drm/i915: Only hold a process-local lock whilst throttling.
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
31169714
CW
61static LIST_HEAD(shrink_list);
62static DEFINE_SPINLOCK(shrink_list_lock);
63
7d1c4804
CW
64static inline bool
65i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
66{
67 return obj_priv->gtt_space &&
68 !obj_priv->active &&
69 obj_priv->pin_count == 0;
70}
71
79e53945
JB
72int i915_gem_do_init(struct drm_device *dev, unsigned long start,
73 unsigned long end)
673a394b
EA
74{
75 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 76
79e53945
JB
77 if (start >= end ||
78 (start & (PAGE_SIZE - 1)) != 0 ||
79 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
80 return -EINVAL;
81 }
82
79e53945
JB
83 drm_mm_init(&dev_priv->mm.gtt_space, start,
84 end - start);
673a394b 85
79e53945
JB
86 dev->gtt_total = (uint32_t) (end - start);
87
88 return 0;
89}
673a394b 90
79e53945
JB
91int
92i915_gem_init_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
94{
95 struct drm_i915_gem_init *args = data;
96 int ret;
97
98 mutex_lock(&dev->struct_mutex);
99 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
100 mutex_unlock(&dev->struct_mutex);
101
79e53945 102 return ret;
673a394b
EA
103}
104
5a125c3c
EA
105int
106i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
107 struct drm_file *file_priv)
108{
5a125c3c 109 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
110
111 if (!(dev->driver->driver_features & DRIVER_GEM))
112 return -ENODEV;
113
114 args->aper_size = dev->gtt_total;
2678d9d6
KP
115 args->aper_available_size = (args->aper_size -
116 atomic_read(&dev->pin_memory));
5a125c3c
EA
117
118 return 0;
119}
120
673a394b
EA
121
122/**
123 * Creates a new mm object and returns a handle to it.
124 */
125int
126i915_gem_create_ioctl(struct drm_device *dev, void *data,
127 struct drm_file *file_priv)
128{
129 struct drm_i915_gem_create *args = data;
130 struct drm_gem_object *obj;
a1a2d1d3
PP
131 int ret;
132 u32 handle;
673a394b
EA
133
134 args->size = roundup(args->size, PAGE_SIZE);
135
136 /* Allocate the new object */
ac52bc56 137 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
138 if (obj == NULL)
139 return -ENOMEM;
140
141 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
142 if (ret) {
143 drm_gem_object_unreference_unlocked(obj);
673a394b 144 return ret;
1dfd9754 145 }
673a394b 146
1dfd9754
CW
147 /* Sink the floating reference from kref_init(handlecount) */
148 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 149
1dfd9754 150 args->handle = handle;
673a394b
EA
151 return 0;
152}
153
eb01459f
EA
154static inline int
155fast_shmem_read(struct page **pages,
156 loff_t page_base, int page_offset,
157 char __user *data,
158 int length)
159{
160 char __iomem *vaddr;
2bc43b5c 161 int unwritten;
eb01459f
EA
162
163 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
164 if (vaddr == NULL)
165 return -ENOMEM;
2bc43b5c 166 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
167 kunmap_atomic(vaddr, KM_USER0);
168
2bc43b5c
FM
169 if (unwritten)
170 return -EFAULT;
171
172 return 0;
eb01459f
EA
173}
174
280b713b
EA
175static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
176{
177 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 178 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
179
180 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
181 obj_priv->tiling_mode != I915_TILING_NONE;
182}
183
99a03df5 184static inline void
40123c1f
EA
185slow_shmem_copy(struct page *dst_page,
186 int dst_offset,
187 struct page *src_page,
188 int src_offset,
189 int length)
190{
191 char *dst_vaddr, *src_vaddr;
192
99a03df5
CW
193 dst_vaddr = kmap(dst_page);
194 src_vaddr = kmap(src_page);
40123c1f
EA
195
196 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
197
99a03df5
CW
198 kunmap(src_page);
199 kunmap(dst_page);
40123c1f
EA
200}
201
99a03df5 202static inline void
280b713b
EA
203slow_shmem_bit17_copy(struct page *gpu_page,
204 int gpu_offset,
205 struct page *cpu_page,
206 int cpu_offset,
207 int length,
208 int is_read)
209{
210 char *gpu_vaddr, *cpu_vaddr;
211
212 /* Use the unswizzled path if this page isn't affected. */
213 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
214 if (is_read)
215 return slow_shmem_copy(cpu_page, cpu_offset,
216 gpu_page, gpu_offset, length);
217 else
218 return slow_shmem_copy(gpu_page, gpu_offset,
219 cpu_page, cpu_offset, length);
220 }
221
99a03df5
CW
222 gpu_vaddr = kmap(gpu_page);
223 cpu_vaddr = kmap(cpu_page);
280b713b
EA
224
225 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
226 * XORing with the other bits (A9 for Y, A9 and A10 for X)
227 */
228 while (length > 0) {
229 int cacheline_end = ALIGN(gpu_offset + 1, 64);
230 int this_length = min(cacheline_end - gpu_offset, length);
231 int swizzled_gpu_offset = gpu_offset ^ 64;
232
233 if (is_read) {
234 memcpy(cpu_vaddr + cpu_offset,
235 gpu_vaddr + swizzled_gpu_offset,
236 this_length);
237 } else {
238 memcpy(gpu_vaddr + swizzled_gpu_offset,
239 cpu_vaddr + cpu_offset,
240 this_length);
241 }
242 cpu_offset += this_length;
243 gpu_offset += this_length;
244 length -= this_length;
245 }
246
99a03df5
CW
247 kunmap(cpu_page);
248 kunmap(gpu_page);
280b713b
EA
249}
250
eb01459f
EA
251/**
252 * This is the fast shmem pread path, which attempts to copy_from_user directly
253 * from the backing pages of the object to the user's address space. On a
254 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255 */
256static int
257i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
260{
23010e43 261 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
262 ssize_t remain;
263 loff_t offset, page_base;
264 char __user *user_data;
265 int page_offset, page_length;
266 int ret;
267
268 user_data = (char __user *) (uintptr_t) args->data_ptr;
269 remain = args->size;
270
271 mutex_lock(&dev->struct_mutex);
272
4bdadb97 273 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
274 if (ret != 0)
275 goto fail_unlock;
276
277 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278 args->size);
279 if (ret != 0)
280 goto fail_put_pages;
281
23010e43 282 obj_priv = to_intel_bo(obj);
eb01459f
EA
283 offset = args->offset;
284
285 while (remain > 0) {
286 /* Operation in this page
287 *
288 * page_base = page offset within aperture
289 * page_offset = offset within page
290 * page_length = bytes to copy for this page
291 */
292 page_base = (offset & ~(PAGE_SIZE-1));
293 page_offset = offset & (PAGE_SIZE-1);
294 page_length = remain;
295 if ((page_offset + remain) > PAGE_SIZE)
296 page_length = PAGE_SIZE - page_offset;
297
298 ret = fast_shmem_read(obj_priv->pages,
299 page_base, page_offset,
300 user_data, page_length);
301 if (ret)
302 goto fail_put_pages;
303
304 remain -= page_length;
305 user_data += page_length;
306 offset += page_length;
307 }
308
309fail_put_pages:
310 i915_gem_object_put_pages(obj);
311fail_unlock:
312 mutex_unlock(&dev->struct_mutex);
313
314 return ret;
315}
316
07f73f69
CW
317static int
318i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
319{
320 int ret;
321
4bdadb97 322 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
323
324 /* If we've insufficient memory to map in the pages, attempt
325 * to make some space by throwing out some old buffers.
326 */
327 if (ret == -ENOMEM) {
328 struct drm_device *dev = obj->dev;
07f73f69 329
0108a3ed
DV
330 ret = i915_gem_evict_something(dev, obj->size,
331 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
332 if (ret)
333 return ret;
334
4bdadb97 335 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
336 }
337
338 return ret;
339}
340
eb01459f
EA
341/**
342 * This is the fallback shmem pread path, which allocates temporary storage
343 * in kernel space to copy_to_user into outside of the struct_mutex, so we
344 * can copy out of the object's backing pages while holding the struct mutex
345 * and not take page faults.
346 */
347static int
348i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
349 struct drm_i915_gem_pread *args,
350 struct drm_file *file_priv)
351{
23010e43 352 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
353 struct mm_struct *mm = current->mm;
354 struct page **user_pages;
355 ssize_t remain;
356 loff_t offset, pinned_pages, i;
357 loff_t first_data_page, last_data_page, num_pages;
358 int shmem_page_index, shmem_page_offset;
359 int data_page_index, data_page_offset;
360 int page_length;
361 int ret;
362 uint64_t data_ptr = args->data_ptr;
280b713b 363 int do_bit17_swizzling;
eb01459f
EA
364
365 remain = args->size;
366
367 /* Pin the user pages containing the data. We can't fault while
368 * holding the struct mutex, yet we want to hold it while
369 * dereferencing the user data.
370 */
371 first_data_page = data_ptr / PAGE_SIZE;
372 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
373 num_pages = last_data_page - first_data_page + 1;
374
8e7d2b2c 375 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
376 if (user_pages == NULL)
377 return -ENOMEM;
378
379 down_read(&mm->mmap_sem);
380 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 381 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
382 up_read(&mm->mmap_sem);
383 if (pinned_pages < num_pages) {
384 ret = -EFAULT;
385 goto fail_put_user_pages;
386 }
387
280b713b
EA
388 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
389
eb01459f
EA
390 mutex_lock(&dev->struct_mutex);
391
07f73f69
CW
392 ret = i915_gem_object_get_pages_or_evict(obj);
393 if (ret)
eb01459f
EA
394 goto fail_unlock;
395
396 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
397 args->size);
398 if (ret != 0)
399 goto fail_put_pages;
400
23010e43 401 obj_priv = to_intel_bo(obj);
eb01459f
EA
402 offset = args->offset;
403
404 while (remain > 0) {
405 /* Operation in this page
406 *
407 * shmem_page_index = page number within shmem file
408 * shmem_page_offset = offset within page in shmem file
409 * data_page_index = page number in get_user_pages return
410 * data_page_offset = offset with data_page_index page.
411 * page_length = bytes to copy for this page
412 */
413 shmem_page_index = offset / PAGE_SIZE;
414 shmem_page_offset = offset & ~PAGE_MASK;
415 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
416 data_page_offset = data_ptr & ~PAGE_MASK;
417
418 page_length = remain;
419 if ((shmem_page_offset + page_length) > PAGE_SIZE)
420 page_length = PAGE_SIZE - shmem_page_offset;
421 if ((data_page_offset + page_length) > PAGE_SIZE)
422 page_length = PAGE_SIZE - data_page_offset;
423
280b713b 424 if (do_bit17_swizzling) {
99a03df5 425 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 426 shmem_page_offset,
99a03df5
CW
427 user_pages[data_page_index],
428 data_page_offset,
429 page_length,
430 1);
431 } else {
432 slow_shmem_copy(user_pages[data_page_index],
433 data_page_offset,
434 obj_priv->pages[shmem_page_index],
435 shmem_page_offset,
436 page_length);
280b713b 437 }
eb01459f
EA
438
439 remain -= page_length;
440 data_ptr += page_length;
441 offset += page_length;
442 }
443
444fail_put_pages:
445 i915_gem_object_put_pages(obj);
446fail_unlock:
447 mutex_unlock(&dev->struct_mutex);
448fail_put_user_pages:
449 for (i = 0; i < pinned_pages; i++) {
450 SetPageDirty(user_pages[i]);
451 page_cache_release(user_pages[i]);
452 }
8e7d2b2c 453 drm_free_large(user_pages);
eb01459f
EA
454
455 return ret;
456}
457
673a394b
EA
458/**
459 * Reads data from the object referenced by handle.
460 *
461 * On error, the contents of *data are undefined.
462 */
463int
464i915_gem_pread_ioctl(struct drm_device *dev, void *data,
465 struct drm_file *file_priv)
466{
467 struct drm_i915_gem_pread *args = data;
468 struct drm_gem_object *obj;
469 struct drm_i915_gem_object *obj_priv;
673a394b
EA
470 int ret;
471
472 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
473 if (obj == NULL)
bf79cb91 474 return -ENOENT;
23010e43 475 obj_priv = to_intel_bo(obj);
673a394b
EA
476
477 /* Bounds check source.
478 *
479 * XXX: This could use review for overflow issues...
480 */
481 if (args->offset > obj->size || args->size > obj->size ||
482 args->offset + args->size > obj->size) {
bc9025bd 483 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
484 return -EINVAL;
485 }
486
280b713b 487 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 488 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
489 } else {
490 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
491 if (ret != 0)
492 ret = i915_gem_shmem_pread_slow(dev, obj, args,
493 file_priv);
494 }
673a394b 495
bc9025bd 496 drm_gem_object_unreference_unlocked(obj);
673a394b 497
eb01459f 498 return ret;
673a394b
EA
499}
500
0839ccb8
KP
501/* This is the fast write path which cannot handle
502 * page faults in the source data
9b7530cc 503 */
0839ccb8
KP
504
505static inline int
506fast_user_write(struct io_mapping *mapping,
507 loff_t page_base, int page_offset,
508 char __user *user_data,
509 int length)
9b7530cc 510{
9b7530cc 511 char *vaddr_atomic;
0839ccb8 512 unsigned long unwritten;
9b7530cc 513
fca3ec01 514 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
515 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
516 user_data, length);
fca3ec01 517 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
518 if (unwritten)
519 return -EFAULT;
520 return 0;
521}
522
523/* Here's the write path which can sleep for
524 * page faults
525 */
526
ab34c226 527static inline void
3de09aa3
EA
528slow_kernel_write(struct io_mapping *mapping,
529 loff_t gtt_base, int gtt_offset,
530 struct page *user_page, int user_offset,
531 int length)
0839ccb8 532{
ab34c226
CW
533 char __iomem *dst_vaddr;
534 char *src_vaddr;
0839ccb8 535
ab34c226
CW
536 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
537 src_vaddr = kmap(user_page);
538
539 memcpy_toio(dst_vaddr + gtt_offset,
540 src_vaddr + user_offset,
541 length);
542
543 kunmap(user_page);
544 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
545}
546
40123c1f
EA
547static inline int
548fast_shmem_write(struct page **pages,
549 loff_t page_base, int page_offset,
550 char __user *data,
551 int length)
552{
553 char __iomem *vaddr;
d0088775 554 unsigned long unwritten;
40123c1f
EA
555
556 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
557 if (vaddr == NULL)
558 return -ENOMEM;
d0088775 559 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
560 kunmap_atomic(vaddr, KM_USER0);
561
d0088775
DA
562 if (unwritten)
563 return -EFAULT;
40123c1f
EA
564 return 0;
565}
566
3de09aa3
EA
567/**
568 * This is the fast pwrite path, where we copy the data directly from the
569 * user into the GTT, uncached.
570 */
673a394b 571static int
3de09aa3
EA
572i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
573 struct drm_i915_gem_pwrite *args,
574 struct drm_file *file_priv)
673a394b 575{
23010e43 576 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 577 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 578 ssize_t remain;
0839ccb8 579 loff_t offset, page_base;
673a394b 580 char __user *user_data;
0839ccb8
KP
581 int page_offset, page_length;
582 int ret;
673a394b
EA
583
584 user_data = (char __user *) (uintptr_t) args->data_ptr;
585 remain = args->size;
586 if (!access_ok(VERIFY_READ, user_data, remain))
587 return -EFAULT;
588
589
590 mutex_lock(&dev->struct_mutex);
591 ret = i915_gem_object_pin(obj, 0);
592 if (ret) {
593 mutex_unlock(&dev->struct_mutex);
594 return ret;
595 }
2ef7eeaa 596 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
597 if (ret)
598 goto fail;
599
23010e43 600 obj_priv = to_intel_bo(obj);
673a394b 601 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
602
603 while (remain > 0) {
604 /* Operation in this page
605 *
0839ccb8
KP
606 * page_base = page offset within aperture
607 * page_offset = offset within page
608 * page_length = bytes to copy for this page
673a394b 609 */
0839ccb8
KP
610 page_base = (offset & ~(PAGE_SIZE-1));
611 page_offset = offset & (PAGE_SIZE-1);
612 page_length = remain;
613 if ((page_offset + remain) > PAGE_SIZE)
614 page_length = PAGE_SIZE - page_offset;
615
616 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
617 page_offset, user_data, page_length);
618
619 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
620 * source page isn't available. Return the error and we'll
621 * retry in the slow path.
0839ccb8 622 */
3de09aa3
EA
623 if (ret)
624 goto fail;
673a394b 625
0839ccb8
KP
626 remain -= page_length;
627 user_data += page_length;
628 offset += page_length;
673a394b 629 }
673a394b
EA
630
631fail:
632 i915_gem_object_unpin(obj);
633 mutex_unlock(&dev->struct_mutex);
634
635 return ret;
636}
637
3de09aa3
EA
638/**
639 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
640 * the memory and maps it using kmap_atomic for copying.
641 *
642 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
643 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
644 */
3043c60c 645static int
3de09aa3
EA
646i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
647 struct drm_i915_gem_pwrite *args,
648 struct drm_file *file_priv)
673a394b 649{
23010e43 650 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
651 drm_i915_private_t *dev_priv = dev->dev_private;
652 ssize_t remain;
653 loff_t gtt_page_base, offset;
654 loff_t first_data_page, last_data_page, num_pages;
655 loff_t pinned_pages, i;
656 struct page **user_pages;
657 struct mm_struct *mm = current->mm;
658 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 659 int ret;
3de09aa3
EA
660 uint64_t data_ptr = args->data_ptr;
661
662 remain = args->size;
663
664 /* Pin the user pages containing the data. We can't fault while
665 * holding the struct mutex, and all of the pwrite implementations
666 * want to hold it while dereferencing the user data.
667 */
668 first_data_page = data_ptr / PAGE_SIZE;
669 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
670 num_pages = last_data_page - first_data_page + 1;
671
8e7d2b2c 672 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
673 if (user_pages == NULL)
674 return -ENOMEM;
675
676 down_read(&mm->mmap_sem);
677 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
678 num_pages, 0, 0, user_pages, NULL);
679 up_read(&mm->mmap_sem);
680 if (pinned_pages < num_pages) {
681 ret = -EFAULT;
682 goto out_unpin_pages;
683 }
673a394b
EA
684
685 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
686 ret = i915_gem_object_pin(obj, 0);
687 if (ret)
688 goto out_unlock;
689
690 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
691 if (ret)
692 goto out_unpin_object;
693
23010e43 694 obj_priv = to_intel_bo(obj);
3de09aa3
EA
695 offset = obj_priv->gtt_offset + args->offset;
696
697 while (remain > 0) {
698 /* Operation in this page
699 *
700 * gtt_page_base = page offset within aperture
701 * gtt_page_offset = offset within page in aperture
702 * data_page_index = page number in get_user_pages return
703 * data_page_offset = offset with data_page_index page.
704 * page_length = bytes to copy for this page
705 */
706 gtt_page_base = offset & PAGE_MASK;
707 gtt_page_offset = offset & ~PAGE_MASK;
708 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
709 data_page_offset = data_ptr & ~PAGE_MASK;
710
711 page_length = remain;
712 if ((gtt_page_offset + page_length) > PAGE_SIZE)
713 page_length = PAGE_SIZE - gtt_page_offset;
714 if ((data_page_offset + page_length) > PAGE_SIZE)
715 page_length = PAGE_SIZE - data_page_offset;
716
ab34c226
CW
717 slow_kernel_write(dev_priv->mm.gtt_mapping,
718 gtt_page_base, gtt_page_offset,
719 user_pages[data_page_index],
720 data_page_offset,
721 page_length);
3de09aa3
EA
722
723 remain -= page_length;
724 offset += page_length;
725 data_ptr += page_length;
726 }
727
728out_unpin_object:
729 i915_gem_object_unpin(obj);
730out_unlock:
731 mutex_unlock(&dev->struct_mutex);
732out_unpin_pages:
733 for (i = 0; i < pinned_pages; i++)
734 page_cache_release(user_pages[i]);
8e7d2b2c 735 drm_free_large(user_pages);
3de09aa3
EA
736
737 return ret;
738}
739
40123c1f
EA
740/**
741 * This is the fast shmem pwrite path, which attempts to directly
742 * copy_from_user into the kmapped pages backing the object.
743 */
3043c60c 744static int
40123c1f
EA
745i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
746 struct drm_i915_gem_pwrite *args,
747 struct drm_file *file_priv)
673a394b 748{
23010e43 749 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
750 ssize_t remain;
751 loff_t offset, page_base;
752 char __user *user_data;
753 int page_offset, page_length;
673a394b 754 int ret;
40123c1f
EA
755
756 user_data = (char __user *) (uintptr_t) args->data_ptr;
757 remain = args->size;
673a394b
EA
758
759 mutex_lock(&dev->struct_mutex);
760
4bdadb97 761 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
762 if (ret != 0)
763 goto fail_unlock;
673a394b 764
e47c68e9 765 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
766 if (ret != 0)
767 goto fail_put_pages;
768
23010e43 769 obj_priv = to_intel_bo(obj);
40123c1f
EA
770 offset = args->offset;
771 obj_priv->dirty = 1;
772
773 while (remain > 0) {
774 /* Operation in this page
775 *
776 * page_base = page offset within aperture
777 * page_offset = offset within page
778 * page_length = bytes to copy for this page
779 */
780 page_base = (offset & ~(PAGE_SIZE-1));
781 page_offset = offset & (PAGE_SIZE-1);
782 page_length = remain;
783 if ((page_offset + remain) > PAGE_SIZE)
784 page_length = PAGE_SIZE - page_offset;
785
786 ret = fast_shmem_write(obj_priv->pages,
787 page_base, page_offset,
788 user_data, page_length);
789 if (ret)
790 goto fail_put_pages;
791
792 remain -= page_length;
793 user_data += page_length;
794 offset += page_length;
795 }
796
797fail_put_pages:
798 i915_gem_object_put_pages(obj);
799fail_unlock:
800 mutex_unlock(&dev->struct_mutex);
801
802 return ret;
803}
804
805/**
806 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
807 * the memory and maps it using kmap_atomic for copying.
808 *
809 * This avoids taking mmap_sem for faulting on the user's address while the
810 * struct_mutex is held.
811 */
812static int
813i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
814 struct drm_i915_gem_pwrite *args,
815 struct drm_file *file_priv)
816{
23010e43 817 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
818 struct mm_struct *mm = current->mm;
819 struct page **user_pages;
820 ssize_t remain;
821 loff_t offset, pinned_pages, i;
822 loff_t first_data_page, last_data_page, num_pages;
823 int shmem_page_index, shmem_page_offset;
824 int data_page_index, data_page_offset;
825 int page_length;
826 int ret;
827 uint64_t data_ptr = args->data_ptr;
280b713b 828 int do_bit17_swizzling;
40123c1f
EA
829
830 remain = args->size;
831
832 /* Pin the user pages containing the data. We can't fault while
833 * holding the struct mutex, and all of the pwrite implementations
834 * want to hold it while dereferencing the user data.
835 */
836 first_data_page = data_ptr / PAGE_SIZE;
837 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
838 num_pages = last_data_page - first_data_page + 1;
839
8e7d2b2c 840 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
841 if (user_pages == NULL)
842 return -ENOMEM;
843
844 down_read(&mm->mmap_sem);
845 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
846 num_pages, 0, 0, user_pages, NULL);
847 up_read(&mm->mmap_sem);
848 if (pinned_pages < num_pages) {
849 ret = -EFAULT;
850 goto fail_put_user_pages;
673a394b
EA
851 }
852
280b713b
EA
853 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
854
40123c1f
EA
855 mutex_lock(&dev->struct_mutex);
856
07f73f69
CW
857 ret = i915_gem_object_get_pages_or_evict(obj);
858 if (ret)
40123c1f
EA
859 goto fail_unlock;
860
861 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
862 if (ret != 0)
863 goto fail_put_pages;
864
23010e43 865 obj_priv = to_intel_bo(obj);
673a394b 866 offset = args->offset;
40123c1f 867 obj_priv->dirty = 1;
673a394b 868
40123c1f
EA
869 while (remain > 0) {
870 /* Operation in this page
871 *
872 * shmem_page_index = page number within shmem file
873 * shmem_page_offset = offset within page in shmem file
874 * data_page_index = page number in get_user_pages return
875 * data_page_offset = offset with data_page_index page.
876 * page_length = bytes to copy for this page
877 */
878 shmem_page_index = offset / PAGE_SIZE;
879 shmem_page_offset = offset & ~PAGE_MASK;
880 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
881 data_page_offset = data_ptr & ~PAGE_MASK;
882
883 page_length = remain;
884 if ((shmem_page_offset + page_length) > PAGE_SIZE)
885 page_length = PAGE_SIZE - shmem_page_offset;
886 if ((data_page_offset + page_length) > PAGE_SIZE)
887 page_length = PAGE_SIZE - data_page_offset;
888
280b713b 889 if (do_bit17_swizzling) {
99a03df5 890 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
99a03df5
CW
894 page_length,
895 0);
896 } else {
897 slow_shmem_copy(obj_priv->pages[shmem_page_index],
898 shmem_page_offset,
899 user_pages[data_page_index],
900 data_page_offset,
901 page_length);
280b713b 902 }
40123c1f
EA
903
904 remain -= page_length;
905 data_ptr += page_length;
906 offset += page_length;
673a394b
EA
907 }
908
40123c1f
EA
909fail_put_pages:
910 i915_gem_object_put_pages(obj);
911fail_unlock:
673a394b 912 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
913fail_put_user_pages:
914 for (i = 0; i < pinned_pages; i++)
915 page_cache_release(user_pages[i]);
8e7d2b2c 916 drm_free_large(user_pages);
673a394b 917
40123c1f 918 return ret;
673a394b
EA
919}
920
921/**
922 * Writes data to the object referenced by handle.
923 *
924 * On error, the contents of the buffer that were to be modified are undefined.
925 */
926int
927i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
928 struct drm_file *file_priv)
929{
930 struct drm_i915_gem_pwrite *args = data;
931 struct drm_gem_object *obj;
932 struct drm_i915_gem_object *obj_priv;
933 int ret = 0;
934
935 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
936 if (obj == NULL)
bf79cb91 937 return -ENOENT;
23010e43 938 obj_priv = to_intel_bo(obj);
673a394b
EA
939
940 /* Bounds check destination.
941 *
942 * XXX: This could use review for overflow issues...
943 */
944 if (args->offset > obj->size || args->size > obj->size ||
945 args->offset + args->size > obj->size) {
bc9025bd 946 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
947 return -EINVAL;
948 }
949
950 /* We can only do the GTT pwrite on untiled buffers, as otherwise
951 * it would end up going through the fenced access, and we'll get
952 * different detiling behavior between reading and writing.
953 * pread/pwrite currently are reading and writing from the CPU
954 * perspective, requiring manual detiling by the client.
955 */
71acb5eb
DA
956 if (obj_priv->phys_obj)
957 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
958 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
959 dev->gtt_total != 0 &&
960 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
961 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
962 if (ret == -EFAULT) {
963 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
964 file_priv);
965 }
280b713b
EA
966 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
967 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
968 } else {
969 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
970 if (ret == -EFAULT) {
971 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
972 file_priv);
973 }
974 }
673a394b
EA
975
976#if WATCH_PWRITE
977 if (ret)
978 DRM_INFO("pwrite failed %d\n", ret);
979#endif
980
bc9025bd 981 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
982
983 return ret;
984}
985
986/**
2ef7eeaa
EA
987 * Called when user space prepares to use an object with the CPU, either
988 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
989 */
990int
991i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
992 struct drm_file *file_priv)
993{
a09ba7fa 994 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
995 struct drm_i915_gem_set_domain *args = data;
996 struct drm_gem_object *obj;
652c393a 997 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
998 uint32_t read_domains = args->read_domains;
999 uint32_t write_domain = args->write_domain;
673a394b
EA
1000 int ret;
1001
1002 if (!(dev->driver->driver_features & DRIVER_GEM))
1003 return -ENODEV;
1004
2ef7eeaa 1005 /* Only handle setting domains to types used by the CPU. */
21d509e3 1006 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1007 return -EINVAL;
1008
21d509e3 1009 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1010 return -EINVAL;
1011
1012 /* Having something in the write domain implies it's in the read
1013 * domain, and only that read domain. Enforce that in the request.
1014 */
1015 if (write_domain != 0 && read_domains != write_domain)
1016 return -EINVAL;
1017
673a394b
EA
1018 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1019 if (obj == NULL)
bf79cb91 1020 return -ENOENT;
23010e43 1021 obj_priv = to_intel_bo(obj);
673a394b
EA
1022
1023 mutex_lock(&dev->struct_mutex);
652c393a
JB
1024
1025 intel_mark_busy(dev, obj);
1026
673a394b 1027#if WATCH_BUF
cfd43c02 1028 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1029 obj, obj->size, read_domains, write_domain);
673a394b 1030#endif
2ef7eeaa
EA
1031 if (read_domains & I915_GEM_DOMAIN_GTT) {
1032 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1033
a09ba7fa
EA
1034 /* Update the LRU on the fence for the CPU access that's
1035 * about to occur.
1036 */
1037 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1038 struct drm_i915_fence_reg *reg =
1039 &dev_priv->fence_regs[obj_priv->fence_reg];
1040 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1041 &dev_priv->mm.fence_list);
1042 }
1043
02354392
EA
1044 /* Silently promote "you're not bound, there was nothing to do"
1045 * to success, since the client was just asking us to
1046 * make sure everything was done.
1047 */
1048 if (ret == -EINVAL)
1049 ret = 0;
2ef7eeaa 1050 } else {
e47c68e9 1051 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1052 }
1053
7d1c4804
CW
1054 /* Maintain LRU order of "inactive" objects */
1055 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1056 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1057
673a394b
EA
1058 drm_gem_object_unreference(obj);
1059 mutex_unlock(&dev->struct_mutex);
1060 return ret;
1061}
1062
1063/**
1064 * Called when user space has done writes to this buffer
1065 */
1066int
1067i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1068 struct drm_file *file_priv)
1069{
1070 struct drm_i915_gem_sw_finish *args = data;
1071 struct drm_gem_object *obj;
1072 struct drm_i915_gem_object *obj_priv;
1073 int ret = 0;
1074
1075 if (!(dev->driver->driver_features & DRIVER_GEM))
1076 return -ENODEV;
1077
1078 mutex_lock(&dev->struct_mutex);
1079 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1080 if (obj == NULL) {
1081 mutex_unlock(&dev->struct_mutex);
bf79cb91 1082 return -ENOENT;
673a394b
EA
1083 }
1084
1085#if WATCH_BUF
cfd43c02 1086 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1087 __func__, args->handle, obj, obj->size);
1088#endif
23010e43 1089 obj_priv = to_intel_bo(obj);
673a394b
EA
1090
1091 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1092 if (obj_priv->pin_count)
1093 i915_gem_object_flush_cpu_write_domain(obj);
1094
673a394b
EA
1095 drm_gem_object_unreference(obj);
1096 mutex_unlock(&dev->struct_mutex);
1097 return ret;
1098}
1099
1100/**
1101 * Maps the contents of an object, returning the address it is mapped
1102 * into.
1103 *
1104 * While the mapping holds a reference on the contents of the object, it doesn't
1105 * imply a ref on the object itself.
1106 */
1107int
1108i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1109 struct drm_file *file_priv)
1110{
1111 struct drm_i915_gem_mmap *args = data;
1112 struct drm_gem_object *obj;
1113 loff_t offset;
1114 unsigned long addr;
1115
1116 if (!(dev->driver->driver_features & DRIVER_GEM))
1117 return -ENODEV;
1118
1119 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1120 if (obj == NULL)
bf79cb91 1121 return -ENOENT;
673a394b
EA
1122
1123 offset = args->offset;
1124
1125 down_write(&current->mm->mmap_sem);
1126 addr = do_mmap(obj->filp, 0, args->size,
1127 PROT_READ | PROT_WRITE, MAP_SHARED,
1128 args->offset);
1129 up_write(&current->mm->mmap_sem);
bc9025bd 1130 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1131 if (IS_ERR((void *)addr))
1132 return addr;
1133
1134 args->addr_ptr = (uint64_t) addr;
1135
1136 return 0;
1137}
1138
de151cf6
JB
1139/**
1140 * i915_gem_fault - fault a page into the GTT
1141 * vma: VMA in question
1142 * vmf: fault info
1143 *
1144 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1145 * from userspace. The fault handler takes care of binding the object to
1146 * the GTT (if needed), allocating and programming a fence register (again,
1147 * only if needed based on whether the old reg is still valid or the object
1148 * is tiled) and inserting a new PTE into the faulting process.
1149 *
1150 * Note that the faulting process may involve evicting existing objects
1151 * from the GTT and/or fence registers to make room. So performance may
1152 * suffer if the GTT working set is large or there are few fence registers
1153 * left.
1154 */
1155int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1156{
1157 struct drm_gem_object *obj = vma->vm_private_data;
1158 struct drm_device *dev = obj->dev;
7d1c4804 1159 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1160 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1161 pgoff_t page_offset;
1162 unsigned long pfn;
1163 int ret = 0;
0f973f27 1164 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1165
1166 /* We don't use vmf->pgoff since that has the fake offset */
1167 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1168 PAGE_SHIFT;
1169
1170 /* Now bind it into the GTT if needed */
1171 mutex_lock(&dev->struct_mutex);
1172 if (!obj_priv->gtt_space) {
e67b8ce1 1173 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1174 if (ret)
1175 goto unlock;
07f4f3e8 1176
07f4f3e8 1177 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1178 if (ret)
1179 goto unlock;
de151cf6
JB
1180 }
1181
1182 /* Need a new fence register? */
a09ba7fa 1183 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1184 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1185 if (ret)
1186 goto unlock;
d9ddcb96 1187 }
de151cf6 1188
7d1c4804
CW
1189 if (i915_gem_object_is_inactive(obj_priv))
1190 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1191
de151cf6
JB
1192 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1193 page_offset;
1194
1195 /* Finally, remap it using the new GTT offset */
1196 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1197unlock:
de151cf6
JB
1198 mutex_unlock(&dev->struct_mutex);
1199
1200 switch (ret) {
c715089f
CW
1201 case 0:
1202 case -ERESTARTSYS:
1203 return VM_FAULT_NOPAGE;
de151cf6
JB
1204 case -ENOMEM:
1205 case -EAGAIN:
1206 return VM_FAULT_OOM;
de151cf6 1207 default:
c715089f 1208 return VM_FAULT_SIGBUS;
de151cf6
JB
1209 }
1210}
1211
1212/**
1213 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1214 * @obj: obj in question
1215 *
1216 * GEM memory mapping works by handing back to userspace a fake mmap offset
1217 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1218 * up the object based on the offset and sets up the various memory mapping
1219 * structures.
1220 *
1221 * This routine allocates and attaches a fake offset for @obj.
1222 */
1223static int
1224i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1225{
1226 struct drm_device *dev = obj->dev;
1227 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1228 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1229 struct drm_map_list *list;
f77d390c 1230 struct drm_local_map *map;
de151cf6
JB
1231 int ret = 0;
1232
1233 /* Set the object up for mmap'ing */
1234 list = &obj->map_list;
9a298b2a 1235 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1236 if (!list->map)
1237 return -ENOMEM;
1238
1239 map = list->map;
1240 map->type = _DRM_GEM;
1241 map->size = obj->size;
1242 map->handle = obj;
1243
1244 /* Get a DRM GEM mmap offset allocated... */
1245 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1246 obj->size / PAGE_SIZE, 0, 0);
1247 if (!list->file_offset_node) {
1248 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1249 ret = -ENOSPC;
de151cf6
JB
1250 goto out_free_list;
1251 }
1252
1253 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1254 obj->size / PAGE_SIZE, 0);
1255 if (!list->file_offset_node) {
1256 ret = -ENOMEM;
1257 goto out_free_list;
1258 }
1259
1260 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1261 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1262 if (ret) {
de151cf6
JB
1263 DRM_ERROR("failed to add to map hash\n");
1264 goto out_free_mm;
1265 }
1266
1267 /* By now we should be all set, any drm_mmap request on the offset
1268 * below will get to our mmap & fault handler */
1269 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1270
1271 return 0;
1272
1273out_free_mm:
1274 drm_mm_put_block(list->file_offset_node);
1275out_free_list:
9a298b2a 1276 kfree(list->map);
de151cf6
JB
1277
1278 return ret;
1279}
1280
901782b2
CW
1281/**
1282 * i915_gem_release_mmap - remove physical page mappings
1283 * @obj: obj in question
1284 *
af901ca1 1285 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1286 * relinquish ownership of the pages back to the system.
1287 *
1288 * It is vital that we remove the page mapping if we have mapped a tiled
1289 * object through the GTT and then lose the fence register due to
1290 * resource pressure. Similarly if the object has been moved out of the
1291 * aperture, than pages mapped into userspace must be revoked. Removing the
1292 * mapping will then trigger a page fault on the next user access, allowing
1293 * fixup by i915_gem_fault().
1294 */
d05ca301 1295void
901782b2
CW
1296i915_gem_release_mmap(struct drm_gem_object *obj)
1297{
1298 struct drm_device *dev = obj->dev;
23010e43 1299 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1300
1301 if (dev->dev_mapping)
1302 unmap_mapping_range(dev->dev_mapping,
1303 obj_priv->mmap_offset, obj->size, 1);
1304}
1305
ab00b3e5
JB
1306static void
1307i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1308{
1309 struct drm_device *dev = obj->dev;
23010e43 1310 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1311 struct drm_gem_mm *mm = dev->mm_private;
1312 struct drm_map_list *list;
1313
1314 list = &obj->map_list;
1315 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1316
1317 if (list->file_offset_node) {
1318 drm_mm_put_block(list->file_offset_node);
1319 list->file_offset_node = NULL;
1320 }
1321
1322 if (list->map) {
9a298b2a 1323 kfree(list->map);
ab00b3e5
JB
1324 list->map = NULL;
1325 }
1326
1327 obj_priv->mmap_offset = 0;
1328}
1329
de151cf6
JB
1330/**
1331 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1332 * @obj: object to check
1333 *
1334 * Return the required GTT alignment for an object, taking into account
1335 * potential fence register mapping if needed.
1336 */
1337static uint32_t
1338i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1339{
1340 struct drm_device *dev = obj->dev;
23010e43 1341 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1342 int start, i;
1343
1344 /*
1345 * Minimum alignment is 4k (GTT page size), but might be greater
1346 * if a fence register is needed for the object.
1347 */
a6c45cf0 1348 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1349 return 4096;
1350
1351 /*
1352 * Previous chips need to be aligned to the size of the smallest
1353 * fence register that can contain the object.
1354 */
a6c45cf0 1355 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1356 start = 1024*1024;
1357 else
1358 start = 512*1024;
1359
1360 for (i = start; i < obj->size; i <<= 1)
1361 ;
1362
1363 return i;
1364}
1365
1366/**
1367 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1368 * @dev: DRM device
1369 * @data: GTT mapping ioctl data
1370 * @file_priv: GEM object info
1371 *
1372 * Simply returns the fake offset to userspace so it can mmap it.
1373 * The mmap call will end up in drm_gem_mmap(), which will set things
1374 * up so we can get faults in the handler above.
1375 *
1376 * The fault handler will take care of binding the object into the GTT
1377 * (since it may have been evicted to make room for something), allocating
1378 * a fence register, and mapping the appropriate aperture address into
1379 * userspace.
1380 */
1381int
1382i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1383 struct drm_file *file_priv)
1384{
1385 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1386 struct drm_gem_object *obj;
1387 struct drm_i915_gem_object *obj_priv;
1388 int ret;
1389
1390 if (!(dev->driver->driver_features & DRIVER_GEM))
1391 return -ENODEV;
1392
1393 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1394 if (obj == NULL)
bf79cb91 1395 return -ENOENT;
de151cf6
JB
1396
1397 mutex_lock(&dev->struct_mutex);
1398
23010e43 1399 obj_priv = to_intel_bo(obj);
de151cf6 1400
ab18282d
CW
1401 if (obj_priv->madv != I915_MADV_WILLNEED) {
1402 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1403 drm_gem_object_unreference(obj);
1404 mutex_unlock(&dev->struct_mutex);
1405 return -EINVAL;
1406 }
1407
1408
de151cf6
JB
1409 if (!obj_priv->mmap_offset) {
1410 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1411 if (ret) {
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
de151cf6 1414 return ret;
13af1062 1415 }
de151cf6
JB
1416 }
1417
1418 args->offset = obj_priv->mmap_offset;
1419
de151cf6
JB
1420 /*
1421 * Pull it into the GTT so that we have a page list (makes the
1422 * initial fault faster and any subsequent flushing possible).
1423 */
1424 if (!obj_priv->agp_mem) {
e67b8ce1 1425 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1426 if (ret) {
1427 drm_gem_object_unreference(obj);
1428 mutex_unlock(&dev->struct_mutex);
1429 return ret;
1430 }
de151cf6
JB
1431 }
1432
1433 drm_gem_object_unreference(obj);
1434 mutex_unlock(&dev->struct_mutex);
1435
1436 return 0;
1437}
1438
6911a9b8 1439void
856fa198 1440i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1441{
23010e43 1442 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1443 int page_count = obj->size / PAGE_SIZE;
1444 int i;
1445
856fa198 1446 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1447 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1448
856fa198
EA
1449 if (--obj_priv->pages_refcount != 0)
1450 return;
673a394b 1451
280b713b
EA
1452 if (obj_priv->tiling_mode != I915_TILING_NONE)
1453 i915_gem_object_save_bit_17_swizzle(obj);
1454
3ef94daa 1455 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1456 obj_priv->dirty = 0;
3ef94daa
CW
1457
1458 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1459 if (obj_priv->dirty)
1460 set_page_dirty(obj_priv->pages[i]);
1461
1462 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1463 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1464
1465 page_cache_release(obj_priv->pages[i]);
1466 }
673a394b
EA
1467 obj_priv->dirty = 0;
1468
8e7d2b2c 1469 drm_free_large(obj_priv->pages);
856fa198 1470 obj_priv->pages = NULL;
673a394b
EA
1471}
1472
1473static void
617dbe27 1474i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1475 struct intel_ring_buffer *ring)
673a394b 1476{
5c12a07e 1477 struct drm_i915_private *dev_priv = obj->dev->dev_private;
23010e43 1478 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
617dbe27 1479
852835f3
ZN
1480 BUG_ON(ring == NULL);
1481 obj_priv->ring = ring;
673a394b
EA
1482
1483 /* Add a reference if we're newly entering the active list. */
1484 if (!obj_priv->active) {
1485 drm_gem_object_reference(obj);
1486 obj_priv->active = 1;
1487 }
e35a41de 1488
673a394b 1489 /* Move from whatever list we were on to the tail of execution. */
852835f3 1490 list_move_tail(&obj_priv->list, &ring->active_list);
5c12a07e 1491 obj_priv->last_rendering_seqno = dev_priv->next_seqno;
673a394b
EA
1492}
1493
ce44b0ea
EA
1494static void
1495i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1496{
1497 struct drm_device *dev = obj->dev;
1498 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1499 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1500
1501 BUG_ON(!obj_priv->active);
1502 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1503 obj_priv->last_rendering_seqno = 0;
1504}
673a394b 1505
963b4836
CW
1506/* Immediately discard the backing storage */
1507static void
1508i915_gem_object_truncate(struct drm_gem_object *obj)
1509{
23010e43 1510 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1511 struct inode *inode;
963b4836 1512
ae9fed6b
CW
1513 /* Our goal here is to return as much of the memory as
1514 * is possible back to the system as we are called from OOM.
1515 * To do this we must instruct the shmfs to drop all of its
1516 * backing pages, *now*. Here we mirror the actions taken
1517 * when by shmem_delete_inode() to release the backing store.
1518 */
bb6baf76 1519 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1520 truncate_inode_pages(inode->i_mapping, 0);
1521 if (inode->i_op->truncate_range)
1522 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1523
1524 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1525}
1526
1527static inline int
1528i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1529{
1530 return obj_priv->madv == I915_MADV_DONTNEED;
1531}
1532
673a394b
EA
1533static void
1534i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1535{
1536 struct drm_device *dev = obj->dev;
1537 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1538 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1539
1540 i915_verify_inactive(dev, __FILE__, __LINE__);
1541 if (obj_priv->pin_count != 0)
f13d3f73 1542 list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
673a394b
EA
1543 else
1544 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1545
99fcb766
DV
1546 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1547
ce44b0ea 1548 obj_priv->last_rendering_seqno = 0;
852835f3 1549 obj_priv->ring = NULL;
673a394b
EA
1550 if (obj_priv->active) {
1551 obj_priv->active = 0;
1552 drm_gem_object_unreference(obj);
1553 }
1554 i915_verify_inactive(dev, __FILE__, __LINE__);
1555}
1556
9220434a 1557static void
63560396 1558i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1559 uint32_t flush_domains,
852835f3 1560 struct intel_ring_buffer *ring)
63560396
DV
1561{
1562 drm_i915_private_t *dev_priv = dev->dev_private;
1563 struct drm_i915_gem_object *obj_priv, *next;
1564
1565 list_for_each_entry_safe(obj_priv, next,
1566 &dev_priv->mm.gpu_write_list,
1567 gpu_write_list) {
a8089e84 1568 struct drm_gem_object *obj = &obj_priv->base;
63560396 1569
2b6efaa4
CW
1570 if (obj->write_domain & flush_domains &&
1571 obj_priv->ring == ring) {
63560396
DV
1572 uint32_t old_write_domain = obj->write_domain;
1573
1574 obj->write_domain = 0;
1575 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1576 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1577
1578 /* update the fence lru list */
007cc8ac
DV
1579 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1580 struct drm_i915_fence_reg *reg =
1581 &dev_priv->fence_regs[obj_priv->fence_reg];
1582 list_move_tail(&reg->lru_list,
63560396 1583 &dev_priv->mm.fence_list);
007cc8ac 1584 }
63560396
DV
1585
1586 trace_i915_gem_object_change_domain(obj,
1587 obj->read_domains,
1588 old_write_domain);
1589 }
1590 }
1591}
8187a2b7 1592
5a5a0c64 1593uint32_t
8a1a49f9 1594i915_add_request(struct drm_device *dev,
f787a5f5 1595 struct drm_file *file,
8dc5d147 1596 struct drm_i915_gem_request *request,
8a1a49f9 1597 struct intel_ring_buffer *ring)
673a394b
EA
1598{
1599 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1600 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1601 uint32_t seqno;
1602 int was_empty;
673a394b 1603
f787a5f5
CW
1604 if (file != NULL)
1605 file_priv = file->driver_priv;
b962442e 1606
8dc5d147
CW
1607 if (request == NULL) {
1608 request = kzalloc(sizeof(*request), GFP_KERNEL);
1609 if (request == NULL)
1610 return 0;
1611 }
673a394b 1612
f787a5f5 1613 seqno = ring->add_request(dev, ring, 0);
673a394b
EA
1614
1615 request->seqno = seqno;
852835f3 1616 request->ring = ring;
673a394b 1617 request->emitted_jiffies = jiffies;
852835f3
ZN
1618 was_empty = list_empty(&ring->request_list);
1619 list_add_tail(&request->list, &ring->request_list);
1620
f787a5f5
CW
1621 if (file_priv) {
1622 mutex_lock(&file_priv->mutex);
1623 request->file_priv = file_priv;
b962442e 1624 list_add_tail(&request->client_list,
f787a5f5
CW
1625 &file_priv->mm.request_list);
1626 mutex_unlock(&file_priv->mutex);
b962442e 1627 }
673a394b 1628
f65d9421 1629 if (!dev_priv->mm.suspended) {
b3b079db
CW
1630 mod_timer(&dev_priv->hangcheck_timer,
1631 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1632 if (was_empty)
b3b079db
CW
1633 queue_delayed_work(dev_priv->wq,
1634 &dev_priv->mm.retire_work, HZ);
f65d9421 1635 }
673a394b
EA
1636 return seqno;
1637}
1638
1639/**
1640 * Command execution barrier
1641 *
1642 * Ensures that all commands in the ring are finished
1643 * before signalling the CPU
1644 */
8a1a49f9 1645static void
852835f3 1646i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1647{
673a394b 1648 uint32_t flush_domains = 0;
673a394b
EA
1649
1650 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1651 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1652 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1653
1654 ring->flush(dev, ring,
1655 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1656}
1657
f787a5f5
CW
1658static inline void
1659i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1660{
f787a5f5
CW
1661 if (request->file_priv) {
1662 mutex_lock(&request->file_priv->mutex);
1663 list_del(&request->client_list);
1664 mutex_unlock(&request->file_priv->mutex);
1665 }
673a394b
EA
1666}
1667
dfaae392
CW
1668static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1669 struct intel_ring_buffer *ring)
9375e446 1670{
dfaae392
CW
1671 while (!list_empty(&ring->request_list)) {
1672 struct drm_i915_gem_request *request;
9375e446 1673
dfaae392
CW
1674 request = list_first_entry(&ring->request_list,
1675 struct drm_i915_gem_request,
1676 list);
1677
1678 list_del(&request->list);
f787a5f5 1679 i915_gem_request_remove_from_client(request);
dfaae392
CW
1680 kfree(request);
1681 }
1682
1683 while (!list_empty(&ring->active_list)) {
9375e446
CW
1684 struct drm_i915_gem_object *obj_priv;
1685
dfaae392 1686 obj_priv = list_first_entry(&ring->active_list,
9375e446
CW
1687 struct drm_i915_gem_object,
1688 list);
1689
1690 obj_priv->base.write_domain = 0;
dfaae392 1691 list_del_init(&obj_priv->gpu_write_list);
9375e446
CW
1692 i915_gem_object_move_to_inactive(&obj_priv->base);
1693 }
1694}
1695
dfaae392 1696void i915_gem_reset_lists(struct drm_device *dev)
77f01230
CW
1697{
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1699 struct drm_i915_gem_object *obj_priv;
1700
dfaae392
CW
1701 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1702 if (HAS_BSD(dev))
1703 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1704
1705 /* Remove anything from the flushing lists. The GPU cache is likely
1706 * to be lost on reset along with the data, so simply move the
1707 * lost bo to the inactive list.
1708 */
1709 while (!list_empty(&dev_priv->mm.flushing_list)) {
1710 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1711 struct drm_i915_gem_object,
1712 list);
1713
1714 obj_priv->base.write_domain = 0;
1715 list_del_init(&obj_priv->gpu_write_list);
1716 i915_gem_object_move_to_inactive(&obj_priv->base);
1717 }
1718
1719 /* Move everything out of the GPU domains to ensure we do any
1720 * necessary invalidation upon reuse.
1721 */
77f01230
CW
1722 list_for_each_entry(obj_priv,
1723 &dev_priv->mm.inactive_list,
1724 list)
1725 {
1726 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1727 }
1728}
1729
673a394b
EA
1730/**
1731 * This function clears the request list as sequence numbers are passed.
1732 */
b09a1fec
CW
1733static void
1734i915_gem_retire_requests_ring(struct drm_device *dev,
1735 struct intel_ring_buffer *ring)
673a394b
EA
1736{
1737 drm_i915_private_t *dev_priv = dev->dev_private;
1738 uint32_t seqno;
1739
b84d5f0c
CW
1740 if (!ring->status_page.page_addr ||
1741 list_empty(&ring->request_list))
6c0594a3
KW
1742 return;
1743
f787a5f5 1744 seqno = ring->get_seqno(dev, ring);
852835f3 1745 while (!list_empty(&ring->request_list)) {
673a394b 1746 struct drm_i915_gem_request *request;
673a394b 1747
852835f3 1748 request = list_first_entry(&ring->request_list,
673a394b
EA
1749 struct drm_i915_gem_request,
1750 list);
673a394b 1751
dfaae392 1752 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1753 break;
1754
1755 trace_i915_gem_request_retire(dev, request->seqno);
1756
1757 list_del(&request->list);
f787a5f5 1758 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1759 kfree(request);
1760 }
1761
1762 /* Move any buffers on the active list that are no longer referenced
1763 * by the ringbuffer to the flushing/inactive lists as appropriate.
1764 */
1765 while (!list_empty(&ring->active_list)) {
1766 struct drm_gem_object *obj;
1767 struct drm_i915_gem_object *obj_priv;
1768
1769 obj_priv = list_first_entry(&ring->active_list,
1770 struct drm_i915_gem_object,
1771 list);
673a394b 1772
dfaae392 1773 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1774 break;
b84d5f0c
CW
1775
1776 obj = &obj_priv->base;
1777
1778#if WATCH_LRU
1779 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1780 __func__, request->seqno, obj);
1781#endif
1782
1783 if (obj->write_domain != 0)
1784 i915_gem_object_move_to_flushing(obj);
1785 else
1786 i915_gem_object_move_to_inactive(obj);
673a394b 1787 }
9d34e5db
CW
1788
1789 if (unlikely (dev_priv->trace_irq_seqno &&
1790 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7 1791 ring->user_irq_put(dev, ring);
9d34e5db
CW
1792 dev_priv->trace_irq_seqno = 0;
1793 }
673a394b
EA
1794}
1795
b09a1fec
CW
1796void
1797i915_gem_retire_requests(struct drm_device *dev)
1798{
1799 drm_i915_private_t *dev_priv = dev->dev_private;
1800
be72615b
CW
1801 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1802 struct drm_i915_gem_object *obj_priv, *tmp;
1803
1804 /* We must be careful that during unbind() we do not
1805 * accidentally infinitely recurse into retire requests.
1806 * Currently:
1807 * retire -> free -> unbind -> wait -> retire_ring
1808 */
1809 list_for_each_entry_safe(obj_priv, tmp,
1810 &dev_priv->mm.deferred_free_list,
1811 list)
1812 i915_gem_free_object_tail(&obj_priv->base);
1813 }
1814
b09a1fec
CW
1815 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1816 if (HAS_BSD(dev))
1817 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1818}
1819
75ef9da2 1820static void
673a394b
EA
1821i915_gem_retire_work_handler(struct work_struct *work)
1822{
1823 drm_i915_private_t *dev_priv;
1824 struct drm_device *dev;
1825
1826 dev_priv = container_of(work, drm_i915_private_t,
1827 mm.retire_work.work);
1828 dev = dev_priv->dev;
1829
1830 mutex_lock(&dev->struct_mutex);
b09a1fec 1831 i915_gem_retire_requests(dev);
d1b851fc 1832
6dbe2772 1833 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1834 (!list_empty(&dev_priv->render_ring.request_list) ||
1835 (HAS_BSD(dev) &&
1836 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1837 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1838 mutex_unlock(&dev->struct_mutex);
1839}
1840
5a5a0c64 1841int
852835f3 1842i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1843 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1844{
1845 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1846 u32 ier;
673a394b
EA
1847 int ret = 0;
1848
1849 BUG_ON(seqno == 0);
1850
e35a41de 1851 if (seqno == dev_priv->next_seqno) {
8dc5d147 1852 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1853 if (seqno == 0)
1854 return -ENOMEM;
1855 }
1856
ba1234d1 1857 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1858 return -EIO;
1859
f787a5f5 1860 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
bad720ff 1861 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1862 ier = I915_READ(DEIER) | I915_READ(GTIER);
1863 else
1864 ier = I915_READ(IER);
802c7eb6
JB
1865 if (!ier) {
1866 DRM_ERROR("something (likely vbetool) disabled "
1867 "interrupts, re-enabling\n");
1868 i915_driver_irq_preinstall(dev);
1869 i915_driver_irq_postinstall(dev);
1870 }
1871
1c5d22f7
CW
1872 trace_i915_gem_request_wait_begin(dev, seqno);
1873
852835f3 1874 ring->waiting_gem_seqno = seqno;
8187a2b7 1875 ring->user_irq_get(dev, ring);
48764bf4 1876 if (interruptible)
852835f3
ZN
1877 ret = wait_event_interruptible(ring->irq_queue,
1878 i915_seqno_passed(
f787a5f5 1879 ring->get_seqno(dev, ring), seqno)
852835f3 1880 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1881 else
852835f3
ZN
1882 wait_event(ring->irq_queue,
1883 i915_seqno_passed(
f787a5f5 1884 ring->get_seqno(dev, ring), seqno)
852835f3 1885 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1886
8187a2b7 1887 ring->user_irq_put(dev, ring);
852835f3 1888 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1889
1890 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1891 }
ba1234d1 1892 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1893 ret = -EIO;
1894
1895 if (ret && ret != -ERESTARTSYS)
8bff917c 1896 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
f787a5f5 1897 __func__, ret, seqno, ring->get_seqno(dev, ring),
8bff917c 1898 dev_priv->next_seqno);
673a394b
EA
1899
1900 /* Directly dispatch request retiring. While we have the work queue
1901 * to handle this, the waiter on a request often wants an associated
1902 * buffer to have made it to the inactive list, and we would need
1903 * a separate wait queue to handle that.
1904 */
1905 if (ret == 0)
b09a1fec 1906 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1907
1908 return ret;
1909}
1910
48764bf4
DV
1911/**
1912 * Waits for a sequence number to be signaled, and cleans up the
1913 * request and object lists appropriately for that event.
1914 */
1915static int
852835f3
ZN
1916i915_wait_request(struct drm_device *dev, uint32_t seqno,
1917 struct intel_ring_buffer *ring)
48764bf4 1918{
852835f3 1919 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1920}
1921
20f0cd55 1922static void
9220434a 1923i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 1924 struct drm_file *file_priv,
9220434a
CW
1925 struct intel_ring_buffer *ring,
1926 uint32_t invalidate_domains,
1927 uint32_t flush_domains)
1928{
1929 ring->flush(dev, ring, invalidate_domains, flush_domains);
1930 i915_gem_process_flushing_list(dev, flush_domains, ring);
1931}
1932
8187a2b7
ZN
1933static void
1934i915_gem_flush(struct drm_device *dev,
c78ec30b 1935 struct drm_file *file_priv,
8187a2b7 1936 uint32_t invalidate_domains,
9220434a
CW
1937 uint32_t flush_domains,
1938 uint32_t flush_rings)
8187a2b7
ZN
1939{
1940 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 1941
8187a2b7
ZN
1942 if (flush_domains & I915_GEM_DOMAIN_CPU)
1943 drm_agp_chipset_flush(dev);
8bff917c 1944
9220434a
CW
1945 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
1946 if (flush_rings & RING_RENDER)
c78ec30b 1947 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
1948 &dev_priv->render_ring,
1949 invalidate_domains, flush_domains);
1950 if (flush_rings & RING_BSD)
c78ec30b 1951 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
1952 &dev_priv->bsd_ring,
1953 invalidate_domains, flush_domains);
1954 }
8187a2b7
ZN
1955}
1956
673a394b
EA
1957/**
1958 * Ensures that all rendering to the object has completed and the object is
1959 * safe to unbind from the GTT or access from the CPU.
1960 */
1961static int
2cf34d7b
CW
1962i915_gem_object_wait_rendering(struct drm_gem_object *obj,
1963 bool interruptible)
673a394b
EA
1964{
1965 struct drm_device *dev = obj->dev;
23010e43 1966 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1967 int ret;
1968
e47c68e9
EA
1969 /* This function only exists to support waiting for existing rendering,
1970 * not for emitting required flushes.
673a394b 1971 */
e47c68e9 1972 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1973
1974 /* If there is rendering queued on the buffer being evicted, wait for
1975 * it.
1976 */
1977 if (obj_priv->active) {
1978#if WATCH_BUF
1979 DRM_INFO("%s: object %p wait for seqno %08x\n",
1980 __func__, obj, obj_priv->last_rendering_seqno);
1981#endif
2cf34d7b
CW
1982 ret = i915_do_wait_request(dev,
1983 obj_priv->last_rendering_seqno,
1984 interruptible,
1985 obj_priv->ring);
1986 if (ret)
673a394b
EA
1987 return ret;
1988 }
1989
1990 return 0;
1991}
1992
1993/**
1994 * Unbinds an object from the GTT aperture.
1995 */
0f973f27 1996int
673a394b
EA
1997i915_gem_object_unbind(struct drm_gem_object *obj)
1998{
1999 struct drm_device *dev = obj->dev;
23010e43 2000 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2001 int ret = 0;
2002
2003#if WATCH_BUF
2004 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2005 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2006#endif
2007 if (obj_priv->gtt_space == NULL)
2008 return 0;
2009
2010 if (obj_priv->pin_count != 0) {
2011 DRM_ERROR("Attempting to unbind pinned buffer\n");
2012 return -EINVAL;
2013 }
2014
5323fd04
EA
2015 /* blow away mappings if mapped through GTT */
2016 i915_gem_release_mmap(obj);
2017
673a394b
EA
2018 /* Move the object to the CPU domain to ensure that
2019 * any possible CPU writes while it's not in the GTT
2020 * are flushed when we go to remap it. This will
2021 * also ensure that all pending GPU writes are finished
2022 * before we unbind.
2023 */
e47c68e9 2024 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2025 if (ret == -ERESTARTSYS)
673a394b 2026 return ret;
8dc1775d
CW
2027 /* Continue on if we fail due to EIO, the GPU is hung so we
2028 * should be safe and we need to cleanup or else we might
2029 * cause memory corruption through use-after-free.
2030 */
673a394b 2031
96b47b65
DV
2032 /* release the fence reg _after_ flushing */
2033 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2034 i915_gem_clear_fence_reg(obj);
2035
673a394b
EA
2036 if (obj_priv->agp_mem != NULL) {
2037 drm_unbind_agp(obj_priv->agp_mem);
2038 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2039 obj_priv->agp_mem = NULL;
2040 }
2041
856fa198 2042 i915_gem_object_put_pages(obj);
a32808c0 2043 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2044
2045 if (obj_priv->gtt_space) {
2046 atomic_dec(&dev->gtt_count);
2047 atomic_sub(obj->size, &dev->gtt_memory);
2048
2049 drm_mm_put_block(obj_priv->gtt_space);
2050 obj_priv->gtt_space = NULL;
2051 }
2052
f13d3f73 2053 list_del_init(&obj_priv->list);
673a394b 2054
963b4836
CW
2055 if (i915_gem_object_is_purgeable(obj_priv))
2056 i915_gem_object_truncate(obj);
2057
1c5d22f7
CW
2058 trace_i915_gem_object_unbind(obj);
2059
8dc1775d 2060 return ret;
673a394b
EA
2061}
2062
b47eb4a2 2063int
4df2faf4
DV
2064i915_gpu_idle(struct drm_device *dev)
2065{
2066 drm_i915_private_t *dev_priv = dev->dev_private;
2067 bool lists_empty;
c78ec30b 2068 u32 seqno;
852835f3 2069 int ret;
4df2faf4 2070
d1b851fc
ZN
2071 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2072 list_empty(&dev_priv->render_ring.active_list) &&
2073 (!HAS_BSD(dev) ||
2074 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2075 if (lists_empty)
2076 return 0;
2077
2078 /* Flush everything onto the inactive list. */
5c12a07e 2079 seqno = dev_priv->next_seqno;
c78ec30b 2080 i915_gem_flush_ring(dev, NULL, &dev_priv->render_ring,
9220434a 2081 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
c78ec30b 2082 ret = i915_wait_request(dev, seqno, &dev_priv->render_ring);
8a1a49f9
DV
2083 if (ret)
2084 return ret;
d1b851fc
ZN
2085
2086 if (HAS_BSD(dev)) {
5c12a07e 2087 seqno = dev_priv->next_seqno;
c78ec30b 2088 i915_gem_flush_ring(dev, NULL, &dev_priv->bsd_ring,
9220434a 2089 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
c78ec30b 2090 ret = i915_wait_request(dev, seqno, &dev_priv->bsd_ring);
d1b851fc
ZN
2091 if (ret)
2092 return ret;
2093 }
2094
8a1a49f9 2095 return 0;
4df2faf4
DV
2096}
2097
6911a9b8 2098int
4bdadb97
CW
2099i915_gem_object_get_pages(struct drm_gem_object *obj,
2100 gfp_t gfpmask)
673a394b 2101{
23010e43 2102 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2103 int page_count, i;
2104 struct address_space *mapping;
2105 struct inode *inode;
2106 struct page *page;
673a394b 2107
778c3544
DV
2108 BUG_ON(obj_priv->pages_refcount
2109 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2110
856fa198 2111 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2112 return 0;
2113
2114 /* Get the list of pages out of our struct file. They'll be pinned
2115 * at this point until we release them.
2116 */
2117 page_count = obj->size / PAGE_SIZE;
856fa198 2118 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2119 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2120 if (obj_priv->pages == NULL) {
856fa198 2121 obj_priv->pages_refcount--;
673a394b
EA
2122 return -ENOMEM;
2123 }
2124
2125 inode = obj->filp->f_path.dentry->d_inode;
2126 mapping = inode->i_mapping;
2127 for (i = 0; i < page_count; i++) {
4bdadb97 2128 page = read_cache_page_gfp(mapping, i,
985b823b 2129 GFP_HIGHUSER |
4bdadb97 2130 __GFP_COLD |
cd9f040d 2131 __GFP_RECLAIMABLE |
4bdadb97 2132 gfpmask);
1f2b1013
CW
2133 if (IS_ERR(page))
2134 goto err_pages;
2135
856fa198 2136 obj_priv->pages[i] = page;
673a394b 2137 }
280b713b
EA
2138
2139 if (obj_priv->tiling_mode != I915_TILING_NONE)
2140 i915_gem_object_do_bit_17_swizzle(obj);
2141
673a394b 2142 return 0;
1f2b1013
CW
2143
2144err_pages:
2145 while (i--)
2146 page_cache_release(obj_priv->pages[i]);
2147
2148 drm_free_large(obj_priv->pages);
2149 obj_priv->pages = NULL;
2150 obj_priv->pages_refcount--;
2151 return PTR_ERR(page);
673a394b
EA
2152}
2153
4e901fdc
EA
2154static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2155{
2156 struct drm_gem_object *obj = reg->obj;
2157 struct drm_device *dev = obj->dev;
2158 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2159 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2160 int regnum = obj_priv->fence_reg;
2161 uint64_t val;
2162
2163 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2164 0xfffff000) << 32;
2165 val |= obj_priv->gtt_offset & 0xfffff000;
2166 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2167 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2168
2169 if (obj_priv->tiling_mode == I915_TILING_Y)
2170 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2171 val |= I965_FENCE_REG_VALID;
2172
2173 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2174}
2175
de151cf6
JB
2176static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2177{
2178 struct drm_gem_object *obj = reg->obj;
2179 struct drm_device *dev = obj->dev;
2180 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2181 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2182 int regnum = obj_priv->fence_reg;
2183 uint64_t val;
2184
2185 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2186 0xfffff000) << 32;
2187 val |= obj_priv->gtt_offset & 0xfffff000;
2188 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2189 if (obj_priv->tiling_mode == I915_TILING_Y)
2190 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2191 val |= I965_FENCE_REG_VALID;
2192
2193 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2194}
2195
2196static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2197{
2198 struct drm_gem_object *obj = reg->obj;
2199 struct drm_device *dev = obj->dev;
2200 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2201 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2202 int regnum = obj_priv->fence_reg;
0f973f27 2203 int tile_width;
dc529a4f 2204 uint32_t fence_reg, val;
de151cf6
JB
2205 uint32_t pitch_val;
2206
2207 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2208 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2209 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2210 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2211 return;
2212 }
2213
0f973f27
JB
2214 if (obj_priv->tiling_mode == I915_TILING_Y &&
2215 HAS_128_BYTE_Y_TILING(dev))
2216 tile_width = 128;
de151cf6 2217 else
0f973f27
JB
2218 tile_width = 512;
2219
2220 /* Note: pitch better be a power of two tile widths */
2221 pitch_val = obj_priv->stride / tile_width;
2222 pitch_val = ffs(pitch_val) - 1;
de151cf6 2223
c36a2a6d
DV
2224 if (obj_priv->tiling_mode == I915_TILING_Y &&
2225 HAS_128_BYTE_Y_TILING(dev))
2226 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2227 else
2228 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2229
de151cf6
JB
2230 val = obj_priv->gtt_offset;
2231 if (obj_priv->tiling_mode == I915_TILING_Y)
2232 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2233 val |= I915_FENCE_SIZE_BITS(obj->size);
2234 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2235 val |= I830_FENCE_REG_VALID;
2236
dc529a4f
EA
2237 if (regnum < 8)
2238 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2239 else
2240 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2241 I915_WRITE(fence_reg, val);
de151cf6
JB
2242}
2243
2244static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2245{
2246 struct drm_gem_object *obj = reg->obj;
2247 struct drm_device *dev = obj->dev;
2248 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2249 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2250 int regnum = obj_priv->fence_reg;
2251 uint32_t val;
2252 uint32_t pitch_val;
8d7773a3 2253 uint32_t fence_size_bits;
de151cf6 2254
8d7773a3 2255 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2256 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2257 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2258 __func__, obj_priv->gtt_offset);
de151cf6
JB
2259 return;
2260 }
2261
e76a16de
EA
2262 pitch_val = obj_priv->stride / 128;
2263 pitch_val = ffs(pitch_val) - 1;
2264 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2265
de151cf6
JB
2266 val = obj_priv->gtt_offset;
2267 if (obj_priv->tiling_mode == I915_TILING_Y)
2268 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2269 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2270 WARN_ON(fence_size_bits & ~0x00000f00);
2271 val |= fence_size_bits;
de151cf6
JB
2272 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2273 val |= I830_FENCE_REG_VALID;
2274
2275 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2276}
2277
2cf34d7b
CW
2278static int i915_find_fence_reg(struct drm_device *dev,
2279 bool interruptible)
ae3db24a
DV
2280{
2281 struct drm_i915_fence_reg *reg = NULL;
2282 struct drm_i915_gem_object *obj_priv = NULL;
2283 struct drm_i915_private *dev_priv = dev->dev_private;
2284 struct drm_gem_object *obj = NULL;
2285 int i, avail, ret;
2286
2287 /* First try to find a free reg */
2288 avail = 0;
2289 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2290 reg = &dev_priv->fence_regs[i];
2291 if (!reg->obj)
2292 return i;
2293
23010e43 2294 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2295 if (!obj_priv->pin_count)
2296 avail++;
2297 }
2298
2299 if (avail == 0)
2300 return -ENOSPC;
2301
2302 /* None available, try to steal one or wait for a user to finish */
2303 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2304 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2305 lru_list) {
2306 obj = reg->obj;
2307 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2308
2309 if (obj_priv->pin_count)
2310 continue;
2311
2312 /* found one! */
2313 i = obj_priv->fence_reg;
2314 break;
2315 }
2316
2317 BUG_ON(i == I915_FENCE_REG_NONE);
2318
2319 /* We only have a reference on obj from the active list. put_fence_reg
2320 * might drop that one, causing a use-after-free in it. So hold a
2321 * private reference to obj like the other callers of put_fence_reg
2322 * (set_tiling ioctl) do. */
2323 drm_gem_object_reference(obj);
2cf34d7b 2324 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2325 drm_gem_object_unreference(obj);
2326 if (ret != 0)
2327 return ret;
2328
2329 return i;
2330}
2331
de151cf6
JB
2332/**
2333 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2334 * @obj: object to map through a fence reg
2335 *
2336 * When mapping objects through the GTT, userspace wants to be able to write
2337 * to them without having to worry about swizzling if the object is tiled.
2338 *
2339 * This function walks the fence regs looking for a free one for @obj,
2340 * stealing one if it can't find any.
2341 *
2342 * It then sets up the reg based on the object's properties: address, pitch
2343 * and tiling format.
2344 */
8c4b8c3f 2345int
2cf34d7b
CW
2346i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2347 bool interruptible)
de151cf6
JB
2348{
2349 struct drm_device *dev = obj->dev;
79e53945 2350 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2351 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2352 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2353 int ret;
de151cf6 2354
a09ba7fa
EA
2355 /* Just update our place in the LRU if our fence is getting used. */
2356 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2357 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2358 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2359 return 0;
2360 }
2361
de151cf6
JB
2362 switch (obj_priv->tiling_mode) {
2363 case I915_TILING_NONE:
2364 WARN(1, "allocating a fence for non-tiled object?\n");
2365 break;
2366 case I915_TILING_X:
0f973f27
JB
2367 if (!obj_priv->stride)
2368 return -EINVAL;
2369 WARN((obj_priv->stride & (512 - 1)),
2370 "object 0x%08x is X tiled but has non-512B pitch\n",
2371 obj_priv->gtt_offset);
de151cf6
JB
2372 break;
2373 case I915_TILING_Y:
0f973f27
JB
2374 if (!obj_priv->stride)
2375 return -EINVAL;
2376 WARN((obj_priv->stride & (128 - 1)),
2377 "object 0x%08x is Y tiled but has non-128B pitch\n",
2378 obj_priv->gtt_offset);
de151cf6
JB
2379 break;
2380 }
2381
2cf34d7b 2382 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2383 if (ret < 0)
2384 return ret;
de151cf6 2385
ae3db24a
DV
2386 obj_priv->fence_reg = ret;
2387 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2388 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2389
de151cf6
JB
2390 reg->obj = obj;
2391
e259befd
CW
2392 switch (INTEL_INFO(dev)->gen) {
2393 case 6:
4e901fdc 2394 sandybridge_write_fence_reg(reg);
e259befd
CW
2395 break;
2396 case 5:
2397 case 4:
de151cf6 2398 i965_write_fence_reg(reg);
e259befd
CW
2399 break;
2400 case 3:
de151cf6 2401 i915_write_fence_reg(reg);
e259befd
CW
2402 break;
2403 case 2:
de151cf6 2404 i830_write_fence_reg(reg);
e259befd
CW
2405 break;
2406 }
d9ddcb96 2407
ae3db24a
DV
2408 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2409 obj_priv->tiling_mode);
1c5d22f7 2410
d9ddcb96 2411 return 0;
de151cf6
JB
2412}
2413
2414/**
2415 * i915_gem_clear_fence_reg - clear out fence register info
2416 * @obj: object to clear
2417 *
2418 * Zeroes out the fence register itself and clears out the associated
2419 * data structures in dev_priv and obj_priv.
2420 */
2421static void
2422i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2423{
2424 struct drm_device *dev = obj->dev;
79e53945 2425 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2426 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2427 struct drm_i915_fence_reg *reg =
2428 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2429 uint32_t fence_reg;
de151cf6 2430
e259befd
CW
2431 switch (INTEL_INFO(dev)->gen) {
2432 case 6:
4e901fdc
EA
2433 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2434 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2435 break;
2436 case 5:
2437 case 4:
de151cf6 2438 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2439 break;
2440 case 3:
2441 if (obj_priv->fence_reg > 8)
2442 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2443 else
e259befd
CW
2444 case 2:
2445 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2446
2447 I915_WRITE(fence_reg, 0);
e259befd 2448 break;
dc529a4f 2449 }
de151cf6 2450
007cc8ac 2451 reg->obj = NULL;
de151cf6 2452 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2453 list_del_init(&reg->lru_list);
de151cf6
JB
2454}
2455
52dc7d32
CW
2456/**
2457 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2458 * to the buffer to finish, and then resets the fence register.
2459 * @obj: tiled object holding a fence register.
2cf34d7b 2460 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2461 *
2462 * Zeroes out the fence register itself and clears out the associated
2463 * data structures in dev_priv and obj_priv.
2464 */
2465int
2cf34d7b
CW
2466i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2467 bool interruptible)
52dc7d32
CW
2468{
2469 struct drm_device *dev = obj->dev;
53640e1d 2470 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2471 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2472 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2473
2474 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2475 return 0;
2476
10ae9bd2
DV
2477 /* If we've changed tiling, GTT-mappings of the object
2478 * need to re-fault to ensure that the correct fence register
2479 * setup is in place.
2480 */
2481 i915_gem_release_mmap(obj);
2482
52dc7d32
CW
2483 /* On the i915, GPU access to tiled buffers is via a fence,
2484 * therefore we must wait for any outstanding access to complete
2485 * before clearing the fence.
2486 */
53640e1d
CW
2487 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2488 if (reg->gpu) {
52dc7d32
CW
2489 int ret;
2490
2cf34d7b 2491 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad
CW
2492 if (ret)
2493 return ret;
2494
2cf34d7b 2495 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2496 if (ret)
52dc7d32 2497 return ret;
53640e1d
CW
2498
2499 reg->gpu = false;
52dc7d32
CW
2500 }
2501
4a726612 2502 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2503 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2504
2505 return 0;
2506}
2507
673a394b
EA
2508/**
2509 * Finds free space in the GTT aperture and binds the object there.
2510 */
2511static int
2512i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2513{
2514 struct drm_device *dev = obj->dev;
2515 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2516 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2517 struct drm_mm_node *free_space;
4bdadb97 2518 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2519 int ret;
673a394b 2520
bb6baf76 2521 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2522 DRM_ERROR("Attempting to bind a purgeable object\n");
2523 return -EINVAL;
2524 }
2525
673a394b 2526 if (alignment == 0)
0f973f27 2527 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2528 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2529 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2530 return -EINVAL;
2531 }
2532
654fc607
CW
2533 /* If the object is bigger than the entire aperture, reject it early
2534 * before evicting everything in a vain attempt to find space.
2535 */
2536 if (obj->size > dev->gtt_total) {
2537 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2538 return -E2BIG;
2539 }
2540
673a394b
EA
2541 search_free:
2542 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2543 obj->size, alignment, 0);
2544 if (free_space != NULL) {
2545 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2546 alignment);
db3307a9 2547 if (obj_priv->gtt_space != NULL)
673a394b 2548 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2549 }
2550 if (obj_priv->gtt_space == NULL) {
2551 /* If the gtt is empty and we're still having trouble
2552 * fitting our object in, we're out of memory.
2553 */
2554#if WATCH_LRU
2555 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2556#endif
0108a3ed 2557 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2558 if (ret)
673a394b 2559 return ret;
9731129c 2560
673a394b
EA
2561 goto search_free;
2562 }
2563
2564#if WATCH_BUF
cfd43c02 2565 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2566 obj->size, obj_priv->gtt_offset);
2567#endif
4bdadb97 2568 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2569 if (ret) {
2570 drm_mm_put_block(obj_priv->gtt_space);
2571 obj_priv->gtt_space = NULL;
07f73f69
CW
2572
2573 if (ret == -ENOMEM) {
2574 /* first try to clear up some space from the GTT */
0108a3ed
DV
2575 ret = i915_gem_evict_something(dev, obj->size,
2576 alignment);
07f73f69 2577 if (ret) {
07f73f69 2578 /* now try to shrink everyone else */
4bdadb97
CW
2579 if (gfpmask) {
2580 gfpmask = 0;
2581 goto search_free;
07f73f69
CW
2582 }
2583
2584 return ret;
2585 }
2586
2587 goto search_free;
2588 }
2589
673a394b
EA
2590 return ret;
2591 }
2592
673a394b
EA
2593 /* Create an AGP memory structure pointing at our pages, and bind it
2594 * into the GTT.
2595 */
2596 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2597 obj_priv->pages,
07f73f69 2598 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2599 obj_priv->gtt_offset,
2600 obj_priv->agp_type);
673a394b 2601 if (obj_priv->agp_mem == NULL) {
856fa198 2602 i915_gem_object_put_pages(obj);
673a394b
EA
2603 drm_mm_put_block(obj_priv->gtt_space);
2604 obj_priv->gtt_space = NULL;
07f73f69 2605
0108a3ed 2606 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2607 if (ret)
07f73f69 2608 return ret;
07f73f69
CW
2609
2610 goto search_free;
673a394b
EA
2611 }
2612 atomic_inc(&dev->gtt_count);
2613 atomic_add(obj->size, &dev->gtt_memory);
2614
bf1a1092
CW
2615 /* keep track of bounds object by adding it to the inactive list */
2616 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2617
673a394b
EA
2618 /* Assert that the object is not currently in any GPU domain. As it
2619 * wasn't in the GTT, there shouldn't be any way it could have been in
2620 * a GPU cache
2621 */
21d509e3
CW
2622 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2623 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2624
1c5d22f7
CW
2625 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2626
673a394b
EA
2627 return 0;
2628}
2629
2630void
2631i915_gem_clflush_object(struct drm_gem_object *obj)
2632{
23010e43 2633 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2634
2635 /* If we don't have a page list set up, then we're not pinned
2636 * to GPU, and we can ignore the cache flush because it'll happen
2637 * again at bind time.
2638 */
856fa198 2639 if (obj_priv->pages == NULL)
673a394b
EA
2640 return;
2641
1c5d22f7 2642 trace_i915_gem_object_clflush(obj);
cfa16a0d 2643
856fa198 2644 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2645}
2646
e47c68e9 2647/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2648static int
ba3d8d74
DV
2649i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2650 bool pipelined)
e47c68e9
EA
2651{
2652 struct drm_device *dev = obj->dev;
1c5d22f7 2653 uint32_t old_write_domain;
e47c68e9
EA
2654
2655 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2656 return 0;
e47c68e9
EA
2657
2658 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2659 old_write_domain = obj->write_domain;
c78ec30b 2660 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2661 to_intel_bo(obj)->ring,
2662 0, obj->write_domain);
48b956c5 2663 BUG_ON(obj->write_domain);
1c5d22f7
CW
2664
2665 trace_i915_gem_object_change_domain(obj,
2666 obj->read_domains,
2667 old_write_domain);
ba3d8d74
DV
2668
2669 if (pipelined)
2670 return 0;
2671
2cf34d7b 2672 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2673}
2674
2675/** Flushes the GTT write domain for the object if it's dirty. */
2676static void
2677i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2678{
1c5d22f7
CW
2679 uint32_t old_write_domain;
2680
e47c68e9
EA
2681 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2682 return;
2683
2684 /* No actual flushing is required for the GTT write domain. Writes
2685 * to it immediately go to main memory as far as we know, so there's
2686 * no chipset flush. It also doesn't land in render cache.
2687 */
1c5d22f7 2688 old_write_domain = obj->write_domain;
e47c68e9 2689 obj->write_domain = 0;
1c5d22f7
CW
2690
2691 trace_i915_gem_object_change_domain(obj,
2692 obj->read_domains,
2693 old_write_domain);
e47c68e9
EA
2694}
2695
2696/** Flushes the CPU write domain for the object if it's dirty. */
2697static void
2698i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2699{
2700 struct drm_device *dev = obj->dev;
1c5d22f7 2701 uint32_t old_write_domain;
e47c68e9
EA
2702
2703 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2704 return;
2705
2706 i915_gem_clflush_object(obj);
2707 drm_agp_chipset_flush(dev);
1c5d22f7 2708 old_write_domain = obj->write_domain;
e47c68e9 2709 obj->write_domain = 0;
1c5d22f7
CW
2710
2711 trace_i915_gem_object_change_domain(obj,
2712 obj->read_domains,
2713 old_write_domain);
e47c68e9
EA
2714}
2715
2ef7eeaa
EA
2716/**
2717 * Moves a single object to the GTT read, and possibly write domain.
2718 *
2719 * This function returns when the move is complete, including waiting on
2720 * flushes to occur.
2721 */
79e53945 2722int
2ef7eeaa
EA
2723i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2724{
23010e43 2725 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2726 uint32_t old_write_domain, old_read_domains;
e47c68e9 2727 int ret;
2ef7eeaa 2728
02354392
EA
2729 /* Not valid to be called on unbound objects. */
2730 if (obj_priv->gtt_space == NULL)
2731 return -EINVAL;
2732
ba3d8d74 2733 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2734 if (ret != 0)
2735 return ret;
2736
7213342d 2737 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2738
ba3d8d74 2739 if (write) {
2cf34d7b 2740 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2741 if (ret)
2742 return ret;
ba3d8d74 2743 }
2ef7eeaa 2744
7213342d
CW
2745 old_write_domain = obj->write_domain;
2746 old_read_domains = obj->read_domains;
2ef7eeaa 2747
e47c68e9
EA
2748 /* It should now be out of any other write domains, and we can update
2749 * the domain values for our changes.
2750 */
2751 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2752 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2753 if (write) {
7213342d 2754 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2755 obj->write_domain = I915_GEM_DOMAIN_GTT;
2756 obj_priv->dirty = 1;
2ef7eeaa
EA
2757 }
2758
1c5d22f7
CW
2759 trace_i915_gem_object_change_domain(obj,
2760 old_read_domains,
2761 old_write_domain);
2762
e47c68e9
EA
2763 return 0;
2764}
2765
b9241ea3
ZW
2766/*
2767 * Prepare buffer for display plane. Use uninterruptible for possible flush
2768 * wait, as in modesetting process we're not supposed to be interrupted.
2769 */
2770int
48b956c5
CW
2771i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2772 bool pipelined)
b9241ea3 2773{
23010e43 2774 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2775 uint32_t old_read_domains;
b9241ea3
ZW
2776 int ret;
2777
2778 /* Not valid to be called on unbound objects. */
2779 if (obj_priv->gtt_space == NULL)
2780 return -EINVAL;
2781
48b956c5
CW
2782 ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
2783 if (ret)
e35a41de 2784 return ret;
b9241ea3 2785
b118c1e3
CW
2786 i915_gem_object_flush_cpu_write_domain(obj);
2787
b9241ea3 2788 old_read_domains = obj->read_domains;
c78ec30b 2789 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2790
2791 trace_i915_gem_object_change_domain(obj,
2792 old_read_domains,
ba3d8d74 2793 obj->write_domain);
b9241ea3
ZW
2794
2795 return 0;
2796}
2797
e47c68e9
EA
2798/**
2799 * Moves a single object to the CPU read, and possibly write domain.
2800 *
2801 * This function returns when the move is complete, including waiting on
2802 * flushes to occur.
2803 */
2804static int
2805i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2806{
1c5d22f7 2807 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2808 int ret;
2809
ba3d8d74 2810 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2811 if (ret != 0)
2812 return ret;
2ef7eeaa 2813
e47c68e9 2814 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2815
e47c68e9
EA
2816 /* If we have a partially-valid cache of the object in the CPU,
2817 * finish invalidating it and free the per-page flags.
2ef7eeaa 2818 */
e47c68e9 2819 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2820
7213342d 2821 if (write) {
2cf34d7b 2822 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2823 if (ret)
2824 return ret;
2825 }
2826
1c5d22f7
CW
2827 old_write_domain = obj->write_domain;
2828 old_read_domains = obj->read_domains;
2829
e47c68e9
EA
2830 /* Flush the CPU cache if it's still invalid. */
2831 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2832 i915_gem_clflush_object(obj);
2ef7eeaa 2833
e47c68e9 2834 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2835 }
2836
2837 /* It should now be out of any other write domains, and we can update
2838 * the domain values for our changes.
2839 */
e47c68e9
EA
2840 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2841
2842 /* If we're writing through the CPU, then the GPU read domains will
2843 * need to be invalidated at next use.
2844 */
2845 if (write) {
c78ec30b 2846 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
2847 obj->write_domain = I915_GEM_DOMAIN_CPU;
2848 }
2ef7eeaa 2849
1c5d22f7
CW
2850 trace_i915_gem_object_change_domain(obj,
2851 old_read_domains,
2852 old_write_domain);
2853
2ef7eeaa
EA
2854 return 0;
2855}
2856
673a394b
EA
2857/*
2858 * Set the next domain for the specified object. This
2859 * may not actually perform the necessary flushing/invaliding though,
2860 * as that may want to be batched with other set_domain operations
2861 *
2862 * This is (we hope) the only really tricky part of gem. The goal
2863 * is fairly simple -- track which caches hold bits of the object
2864 * and make sure they remain coherent. A few concrete examples may
2865 * help to explain how it works. For shorthand, we use the notation
2866 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2867 * a pair of read and write domain masks.
2868 *
2869 * Case 1: the batch buffer
2870 *
2871 * 1. Allocated
2872 * 2. Written by CPU
2873 * 3. Mapped to GTT
2874 * 4. Read by GPU
2875 * 5. Unmapped from GTT
2876 * 6. Freed
2877 *
2878 * Let's take these a step at a time
2879 *
2880 * 1. Allocated
2881 * Pages allocated from the kernel may still have
2882 * cache contents, so we set them to (CPU, CPU) always.
2883 * 2. Written by CPU (using pwrite)
2884 * The pwrite function calls set_domain (CPU, CPU) and
2885 * this function does nothing (as nothing changes)
2886 * 3. Mapped by GTT
2887 * This function asserts that the object is not
2888 * currently in any GPU-based read or write domains
2889 * 4. Read by GPU
2890 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2891 * As write_domain is zero, this function adds in the
2892 * current read domains (CPU+COMMAND, 0).
2893 * flush_domains is set to CPU.
2894 * invalidate_domains is set to COMMAND
2895 * clflush is run to get data out of the CPU caches
2896 * then i915_dev_set_domain calls i915_gem_flush to
2897 * emit an MI_FLUSH and drm_agp_chipset_flush
2898 * 5. Unmapped from GTT
2899 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2900 * flush_domains and invalidate_domains end up both zero
2901 * so no flushing/invalidating happens
2902 * 6. Freed
2903 * yay, done
2904 *
2905 * Case 2: The shared render buffer
2906 *
2907 * 1. Allocated
2908 * 2. Mapped to GTT
2909 * 3. Read/written by GPU
2910 * 4. set_domain to (CPU,CPU)
2911 * 5. Read/written by CPU
2912 * 6. Read/written by GPU
2913 *
2914 * 1. Allocated
2915 * Same as last example, (CPU, CPU)
2916 * 2. Mapped to GTT
2917 * Nothing changes (assertions find that it is not in the GPU)
2918 * 3. Read/written by GPU
2919 * execbuffer calls set_domain (RENDER, RENDER)
2920 * flush_domains gets CPU
2921 * invalidate_domains gets GPU
2922 * clflush (obj)
2923 * MI_FLUSH and drm_agp_chipset_flush
2924 * 4. set_domain (CPU, CPU)
2925 * flush_domains gets GPU
2926 * invalidate_domains gets CPU
2927 * wait_rendering (obj) to make sure all drawing is complete.
2928 * This will include an MI_FLUSH to get the data from GPU
2929 * to memory
2930 * clflush (obj) to invalidate the CPU cache
2931 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2932 * 5. Read/written by CPU
2933 * cache lines are loaded and dirtied
2934 * 6. Read written by GPU
2935 * Same as last GPU access
2936 *
2937 * Case 3: The constant buffer
2938 *
2939 * 1. Allocated
2940 * 2. Written by CPU
2941 * 3. Read by GPU
2942 * 4. Updated (written) by CPU again
2943 * 5. Read by GPU
2944 *
2945 * 1. Allocated
2946 * (CPU, CPU)
2947 * 2. Written by CPU
2948 * (CPU, CPU)
2949 * 3. Read by GPU
2950 * (CPU+RENDER, 0)
2951 * flush_domains = CPU
2952 * invalidate_domains = RENDER
2953 * clflush (obj)
2954 * MI_FLUSH
2955 * drm_agp_chipset_flush
2956 * 4. Updated (written) by CPU again
2957 * (CPU, CPU)
2958 * flush_domains = 0 (no previous write domain)
2959 * invalidate_domains = 0 (no new read domains)
2960 * 5. Read by GPU
2961 * (CPU+RENDER, 0)
2962 * flush_domains = CPU
2963 * invalidate_domains = RENDER
2964 * clflush (obj)
2965 * MI_FLUSH
2966 * drm_agp_chipset_flush
2967 */
c0d90829 2968static void
8b0e378a 2969i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2970{
2971 struct drm_device *dev = obj->dev;
9220434a 2972 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2973 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2974 uint32_t invalidate_domains = 0;
2975 uint32_t flush_domains = 0;
1c5d22f7 2976 uint32_t old_read_domains;
e47c68e9 2977
8b0e378a
EA
2978 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2979 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2980
652c393a
JB
2981 intel_mark_busy(dev, obj);
2982
673a394b
EA
2983#if WATCH_BUF
2984 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2985 __func__, obj,
8b0e378a
EA
2986 obj->read_domains, obj->pending_read_domains,
2987 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2988#endif
2989 /*
2990 * If the object isn't moving to a new write domain,
2991 * let the object stay in multiple read domains
2992 */
8b0e378a
EA
2993 if (obj->pending_write_domain == 0)
2994 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2995 else
2996 obj_priv->dirty = 1;
2997
2998 /*
2999 * Flush the current write domain if
3000 * the new read domains don't match. Invalidate
3001 * any read domains which differ from the old
3002 * write domain
3003 */
8b0e378a
EA
3004 if (obj->write_domain &&
3005 obj->write_domain != obj->pending_read_domains) {
673a394b 3006 flush_domains |= obj->write_domain;
8b0e378a
EA
3007 invalidate_domains |=
3008 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3009 }
3010 /*
3011 * Invalidate any read caches which may have
3012 * stale data. That is, any new read domains.
3013 */
8b0e378a 3014 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
3015 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3016#if WATCH_BUF
3017 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3018 __func__, flush_domains, invalidate_domains);
3019#endif
673a394b
EA
3020 i915_gem_clflush_object(obj);
3021 }
3022
1c5d22f7
CW
3023 old_read_domains = obj->read_domains;
3024
efbeed96
EA
3025 /* The actual obj->write_domain will be updated with
3026 * pending_write_domain after we emit the accumulated flush for all
3027 * of our domain changes in execbuffers (which clears objects'
3028 * write_domains). So if we have a current write domain that we
3029 * aren't changing, set pending_write_domain to that.
3030 */
3031 if (flush_domains == 0 && obj->pending_write_domain == 0)
3032 obj->pending_write_domain = obj->write_domain;
8b0e378a 3033 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3034
3035 dev->invalidate_domains |= invalidate_domains;
3036 dev->flush_domains |= flush_domains;
9220434a
CW
3037 if (obj_priv->ring)
3038 dev_priv->mm.flush_rings |= obj_priv->ring->id;
673a394b
EA
3039#if WATCH_BUF
3040 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3041 __func__,
3042 obj->read_domains, obj->write_domain,
3043 dev->invalidate_domains, dev->flush_domains);
3044#endif
1c5d22f7
CW
3045
3046 trace_i915_gem_object_change_domain(obj,
3047 old_read_domains,
3048 obj->write_domain);
673a394b
EA
3049}
3050
3051/**
e47c68e9 3052 * Moves the object from a partially CPU read to a full one.
673a394b 3053 *
e47c68e9
EA
3054 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3055 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3056 */
e47c68e9
EA
3057static void
3058i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3059{
23010e43 3060 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3061
e47c68e9
EA
3062 if (!obj_priv->page_cpu_valid)
3063 return;
3064
3065 /* If we're partially in the CPU read domain, finish moving it in.
3066 */
3067 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3068 int i;
3069
3070 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3071 if (obj_priv->page_cpu_valid[i])
3072 continue;
856fa198 3073 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3074 }
e47c68e9
EA
3075 }
3076
3077 /* Free the page_cpu_valid mappings which are now stale, whether
3078 * or not we've got I915_GEM_DOMAIN_CPU.
3079 */
9a298b2a 3080 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3081 obj_priv->page_cpu_valid = NULL;
3082}
3083
3084/**
3085 * Set the CPU read domain on a range of the object.
3086 *
3087 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3088 * not entirely valid. The page_cpu_valid member of the object flags which
3089 * pages have been flushed, and will be respected by
3090 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3091 * of the whole object.
3092 *
3093 * This function returns when the move is complete, including waiting on
3094 * flushes to occur.
3095 */
3096static int
3097i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3098 uint64_t offset, uint64_t size)
3099{
23010e43 3100 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3101 uint32_t old_read_domains;
e47c68e9 3102 int i, ret;
673a394b 3103
e47c68e9
EA
3104 if (offset == 0 && size == obj->size)
3105 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3106
ba3d8d74 3107 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3108 if (ret != 0)
6a47baa6 3109 return ret;
e47c68e9
EA
3110 i915_gem_object_flush_gtt_write_domain(obj);
3111
3112 /* If we're already fully in the CPU read domain, we're done. */
3113 if (obj_priv->page_cpu_valid == NULL &&
3114 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3115 return 0;
673a394b 3116
e47c68e9
EA
3117 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3118 * newly adding I915_GEM_DOMAIN_CPU
3119 */
673a394b 3120 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3121 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3122 GFP_KERNEL);
e47c68e9
EA
3123 if (obj_priv->page_cpu_valid == NULL)
3124 return -ENOMEM;
3125 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3126 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3127
3128 /* Flush the cache on any pages that are still invalid from the CPU's
3129 * perspective.
3130 */
e47c68e9
EA
3131 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3132 i++) {
673a394b
EA
3133 if (obj_priv->page_cpu_valid[i])
3134 continue;
3135
856fa198 3136 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3137
3138 obj_priv->page_cpu_valid[i] = 1;
3139 }
3140
e47c68e9
EA
3141 /* It should now be out of any other write domains, and we can update
3142 * the domain values for our changes.
3143 */
3144 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3145
1c5d22f7 3146 old_read_domains = obj->read_domains;
e47c68e9
EA
3147 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3148
1c5d22f7
CW
3149 trace_i915_gem_object_change_domain(obj,
3150 old_read_domains,
3151 obj->write_domain);
3152
673a394b
EA
3153 return 0;
3154}
3155
673a394b
EA
3156/**
3157 * Pin an object to the GTT and evaluate the relocations landing in it.
3158 */
3159static int
3160i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3161 struct drm_file *file_priv,
76446cac 3162 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3163 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3164{
3165 struct drm_device *dev = obj->dev;
0839ccb8 3166 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3167 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3168 int i, ret;
0839ccb8 3169 void __iomem *reloc_page;
76446cac
JB
3170 bool need_fence;
3171
3172 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3173 obj_priv->tiling_mode != I915_TILING_NONE;
3174
3175 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3176 if (need_fence &&
3177 !i915_gem_object_fence_offset_ok(obj,
3178 obj_priv->tiling_mode)) {
3179 ret = i915_gem_object_unbind(obj);
3180 if (ret)
3181 return ret;
3182 }
673a394b
EA
3183
3184 /* Choose the GTT offset for our buffer and put it there. */
3185 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3186 if (ret)
3187 return ret;
3188
76446cac
JB
3189 /*
3190 * Pre-965 chips need a fence register set up in order to
3191 * properly handle blits to/from tiled surfaces.
3192 */
3193 if (need_fence) {
53640e1d 3194 ret = i915_gem_object_get_fence_reg(obj, true);
76446cac 3195 if (ret != 0) {
76446cac
JB
3196 i915_gem_object_unpin(obj);
3197 return ret;
3198 }
53640e1d
CW
3199
3200 dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
76446cac
JB
3201 }
3202
673a394b
EA
3203 entry->offset = obj_priv->gtt_offset;
3204
673a394b
EA
3205 /* Apply the relocations, using the GTT aperture to avoid cache
3206 * flushing requirements.
3207 */
3208 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3209 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3210 struct drm_gem_object *target_obj;
3211 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3212 uint32_t reloc_val, reloc_offset;
3213 uint32_t __iomem *reloc_entry;
673a394b 3214
673a394b 3215 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3216 reloc->target_handle);
673a394b
EA
3217 if (target_obj == NULL) {
3218 i915_gem_object_unpin(obj);
bf79cb91 3219 return -ENOENT;
673a394b 3220 }
23010e43 3221 target_obj_priv = to_intel_bo(target_obj);
673a394b 3222
8542a0bb
CW
3223#if WATCH_RELOC
3224 DRM_INFO("%s: obj %p offset %08x target %d "
3225 "read %08x write %08x gtt %08x "
3226 "presumed %08x delta %08x\n",
3227 __func__,
3228 obj,
3229 (int) reloc->offset,
3230 (int) reloc->target_handle,
3231 (int) reloc->read_domains,
3232 (int) reloc->write_domain,
3233 (int) target_obj_priv->gtt_offset,
3234 (int) reloc->presumed_offset,
3235 reloc->delta);
3236#endif
3237
673a394b
EA
3238 /* The target buffer should have appeared before us in the
3239 * exec_object list, so it should have a GTT space bound by now.
3240 */
3241 if (target_obj_priv->gtt_space == NULL) {
3242 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3243 reloc->target_handle);
673a394b
EA
3244 drm_gem_object_unreference(target_obj);
3245 i915_gem_object_unpin(obj);
3246 return -EINVAL;
3247 }
3248
8542a0bb 3249 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3250 if (reloc->write_domain & (reloc->write_domain - 1)) {
3251 DRM_ERROR("reloc with multiple write domains: "
3252 "obj %p target %d offset %d "
3253 "read %08x write %08x",
3254 obj, reloc->target_handle,
3255 (int) reloc->offset,
3256 reloc->read_domains,
3257 reloc->write_domain);
3258 return -EINVAL;
3259 }
40a5f0de
EA
3260 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3261 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3262 DRM_ERROR("reloc with read/write CPU domains: "
3263 "obj %p target %d offset %d "
3264 "read %08x write %08x",
40a5f0de
EA
3265 obj, reloc->target_handle,
3266 (int) reloc->offset,
3267 reloc->read_domains,
3268 reloc->write_domain);
491152b8
CW
3269 drm_gem_object_unreference(target_obj);
3270 i915_gem_object_unpin(obj);
e47c68e9
EA
3271 return -EINVAL;
3272 }
40a5f0de
EA
3273 if (reloc->write_domain && target_obj->pending_write_domain &&
3274 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3275 DRM_ERROR("Write domain conflict: "
3276 "obj %p target %d offset %d "
3277 "new %08x old %08x\n",
40a5f0de
EA
3278 obj, reloc->target_handle,
3279 (int) reloc->offset,
3280 reloc->write_domain,
673a394b
EA
3281 target_obj->pending_write_domain);
3282 drm_gem_object_unreference(target_obj);
3283 i915_gem_object_unpin(obj);
3284 return -EINVAL;
3285 }
3286
40a5f0de
EA
3287 target_obj->pending_read_domains |= reloc->read_domains;
3288 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3289
3290 /* If the relocation already has the right value in it, no
3291 * more work needs to be done.
3292 */
40a5f0de 3293 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3294 drm_gem_object_unreference(target_obj);
3295 continue;
3296 }
3297
8542a0bb
CW
3298 /* Check that the relocation address is valid... */
3299 if (reloc->offset > obj->size - 4) {
3300 DRM_ERROR("Relocation beyond object bounds: "
3301 "obj %p target %d offset %d size %d.\n",
3302 obj, reloc->target_handle,
3303 (int) reloc->offset, (int) obj->size);
3304 drm_gem_object_unreference(target_obj);
3305 i915_gem_object_unpin(obj);
3306 return -EINVAL;
3307 }
3308 if (reloc->offset & 3) {
3309 DRM_ERROR("Relocation not 4-byte aligned: "
3310 "obj %p target %d offset %d.\n",
3311 obj, reloc->target_handle,
3312 (int) reloc->offset);
3313 drm_gem_object_unreference(target_obj);
3314 i915_gem_object_unpin(obj);
3315 return -EINVAL;
3316 }
3317
3318 /* and points to somewhere within the target object. */
3319 if (reloc->delta >= target_obj->size) {
3320 DRM_ERROR("Relocation beyond target object bounds: "
3321 "obj %p target %d delta %d size %d.\n",
3322 obj, reloc->target_handle,
3323 (int) reloc->delta, (int) target_obj->size);
3324 drm_gem_object_unreference(target_obj);
3325 i915_gem_object_unpin(obj);
3326 return -EINVAL;
3327 }
3328
2ef7eeaa
EA
3329 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3330 if (ret != 0) {
3331 drm_gem_object_unreference(target_obj);
3332 i915_gem_object_unpin(obj);
3333 return -EINVAL;
673a394b
EA
3334 }
3335
3336 /* Map the page containing the relocation we're going to
3337 * perform.
3338 */
40a5f0de 3339 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3340 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3341 (reloc_offset &
fca3ec01
CW
3342 ~(PAGE_SIZE - 1)),
3343 KM_USER0);
3043c60c 3344 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3345 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3346 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3347
3348#if WATCH_BUF
3349 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3350 obj, (unsigned int) reloc->offset,
673a394b
EA
3351 readl(reloc_entry), reloc_val);
3352#endif
3353 writel(reloc_val, reloc_entry);
fca3ec01 3354 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3355
40a5f0de
EA
3356 /* The updated presumed offset for this entry will be
3357 * copied back out to the user.
673a394b 3358 */
40a5f0de 3359 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3360
3361 drm_gem_object_unreference(target_obj);
3362 }
3363
673a394b
EA
3364#if WATCH_BUF
3365 if (0)
3366 i915_gem_dump_object(obj, 128, __func__, ~0);
3367#endif
3368 return 0;
3369}
3370
673a394b
EA
3371/* Throttle our rendering by waiting until the ring has completed our requests
3372 * emitted over 20 msec ago.
3373 *
b962442e
EA
3374 * Note that if we were to use the current jiffies each time around the loop,
3375 * we wouldn't escape the function with any frames outstanding if the time to
3376 * render a frame was over 20ms.
3377 *
673a394b
EA
3378 * This should get us reasonable parallelism between CPU and GPU but also
3379 * relatively low latency when blocking on a particular request to finish.
3380 */
3381static int
f787a5f5 3382i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
673a394b 3383{
f787a5f5
CW
3384 struct drm_i915_private *dev_priv = dev->dev_private;
3385 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3386 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3387 struct drm_i915_gem_request *request;
3388 struct intel_ring_buffer *ring = NULL;
3389 u32 seqno = 0;
3390 int ret;
673a394b 3391
f787a5f5
CW
3392 mutex_lock(&file_priv->mutex);
3393 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3394 if (time_after_eq(request->emitted_jiffies, recent_enough))
3395 break;
3396
f787a5f5
CW
3397 ring = request->ring;
3398 seqno = request->seqno;
b962442e 3399 }
f787a5f5
CW
3400 mutex_unlock(&file_priv->mutex);
3401
3402 if (seqno == 0)
3403 return 0;
3404
3405 ret = 0;
3406 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3407 /* And wait for the seqno passing without holding any locks and
3408 * causing extra latency for others. This is safe as the irq
3409 * generation is designed to be run atomically and so is
3410 * lockless.
3411 */
3412 ring->user_irq_get(dev, ring);
3413 ret = wait_event_interruptible(ring->irq_queue,
3414 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3415 || atomic_read(&dev_priv->mm.wedged));
3416 ring->user_irq_put(dev, ring);
3417
3418 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3419 ret = -EIO;
3420 }
3421
3422 if (ret == 0)
3423 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
b962442e 3424
673a394b
EA
3425 return ret;
3426}
3427
40a5f0de 3428static int
76446cac 3429i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3430 uint32_t buffer_count,
3431 struct drm_i915_gem_relocation_entry **relocs)
3432{
3433 uint32_t reloc_count = 0, reloc_index = 0, i;
3434 int ret;
3435
3436 *relocs = NULL;
3437 for (i = 0; i < buffer_count; i++) {
3438 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3439 return -EINVAL;
3440 reloc_count += exec_list[i].relocation_count;
3441 }
3442
8e7d2b2c 3443 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3444 if (*relocs == NULL) {
3445 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3446 return -ENOMEM;
76446cac 3447 }
40a5f0de
EA
3448
3449 for (i = 0; i < buffer_count; i++) {
3450 struct drm_i915_gem_relocation_entry __user *user_relocs;
3451
3452 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3453
3454 ret = copy_from_user(&(*relocs)[reloc_index],
3455 user_relocs,
3456 exec_list[i].relocation_count *
3457 sizeof(**relocs));
3458 if (ret != 0) {
8e7d2b2c 3459 drm_free_large(*relocs);
40a5f0de 3460 *relocs = NULL;
2bc43b5c 3461 return -EFAULT;
40a5f0de
EA
3462 }
3463
3464 reloc_index += exec_list[i].relocation_count;
3465 }
3466
2bc43b5c 3467 return 0;
40a5f0de
EA
3468}
3469
3470static int
76446cac 3471i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3472 uint32_t buffer_count,
3473 struct drm_i915_gem_relocation_entry *relocs)
3474{
3475 uint32_t reloc_count = 0, i;
2bc43b5c 3476 int ret = 0;
40a5f0de 3477
93533c29
CW
3478 if (relocs == NULL)
3479 return 0;
3480
40a5f0de
EA
3481 for (i = 0; i < buffer_count; i++) {
3482 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3483 int unwritten;
40a5f0de
EA
3484
3485 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3486
2bc43b5c
FM
3487 unwritten = copy_to_user(user_relocs,
3488 &relocs[reloc_count],
3489 exec_list[i].relocation_count *
3490 sizeof(*relocs));
3491
3492 if (unwritten) {
3493 ret = -EFAULT;
3494 goto err;
40a5f0de
EA
3495 }
3496
3497 reloc_count += exec_list[i].relocation_count;
3498 }
3499
2bc43b5c 3500err:
8e7d2b2c 3501 drm_free_large(relocs);
40a5f0de
EA
3502
3503 return ret;
3504}
3505
83d60795 3506static int
76446cac 3507i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3508 uint64_t exec_offset)
3509{
3510 uint32_t exec_start, exec_len;
3511
3512 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3513 exec_len = (uint32_t) exec->batch_len;
3514
3515 if ((exec_start | exec_len) & 0x7)
3516 return -EINVAL;
3517
3518 if (!exec_start)
3519 return -EINVAL;
3520
3521 return 0;
3522}
3523
e6c3a2a6 3524static int
6b95a207
KH
3525i915_gem_wait_for_pending_flip(struct drm_device *dev,
3526 struct drm_gem_object **object_list,
3527 int count)
3528{
3529 drm_i915_private_t *dev_priv = dev->dev_private;
3530 struct drm_i915_gem_object *obj_priv;
3531 DEFINE_WAIT(wait);
3532 int i, ret = 0;
3533
3534 for (;;) {
3535 prepare_to_wait(&dev_priv->pending_flip_queue,
3536 &wait, TASK_INTERRUPTIBLE);
3537 for (i = 0; i < count; i++) {
23010e43 3538 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3539 if (atomic_read(&obj_priv->pending_flip) > 0)
3540 break;
3541 }
3542 if (i == count)
3543 break;
3544
3545 if (!signal_pending(current)) {
3546 mutex_unlock(&dev->struct_mutex);
3547 schedule();
3548 mutex_lock(&dev->struct_mutex);
3549 continue;
3550 }
3551 ret = -ERESTARTSYS;
3552 break;
3553 }
3554 finish_wait(&dev_priv->pending_flip_queue, &wait);
3555
3556 return ret;
3557}
3558
8dc5d147 3559static int
76446cac
JB
3560i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3561 struct drm_file *file_priv,
3562 struct drm_i915_gem_execbuffer2 *args,
3563 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3564{
3565 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3566 struct drm_gem_object **object_list = NULL;
3567 struct drm_gem_object *batch_obj;
b70d11da 3568 struct drm_i915_gem_object *obj_priv;
201361a5 3569 struct drm_clip_rect *cliprects = NULL;
93533c29 3570 struct drm_i915_gem_relocation_entry *relocs = NULL;
8dc5d147 3571 struct drm_i915_gem_request *request = NULL;
76446cac 3572 int ret = 0, ret2, i, pinned = 0;
673a394b 3573 uint64_t exec_offset;
5c12a07e 3574 uint32_t reloc_index;
6b95a207 3575 int pin_tries, flips;
673a394b 3576
852835f3
ZN
3577 struct intel_ring_buffer *ring = NULL;
3578
673a394b
EA
3579#if WATCH_EXEC
3580 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3581 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3582#endif
d1b851fc
ZN
3583 if (args->flags & I915_EXEC_BSD) {
3584 if (!HAS_BSD(dev)) {
3585 DRM_ERROR("execbuf with wrong flag\n");
3586 return -EINVAL;
3587 }
3588 ring = &dev_priv->bsd_ring;
3589 } else {
3590 ring = &dev_priv->render_ring;
3591 }
3592
4f481ed2
EA
3593 if (args->buffer_count < 1) {
3594 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3595 return -EINVAL;
3596 }
c8e0f93a 3597 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3598 if (object_list == NULL) {
3599 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3600 args->buffer_count);
3601 ret = -ENOMEM;
3602 goto pre_mutex_err;
3603 }
673a394b 3604
201361a5 3605 if (args->num_cliprects != 0) {
9a298b2a
EA
3606 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3607 GFP_KERNEL);
a40e8d31
OA
3608 if (cliprects == NULL) {
3609 ret = -ENOMEM;
201361a5 3610 goto pre_mutex_err;
a40e8d31 3611 }
201361a5
EA
3612
3613 ret = copy_from_user(cliprects,
3614 (struct drm_clip_rect __user *)
3615 (uintptr_t) args->cliprects_ptr,
3616 sizeof(*cliprects) * args->num_cliprects);
3617 if (ret != 0) {
3618 DRM_ERROR("copy %d cliprects failed: %d\n",
3619 args->num_cliprects, ret);
c877cdce 3620 ret = -EFAULT;
201361a5
EA
3621 goto pre_mutex_err;
3622 }
3623 }
3624
8dc5d147
CW
3625 request = kzalloc(sizeof(*request), GFP_KERNEL);
3626 if (request == NULL) {
3627 ret = -ENOMEM;
3628 goto pre_mutex_err;
3629 }
3630
40a5f0de
EA
3631 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3632 &relocs);
3633 if (ret != 0)
3634 goto pre_mutex_err;
3635
673a394b
EA
3636 mutex_lock(&dev->struct_mutex);
3637
3638 i915_verify_inactive(dev, __FILE__, __LINE__);
3639
ba1234d1 3640 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3641 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3642 ret = -EIO;
3643 goto pre_mutex_err;
673a394b
EA
3644 }
3645
3646 if (dev_priv->mm.suspended) {
673a394b 3647 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3648 ret = -EBUSY;
3649 goto pre_mutex_err;
673a394b
EA
3650 }
3651
ac94a962 3652 /* Look up object handles */
6b95a207 3653 flips = 0;
673a394b
EA
3654 for (i = 0; i < args->buffer_count; i++) {
3655 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3656 exec_list[i].handle);
3657 if (object_list[i] == NULL) {
3658 DRM_ERROR("Invalid object handle %d at index %d\n",
3659 exec_list[i].handle, i);
0ce907f8
CW
3660 /* prevent error path from reading uninitialized data */
3661 args->buffer_count = i + 1;
bf79cb91 3662 ret = -ENOENT;
673a394b
EA
3663 goto err;
3664 }
b70d11da 3665
23010e43 3666 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3667 if (obj_priv->in_execbuffer) {
3668 DRM_ERROR("Object %p appears more than once in object list\n",
3669 object_list[i]);
0ce907f8
CW
3670 /* prevent error path from reading uninitialized data */
3671 args->buffer_count = i + 1;
bf79cb91 3672 ret = -EINVAL;
b70d11da
KH
3673 goto err;
3674 }
3675 obj_priv->in_execbuffer = true;
6b95a207
KH
3676 flips += atomic_read(&obj_priv->pending_flip);
3677 }
3678
3679 if (flips > 0) {
3680 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3681 args->buffer_count);
3682 if (ret)
3683 goto err;
ac94a962 3684 }
673a394b 3685
ac94a962
KP
3686 /* Pin and relocate */
3687 for (pin_tries = 0; ; pin_tries++) {
3688 ret = 0;
40a5f0de
EA
3689 reloc_index = 0;
3690
ac94a962
KP
3691 for (i = 0; i < args->buffer_count; i++) {
3692 object_list[i]->pending_read_domains = 0;
3693 object_list[i]->pending_write_domain = 0;
3694 ret = i915_gem_object_pin_and_relocate(object_list[i],
3695 file_priv,
40a5f0de
EA
3696 &exec_list[i],
3697 &relocs[reloc_index]);
ac94a962
KP
3698 if (ret)
3699 break;
3700 pinned = i + 1;
40a5f0de 3701 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3702 }
3703 /* success */
3704 if (ret == 0)
3705 break;
3706
3707 /* error other than GTT full, or we've already tried again */
2939e1f5 3708 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3709 if (ret != -ERESTARTSYS) {
3710 unsigned long long total_size = 0;
3d1cc470
CW
3711 int num_fences = 0;
3712 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3713 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3714
07f73f69 3715 total_size += object_list[i]->size;
3d1cc470
CW
3716 num_fences +=
3717 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3718 obj_priv->tiling_mode != I915_TILING_NONE;
3719 }
3720 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3721 pinned+1, args->buffer_count,
3d1cc470
CW
3722 total_size, num_fences,
3723 ret);
07f73f69
CW
3724 DRM_ERROR("%d objects [%d pinned], "
3725 "%d object bytes [%d pinned], "
3726 "%d/%d gtt bytes\n",
3727 atomic_read(&dev->object_count),
3728 atomic_read(&dev->pin_count),
3729 atomic_read(&dev->object_memory),
3730 atomic_read(&dev->pin_memory),
3731 atomic_read(&dev->gtt_memory),
3732 dev->gtt_total);
3733 }
673a394b
EA
3734 goto err;
3735 }
ac94a962
KP
3736
3737 /* unpin all of our buffers */
3738 for (i = 0; i < pinned; i++)
3739 i915_gem_object_unpin(object_list[i]);
b1177636 3740 pinned = 0;
ac94a962
KP
3741
3742 /* evict everyone we can from the aperture */
3743 ret = i915_gem_evict_everything(dev);
07f73f69 3744 if (ret && ret != -ENOSPC)
ac94a962 3745 goto err;
673a394b
EA
3746 }
3747
3748 /* Set the pending read domains for the batch buffer to COMMAND */
3749 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3750 if (batch_obj->pending_write_domain) {
3751 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3752 ret = -EINVAL;
3753 goto err;
3754 }
3755 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3756
83d60795
CW
3757 /* Sanity check the batch buffer, prior to moving objects */
3758 exec_offset = exec_list[args->buffer_count - 1].offset;
3759 ret = i915_gem_check_execbuffer (args, exec_offset);
3760 if (ret != 0) {
3761 DRM_ERROR("execbuf with invalid offset/length\n");
3762 goto err;
3763 }
3764
673a394b
EA
3765 i915_verify_inactive(dev, __FILE__, __LINE__);
3766
646f0f6e
KP
3767 /* Zero the global flush/invalidate flags. These
3768 * will be modified as new domains are computed
3769 * for each object
3770 */
3771 dev->invalidate_domains = 0;
3772 dev->flush_domains = 0;
9220434a 3773 dev_priv->mm.flush_rings = 0;
646f0f6e 3774
673a394b
EA
3775 for (i = 0; i < args->buffer_count; i++) {
3776 struct drm_gem_object *obj = object_list[i];
673a394b 3777
646f0f6e 3778 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3779 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3780 }
3781
3782 i915_verify_inactive(dev, __FILE__, __LINE__);
3783
646f0f6e
KP
3784 if (dev->invalidate_domains | dev->flush_domains) {
3785#if WATCH_EXEC
3786 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3787 __func__,
3788 dev->invalidate_domains,
3789 dev->flush_domains);
3790#endif
c78ec30b 3791 i915_gem_flush(dev, file_priv,
646f0f6e 3792 dev->invalidate_domains,
9220434a
CW
3793 dev->flush_domains,
3794 dev_priv->mm.flush_rings);
a6910434
DV
3795 }
3796
efbeed96
EA
3797 for (i = 0; i < args->buffer_count; i++) {
3798 struct drm_gem_object *obj = object_list[i];
23010e43 3799 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3800 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3801
3802 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3803 if (obj->write_domain)
3804 list_move_tail(&obj_priv->gpu_write_list,
3805 &dev_priv->mm.gpu_write_list);
3806 else
3807 list_del_init(&obj_priv->gpu_write_list);
3808
1c5d22f7
CW
3809 trace_i915_gem_object_change_domain(obj,
3810 obj->read_domains,
3811 old_write_domain);
efbeed96
EA
3812 }
3813
673a394b
EA
3814 i915_verify_inactive(dev, __FILE__, __LINE__);
3815
3816#if WATCH_COHERENCY
3817 for (i = 0; i < args->buffer_count; i++) {
3818 i915_gem_object_check_coherency(object_list[i],
3819 exec_list[i].handle);
3820 }
3821#endif
3822
673a394b 3823#if WATCH_EXEC
6911a9b8 3824 i915_gem_dump_object(batch_obj,
673a394b
EA
3825 args->batch_len,
3826 __func__,
3827 ~0);
3828#endif
3829
673a394b 3830 /* Exec the batchbuffer */
852835f3
ZN
3831 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3832 cliprects, exec_offset);
673a394b
EA
3833 if (ret) {
3834 DRM_ERROR("dispatch failed %d\n", ret);
3835 goto err;
3836 }
3837
3838 /*
3839 * Ensure that the commands in the batch buffer are
3840 * finished before the interrupt fires
3841 */
8a1a49f9 3842 i915_retire_commands(dev, ring);
673a394b
EA
3843
3844 i915_verify_inactive(dev, __FILE__, __LINE__);
3845
617dbe27
DV
3846 for (i = 0; i < args->buffer_count; i++) {
3847 struct drm_gem_object *obj = object_list[i];
3848 obj_priv = to_intel_bo(obj);
3849
3850 i915_gem_object_move_to_active(obj, ring);
3851#if WATCH_LRU
3852 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3853#endif
3854 }
5c12a07e 3855 i915_add_request(dev, file_priv, request, ring);
8dc5d147 3856 request = NULL;
673a394b 3857
673a394b
EA
3858#if WATCH_LRU
3859 i915_dump_lru(dev, __func__);
3860#endif
3861
3862 i915_verify_inactive(dev, __FILE__, __LINE__);
3863
673a394b 3864err:
aad87dff
JL
3865 for (i = 0; i < pinned; i++)
3866 i915_gem_object_unpin(object_list[i]);
3867
b70d11da
KH
3868 for (i = 0; i < args->buffer_count; i++) {
3869 if (object_list[i]) {
23010e43 3870 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3871 obj_priv->in_execbuffer = false;
3872 }
aad87dff 3873 drm_gem_object_unreference(object_list[i]);
b70d11da 3874 }
673a394b 3875
673a394b
EA
3876 mutex_unlock(&dev->struct_mutex);
3877
93533c29 3878pre_mutex_err:
40a5f0de
EA
3879 /* Copy the updated relocations out regardless of current error
3880 * state. Failure to update the relocs would mean that the next
3881 * time userland calls execbuf, it would do so with presumed offset
3882 * state that didn't match the actual object state.
3883 */
3884 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3885 relocs);
3886 if (ret2 != 0) {
3887 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3888
3889 if (ret == 0)
3890 ret = ret2;
3891 }
3892
8e7d2b2c 3893 drm_free_large(object_list);
9a298b2a 3894 kfree(cliprects);
8dc5d147 3895 kfree(request);
673a394b
EA
3896
3897 return ret;
3898}
3899
76446cac
JB
3900/*
3901 * Legacy execbuffer just creates an exec2 list from the original exec object
3902 * list array and passes it to the real function.
3903 */
3904int
3905i915_gem_execbuffer(struct drm_device *dev, void *data,
3906 struct drm_file *file_priv)
3907{
3908 struct drm_i915_gem_execbuffer *args = data;
3909 struct drm_i915_gem_execbuffer2 exec2;
3910 struct drm_i915_gem_exec_object *exec_list = NULL;
3911 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3912 int ret, i;
3913
3914#if WATCH_EXEC
3915 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3916 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3917#endif
3918
3919 if (args->buffer_count < 1) {
3920 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3921 return -EINVAL;
3922 }
3923
3924 /* Copy in the exec list from userland */
3925 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3926 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3927 if (exec_list == NULL || exec2_list == NULL) {
3928 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3929 args->buffer_count);
3930 drm_free_large(exec_list);
3931 drm_free_large(exec2_list);
3932 return -ENOMEM;
3933 }
3934 ret = copy_from_user(exec_list,
3935 (struct drm_i915_relocation_entry __user *)
3936 (uintptr_t) args->buffers_ptr,
3937 sizeof(*exec_list) * args->buffer_count);
3938 if (ret != 0) {
3939 DRM_ERROR("copy %d exec entries failed %d\n",
3940 args->buffer_count, ret);
3941 drm_free_large(exec_list);
3942 drm_free_large(exec2_list);
3943 return -EFAULT;
3944 }
3945
3946 for (i = 0; i < args->buffer_count; i++) {
3947 exec2_list[i].handle = exec_list[i].handle;
3948 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3949 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3950 exec2_list[i].alignment = exec_list[i].alignment;
3951 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 3952 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
3953 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3954 else
3955 exec2_list[i].flags = 0;
3956 }
3957
3958 exec2.buffers_ptr = args->buffers_ptr;
3959 exec2.buffer_count = args->buffer_count;
3960 exec2.batch_start_offset = args->batch_start_offset;
3961 exec2.batch_len = args->batch_len;
3962 exec2.DR1 = args->DR1;
3963 exec2.DR4 = args->DR4;
3964 exec2.num_cliprects = args->num_cliprects;
3965 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3966 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3967
3968 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3969 if (!ret) {
3970 /* Copy the new buffer offsets back to the user's exec list. */
3971 for (i = 0; i < args->buffer_count; i++)
3972 exec_list[i].offset = exec2_list[i].offset;
3973 /* ... and back out to userspace */
3974 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3975 (uintptr_t) args->buffers_ptr,
3976 exec_list,
3977 sizeof(*exec_list) * args->buffer_count);
3978 if (ret) {
3979 ret = -EFAULT;
3980 DRM_ERROR("failed to copy %d exec entries "
3981 "back to user (%d)\n",
3982 args->buffer_count, ret);
3983 }
76446cac
JB
3984 }
3985
3986 drm_free_large(exec_list);
3987 drm_free_large(exec2_list);
3988 return ret;
3989}
3990
3991int
3992i915_gem_execbuffer2(struct drm_device *dev, void *data,
3993 struct drm_file *file_priv)
3994{
3995 struct drm_i915_gem_execbuffer2 *args = data;
3996 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3997 int ret;
3998
3999#if WATCH_EXEC
4000 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4001 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4002#endif
4003
4004 if (args->buffer_count < 1) {
4005 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4006 return -EINVAL;
4007 }
4008
4009 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4010 if (exec2_list == NULL) {
4011 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4012 args->buffer_count);
4013 return -ENOMEM;
4014 }
4015 ret = copy_from_user(exec2_list,
4016 (struct drm_i915_relocation_entry __user *)
4017 (uintptr_t) args->buffers_ptr,
4018 sizeof(*exec2_list) * args->buffer_count);
4019 if (ret != 0) {
4020 DRM_ERROR("copy %d exec entries failed %d\n",
4021 args->buffer_count, ret);
4022 drm_free_large(exec2_list);
4023 return -EFAULT;
4024 }
4025
4026 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4027 if (!ret) {
4028 /* Copy the new buffer offsets back to the user's exec list. */
4029 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4030 (uintptr_t) args->buffers_ptr,
4031 exec2_list,
4032 sizeof(*exec2_list) * args->buffer_count);
4033 if (ret) {
4034 ret = -EFAULT;
4035 DRM_ERROR("failed to copy %d exec entries "
4036 "back to user (%d)\n",
4037 args->buffer_count, ret);
4038 }
4039 }
4040
4041 drm_free_large(exec2_list);
4042 return ret;
4043}
4044
673a394b
EA
4045int
4046i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4047{
4048 struct drm_device *dev = obj->dev;
f13d3f73 4049 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4050 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4051 int ret;
4052
778c3544
DV
4053 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4054
673a394b 4055 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4056
4057 if (obj_priv->gtt_space != NULL) {
4058 if (alignment == 0)
4059 alignment = i915_gem_get_gtt_alignment(obj);
4060 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4061 WARN(obj_priv->pin_count,
4062 "bo is already pinned with incorrect alignment:"
4063 " offset=%x, req.alignment=%x\n",
4064 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4065 ret = i915_gem_object_unbind(obj);
4066 if (ret)
4067 return ret;
4068 }
4069 }
4070
673a394b
EA
4071 if (obj_priv->gtt_space == NULL) {
4072 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4073 if (ret)
673a394b 4074 return ret;
22c344e9 4075 }
76446cac 4076
673a394b
EA
4077 obj_priv->pin_count++;
4078
4079 /* If the object is not active and not pending a flush,
4080 * remove it from the inactive list
4081 */
4082 if (obj_priv->pin_count == 1) {
4083 atomic_inc(&dev->pin_count);
4084 atomic_add(obj->size, &dev->pin_memory);
f13d3f73
CW
4085 if (!obj_priv->active)
4086 list_move_tail(&obj_priv->list,
4087 &dev_priv->mm.pinned_list);
673a394b
EA
4088 }
4089 i915_verify_inactive(dev, __FILE__, __LINE__);
4090
4091 return 0;
4092}
4093
4094void
4095i915_gem_object_unpin(struct drm_gem_object *obj)
4096{
4097 struct drm_device *dev = obj->dev;
4098 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4099 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4100
4101 i915_verify_inactive(dev, __FILE__, __LINE__);
4102 obj_priv->pin_count--;
4103 BUG_ON(obj_priv->pin_count < 0);
4104 BUG_ON(obj_priv->gtt_space == NULL);
4105
4106 /* If the object is no longer pinned, and is
4107 * neither active nor being flushed, then stick it on
4108 * the inactive list
4109 */
4110 if (obj_priv->pin_count == 0) {
f13d3f73 4111 if (!obj_priv->active)
673a394b
EA
4112 list_move_tail(&obj_priv->list,
4113 &dev_priv->mm.inactive_list);
4114 atomic_dec(&dev->pin_count);
4115 atomic_sub(obj->size, &dev->pin_memory);
4116 }
4117 i915_verify_inactive(dev, __FILE__, __LINE__);
4118}
4119
4120int
4121i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4122 struct drm_file *file_priv)
4123{
4124 struct drm_i915_gem_pin *args = data;
4125 struct drm_gem_object *obj;
4126 struct drm_i915_gem_object *obj_priv;
4127 int ret;
4128
4129 mutex_lock(&dev->struct_mutex);
4130
4131 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4132 if (obj == NULL) {
4133 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4134 args->handle);
4135 mutex_unlock(&dev->struct_mutex);
bf79cb91 4136 return -ENOENT;
673a394b 4137 }
23010e43 4138 obj_priv = to_intel_bo(obj);
673a394b 4139
bb6baf76
CW
4140 if (obj_priv->madv != I915_MADV_WILLNEED) {
4141 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4142 drm_gem_object_unreference(obj);
4143 mutex_unlock(&dev->struct_mutex);
4144 return -EINVAL;
4145 }
4146
79e53945
JB
4147 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4148 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4149 args->handle);
96dec61d 4150 drm_gem_object_unreference(obj);
673a394b 4151 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4152 return -EINVAL;
4153 }
4154
4155 obj_priv->user_pin_count++;
4156 obj_priv->pin_filp = file_priv;
4157 if (obj_priv->user_pin_count == 1) {
4158 ret = i915_gem_object_pin(obj, args->alignment);
4159 if (ret != 0) {
4160 drm_gem_object_unreference(obj);
4161 mutex_unlock(&dev->struct_mutex);
4162 return ret;
4163 }
673a394b
EA
4164 }
4165
4166 /* XXX - flush the CPU caches for pinned objects
4167 * as the X server doesn't manage domains yet
4168 */
e47c68e9 4169 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4170 args->offset = obj_priv->gtt_offset;
4171 drm_gem_object_unreference(obj);
4172 mutex_unlock(&dev->struct_mutex);
4173
4174 return 0;
4175}
4176
4177int
4178i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4179 struct drm_file *file_priv)
4180{
4181 struct drm_i915_gem_pin *args = data;
4182 struct drm_gem_object *obj;
79e53945 4183 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4184
4185 mutex_lock(&dev->struct_mutex);
4186
4187 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4188 if (obj == NULL) {
4189 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4190 args->handle);
4191 mutex_unlock(&dev->struct_mutex);
bf79cb91 4192 return -ENOENT;
673a394b
EA
4193 }
4194
23010e43 4195 obj_priv = to_intel_bo(obj);
79e53945
JB
4196 if (obj_priv->pin_filp != file_priv) {
4197 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4198 args->handle);
4199 drm_gem_object_unreference(obj);
4200 mutex_unlock(&dev->struct_mutex);
4201 return -EINVAL;
4202 }
4203 obj_priv->user_pin_count--;
4204 if (obj_priv->user_pin_count == 0) {
4205 obj_priv->pin_filp = NULL;
4206 i915_gem_object_unpin(obj);
4207 }
673a394b
EA
4208
4209 drm_gem_object_unreference(obj);
4210 mutex_unlock(&dev->struct_mutex);
4211 return 0;
4212}
4213
4214int
4215i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4216 struct drm_file *file_priv)
4217{
4218 struct drm_i915_gem_busy *args = data;
4219 struct drm_gem_object *obj;
4220 struct drm_i915_gem_object *obj_priv;
4221
673a394b
EA
4222 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4223 if (obj == NULL) {
4224 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4225 args->handle);
bf79cb91 4226 return -ENOENT;
673a394b
EA
4227 }
4228
b1ce786c 4229 mutex_lock(&dev->struct_mutex);
d1b851fc 4230
0be555b6
CW
4231 /* Count all active objects as busy, even if they are currently not used
4232 * by the gpu. Users of this interface expect objects to eventually
4233 * become non-busy without any further actions, therefore emit any
4234 * necessary flushes here.
c4de0a5d 4235 */
0be555b6
CW
4236 obj_priv = to_intel_bo(obj);
4237 args->busy = obj_priv->active;
4238 if (args->busy) {
4239 /* Unconditionally flush objects, even when the gpu still uses this
4240 * object. Userspace calling this function indicates that it wants to
4241 * use this buffer rather sooner than later, so issuing the required
4242 * flush earlier is beneficial.
4243 */
c78ec30b
CW
4244 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4245 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4246 obj_priv->ring,
4247 0, obj->write_domain);
0be555b6
CW
4248
4249 /* Update the active list for the hardware's current position.
4250 * Otherwise this only updates on a delayed timer or when irqs
4251 * are actually unmasked, and our working set ends up being
4252 * larger than required.
4253 */
4254 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4255
4256 args->busy = obj_priv->active;
4257 }
673a394b
EA
4258
4259 drm_gem_object_unreference(obj);
4260 mutex_unlock(&dev->struct_mutex);
4261 return 0;
4262}
4263
4264int
4265i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4266 struct drm_file *file_priv)
4267{
4268 return i915_gem_ring_throttle(dev, file_priv);
4269}
4270
3ef94daa
CW
4271int
4272i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4273 struct drm_file *file_priv)
4274{
4275 struct drm_i915_gem_madvise *args = data;
4276 struct drm_gem_object *obj;
4277 struct drm_i915_gem_object *obj_priv;
4278
4279 switch (args->madv) {
4280 case I915_MADV_DONTNEED:
4281 case I915_MADV_WILLNEED:
4282 break;
4283 default:
4284 return -EINVAL;
4285 }
4286
4287 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4288 if (obj == NULL) {
4289 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4290 args->handle);
bf79cb91 4291 return -ENOENT;
3ef94daa
CW
4292 }
4293
4294 mutex_lock(&dev->struct_mutex);
23010e43 4295 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4296
4297 if (obj_priv->pin_count) {
4298 drm_gem_object_unreference(obj);
4299 mutex_unlock(&dev->struct_mutex);
4300
4301 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4302 return -EINVAL;
4303 }
4304
bb6baf76
CW
4305 if (obj_priv->madv != __I915_MADV_PURGED)
4306 obj_priv->madv = args->madv;
3ef94daa 4307
2d7ef395
CW
4308 /* if the object is no longer bound, discard its backing storage */
4309 if (i915_gem_object_is_purgeable(obj_priv) &&
4310 obj_priv->gtt_space == NULL)
4311 i915_gem_object_truncate(obj);
4312
bb6baf76
CW
4313 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4314
3ef94daa
CW
4315 drm_gem_object_unreference(obj);
4316 mutex_unlock(&dev->struct_mutex);
4317
4318 return 0;
4319}
4320
ac52bc56
DV
4321struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4322 size_t size)
4323{
c397b908 4324 struct drm_i915_gem_object *obj;
ac52bc56 4325
c397b908
DV
4326 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4327 if (obj == NULL)
4328 return NULL;
673a394b 4329
c397b908
DV
4330 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4331 kfree(obj);
4332 return NULL;
4333 }
673a394b 4334
c397b908
DV
4335 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4336 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4337
c397b908 4338 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4339 obj->base.driver_private = NULL;
c397b908
DV
4340 obj->fence_reg = I915_FENCE_REG_NONE;
4341 INIT_LIST_HEAD(&obj->list);
4342 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4343 obj->madv = I915_MADV_WILLNEED;
de151cf6 4344
c397b908
DV
4345 trace_i915_gem_object_create(&obj->base);
4346
4347 return &obj->base;
4348}
4349
4350int i915_gem_init_object(struct drm_gem_object *obj)
4351{
4352 BUG();
de151cf6 4353
673a394b
EA
4354 return 0;
4355}
4356
be72615b 4357static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4358{
de151cf6 4359 struct drm_device *dev = obj->dev;
be72615b 4360 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4361 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4362 int ret;
673a394b 4363
be72615b
CW
4364 ret = i915_gem_object_unbind(obj);
4365 if (ret == -ERESTARTSYS) {
4366 list_move(&obj_priv->list,
4367 &dev_priv->mm.deferred_free_list);
4368 return;
4369 }
673a394b 4370
7e616158
CW
4371 if (obj_priv->mmap_offset)
4372 i915_gem_free_mmap_offset(obj);
de151cf6 4373
c397b908
DV
4374 drm_gem_object_release(obj);
4375
9a298b2a 4376 kfree(obj_priv->page_cpu_valid);
280b713b 4377 kfree(obj_priv->bit_17);
c397b908 4378 kfree(obj_priv);
673a394b
EA
4379}
4380
be72615b
CW
4381void i915_gem_free_object(struct drm_gem_object *obj)
4382{
4383 struct drm_device *dev = obj->dev;
4384 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4385
4386 trace_i915_gem_object_destroy(obj);
4387
4388 while (obj_priv->pin_count > 0)
4389 i915_gem_object_unpin(obj);
4390
4391 if (obj_priv->phys_obj)
4392 i915_gem_detach_phys_object(dev, obj);
4393
4394 i915_gem_free_object_tail(obj);
4395}
4396
29105ccc
CW
4397int
4398i915_gem_idle(struct drm_device *dev)
4399{
4400 drm_i915_private_t *dev_priv = dev->dev_private;
4401 int ret;
28dfe52a 4402
29105ccc 4403 mutex_lock(&dev->struct_mutex);
1c5d22f7 4404
8187a2b7 4405 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4406 (dev_priv->render_ring.gem_object == NULL) ||
4407 (HAS_BSD(dev) &&
4408 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4409 mutex_unlock(&dev->struct_mutex);
4410 return 0;
28dfe52a
EA
4411 }
4412
29105ccc 4413 ret = i915_gpu_idle(dev);
6dbe2772
KP
4414 if (ret) {
4415 mutex_unlock(&dev->struct_mutex);
673a394b 4416 return ret;
6dbe2772 4417 }
673a394b 4418
29105ccc
CW
4419 /* Under UMS, be paranoid and evict. */
4420 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4421 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4422 if (ret) {
4423 mutex_unlock(&dev->struct_mutex);
4424 return ret;
4425 }
4426 }
4427
4428 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4429 * We need to replace this with a semaphore, or something.
4430 * And not confound mm.suspended!
4431 */
4432 dev_priv->mm.suspended = 1;
bc0c7f14 4433 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4434
4435 i915_kernel_lost_context(dev);
6dbe2772 4436 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4437
6dbe2772
KP
4438 mutex_unlock(&dev->struct_mutex);
4439
29105ccc
CW
4440 /* Cancel the retire work handler, which should be idle now. */
4441 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4442
673a394b
EA
4443 return 0;
4444}
4445
e552eb70
JB
4446/*
4447 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4448 * over cache flushing.
4449 */
8187a2b7 4450static int
e552eb70
JB
4451i915_gem_init_pipe_control(struct drm_device *dev)
4452{
4453 drm_i915_private_t *dev_priv = dev->dev_private;
4454 struct drm_gem_object *obj;
4455 struct drm_i915_gem_object *obj_priv;
4456 int ret;
4457
34dc4d44 4458 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4459 if (obj == NULL) {
4460 DRM_ERROR("Failed to allocate seqno page\n");
4461 ret = -ENOMEM;
4462 goto err;
4463 }
4464 obj_priv = to_intel_bo(obj);
4465 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4466
4467 ret = i915_gem_object_pin(obj, 4096);
4468 if (ret)
4469 goto err_unref;
4470
4471 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4472 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4473 if (dev_priv->seqno_page == NULL)
4474 goto err_unpin;
4475
4476 dev_priv->seqno_obj = obj;
4477 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4478
4479 return 0;
4480
4481err_unpin:
4482 i915_gem_object_unpin(obj);
4483err_unref:
4484 drm_gem_object_unreference(obj);
4485err:
4486 return ret;
4487}
4488
8187a2b7
ZN
4489
4490static void
e552eb70
JB
4491i915_gem_cleanup_pipe_control(struct drm_device *dev)
4492{
4493 drm_i915_private_t *dev_priv = dev->dev_private;
4494 struct drm_gem_object *obj;
4495 struct drm_i915_gem_object *obj_priv;
4496
4497 obj = dev_priv->seqno_obj;
4498 obj_priv = to_intel_bo(obj);
4499 kunmap(obj_priv->pages[0]);
4500 i915_gem_object_unpin(obj);
4501 drm_gem_object_unreference(obj);
4502 dev_priv->seqno_obj = NULL;
4503
4504 dev_priv->seqno_page = NULL;
673a394b
EA
4505}
4506
8187a2b7
ZN
4507int
4508i915_gem_init_ringbuffer(struct drm_device *dev)
4509{
4510 drm_i915_private_t *dev_priv = dev->dev_private;
4511 int ret;
68f95ba9 4512
8187a2b7
ZN
4513 if (HAS_PIPE_CONTROL(dev)) {
4514 ret = i915_gem_init_pipe_control(dev);
4515 if (ret)
4516 return ret;
4517 }
68f95ba9 4518
5c1143bb 4519 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4520 if (ret)
4521 goto cleanup_pipe_control;
4522
4523 if (HAS_BSD(dev)) {
5c1143bb 4524 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4525 if (ret)
4526 goto cleanup_render_ring;
d1b851fc 4527 }
68f95ba9 4528
6f392d54
CW
4529 dev_priv->next_seqno = 1;
4530
68f95ba9
CW
4531 return 0;
4532
4533cleanup_render_ring:
4534 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4535cleanup_pipe_control:
4536 if (HAS_PIPE_CONTROL(dev))
4537 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4538 return ret;
4539}
4540
4541void
4542i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4543{
4544 drm_i915_private_t *dev_priv = dev->dev_private;
4545
4546 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4547 if (HAS_BSD(dev))
4548 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4549 if (HAS_PIPE_CONTROL(dev))
4550 i915_gem_cleanup_pipe_control(dev);
4551}
4552
673a394b
EA
4553int
4554i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4555 struct drm_file *file_priv)
4556{
4557 drm_i915_private_t *dev_priv = dev->dev_private;
4558 int ret;
4559
79e53945
JB
4560 if (drm_core_check_feature(dev, DRIVER_MODESET))
4561 return 0;
4562
ba1234d1 4563 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4564 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4565 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4566 }
4567
673a394b 4568 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4569 dev_priv->mm.suspended = 0;
4570
4571 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4572 if (ret != 0) {
4573 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4574 return ret;
d816f6ac 4575 }
9bb2d6f9 4576
852835f3 4577 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4578 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
673a394b
EA
4579 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4580 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4581 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4582 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4583 mutex_unlock(&dev->struct_mutex);
dbb19d30 4584
5f35308b
CW
4585 ret = drm_irq_install(dev);
4586 if (ret)
4587 goto cleanup_ringbuffer;
dbb19d30 4588
673a394b 4589 return 0;
5f35308b
CW
4590
4591cleanup_ringbuffer:
4592 mutex_lock(&dev->struct_mutex);
4593 i915_gem_cleanup_ringbuffer(dev);
4594 dev_priv->mm.suspended = 1;
4595 mutex_unlock(&dev->struct_mutex);
4596
4597 return ret;
673a394b
EA
4598}
4599
4600int
4601i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4602 struct drm_file *file_priv)
4603{
79e53945
JB
4604 if (drm_core_check_feature(dev, DRIVER_MODESET))
4605 return 0;
4606
dbb19d30 4607 drm_irq_uninstall(dev);
e6890f6f 4608 return i915_gem_idle(dev);
673a394b
EA
4609}
4610
4611void
4612i915_gem_lastclose(struct drm_device *dev)
4613{
4614 int ret;
673a394b 4615
e806b495
EA
4616 if (drm_core_check_feature(dev, DRIVER_MODESET))
4617 return;
4618
6dbe2772
KP
4619 ret = i915_gem_idle(dev);
4620 if (ret)
4621 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4622}
4623
4624void
4625i915_gem_load(struct drm_device *dev)
4626{
b5aa8a0f 4627 int i;
673a394b
EA
4628 drm_i915_private_t *dev_priv = dev->dev_private;
4629
673a394b 4630 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4631 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4632 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4633 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4634 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4635 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4636 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4637 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4638 if (HAS_BSD(dev)) {
4639 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4640 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4641 }
007cc8ac
DV
4642 for (i = 0; i < 16; i++)
4643 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4644 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4645 i915_gem_retire_work_handler);
31169714
CW
4646 spin_lock(&shrink_list_lock);
4647 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4648 spin_unlock(&shrink_list_lock);
4649
94400120
DA
4650 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4651 if (IS_GEN3(dev)) {
4652 u32 tmp = I915_READ(MI_ARB_STATE);
4653 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4654 /* arb state is a masked write, so set bit + bit in mask */
4655 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4656 I915_WRITE(MI_ARB_STATE, tmp);
4657 }
4658 }
4659
de151cf6 4660 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4661 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4662 dev_priv->fence_reg_start = 3;
de151cf6 4663
a6c45cf0 4664 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4665 dev_priv->num_fence_regs = 16;
4666 else
4667 dev_priv->num_fence_regs = 8;
4668
b5aa8a0f 4669 /* Initialize fence registers to zero */
a6c45cf0
CW
4670 switch (INTEL_INFO(dev)->gen) {
4671 case 6:
4672 for (i = 0; i < 16; i++)
4673 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4674 break;
4675 case 5:
4676 case 4:
b5aa8a0f
GH
4677 for (i = 0; i < 16; i++)
4678 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4679 break;
4680 case 3:
b5aa8a0f
GH
4681 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4682 for (i = 0; i < 8; i++)
4683 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4684 case 2:
4685 for (i = 0; i < 8; i++)
4686 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4687 break;
b5aa8a0f 4688 }
673a394b 4689 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4690 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4691}
71acb5eb
DA
4692
4693/*
4694 * Create a physically contiguous memory object for this object
4695 * e.g. for cursor + overlay regs
4696 */
995b6762
CW
4697static int i915_gem_init_phys_object(struct drm_device *dev,
4698 int id, int size, int align)
71acb5eb
DA
4699{
4700 drm_i915_private_t *dev_priv = dev->dev_private;
4701 struct drm_i915_gem_phys_object *phys_obj;
4702 int ret;
4703
4704 if (dev_priv->mm.phys_objs[id - 1] || !size)
4705 return 0;
4706
9a298b2a 4707 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4708 if (!phys_obj)
4709 return -ENOMEM;
4710
4711 phys_obj->id = id;
4712
6eeefaf3 4713 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4714 if (!phys_obj->handle) {
4715 ret = -ENOMEM;
4716 goto kfree_obj;
4717 }
4718#ifdef CONFIG_X86
4719 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4720#endif
4721
4722 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4723
4724 return 0;
4725kfree_obj:
9a298b2a 4726 kfree(phys_obj);
71acb5eb
DA
4727 return ret;
4728}
4729
995b6762 4730static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4731{
4732 drm_i915_private_t *dev_priv = dev->dev_private;
4733 struct drm_i915_gem_phys_object *phys_obj;
4734
4735 if (!dev_priv->mm.phys_objs[id - 1])
4736 return;
4737
4738 phys_obj = dev_priv->mm.phys_objs[id - 1];
4739 if (phys_obj->cur_obj) {
4740 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4741 }
4742
4743#ifdef CONFIG_X86
4744 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4745#endif
4746 drm_pci_free(dev, phys_obj->handle);
4747 kfree(phys_obj);
4748 dev_priv->mm.phys_objs[id - 1] = NULL;
4749}
4750
4751void i915_gem_free_all_phys_object(struct drm_device *dev)
4752{
4753 int i;
4754
260883c8 4755 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4756 i915_gem_free_phys_object(dev, i);
4757}
4758
4759void i915_gem_detach_phys_object(struct drm_device *dev,
4760 struct drm_gem_object *obj)
4761{
4762 struct drm_i915_gem_object *obj_priv;
4763 int i;
4764 int ret;
4765 int page_count;
4766
23010e43 4767 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4768 if (!obj_priv->phys_obj)
4769 return;
4770
4bdadb97 4771 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4772 if (ret)
4773 goto out;
4774
4775 page_count = obj->size / PAGE_SIZE;
4776
4777 for (i = 0; i < page_count; i++) {
856fa198 4778 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4779 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4780
4781 memcpy(dst, src, PAGE_SIZE);
4782 kunmap_atomic(dst, KM_USER0);
4783 }
856fa198 4784 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4785 drm_agp_chipset_flush(dev);
d78b47b9
CW
4786
4787 i915_gem_object_put_pages(obj);
71acb5eb
DA
4788out:
4789 obj_priv->phys_obj->cur_obj = NULL;
4790 obj_priv->phys_obj = NULL;
4791}
4792
4793int
4794i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4795 struct drm_gem_object *obj,
4796 int id,
4797 int align)
71acb5eb
DA
4798{
4799 drm_i915_private_t *dev_priv = dev->dev_private;
4800 struct drm_i915_gem_object *obj_priv;
4801 int ret = 0;
4802 int page_count;
4803 int i;
4804
4805 if (id > I915_MAX_PHYS_OBJECT)
4806 return -EINVAL;
4807
23010e43 4808 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4809
4810 if (obj_priv->phys_obj) {
4811 if (obj_priv->phys_obj->id == id)
4812 return 0;
4813 i915_gem_detach_phys_object(dev, obj);
4814 }
4815
71acb5eb
DA
4816 /* create a new object */
4817 if (!dev_priv->mm.phys_objs[id - 1]) {
4818 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4819 obj->size, align);
71acb5eb 4820 if (ret) {
aeb565df 4821 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4822 goto out;
4823 }
4824 }
4825
4826 /* bind to the object */
4827 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4828 obj_priv->phys_obj->cur_obj = obj;
4829
4bdadb97 4830 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4831 if (ret) {
4832 DRM_ERROR("failed to get page list\n");
4833 goto out;
4834 }
4835
4836 page_count = obj->size / PAGE_SIZE;
4837
4838 for (i = 0; i < page_count; i++) {
856fa198 4839 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4840 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4841
4842 memcpy(dst, src, PAGE_SIZE);
4843 kunmap_atomic(src, KM_USER0);
4844 }
4845
d78b47b9
CW
4846 i915_gem_object_put_pages(obj);
4847
71acb5eb
DA
4848 return 0;
4849out:
4850 return ret;
4851}
4852
4853static int
4854i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4855 struct drm_i915_gem_pwrite *args,
4856 struct drm_file *file_priv)
4857{
23010e43 4858 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4859 void *obj_addr;
4860 int ret;
4861 char __user *user_data;
4862
4863 user_data = (char __user *) (uintptr_t) args->data_ptr;
4864 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4865
44d98a61 4866 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4867 ret = copy_from_user(obj_addr, user_data, args->size);
4868 if (ret)
4869 return -EFAULT;
4870
4871 drm_agp_chipset_flush(dev);
4872 return 0;
4873}
b962442e 4874
f787a5f5 4875void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4876{
f787a5f5 4877 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4878
4879 /* Clean up our request list when the client is going away, so that
4880 * later retire_requests won't dereference our soon-to-be-gone
4881 * file_priv.
4882 */
4883 mutex_lock(&dev->struct_mutex);
f787a5f5
CW
4884 mutex_lock(&file_priv->mutex);
4885 while (!list_empty(&file_priv->mm.request_list)) {
4886 struct drm_i915_gem_request *request;
4887
4888 request = list_first_entry(&file_priv->mm.request_list,
4889 struct drm_i915_gem_request,
4890 client_list);
4891 list_del(&request->client_list);
4892 request->file_priv = NULL;
4893 }
4894 mutex_unlock(&file_priv->mutex);
b962442e
EA
4895 mutex_unlock(&dev->struct_mutex);
4896}
31169714 4897
1637ef41
CW
4898static int
4899i915_gpu_is_active(struct drm_device *dev)
4900{
4901 drm_i915_private_t *dev_priv = dev->dev_private;
4902 int lists_empty;
4903
1637ef41 4904 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4905 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4906 if (HAS_BSD(dev))
4907 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4908
4909 return !lists_empty;
4910}
4911
31169714 4912static int
7f8275d0 4913i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4914{
4915 drm_i915_private_t *dev_priv, *next_dev;
4916 struct drm_i915_gem_object *obj_priv, *next_obj;
4917 int cnt = 0;
4918 int would_deadlock = 1;
4919
4920 /* "fast-path" to count number of available objects */
4921 if (nr_to_scan == 0) {
4922 spin_lock(&shrink_list_lock);
4923 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4924 struct drm_device *dev = dev_priv->dev;
4925
4926 if (mutex_trylock(&dev->struct_mutex)) {
4927 list_for_each_entry(obj_priv,
4928 &dev_priv->mm.inactive_list,
4929 list)
4930 cnt++;
4931 mutex_unlock(&dev->struct_mutex);
4932 }
4933 }
4934 spin_unlock(&shrink_list_lock);
4935
4936 return (cnt / 100) * sysctl_vfs_cache_pressure;
4937 }
4938
4939 spin_lock(&shrink_list_lock);
4940
1637ef41 4941rescan:
31169714
CW
4942 /* first scan for clean buffers */
4943 list_for_each_entry_safe(dev_priv, next_dev,
4944 &shrink_list, mm.shrink_list) {
4945 struct drm_device *dev = dev_priv->dev;
4946
4947 if (! mutex_trylock(&dev->struct_mutex))
4948 continue;
4949
4950 spin_unlock(&shrink_list_lock);
b09a1fec 4951 i915_gem_retire_requests(dev);
31169714
CW
4952
4953 list_for_each_entry_safe(obj_priv, next_obj,
4954 &dev_priv->mm.inactive_list,
4955 list) {
4956 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4957 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4958 if (--nr_to_scan <= 0)
4959 break;
4960 }
4961 }
4962
4963 spin_lock(&shrink_list_lock);
4964 mutex_unlock(&dev->struct_mutex);
4965
963b4836
CW
4966 would_deadlock = 0;
4967
31169714
CW
4968 if (nr_to_scan <= 0)
4969 break;
4970 }
4971
4972 /* second pass, evict/count anything still on the inactive list */
4973 list_for_each_entry_safe(dev_priv, next_dev,
4974 &shrink_list, mm.shrink_list) {
4975 struct drm_device *dev = dev_priv->dev;
4976
4977 if (! mutex_trylock(&dev->struct_mutex))
4978 continue;
4979
4980 spin_unlock(&shrink_list_lock);
4981
4982 list_for_each_entry_safe(obj_priv, next_obj,
4983 &dev_priv->mm.inactive_list,
4984 list) {
4985 if (nr_to_scan > 0) {
a8089e84 4986 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4987 nr_to_scan--;
4988 } else
4989 cnt++;
4990 }
4991
4992 spin_lock(&shrink_list_lock);
4993 mutex_unlock(&dev->struct_mutex);
4994
4995 would_deadlock = 0;
4996 }
4997
1637ef41
CW
4998 if (nr_to_scan) {
4999 int active = 0;
5000
5001 /*
5002 * We are desperate for pages, so as a last resort, wait
5003 * for the GPU to finish and discard whatever we can.
5004 * This has a dramatic impact to reduce the number of
5005 * OOM-killer events whilst running the GPU aggressively.
5006 */
5007 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5008 struct drm_device *dev = dev_priv->dev;
5009
5010 if (!mutex_trylock(&dev->struct_mutex))
5011 continue;
5012
5013 spin_unlock(&shrink_list_lock);
5014
5015 if (i915_gpu_is_active(dev)) {
5016 i915_gpu_idle(dev);
5017 active++;
5018 }
5019
5020 spin_lock(&shrink_list_lock);
5021 mutex_unlock(&dev->struct_mutex);
5022 }
5023
5024 if (active)
5025 goto rescan;
5026 }
5027
31169714
CW
5028 spin_unlock(&shrink_list_lock);
5029
5030 if (would_deadlock)
5031 return -1;
5032 else if (cnt > 0)
5033 return (cnt / 100) * sysctl_vfs_cache_pressure;
5034 else
5035 return 0;
5036}
5037
5038static struct shrinker shrinker = {
5039 .shrink = i915_gem_shrink,
5040 .seeks = DEFAULT_SEEKS,
5041};
5042
5043__init void
5044i915_gem_shrinker_init(void)
5045{
5046 register_shrinker(&shrinker);
5047}
5048
5049__exit void
5050i915_gem_shrinker_exit(void)
5051{
5052 unregister_shrinker(&shrinker);
5053}