drm/i915: touch VGA MSR after we enable the power well
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46static __must_check int
07fe0b12
BW
47i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39 55 struct drm_file *file);
673a394b 56
61050808
CW
57static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
7dc19d5a
DC
63static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
d9973b43
CW
67static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 69static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 70
c76ce038
CW
71static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73{
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75}
76
2c22569b
CW
77static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78{
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83}
84
61050808
CW
85static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86{
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
5d82e3e6 93 obj->fence_dirty = false;
61050808
CW
94 obj->fence_reg = I915_FENCE_REG_NONE;
95}
96
73aa808f
CW
97/* some bookkeeping */
98static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100{
c20e8355 101 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
c20e8355 104 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105}
106
107static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109{
c20e8355 110 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
c20e8355 113 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
114}
115
21dd3734 116static int
33196ded 117i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 118{
30dbf0c0
CW
119 int ret;
120
7abb690a
DV
121#define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
1f83fee0 123 if (EXIT_COND)
30dbf0c0
CW
124 return 0;
125
0a6759c6
DV
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
1f83fee0
DV
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
0a6759c6
DV
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
30dbf0c0 138 return ret;
0a6759c6 139 }
1f83fee0 140#undef EXIT_COND
30dbf0c0 141
21dd3734 142 return 0;
30dbf0c0
CW
143}
144
54cf91dc 145int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 146{
33196ded 147 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
148 int ret;
149
33196ded 150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
23bc5982 158 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
159 return 0;
160}
30dbf0c0 161
7d1c4804 162static inline bool
05394f39 163i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 164{
9843877d 165 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
166}
167
79e53945
JB
168int
169i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
79e53945 171{
93d18799 172 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 173 struct drm_i915_gem_init *args = data;
2021746e 174
7bb6fb8d
DV
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
2021746e
CW
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
79e53945 181
f534bc0b
DV
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
79e53945 186 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
93d18799 189 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
190 mutex_unlock(&dev->struct_mutex);
191
2021746e 192 return 0;
673a394b
EA
193}
194
5a125c3c
EA
195int
196i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 197 struct drm_file *file)
5a125c3c 198{
73aa808f 199 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 200 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
5a125c3c 203
6299f992 204 pinned = 0;
73aa808f 205 mutex_lock(&dev->struct_mutex);
35c20a60 206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 207 if (obj->pin_count)
f343c5f6 208 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 209 mutex_unlock(&dev->struct_mutex);
5a125c3c 210
853ba5d2 211 args->aper_size = dev_priv->gtt.base.total;
0206e353 212 args->aper_available_size = args->aper_size - pinned;
6299f992 213
5a125c3c
EA
214 return 0;
215}
216
42dcedd4
CW
217void *i915_gem_object_alloc(struct drm_device *dev)
218{
219 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
221}
222
223void i915_gem_object_free(struct drm_i915_gem_object *obj)
224{
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227}
228
ff72145b
DA
229static int
230i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
673a394b 234{
05394f39 235 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
236 int ret;
237 u32 handle;
673a394b 238
ff72145b 239 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
240 if (size == 0)
241 return -EINVAL;
673a394b
EA
242
243 /* Allocate the new object */
ff72145b 244 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
245 if (obj == NULL)
246 return -ENOMEM;
247
05394f39 248 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 249 /* drop reference from allocate - handle holds it now */
d861e338
DV
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
202f2fef 253
ff72145b 254 *handle_p = handle;
673a394b
EA
255 return 0;
256}
257
ff72145b
DA
258int
259i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262{
263 /* have to work out size/pitch and return them */
de45eaf7 264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268}
269
ff72145b
DA
270/**
271 * Creates a new mm object and returns a handle to it.
272 */
273int
274i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276{
277 struct drm_i915_gem_create *args = data;
63ed2cb2 278
ff72145b
DA
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281}
282
8461d226
DV
283static inline int
284__copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287{
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307}
308
8c59967c 309static inline int
4f0c7cfb
BW
310__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
8c59967c
DV
312 int length)
313{
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333}
334
d174bd64
DV
335/* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
eb01459f 338static int
d174bd64
DV
339shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342{
343 char *vaddr;
344 int ret;
345
e7e58eb5 346 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
f60d7f0c 358 return ret ? -EFAULT : 0;
d174bd64
DV
359}
360
23c18c71
DV
361static void
362shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364{
e7e58eb5 365 if (unlikely(swizzled)) {
23c18c71
DV
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381}
382
d174bd64
DV
383/* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385static int
386shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389{
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
23c18c71
DV
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
d174bd64
DV
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
f60d7f0c 409 return ret ? - EFAULT : 0;
d174bd64
DV
410}
411
eb01459f 412static int
dbf7bff0
DV
413i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
eb01459f 417{
8461d226 418 char __user *user_data;
eb01459f 419 ssize_t remain;
8461d226 420 loff_t offset;
eb2c0c81 421 int shmem_page_offset, page_length, ret = 0;
8461d226 422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 423 int prefaulted = 0;
8489731c 424 int needs_clflush = 0;
67d5a50c 425 struct sg_page_iter sg_iter;
eb01459f 426
2bb4629a 427 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
428 remain = args->size;
429
8461d226 430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 431
8489731c
DV
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
c76ce038 437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
23f54483
BW
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
8489731c 441 }
eb01459f 442
f60d7f0c
CW
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
8461d226 449 offset = args->offset;
eb01459f 450
67d5a50c
ID
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
2db76d7c 453 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
454
455 if (remain <= 0)
456 break;
457
eb01459f
EA
458 /* Operation in this page
459 *
eb01459f 460 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
461 * page_length = bytes to copy for this page
462 */
c8cbbb8b 463 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 467
8461d226
DV
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
d174bd64
DV
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
dbf7bff0 476
dbf7bff0
DV
477 mutex_unlock(&dev->struct_mutex);
478
0b74b508 479 if (likely(!i915_prefault_disable) && !prefaulted) {
f56f821f 480 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
eb01459f 488
d174bd64
DV
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
eb01459f 492
dbf7bff0 493 mutex_lock(&dev->struct_mutex);
f60d7f0c 494
dbf7bff0 495next_page:
e5281ccd 496 mark_page_accessed(page);
e5281ccd 497
f60d7f0c 498 if (ret)
8461d226 499 goto out;
8461d226 500
eb01459f 501 remain -= page_length;
8461d226 502 user_data += page_length;
eb01459f
EA
503 offset += page_length;
504 }
505
4f27b75d 506out:
f60d7f0c
CW
507 i915_gem_object_unpin_pages(obj);
508
eb01459f
EA
509 return ret;
510}
511
673a394b
EA
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 519 struct drm_file *file)
673a394b
EA
520{
521 struct drm_i915_gem_pread *args = data;
05394f39 522 struct drm_i915_gem_object *obj;
35b62a89 523 int ret = 0;
673a394b 524
51311d0a
CW
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
2bb4629a 529 to_user_ptr(args->data_ptr),
51311d0a
CW
530 args->size))
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
1286ff73
DV
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
db53a302
CW
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
dbf7bff0 560 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 561
35b62a89 562out:
05394f39 563 drm_gem_object_unreference(&obj->base);
1d7cfea1 564unlock:
4f27b75d 565 mutex_unlock(&dev->struct_mutex);
eb01459f 566 return ret;
673a394b
EA
567}
568
0839ccb8
KP
569/* This is the fast write path which cannot handle
570 * page faults in the source data
9b7530cc 571 */
0839ccb8
KP
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
9b7530cc 578{
4f0c7cfb
BW
579 void __iomem *vaddr_atomic;
580 void *vaddr;
0839ccb8 581 unsigned long unwritten;
9b7530cc 582
3e4d3af5 583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 587 user_data, length);
3e4d3af5 588 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 589 return unwritten;
0839ccb8
KP
590}
591
3de09aa3
EA
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
673a394b 596static int
05394f39
CW
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
3de09aa3 599 struct drm_i915_gem_pwrite *args,
05394f39 600 struct drm_file *file)
673a394b 601{
0839ccb8 602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 603 ssize_t remain;
0839ccb8 604 loff_t offset, page_base;
673a394b 605 char __user *user_data;
935aaa69
DV
606 int page_offset, page_length, ret;
607
c37e2204 608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
673a394b 619
2bb4629a 620 user_data = to_user_ptr(args->data_ptr);
673a394b 621 remain = args->size;
673a394b 622
f343c5f6 623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
0839ccb8
KP
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
673a394b 631 */
c8cbbb8b
CW
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
0839ccb8
KP
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
0839ccb8 638 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
0839ccb8 641 */
5d4545ae 642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
673a394b 647
0839ccb8
KP
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
673a394b 651 }
673a394b 652
935aaa69
DV
653out_unpin:
654 i915_gem_object_unpin(obj);
655out:
3de09aa3 656 return ret;
673a394b
EA
657}
658
d174bd64
DV
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
3043c60c 663static int
d174bd64
DV
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
673a394b 669{
d174bd64 670 char *vaddr;
673a394b 671 int ret;
3de09aa3 672
e7e58eb5 673 if (unlikely(page_do_bit17_swizzling))
d174bd64 674 return -EINVAL;
3de09aa3 675
d174bd64
DV
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
3de09aa3 687
755d2218 688 return ret ? -EFAULT : 0;
3de09aa3
EA
689}
690
d174bd64
DV
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
3043c60c 693static int
d174bd64
DV
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
673a394b 699{
d174bd64
DV
700 char *vaddr;
701 int ret;
e5281ccd 702
d174bd64 703 vaddr = kmap(page);
e7e58eb5 704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
d174bd64
DV
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
710 user_data,
711 page_length);
d174bd64
DV
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
23c18c71
DV
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
d174bd64 720 kunmap(page);
40123c1f 721
755d2218 722 return ret ? -EFAULT : 0;
40123c1f
EA
723}
724
40123c1f 725static int
e244a443
DV
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
40123c1f 730{
40123c1f 731 ssize_t remain;
8c59967c
DV
732 loff_t offset;
733 char __user *user_data;
eb2c0c81 734 int shmem_page_offset, page_length, ret = 0;
8c59967c 735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 736 int hit_slowpath = 0;
58642885
DV
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
67d5a50c 739 struct sg_page_iter sg_iter;
40123c1f 740
2bb4629a 741 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
742 remain = args->size;
743
8c59967c 744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 745
58642885
DV
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
2c22569b 751 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
58642885 755 }
c76ce038
CW
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 761
755d2218
CW
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
673a394b 768 offset = args->offset;
05394f39 769 obj->dirty = 1;
673a394b 770
67d5a50c
ID
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
2db76d7c 773 struct page *page = sg_page_iter_page(&sg_iter);
58642885 774 int partial_cacheline_write;
e5281ccd 775
9da3da66
CW
776 if (remain <= 0)
777 break;
778
40123c1f
EA
779 /* Operation in this page
780 *
40123c1f 781 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
782 * page_length = bytes to copy for this page
783 */
c8cbbb8b 784 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 789
58642885
DV
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
8c59967c
DV
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
d174bd64
DV
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
e244a443
DV
806
807 hit_slowpath = 1;
e244a443 808 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
40123c1f 813
e244a443 814 mutex_lock(&dev->struct_mutex);
755d2218 815
e244a443 816next_page:
e5281ccd
CW
817 set_page_dirty(page);
818 mark_page_accessed(page);
e5281ccd 819
755d2218 820 if (ret)
8c59967c 821 goto out;
8c59967c 822
40123c1f 823 remain -= page_length;
8c59967c 824 user_data += page_length;
40123c1f 825 offset += page_length;
673a394b
EA
826 }
827
fbd5a26d 828out:
755d2218
CW
829 i915_gem_object_unpin_pages(obj);
830
e244a443 831 if (hit_slowpath) {
8dcf015e
DV
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
e244a443 841 }
8c59967c 842 }
673a394b 843
58642885 844 if (needs_clflush_after)
e76e9aeb 845 i915_gem_chipset_flush(dev);
58642885 846
40123c1f 847 return ret;
673a394b
EA
848}
849
850/**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855int
856i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 857 struct drm_file *file)
673a394b
EA
858{
859 struct drm_i915_gem_pwrite *args = data;
05394f39 860 struct drm_i915_gem_object *obj;
51311d0a
CW
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
2bb4629a 867 to_user_ptr(args->data_ptr),
51311d0a
CW
868 args->size))
869 return -EFAULT;
870
0b74b508
XZ
871 if (likely(!i915_prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
673a394b 877
fbd5a26d 878 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 879 if (ret)
fbd5a26d 880 return ret;
1d7cfea1 881
05394f39 882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 883 if (&obj->base == NULL) {
1d7cfea1
CW
884 ret = -ENOENT;
885 goto unlock;
fbd5a26d 886 }
673a394b 887
7dcd2499 888 /* Bounds check destination. */
05394f39
CW
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
ce9d419d 891 ret = -EINVAL;
35b62a89 892 goto out;
ce9d419d
CW
893 }
894
1286ff73
DV
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
db53a302
CW
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
935aaa69 905 ret = -EFAULT;
673a394b
EA
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
5c0480f2 912 if (obj->phys_obj) {
fbd5a26d 913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
914 goto out;
915 }
916
2c22569b
CW
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
fbd5a26d 920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
fbd5a26d 924 }
673a394b 925
86a1ee26 926 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 928
35b62a89 929out:
05394f39 930 drm_gem_object_unreference(&obj->base);
1d7cfea1 931unlock:
fbd5a26d 932 mutex_unlock(&dev->struct_mutex);
673a394b
EA
933 return ret;
934}
935
b361237b 936int
33196ded 937i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
938 bool interruptible)
939{
1f83fee0 940 if (i915_reset_in_progress(error)) {
b361237b
CW
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
1f83fee0
DV
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
b361237b
CW
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954}
955
956/*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960static int
961i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962{
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
1823521d 968 if (seqno == ring->outstanding_lazy_seqno)
0025c077 969 ret = i915_add_request(ring, NULL);
b361237b
CW
970
971 return ret;
972}
973
094f9a54
CW
974static void fake_irq(unsigned long data)
975{
976 wake_up_process((struct task_struct *)data);
977}
978
979static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981{
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983}
984
b29c19b6
CW
985static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986{
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991}
992
b361237b
CW
993/**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
f69061be 997 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
f69061be
DV
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
b361237b
CW
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1012 unsigned reset_counter,
b29c19b6
CW
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
b361237b
CW
1016{
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
094f9a54
CW
1018 struct timespec before, now;
1019 DEFINE_WAIT(wait);
1020 long timeout_jiffies;
b361237b
CW
1021 int ret;
1022
c67a470b
PZ
1023 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1024
b361237b
CW
1025 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1026 return 0;
1027
094f9a54 1028 timeout_jiffies = timeout ? timespec_to_jiffies_timeout(timeout) : 1;
b361237b 1029
b29c19b6
CW
1030 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1031 gen6_rps_boost(dev_priv);
1032 if (file_priv)
1033 mod_delayed_work(dev_priv->wq,
1034 &file_priv->mm.idle_work,
1035 msecs_to_jiffies(100));
1036 }
1037
094f9a54
CW
1038 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)) &&
1039 WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1040 return -ENODEV;
1041
094f9a54
CW
1042 /* Record current time in case interrupted by signal, or wedged */
1043 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1044 getrawmonotonic(&before);
094f9a54
CW
1045 for (;;) {
1046 struct timer_list timer;
1047 unsigned long expire;
b361237b 1048
094f9a54
CW
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1051
f69061be
DV
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
094f9a54
CW
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
f69061be 1062
094f9a54
CW
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
b361237b 1067
094f9a54
CW
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
1073 if (timeout_jiffies <= 0) {
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
1080 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1081 expire = jiffies + (missed_irq(dev_priv, ring) ? 1: timeout_jiffies);
1082 mod_timer(&timer, expire);
1083 }
1084
5035c275 1085 io_schedule();
094f9a54
CW
1086
1087 if (timeout)
1088 timeout_jiffies = expire - jiffies;
1089
1090 if (timer.function) {
1091 del_singleshot_timer_sync(&timer);
1092 destroy_timer_on_stack(&timer);
1093 }
1094 }
b361237b 1095 getrawmonotonic(&now);
094f9a54 1096 trace_i915_gem_request_wait_end(ring, seqno);
b361237b
CW
1097
1098 ring->irq_put(ring);
094f9a54
CW
1099
1100 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1107 }
1108
094f9a54 1109 return ret;
b361237b
CW
1110}
1111
1112/**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116int
1117i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118{
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
33196ded 1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
f69061be
DV
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1137 interruptible, NULL, NULL);
b361237b
CW
1138}
1139
d26e3af8
CW
1140static int
1141i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143{
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157}
1158
b361237b
CW
1159/**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163static __must_check int
1164i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166{
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
d26e3af8 1179 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1180}
1181
3236f57a
CW
1182/* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185static __must_check int
1186i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
b29c19b6 1187 struct drm_file *file,
3236f57a
CW
1188 bool readonly)
1189{
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
f69061be 1193 unsigned reset_counter;
3236f57a
CW
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
33196ded 1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
f69061be 1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1213 mutex_unlock(&dev->struct_mutex);
b29c19b6 1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
3236f57a 1215 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1216 if (ret)
1217 return ret;
3236f57a 1218
d26e3af8 1219 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1220}
1221
673a394b 1222/**
2ef7eeaa
EA
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1225 */
1226int
1227i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1228 struct drm_file *file)
673a394b
EA
1229{
1230 struct drm_i915_gem_set_domain *args = data;
05394f39 1231 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
673a394b
EA
1234 int ret;
1235
2ef7eeaa 1236 /* Only handle setting domains to types used by the CPU. */
21d509e3 1237 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1238 return -EINVAL;
1239
21d509e3 1240 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
76c1dec1 1249 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1250 if (ret)
76c1dec1 1251 return ret;
1d7cfea1 1252
05394f39 1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1254 if (&obj->base == NULL) {
1d7cfea1
CW
1255 ret = -ENOENT;
1256 goto unlock;
76c1dec1 1257 }
673a394b 1258
3236f57a
CW
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
b29c19b6 1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
3236f57a
CW
1264 if (ret)
1265 goto unref;
1266
2ef7eeaa
EA
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
2ef7eeaa 1276 } else {
e47c68e9 1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1278 }
1279
3236f57a 1280unref:
05394f39 1281 drm_gem_object_unreference(&obj->base);
1d7cfea1 1282unlock:
673a394b
EA
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285}
1286
1287/**
1288 * Called when user space has done writes to this buffer
1289 */
1290int
1291i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1292 struct drm_file *file)
673a394b
EA
1293{
1294 struct drm_i915_gem_sw_finish *args = data;
05394f39 1295 struct drm_i915_gem_object *obj;
673a394b
EA
1296 int ret = 0;
1297
76c1dec1 1298 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1299 if (ret)
76c1dec1 1300 return ret;
1d7cfea1 1301
05394f39 1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1303 if (&obj->base == NULL) {
1d7cfea1
CW
1304 ret = -ENOENT;
1305 goto unlock;
673a394b
EA
1306 }
1307
673a394b 1308 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1311
05394f39 1312 drm_gem_object_unreference(&obj->base);
1d7cfea1 1313unlock:
673a394b
EA
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316}
1317
1318/**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325int
1326i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1327 struct drm_file *file)
673a394b
EA
1328{
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
673a394b
EA
1331 unsigned long addr;
1332
05394f39 1333 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1334 if (obj == NULL)
bf79cb91 1335 return -ENOENT;
673a394b 1336
1286ff73
DV
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
6be5ceb0 1345 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
bc9025bd 1348 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355}
1356
de151cf6
JB
1357/**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374{
05394f39
CW
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
7d1c4804 1377 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
0f973f27 1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1382
f65c9168
PZ
1383 intel_runtime_pm_get(dev_priv);
1384
de151cf6
JB
1385 /* We don't use vmf->pgoff since that has the fake offset */
1386 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1387 PAGE_SHIFT;
1388
d9bc7e9f
CW
1389 ret = i915_mutex_lock_interruptible(dev);
1390 if (ret)
1391 goto out;
a00b10c3 1392
db53a302
CW
1393 trace_i915_gem_object_fault(obj, page_offset, true, write);
1394
eb119bd6
CW
1395 /* Access to snoopable pages through the GTT is incoherent. */
1396 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1397 ret = -EINVAL;
1398 goto unlock;
1399 }
1400
d9bc7e9f 1401 /* Now bind it into the GTT if needed */
c37e2204 1402 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1403 if (ret)
1404 goto unlock;
4a684a41 1405
c9839303
CW
1406 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1407 if (ret)
1408 goto unpin;
74898d7e 1409
06d98131 1410 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1411 if (ret)
c9839303 1412 goto unpin;
7d1c4804 1413
6299f992
CW
1414 obj->fault_mappable = true;
1415
f343c5f6
BW
1416 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1417 pfn >>= PAGE_SHIFT;
1418 pfn += page_offset;
de151cf6
JB
1419
1420 /* Finally, remap it using the new GTT offset */
1421 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1422unpin:
1423 i915_gem_object_unpin(obj);
c715089f 1424unlock:
de151cf6 1425 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1426out:
de151cf6 1427 switch (ret) {
d9bc7e9f 1428 case -EIO:
a9340cca
DV
1429 /* If this -EIO is due to a gpu hang, give the reset code a
1430 * chance to clean up the mess. Otherwise return the proper
1431 * SIGBUS. */
f65c9168
PZ
1432 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1433 ret = VM_FAULT_SIGBUS;
1434 break;
1435 }
045e769a 1436 case -EAGAIN:
571c608d
DV
1437 /*
1438 * EAGAIN means the gpu is hung and we'll wait for the error
1439 * handler to reset everything when re-faulting in
1440 * i915_mutex_lock_interruptible.
d9bc7e9f 1441 */
c715089f
CW
1442 case 0:
1443 case -ERESTARTSYS:
bed636ab 1444 case -EINTR:
e79e0fe3
DR
1445 case -EBUSY:
1446 /*
1447 * EBUSY is ok: this just means that another thread
1448 * already did the job.
1449 */
f65c9168
PZ
1450 ret = VM_FAULT_NOPAGE;
1451 break;
de151cf6 1452 case -ENOMEM:
f65c9168
PZ
1453 ret = VM_FAULT_OOM;
1454 break;
a7c2e1aa 1455 case -ENOSPC:
f65c9168
PZ
1456 ret = VM_FAULT_SIGBUS;
1457 break;
de151cf6 1458 default:
a7c2e1aa 1459 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1460 ret = VM_FAULT_SIGBUS;
1461 break;
de151cf6 1462 }
f65c9168
PZ
1463
1464 intel_runtime_pm_put(dev_priv);
1465 return ret;
de151cf6
JB
1466}
1467
901782b2
CW
1468/**
1469 * i915_gem_release_mmap - remove physical page mappings
1470 * @obj: obj in question
1471 *
af901ca1 1472 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1473 * relinquish ownership of the pages back to the system.
1474 *
1475 * It is vital that we remove the page mapping if we have mapped a tiled
1476 * object through the GTT and then lose the fence register due to
1477 * resource pressure. Similarly if the object has been moved out of the
1478 * aperture, than pages mapped into userspace must be revoked. Removing the
1479 * mapping will then trigger a page fault on the next user access, allowing
1480 * fixup by i915_gem_fault().
1481 */
d05ca301 1482void
05394f39 1483i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1484{
6299f992
CW
1485 if (!obj->fault_mappable)
1486 return;
901782b2 1487
51335df9 1488 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1489 obj->fault_mappable = false;
901782b2
CW
1490}
1491
0fa87796 1492uint32_t
e28f8711 1493i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1494{
e28f8711 1495 uint32_t gtt_size;
92b88aeb
CW
1496
1497 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1498 tiling_mode == I915_TILING_NONE)
1499 return size;
92b88aeb
CW
1500
1501 /* Previous chips need a power-of-two fence region when tiling */
1502 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1503 gtt_size = 1024*1024;
92b88aeb 1504 else
e28f8711 1505 gtt_size = 512*1024;
92b88aeb 1506
e28f8711
CW
1507 while (gtt_size < size)
1508 gtt_size <<= 1;
92b88aeb 1509
e28f8711 1510 return gtt_size;
92b88aeb
CW
1511}
1512
de151cf6
JB
1513/**
1514 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1515 * @obj: object to check
1516 *
1517 * Return the required GTT alignment for an object, taking into account
5e783301 1518 * potential fence register mapping.
de151cf6 1519 */
d865110c
ID
1520uint32_t
1521i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1522 int tiling_mode, bool fenced)
de151cf6 1523{
de151cf6
JB
1524 /*
1525 * Minimum alignment is 4k (GTT page size), but might be greater
1526 * if a fence register is needed for the object.
1527 */
d865110c 1528 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1529 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1530 return 4096;
1531
a00b10c3
CW
1532 /*
1533 * Previous chips need to be aligned to the size of the smallest
1534 * fence register that can contain the object.
1535 */
e28f8711 1536 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1537}
1538
d8cb5086
CW
1539static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1540{
1541 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1542 int ret;
1543
0de23977 1544 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1545 return 0;
1546
da494d7c
DV
1547 dev_priv->mm.shrinker_no_lock_stealing = true;
1548
d8cb5086
CW
1549 ret = drm_gem_create_mmap_offset(&obj->base);
1550 if (ret != -ENOSPC)
da494d7c 1551 goto out;
d8cb5086
CW
1552
1553 /* Badly fragmented mmap space? The only way we can recover
1554 * space is by destroying unwanted objects. We can't randomly release
1555 * mmap_offsets as userspace expects them to be persistent for the
1556 * lifetime of the objects. The closest we can is to release the
1557 * offsets on purgeable objects by truncating it and marking it purged,
1558 * which prevents userspace from ever using that object again.
1559 */
1560 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1561 ret = drm_gem_create_mmap_offset(&obj->base);
1562 if (ret != -ENOSPC)
da494d7c 1563 goto out;
d8cb5086
CW
1564
1565 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1566 ret = drm_gem_create_mmap_offset(&obj->base);
1567out:
1568 dev_priv->mm.shrinker_no_lock_stealing = false;
1569
1570 return ret;
d8cb5086
CW
1571}
1572
1573static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1574{
d8cb5086
CW
1575 drm_gem_free_mmap_offset(&obj->base);
1576}
1577
de151cf6 1578int
ff72145b
DA
1579i915_gem_mmap_gtt(struct drm_file *file,
1580 struct drm_device *dev,
1581 uint32_t handle,
1582 uint64_t *offset)
de151cf6 1583{
da761a6e 1584 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1585 struct drm_i915_gem_object *obj;
de151cf6
JB
1586 int ret;
1587
76c1dec1 1588 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1589 if (ret)
76c1dec1 1590 return ret;
de151cf6 1591
ff72145b 1592 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1593 if (&obj->base == NULL) {
1d7cfea1
CW
1594 ret = -ENOENT;
1595 goto unlock;
1596 }
de151cf6 1597
5d4545ae 1598 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1599 ret = -E2BIG;
ff56b0bc 1600 goto out;
da761a6e
CW
1601 }
1602
05394f39 1603 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1604 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1605 ret = -EINVAL;
1606 goto out;
ab18282d
CW
1607 }
1608
d8cb5086
CW
1609 ret = i915_gem_object_create_mmap_offset(obj);
1610 if (ret)
1611 goto out;
de151cf6 1612
0de23977 1613 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1614
1d7cfea1 1615out:
05394f39 1616 drm_gem_object_unreference(&obj->base);
1d7cfea1 1617unlock:
de151cf6 1618 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1619 return ret;
de151cf6
JB
1620}
1621
ff72145b
DA
1622/**
1623 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1624 * @dev: DRM device
1625 * @data: GTT mapping ioctl data
1626 * @file: GEM object info
1627 *
1628 * Simply returns the fake offset to userspace so it can mmap it.
1629 * The mmap call will end up in drm_gem_mmap(), which will set things
1630 * up so we can get faults in the handler above.
1631 *
1632 * The fault handler will take care of binding the object into the GTT
1633 * (since it may have been evicted to make room for something), allocating
1634 * a fence register, and mapping the appropriate aperture address into
1635 * userspace.
1636 */
1637int
1638i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1639 struct drm_file *file)
1640{
1641 struct drm_i915_gem_mmap_gtt *args = data;
1642
ff72145b
DA
1643 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1644}
1645
225067ee
DV
1646/* Immediately discard the backing storage */
1647static void
1648i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1649{
e5281ccd 1650 struct inode *inode;
e5281ccd 1651
4d6294bf 1652 i915_gem_object_free_mmap_offset(obj);
1286ff73 1653
4d6294bf
CW
1654 if (obj->base.filp == NULL)
1655 return;
e5281ccd 1656
225067ee
DV
1657 /* Our goal here is to return as much of the memory as
1658 * is possible back to the system as we are called from OOM.
1659 * To do this we must instruct the shmfs to drop all of its
1660 * backing pages, *now*.
1661 */
496ad9aa 1662 inode = file_inode(obj->base.filp);
225067ee 1663 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1664
225067ee
DV
1665 obj->madv = __I915_MADV_PURGED;
1666}
e5281ccd 1667
225067ee
DV
1668static inline int
1669i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1670{
1671 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1672}
1673
5cdf5881 1674static void
05394f39 1675i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1676{
90797e6d
ID
1677 struct sg_page_iter sg_iter;
1678 int ret;
1286ff73 1679
05394f39 1680 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1681
6c085a72
CW
1682 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1683 if (ret) {
1684 /* In the event of a disaster, abandon all caches and
1685 * hope for the best.
1686 */
1687 WARN_ON(ret != -EIO);
2c22569b 1688 i915_gem_clflush_object(obj, true);
6c085a72
CW
1689 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1690 }
1691
6dacfd2f 1692 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1693 i915_gem_object_save_bit_17_swizzle(obj);
1694
05394f39
CW
1695 if (obj->madv == I915_MADV_DONTNEED)
1696 obj->dirty = 0;
3ef94daa 1697
90797e6d 1698 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1699 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1700
05394f39 1701 if (obj->dirty)
9da3da66 1702 set_page_dirty(page);
3ef94daa 1703
05394f39 1704 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1705 mark_page_accessed(page);
3ef94daa 1706
9da3da66 1707 page_cache_release(page);
3ef94daa 1708 }
05394f39 1709 obj->dirty = 0;
673a394b 1710
9da3da66
CW
1711 sg_free_table(obj->pages);
1712 kfree(obj->pages);
37e680a1 1713}
6c085a72 1714
dd624afd 1715int
37e680a1
CW
1716i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1717{
1718 const struct drm_i915_gem_object_ops *ops = obj->ops;
1719
2f745ad3 1720 if (obj->pages == NULL)
37e680a1
CW
1721 return 0;
1722
a5570178
CW
1723 if (obj->pages_pin_count)
1724 return -EBUSY;
1725
9843877d 1726 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1727
a2165e31
CW
1728 /* ->put_pages might need to allocate memory for the bit17 swizzle
1729 * array, hence protect them from being reaped by removing them from gtt
1730 * lists early. */
35c20a60 1731 list_del(&obj->global_list);
a2165e31 1732
37e680a1 1733 ops->put_pages(obj);
05394f39 1734 obj->pages = NULL;
37e680a1 1735
6c085a72
CW
1736 if (i915_gem_object_is_purgeable(obj))
1737 i915_gem_object_truncate(obj);
1738
1739 return 0;
1740}
1741
d9973b43 1742static unsigned long
93927ca5
DV
1743__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1744 bool purgeable_only)
6c085a72 1745{
57094f82 1746 struct list_head still_bound_list;
6c085a72 1747 struct drm_i915_gem_object *obj, *next;
d9973b43 1748 unsigned long count = 0;
6c085a72
CW
1749
1750 list_for_each_entry_safe(obj, next,
1751 &dev_priv->mm.unbound_list,
35c20a60 1752 global_list) {
93927ca5 1753 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1754 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1755 count += obj->base.size >> PAGE_SHIFT;
1756 if (count >= target)
1757 return count;
1758 }
1759 }
1760
57094f82
CW
1761 /*
1762 * As we may completely rewrite the bound list whilst unbinding
1763 * (due to retiring requests) we have to strictly process only
1764 * one element of the list at the time, and recheck the list
1765 * on every iteration.
1766 */
1767 INIT_LIST_HEAD(&still_bound_list);
1768 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1769 struct i915_vma *vma, *v;
80dcfdbd 1770
57094f82
CW
1771 obj = list_first_entry(&dev_priv->mm.bound_list,
1772 typeof(*obj), global_list);
1773 list_move_tail(&obj->global_list, &still_bound_list);
1774
80dcfdbd
BW
1775 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1776 continue;
1777
57094f82
CW
1778 /*
1779 * Hold a reference whilst we unbind this object, as we may
1780 * end up waiting for and retiring requests. This might
1781 * release the final reference (held by the active list)
1782 * and result in the object being freed from under us.
1783 * in this object being freed.
1784 *
1785 * Note 1: Shrinking the bound list is special since only active
1786 * (and hence bound objects) can contain such limbo objects, so
1787 * we don't need special tricks for shrinking the unbound list.
1788 * The only other place where we have to be careful with active
1789 * objects suddenly disappearing due to retiring requests is the
1790 * eviction code.
1791 *
1792 * Note 2: Even though the bound list doesn't hold a reference
1793 * to the object we can safely grab one here: The final object
1794 * unreferencing and the bound_list are both protected by the
1795 * dev->struct_mutex and so we won't ever be able to observe an
1796 * object on the bound_list with a reference count equals 0.
1797 */
1798 drm_gem_object_reference(&obj->base);
1799
07fe0b12
BW
1800 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1801 if (i915_vma_unbind(vma))
1802 break;
80dcfdbd 1803
57094f82 1804 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1805 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1806
1807 drm_gem_object_unreference(&obj->base);
6c085a72 1808 }
57094f82 1809 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1810
1811 return count;
1812}
1813
d9973b43 1814static unsigned long
93927ca5
DV
1815i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1816{
1817 return __i915_gem_shrink(dev_priv, target, true);
1818}
1819
d9973b43 1820static unsigned long
6c085a72
CW
1821i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1822{
1823 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1824 long freed = 0;
6c085a72
CW
1825
1826 i915_gem_evict_everything(dev_priv->dev);
1827
35c20a60 1828 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a 1829 global_list) {
d9973b43 1830 if (i915_gem_object_put_pages(obj) == 0)
7dc19d5a 1831 freed += obj->base.size >> PAGE_SHIFT;
7dc19d5a
DC
1832 }
1833 return freed;
225067ee
DV
1834}
1835
37e680a1 1836static int
6c085a72 1837i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1838{
6c085a72 1839 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1840 int page_count, i;
1841 struct address_space *mapping;
9da3da66
CW
1842 struct sg_table *st;
1843 struct scatterlist *sg;
90797e6d 1844 struct sg_page_iter sg_iter;
e5281ccd 1845 struct page *page;
90797e6d 1846 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1847 gfp_t gfp;
e5281ccd 1848
6c085a72
CW
1849 /* Assert that the object is not currently in any GPU domain. As it
1850 * wasn't in the GTT, there shouldn't be any way it could have been in
1851 * a GPU cache
1852 */
1853 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1854 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1855
9da3da66
CW
1856 st = kmalloc(sizeof(*st), GFP_KERNEL);
1857 if (st == NULL)
1858 return -ENOMEM;
1859
05394f39 1860 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1861 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1862 kfree(st);
e5281ccd 1863 return -ENOMEM;
9da3da66 1864 }
e5281ccd 1865
9da3da66
CW
1866 /* Get the list of pages out of our struct file. They'll be pinned
1867 * at this point until we release them.
1868 *
1869 * Fail silently without starting the shrinker
1870 */
496ad9aa 1871 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1872 gfp = mapping_gfp_mask(mapping);
caf49191 1873 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1874 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1875 sg = st->sgl;
1876 st->nents = 0;
1877 for (i = 0; i < page_count; i++) {
6c085a72
CW
1878 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1879 if (IS_ERR(page)) {
1880 i915_gem_purge(dev_priv, page_count);
1881 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1882 }
1883 if (IS_ERR(page)) {
1884 /* We've tried hard to allocate the memory by reaping
1885 * our own buffer, now let the real VM do its job and
1886 * go down in flames if truly OOM.
1887 */
caf49191 1888 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1889 gfp |= __GFP_IO | __GFP_WAIT;
1890
1891 i915_gem_shrink_all(dev_priv);
1892 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1893 if (IS_ERR(page))
1894 goto err_pages;
1895
caf49191 1896 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1897 gfp &= ~(__GFP_IO | __GFP_WAIT);
1898 }
426729dc
KRW
1899#ifdef CONFIG_SWIOTLB
1900 if (swiotlb_nr_tbl()) {
1901 st->nents++;
1902 sg_set_page(sg, page, PAGE_SIZE, 0);
1903 sg = sg_next(sg);
1904 continue;
1905 }
1906#endif
90797e6d
ID
1907 if (!i || page_to_pfn(page) != last_pfn + 1) {
1908 if (i)
1909 sg = sg_next(sg);
1910 st->nents++;
1911 sg_set_page(sg, page, PAGE_SIZE, 0);
1912 } else {
1913 sg->length += PAGE_SIZE;
1914 }
1915 last_pfn = page_to_pfn(page);
3bbbe706
DV
1916
1917 /* Check that the i965g/gm workaround works. */
1918 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1919 }
426729dc
KRW
1920#ifdef CONFIG_SWIOTLB
1921 if (!swiotlb_nr_tbl())
1922#endif
1923 sg_mark_end(sg);
74ce6b6c
CW
1924 obj->pages = st;
1925
6dacfd2f 1926 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1927 i915_gem_object_do_bit_17_swizzle(obj);
1928
1929 return 0;
1930
1931err_pages:
90797e6d
ID
1932 sg_mark_end(sg);
1933 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1934 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1935 sg_free_table(st);
1936 kfree(st);
e5281ccd 1937 return PTR_ERR(page);
673a394b
EA
1938}
1939
37e680a1
CW
1940/* Ensure that the associated pages are gathered from the backing storage
1941 * and pinned into our object. i915_gem_object_get_pages() may be called
1942 * multiple times before they are released by a single call to
1943 * i915_gem_object_put_pages() - once the pages are no longer referenced
1944 * either as a result of memory pressure (reaping pages under the shrinker)
1945 * or as the object is itself released.
1946 */
1947int
1948i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1949{
1950 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1951 const struct drm_i915_gem_object_ops *ops = obj->ops;
1952 int ret;
1953
2f745ad3 1954 if (obj->pages)
37e680a1
CW
1955 return 0;
1956
43e28f09
CW
1957 if (obj->madv != I915_MADV_WILLNEED) {
1958 DRM_ERROR("Attempting to obtain a purgeable object\n");
1959 return -EINVAL;
1960 }
1961
a5570178
CW
1962 BUG_ON(obj->pages_pin_count);
1963
37e680a1
CW
1964 ret = ops->get_pages(obj);
1965 if (ret)
1966 return ret;
1967
35c20a60 1968 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1969 return 0;
673a394b
EA
1970}
1971
e2d05a8b 1972static void
05394f39 1973i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1974 struct intel_ring_buffer *ring)
673a394b 1975{
05394f39 1976 struct drm_device *dev = obj->base.dev;
69dc4987 1977 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1978 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1979
852835f3 1980 BUG_ON(ring == NULL);
02978ff5
CW
1981 if (obj->ring != ring && obj->last_write_seqno) {
1982 /* Keep the seqno relative to the current ring */
1983 obj->last_write_seqno = seqno;
1984 }
05394f39 1985 obj->ring = ring;
673a394b
EA
1986
1987 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1988 if (!obj->active) {
1989 drm_gem_object_reference(&obj->base);
1990 obj->active = 1;
673a394b 1991 }
e35a41de 1992
05394f39 1993 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1994
0201f1ec 1995 obj->last_read_seqno = seqno;
caea7476 1996
7dd49065 1997 if (obj->fenced_gpu_access) {
caea7476 1998 obj->last_fenced_seqno = seqno;
caea7476 1999
7dd49065
CW
2000 /* Bump MRU to take account of the delayed flush */
2001 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2002 struct drm_i915_fence_reg *reg;
2003
2004 reg = &dev_priv->fence_regs[obj->fence_reg];
2005 list_move_tail(&reg->lru_list,
2006 &dev_priv->mm.fence_list);
2007 }
caea7476
CW
2008 }
2009}
2010
e2d05a8b
BW
2011void i915_vma_move_to_active(struct i915_vma *vma,
2012 struct intel_ring_buffer *ring)
2013{
2014 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2015 return i915_gem_object_move_to_active(vma->obj, ring);
2016}
2017
caea7476 2018static void
caea7476 2019i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2020{
ca191b13
BW
2021 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2022 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2023 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
ce44b0ea 2024
65ce3027 2025 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2026 BUG_ON(!obj->active);
caea7476 2027
ca191b13 2028 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
caea7476 2029
65ce3027 2030 list_del_init(&obj->ring_list);
caea7476
CW
2031 obj->ring = NULL;
2032
65ce3027
CW
2033 obj->last_read_seqno = 0;
2034 obj->last_write_seqno = 0;
2035 obj->base.write_domain = 0;
2036
2037 obj->last_fenced_seqno = 0;
caea7476 2038 obj->fenced_gpu_access = false;
caea7476
CW
2039
2040 obj->active = 0;
2041 drm_gem_object_unreference(&obj->base);
2042
2043 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2044}
673a394b 2045
9d773091 2046static int
fca26bb4 2047i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2048{
9d773091
CW
2049 struct drm_i915_private *dev_priv = dev->dev_private;
2050 struct intel_ring_buffer *ring;
2051 int ret, i, j;
53d227f2 2052
107f27a5 2053 /* Carefully retire all requests without writing to the rings */
9d773091 2054 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2055 ret = intel_ring_idle(ring);
2056 if (ret)
2057 return ret;
9d773091 2058 }
9d773091 2059 i915_gem_retire_requests(dev);
107f27a5
CW
2060
2061 /* Finally reset hw state */
9d773091 2062 for_each_ring(ring, dev_priv, i) {
fca26bb4 2063 intel_ring_init_seqno(ring, seqno);
498d2ac1 2064
9d773091
CW
2065 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2066 ring->sync_seqno[j] = 0;
2067 }
53d227f2 2068
9d773091 2069 return 0;
53d227f2
DV
2070}
2071
fca26bb4
MK
2072int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2073{
2074 struct drm_i915_private *dev_priv = dev->dev_private;
2075 int ret;
2076
2077 if (seqno == 0)
2078 return -EINVAL;
2079
2080 /* HWS page needs to be set less than what we
2081 * will inject to ring
2082 */
2083 ret = i915_gem_init_seqno(dev, seqno - 1);
2084 if (ret)
2085 return ret;
2086
2087 /* Carefully set the last_seqno value so that wrap
2088 * detection still works
2089 */
2090 dev_priv->next_seqno = seqno;
2091 dev_priv->last_seqno = seqno - 1;
2092 if (dev_priv->last_seqno == 0)
2093 dev_priv->last_seqno--;
2094
2095 return 0;
2096}
2097
9d773091
CW
2098int
2099i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2100{
9d773091
CW
2101 struct drm_i915_private *dev_priv = dev->dev_private;
2102
2103 /* reserve 0 for non-seqno */
2104 if (dev_priv->next_seqno == 0) {
fca26bb4 2105 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2106 if (ret)
2107 return ret;
53d227f2 2108
9d773091
CW
2109 dev_priv->next_seqno = 1;
2110 }
53d227f2 2111
f72b3435 2112 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2113 return 0;
53d227f2
DV
2114}
2115
0025c077
MK
2116int __i915_add_request(struct intel_ring_buffer *ring,
2117 struct drm_file *file,
7d736f4f 2118 struct drm_i915_gem_object *obj,
0025c077 2119 u32 *out_seqno)
673a394b 2120{
db53a302 2121 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2122 struct drm_i915_gem_request *request;
7d736f4f 2123 u32 request_ring_position, request_start;
673a394b 2124 int was_empty;
3cce469c
CW
2125 int ret;
2126
7d736f4f 2127 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2128 /*
2129 * Emit any outstanding flushes - execbuf can fail to emit the flush
2130 * after having emitted the batchbuffer command. Hence we need to fix
2131 * things up similar to emitting the lazy request. The difference here
2132 * is that the flush _must_ happen before the next request, no matter
2133 * what.
2134 */
a7b9761d
CW
2135 ret = intel_ring_flush_all_caches(ring);
2136 if (ret)
2137 return ret;
cc889e0f 2138
3c0e234c
CW
2139 request = ring->preallocated_lazy_request;
2140 if (WARN_ON(request == NULL))
acb868d3 2141 return -ENOMEM;
cc889e0f 2142
a71d8d94
CW
2143 /* Record the position of the start of the request so that
2144 * should we detect the updated seqno part-way through the
2145 * GPU processing the request, we never over-estimate the
2146 * position of the head.
2147 */
2148 request_ring_position = intel_ring_get_tail(ring);
2149
9d773091 2150 ret = ring->add_request(ring);
3c0e234c 2151 if (ret)
3bb73aba 2152 return ret;
673a394b 2153
9d773091 2154 request->seqno = intel_ring_get_seqno(ring);
852835f3 2155 request->ring = ring;
7d736f4f 2156 request->head = request_start;
a71d8d94 2157 request->tail = request_ring_position;
7d736f4f
MK
2158
2159 /* Whilst this request exists, batch_obj will be on the
2160 * active_list, and so will hold the active reference. Only when this
2161 * request is retired will the the batch_obj be moved onto the
2162 * inactive_list and lose its active reference. Hence we do not need
2163 * to explicitly hold another reference here.
2164 */
9a7e0c2a 2165 request->batch_obj = obj;
0e50e96b 2166
9a7e0c2a
CW
2167 /* Hold a reference to the current context so that we can inspect
2168 * it later in case a hangcheck error event fires.
2169 */
2170 request->ctx = ring->last_context;
0e50e96b
MK
2171 if (request->ctx)
2172 i915_gem_context_reference(request->ctx);
2173
673a394b 2174 request->emitted_jiffies = jiffies;
852835f3
ZN
2175 was_empty = list_empty(&ring->request_list);
2176 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2177 request->file_priv = NULL;
852835f3 2178
db53a302
CW
2179 if (file) {
2180 struct drm_i915_file_private *file_priv = file->driver_priv;
2181
1c25595f 2182 spin_lock(&file_priv->mm.lock);
f787a5f5 2183 request->file_priv = file_priv;
b962442e 2184 list_add_tail(&request->client_list,
f787a5f5 2185 &file_priv->mm.request_list);
1c25595f 2186 spin_unlock(&file_priv->mm.lock);
b962442e 2187 }
673a394b 2188
9d773091 2189 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2190 ring->outstanding_lazy_seqno = 0;
3c0e234c 2191 ring->preallocated_lazy_request = NULL;
db53a302 2192
db1b76ca 2193 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2194 i915_queue_hangcheck(ring->dev);
2195
f047e395 2196 if (was_empty) {
b29c19b6 2197 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
b3b079db 2198 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2199 &dev_priv->mm.retire_work,
2200 round_jiffies_up_relative(HZ));
f047e395
CW
2201 intel_mark_busy(dev_priv->dev);
2202 }
f65d9421 2203 }
cc889e0f 2204
acb868d3 2205 if (out_seqno)
9d773091 2206 *out_seqno = request->seqno;
3cce469c 2207 return 0;
673a394b
EA
2208}
2209
f787a5f5
CW
2210static inline void
2211i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2212{
1c25595f 2213 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2214
1c25595f
CW
2215 if (!file_priv)
2216 return;
1c5d22f7 2217
1c25595f 2218 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2219 list_del(&request->client_list);
2220 request->file_priv = NULL;
1c25595f 2221 spin_unlock(&file_priv->mm.lock);
673a394b 2222}
673a394b 2223
d1ccbb5d
BW
2224static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2225 struct i915_address_space *vm)
aa60c664 2226{
d1ccbb5d
BW
2227 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2228 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
aa60c664
MK
2229 return true;
2230
2231 return false;
2232}
2233
2234static bool i915_head_inside_request(const u32 acthd_unmasked,
2235 const u32 request_start,
2236 const u32 request_end)
2237{
2238 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2239
2240 if (request_start < request_end) {
2241 if (acthd >= request_start && acthd < request_end)
2242 return true;
2243 } else if (request_start > request_end) {
2244 if (acthd >= request_start || acthd < request_end)
2245 return true;
2246 }
2247
2248 return false;
2249}
2250
d1ccbb5d
BW
2251static struct i915_address_space *
2252request_to_vm(struct drm_i915_gem_request *request)
2253{
2254 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2255 struct i915_address_space *vm;
2256
2257 vm = &dev_priv->gtt.base;
2258
2259 return vm;
2260}
2261
aa60c664
MK
2262static bool i915_request_guilty(struct drm_i915_gem_request *request,
2263 const u32 acthd, bool *inside)
2264{
2265 /* There is a possibility that unmasked head address
2266 * pointing inside the ring, matches the batch_obj address range.
2267 * However this is extremely unlikely.
2268 */
aa60c664 2269 if (request->batch_obj) {
d1ccbb5d
BW
2270 if (i915_head_inside_object(acthd, request->batch_obj,
2271 request_to_vm(request))) {
aa60c664
MK
2272 *inside = true;
2273 return true;
2274 }
2275 }
2276
2277 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2278 *inside = false;
2279 return true;
2280 }
2281
2282 return false;
2283}
2284
be62acb4
MK
2285static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2286{
2287 const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2288
2289 if (hs->banned)
2290 return true;
2291
2292 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2293 DRM_ERROR("context hanging too fast, declaring banned!\n");
2294 return true;
2295 }
2296
2297 return false;
2298}
2299
aa60c664
MK
2300static void i915_set_reset_status(struct intel_ring_buffer *ring,
2301 struct drm_i915_gem_request *request,
2302 u32 acthd)
2303{
2304 struct i915_ctx_hang_stats *hs = NULL;
2305 bool inside, guilty;
d1ccbb5d 2306 unsigned long offset = 0;
aa60c664
MK
2307
2308 /* Innocent until proven guilty */
2309 guilty = false;
2310
d1ccbb5d
BW
2311 if (request->batch_obj)
2312 offset = i915_gem_obj_offset(request->batch_obj,
2313 request_to_vm(request));
2314
f2f4d82f 2315 if (ring->hangcheck.action != HANGCHECK_WAIT &&
aa60c664 2316 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2317 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2318 ring->name,
2319 inside ? "inside" : "flushing",
d1ccbb5d 2320 offset,
aa60c664
MK
2321 request->ctx ? request->ctx->id : 0,
2322 acthd);
2323
2324 guilty = true;
2325 }
2326
2327 /* If contexts are disabled or this is the default context, use
2328 * file_priv->reset_state
2329 */
2330 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2331 hs = &request->ctx->hang_stats;
2332 else if (request->file_priv)
2333 hs = &request->file_priv->hang_stats;
2334
2335 if (hs) {
be62acb4
MK
2336 if (guilty) {
2337 hs->banned = i915_context_is_banned(hs);
aa60c664 2338 hs->batch_active++;
be62acb4
MK
2339 hs->guilty_ts = get_seconds();
2340 } else {
aa60c664 2341 hs->batch_pending++;
be62acb4 2342 }
aa60c664
MK
2343 }
2344}
2345
0e50e96b
MK
2346static void i915_gem_free_request(struct drm_i915_gem_request *request)
2347{
2348 list_del(&request->list);
2349 i915_gem_request_remove_from_client(request);
2350
2351 if (request->ctx)
2352 i915_gem_context_unreference(request->ctx);
2353
2354 kfree(request);
2355}
2356
dfaae392
CW
2357static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2358 struct intel_ring_buffer *ring)
9375e446 2359{
aa60c664
MK
2360 u32 completed_seqno;
2361 u32 acthd;
2362
2363 acthd = intel_ring_get_active_head(ring);
2364 completed_seqno = ring->get_seqno(ring, false);
2365
dfaae392
CW
2366 while (!list_empty(&ring->request_list)) {
2367 struct drm_i915_gem_request *request;
673a394b 2368
dfaae392
CW
2369 request = list_first_entry(&ring->request_list,
2370 struct drm_i915_gem_request,
2371 list);
de151cf6 2372
aa60c664
MK
2373 if (request->seqno > completed_seqno)
2374 i915_set_reset_status(ring, request, acthd);
2375
0e50e96b 2376 i915_gem_free_request(request);
dfaae392 2377 }
673a394b 2378
dfaae392 2379 while (!list_empty(&ring->active_list)) {
05394f39 2380 struct drm_i915_gem_object *obj;
9375e446 2381
05394f39
CW
2382 obj = list_first_entry(&ring->active_list,
2383 struct drm_i915_gem_object,
2384 ring_list);
9375e446 2385
05394f39 2386 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2387 }
2388}
2389
19b2dbde 2390void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2391{
2392 struct drm_i915_private *dev_priv = dev->dev_private;
2393 int i;
2394
4b9de737 2395 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2396 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2397
94a335db
DV
2398 /*
2399 * Commit delayed tiling changes if we have an object still
2400 * attached to the fence, otherwise just clear the fence.
2401 */
2402 if (reg->obj) {
2403 i915_gem_object_update_fence(reg->obj, reg,
2404 reg->obj->tiling_mode);
2405 } else {
2406 i915_gem_write_fence(dev, i, NULL);
2407 }
312817a3
CW
2408 }
2409}
2410
069efc1d 2411void i915_gem_reset(struct drm_device *dev)
673a394b 2412{
77f01230 2413 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2414 struct intel_ring_buffer *ring;
1ec14ad3 2415 int i;
673a394b 2416
b4519513
CW
2417 for_each_ring(ring, dev_priv, i)
2418 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2419
3d57e5bd
BW
2420 i915_gem_cleanup_ringbuffer(dev);
2421
19b2dbde 2422 i915_gem_restore_fences(dev);
673a394b
EA
2423}
2424
2425/**
2426 * This function clears the request list as sequence numbers are passed.
2427 */
a71d8d94 2428void
db53a302 2429i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2430{
673a394b
EA
2431 uint32_t seqno;
2432
db53a302 2433 if (list_empty(&ring->request_list))
6c0594a3
KW
2434 return;
2435
db53a302 2436 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2437
b2eadbc8 2438 seqno = ring->get_seqno(ring, true);
1ec14ad3 2439
852835f3 2440 while (!list_empty(&ring->request_list)) {
673a394b 2441 struct drm_i915_gem_request *request;
673a394b 2442
852835f3 2443 request = list_first_entry(&ring->request_list,
673a394b
EA
2444 struct drm_i915_gem_request,
2445 list);
673a394b 2446
dfaae392 2447 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2448 break;
2449
db53a302 2450 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2451 /* We know the GPU must have read the request to have
2452 * sent us the seqno + interrupt, so use the position
2453 * of tail of the request to update the last known position
2454 * of the GPU head.
2455 */
2456 ring->last_retired_head = request->tail;
b84d5f0c 2457
0e50e96b 2458 i915_gem_free_request(request);
b84d5f0c 2459 }
673a394b 2460
b84d5f0c
CW
2461 /* Move any buffers on the active list that are no longer referenced
2462 * by the ringbuffer to the flushing/inactive lists as appropriate.
2463 */
2464 while (!list_empty(&ring->active_list)) {
05394f39 2465 struct drm_i915_gem_object *obj;
b84d5f0c 2466
0206e353 2467 obj = list_first_entry(&ring->active_list,
05394f39
CW
2468 struct drm_i915_gem_object,
2469 ring_list);
673a394b 2470
0201f1ec 2471 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2472 break;
b84d5f0c 2473
65ce3027 2474 i915_gem_object_move_to_inactive(obj);
673a394b 2475 }
9d34e5db 2476
db53a302
CW
2477 if (unlikely(ring->trace_irq_seqno &&
2478 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2479 ring->irq_put(ring);
db53a302 2480 ring->trace_irq_seqno = 0;
9d34e5db 2481 }
23bc5982 2482
db53a302 2483 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2484}
2485
b29c19b6 2486bool
b09a1fec
CW
2487i915_gem_retire_requests(struct drm_device *dev)
2488{
2489 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2490 struct intel_ring_buffer *ring;
b29c19b6 2491 bool idle = true;
1ec14ad3 2492 int i;
b09a1fec 2493
b29c19b6 2494 for_each_ring(ring, dev_priv, i) {
b4519513 2495 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2496 idle &= list_empty(&ring->request_list);
2497 }
2498
2499 if (idle)
2500 mod_delayed_work(dev_priv->wq,
2501 &dev_priv->mm.idle_work,
2502 msecs_to_jiffies(100));
2503
2504 return idle;
b09a1fec
CW
2505}
2506
75ef9da2 2507static void
673a394b
EA
2508i915_gem_retire_work_handler(struct work_struct *work)
2509{
b29c19b6
CW
2510 struct drm_i915_private *dev_priv =
2511 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2512 struct drm_device *dev = dev_priv->dev;
0a58705b 2513 bool idle;
673a394b 2514
891b48cf 2515 /* Come back later if the device is busy... */
b29c19b6
CW
2516 idle = false;
2517 if (mutex_trylock(&dev->struct_mutex)) {
2518 idle = i915_gem_retire_requests(dev);
2519 mutex_unlock(&dev->struct_mutex);
673a394b 2520 }
b29c19b6 2521 if (!idle)
bcb45086
CW
2522 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2523 round_jiffies_up_relative(HZ));
b29c19b6 2524}
0a58705b 2525
b29c19b6
CW
2526static void
2527i915_gem_idle_work_handler(struct work_struct *work)
2528{
2529 struct drm_i915_private *dev_priv =
2530 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2531
2532 intel_mark_idle(dev_priv->dev);
673a394b
EA
2533}
2534
30dfebf3
DV
2535/**
2536 * Ensures that an object will eventually get non-busy by flushing any required
2537 * write domains, emitting any outstanding lazy request and retiring and
2538 * completed requests.
2539 */
2540static int
2541i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2542{
2543 int ret;
2544
2545 if (obj->active) {
0201f1ec 2546 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2547 if (ret)
2548 return ret;
2549
30dfebf3
DV
2550 i915_gem_retire_requests_ring(obj->ring);
2551 }
2552
2553 return 0;
2554}
2555
23ba4fd0
BW
2556/**
2557 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2558 * @DRM_IOCTL_ARGS: standard ioctl arguments
2559 *
2560 * Returns 0 if successful, else an error is returned with the remaining time in
2561 * the timeout parameter.
2562 * -ETIME: object is still busy after timeout
2563 * -ERESTARTSYS: signal interrupted the wait
2564 * -ENONENT: object doesn't exist
2565 * Also possible, but rare:
2566 * -EAGAIN: GPU wedged
2567 * -ENOMEM: damn
2568 * -ENODEV: Internal IRQ fail
2569 * -E?: The add request failed
2570 *
2571 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2572 * non-zero timeout parameter the wait ioctl will wait for the given number of
2573 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2574 * without holding struct_mutex the object may become re-busied before this
2575 * function completes. A similar but shorter * race condition exists in the busy
2576 * ioctl
2577 */
2578int
2579i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2580{
f69061be 2581 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2582 struct drm_i915_gem_wait *args = data;
2583 struct drm_i915_gem_object *obj;
2584 struct intel_ring_buffer *ring = NULL;
eac1f14f 2585 struct timespec timeout_stack, *timeout = NULL;
f69061be 2586 unsigned reset_counter;
23ba4fd0
BW
2587 u32 seqno = 0;
2588 int ret = 0;
2589
eac1f14f
BW
2590 if (args->timeout_ns >= 0) {
2591 timeout_stack = ns_to_timespec(args->timeout_ns);
2592 timeout = &timeout_stack;
2593 }
23ba4fd0
BW
2594
2595 ret = i915_mutex_lock_interruptible(dev);
2596 if (ret)
2597 return ret;
2598
2599 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2600 if (&obj->base == NULL) {
2601 mutex_unlock(&dev->struct_mutex);
2602 return -ENOENT;
2603 }
2604
30dfebf3
DV
2605 /* Need to make sure the object gets inactive eventually. */
2606 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2607 if (ret)
2608 goto out;
2609
2610 if (obj->active) {
0201f1ec 2611 seqno = obj->last_read_seqno;
23ba4fd0
BW
2612 ring = obj->ring;
2613 }
2614
2615 if (seqno == 0)
2616 goto out;
2617
23ba4fd0
BW
2618 /* Do this after OLR check to make sure we make forward progress polling
2619 * on this IOCTL with a 0 timeout (like busy ioctl)
2620 */
2621 if (!args->timeout_ns) {
2622 ret = -ETIME;
2623 goto out;
2624 }
2625
2626 drm_gem_object_unreference(&obj->base);
f69061be 2627 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2628 mutex_unlock(&dev->struct_mutex);
2629
b29c19b6 2630 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2631 if (timeout)
eac1f14f 2632 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2633 return ret;
2634
2635out:
2636 drm_gem_object_unreference(&obj->base);
2637 mutex_unlock(&dev->struct_mutex);
2638 return ret;
2639}
2640
5816d648
BW
2641/**
2642 * i915_gem_object_sync - sync an object to a ring.
2643 *
2644 * @obj: object which may be in use on another ring.
2645 * @to: ring we wish to use the object on. May be NULL.
2646 *
2647 * This code is meant to abstract object synchronization with the GPU.
2648 * Calling with NULL implies synchronizing the object with the CPU
2649 * rather than a particular GPU ring.
2650 *
2651 * Returns 0 if successful, else propagates up the lower layer error.
2652 */
2911a35b
BW
2653int
2654i915_gem_object_sync(struct drm_i915_gem_object *obj,
2655 struct intel_ring_buffer *to)
2656{
2657 struct intel_ring_buffer *from = obj->ring;
2658 u32 seqno;
2659 int ret, idx;
2660
2661 if (from == NULL || to == from)
2662 return 0;
2663
5816d648 2664 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2665 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2666
2667 idx = intel_ring_sync_index(from, to);
2668
0201f1ec 2669 seqno = obj->last_read_seqno;
2911a35b
BW
2670 if (seqno <= from->sync_seqno[idx])
2671 return 0;
2672
b4aca010
BW
2673 ret = i915_gem_check_olr(obj->ring, seqno);
2674 if (ret)
2675 return ret;
2911a35b 2676
b52b89da 2677 trace_i915_gem_ring_sync_to(from, to, seqno);
1500f7ea 2678 ret = to->sync_to(to, from, seqno);
e3a5a225 2679 if (!ret)
7b01e260
MK
2680 /* We use last_read_seqno because sync_to()
2681 * might have just caused seqno wrap under
2682 * the radar.
2683 */
2684 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2685
e3a5a225 2686 return ret;
2911a35b
BW
2687}
2688
b5ffc9bc
CW
2689static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2690{
2691 u32 old_write_domain, old_read_domains;
2692
b5ffc9bc
CW
2693 /* Force a pagefault for domain tracking on next user access */
2694 i915_gem_release_mmap(obj);
2695
b97c3d9c
KP
2696 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2697 return;
2698
97c809fd
CW
2699 /* Wait for any direct GTT access to complete */
2700 mb();
2701
b5ffc9bc
CW
2702 old_read_domains = obj->base.read_domains;
2703 old_write_domain = obj->base.write_domain;
2704
2705 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2706 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2707
2708 trace_i915_gem_object_change_domain(obj,
2709 old_read_domains,
2710 old_write_domain);
2711}
2712
07fe0b12 2713int i915_vma_unbind(struct i915_vma *vma)
673a394b 2714{
07fe0b12 2715 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2716 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2717 int ret;
673a394b 2718
b93dab6e
DV
2719 /* For now we only ever use 1 vma per object */
2720 WARN_ON(!list_is_singular(&obj->vma_list));
2721
07fe0b12 2722 if (list_empty(&vma->vma_link))
673a394b
EA
2723 return 0;
2724
0ff501cb
DV
2725 if (!drm_mm_node_allocated(&vma->node)) {
2726 i915_gem_vma_destroy(vma);
2727
2728 return 0;
2729 }
433544bd 2730
31d8d651
CW
2731 if (obj->pin_count)
2732 return -EBUSY;
673a394b 2733
c4670ad0
CW
2734 BUG_ON(obj->pages == NULL);
2735
a8198eea 2736 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2737 if (ret)
a8198eea
CW
2738 return ret;
2739 /* Continue on if we fail due to EIO, the GPU is hung so we
2740 * should be safe and we need to cleanup or else we might
2741 * cause memory corruption through use-after-free.
2742 */
2743
b5ffc9bc 2744 i915_gem_object_finish_gtt(obj);
5323fd04 2745
96b47b65 2746 /* release the fence reg _after_ flushing */
d9e86c0e 2747 ret = i915_gem_object_put_fence(obj);
1488fc08 2748 if (ret)
d9e86c0e 2749 return ret;
96b47b65 2750
07fe0b12 2751 trace_i915_vma_unbind(vma);
db53a302 2752
74898d7e
DV
2753 if (obj->has_global_gtt_mapping)
2754 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2755 if (obj->has_aliasing_ppgtt_mapping) {
2756 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2757 obj->has_aliasing_ppgtt_mapping = 0;
2758 }
74163907 2759 i915_gem_gtt_finish_object(obj);
7bddb01f 2760
ca191b13 2761 list_del(&vma->mm_list);
75e9e915 2762 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2763 if (i915_is_ggtt(vma->vm))
2764 obj->map_and_fenceable = true;
673a394b 2765
2f633156
BW
2766 drm_mm_remove_node(&vma->node);
2767 i915_gem_vma_destroy(vma);
2768
2769 /* Since the unbound list is global, only move to that list if
b93dab6e 2770 * no more VMAs exist. */
2f633156
BW
2771 if (list_empty(&obj->vma_list))
2772 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2773
70903c3b
CW
2774 /* And finally now the object is completely decoupled from this vma,
2775 * we can drop its hold on the backing storage and allow it to be
2776 * reaped by the shrinker.
2777 */
2778 i915_gem_object_unpin_pages(obj);
2779
88241785 2780 return 0;
54cf91dc
CW
2781}
2782
07fe0b12
BW
2783/**
2784 * Unbinds an object from the global GTT aperture.
2785 */
2786int
2787i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2788{
2789 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2790 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2791
58e73e15 2792 if (!i915_gem_obj_ggtt_bound(obj))
07fe0b12
BW
2793 return 0;
2794
2795 if (obj->pin_count)
2796 return -EBUSY;
2797
2798 BUG_ON(obj->pages == NULL);
2799
2800 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2801}
2802
b2da9fe5 2803int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2804{
2805 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2806 struct intel_ring_buffer *ring;
1ec14ad3 2807 int ret, i;
4df2faf4 2808
4df2faf4 2809 /* Flush everything onto the inactive list. */
b4519513 2810 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2811 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2812 if (ret)
2813 return ret;
2814
3e960501 2815 ret = intel_ring_idle(ring);
1ec14ad3
CW
2816 if (ret)
2817 return ret;
2818 }
4df2faf4 2819
8a1a49f9 2820 return 0;
4df2faf4
DV
2821}
2822
9ce079e4
CW
2823static void i965_write_fence_reg(struct drm_device *dev, int reg,
2824 struct drm_i915_gem_object *obj)
de151cf6 2825{
de151cf6 2826 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2827 int fence_reg;
2828 int fence_pitch_shift;
de151cf6 2829
56c844e5
ID
2830 if (INTEL_INFO(dev)->gen >= 6) {
2831 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2832 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2833 } else {
2834 fence_reg = FENCE_REG_965_0;
2835 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2836 }
2837
d18b9619
CW
2838 fence_reg += reg * 8;
2839
2840 /* To w/a incoherency with non-atomic 64-bit register updates,
2841 * we split the 64-bit update into two 32-bit writes. In order
2842 * for a partial fence not to be evaluated between writes, we
2843 * precede the update with write to turn off the fence register,
2844 * and only enable the fence as the last step.
2845 *
2846 * For extra levels of paranoia, we make sure each step lands
2847 * before applying the next step.
2848 */
2849 I915_WRITE(fence_reg, 0);
2850 POSTING_READ(fence_reg);
2851
9ce079e4 2852 if (obj) {
f343c5f6 2853 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2854 uint64_t val;
de151cf6 2855
f343c5f6 2856 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2857 0xfffff000) << 32;
f343c5f6 2858 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2859 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2860 if (obj->tiling_mode == I915_TILING_Y)
2861 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2862 val |= I965_FENCE_REG_VALID;
c6642782 2863
d18b9619
CW
2864 I915_WRITE(fence_reg + 4, val >> 32);
2865 POSTING_READ(fence_reg + 4);
2866
2867 I915_WRITE(fence_reg + 0, val);
2868 POSTING_READ(fence_reg);
2869 } else {
2870 I915_WRITE(fence_reg + 4, 0);
2871 POSTING_READ(fence_reg + 4);
2872 }
de151cf6
JB
2873}
2874
9ce079e4
CW
2875static void i915_write_fence_reg(struct drm_device *dev, int reg,
2876 struct drm_i915_gem_object *obj)
de151cf6 2877{
de151cf6 2878 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2879 u32 val;
de151cf6 2880
9ce079e4 2881 if (obj) {
f343c5f6 2882 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2883 int pitch_val;
2884 int tile_width;
c6642782 2885
f343c5f6 2886 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2887 (size & -size) != size ||
f343c5f6
BW
2888 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2889 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2890 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2891
9ce079e4
CW
2892 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2893 tile_width = 128;
2894 else
2895 tile_width = 512;
2896
2897 /* Note: pitch better be a power of two tile widths */
2898 pitch_val = obj->stride / tile_width;
2899 pitch_val = ffs(pitch_val) - 1;
2900
f343c5f6 2901 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2902 if (obj->tiling_mode == I915_TILING_Y)
2903 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2904 val |= I915_FENCE_SIZE_BITS(size);
2905 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2906 val |= I830_FENCE_REG_VALID;
2907 } else
2908 val = 0;
2909
2910 if (reg < 8)
2911 reg = FENCE_REG_830_0 + reg * 4;
2912 else
2913 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2914
2915 I915_WRITE(reg, val);
2916 POSTING_READ(reg);
de151cf6
JB
2917}
2918
9ce079e4
CW
2919static void i830_write_fence_reg(struct drm_device *dev, int reg,
2920 struct drm_i915_gem_object *obj)
de151cf6 2921{
de151cf6 2922 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2923 uint32_t val;
de151cf6 2924
9ce079e4 2925 if (obj) {
f343c5f6 2926 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2927 uint32_t pitch_val;
de151cf6 2928
f343c5f6 2929 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2930 (size & -size) != size ||
f343c5f6
BW
2931 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2932 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2933 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2934
9ce079e4
CW
2935 pitch_val = obj->stride / 128;
2936 pitch_val = ffs(pitch_val) - 1;
de151cf6 2937
f343c5f6 2938 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2939 if (obj->tiling_mode == I915_TILING_Y)
2940 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2941 val |= I830_FENCE_SIZE_BITS(size);
2942 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2943 val |= I830_FENCE_REG_VALID;
2944 } else
2945 val = 0;
c6642782 2946
9ce079e4
CW
2947 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2948 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2949}
2950
d0a57789
CW
2951inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2952{
2953 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2954}
2955
9ce079e4
CW
2956static void i915_gem_write_fence(struct drm_device *dev, int reg,
2957 struct drm_i915_gem_object *obj)
2958{
d0a57789
CW
2959 struct drm_i915_private *dev_priv = dev->dev_private;
2960
2961 /* Ensure that all CPU reads are completed before installing a fence
2962 * and all writes before removing the fence.
2963 */
2964 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2965 mb();
2966
94a335db
DV
2967 WARN(obj && (!obj->stride || !obj->tiling_mode),
2968 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2969 obj->stride, obj->tiling_mode);
2970
9ce079e4 2971 switch (INTEL_INFO(dev)->gen) {
5ab31333 2972 case 8:
9ce079e4 2973 case 7:
56c844e5 2974 case 6:
9ce079e4
CW
2975 case 5:
2976 case 4: i965_write_fence_reg(dev, reg, obj); break;
2977 case 3: i915_write_fence_reg(dev, reg, obj); break;
2978 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2979 default: BUG();
9ce079e4 2980 }
d0a57789
CW
2981
2982 /* And similarly be paranoid that no direct access to this region
2983 * is reordered to before the fence is installed.
2984 */
2985 if (i915_gem_object_needs_mb(obj))
2986 mb();
de151cf6
JB
2987}
2988
61050808
CW
2989static inline int fence_number(struct drm_i915_private *dev_priv,
2990 struct drm_i915_fence_reg *fence)
2991{
2992 return fence - dev_priv->fence_regs;
2993}
2994
2995static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2996 struct drm_i915_fence_reg *fence,
2997 bool enable)
2998{
2dc8aae0 2999 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3000 int reg = fence_number(dev_priv, fence);
3001
3002 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3003
3004 if (enable) {
46a0b638 3005 obj->fence_reg = reg;
61050808
CW
3006 fence->obj = obj;
3007 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3008 } else {
3009 obj->fence_reg = I915_FENCE_REG_NONE;
3010 fence->obj = NULL;
3011 list_del_init(&fence->lru_list);
3012 }
94a335db 3013 obj->fence_dirty = false;
61050808
CW
3014}
3015
d9e86c0e 3016static int
d0a57789 3017i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3018{
1c293ea3 3019 if (obj->last_fenced_seqno) {
86d5bc37 3020 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3021 if (ret)
3022 return ret;
d9e86c0e
CW
3023
3024 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3025 }
3026
86d5bc37 3027 obj->fenced_gpu_access = false;
d9e86c0e
CW
3028 return 0;
3029}
3030
3031int
3032i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3033{
61050808 3034 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3035 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3036 int ret;
3037
d0a57789 3038 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3039 if (ret)
3040 return ret;
3041
61050808
CW
3042 if (obj->fence_reg == I915_FENCE_REG_NONE)
3043 return 0;
d9e86c0e 3044
f9c513e9
CW
3045 fence = &dev_priv->fence_regs[obj->fence_reg];
3046
61050808 3047 i915_gem_object_fence_lost(obj);
f9c513e9 3048 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3049
3050 return 0;
3051}
3052
3053static struct drm_i915_fence_reg *
a360bb1a 3054i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3055{
ae3db24a 3056 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3057 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3058 int i;
ae3db24a
DV
3059
3060 /* First try to find a free reg */
d9e86c0e 3061 avail = NULL;
ae3db24a
DV
3062 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3063 reg = &dev_priv->fence_regs[i];
3064 if (!reg->obj)
d9e86c0e 3065 return reg;
ae3db24a 3066
1690e1eb 3067 if (!reg->pin_count)
d9e86c0e 3068 avail = reg;
ae3db24a
DV
3069 }
3070
d9e86c0e
CW
3071 if (avail == NULL)
3072 return NULL;
ae3db24a
DV
3073
3074 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3075 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3076 if (reg->pin_count)
ae3db24a
DV
3077 continue;
3078
8fe301ad 3079 return reg;
ae3db24a
DV
3080 }
3081
8fe301ad 3082 return NULL;
ae3db24a
DV
3083}
3084
de151cf6 3085/**
9a5a53b3 3086 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3087 * @obj: object to map through a fence reg
3088 *
3089 * When mapping objects through the GTT, userspace wants to be able to write
3090 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3091 * This function walks the fence regs looking for a free one for @obj,
3092 * stealing one if it can't find any.
3093 *
3094 * It then sets up the reg based on the object's properties: address, pitch
3095 * and tiling format.
9a5a53b3
CW
3096 *
3097 * For an untiled surface, this removes any existing fence.
de151cf6 3098 */
8c4b8c3f 3099int
06d98131 3100i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3101{
05394f39 3102 struct drm_device *dev = obj->base.dev;
79e53945 3103 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3104 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3105 struct drm_i915_fence_reg *reg;
ae3db24a 3106 int ret;
de151cf6 3107
14415745
CW
3108 /* Have we updated the tiling parameters upon the object and so
3109 * will need to serialise the write to the associated fence register?
3110 */
5d82e3e6 3111 if (obj->fence_dirty) {
d0a57789 3112 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3113 if (ret)
3114 return ret;
3115 }
9a5a53b3 3116
d9e86c0e 3117 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3118 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3119 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3120 if (!obj->fence_dirty) {
14415745
CW
3121 list_move_tail(&reg->lru_list,
3122 &dev_priv->mm.fence_list);
3123 return 0;
3124 }
3125 } else if (enable) {
3126 reg = i915_find_fence_reg(dev);
3127 if (reg == NULL)
3128 return -EDEADLK;
d9e86c0e 3129
14415745
CW
3130 if (reg->obj) {
3131 struct drm_i915_gem_object *old = reg->obj;
3132
d0a57789 3133 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3134 if (ret)
3135 return ret;
3136
14415745 3137 i915_gem_object_fence_lost(old);
29c5a587 3138 }
14415745 3139 } else
a09ba7fa 3140 return 0;
a09ba7fa 3141
14415745 3142 i915_gem_object_update_fence(obj, reg, enable);
14415745 3143
9ce079e4 3144 return 0;
de151cf6
JB
3145}
3146
42d6ab48
CW
3147static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3148 struct drm_mm_node *gtt_space,
3149 unsigned long cache_level)
3150{
3151 struct drm_mm_node *other;
3152
3153 /* On non-LLC machines we have to be careful when putting differing
3154 * types of snoopable memory together to avoid the prefetcher
4239ca77 3155 * crossing memory domains and dying.
42d6ab48
CW
3156 */
3157 if (HAS_LLC(dev))
3158 return true;
3159
c6cfb325 3160 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3161 return true;
3162
3163 if (list_empty(&gtt_space->node_list))
3164 return true;
3165
3166 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3167 if (other->allocated && !other->hole_follows && other->color != cache_level)
3168 return false;
3169
3170 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3171 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3172 return false;
3173
3174 return true;
3175}
3176
3177static void i915_gem_verify_gtt(struct drm_device *dev)
3178{
3179#if WATCH_GTT
3180 struct drm_i915_private *dev_priv = dev->dev_private;
3181 struct drm_i915_gem_object *obj;
3182 int err = 0;
3183
35c20a60 3184 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3185 if (obj->gtt_space == NULL) {
3186 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3187 err++;
3188 continue;
3189 }
3190
3191 if (obj->cache_level != obj->gtt_space->color) {
3192 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3193 i915_gem_obj_ggtt_offset(obj),
3194 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3195 obj->cache_level,
3196 obj->gtt_space->color);
3197 err++;
3198 continue;
3199 }
3200
3201 if (!i915_gem_valid_gtt_space(dev,
3202 obj->gtt_space,
3203 obj->cache_level)) {
3204 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3205 i915_gem_obj_ggtt_offset(obj),
3206 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3207 obj->cache_level);
3208 err++;
3209 continue;
3210 }
3211 }
3212
3213 WARN_ON(err);
3214#endif
3215}
3216
673a394b
EA
3217/**
3218 * Finds free space in the GTT aperture and binds the object there.
3219 */
3220static int
07fe0b12
BW
3221i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3222 struct i915_address_space *vm,
3223 unsigned alignment,
3224 bool map_and_fenceable,
3225 bool nonblocking)
673a394b 3226{
05394f39 3227 struct drm_device *dev = obj->base.dev;
673a394b 3228 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3229 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12
BW
3230 size_t gtt_max =
3231 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3232 struct i915_vma *vma;
07f73f69 3233 int ret;
673a394b 3234
e28f8711
CW
3235 fence_size = i915_gem_get_gtt_size(dev,
3236 obj->base.size,
3237 obj->tiling_mode);
3238 fence_alignment = i915_gem_get_gtt_alignment(dev,
3239 obj->base.size,
d865110c 3240 obj->tiling_mode, true);
e28f8711 3241 unfenced_alignment =
d865110c 3242 i915_gem_get_gtt_alignment(dev,
e28f8711 3243 obj->base.size,
d865110c 3244 obj->tiling_mode, false);
a00b10c3 3245
673a394b 3246 if (alignment == 0)
5e783301
DV
3247 alignment = map_and_fenceable ? fence_alignment :
3248 unfenced_alignment;
75e9e915 3249 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3250 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3251 return -EINVAL;
3252 }
3253
05394f39 3254 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3255
654fc607
CW
3256 /* If the object is bigger than the entire aperture, reject it early
3257 * before evicting everything in a vain attempt to find space.
3258 */
0a9ae0d7 3259 if (obj->base.size > gtt_max) {
3765f304 3260 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3261 obj->base.size,
3262 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3263 gtt_max);
654fc607
CW
3264 return -E2BIG;
3265 }
3266
37e680a1 3267 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3268 if (ret)
3269 return ret;
3270
fbdda6fb
CW
3271 i915_gem_object_pin_pages(obj);
3272
07fe0b12 3273 BUG_ON(!i915_is_ggtt(vm));
07fe0b12 3274
accfef2e 3275 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
db473b36 3276 if (IS_ERR(vma)) {
bc6bc15b
DV
3277 ret = PTR_ERR(vma);
3278 goto err_unpin;
2f633156
BW
3279 }
3280
accfef2e
BW
3281 /* For now we only ever use 1 vma per object */
3282 WARN_ON(!list_is_singular(&obj->vma_list));
3283
0a9ae0d7 3284search_free:
07fe0b12 3285 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3286 size, alignment,
31e5d7c6
DH
3287 obj->cache_level, 0, gtt_max,
3288 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3289 if (ret) {
f6cd1f15 3290 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3291 obj->cache_level,
86a1ee26
CW
3292 map_and_fenceable,
3293 nonblocking);
dc9dd7a2
CW
3294 if (ret == 0)
3295 goto search_free;
9731129c 3296
bc6bc15b 3297 goto err_free_vma;
673a394b 3298 }
2f633156 3299 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3300 obj->cache_level))) {
2f633156 3301 ret = -EINVAL;
bc6bc15b 3302 goto err_remove_node;
673a394b
EA
3303 }
3304
74163907 3305 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3306 if (ret)
bc6bc15b 3307 goto err_remove_node;
673a394b 3308
35c20a60 3309 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3310 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3311
4bd561b3
BW
3312 if (i915_is_ggtt(vm)) {
3313 bool mappable, fenceable;
a00b10c3 3314
49987099
DV
3315 fenceable = (vma->node.size == fence_size &&
3316 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3317
49987099
DV
3318 mappable = (vma->node.start + obj->base.size <=
3319 dev_priv->gtt.mappable_end);
a00b10c3 3320
5cacaac7 3321 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3322 }
75e9e915 3323
7ace7ef2 3324 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
75e9e915 3325
07fe0b12 3326 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3327 i915_gem_verify_gtt(dev);
673a394b 3328 return 0;
2f633156 3329
bc6bc15b 3330err_remove_node:
6286ef9b 3331 drm_mm_remove_node(&vma->node);
bc6bc15b 3332err_free_vma:
2f633156 3333 i915_gem_vma_destroy(vma);
bc6bc15b 3334err_unpin:
2f633156 3335 i915_gem_object_unpin_pages(obj);
2f633156 3336 return ret;
673a394b
EA
3337}
3338
000433b6 3339bool
2c22569b
CW
3340i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3341 bool force)
673a394b 3342{
673a394b
EA
3343 /* If we don't have a page list set up, then we're not pinned
3344 * to GPU, and we can ignore the cache flush because it'll happen
3345 * again at bind time.
3346 */
05394f39 3347 if (obj->pages == NULL)
000433b6 3348 return false;
673a394b 3349
769ce464
ID
3350 /*
3351 * Stolen memory is always coherent with the GPU as it is explicitly
3352 * marked as wc by the system, or the system is cache-coherent.
3353 */
3354 if (obj->stolen)
000433b6 3355 return false;
769ce464 3356
9c23f7fc
CW
3357 /* If the GPU is snooping the contents of the CPU cache,
3358 * we do not need to manually clear the CPU cache lines. However,
3359 * the caches are only snooped when the render cache is
3360 * flushed/invalidated. As we always have to emit invalidations
3361 * and flushes when moving into and out of the RENDER domain, correct
3362 * snooping behaviour occurs naturally as the result of our domain
3363 * tracking.
3364 */
2c22569b 3365 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3366 return false;
9c23f7fc 3367
1c5d22f7 3368 trace_i915_gem_object_clflush(obj);
9da3da66 3369 drm_clflush_sg(obj->pages);
000433b6
CW
3370
3371 return true;
e47c68e9
EA
3372}
3373
3374/** Flushes the GTT write domain for the object if it's dirty. */
3375static void
05394f39 3376i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3377{
1c5d22f7
CW
3378 uint32_t old_write_domain;
3379
05394f39 3380 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3381 return;
3382
63256ec5 3383 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3384 * to it immediately go to main memory as far as we know, so there's
3385 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3386 *
3387 * However, we do have to enforce the order so that all writes through
3388 * the GTT land before any writes to the device, such as updates to
3389 * the GATT itself.
e47c68e9 3390 */
63256ec5
CW
3391 wmb();
3392
05394f39
CW
3393 old_write_domain = obj->base.write_domain;
3394 obj->base.write_domain = 0;
1c5d22f7
CW
3395
3396 trace_i915_gem_object_change_domain(obj,
05394f39 3397 obj->base.read_domains,
1c5d22f7 3398 old_write_domain);
e47c68e9
EA
3399}
3400
3401/** Flushes the CPU write domain for the object if it's dirty. */
3402static void
2c22569b
CW
3403i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3404 bool force)
e47c68e9 3405{
1c5d22f7 3406 uint32_t old_write_domain;
e47c68e9 3407
05394f39 3408 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3409 return;
3410
000433b6
CW
3411 if (i915_gem_clflush_object(obj, force))
3412 i915_gem_chipset_flush(obj->base.dev);
3413
05394f39
CW
3414 old_write_domain = obj->base.write_domain;
3415 obj->base.write_domain = 0;
1c5d22f7
CW
3416
3417 trace_i915_gem_object_change_domain(obj,
05394f39 3418 obj->base.read_domains,
1c5d22f7 3419 old_write_domain);
e47c68e9
EA
3420}
3421
2ef7eeaa
EA
3422/**
3423 * Moves a single object to the GTT read, and possibly write domain.
3424 *
3425 * This function returns when the move is complete, including waiting on
3426 * flushes to occur.
3427 */
79e53945 3428int
2021746e 3429i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3430{
8325a09d 3431 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3432 uint32_t old_write_domain, old_read_domains;
e47c68e9 3433 int ret;
2ef7eeaa 3434
02354392 3435 /* Not valid to be called on unbound objects. */
9843877d 3436 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3437 return -EINVAL;
3438
8d7e3de1
CW
3439 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3440 return 0;
3441
0201f1ec 3442 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3443 if (ret)
3444 return ret;
3445
2c22569b 3446 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3447
d0a57789
CW
3448 /* Serialise direct access to this object with the barriers for
3449 * coherent writes from the GPU, by effectively invalidating the
3450 * GTT domain upon first access.
3451 */
3452 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3453 mb();
3454
05394f39
CW
3455 old_write_domain = obj->base.write_domain;
3456 old_read_domains = obj->base.read_domains;
1c5d22f7 3457
e47c68e9
EA
3458 /* It should now be out of any other write domains, and we can update
3459 * the domain values for our changes.
3460 */
05394f39
CW
3461 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3462 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3463 if (write) {
05394f39
CW
3464 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3465 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3466 obj->dirty = 1;
2ef7eeaa
EA
3467 }
3468
1c5d22f7
CW
3469 trace_i915_gem_object_change_domain(obj,
3470 old_read_domains,
3471 old_write_domain);
3472
8325a09d 3473 /* And bump the LRU for this access */
ca191b13 3474 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3475 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3476 if (vma)
3477 list_move_tail(&vma->mm_list,
3478 &dev_priv->gtt.base.inactive_list);
3479
3480 }
8325a09d 3481
e47c68e9
EA
3482 return 0;
3483}
3484
e4ffd173
CW
3485int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3486 enum i915_cache_level cache_level)
3487{
7bddb01f
DV
3488 struct drm_device *dev = obj->base.dev;
3489 drm_i915_private_t *dev_priv = dev->dev_private;
3089c6f2 3490 struct i915_vma *vma;
e4ffd173
CW
3491 int ret;
3492
3493 if (obj->cache_level == cache_level)
3494 return 0;
3495
3496 if (obj->pin_count) {
3497 DRM_DEBUG("can not change the cache level of pinned objects\n");
3498 return -EBUSY;
3499 }
3500
3089c6f2
BW
3501 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3502 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3503 ret = i915_vma_unbind(vma);
3089c6f2
BW
3504 if (ret)
3505 return ret;
3506
3507 break;
3508 }
42d6ab48
CW
3509 }
3510
3089c6f2 3511 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3512 ret = i915_gem_object_finish_gpu(obj);
3513 if (ret)
3514 return ret;
3515
3516 i915_gem_object_finish_gtt(obj);
3517
3518 /* Before SandyBridge, you could not use tiling or fence
3519 * registers with snooped memory, so relinquish any fences
3520 * currently pointing to our region in the aperture.
3521 */
42d6ab48 3522 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3523 ret = i915_gem_object_put_fence(obj);
3524 if (ret)
3525 return ret;
3526 }
3527
74898d7e
DV
3528 if (obj->has_global_gtt_mapping)
3529 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3530 if (obj->has_aliasing_ppgtt_mapping)
3531 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3532 obj, cache_level);
e4ffd173
CW
3533 }
3534
2c22569b
CW
3535 list_for_each_entry(vma, &obj->vma_list, vma_link)
3536 vma->node.color = cache_level;
3537 obj->cache_level = cache_level;
3538
3539 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3540 u32 old_read_domains, old_write_domain;
3541
3542 /* If we're coming from LLC cached, then we haven't
3543 * actually been tracking whether the data is in the
3544 * CPU cache or not, since we only allow one bit set
3545 * in obj->write_domain and have been skipping the clflushes.
3546 * Just set it to the CPU cache for now.
3547 */
3548 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3549
3550 old_read_domains = obj->base.read_domains;
3551 old_write_domain = obj->base.write_domain;
3552
3553 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3554 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3555
3556 trace_i915_gem_object_change_domain(obj,
3557 old_read_domains,
3558 old_write_domain);
3559 }
3560
42d6ab48 3561 i915_gem_verify_gtt(dev);
e4ffd173
CW
3562 return 0;
3563}
3564
199adf40
BW
3565int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3566 struct drm_file *file)
e6994aee 3567{
199adf40 3568 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3569 struct drm_i915_gem_object *obj;
3570 int ret;
3571
3572 ret = i915_mutex_lock_interruptible(dev);
3573 if (ret)
3574 return ret;
3575
3576 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3577 if (&obj->base == NULL) {
3578 ret = -ENOENT;
3579 goto unlock;
3580 }
3581
651d794f
CW
3582 switch (obj->cache_level) {
3583 case I915_CACHE_LLC:
3584 case I915_CACHE_L3_LLC:
3585 args->caching = I915_CACHING_CACHED;
3586 break;
3587
4257d3ba
CW
3588 case I915_CACHE_WT:
3589 args->caching = I915_CACHING_DISPLAY;
3590 break;
3591
651d794f
CW
3592 default:
3593 args->caching = I915_CACHING_NONE;
3594 break;
3595 }
e6994aee
CW
3596
3597 drm_gem_object_unreference(&obj->base);
3598unlock:
3599 mutex_unlock(&dev->struct_mutex);
3600 return ret;
3601}
3602
199adf40
BW
3603int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3604 struct drm_file *file)
e6994aee 3605{
199adf40 3606 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3607 struct drm_i915_gem_object *obj;
3608 enum i915_cache_level level;
3609 int ret;
3610
199adf40
BW
3611 switch (args->caching) {
3612 case I915_CACHING_NONE:
e6994aee
CW
3613 level = I915_CACHE_NONE;
3614 break;
199adf40 3615 case I915_CACHING_CACHED:
e6994aee
CW
3616 level = I915_CACHE_LLC;
3617 break;
4257d3ba
CW
3618 case I915_CACHING_DISPLAY:
3619 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3620 break;
e6994aee
CW
3621 default:
3622 return -EINVAL;
3623 }
3624
3bc2913e
BW
3625 ret = i915_mutex_lock_interruptible(dev);
3626 if (ret)
3627 return ret;
3628
e6994aee
CW
3629 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3630 if (&obj->base == NULL) {
3631 ret = -ENOENT;
3632 goto unlock;
3633 }
3634
3635 ret = i915_gem_object_set_cache_level(obj, level);
3636
3637 drm_gem_object_unreference(&obj->base);
3638unlock:
3639 mutex_unlock(&dev->struct_mutex);
3640 return ret;
3641}
3642
cc98b413
CW
3643static bool is_pin_display(struct drm_i915_gem_object *obj)
3644{
3645 /* There are 3 sources that pin objects:
3646 * 1. The display engine (scanouts, sprites, cursors);
3647 * 2. Reservations for execbuffer;
3648 * 3. The user.
3649 *
3650 * We can ignore reservations as we hold the struct_mutex and
3651 * are only called outside of the reservation path. The user
3652 * can only increment pin_count once, and so if after
3653 * subtracting the potential reference by the user, any pin_count
3654 * remains, it must be due to another use by the display engine.
3655 */
3656 return obj->pin_count - !!obj->user_pin_count;
3657}
3658
b9241ea3 3659/*
2da3b9b9
CW
3660 * Prepare buffer for display plane (scanout, cursors, etc).
3661 * Can be called from an uninterruptible phase (modesetting) and allows
3662 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3663 */
3664int
2da3b9b9
CW
3665i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3666 u32 alignment,
919926ae 3667 struct intel_ring_buffer *pipelined)
b9241ea3 3668{
2da3b9b9 3669 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3670 int ret;
3671
0be73284 3672 if (pipelined != obj->ring) {
2911a35b
BW
3673 ret = i915_gem_object_sync(obj, pipelined);
3674 if (ret)
b9241ea3
ZW
3675 return ret;
3676 }
3677
cc98b413
CW
3678 /* Mark the pin_display early so that we account for the
3679 * display coherency whilst setting up the cache domains.
3680 */
3681 obj->pin_display = true;
3682
a7ef0640
EA
3683 /* The display engine is not coherent with the LLC cache on gen6. As
3684 * a result, we make sure that the pinning that is about to occur is
3685 * done with uncached PTEs. This is lowest common denominator for all
3686 * chipsets.
3687 *
3688 * However for gen6+, we could do better by using the GFDT bit instead
3689 * of uncaching, which would allow us to flush all the LLC-cached data
3690 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3691 */
651d794f
CW
3692 ret = i915_gem_object_set_cache_level(obj,
3693 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3694 if (ret)
cc98b413 3695 goto err_unpin_display;
a7ef0640 3696
2da3b9b9
CW
3697 /* As the user may map the buffer once pinned in the display plane
3698 * (e.g. libkms for the bootup splash), we have to ensure that we
3699 * always use map_and_fenceable for all scanout buffers.
3700 */
c37e2204 3701 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9 3702 if (ret)
cc98b413 3703 goto err_unpin_display;
2da3b9b9 3704
2c22569b 3705 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3706
2da3b9b9 3707 old_write_domain = obj->base.write_domain;
05394f39 3708 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3709
3710 /* It should now be out of any other write domains, and we can update
3711 * the domain values for our changes.
3712 */
e5f1d962 3713 obj->base.write_domain = 0;
05394f39 3714 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3715
3716 trace_i915_gem_object_change_domain(obj,
3717 old_read_domains,
2da3b9b9 3718 old_write_domain);
b9241ea3
ZW
3719
3720 return 0;
cc98b413
CW
3721
3722err_unpin_display:
3723 obj->pin_display = is_pin_display(obj);
3724 return ret;
3725}
3726
3727void
3728i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3729{
3730 i915_gem_object_unpin(obj);
3731 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3732}
3733
85345517 3734int
a8198eea 3735i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3736{
88241785
CW
3737 int ret;
3738
a8198eea 3739 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3740 return 0;
3741
0201f1ec 3742 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3743 if (ret)
3744 return ret;
3745
a8198eea
CW
3746 /* Ensure that we invalidate the GPU's caches and TLBs. */
3747 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3748 return 0;
85345517
CW
3749}
3750
e47c68e9
EA
3751/**
3752 * Moves a single object to the CPU read, and possibly write domain.
3753 *
3754 * This function returns when the move is complete, including waiting on
3755 * flushes to occur.
3756 */
dabdfe02 3757int
919926ae 3758i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3759{
1c5d22f7 3760 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3761 int ret;
3762
8d7e3de1
CW
3763 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3764 return 0;
3765
0201f1ec 3766 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3767 if (ret)
3768 return ret;
3769
e47c68e9 3770 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3771
05394f39
CW
3772 old_write_domain = obj->base.write_domain;
3773 old_read_domains = obj->base.read_domains;
1c5d22f7 3774
e47c68e9 3775 /* Flush the CPU cache if it's still invalid. */
05394f39 3776 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3777 i915_gem_clflush_object(obj, false);
2ef7eeaa 3778
05394f39 3779 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3780 }
3781
3782 /* It should now be out of any other write domains, and we can update
3783 * the domain values for our changes.
3784 */
05394f39 3785 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3786
3787 /* If we're writing through the CPU, then the GPU read domains will
3788 * need to be invalidated at next use.
3789 */
3790 if (write) {
05394f39
CW
3791 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3792 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3793 }
2ef7eeaa 3794
1c5d22f7
CW
3795 trace_i915_gem_object_change_domain(obj,
3796 old_read_domains,
3797 old_write_domain);
3798
2ef7eeaa
EA
3799 return 0;
3800}
3801
673a394b
EA
3802/* Throttle our rendering by waiting until the ring has completed our requests
3803 * emitted over 20 msec ago.
3804 *
b962442e
EA
3805 * Note that if we were to use the current jiffies each time around the loop,
3806 * we wouldn't escape the function with any frames outstanding if the time to
3807 * render a frame was over 20ms.
3808 *
673a394b
EA
3809 * This should get us reasonable parallelism between CPU and GPU but also
3810 * relatively low latency when blocking on a particular request to finish.
3811 */
40a5f0de 3812static int
f787a5f5 3813i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3814{
f787a5f5
CW
3815 struct drm_i915_private *dev_priv = dev->dev_private;
3816 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3817 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3818 struct drm_i915_gem_request *request;
3819 struct intel_ring_buffer *ring = NULL;
f69061be 3820 unsigned reset_counter;
f787a5f5
CW
3821 u32 seqno = 0;
3822 int ret;
93533c29 3823
308887aa
DV
3824 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3825 if (ret)
3826 return ret;
3827
3828 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3829 if (ret)
3830 return ret;
e110e8d6 3831
1c25595f 3832 spin_lock(&file_priv->mm.lock);
f787a5f5 3833 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3834 if (time_after_eq(request->emitted_jiffies, recent_enough))
3835 break;
40a5f0de 3836
f787a5f5
CW
3837 ring = request->ring;
3838 seqno = request->seqno;
b962442e 3839 }
f69061be 3840 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3841 spin_unlock(&file_priv->mm.lock);
40a5f0de 3842
f787a5f5
CW
3843 if (seqno == 0)
3844 return 0;
2bc43b5c 3845
b29c19b6 3846 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3847 if (ret == 0)
3848 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3849
3850 return ret;
3851}
3852
673a394b 3853int
05394f39 3854i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3855 struct i915_address_space *vm,
05394f39 3856 uint32_t alignment,
86a1ee26
CW
3857 bool map_and_fenceable,
3858 bool nonblocking)
673a394b 3859{
07fe0b12 3860 struct i915_vma *vma;
673a394b
EA
3861 int ret;
3862
7e81a42e
CW
3863 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3864 return -EBUSY;
ac0c6b5a 3865
07fe0b12
BW
3866 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3867
3868 vma = i915_gem_obj_to_vma(obj, vm);
3869
3870 if (vma) {
3871 if ((alignment &&
3872 vma->node.start & (alignment - 1)) ||
05394f39
CW
3873 (map_and_fenceable && !obj->map_and_fenceable)) {
3874 WARN(obj->pin_count,
ae7d49d8 3875 "bo is already pinned with incorrect alignment:"
f343c5f6 3876 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3877 " obj->map_and_fenceable=%d\n",
07fe0b12 3878 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3879 map_and_fenceable,
05394f39 3880 obj->map_and_fenceable);
07fe0b12 3881 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3882 if (ret)
3883 return ret;
3884 }
3885 }
3886
07fe0b12 3887 if (!i915_gem_obj_bound(obj, vm)) {
8742267a
CW
3888 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3889
07fe0b12
BW
3890 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3891 map_and_fenceable,
3892 nonblocking);
9731129c 3893 if (ret)
673a394b 3894 return ret;
8742267a
CW
3895
3896 if (!dev_priv->mm.aliasing_ppgtt)
3897 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3898 }
76446cac 3899
74898d7e
DV
3900 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3901 i915_gem_gtt_bind_object(obj, obj->cache_level);
3902
1b50247a 3903 obj->pin_count++;
6299f992 3904 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3905
3906 return 0;
3907}
3908
3909void
05394f39 3910i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3911{
05394f39 3912 BUG_ON(obj->pin_count == 0);
9843877d 3913 BUG_ON(!i915_gem_obj_bound_any(obj));
673a394b 3914
1b50247a 3915 if (--obj->pin_count == 0)
6299f992 3916 obj->pin_mappable = false;
673a394b
EA
3917}
3918
3919int
3920i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3921 struct drm_file *file)
673a394b
EA
3922{
3923 struct drm_i915_gem_pin *args = data;
05394f39 3924 struct drm_i915_gem_object *obj;
673a394b
EA
3925 int ret;
3926
1d7cfea1
CW
3927 ret = i915_mutex_lock_interruptible(dev);
3928 if (ret)
3929 return ret;
673a394b 3930
05394f39 3931 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3932 if (&obj->base == NULL) {
1d7cfea1
CW
3933 ret = -ENOENT;
3934 goto unlock;
673a394b 3935 }
673a394b 3936
05394f39 3937 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3938 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3939 ret = -EINVAL;
3940 goto out;
3ef94daa
CW
3941 }
3942
05394f39 3943 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3944 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3945 args->handle);
1d7cfea1
CW
3946 ret = -EINVAL;
3947 goto out;
79e53945
JB
3948 }
3949
aa5f8021
DV
3950 if (obj->user_pin_count == ULONG_MAX) {
3951 ret = -EBUSY;
3952 goto out;
3953 }
3954
93be8788 3955 if (obj->user_pin_count == 0) {
c37e2204 3956 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3957 if (ret)
3958 goto out;
673a394b
EA
3959 }
3960
93be8788
CW
3961 obj->user_pin_count++;
3962 obj->pin_filp = file;
3963
f343c5f6 3964 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3965out:
05394f39 3966 drm_gem_object_unreference(&obj->base);
1d7cfea1 3967unlock:
673a394b 3968 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3969 return ret;
673a394b
EA
3970}
3971
3972int
3973i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3974 struct drm_file *file)
673a394b
EA
3975{
3976 struct drm_i915_gem_pin *args = data;
05394f39 3977 struct drm_i915_gem_object *obj;
76c1dec1 3978 int ret;
673a394b 3979
1d7cfea1
CW
3980 ret = i915_mutex_lock_interruptible(dev);
3981 if (ret)
3982 return ret;
673a394b 3983
05394f39 3984 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3985 if (&obj->base == NULL) {
1d7cfea1
CW
3986 ret = -ENOENT;
3987 goto unlock;
673a394b 3988 }
76c1dec1 3989
05394f39 3990 if (obj->pin_filp != file) {
79e53945
JB
3991 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3992 args->handle);
1d7cfea1
CW
3993 ret = -EINVAL;
3994 goto out;
79e53945 3995 }
05394f39
CW
3996 obj->user_pin_count--;
3997 if (obj->user_pin_count == 0) {
3998 obj->pin_filp = NULL;
79e53945
JB
3999 i915_gem_object_unpin(obj);
4000 }
673a394b 4001
1d7cfea1 4002out:
05394f39 4003 drm_gem_object_unreference(&obj->base);
1d7cfea1 4004unlock:
673a394b 4005 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4006 return ret;
673a394b
EA
4007}
4008
4009int
4010i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4011 struct drm_file *file)
673a394b
EA
4012{
4013 struct drm_i915_gem_busy *args = data;
05394f39 4014 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4015 int ret;
4016
76c1dec1 4017 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4018 if (ret)
76c1dec1 4019 return ret;
673a394b 4020
05394f39 4021 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4022 if (&obj->base == NULL) {
1d7cfea1
CW
4023 ret = -ENOENT;
4024 goto unlock;
673a394b 4025 }
d1b851fc 4026
0be555b6
CW
4027 /* Count all active objects as busy, even if they are currently not used
4028 * by the gpu. Users of this interface expect objects to eventually
4029 * become non-busy without any further actions, therefore emit any
4030 * necessary flushes here.
c4de0a5d 4031 */
30dfebf3 4032 ret = i915_gem_object_flush_active(obj);
0be555b6 4033
30dfebf3 4034 args->busy = obj->active;
e9808edd
CW
4035 if (obj->ring) {
4036 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4037 args->busy |= intel_ring_flag(obj->ring) << 16;
4038 }
673a394b 4039
05394f39 4040 drm_gem_object_unreference(&obj->base);
1d7cfea1 4041unlock:
673a394b 4042 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4043 return ret;
673a394b
EA
4044}
4045
4046int
4047i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4048 struct drm_file *file_priv)
4049{
0206e353 4050 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4051}
4052
3ef94daa
CW
4053int
4054i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4055 struct drm_file *file_priv)
4056{
4057 struct drm_i915_gem_madvise *args = data;
05394f39 4058 struct drm_i915_gem_object *obj;
76c1dec1 4059 int ret;
3ef94daa
CW
4060
4061 switch (args->madv) {
4062 case I915_MADV_DONTNEED:
4063 case I915_MADV_WILLNEED:
4064 break;
4065 default:
4066 return -EINVAL;
4067 }
4068
1d7cfea1
CW
4069 ret = i915_mutex_lock_interruptible(dev);
4070 if (ret)
4071 return ret;
4072
05394f39 4073 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4074 if (&obj->base == NULL) {
1d7cfea1
CW
4075 ret = -ENOENT;
4076 goto unlock;
3ef94daa 4077 }
3ef94daa 4078
05394f39 4079 if (obj->pin_count) {
1d7cfea1
CW
4080 ret = -EINVAL;
4081 goto out;
3ef94daa
CW
4082 }
4083
05394f39
CW
4084 if (obj->madv != __I915_MADV_PURGED)
4085 obj->madv = args->madv;
3ef94daa 4086
6c085a72
CW
4087 /* if the object is no longer attached, discard its backing storage */
4088 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4089 i915_gem_object_truncate(obj);
4090
05394f39 4091 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4092
1d7cfea1 4093out:
05394f39 4094 drm_gem_object_unreference(&obj->base);
1d7cfea1 4095unlock:
3ef94daa 4096 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4097 return ret;
3ef94daa
CW
4098}
4099
37e680a1
CW
4100void i915_gem_object_init(struct drm_i915_gem_object *obj,
4101 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4102{
35c20a60 4103 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4104 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4105 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4106 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4107
37e680a1
CW
4108 obj->ops = ops;
4109
0327d6ba
CW
4110 obj->fence_reg = I915_FENCE_REG_NONE;
4111 obj->madv = I915_MADV_WILLNEED;
4112 /* Avoid an unnecessary call to unbind on the first bind. */
4113 obj->map_and_fenceable = true;
4114
4115 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4116}
4117
37e680a1
CW
4118static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4119 .get_pages = i915_gem_object_get_pages_gtt,
4120 .put_pages = i915_gem_object_put_pages_gtt,
4121};
4122
05394f39
CW
4123struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4124 size_t size)
ac52bc56 4125{
c397b908 4126 struct drm_i915_gem_object *obj;
5949eac4 4127 struct address_space *mapping;
1a240d4d 4128 gfp_t mask;
ac52bc56 4129
42dcedd4 4130 obj = i915_gem_object_alloc(dev);
c397b908
DV
4131 if (obj == NULL)
4132 return NULL;
673a394b 4133
c397b908 4134 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4135 i915_gem_object_free(obj);
c397b908
DV
4136 return NULL;
4137 }
673a394b 4138
bed1ea95
CW
4139 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4140 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4141 /* 965gm cannot relocate objects above 4GiB. */
4142 mask &= ~__GFP_HIGHMEM;
4143 mask |= __GFP_DMA32;
4144 }
4145
496ad9aa 4146 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4147 mapping_set_gfp_mask(mapping, mask);
5949eac4 4148
37e680a1 4149 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4150
c397b908
DV
4151 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4152 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4153
3d29b842
ED
4154 if (HAS_LLC(dev)) {
4155 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4156 * cache) for about a 10% performance improvement
4157 * compared to uncached. Graphics requests other than
4158 * display scanout are coherent with the CPU in
4159 * accessing this cache. This means in this mode we
4160 * don't need to clflush on the CPU side, and on the
4161 * GPU side we only need to flush internal caches to
4162 * get data visible to the CPU.
4163 *
4164 * However, we maintain the display planes as UC, and so
4165 * need to rebind when first used as such.
4166 */
4167 obj->cache_level = I915_CACHE_LLC;
4168 } else
4169 obj->cache_level = I915_CACHE_NONE;
4170
d861e338
DV
4171 trace_i915_gem_object_create(obj);
4172
05394f39 4173 return obj;
c397b908
DV
4174}
4175
1488fc08 4176void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4177{
1488fc08 4178 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4179 struct drm_device *dev = obj->base.dev;
be72615b 4180 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4181 struct i915_vma *vma, *next;
673a394b 4182
f65c9168
PZ
4183 intel_runtime_pm_get(dev_priv);
4184
26e12f89
CW
4185 trace_i915_gem_object_destroy(obj);
4186
1488fc08
CW
4187 if (obj->phys_obj)
4188 i915_gem_detach_phys_object(dev, obj);
4189
4190 obj->pin_count = 0;
07fe0b12
BW
4191 /* NB: 0 or 1 elements */
4192 WARN_ON(!list_empty(&obj->vma_list) &&
4193 !list_is_singular(&obj->vma_list));
4194 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4195 int ret = i915_vma_unbind(vma);
4196 if (WARN_ON(ret == -ERESTARTSYS)) {
4197 bool was_interruptible;
1488fc08 4198
07fe0b12
BW
4199 was_interruptible = dev_priv->mm.interruptible;
4200 dev_priv->mm.interruptible = false;
1488fc08 4201
07fe0b12 4202 WARN_ON(i915_vma_unbind(vma));
1488fc08 4203
07fe0b12
BW
4204 dev_priv->mm.interruptible = was_interruptible;
4205 }
1488fc08
CW
4206 }
4207
1d64ae71
BW
4208 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4209 * before progressing. */
4210 if (obj->stolen)
4211 i915_gem_object_unpin_pages(obj);
4212
401c29f6
BW
4213 if (WARN_ON(obj->pages_pin_count))
4214 obj->pages_pin_count = 0;
37e680a1 4215 i915_gem_object_put_pages(obj);
d8cb5086 4216 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4217 i915_gem_object_release_stolen(obj);
de151cf6 4218
9da3da66
CW
4219 BUG_ON(obj->pages);
4220
2f745ad3
CW
4221 if (obj->base.import_attach)
4222 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4223
05394f39
CW
4224 drm_gem_object_release(&obj->base);
4225 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4226
05394f39 4227 kfree(obj->bit_17);
42dcedd4 4228 i915_gem_object_free(obj);
f65c9168
PZ
4229
4230 intel_runtime_pm_put(dev_priv);
673a394b
EA
4231}
4232
e656a6cb 4233struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4234 struct i915_address_space *vm)
e656a6cb
DV
4235{
4236 struct i915_vma *vma;
4237 list_for_each_entry(vma, &obj->vma_list, vma_link)
4238 if (vma->vm == vm)
4239 return vma;
4240
4241 return NULL;
4242}
4243
4244static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4245 struct i915_address_space *vm)
2f633156
BW
4246{
4247 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4248 if (vma == NULL)
4249 return ERR_PTR(-ENOMEM);
4250
4251 INIT_LIST_HEAD(&vma->vma_link);
ca191b13 4252 INIT_LIST_HEAD(&vma->mm_list);
82a55ad1 4253 INIT_LIST_HEAD(&vma->exec_list);
2f633156
BW
4254 vma->vm = vm;
4255 vma->obj = obj;
4256
8b9c2b94
BW
4257 /* Keep GGTT vmas first to make debug easier */
4258 if (i915_is_ggtt(vm))
4259 list_add(&vma->vma_link, &obj->vma_list);
4260 else
4261 list_add_tail(&vma->vma_link, &obj->vma_list);
4262
2f633156
BW
4263 return vma;
4264}
4265
e656a6cb
DV
4266struct i915_vma *
4267i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4268 struct i915_address_space *vm)
4269{
4270 struct i915_vma *vma;
4271
4272 vma = i915_gem_obj_to_vma(obj, vm);
4273 if (!vma)
4274 vma = __i915_gem_vma_create(obj, vm);
4275
4276 return vma;
4277}
4278
2f633156
BW
4279void i915_gem_vma_destroy(struct i915_vma *vma)
4280{
4281 WARN_ON(vma->node.allocated);
aaa05667
CW
4282
4283 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4284 if (!list_empty(&vma->exec_list))
4285 return;
4286
8b9c2b94 4287 list_del(&vma->vma_link);
b93dab6e 4288
2f633156
BW
4289 kfree(vma);
4290}
4291
29105ccc 4292int
45c5f202 4293i915_gem_suspend(struct drm_device *dev)
29105ccc
CW
4294{
4295 drm_i915_private_t *dev_priv = dev->dev_private;
45c5f202 4296 int ret = 0;
28dfe52a 4297
45c5f202 4298 mutex_lock(&dev->struct_mutex);
f7403347 4299 if (dev_priv->ums.mm_suspended)
45c5f202 4300 goto err;
28dfe52a 4301
b2da9fe5 4302 ret = i915_gpu_idle(dev);
f7403347 4303 if (ret)
45c5f202 4304 goto err;
f7403347 4305
b2da9fe5 4306 i915_gem_retire_requests(dev);
673a394b 4307
29105ccc 4308 /* Under UMS, be paranoid and evict. */
a39d7efc 4309 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4310 i915_gem_evict_everything(dev);
29105ccc 4311
29105ccc 4312 i915_kernel_lost_context(dev);
6dbe2772 4313 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4314
45c5f202
CW
4315 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4316 * We need to replace this with a semaphore, or something.
4317 * And not confound ums.mm_suspended!
4318 */
4319 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4320 DRIVER_MODESET);
4321 mutex_unlock(&dev->struct_mutex);
4322
4323 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4324 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4325 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4326
673a394b 4327 return 0;
45c5f202
CW
4328
4329err:
4330 mutex_unlock(&dev->struct_mutex);
4331 return ret;
673a394b
EA
4332}
4333
c3787e2e 4334int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4335{
c3787e2e 4336 struct drm_device *dev = ring->dev;
b9524a1e 4337 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6
BW
4338 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4339 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4340 int i, ret;
b9524a1e 4341
040d2baa 4342 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4343 return 0;
b9524a1e 4344
c3787e2e
BW
4345 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4346 if (ret)
4347 return ret;
b9524a1e 4348
c3787e2e
BW
4349 /*
4350 * Note: We do not worry about the concurrent register cacheline hang
4351 * here because no other code should access these registers other than
4352 * at initialization time.
4353 */
b9524a1e 4354 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4355 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4356 intel_ring_emit(ring, reg_base + i);
4357 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4358 }
4359
c3787e2e 4360 intel_ring_advance(ring);
b9524a1e 4361
c3787e2e 4362 return ret;
b9524a1e
BW
4363}
4364
f691e2f4
DV
4365void i915_gem_init_swizzling(struct drm_device *dev)
4366{
4367 drm_i915_private_t *dev_priv = dev->dev_private;
4368
11782b02 4369 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4370 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4371 return;
4372
4373 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4374 DISP_TILE_SURFACE_SWIZZLING);
4375
11782b02
DV
4376 if (IS_GEN5(dev))
4377 return;
4378
f691e2f4
DV
4379 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4380 if (IS_GEN6(dev))
6b26c86d 4381 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4382 else if (IS_GEN7(dev))
6b26c86d 4383 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4384 else if (IS_GEN8(dev))
4385 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4386 else
4387 BUG();
f691e2f4 4388}
e21af88d 4389
67b1b571
CW
4390static bool
4391intel_enable_blt(struct drm_device *dev)
4392{
4393 if (!HAS_BLT(dev))
4394 return false;
4395
4396 /* The blitter was dysfunctional on early prototypes */
4397 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4398 DRM_INFO("BLT not supported on this pre-production hardware;"
4399 " graphics performance will be degraded.\n");
4400 return false;
4401 }
4402
4403 return true;
4404}
4405
4fc7c971 4406static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4407{
4fc7c971 4408 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4409 int ret;
68f95ba9 4410
5c1143bb 4411 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4412 if (ret)
b6913e4b 4413 return ret;
68f95ba9
CW
4414
4415 if (HAS_BSD(dev)) {
5c1143bb 4416 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4417 if (ret)
4418 goto cleanup_render_ring;
d1b851fc 4419 }
68f95ba9 4420
67b1b571 4421 if (intel_enable_blt(dev)) {
549f7365
CW
4422 ret = intel_init_blt_ring_buffer(dev);
4423 if (ret)
4424 goto cleanup_bsd_ring;
4425 }
4426
9a8a2213
BW
4427 if (HAS_VEBOX(dev)) {
4428 ret = intel_init_vebox_ring_buffer(dev);
4429 if (ret)
4430 goto cleanup_blt_ring;
4431 }
4432
4433
99433931 4434 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4435 if (ret)
9a8a2213 4436 goto cleanup_vebox_ring;
4fc7c971
BW
4437
4438 return 0;
4439
9a8a2213
BW
4440cleanup_vebox_ring:
4441 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4442cleanup_blt_ring:
4443 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4444cleanup_bsd_ring:
4445 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4446cleanup_render_ring:
4447 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4448
4449 return ret;
4450}
4451
4452int
4453i915_gem_init_hw(struct drm_device *dev)
4454{
4455 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6 4456 int ret, i;
4fc7c971
BW
4457
4458 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4459 return -EIO;
4460
59124506 4461 if (dev_priv->ellc_size)
05e21cc4 4462 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4463
9435373e
RV
4464 if (IS_HSW_GT3(dev))
4465 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
4466 else
4467 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
4468
88a2b2a3
BW
4469 if (HAS_PCH_NOP(dev)) {
4470 u32 temp = I915_READ(GEN7_MSG_CTL);
4471 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4472 I915_WRITE(GEN7_MSG_CTL, temp);
4473 }
4474
4fc7c971
BW
4475 i915_gem_init_swizzling(dev);
4476
4477 ret = i915_gem_init_rings(dev);
99433931
MK
4478 if (ret)
4479 return ret;
4480
c3787e2e
BW
4481 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4482 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4483
254f965c
BW
4484 /*
4485 * XXX: There was some w/a described somewhere suggesting loading
4486 * contexts before PPGTT.
4487 */
8245be31
BW
4488 ret = i915_gem_context_init(dev);
4489 if (ret) {
4490 i915_gem_cleanup_ringbuffer(dev);
4491 DRM_ERROR("Context initialization failed %d\n", ret);
4492 return ret;
4493 }
4494
b7c36d25
BW
4495 if (dev_priv->mm.aliasing_ppgtt) {
4496 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4497 if (ret) {
4498 i915_gem_cleanup_aliasing_ppgtt(dev);
4499 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4500 }
4501 }
e21af88d 4502
68f95ba9 4503 return 0;
8187a2b7
ZN
4504}
4505
1070a42b
CW
4506int i915_gem_init(struct drm_device *dev)
4507{
4508 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4509 int ret;
4510
1070a42b 4511 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4512
4513 if (IS_VALLEYVIEW(dev)) {
4514 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4515 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4516 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4517 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4518 }
4519
d7e5008f 4520 i915_gem_init_global_gtt(dev);
d62b4892 4521
1070a42b
CW
4522 ret = i915_gem_init_hw(dev);
4523 mutex_unlock(&dev->struct_mutex);
4524 if (ret) {
4525 i915_gem_cleanup_aliasing_ppgtt(dev);
4526 return ret;
4527 }
4528
53ca26ca
DV
4529 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4530 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4531 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4532 return 0;
4533}
4534
8187a2b7
ZN
4535void
4536i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4537{
4538 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4539 struct intel_ring_buffer *ring;
1ec14ad3 4540 int i;
8187a2b7 4541
b4519513
CW
4542 for_each_ring(ring, dev_priv, i)
4543 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4544}
4545
673a394b
EA
4546int
4547i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4548 struct drm_file *file_priv)
4549{
db1b76ca 4550 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4551 int ret;
673a394b 4552
79e53945
JB
4553 if (drm_core_check_feature(dev, DRIVER_MODESET))
4554 return 0;
4555
1f83fee0 4556 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4557 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4558 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4559 }
4560
673a394b 4561 mutex_lock(&dev->struct_mutex);
db1b76ca 4562 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4563
f691e2f4 4564 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4565 if (ret != 0) {
4566 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4567 return ret;
d816f6ac 4568 }
9bb2d6f9 4569
5cef07e1 4570 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4571 mutex_unlock(&dev->struct_mutex);
dbb19d30 4572
5f35308b
CW
4573 ret = drm_irq_install(dev);
4574 if (ret)
4575 goto cleanup_ringbuffer;
dbb19d30 4576
673a394b 4577 return 0;
5f35308b
CW
4578
4579cleanup_ringbuffer:
4580 mutex_lock(&dev->struct_mutex);
4581 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4582 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4583 mutex_unlock(&dev->struct_mutex);
4584
4585 return ret;
673a394b
EA
4586}
4587
4588int
4589i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4590 struct drm_file *file_priv)
4591{
79e53945
JB
4592 if (drm_core_check_feature(dev, DRIVER_MODESET))
4593 return 0;
4594
dbb19d30 4595 drm_irq_uninstall(dev);
db1b76ca 4596
45c5f202 4597 return i915_gem_suspend(dev);
673a394b
EA
4598}
4599
4600void
4601i915_gem_lastclose(struct drm_device *dev)
4602{
4603 int ret;
673a394b 4604
e806b495
EA
4605 if (drm_core_check_feature(dev, DRIVER_MODESET))
4606 return;
4607
45c5f202 4608 ret = i915_gem_suspend(dev);
6dbe2772
KP
4609 if (ret)
4610 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4611}
4612
64193406
CW
4613static void
4614init_ring_lists(struct intel_ring_buffer *ring)
4615{
4616 INIT_LIST_HEAD(&ring->active_list);
4617 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4618}
4619
fc8c067e
BW
4620static void i915_init_vm(struct drm_i915_private *dev_priv,
4621 struct i915_address_space *vm)
4622{
4623 vm->dev = dev_priv->dev;
4624 INIT_LIST_HEAD(&vm->active_list);
4625 INIT_LIST_HEAD(&vm->inactive_list);
4626 INIT_LIST_HEAD(&vm->global_link);
4627 list_add(&vm->global_link, &dev_priv->vm_list);
4628}
4629
673a394b
EA
4630void
4631i915_gem_load(struct drm_device *dev)
4632{
4633 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4634 int i;
4635
4636 dev_priv->slab =
4637 kmem_cache_create("i915_gem_object",
4638 sizeof(struct drm_i915_gem_object), 0,
4639 SLAB_HWCACHE_ALIGN,
4640 NULL);
673a394b 4641
fc8c067e
BW
4642 INIT_LIST_HEAD(&dev_priv->vm_list);
4643 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4644
a33afea5 4645 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4646 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4647 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4648 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4649 for (i = 0; i < I915_NUM_RINGS; i++)
4650 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4651 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4652 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4653 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4654 i915_gem_retire_work_handler);
b29c19b6
CW
4655 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4656 i915_gem_idle_work_handler);
1f83fee0 4657 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4658
94400120
DA
4659 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4660 if (IS_GEN3(dev)) {
50743298
DV
4661 I915_WRITE(MI_ARB_STATE,
4662 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4663 }
4664
72bfa19c
CW
4665 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4666
de151cf6 4667 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4668 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4669 dev_priv->fence_reg_start = 3;
de151cf6 4670
42b5aeab
VS
4671 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4672 dev_priv->num_fence_regs = 32;
4673 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4674 dev_priv->num_fence_regs = 16;
4675 else
4676 dev_priv->num_fence_regs = 8;
4677
b5aa8a0f 4678 /* Initialize fence registers to zero */
19b2dbde
CW
4679 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4680 i915_gem_restore_fences(dev);
10ed13e4 4681
673a394b 4682 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4683 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4684
ce453d81
CW
4685 dev_priv->mm.interruptible = true;
4686
7dc19d5a
DC
4687 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4688 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4689 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4690 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4691}
71acb5eb
DA
4692
4693/*
4694 * Create a physically contiguous memory object for this object
4695 * e.g. for cursor + overlay regs
4696 */
995b6762
CW
4697static int i915_gem_init_phys_object(struct drm_device *dev,
4698 int id, int size, int align)
71acb5eb
DA
4699{
4700 drm_i915_private_t *dev_priv = dev->dev_private;
4701 struct drm_i915_gem_phys_object *phys_obj;
4702 int ret;
4703
4704 if (dev_priv->mm.phys_objs[id - 1] || !size)
4705 return 0;
4706
b14c5679 4707 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4708 if (!phys_obj)
4709 return -ENOMEM;
4710
4711 phys_obj->id = id;
4712
6eeefaf3 4713 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4714 if (!phys_obj->handle) {
4715 ret = -ENOMEM;
4716 goto kfree_obj;
4717 }
4718#ifdef CONFIG_X86
4719 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4720#endif
4721
4722 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4723
4724 return 0;
4725kfree_obj:
9a298b2a 4726 kfree(phys_obj);
71acb5eb
DA
4727 return ret;
4728}
4729
995b6762 4730static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4731{
4732 drm_i915_private_t *dev_priv = dev->dev_private;
4733 struct drm_i915_gem_phys_object *phys_obj;
4734
4735 if (!dev_priv->mm.phys_objs[id - 1])
4736 return;
4737
4738 phys_obj = dev_priv->mm.phys_objs[id - 1];
4739 if (phys_obj->cur_obj) {
4740 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4741 }
4742
4743#ifdef CONFIG_X86
4744 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4745#endif
4746 drm_pci_free(dev, phys_obj->handle);
4747 kfree(phys_obj);
4748 dev_priv->mm.phys_objs[id - 1] = NULL;
4749}
4750
4751void i915_gem_free_all_phys_object(struct drm_device *dev)
4752{
4753 int i;
4754
260883c8 4755 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4756 i915_gem_free_phys_object(dev, i);
4757}
4758
4759void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4760 struct drm_i915_gem_object *obj)
71acb5eb 4761{
496ad9aa 4762 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4763 char *vaddr;
71acb5eb 4764 int i;
71acb5eb
DA
4765 int page_count;
4766
05394f39 4767 if (!obj->phys_obj)
71acb5eb 4768 return;
05394f39 4769 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4770
05394f39 4771 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4772 for (i = 0; i < page_count; i++) {
5949eac4 4773 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4774 if (!IS_ERR(page)) {
4775 char *dst = kmap_atomic(page);
4776 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4777 kunmap_atomic(dst);
4778
4779 drm_clflush_pages(&page, 1);
4780
4781 set_page_dirty(page);
4782 mark_page_accessed(page);
4783 page_cache_release(page);
4784 }
71acb5eb 4785 }
e76e9aeb 4786 i915_gem_chipset_flush(dev);
d78b47b9 4787
05394f39
CW
4788 obj->phys_obj->cur_obj = NULL;
4789 obj->phys_obj = NULL;
71acb5eb
DA
4790}
4791
4792int
4793i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4794 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4795 int id,
4796 int align)
71acb5eb 4797{
496ad9aa 4798 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4799 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4800 int ret = 0;
4801 int page_count;
4802 int i;
4803
4804 if (id > I915_MAX_PHYS_OBJECT)
4805 return -EINVAL;
4806
05394f39
CW
4807 if (obj->phys_obj) {
4808 if (obj->phys_obj->id == id)
71acb5eb
DA
4809 return 0;
4810 i915_gem_detach_phys_object(dev, obj);
4811 }
4812
71acb5eb
DA
4813 /* create a new object */
4814 if (!dev_priv->mm.phys_objs[id - 1]) {
4815 ret = i915_gem_init_phys_object(dev, id,
05394f39 4816 obj->base.size, align);
71acb5eb 4817 if (ret) {
05394f39
CW
4818 DRM_ERROR("failed to init phys object %d size: %zu\n",
4819 id, obj->base.size);
e5281ccd 4820 return ret;
71acb5eb
DA
4821 }
4822 }
4823
4824 /* bind to the object */
05394f39
CW
4825 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4826 obj->phys_obj->cur_obj = obj;
71acb5eb 4827
05394f39 4828 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4829
4830 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4831 struct page *page;
4832 char *dst, *src;
4833
5949eac4 4834 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4835 if (IS_ERR(page))
4836 return PTR_ERR(page);
71acb5eb 4837
ff75b9bc 4838 src = kmap_atomic(page);
05394f39 4839 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4840 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4841 kunmap_atomic(src);
71acb5eb 4842
e5281ccd
CW
4843 mark_page_accessed(page);
4844 page_cache_release(page);
4845 }
d78b47b9 4846
71acb5eb 4847 return 0;
71acb5eb
DA
4848}
4849
4850static int
05394f39
CW
4851i915_gem_phys_pwrite(struct drm_device *dev,
4852 struct drm_i915_gem_object *obj,
71acb5eb
DA
4853 struct drm_i915_gem_pwrite *args,
4854 struct drm_file *file_priv)
4855{
05394f39 4856 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4857 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4858
b47b30cc
CW
4859 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4860 unsigned long unwritten;
4861
4862 /* The physical object once assigned is fixed for the lifetime
4863 * of the obj, so we can safely drop the lock and continue
4864 * to access vaddr.
4865 */
4866 mutex_unlock(&dev->struct_mutex);
4867 unwritten = copy_from_user(vaddr, user_data, args->size);
4868 mutex_lock(&dev->struct_mutex);
4869 if (unwritten)
4870 return -EFAULT;
4871 }
71acb5eb 4872
e76e9aeb 4873 i915_gem_chipset_flush(dev);
71acb5eb
DA
4874 return 0;
4875}
b962442e 4876
f787a5f5 4877void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4878{
f787a5f5 4879 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4880
b29c19b6
CW
4881 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4882
b962442e
EA
4883 /* Clean up our request list when the client is going away, so that
4884 * later retire_requests won't dereference our soon-to-be-gone
4885 * file_priv.
4886 */
1c25595f 4887 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4888 while (!list_empty(&file_priv->mm.request_list)) {
4889 struct drm_i915_gem_request *request;
4890
4891 request = list_first_entry(&file_priv->mm.request_list,
4892 struct drm_i915_gem_request,
4893 client_list);
4894 list_del(&request->client_list);
4895 request->file_priv = NULL;
4896 }
1c25595f 4897 spin_unlock(&file_priv->mm.lock);
b962442e 4898}
31169714 4899
b29c19b6
CW
4900static void
4901i915_gem_file_idle_work_handler(struct work_struct *work)
4902{
4903 struct drm_i915_file_private *file_priv =
4904 container_of(work, typeof(*file_priv), mm.idle_work.work);
4905
4906 atomic_set(&file_priv->rps_wait_boost, false);
4907}
4908
4909int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4910{
4911 struct drm_i915_file_private *file_priv;
4912
4913 DRM_DEBUG_DRIVER("\n");
4914
4915 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4916 if (!file_priv)
4917 return -ENOMEM;
4918
4919 file->driver_priv = file_priv;
4920 file_priv->dev_priv = dev->dev_private;
4921
4922 spin_lock_init(&file_priv->mm.lock);
4923 INIT_LIST_HEAD(&file_priv->mm.request_list);
4924 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4925 i915_gem_file_idle_work_handler);
4926
4927 idr_init(&file_priv->context_idr);
4928
4929 return 0;
4930}
4931
5774506f
CW
4932static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4933{
4934 if (!mutex_is_locked(mutex))
4935 return false;
4936
4937#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4938 return mutex->owner == task;
4939#else
4940 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4941 return false;
4942#endif
4943}
4944
7dc19d5a
DC
4945static unsigned long
4946i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4947{
17250b71
CW
4948 struct drm_i915_private *dev_priv =
4949 container_of(shrinker,
4950 struct drm_i915_private,
4951 mm.inactive_shrinker);
4952 struct drm_device *dev = dev_priv->dev;
6c085a72 4953 struct drm_i915_gem_object *obj;
5774506f 4954 bool unlock = true;
7dc19d5a 4955 unsigned long count;
17250b71 4956
5774506f
CW
4957 if (!mutex_trylock(&dev->struct_mutex)) {
4958 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4959 return 0;
5774506f 4960
677feac2 4961 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4962 return 0;
677feac2 4963
5774506f
CW
4964 unlock = false;
4965 }
31169714 4966
7dc19d5a 4967 count = 0;
35c20a60 4968 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 4969 if (obj->pages_pin_count == 0)
7dc19d5a 4970 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4971
4972 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4973 if (obj->active)
4974 continue;
4975
a5570178 4976 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
7dc19d5a 4977 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 4978 }
17250b71 4979
5774506f
CW
4980 if (unlock)
4981 mutex_unlock(&dev->struct_mutex);
d9973b43 4982
7dc19d5a 4983 return count;
31169714 4984}
a70a3148
BW
4985
4986/* All the new VM stuff */
4987unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4988 struct i915_address_space *vm)
4989{
4990 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4991 struct i915_vma *vma;
4992
4993 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4994 vm = &dev_priv->gtt.base;
4995
4996 BUG_ON(list_empty(&o->vma_list));
4997 list_for_each_entry(vma, &o->vma_list, vma_link) {
4998 if (vma->vm == vm)
4999 return vma->node.start;
5000
5001 }
5002 return -1;
5003}
5004
5005bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5006 struct i915_address_space *vm)
5007{
5008 struct i915_vma *vma;
5009
5010 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5011 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5012 return true;
5013
5014 return false;
5015}
5016
5017bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5018{
5a1d5eb0 5019 struct i915_vma *vma;
a70a3148 5020
5a1d5eb0
CW
5021 list_for_each_entry(vma, &o->vma_list, vma_link)
5022 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5023 return true;
5024
5025 return false;
5026}
5027
5028unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5029 struct i915_address_space *vm)
5030{
5031 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5032 struct i915_vma *vma;
5033
5034 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5035 vm = &dev_priv->gtt.base;
5036
5037 BUG_ON(list_empty(&o->vma_list));
5038
5039 list_for_each_entry(vma, &o->vma_list, vma_link)
5040 if (vma->vm == vm)
5041 return vma->node.size;
5042
5043 return 0;
5044}
5045
7dc19d5a
DC
5046static unsigned long
5047i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5048{
5049 struct drm_i915_private *dev_priv =
5050 container_of(shrinker,
5051 struct drm_i915_private,
5052 mm.inactive_shrinker);
5053 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
5054 unsigned long freed;
5055 bool unlock = true;
5056
5057 if (!mutex_trylock(&dev->struct_mutex)) {
5058 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5059 return SHRINK_STOP;
7dc19d5a
DC
5060
5061 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5062 return SHRINK_STOP;
7dc19d5a
DC
5063
5064 unlock = false;
5065 }
5066
d9973b43
CW
5067 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5068 if (freed < sc->nr_to_scan)
5069 freed += __i915_gem_shrink(dev_priv,
5070 sc->nr_to_scan - freed,
5071 false);
5072 if (freed < sc->nr_to_scan)
7dc19d5a
DC
5073 freed += i915_gem_shrink_all(dev_priv);
5074
5075 if (unlock)
5076 mutex_unlock(&dev->struct_mutex);
d9973b43 5077
7dc19d5a
DC
5078 return freed;
5079}
5c2abbea
BW
5080
5081struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5082{
5083 struct i915_vma *vma;
5084
5085 if (WARN_ON(list_empty(&obj->vma_list)))
5086 return NULL;
5087
5088 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5089 if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5090 return NULL;
5091
5092 return vma;
5093}