
JB
378{
379 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
380 clock->p = clock->p1 * clock->p2;
381 clock->vco = refclk * clock->m / (clock->n + 2);
382 clock->dot = clock->vco / clock->p;
383}
384
79e53945
JB
385/**
386 * Returns whether any output on the specified pipe is of the specified type
387 */
388bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
389{
390 struct drm_device *dev = crtc->dev;
391 struct drm_mode_config *mode_config = &dev->mode_config;
392 struct drm_connector *l_entry;
393
394 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
395 if (l_entry->encoder &&
396 l_entry->encoder->crtc == crtc) {
397 struct intel_output *intel_output = to_intel_output(l_entry);
398 if (intel_output->type == type)
399 return true;
400 }
401 }
402 return false;
403}
404
7c04d1d9 405#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
406/**
407 * Returns whether the given set of divisors are valid for a given refclk with
408 * the given connectors.
409 */
410
411static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
412{
413 const intel_limit_t *limit = intel_limit (crtc);
414
415 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
416 INTELPllInvalid ("p1 out of range\n");
417 if (clock->p < limit->p.min || limit->p.max < clock->p)
418 INTELPllInvalid ("p out of range\n");
419 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
420 INTELPllInvalid ("m2 out of range\n");
421 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
422 INTELPllInvalid ("m1 out of range\n");
423 if (clock->m1 <= clock->m2)
424 INTELPllInvalid ("m1 <= m2\n");
425 if (clock->m < limit->m.min || limit->m.max < clock->m)
426 INTELPllInvalid ("m out of range\n");
427 if (clock->n < limit->n.min || limit->n.max < clock->n)
428 INTELPllInvalid ("n out of range\n");
429 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
430 INTELPllInvalid ("vco out of range\n");
431 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
432 * connector, etc., rather than just a single range.
433 */
434 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
435 INTELPllInvalid ("dot out of range\n");
436
437 return true;
438}
439
440/**
441 * Returns a set of divisors for the desired target clock with the given
442 * refclk, or FALSE. The returned values represent the clock equation:
443 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
444 */
445static bool intel_find_best_PLL(struct drm_crtc *crtc, int target,
446 int refclk, intel_clock_t *best_clock)
447{
448 struct drm_device *dev = crtc->dev;
449 struct drm_i915_private *dev_priv = dev->dev_private;
450 intel_clock_t clock;
451 const intel_limit_t *limit = intel_limit(crtc);
452 int err = target;
453
454 if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
455 (I915_READ(LVDS) & LVDS_PORT_EN) != 0) {
456 /*
457 * For LVDS, if the panel is on, just rely on its current
458 * settings for dual-channel. We haven't figured out how to
459 * reliably set up different single/dual channel state, if we
460 * even can.
461 */
462 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
463 LVDS_CLKB_POWER_UP)
464 clock.p2 = limit->p2.p2_fast;
465 else
466 clock.p2 = limit->p2.p2_slow;
467 } else {
468 if (target < limit->p2.dot_limit)
469 clock.p2 = limit->p2.p2_slow;
470 else
471 clock.p2 = limit->p2.p2_fast;
472 }
473
474 memset (best_clock, 0, sizeof (*best_clock));
475
476 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
477 for (clock.m2 = limit->m2.min; clock.m2 < clock.m1 &&
478 clock.m2 <= limit->m2.max; clock.m2++) {
479 for (clock.n = limit->n.min; clock.n <= limit->n.max;
480 clock.n++) {
481 for (clock.p1 = limit->p1.min;
482 clock.p1 <= limit->p1.max; clock.p1++) {
483 int this_err;
484
a29f5ca3 485 intel_clock(refclk, &clock);
79e53945
JB
486
487 if (!intel_PLL_is_valid(crtc, &clock))
488 continue;
489
490 this_err = abs(clock.dot - target);
491 if (this_err < err) {
492 *best_clock = clock;
493 err = this_err;
494 }
495 }
496 }
497 }
498 }
499
500 return (err != target);
501}
502
503void
504intel_wait_for_vblank(struct drm_device *dev)
505{
506 /* Wait for 20ms, i.e. one cycle at 50hz. */
507 udelay(20000);
508}
509
5c3b82e2 510static int
3c4fdcfb
KH
511intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
512 struct drm_framebuffer *old_fb)
79e53945
JB
513{
514 struct drm_device *dev = crtc->dev;
515 struct drm_i915_private *dev_priv = dev->dev_private;
516 struct drm_i915_master_private *master_priv;
517 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
518 struct intel_framebuffer *intel_fb;
519 struct drm_i915_gem_object *obj_priv;
520 struct drm_gem_object *obj;
521 int pipe = intel_crtc->pipe;
522 unsigned long Start, Offset;
523 int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
524 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
525 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
526 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
3c4fdcfb 527 u32 dspcntr, alignment;
5c3b82e2 528 int ret;
79e53945
JB
529
530 /* no fb bound */
531 if (!crtc->fb) {
532 DRM_DEBUG("No FB bound\n");
5c3b82e2
CW
533 return 0;
534 }
535
536 switch (pipe) {
537 case 0:
538 case 1:
539 break;
540 default:
541 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
542 return -EINVAL;
79e53945
JB
543 }
544
545 intel_fb = to_intel_framebuffer(crtc->fb);
79e53945
JB
546 obj = intel_fb->obj;
547 obj_priv = obj->driver_private;
548
3c4fdcfb
KH
549 switch (obj_priv->tiling_mode) {
550 case I915_TILING_NONE:
551 alignment = 64 * 1024;
552 break;
553 case I915_TILING_X:
2ebed176
CW
554 /* pin() will align the object as required by fence */
555 alignment = 0;
3c4fdcfb
KH
556 break;
557 case I915_TILING_Y:
558 /* FIXME: Is this true? */
559 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
5c3b82e2 560 return -EINVAL;
3c4fdcfb
KH
561 default:
562 BUG();
563 }
564
5c3b82e2
CW
565 mutex_lock(&dev->struct_mutex);
566 ret = i915_gem_object_pin(intel_fb->obj, alignment);
567 if (ret != 0) {
568 mutex_unlock(&dev->struct_mutex);
569 return ret;
570 }
79e53945 571
5c3b82e2
CW
572 ret = i915_gem_object_set_to_gtt_domain(intel_fb->obj, 1);
573 if (ret != 0) {
574 i915_gem_object_unpin(intel_fb->obj);
575 mutex_unlock(&dev->struct_mutex);
576 return ret;
577 }
79e53945
JB
578
579 dspcntr = I915_READ(dspcntr_reg);
712531bf
JB
580 /* Mask out pixel format bits in case we change it */
581 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
79e53945
JB
582 switch (crtc->fb->bits_per_pixel) {
583 case 8:
584 dspcntr |= DISPPLANE_8BPP;
585 break;
586 case 16:
587 if (crtc->fb->depth == 15)
588 dspcntr |= DISPPLANE_15_16BPP;
589 else
590 dspcntr |= DISPPLANE_16BPP;
591 break;
592 case 24:
593 case 32:
594 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
595 break;
596 default:
597 DRM_ERROR("Unknown color depth\n");
5c3b82e2
CW
598 i915_gem_object_unpin(intel_fb->obj);
599 mutex_unlock(&dev->struct_mutex);
600 return -EINVAL;
79e53945
JB
601 }
602 I915_WRITE(dspcntr_reg, dspcntr);
603
5c3b82e2
CW
604 Start = obj_priv->gtt_offset;
605 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
606
79e53945 607 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
5c3b82e2 608 I915_WRITE(dspstride, crtc->fb->pitch);
79e53945
JB
609 if (IS_I965G(dev)) {
610 I915_WRITE(dspbase, Offset);
611 I915_READ(dspbase);
612 I915_WRITE(dspsurf, Start);
613 I915_READ(dspsurf);
614 } else {
615 I915_WRITE(dspbase, Start + Offset);
616 I915_READ(dspbase);
617 }
618
3c4fdcfb
KH
619 intel_wait_for_vblank(dev);
620
621 if (old_fb) {
622 intel_fb = to_intel_framebuffer(old_fb);
623 i915_gem_object_unpin(intel_fb->obj);
624 }
5c3b82e2 625 mutex_unlock(&dev->struct_mutex);
79e53945
JB
626
627 if (!dev->primary->master)
5c3b82e2 628 return 0;
79e53945
JB
629
630 master_priv = dev->primary->master->driver_priv;
631 if (!master_priv->sarea_priv)
5c3b82e2 632 return 0;
79e53945 633
5c3b82e2 634 if (pipe) {
79e53945
JB
635 master_priv->sarea_priv->pipeB_x = x;
636 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
637 } else {
638 master_priv->sarea_priv->pipeA_x = x;
639 master_priv->sarea_priv->pipeA_y = y;
79e53945 640 }
5c3b82e2
CW
641
642 return 0;
79e53945
JB
643}
644
645
646
647/**
648 * Sets the power management mode of the pipe and plane.
649 *
650 * This code should probably grow support for turning the cursor off and back
651 * on appropriately at the same time as we're turning the pipe off/on.
652 */
653static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
654{
655 struct drm_device *dev = crtc->dev;
656 struct drm_i915_master_private *master_priv;
657 struct drm_i915_private *dev_priv = dev->dev_private;
658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
659 int pipe = intel_crtc->pipe;
660 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
661 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
662 int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
663 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
664 u32 temp;
665 bool enabled;
666
667 /* XXX: When our outputs are all unaware of DPMS modes other than off
668 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
669 */
670 switch (mode) {
671 case DRM_MODE_DPMS_ON:
672 case DRM_MODE_DPMS_STANDBY:
673 case DRM_MODE_DPMS_SUSPEND:
674 /* Enable the DPLL */
675 temp = I915_READ(dpll_reg);
676 if ((temp & DPLL_VCO_ENABLE) == 0) {
677 I915_WRITE(dpll_reg, temp);
678 I915_READ(dpll_reg);
679 /* Wait for the clocks to stabilize. */
680 udelay(150);
681 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
682 I915_READ(dpll_reg);
683 /* Wait for the clocks to stabilize. */
684 udelay(150);
685 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
686 I915_READ(dpll_reg);
687 /* Wait for the clocks to stabilize. */
688 udelay(150);
689 }
690
691 /* Enable the pipe */
692 temp = I915_READ(pipeconf_reg);
693 if ((temp & PIPEACONF_ENABLE) == 0)
694 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
695
696 /* Enable the plane */
697 temp = I915_READ(dspcntr_reg);
698 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
699 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
700 /* Flush the plane changes */
701 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
702 }
703
704 intel_crtc_load_lut(crtc);
705
706 /* Give the overlay scaler a chance to enable if it's on this pipe */
707 //intel_crtc_dpms_video(crtc, true); TODO
708 break;
709 case DRM_MODE_DPMS_OFF:
710 /* Give the overlay scaler a chance to disable if it's on this pipe */
711 //intel_crtc_dpms_video(crtc, FALSE); TODO
712
713 /* Disable the VGA plane that we never use */
714 I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
715
716 /* Disable display plane */
717 temp = I915_READ(dspcntr_reg);
718 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
719 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
720 /* Flush the plane changes */
721 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
722 I915_READ(dspbase_reg);
723 }
724
725 if (!IS_I9XX(dev)) {
726 /* Wait for vblank for the disable to take effect */
727 intel_wait_for_vblank(dev);
728 }
729
730 /* Next, disable display pipes */
731 temp = I915_READ(pipeconf_reg);
732 if ((temp & PIPEACONF_ENABLE) != 0) {
733 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
734 I915_READ(pipeconf_reg);
735 }
736
737 /* Wait for vblank for the disable to take effect. */
738 intel_wait_for_vblank(dev);
739
740 temp = I915_READ(dpll_reg);
741 if ((temp & DPLL_VCO_ENABLE) != 0) {
742 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
743 I915_READ(dpll_reg);
744 }
745
746 /* Wait for the clocks to turn off. */
747 udelay(150);
748 break;
749 }
750
751 if (!dev->primary->master)
752 return;
753
754 master_priv = dev->primary->master->driver_priv;
755 if (!master_priv->sarea_priv)
756 return;
757
758 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
759
760 switch (pipe) {
761 case 0:
762 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
763 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
764 break;
765 case 1:
766 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
767 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
768 break;
769 default:
770 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
771 break;
772 }
773
774 intel_crtc->dpms_mode = mode;
775}
776
777static void intel_crtc_prepare (struct drm_crtc *crtc)
778{
779 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
780 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
781}
782
783static void intel_crtc_commit (struct drm_crtc *crtc)
784{
785 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
786 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
787}
788
789void intel_encoder_prepare (struct drm_encoder *encoder)
790{
791 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
792 /* lvds has its own version of prepare see intel_lvds_prepare */
793 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
794}
795
796void intel_encoder_commit (struct drm_encoder *encoder)
797{
798 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
799 /* lvds has its own version of commit see intel_lvds_commit */
800 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
801}
802
803static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
804 struct drm_display_mode *mode,
805 struct drm_display_mode *adjusted_mode)
806{
807 return true;
808}
809
810
811/** Returns the core display clock speed for i830 - i945 */
812static int intel_get_core_clock_speed(struct drm_device *dev)
813{
814
815 /* Core clock values taken from the published datasheets.
816 * The 830 may go up to 166 Mhz, which we should check.
817 */
818 if (IS_I945G(dev))
819 return 400000;
820 else if (IS_I915G(dev))
821 return 333000;
822 else if (IS_I945GM(dev) || IS_845G(dev))
823 return 200000;
824 else if (IS_I915GM(dev)) {
825 u16 gcfgc = 0;
826
827 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
828
829 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
830 return 133000;
831 else {
832 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
833 case GC_DISPLAY_CLOCK_333_MHZ:
834 return 333000;
835 default:
836 case GC_DISPLAY_CLOCK_190_200_MHZ:
837 return 190000;
838 }
839 }
840 } else if (IS_I865G(dev))
841 return 266000;
842 else if (IS_I855(dev)) {
843 u16 hpllcc = 0;
844 /* Assume that the hardware is in the high speed state. This
845 * should be the default.
846 */
847 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
848 case GC_CLOCK_133_200:
849 case GC_CLOCK_100_200:
850 return 200000;
851 case GC_CLOCK_166_250:
852 return 250000;
853 case GC_CLOCK_100_133:
854 return 133000;
855 }
856 } else /* 852, 830 */
857 return 133000;
858
859 return 0; /* Silence gcc warning */
860}
861
862
863/**
864 * Return the pipe currently connected to the panel fitter,
865 * or -1 if the panel fitter is not present or not in use
866 */
867static int intel_panel_fitter_pipe (struct drm_device *dev)
868{
869 struct drm_i915_private *dev_priv = dev->dev_private;
870 u32 pfit_control;
871
872 /* i830 doesn't have a panel fitter */
873 if (IS_I830(dev))
874 return -1;
875
876 pfit_control = I915_READ(PFIT_CONTROL);
877
878 /* See if the panel fitter is in use */
879 if ((pfit_control & PFIT_ENABLE) == 0)
880 return -1;
881
882 /* 965 can place panel fitter on either pipe */
883 if (IS_I965G(dev))
884 return (pfit_control >> 29) & 0x3;
885
886 /* older chips can only use pipe 1 */
887 return 1;
888}
889
5c3b82e2
CW
890static int intel_crtc_mode_set(struct drm_crtc *crtc,
891 struct drm_display_mode *mode,
892 struct drm_display_mode *adjusted_mode,
893 int x, int y,
894 struct drm_framebuffer *old_fb)
79e53945
JB
895{
896 struct drm_device *dev = crtc->dev;
897 struct drm_i915_private *dev_priv = dev->dev_private;
898 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
899 int pipe = intel_crtc->pipe;
900 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
901 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
902 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
903 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
904 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
905 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
906 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
907 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
908 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
909 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
910 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
911 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
912 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
913 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
43565a06 914 int refclk, num_outputs = 0;
79e53945
JB
915 intel_clock_t clock;
916 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
917 bool ok, is_sdvo = false, is_dvo = false;
918 bool is_crt = false, is_lvds = false, is_tv = false;
919 struct drm_mode_config *mode_config = &dev->mode_config;
920 struct drm_connector *connector;
5c3b82e2 921 int ret;
79e53945
JB
922
923 drm_vblank_pre_modeset(dev, pipe);
924
925 list_for_each_entry(connector, &mode_config->connector_list, head) {
926 struct intel_output *intel_output = to_intel_output(connector);
927
928 if (!connector->encoder || connector->encoder->crtc != crtc)
929 continue;
930
931 switch (intel_output->type) {
932 case INTEL_OUTPUT_LVDS:
933 is_lvds = true;
934 break;
935 case INTEL_OUTPUT_SDVO:
7d57382e 936 case INTEL_OUTPUT_HDMI:
79e53945 937 is_sdvo = true;
e2f0ba97
JB
938 if (intel_output->needs_tv_clock)
939 is_tv = true;
79e53945
JB
940 break;
941 case INTEL_OUTPUT_DVO:
942 is_dvo = true;
943 break;
944 case INTEL_OUTPUT_TVOUT:
945 is_tv = true;
946 break;
947 case INTEL_OUTPUT_ANALOG:
948 is_crt = true;
949 break;
950 }
43565a06
KH
951
952 num_outputs++;
79e53945
JB
953 }
954
43565a06
KH
955 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
956 refclk = dev_priv->lvds_ssc_freq * 1000;
957 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
958 } else if (IS_I9XX(dev)) {
79e53945
JB
959 refclk = 96000;
960 } else {
961 refclk = 48000;
962 }
963
964 ok = intel_find_best_PLL(crtc, adjusted_mode->clock, refclk, &clock);
965 if (!ok) {
966 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 967 return -EINVAL;
79e53945
JB
968 }
969
970 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
971
972 dpll = DPLL_VGA_MODE_DIS;
973 if (IS_I9XX(dev)) {
974 if (is_lvds)
975 dpll |= DPLLB_MODE_LVDS;
976 else
977 dpll |= DPLLB_MODE_DAC_SERIAL;
978 if (is_sdvo) {
979 dpll |= DPLL_DVO_HIGH_SPEED;
980 if (IS_I945G(dev) || IS_I945GM(dev)) {
981 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
982 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
983 }
984 }
985
986 /* compute bitmask from p1 value */
987 dpll |= (1 << (clock.p1 - 1)) << 16;
988 switch (clock.p2) {
989 case 5:
990 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
991 break;
992 case 7:
993 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
994 break;
995 case 10:
996 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
997 break;
998 case 14:
999 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1000 break;
1001 }
1002 if (IS_I965G(dev))
1003 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1004 } else {
1005 if (is_lvds) {
1006 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1007 } else {
1008 if (clock.p1 == 2)
1009 dpll |= PLL_P1_DIVIDE_BY_TWO;
1010 else
1011 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1012 if (clock.p2 == 4)
1013 dpll |= PLL_P2_DIVIDE_BY_4;
1014 }
1015 }
1016
43565a06
KH
1017 if (is_sdvo && is_tv)
1018 dpll |= PLL_REF_INPUT_TVCLKINBC;
1019 else if (is_tv)
79e53945 1020 /* XXX: just matching BIOS for now */
43565a06 1021 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 1022 dpll |= 3;
43565a06
KH
1023 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
1024 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
1025 else
1026 dpll |= PLL_REF_INPUT_DREFCLK;
1027
1028 /* setup pipeconf */
1029 pipeconf = I915_READ(pipeconf_reg);
1030
1031 /* Set up the display plane register */
1032 dspcntr = DISPPLANE_GAMMA_ENABLE;
1033
1034 if (pipe == 0)
1035 dspcntr |= DISPPLANE_SEL_PIPE_A;
1036 else
1037 dspcntr |= DISPPLANE_SEL_PIPE_B;
1038
1039 if (pipe == 0 && !IS_I965G(dev)) {
1040 /* Enable pixel doubling when the dot clock is > 90% of the (display)
1041 * core speed.
1042 *
1043 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
1044 * pipe == 0 check?
1045 */
1046 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
1047 pipeconf |= PIPEACONF_DOUBLE_WIDE;
1048 else
1049 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
1050 }
1051
1052 dspcntr |= DISPLAY_PLANE_ENABLE;
1053 pipeconf |= PIPEACONF_ENABLE;
1054 dpll |= DPLL_VCO_ENABLE;
1055
1056
1057 /* Disable the panel fitter if it was on our pipe */
1058 if (intel_panel_fitter_pipe(dev) == pipe)
1059 I915_WRITE(PFIT_CONTROL, 0);
1060
1061 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
1062 drm_mode_debug_printmodeline(mode);
1063
1064
1065 if (dpll & DPLL_VCO_ENABLE) {
1066 I915_WRITE(fp_reg, fp);
1067 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
1068 I915_READ(dpll_reg);
1069 udelay(150);
1070 }
1071
1072 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
1073 * This is an exception to the general rule that mode_set doesn't turn
1074 * things on.
1075 */
1076 if (is_lvds) {
1077 u32 lvds = I915_READ(LVDS);
1078
1079 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
1080 /* Set the B0-B3 data pairs corresponding to whether we're going to
1081 * set the DPLLs for dual-channel mode or not.
1082 */
1083 if (clock.p2 == 7)
1084 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
1085 else
1086 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
1087
1088 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
1089 * appropriately here, but we need to look more thoroughly into how
1090 * panels behave in the two modes.
1091 */
1092
1093 I915_WRITE(LVDS, lvds);
1094 I915_READ(LVDS);
1095 }
1096
1097 I915_WRITE(fp_reg, fp);
1098 I915_WRITE(dpll_reg, dpll);
1099 I915_READ(dpll_reg);
1100 /* Wait for the clocks to stabilize. */
1101 udelay(150);
1102
1103 if (IS_I965G(dev)) {
1104 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1105 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
1106 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
1107 } else {
1108 /* write it again -- the BIOS does, after all */
1109 I915_WRITE(dpll_reg, dpll);
1110 }
1111 I915_READ(dpll_reg);
1112 /* Wait for the clocks to stabilize. */
1113 udelay(150);
1114
1115 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
1116 ((adjusted_mode->crtc_htotal - 1) << 16));
1117 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
1118 ((adjusted_mode->crtc_hblank_end - 1) << 16));
1119 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
1120 ((adjusted_mode->crtc_hsync_end - 1) << 16));
1121 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
1122 ((adjusted_mode->crtc_vtotal - 1) << 16));
1123 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
1124 ((adjusted_mode->crtc_vblank_end - 1) << 16));
1125 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
1126 ((adjusted_mode->crtc_vsync_end - 1) << 16));
1127 /* pipesrc and dspsize control the size that is scaled from, which should
1128 * always be the user's requested size.
1129 */
1130 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
1131 I915_WRITE(dsppos_reg, 0);
1132 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
1133 I915_WRITE(pipeconf_reg, pipeconf);
1134 I915_READ(pipeconf_reg);
1135
1136 intel_wait_for_vblank(dev);
1137
1138 I915_WRITE(dspcntr_reg, dspcntr);
1139
1140 /* Flush the plane changes */
5c3b82e2
CW
1141 ret = intel_pipe_set_base(crtc, x, y, old_fb);
1142 if (ret != 0)
1143 return ret;
79e53945
JB
1144
1145 drm_vblank_post_modeset(dev, pipe);
5c3b82e2
CW
1146
1147 return 0;
79e53945
JB
1148}
1149
1150/** Loads the palette/gamma unit for the CRTC with the prepared values */
1151void intel_crtc_load_lut(struct drm_crtc *crtc)
1152{
1153 struct drm_device *dev = crtc->dev;
1154 struct drm_i915_private *dev_priv = dev->dev_private;
1155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1156 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
1157 int i;
1158
1159 /* The clocks have to be on to load the palette. */
1160 if (!crtc->enabled)
1161 return;
1162
1163 for (i = 0; i < 256; i++) {
1164 I915_WRITE(palreg + 4 * i,
1165 (intel_crtc->lut_r[i] << 16) |
1166 (intel_crtc->lut_g[i] << 8) |
1167 intel_crtc->lut_b[i]);
1168 }
1169}
1170
1171static int intel_crtc_cursor_set(struct drm_crtc *crtc,
1172 struct drm_file *file_priv,
1173 uint32_t handle,
1174 uint32_t width, uint32_t height)
1175{
1176 struct drm_device *dev = crtc->dev;
1177 struct drm_i915_private *dev_priv = dev->dev_private;
1178 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1179 struct drm_gem_object *bo;
1180 struct drm_i915_gem_object *obj_priv;
1181 int pipe = intel_crtc->pipe;
1182 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1183 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1184 uint32_t temp;
1185 size_t addr;
3f8bc370 1186 int ret;
79e53945
JB
1187
1188 DRM_DEBUG("\n");
1189
1190 /* if we want to turn off the cursor ignore width and height */
1191 if (!handle) {
1192 DRM_DEBUG("cursor off\n");
3f8bc370
KH
1193 temp = CURSOR_MODE_DISABLE;
1194 addr = 0;
1195 bo = NULL;
5004417d 1196 mutex_lock(&dev->struct_mutex);
3f8bc370 1197 goto finish;
79e53945
JB
1198 }
1199
1200 /* Currently we only support 64x64 cursors */
1201 if (width != 64 || height != 64) {
1202 DRM_ERROR("we currently only support 64x64 cursors\n");
1203 return -EINVAL;
1204 }
1205
1206 bo = drm_gem_object_lookup(dev, file_priv, handle);
1207 if (!bo)
1208 return -ENOENT;
1209
1210 obj_priv = bo->driver_private;
1211
1212 if (bo->size < width * height * 4) {
1213 DRM_ERROR("buffer is to small\n");
34b8686e
DA
1214 ret = -ENOMEM;
1215 goto fail;
79e53945
JB
1216 }
1217
71acb5eb 1218 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 1219 mutex_lock(&dev->struct_mutex);
71acb5eb
DA
1220 if (!dev_priv->cursor_needs_physical) {
1221 ret = i915_gem_object_pin(bo, PAGE_SIZE);
1222 if (ret) {
1223 DRM_ERROR("failed to pin cursor bo\n");
7f9872e0 1224 goto fail_locked;
71acb5eb 1225 }
79e53945 1226 addr = obj_priv->gtt_offset;
71acb5eb
DA
1227 } else {
1228 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
1229 if (ret) {
1230 DRM_ERROR("failed to attach phys object\n");
7f9872e0 1231 goto fail_locked;
71acb5eb
DA
1232 }
1233 addr = obj_priv->phys_obj->handle->busaddr;
3f8bc370
KH
1234 }
1235
79e53945
JB
1236 temp = 0;
1237 /* set the pipe for the cursor */
1238 temp |= (pipe << 28);
1239 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1240
3f8bc370 1241 finish:
79e53945
JB
1242 I915_WRITE(control, temp);
1243 I915_WRITE(base, addr);
1244
3f8bc370 1245 if (intel_crtc->cursor_bo) {
71acb5eb
DA
1246 if (dev_priv->cursor_needs_physical) {
1247 if (intel_crtc->cursor_bo != bo)
1248 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
1249 } else
1250 i915_gem_object_unpin(intel_crtc->cursor_bo);
3f8bc370
KH
1251 drm_gem_object_unreference(intel_crtc->cursor_bo);
1252 }
7f9872e0 1253 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
1254
1255 intel_crtc->cursor_addr = addr;
1256 intel_crtc->cursor_bo = bo;
1257
79e53945 1258 return 0;
34b8686e
DA
1259fail:
1260 mutex_lock(&dev->struct_mutex);
7f9872e0 1261fail_locked:
34b8686e
DA
1262 drm_gem_object_unreference(bo);
1263 mutex_unlock(&dev->struct_mutex);
1264 return ret;
79e53945
JB
1265}
1266
1267static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1268{
1269 struct drm_device *dev = crtc->dev;
1270 struct drm_i915_private *dev_priv = dev->dev_private;
1271 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1272 int pipe = intel_crtc->pipe;
1273 uint32_t temp = 0;
1274 uint32_t adder;
1275
1276 if (x < 0) {
1277 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1278 x = -x;
1279 }
1280 if (y < 0) {
1281 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1282 y = -y;
1283 }
1284
1285 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1286 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1287
1288 adder = intel_crtc->cursor_addr;
1289 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1290 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
1291
1292 return 0;
1293}
1294
1295/** Sets the color ramps on behalf of RandR */
1296void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1297 u16 blue, int regno)
1298{
1299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1300
1301 intel_crtc->lut_r[regno] = red >> 8;
1302 intel_crtc->lut_g[regno] = green >> 8;
1303 intel_crtc->lut_b[regno] = blue >> 8;
1304}
1305
1306static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1307 u16 *blue, uint32_t size)
1308{
1309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1310 int i;
1311
1312 if (size != 256)
1313 return;
1314
1315 for (i = 0; i < 256; i++) {
1316 intel_crtc->lut_r[i] = red[i] >> 8;
1317 intel_crtc->lut_g[i] = green[i] >> 8;
1318 intel_crtc->lut_b[i] = blue[i] >> 8;
1319 }
1320
1321 intel_crtc_load_lut(crtc);
1322}
1323
1324/**
1325 * Get a pipe with a simple mode set on it for doing load-based monitor
1326 * detection.
1327 *
1328 * It will be up to the load-detect code to adjust the pipe as appropriate for
1329 * its requirements. The pipe will be connected to no other outputs.
1330 *
1331 * Currently this code will only succeed if there is a pipe with no outputs
1332 * configured for it. In the future, it could choose to temporarily disable
1333 * some outputs to free up a pipe for its use.
1334 *
1335 * \return crtc, or NULL if no pipes are available.
1336 */
1337
1338/* VESA 640x480x72Hz mode to set on the pipe */
1339static struct drm_display_mode load_detect_mode = {
1340 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
1341 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1342};
1343
1344struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
1345 struct drm_display_mode *mode,
1346 int *dpms_mode)
1347{
1348 struct intel_crtc *intel_crtc;
1349 struct drm_crtc *possible_crtc;
1350 struct drm_crtc *supported_crtc =NULL;
1351 struct drm_encoder *encoder = &intel_output->enc;
1352 struct drm_crtc *crtc = NULL;
1353 struct drm_device *dev = encoder->dev;
1354 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1355 struct drm_crtc_helper_funcs *crtc_funcs;
1356 int i = -1;
1357
1358 /*
1359 * Algorithm gets a little messy:
1360 * - if the connector already has an assigned crtc, use it (but make
1361 * sure it's on first)
1362 * - try to find the first unused crtc that can drive this connector,
1363 * and use that if we find one
1364 * - if there are no unused crtcs available, try to use the first
1365 * one we found that supports the connector
1366 */
1367
1368 /* See if we already have a CRTC for this connector */
1369 if (encoder->crtc) {
1370 crtc = encoder->crtc;
1371 /* Make sure the crtc and connector are running */
1372 intel_crtc = to_intel_crtc(crtc);
1373 *dpms_mode = intel_crtc->dpms_mode;
1374 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
1375 crtc_funcs = crtc->helper_private;
1376 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1377 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1378 }
1379 return crtc;
1380 }
1381
1382 /* Find an unused one (if possible) */
1383 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
1384 i++;
1385 if (!(encoder->possible_crtcs & (1 << i)))
1386 continue;
1387 if (!possible_crtc->enabled) {
1388 crtc = possible_crtc;
1389 break;
1390 }
1391 if (!supported_crtc)
1392 supported_crtc = possible_crtc;
1393 }
1394
1395 /*
1396 * If we didn't find an unused CRTC, don't use any.
1397 */
1398 if (!crtc) {
1399 return NULL;
1400 }
1401
1402 encoder->crtc = crtc;
1403 intel_output->load_detect_temp = true;
1404
1405 intel_crtc = to_intel_crtc(crtc);
1406 *dpms_mode = intel_crtc->dpms_mode;
1407
1408 if (!crtc->enabled) {
1409 if (!mode)
1410 mode = &load_detect_mode;
3c4fdcfb 1411 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
79e53945
JB
1412 } else {
1413 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
1414 crtc_funcs = crtc->helper_private;
1415 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1416 }
1417
1418 /* Add this connector to the crtc */
1419 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
1420 encoder_funcs->commit(encoder);
1421 }
1422 /* let the connector get through one full cycle before testing */
1423 intel_wait_for_vblank(dev);
1424
1425 return crtc;
1426}
1427
1428void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
1429{
1430 struct drm_encoder *encoder = &intel_output->enc;
1431 struct drm_device *dev = encoder->dev;
1432 struct drm_crtc *crtc = encoder->crtc;
1433 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1434 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1435
1436 if (intel_output->load_detect_temp) {
1437 encoder->crtc = NULL;
1438 intel_output->load_detect_temp = false;
1439 crtc->enabled = drm_helper_crtc_in_use(crtc);
1440 drm_helper_disable_unused_functions(dev);
1441 }
1442
1443 /* Switch crtc and output back off if necessary */
1444 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
1445 if (encoder->crtc == crtc)
1446 encoder_funcs->dpms(encoder, dpms_mode);
1447 crtc_funcs->dpms(crtc, dpms_mode);
1448 }
1449}
1450
1451/* Returns the clock of the currently programmed mode of the given pipe. */
1452static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
1453{
1454 struct drm_i915_private *dev_priv = dev->dev_private;
1455 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1456 int pipe = intel_crtc->pipe;
1457 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
1458 u32 fp;
1459 intel_clock_t clock;
1460
1461 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1462 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
1463 else
1464 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
1465
1466 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1467 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1468 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1469 if (IS_I9XX(dev)) {
1470 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
1471 DPLL_FPA01_P1_POST_DIV_SHIFT);
1472
1473 switch (dpll & DPLL_MODE_MASK) {
1474 case DPLLB_MODE_DAC_SERIAL:
1475 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
1476 5 : 10;
1477 break;
1478 case DPLLB_MODE_LVDS:
1479 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
1480 7 : 14;
1481 break;
1482 default:
1483 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
1484 "mode\n", (int)(dpll & DPLL_MODE_MASK));
1485 return 0;
1486 }
1487
1488 /* XXX: Handle the 100Mhz refclk */
a29f5ca3 1489 intel_clock(96000, &clock);
79e53945
JB
1490 } else {
1491 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
1492
1493 if (is_lvds) {
1494 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1495 DPLL_FPA01_P1_POST_DIV_SHIFT);
1496 clock.p2 = 14;
1497
1498 if ((dpll & PLL_REF_INPUT_MASK) ==
1499 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1500 /* XXX: might not be 66MHz */
a29f5ca3 1501 intel_clock(66000, &clock);
79e53945 1502 } else
a29f5ca3 1503 intel_clock(48000, &clock);
79e53945
JB
1504 } else {
1505 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1506 clock.p1 = 2;
1507 else {
1508 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1509 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1510 }
1511 if (dpll & PLL_P2_DIVIDE_BY_4)
1512 clock.p2 = 4;
1513 else
1514 clock.p2 = 2;
1515
a29f5ca3 1516 intel_clock(48000, &clock);
79e53945
JB
1517 }
1518 }
1519
1520 /* XXX: It would be nice to validate the clocks, but we can't reuse
1521 * i830PllIsValid() because it relies on the xf86_config connector
1522 * configuration being accurate, which it isn't necessarily.
1523 */
1524
1525 return clock.dot;
1526}
1527
1528/** Returns the currently programmed mode of the given pipe. */
1529struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
1530 struct drm_crtc *crtc)
1531{
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1534 int pipe = intel_crtc->pipe;
1535 struct drm_display_mode *mode;
1536 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
1537 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
1538 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
1539 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
1540
1541 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1542 if (!mode)
1543 return NULL;
1544
1545 mode->clock = intel_crtc_clock_get(dev, crtc);
1546 mode->hdisplay = (htot & 0xffff) + 1;
1547 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1548 mode->hsync_start = (hsync & 0xffff) + 1;
1549 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1550 mode->vdisplay = (vtot & 0xffff) + 1;
1551 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1552 mode->vsync_start = (vsync & 0xffff) + 1;
1553 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1554
1555 drm_mode_set_name(mode);
1556 drm_mode_set_crtcinfo(mode, 0);
1557
1558 return mode;
1559}
1560
1561static void intel_crtc_destroy(struct drm_crtc *crtc)
1562{
1563 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1564
1565 drm_crtc_cleanup(crtc);
1566 kfree(intel_crtc);
1567}
1568
1569static const struct drm_crtc_helper_funcs intel_helper_funcs = {
1570 .dpms = intel_crtc_dpms,
1571 .mode_fixup = intel_crtc_mode_fixup,
1572 .mode_set = intel_crtc_mode_set,
1573 .mode_set_base = intel_pipe_set_base,
1574 .prepare = intel_crtc_prepare,
1575 .commit = intel_crtc_commit,
1576};
1577
1578static const struct drm_crtc_funcs intel_crtc_funcs = {
1579 .cursor_set = intel_crtc_cursor_set,
1580 .cursor_move = intel_crtc_cursor_move,
1581 .gamma_set = intel_crtc_gamma_set,
1582 .set_config = drm_crtc_helper_set_config,
1583 .destroy = intel_crtc_destroy,
1584};
1585
1586
b358d0a6 1587static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945
JB
1588{
1589 struct intel_crtc *intel_crtc;
1590 int i;
1591
1592 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
1593 if (intel_crtc == NULL)
1594 return;
1595
1596 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
1597
1598 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
1599 intel_crtc->pipe = pipe;
1600 for (i = 0; i < 256; i++) {
1601 intel_crtc->lut_r[i] = i;
1602 intel_crtc->lut_g[i] = i;
1603 intel_crtc->lut_b[i] = i;
1604 }
1605
1606 intel_crtc->cursor_addr = 0;
1607 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
1608 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
1609
1610 intel_crtc->mode_set.crtc = &intel_crtc->base;
1611 intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
1612 intel_crtc->mode_set.num_connectors = 0;
1613
1614 if (i915_fbpercrtc) {
1615
1616
1617
1618 }
1619}
1620
1621struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1622{
1623 struct drm_crtc *crtc = NULL;
1624
1625 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1626 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1627 if (intel_crtc->pipe == pipe)
1628 break;
1629 }
1630 return crtc;
1631}
1632
b358d0a6 1633static int intel_connector_clones(struct drm_device *dev, int type_mask)
79e53945
JB
1634{
1635 int index_mask = 0;
1636 struct drm_connector *connector;
1637 int entry = 0;
1638
1639 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1640 struct intel_output *intel_output = to_intel_output(connector);
1641 if (type_mask & (1 << intel_output->type))
1642 index_mask |= (1 << entry);
1643 entry++;
1644 }
1645 return index_mask;
1646}
1647
1648
1649static void intel_setup_outputs(struct drm_device *dev)
1650{
725e30ad 1651 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
1652 struct drm_connector *connector;
1653
1654 intel_crt_init(dev);
1655
1656 /* Set up integrated LVDS */
1657 if (IS_MOBILE(dev) && !IS_I830(dev))
1658 intel_lvds_init(dev);
1659
1660 if (IS_I9XX(dev)) {
7d57382e
EA
1661 int found;
1662
725e30ad
EA
1663 if (I915_READ(SDVOB) & SDVO_DETECTED) {
1664 found = intel_sdvo_init(dev, SDVOB);
1665 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
1666 intel_hdmi_init(dev, SDVOB);
1667 }
1668 if (!IS_G4X(dev) || (I915_READ(SDVOB) & SDVO_DETECTED)) {
1669 found = intel_sdvo_init(dev, SDVOC);
1670 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
1671 intel_hdmi_init(dev, SDVOC);
1672 }
79e53945
JB
1673 } else
1674 intel_dvo_init(dev);
1675
1fc45d84 1676 if (IS_I9XX(dev) && IS_MOBILE(dev))
79e53945
JB
1677 intel_tv_init(dev);
1678
1679 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1680 struct intel_output *intel_output = to_intel_output(connector);
1681 struct drm_encoder *encoder = &intel_output->enc;
1682 int crtc_mask = 0, clone_mask = 0;
1683
1684 /* valid crtcs */
1685 switch(intel_output->type) {
7d57382e
EA
1686 case INTEL_OUTPUT_HDMI:
1687 crtc_mask = ((1 << 0)|
1688 (1 << 1));
1689 clone_mask = ((1 << INTEL_OUTPUT_HDMI));
1690 break;
79e53945
JB
1691 case INTEL_OUTPUT_DVO:
1692 case INTEL_OUTPUT_SDVO:
1693 crtc_mask = ((1 << 0)|
1694 (1 << 1));
1695 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
1696 (1 << INTEL_OUTPUT_DVO) |
1697 (1 << INTEL_OUTPUT_SDVO));
1698 break;
1699 case INTEL_OUTPUT_ANALOG:
1700 crtc_mask = ((1 << 0)|
1701 (1 << 1));
1702 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
1703 (1 << INTEL_OUTPUT_DVO) |
1704 (1 << INTEL_OUTPUT_SDVO));
1705 break;
1706 case INTEL_OUTPUT_LVDS:
1707 crtc_mask = (1 << 1);
1708 clone_mask = (1 << INTEL_OUTPUT_LVDS);
1709 break;
1710 case INTEL_OUTPUT_TVOUT:
1711 crtc_mask = ((1 << 0) |
1712 (1 << 1));
1713 clone_mask = (1 << INTEL_OUTPUT_TVOUT);
1714 break;
1715 }
1716 encoder->possible_crtcs = crtc_mask;
1717 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
1718 }
1719}
1720
1721static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
1722{
1723 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1724 struct drm_device *dev = fb->dev;
1725
1726 if (fb->fbdev)
1727 intelfb_remove(dev, fb);
1728
1729 drm_framebuffer_cleanup(fb);
1730 mutex_lock(&dev->struct_mutex);
1731 drm_gem_object_unreference(intel_fb->obj);
1732 mutex_unlock(&dev->struct_mutex);
1733
1734 kfree(intel_fb);
1735}
1736
1737static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
1738 struct drm_file *file_priv,
1739 unsigned int *handle)
1740{
1741 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1742 struct drm_gem_object *object = intel_fb->obj;
1743
1744 return drm_gem_handle_create(file_priv, object, handle);
1745}
1746
1747static const struct drm_framebuffer_funcs intel_fb_funcs = {
1748 .destroy = intel_user_framebuffer_destroy,
1749 .create_handle = intel_user_framebuffer_create_handle,
1750};
1751
1752int intel_framebuffer_create(struct drm_device *dev,
1753 struct drm_mode_fb_cmd *mode_cmd,
1754 struct drm_framebuffer **fb,
1755 struct drm_gem_object *obj)
1756{
1757 struct intel_framebuffer *intel_fb;
1758 int ret;
1759
1760 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1761 if (!intel_fb)
1762 return -ENOMEM;
1763
1764 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
1765 if (ret) {
1766 DRM_ERROR("framebuffer init failed %d\n", ret);
1767 return ret;
1768 }
1769
1770 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
1771
1772 intel_fb->obj = obj;
1773
1774 *fb = &intel_fb->base;
1775
1776 return 0;
1777}
1778
1779
1780static struct drm_framebuffer *
1781intel_user_framebuffer_create(struct drm_device *dev,
1782 struct drm_file *filp,
1783 struct drm_mode_fb_cmd *mode_cmd)
1784{
1785 struct drm_gem_object *obj;
1786 struct drm_framebuffer *fb;
1787 int ret;
1788
1789 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
1790 if (!obj)
1791 return NULL;
1792
1793 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
1794 if (ret) {
496818f0 1795 mutex_lock(&dev->struct_mutex);
79e53945 1796 drm_gem_object_unreference(obj);
496818f0 1797 mutex_unlock(&dev->struct_mutex);
79e53945
JB
1798 return NULL;
1799 }
1800
1801 return fb;
1802}
1803
79e53945 1804static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945
JB
1805 .fb_create = intel_user_framebuffer_create,
1806 .fb_changed = intelfb_probe,
1807};
1808
1809void intel_modeset_init(struct drm_device *dev)
1810{
1811 int num_pipe;
1812 int i;
1813
1814 drm_mode_config_init(dev);
1815
1816 dev->mode_config.min_width = 0;
1817 dev->mode_config.min_height = 0;
1818
1819 dev->mode_config.funcs = (void *)&intel_mode_funcs;
1820
1821 if (IS_I965G(dev)) {
1822 dev->mode_config.max_width = 8192;
1823 dev->mode_config.max_height = 8192;
1824 } else {
1825 dev->mode_config.max_width = 2048;
1826 dev->mode_config.max_height = 2048;
1827 }
1828
1829 /* set memory base */
1830 if (IS_I9XX(dev))
1831 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
1832 else
1833 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
1834
1835 if (IS_MOBILE(dev) || IS_I9XX(dev))
1836 num_pipe = 2;
1837 else
1838 num_pipe = 1;
1839 DRM_DEBUG("%d display pipe%s available.\n",
1840 num_pipe, num_pipe > 1 ? "s" : "");
1841
1842 for (i = 0; i < num_pipe; i++) {
1843 intel_crtc_init(dev, i);
1844 }
1845
1846 intel_setup_outputs(dev);
1847}
1848
1849void intel_modeset_cleanup(struct drm_device *dev)
1850{
1851 drm_mode_config_cleanup(dev);
1852}
1853
1854
1855/* current intel driver doesn't take advantage of encoders
1856 always give back the encoder for the connector
1857*/
1858struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
1859{
1860 struct intel_output *intel_output = to_intel_output(connector);
1861
1862 return &intel_output->enc;
1863}