drm/i915: Expand bool interruptible to pass flags to i915_wait_request()
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
c13d87ea 32#include "i915_gem_dmabuf.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
c13d87ea 38#include <linux/reservation.h>
5949eac4 39#include <linux/shmem_fs.h>
5a0e3ad6 40#include <linux/slab.h>
673a394b 41#include <linux/swap.h>
79e53945 42#include <linux/pci.h>
1286ff73 43#include <linux/dma-buf.h>
673a394b 44
05394f39 45static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 46static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 47
c76ce038
CW
48static bool cpu_cache_is_coherent(struct drm_device *dev,
49 enum i915_cache_level level)
50{
51 return HAS_LLC(dev) || level != I915_CACHE_NONE;
52}
53
2c22569b
CW
54static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55{
b50a5371
AS
56 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57 return false;
58
2c22569b
CW
59 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60 return true;
61
62 return obj->pin_display;
63}
64
4f1959ee
AS
65static int
66insert_mappable_node(struct drm_i915_private *i915,
67 struct drm_mm_node *node, u32 size)
68{
69 memset(node, 0, sizeof(*node));
70 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71 size, 0, 0, 0,
72 i915->ggtt.mappable_end,
73 DRM_MM_SEARCH_DEFAULT,
74 DRM_MM_CREATE_DEFAULT);
75}
76
77static void
78remove_mappable_node(struct drm_mm_node *node)
79{
80 drm_mm_remove_node(node);
81}
82
73aa808f
CW
83/* some bookkeeping */
84static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85 size_t size)
86{
c20e8355 87 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88 dev_priv->mm.object_count++;
89 dev_priv->mm.object_memory += size;
c20e8355 90 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
91}
92
93static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count--;
98 dev_priv->mm.object_memory -= size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
21dd3734 102static int
33196ded 103i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 104{
30dbf0c0
CW
105 int ret;
106
d98c52cf 107 if (!i915_reset_in_progress(error))
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0 115 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 116 !i915_reset_in_progress(error),
1f83fee0 117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
d98c52cf
CW
123 } else {
124 return 0;
0a6759c6 125 }
30dbf0c0
CW
126}
127
54cf91dc 128int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 129{
fac5e23e 130 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
131 int ret;
132
33196ded 133 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
134 if (ret)
135 return ret;
136
137 ret = mutex_lock_interruptible(&dev->struct_mutex);
138 if (ret)
139 return ret;
140
76c1dec1
CW
141 return 0;
142}
30dbf0c0 143
5a125c3c
EA
144int
145i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 146 struct drm_file *file)
5a125c3c 147{
72e96d64 148 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 149 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 150 struct drm_i915_gem_get_aperture *args = data;
ca1543be 151 struct i915_vma *vma;
6299f992 152 size_t pinned;
5a125c3c 153
6299f992 154 pinned = 0;
73aa808f 155 mutex_lock(&dev->struct_mutex);
1c7f4bca 156 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 157 if (i915_vma_is_pinned(vma))
ca1543be 158 pinned += vma->node.size;
1c7f4bca 159 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 160 if (i915_vma_is_pinned(vma))
ca1543be 161 pinned += vma->node.size;
73aa808f 162 mutex_unlock(&dev->struct_mutex);
5a125c3c 163
72e96d64 164 args->aper_size = ggtt->base.total;
0206e353 165 args->aper_available_size = args->aper_size - pinned;
6299f992 166
5a125c3c
EA
167 return 0;
168}
169
6a2c4232
CW
170static int
171i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 172{
93c76a3d 173 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232
CW
174 char *vaddr = obj->phys_handle->vaddr;
175 struct sg_table *st;
176 struct scatterlist *sg;
177 int i;
00731155 178
6a2c4232
CW
179 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180 return -EINVAL;
181
182 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183 struct page *page;
184 char *src;
185
186 page = shmem_read_mapping_page(mapping, i);
187 if (IS_ERR(page))
188 return PTR_ERR(page);
189
190 src = kmap_atomic(page);
191 memcpy(vaddr, src, PAGE_SIZE);
192 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193 kunmap_atomic(src);
194
09cbfeaf 195 put_page(page);
6a2c4232
CW
196 vaddr += PAGE_SIZE;
197 }
198
c033666a 199 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
200
201 st = kmalloc(sizeof(*st), GFP_KERNEL);
202 if (st == NULL)
203 return -ENOMEM;
204
205 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206 kfree(st);
207 return -ENOMEM;
208 }
209
210 sg = st->sgl;
211 sg->offset = 0;
212 sg->length = obj->base.size;
00731155 213
6a2c4232
CW
214 sg_dma_address(sg) = obj->phys_handle->busaddr;
215 sg_dma_len(sg) = obj->base.size;
216
217 obj->pages = st;
6a2c4232
CW
218 return 0;
219}
220
221static void
222i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223{
224 int ret;
225
226 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 227
6a2c4232 228 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 229 if (WARN_ON(ret)) {
6a2c4232
CW
230 /* In the event of a disaster, abandon all caches and
231 * hope for the best.
232 */
6a2c4232
CW
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
93c76a3d 240 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
09cbfeaf 260 put_page(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
6a2c4232
CW
268}
269
270static void
271i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272{
273 drm_pci_free(obj->base.dev, obj->phys_handle);
274}
275
276static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277 .get_pages = i915_gem_object_get_pages_phys,
278 .put_pages = i915_gem_object_put_pages_phys,
279 .release = i915_gem_object_release_phys,
280};
281
35a9611c 282int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
283{
284 struct i915_vma *vma;
285 LIST_HEAD(still_in_list);
02bef8f9
CW
286 int ret;
287
288 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 289
02bef8f9
CW
290 /* Closed vma are removed from the obj->vma_list - but they may
291 * still have an active binding on the object. To remove those we
292 * must wait for all rendering to complete to the object (as unbinding
293 * must anyway), and retire the requests.
aa653a68 294 */
02bef8f9
CW
295 ret = i915_gem_object_wait_rendering(obj, false);
296 if (ret)
297 return ret;
298
299 i915_gem_retire_requests(to_i915(obj->base.dev));
300
aa653a68
CW
301 while ((vma = list_first_entry_or_null(&obj->vma_list,
302 struct i915_vma,
303 obj_link))) {
304 list_move_tail(&vma->obj_link, &still_in_list);
305 ret = i915_vma_unbind(vma);
306 if (ret)
307 break;
308 }
309 list_splice(&still_in_list, &obj->vma_list);
310
311 return ret;
312}
313
00e60f26
CW
314/**
315 * Ensures that all rendering to the object has completed and the object is
316 * safe to unbind from the GTT or access from the CPU.
317 * @obj: i915 gem object
318 * @readonly: waiting for just read access or read-write access
319 */
320int
321i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
322 bool readonly)
323{
324 struct reservation_object *resv;
325 struct i915_gem_active *active;
326 unsigned long active_mask;
327 int idx;
328
329 lockdep_assert_held(&obj->base.dev->struct_mutex);
330
331 if (!readonly) {
332 active = obj->last_read;
333 active_mask = i915_gem_object_get_active(obj);
334 } else {
335 active_mask = 1;
336 active = &obj->last_write;
337 }
338
339 for_each_active(active_mask, idx) {
340 int ret;
341
342 ret = i915_gem_active_wait(&active[idx],
343 &obj->base.dev->struct_mutex);
344 if (ret)
345 return ret;
346 }
347
348 resv = i915_gem_object_get_dmabuf_resv(obj);
349 if (resv) {
350 long err;
351
352 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
353 MAX_SCHEDULE_TIMEOUT);
354 if (err < 0)
355 return err;
356 }
357
358 return 0;
359}
360
b8f9096d
CW
361/* A nonblocking variant of the above wait. Must be called prior to
362 * acquiring the mutex for the object, as the object state may change
363 * during this call. A reference must be held by the caller for the object.
00e60f26
CW
364 */
365static __must_check int
b8f9096d
CW
366__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
367 struct intel_rps_client *rps,
368 bool readonly)
00e60f26 369{
00e60f26
CW
370 struct i915_gem_active *active;
371 unsigned long active_mask;
b8f9096d 372 int idx;
00e60f26 373
b8f9096d 374 active_mask = __I915_BO_ACTIVE(obj);
00e60f26
CW
375 if (!active_mask)
376 return 0;
377
378 if (!readonly) {
379 active = obj->last_read;
380 } else {
381 active_mask = 1;
382 active = &obj->last_write;
383 }
384
b8f9096d
CW
385 for_each_active(active_mask, idx) {
386 int ret;
00e60f26 387
b8f9096d 388 ret = i915_gem_active_wait_unlocked(&active[idx],
ea746f36
CW
389 I915_WAIT_INTERRUPTIBLE,
390 NULL, rps);
b8f9096d
CW
391 if (ret)
392 return ret;
00e60f26
CW
393 }
394
b8f9096d 395 return 0;
00e60f26
CW
396}
397
398static struct intel_rps_client *to_rps_client(struct drm_file *file)
399{
400 struct drm_i915_file_private *fpriv = file->driver_priv;
401
402 return &fpriv->rps;
403}
404
00731155
CW
405int
406i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
407 int align)
408{
409 drm_dma_handle_t *phys;
6a2c4232 410 int ret;
00731155
CW
411
412 if (obj->phys_handle) {
413 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
414 return -EBUSY;
415
416 return 0;
417 }
418
419 if (obj->madv != I915_MADV_WILLNEED)
420 return -EFAULT;
421
422 if (obj->base.filp == NULL)
423 return -EINVAL;
424
4717ca9e
CW
425 ret = i915_gem_object_unbind(obj);
426 if (ret)
427 return ret;
428
429 ret = i915_gem_object_put_pages(obj);
6a2c4232
CW
430 if (ret)
431 return ret;
432
00731155
CW
433 /* create a new object */
434 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
435 if (!phys)
436 return -ENOMEM;
437
00731155 438 obj->phys_handle = phys;
6a2c4232
CW
439 obj->ops = &i915_gem_phys_ops;
440
441 return i915_gem_object_get_pages(obj);
00731155
CW
442}
443
444static int
445i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
446 struct drm_i915_gem_pwrite *args,
447 struct drm_file *file_priv)
448{
449 struct drm_device *dev = obj->base.dev;
450 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 451 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 452 int ret = 0;
6a2c4232
CW
453
454 /* We manually control the domain here and pretend that it
455 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
456 */
457 ret = i915_gem_object_wait_rendering(obj, false);
458 if (ret)
459 return ret;
00731155 460
77a0d1ca 461 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
462 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
463 unsigned long unwritten;
464
465 /* The physical object once assigned is fixed for the lifetime
466 * of the obj, so we can safely drop the lock and continue
467 * to access vaddr.
468 */
469 mutex_unlock(&dev->struct_mutex);
470 unwritten = copy_from_user(vaddr, user_data, args->size);
471 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
472 if (unwritten) {
473 ret = -EFAULT;
474 goto out;
475 }
00731155
CW
476 }
477
6a2c4232 478 drm_clflush_virt_range(vaddr, args->size);
c033666a 479 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
480
481out:
de152b62 482 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 483 return ret;
00731155
CW
484}
485
42dcedd4
CW
486void *i915_gem_object_alloc(struct drm_device *dev)
487{
fac5e23e 488 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 489 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
490}
491
492void i915_gem_object_free(struct drm_i915_gem_object *obj)
493{
fac5e23e 494 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 495 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
496}
497
ff72145b
DA
498static int
499i915_gem_create(struct drm_file *file,
500 struct drm_device *dev,
501 uint64_t size,
502 uint32_t *handle_p)
673a394b 503{
05394f39 504 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
505 int ret;
506 u32 handle;
673a394b 507
ff72145b 508 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
509 if (size == 0)
510 return -EINVAL;
673a394b
EA
511
512 /* Allocate the new object */
d37cd8a8 513 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
514 if (IS_ERR(obj))
515 return PTR_ERR(obj);
673a394b 516
05394f39 517 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 518 /* drop reference from allocate - handle holds it now */
34911fd3 519 i915_gem_object_put_unlocked(obj);
d861e338
DV
520 if (ret)
521 return ret;
202f2fef 522
ff72145b 523 *handle_p = handle;
673a394b
EA
524 return 0;
525}
526
ff72145b
DA
527int
528i915_gem_dumb_create(struct drm_file *file,
529 struct drm_device *dev,
530 struct drm_mode_create_dumb *args)
531{
532 /* have to work out size/pitch and return them */
de45eaf7 533 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
534 args->size = args->pitch * args->height;
535 return i915_gem_create(file, dev,
da6b51d0 536 args->size, &args->handle);
ff72145b
DA
537}
538
ff72145b
DA
539/**
540 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
541 * @dev: drm device pointer
542 * @data: ioctl data blob
543 * @file: drm file pointer
ff72145b
DA
544 */
545int
546i915_gem_create_ioctl(struct drm_device *dev, void *data,
547 struct drm_file *file)
548{
549 struct drm_i915_gem_create *args = data;
63ed2cb2 550
ff72145b 551 return i915_gem_create(file, dev,
da6b51d0 552 args->size, &args->handle);
ff72145b
DA
553}
554
8461d226
DV
555static inline int
556__copy_to_user_swizzled(char __user *cpu_vaddr,
557 const char *gpu_vaddr, int gpu_offset,
558 int length)
559{
560 int ret, cpu_offset = 0;
561
562 while (length > 0) {
563 int cacheline_end = ALIGN(gpu_offset + 1, 64);
564 int this_length = min(cacheline_end - gpu_offset, length);
565 int swizzled_gpu_offset = gpu_offset ^ 64;
566
567 ret = __copy_to_user(cpu_vaddr + cpu_offset,
568 gpu_vaddr + swizzled_gpu_offset,
569 this_length);
570 if (ret)
571 return ret + length;
572
573 cpu_offset += this_length;
574 gpu_offset += this_length;
575 length -= this_length;
576 }
577
578 return 0;
579}
580
8c59967c 581static inline int
4f0c7cfb
BW
582__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
583 const char __user *cpu_vaddr,
8c59967c
DV
584 int length)
585{
586 int ret, cpu_offset = 0;
587
588 while (length > 0) {
589 int cacheline_end = ALIGN(gpu_offset + 1, 64);
590 int this_length = min(cacheline_end - gpu_offset, length);
591 int swizzled_gpu_offset = gpu_offset ^ 64;
592
593 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
594 cpu_vaddr + cpu_offset,
595 this_length);
596 if (ret)
597 return ret + length;
598
599 cpu_offset += this_length;
600 gpu_offset += this_length;
601 length -= this_length;
602 }
603
604 return 0;
605}
606
4c914c0c
BV
607/*
608 * Pins the specified object's pages and synchronizes the object with
609 * GPU accesses. Sets needs_clflush to non-zero if the caller should
610 * flush the object from the CPU cache.
611 */
612int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 613 unsigned int *needs_clflush)
4c914c0c
BV
614{
615 int ret;
616
617 *needs_clflush = 0;
618
43394c7d
CW
619 if (!i915_gem_object_has_struct_page(obj))
620 return -ENODEV;
4c914c0c 621
c13d87ea
CW
622 ret = i915_gem_object_wait_rendering(obj, true);
623 if (ret)
624 return ret;
625
9764951e
CW
626 ret = i915_gem_object_get_pages(obj);
627 if (ret)
628 return ret;
629
630 i915_gem_object_pin_pages(obj);
631
a314d5cb
CW
632 i915_gem_object_flush_gtt_write_domain(obj);
633
43394c7d
CW
634 /* If we're not in the cpu read domain, set ourself into the gtt
635 * read domain and manually flush cachelines (if required). This
636 * optimizes for the case when the gpu will dirty the data
637 * anyway again before the next pread happens.
638 */
639 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
640 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
641 obj->cache_level);
43394c7d 642
43394c7d
CW
643 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
644 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
645 if (ret)
646 goto err_unpin;
647
43394c7d 648 *needs_clflush = 0;
4c914c0c
BV
649 }
650
9764951e 651 /* return with the pages pinned */
43394c7d 652 return 0;
9764951e
CW
653
654err_unpin:
655 i915_gem_object_unpin_pages(obj);
656 return ret;
43394c7d
CW
657}
658
659int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
660 unsigned int *needs_clflush)
661{
662 int ret;
663
664 *needs_clflush = 0;
665 if (!i915_gem_object_has_struct_page(obj))
666 return -ENODEV;
667
668 ret = i915_gem_object_wait_rendering(obj, false);
669 if (ret)
670 return ret;
671
9764951e
CW
672 ret = i915_gem_object_get_pages(obj);
673 if (ret)
674 return ret;
675
676 i915_gem_object_pin_pages(obj);
677
a314d5cb
CW
678 i915_gem_object_flush_gtt_write_domain(obj);
679
43394c7d
CW
680 /* If we're not in the cpu write domain, set ourself into the
681 * gtt write domain and manually flush cachelines (as required).
682 * This optimizes for the case when the gpu will use the data
683 * right away and we therefore have to clflush anyway.
684 */
685 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
686 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
687
688 /* Same trick applies to invalidate partially written cachelines read
689 * before writing.
690 */
691 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
692 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
693 obj->cache_level);
694
43394c7d
CW
695 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
696 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
697 if (ret)
698 goto err_unpin;
699
43394c7d
CW
700 *needs_clflush = 0;
701 }
702
703 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
704 obj->cache_dirty = true;
705
706 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
707 obj->dirty = 1;
9764951e 708 /* return with the pages pinned */
43394c7d 709 return 0;
9764951e
CW
710
711err_unpin:
712 i915_gem_object_unpin_pages(obj);
713 return ret;
4c914c0c
BV
714}
715
d174bd64
DV
716/* Per-page copy function for the shmem pread fastpath.
717 * Flushes invalid cachelines before reading the target if
718 * needs_clflush is set. */
eb01459f 719static int
d174bd64
DV
720shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
721 char __user *user_data,
722 bool page_do_bit17_swizzling, bool needs_clflush)
723{
724 char *vaddr;
725 int ret;
726
e7e58eb5 727 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
728 return -EINVAL;
729
730 vaddr = kmap_atomic(page);
731 if (needs_clflush)
732 drm_clflush_virt_range(vaddr + shmem_page_offset,
733 page_length);
734 ret = __copy_to_user_inatomic(user_data,
735 vaddr + shmem_page_offset,
736 page_length);
737 kunmap_atomic(vaddr);
738
f60d7f0c 739 return ret ? -EFAULT : 0;
d174bd64
DV
740}
741
23c18c71
DV
742static void
743shmem_clflush_swizzled_range(char *addr, unsigned long length,
744 bool swizzled)
745{
e7e58eb5 746 if (unlikely(swizzled)) {
23c18c71
DV
747 unsigned long start = (unsigned long) addr;
748 unsigned long end = (unsigned long) addr + length;
749
750 /* For swizzling simply ensure that we always flush both
751 * channels. Lame, but simple and it works. Swizzled
752 * pwrite/pread is far from a hotpath - current userspace
753 * doesn't use it at all. */
754 start = round_down(start, 128);
755 end = round_up(end, 128);
756
757 drm_clflush_virt_range((void *)start, end - start);
758 } else {
759 drm_clflush_virt_range(addr, length);
760 }
761
762}
763
d174bd64
DV
764/* Only difference to the fast-path function is that this can handle bit17
765 * and uses non-atomic copy and kmap functions. */
766static int
767shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
768 char __user *user_data,
769 bool page_do_bit17_swizzling, bool needs_clflush)
770{
771 char *vaddr;
772 int ret;
773
774 vaddr = kmap(page);
775 if (needs_clflush)
23c18c71
DV
776 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
777 page_length,
778 page_do_bit17_swizzling);
d174bd64
DV
779
780 if (page_do_bit17_swizzling)
781 ret = __copy_to_user_swizzled(user_data,
782 vaddr, shmem_page_offset,
783 page_length);
784 else
785 ret = __copy_to_user(user_data,
786 vaddr + shmem_page_offset,
787 page_length);
788 kunmap(page);
789
f60d7f0c 790 return ret ? - EFAULT : 0;
d174bd64
DV
791}
792
b50a5371
AS
793static inline unsigned long
794slow_user_access(struct io_mapping *mapping,
795 uint64_t page_base, int page_offset,
796 char __user *user_data,
797 unsigned long length, bool pwrite)
798{
799 void __iomem *ioaddr;
800 void *vaddr;
801 uint64_t unwritten;
802
803 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
804 /* We can use the cpu mem copy function because this is X86. */
805 vaddr = (void __force *)ioaddr + page_offset;
806 if (pwrite)
807 unwritten = __copy_from_user(vaddr, user_data, length);
808 else
809 unwritten = __copy_to_user(user_data, vaddr, length);
810
811 io_mapping_unmap(ioaddr);
812 return unwritten;
813}
814
815static int
816i915_gem_gtt_pread(struct drm_device *dev,
817 struct drm_i915_gem_object *obj, uint64_t size,
818 uint64_t data_offset, uint64_t data_ptr)
819{
fac5e23e 820 struct drm_i915_private *dev_priv = to_i915(dev);
b50a5371 821 struct i915_ggtt *ggtt = &dev_priv->ggtt;
058d88c4 822 struct i915_vma *vma;
b50a5371
AS
823 struct drm_mm_node node;
824 char __user *user_data;
825 uint64_t remain;
826 uint64_t offset;
827 int ret;
828
058d88c4 829 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
18034584
CW
830 if (!IS_ERR(vma)) {
831 node.start = i915_ggtt_offset(vma);
832 node.allocated = false;
49ef5294 833 ret = i915_vma_put_fence(vma);
18034584
CW
834 if (ret) {
835 i915_vma_unpin(vma);
836 vma = ERR_PTR(ret);
837 }
838 }
058d88c4 839 if (IS_ERR(vma)) {
b50a5371
AS
840 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
841 if (ret)
842 goto out;
843
844 ret = i915_gem_object_get_pages(obj);
845 if (ret) {
846 remove_mappable_node(&node);
847 goto out;
848 }
849
850 i915_gem_object_pin_pages(obj);
b50a5371
AS
851 }
852
853 ret = i915_gem_object_set_to_gtt_domain(obj, false);
854 if (ret)
855 goto out_unpin;
856
857 user_data = u64_to_user_ptr(data_ptr);
858 remain = size;
859 offset = data_offset;
860
861 mutex_unlock(&dev->struct_mutex);
862 if (likely(!i915.prefault_disable)) {
863 ret = fault_in_multipages_writeable(user_data, remain);
864 if (ret) {
865 mutex_lock(&dev->struct_mutex);
866 goto out_unpin;
867 }
868 }
869
870 while (remain > 0) {
871 /* Operation in this page
872 *
873 * page_base = page offset within aperture
874 * page_offset = offset within page
875 * page_length = bytes to copy for this page
876 */
877 u32 page_base = node.start;
878 unsigned page_offset = offset_in_page(offset);
879 unsigned page_length = PAGE_SIZE - page_offset;
880 page_length = remain < page_length ? remain : page_length;
881 if (node.allocated) {
882 wmb();
883 ggtt->base.insert_page(&ggtt->base,
884 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
885 node.start,
886 I915_CACHE_NONE, 0);
887 wmb();
888 } else {
889 page_base += offset & PAGE_MASK;
890 }
891 /* This is a slow read/write as it tries to read from
892 * and write to user memory which may result into page
893 * faults, and so we cannot perform this under struct_mutex.
894 */
f7bbe788 895 if (slow_user_access(&ggtt->mappable, page_base,
b50a5371
AS
896 page_offset, user_data,
897 page_length, false)) {
898 ret = -EFAULT;
899 break;
900 }
901
902 remain -= page_length;
903 user_data += page_length;
904 offset += page_length;
905 }
906
907 mutex_lock(&dev->struct_mutex);
908 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
909 /* The user has modified the object whilst we tried
910 * reading from it, and we now have no idea what domain
911 * the pages should be in. As we have just been touching
912 * them directly, flush everything back to the GTT
913 * domain.
914 */
915 ret = i915_gem_object_set_to_gtt_domain(obj, false);
916 }
917
918out_unpin:
919 if (node.allocated) {
920 wmb();
921 ggtt->base.clear_range(&ggtt->base,
922 node.start, node.size,
923 true);
924 i915_gem_object_unpin_pages(obj);
925 remove_mappable_node(&node);
926 } else {
058d88c4 927 i915_vma_unpin(vma);
b50a5371
AS
928 }
929out:
930 return ret;
931}
932
eb01459f 933static int
dbf7bff0
DV
934i915_gem_shmem_pread(struct drm_device *dev,
935 struct drm_i915_gem_object *obj,
936 struct drm_i915_gem_pread *args,
937 struct drm_file *file)
eb01459f 938{
8461d226 939 char __user *user_data;
eb01459f 940 ssize_t remain;
8461d226 941 loff_t offset;
eb2c0c81 942 int shmem_page_offset, page_length, ret = 0;
8461d226 943 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 944 int prefaulted = 0;
8489731c 945 int needs_clflush = 0;
67d5a50c 946 struct sg_page_iter sg_iter;
eb01459f 947
4c914c0c 948 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
949 if (ret)
950 return ret;
951
43394c7d
CW
952 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
953 user_data = u64_to_user_ptr(args->data_ptr);
8461d226 954 offset = args->offset;
43394c7d 955 remain = args->size;
eb01459f 956
67d5a50c
ID
957 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
958 offset >> PAGE_SHIFT) {
2db76d7c 959 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
960
961 if (remain <= 0)
962 break;
963
eb01459f
EA
964 /* Operation in this page
965 *
eb01459f 966 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
967 * page_length = bytes to copy for this page
968 */
c8cbbb8b 969 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
970 page_length = remain;
971 if ((shmem_page_offset + page_length) > PAGE_SIZE)
972 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 973
8461d226
DV
974 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
975 (page_to_phys(page) & (1 << 17)) != 0;
976
d174bd64
DV
977 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
978 user_data, page_do_bit17_swizzling,
979 needs_clflush);
980 if (ret == 0)
981 goto next_page;
dbf7bff0 982
dbf7bff0
DV
983 mutex_unlock(&dev->struct_mutex);
984
d330a953 985 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 986 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
987 /* Userspace is tricking us, but we've already clobbered
988 * its pages with the prefault and promised to write the
989 * data up to the first fault. Hence ignore any errors
990 * and just continue. */
991 (void)ret;
992 prefaulted = 1;
993 }
eb01459f 994
d174bd64
DV
995 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
996 user_data, page_do_bit17_swizzling,
997 needs_clflush);
eb01459f 998
dbf7bff0 999 mutex_lock(&dev->struct_mutex);
f60d7f0c 1000
f60d7f0c 1001 if (ret)
8461d226 1002 goto out;
8461d226 1003
17793c9a 1004next_page:
eb01459f 1005 remain -= page_length;
8461d226 1006 user_data += page_length;
eb01459f
EA
1007 offset += page_length;
1008 }
1009
4f27b75d 1010out:
43394c7d 1011 i915_gem_obj_finish_shmem_access(obj);
f60d7f0c 1012
eb01459f
EA
1013 return ret;
1014}
1015
673a394b
EA
1016/**
1017 * Reads data from the object referenced by handle.
14bb2c11
TU
1018 * @dev: drm device pointer
1019 * @data: ioctl data blob
1020 * @file: drm file pointer
673a394b
EA
1021 *
1022 * On error, the contents of *data are undefined.
1023 */
1024int
1025i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1026 struct drm_file *file)
673a394b
EA
1027{
1028 struct drm_i915_gem_pread *args = data;
05394f39 1029 struct drm_i915_gem_object *obj;
35b62a89 1030 int ret = 0;
673a394b 1031
51311d0a
CW
1032 if (args->size == 0)
1033 return 0;
1034
1035 if (!access_ok(VERIFY_WRITE,
3ed605bc 1036 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1037 args->size))
1038 return -EFAULT;
1039
03ac0642 1040 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1041 if (!obj)
1042 return -ENOENT;
673a394b 1043
7dcd2499 1044 /* Bounds check source. */
05394f39
CW
1045 if (args->offset > obj->base.size ||
1046 args->size > obj->base.size - args->offset) {
ce9d419d 1047 ret = -EINVAL;
258a5ede 1048 goto err;
ce9d419d
CW
1049 }
1050
db53a302
CW
1051 trace_i915_gem_object_pread(obj, args->offset, args->size);
1052
258a5ede
CW
1053 ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
1054 if (ret)
1055 goto err;
1056
1057 ret = i915_mutex_lock_interruptible(dev);
1058 if (ret)
1059 goto err;
1060
dbf7bff0 1061 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 1062
b50a5371 1063 /* pread for non shmem backed objects */
1dd5b6f2
CW
1064 if (ret == -EFAULT || ret == -ENODEV) {
1065 intel_runtime_pm_get(to_i915(dev));
b50a5371
AS
1066 ret = i915_gem_gtt_pread(dev, obj, args->size,
1067 args->offset, args->data_ptr);
1dd5b6f2
CW
1068 intel_runtime_pm_put(to_i915(dev));
1069 }
b50a5371 1070
f8c417cd 1071 i915_gem_object_put(obj);
4f27b75d 1072 mutex_unlock(&dev->struct_mutex);
258a5ede
CW
1073
1074 return ret;
1075
1076err:
1077 i915_gem_object_put_unlocked(obj);
eb01459f 1078 return ret;
673a394b
EA
1079}
1080
0839ccb8
KP
1081/* This is the fast write path which cannot handle
1082 * page faults in the source data
9b7530cc 1083 */
0839ccb8
KP
1084
1085static inline int
1086fast_user_write(struct io_mapping *mapping,
1087 loff_t page_base, int page_offset,
1088 char __user *user_data,
1089 int length)
9b7530cc 1090{
4f0c7cfb
BW
1091 void __iomem *vaddr_atomic;
1092 void *vaddr;
0839ccb8 1093 unsigned long unwritten;
9b7530cc 1094
3e4d3af5 1095 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
1096 /* We can use the cpu mem copy function because this is X86. */
1097 vaddr = (void __force*)vaddr_atomic + page_offset;
1098 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 1099 user_data, length);
3e4d3af5 1100 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 1101 return unwritten;
0839ccb8
KP
1102}
1103
3de09aa3
EA
1104/**
1105 * This is the fast pwrite path, where we copy the data directly from the
1106 * user into the GTT, uncached.
62f90b38 1107 * @i915: i915 device private data
14bb2c11
TU
1108 * @obj: i915 gem object
1109 * @args: pwrite arguments structure
1110 * @file: drm file pointer
3de09aa3 1111 */
673a394b 1112static int
4f1959ee 1113i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
05394f39 1114 struct drm_i915_gem_object *obj,
3de09aa3 1115 struct drm_i915_gem_pwrite *args,
05394f39 1116 struct drm_file *file)
673a394b 1117{
4f1959ee 1118 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1119 struct drm_device *dev = obj->base.dev;
058d88c4 1120 struct i915_vma *vma;
4f1959ee
AS
1121 struct drm_mm_node node;
1122 uint64_t remain, offset;
673a394b 1123 char __user *user_data;
4f1959ee 1124 int ret;
b50a5371
AS
1125 bool hit_slow_path = false;
1126
3e510a8e 1127 if (i915_gem_object_is_tiled(obj))
b50a5371 1128 return -EFAULT;
935aaa69 1129
058d88c4 1130 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1131 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1132 if (!IS_ERR(vma)) {
1133 node.start = i915_ggtt_offset(vma);
1134 node.allocated = false;
49ef5294 1135 ret = i915_vma_put_fence(vma);
18034584
CW
1136 if (ret) {
1137 i915_vma_unpin(vma);
1138 vma = ERR_PTR(ret);
1139 }
1140 }
058d88c4 1141 if (IS_ERR(vma)) {
4f1959ee
AS
1142 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1143 if (ret)
1144 goto out;
1145
1146 ret = i915_gem_object_get_pages(obj);
1147 if (ret) {
1148 remove_mappable_node(&node);
1149 goto out;
1150 }
1151
1152 i915_gem_object_pin_pages(obj);
4f1959ee 1153 }
935aaa69
DV
1154
1155 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1156 if (ret)
1157 goto out_unpin;
1158
b19482d7 1159 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4f1959ee 1160 obj->dirty = true;
063e4e6b 1161
4f1959ee
AS
1162 user_data = u64_to_user_ptr(args->data_ptr);
1163 offset = args->offset;
1164 remain = args->size;
1165 while (remain) {
673a394b
EA
1166 /* Operation in this page
1167 *
0839ccb8
KP
1168 * page_base = page offset within aperture
1169 * page_offset = offset within page
1170 * page_length = bytes to copy for this page
673a394b 1171 */
4f1959ee
AS
1172 u32 page_base = node.start;
1173 unsigned page_offset = offset_in_page(offset);
1174 unsigned page_length = PAGE_SIZE - page_offset;
1175 page_length = remain < page_length ? remain : page_length;
1176 if (node.allocated) {
1177 wmb(); /* flush the write before we modify the GGTT */
1178 ggtt->base.insert_page(&ggtt->base,
1179 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1180 node.start, I915_CACHE_NONE, 0);
1181 wmb(); /* flush modifications to the GGTT (insert_page) */
1182 } else {
1183 page_base += offset & PAGE_MASK;
1184 }
0839ccb8 1185 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1186 * source page isn't available. Return the error and we'll
1187 * retry in the slow path.
b50a5371
AS
1188 * If the object is non-shmem backed, we retry again with the
1189 * path that handles page fault.
0839ccb8 1190 */
f7bbe788 1191 if (fast_user_write(&ggtt->mappable, page_base,
935aaa69 1192 page_offset, user_data, page_length)) {
b50a5371
AS
1193 hit_slow_path = true;
1194 mutex_unlock(&dev->struct_mutex);
f7bbe788 1195 if (slow_user_access(&ggtt->mappable,
b50a5371
AS
1196 page_base,
1197 page_offset, user_data,
1198 page_length, true)) {
1199 ret = -EFAULT;
1200 mutex_lock(&dev->struct_mutex);
1201 goto out_flush;
1202 }
1203
1204 mutex_lock(&dev->struct_mutex);
935aaa69 1205 }
673a394b 1206
0839ccb8
KP
1207 remain -= page_length;
1208 user_data += page_length;
1209 offset += page_length;
673a394b 1210 }
673a394b 1211
063e4e6b 1212out_flush:
b50a5371
AS
1213 if (hit_slow_path) {
1214 if (ret == 0 &&
1215 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1216 /* The user has modified the object whilst we tried
1217 * reading from it, and we now have no idea what domain
1218 * the pages should be in. As we have just been touching
1219 * them directly, flush everything back to the GTT
1220 * domain.
1221 */
1222 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1223 }
1224 }
1225
b19482d7 1226 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
935aaa69 1227out_unpin:
4f1959ee
AS
1228 if (node.allocated) {
1229 wmb();
1230 ggtt->base.clear_range(&ggtt->base,
1231 node.start, node.size,
1232 true);
1233 i915_gem_object_unpin_pages(obj);
1234 remove_mappable_node(&node);
1235 } else {
058d88c4 1236 i915_vma_unpin(vma);
4f1959ee 1237 }
935aaa69 1238out:
3de09aa3 1239 return ret;
673a394b
EA
1240}
1241
d174bd64
DV
1242/* Per-page copy function for the shmem pwrite fastpath.
1243 * Flushes invalid cachelines before writing to the target if
1244 * needs_clflush_before is set and flushes out any written cachelines after
1245 * writing if needs_clflush is set. */
3043c60c 1246static int
d174bd64
DV
1247shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1248 char __user *user_data,
1249 bool page_do_bit17_swizzling,
1250 bool needs_clflush_before,
1251 bool needs_clflush_after)
673a394b 1252{
d174bd64 1253 char *vaddr;
673a394b 1254 int ret;
3de09aa3 1255
e7e58eb5 1256 if (unlikely(page_do_bit17_swizzling))
d174bd64 1257 return -EINVAL;
3de09aa3 1258
d174bd64
DV
1259 vaddr = kmap_atomic(page);
1260 if (needs_clflush_before)
1261 drm_clflush_virt_range(vaddr + shmem_page_offset,
1262 page_length);
c2831a94
CW
1263 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1264 user_data, page_length);
d174bd64
DV
1265 if (needs_clflush_after)
1266 drm_clflush_virt_range(vaddr + shmem_page_offset,
1267 page_length);
1268 kunmap_atomic(vaddr);
3de09aa3 1269
755d2218 1270 return ret ? -EFAULT : 0;
3de09aa3
EA
1271}
1272
d174bd64
DV
1273/* Only difference to the fast-path function is that this can handle bit17
1274 * and uses non-atomic copy and kmap functions. */
3043c60c 1275static int
d174bd64
DV
1276shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1277 char __user *user_data,
1278 bool page_do_bit17_swizzling,
1279 bool needs_clflush_before,
1280 bool needs_clflush_after)
673a394b 1281{
d174bd64
DV
1282 char *vaddr;
1283 int ret;
e5281ccd 1284
d174bd64 1285 vaddr = kmap(page);
e7e58eb5 1286 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
1287 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1288 page_length,
1289 page_do_bit17_swizzling);
d174bd64
DV
1290 if (page_do_bit17_swizzling)
1291 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
1292 user_data,
1293 page_length);
d174bd64
DV
1294 else
1295 ret = __copy_from_user(vaddr + shmem_page_offset,
1296 user_data,
1297 page_length);
1298 if (needs_clflush_after)
23c18c71
DV
1299 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1300 page_length,
1301 page_do_bit17_swizzling);
d174bd64 1302 kunmap(page);
40123c1f 1303
755d2218 1304 return ret ? -EFAULT : 0;
40123c1f
EA
1305}
1306
40123c1f 1307static int
e244a443
DV
1308i915_gem_shmem_pwrite(struct drm_device *dev,
1309 struct drm_i915_gem_object *obj,
1310 struct drm_i915_gem_pwrite *args,
1311 struct drm_file *file)
40123c1f 1312{
40123c1f 1313 ssize_t remain;
8c59967c
DV
1314 loff_t offset;
1315 char __user *user_data;
eb2c0c81 1316 int shmem_page_offset, page_length, ret = 0;
8c59967c 1317 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 1318 int hit_slowpath = 0;
43394c7d 1319 unsigned int needs_clflush;
67d5a50c 1320 struct sg_page_iter sg_iter;
40123c1f 1321
43394c7d 1322 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
755d2218
CW
1323 if (ret)
1324 return ret;
1325
43394c7d
CW
1326 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1327 user_data = u64_to_user_ptr(args->data_ptr);
673a394b 1328 offset = args->offset;
43394c7d 1329 remain = args->size;
673a394b 1330
67d5a50c
ID
1331 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1332 offset >> PAGE_SHIFT) {
2db76d7c 1333 struct page *page = sg_page_iter_page(&sg_iter);
58642885 1334 int partial_cacheline_write;
e5281ccd 1335
9da3da66
CW
1336 if (remain <= 0)
1337 break;
1338
40123c1f
EA
1339 /* Operation in this page
1340 *
40123c1f 1341 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1342 * page_length = bytes to copy for this page
1343 */
c8cbbb8b 1344 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1345
1346 page_length = remain;
1347 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1348 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1349
58642885
DV
1350 /* If we don't overwrite a cacheline completely we need to be
1351 * careful to have up-to-date data by first clflushing. Don't
1352 * overcomplicate things and flush the entire patch. */
43394c7d 1353 partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
58642885
DV
1354 ((shmem_page_offset | page_length)
1355 & (boot_cpu_data.x86_clflush_size - 1));
1356
8c59967c
DV
1357 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1358 (page_to_phys(page) & (1 << 17)) != 0;
1359
d174bd64
DV
1360 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1361 user_data, page_do_bit17_swizzling,
1362 partial_cacheline_write,
43394c7d 1363 needs_clflush & CLFLUSH_AFTER);
d174bd64
DV
1364 if (ret == 0)
1365 goto next_page;
e244a443
DV
1366
1367 hit_slowpath = 1;
e244a443 1368 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1369 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1370 user_data, page_do_bit17_swizzling,
1371 partial_cacheline_write,
43394c7d 1372 needs_clflush & CLFLUSH_AFTER);
40123c1f 1373
e244a443 1374 mutex_lock(&dev->struct_mutex);
755d2218 1375
755d2218 1376 if (ret)
8c59967c 1377 goto out;
8c59967c 1378
17793c9a 1379next_page:
40123c1f 1380 remain -= page_length;
8c59967c 1381 user_data += page_length;
40123c1f 1382 offset += page_length;
673a394b
EA
1383 }
1384
fbd5a26d 1385out:
43394c7d 1386 i915_gem_obj_finish_shmem_access(obj);
755d2218 1387
e244a443 1388 if (hit_slowpath) {
8dcf015e
DV
1389 /*
1390 * Fixup: Flush cpu caches in case we didn't flush the dirty
1391 * cachelines in-line while writing and the object moved
1392 * out of the cpu write domain while we've dropped the lock.
1393 */
43394c7d 1394 if (!(needs_clflush & CLFLUSH_AFTER) &&
8dcf015e 1395 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1396 if (i915_gem_clflush_object(obj, obj->pin_display))
43394c7d 1397 needs_clflush |= CLFLUSH_AFTER;
e244a443 1398 }
8c59967c 1399 }
673a394b 1400
43394c7d 1401 if (needs_clflush & CLFLUSH_AFTER)
c033666a 1402 i915_gem_chipset_flush(to_i915(dev));
58642885 1403
de152b62 1404 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1405 return ret;
673a394b
EA
1406}
1407
1408/**
1409 * Writes data to the object referenced by handle.
14bb2c11
TU
1410 * @dev: drm device
1411 * @data: ioctl data blob
1412 * @file: drm file
673a394b
EA
1413 *
1414 * On error, the contents of the buffer that were to be modified are undefined.
1415 */
1416int
1417i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1418 struct drm_file *file)
673a394b 1419{
fac5e23e 1420 struct drm_i915_private *dev_priv = to_i915(dev);
673a394b 1421 struct drm_i915_gem_pwrite *args = data;
05394f39 1422 struct drm_i915_gem_object *obj;
51311d0a
CW
1423 int ret;
1424
1425 if (args->size == 0)
1426 return 0;
1427
1428 if (!access_ok(VERIFY_READ,
3ed605bc 1429 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1430 args->size))
1431 return -EFAULT;
1432
d330a953 1433 if (likely(!i915.prefault_disable)) {
3ed605bc 1434 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1435 args->size);
1436 if (ret)
1437 return -EFAULT;
1438 }
673a394b 1439
03ac0642 1440 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1441 if (!obj)
1442 return -ENOENT;
673a394b 1443
7dcd2499 1444 /* Bounds check destination. */
05394f39
CW
1445 if (args->offset > obj->base.size ||
1446 args->size > obj->base.size - args->offset) {
ce9d419d 1447 ret = -EINVAL;
258a5ede 1448 goto err;
ce9d419d
CW
1449 }
1450
db53a302
CW
1451 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1452
258a5ede
CW
1453 ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
1454 if (ret)
1455 goto err;
1456
1457 intel_runtime_pm_get(dev_priv);
1458
1459 ret = i915_mutex_lock_interruptible(dev);
1460 if (ret)
1461 goto err_rpm;
1462
935aaa69 1463 ret = -EFAULT;
673a394b
EA
1464 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1465 * it would end up going through the fenced access, and we'll get
1466 * different detiling behavior between reading and writing.
1467 * pread/pwrite currently are reading and writing from the CPU
1468 * perspective, requiring manual detiling by the client.
1469 */
6eae0059
CW
1470 if (!i915_gem_object_has_struct_page(obj) ||
1471 cpu_write_needs_clflush(obj)) {
4f1959ee 1472 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
935aaa69
DV
1473 /* Note that the gtt paths might fail with non-page-backed user
1474 * pointers (e.g. gtt mappings when moving data between
1475 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1476 }
673a394b 1477
d1054ee4 1478 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1479 if (obj->phys_handle)
1480 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1481 else
43394c7d 1482 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
6a2c4232 1483 }
5c0480f2 1484
f8c417cd 1485 i915_gem_object_put(obj);
fbd5a26d 1486 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1487 intel_runtime_pm_put(dev_priv);
1488
673a394b 1489 return ret;
258a5ede
CW
1490
1491err_rpm:
1492 intel_runtime_pm_put(dev_priv);
1493err:
1494 i915_gem_object_put_unlocked(obj);
1495 return ret;
673a394b
EA
1496}
1497
d243ad82 1498static inline enum fb_op_origin
aeecc969
CW
1499write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1500{
50349247
CW
1501 return (domain == I915_GEM_DOMAIN_GTT ?
1502 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1503}
1504
673a394b 1505/**
2ef7eeaa
EA
1506 * Called when user space prepares to use an object with the CPU, either
1507 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1508 * @dev: drm device
1509 * @data: ioctl data blob
1510 * @file: drm file
673a394b
EA
1511 */
1512int
1513i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1514 struct drm_file *file)
673a394b
EA
1515{
1516 struct drm_i915_gem_set_domain *args = data;
05394f39 1517 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1518 uint32_t read_domains = args->read_domains;
1519 uint32_t write_domain = args->write_domain;
673a394b
EA
1520 int ret;
1521
2ef7eeaa 1522 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1523 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1524 return -EINVAL;
1525
1526 /* Having something in the write domain implies it's in the read
1527 * domain, and only that read domain. Enforce that in the request.
1528 */
1529 if (write_domain != 0 && read_domains != write_domain)
1530 return -EINVAL;
1531
03ac0642 1532 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1533 if (!obj)
1534 return -ENOENT;
673a394b 1535
3236f57a
CW
1536 /* Try to flush the object off the GPU without holding the lock.
1537 * We will repeat the flush holding the lock in the normal manner
1538 * to catch cases where we are gazumped.
1539 */
b8f9096d
CW
1540 ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1541 if (ret)
1542 goto err;
1543
1544 ret = i915_mutex_lock_interruptible(dev);
3236f57a 1545 if (ret)
b8f9096d 1546 goto err;
3236f57a 1547
43566ded 1548 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1549 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1550 else
e47c68e9 1551 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1552
031b698a 1553 if (write_domain != 0)
aeecc969 1554 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
031b698a 1555
f8c417cd 1556 i915_gem_object_put(obj);
673a394b
EA
1557 mutex_unlock(&dev->struct_mutex);
1558 return ret;
b8f9096d
CW
1559
1560err:
1561 i915_gem_object_put_unlocked(obj);
1562 return ret;
673a394b
EA
1563}
1564
1565/**
1566 * Called when user space has done writes to this buffer
14bb2c11
TU
1567 * @dev: drm device
1568 * @data: ioctl data blob
1569 * @file: drm file
673a394b
EA
1570 */
1571int
1572i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1573 struct drm_file *file)
673a394b
EA
1574{
1575 struct drm_i915_gem_sw_finish *args = data;
05394f39 1576 struct drm_i915_gem_object *obj;
c21724cc 1577 int err = 0;
1d7cfea1 1578
03ac0642 1579 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1580 if (!obj)
1581 return -ENOENT;
673a394b 1582
673a394b 1583 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1584 if (READ_ONCE(obj->pin_display)) {
1585 err = i915_mutex_lock_interruptible(dev);
1586 if (!err) {
1587 i915_gem_object_flush_cpu_write_domain(obj);
1588 mutex_unlock(&dev->struct_mutex);
1589 }
1590 }
e47c68e9 1591
c21724cc
CW
1592 i915_gem_object_put_unlocked(obj);
1593 return err;
673a394b
EA
1594}
1595
1596/**
14bb2c11
TU
1597 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1598 * it is mapped to.
1599 * @dev: drm device
1600 * @data: ioctl data blob
1601 * @file: drm file
673a394b
EA
1602 *
1603 * While the mapping holds a reference on the contents of the object, it doesn't
1604 * imply a ref on the object itself.
34367381
DV
1605 *
1606 * IMPORTANT:
1607 *
1608 * DRM driver writers who look a this function as an example for how to do GEM
1609 * mmap support, please don't implement mmap support like here. The modern way
1610 * to implement DRM mmap support is with an mmap offset ioctl (like
1611 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1612 * That way debug tooling like valgrind will understand what's going on, hiding
1613 * the mmap call in a driver private ioctl will break that. The i915 driver only
1614 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1615 */
1616int
1617i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1618 struct drm_file *file)
673a394b
EA
1619{
1620 struct drm_i915_gem_mmap *args = data;
03ac0642 1621 struct drm_i915_gem_object *obj;
673a394b
EA
1622 unsigned long addr;
1623
1816f923
AG
1624 if (args->flags & ~(I915_MMAP_WC))
1625 return -EINVAL;
1626
568a58e5 1627 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1628 return -ENODEV;
1629
03ac0642
CW
1630 obj = i915_gem_object_lookup(file, args->handle);
1631 if (!obj)
bf79cb91 1632 return -ENOENT;
673a394b 1633
1286ff73
DV
1634 /* prime objects have no backing filp to GEM mmap
1635 * pages from.
1636 */
03ac0642 1637 if (!obj->base.filp) {
34911fd3 1638 i915_gem_object_put_unlocked(obj);
1286ff73
DV
1639 return -EINVAL;
1640 }
1641
03ac0642 1642 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1643 PROT_READ | PROT_WRITE, MAP_SHARED,
1644 args->offset);
1816f923
AG
1645 if (args->flags & I915_MMAP_WC) {
1646 struct mm_struct *mm = current->mm;
1647 struct vm_area_struct *vma;
1648
80a89a5e 1649 if (down_write_killable(&mm->mmap_sem)) {
34911fd3 1650 i915_gem_object_put_unlocked(obj);
80a89a5e
MH
1651 return -EINTR;
1652 }
1816f923
AG
1653 vma = find_vma(mm, addr);
1654 if (vma)
1655 vma->vm_page_prot =
1656 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1657 else
1658 addr = -ENOMEM;
1659 up_write(&mm->mmap_sem);
aeecc969
CW
1660
1661 /* This may race, but that's ok, it only gets set */
50349247 1662 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1663 }
34911fd3 1664 i915_gem_object_put_unlocked(obj);
673a394b
EA
1665 if (IS_ERR((void *)addr))
1666 return addr;
1667
1668 args->addr_ptr = (uint64_t) addr;
1669
1670 return 0;
1671}
1672
03af84fe
CW
1673static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1674{
1675 u64 size;
1676
1677 size = i915_gem_object_get_stride(obj);
1678 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1679
1680 return size >> PAGE_SHIFT;
1681}
1682
4cc69075
CW
1683/**
1684 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1685 *
1686 * A history of the GTT mmap interface:
1687 *
1688 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1689 * aligned and suitable for fencing, and still fit into the available
1690 * mappable space left by the pinned display objects. A classic problem
1691 * we called the page-fault-of-doom where we would ping-pong between
1692 * two objects that could not fit inside the GTT and so the memcpy
1693 * would page one object in at the expense of the other between every
1694 * single byte.
1695 *
1696 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1697 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1698 * object is too large for the available space (or simply too large
1699 * for the mappable aperture!), a view is created instead and faulted
1700 * into userspace. (This view is aligned and sized appropriately for
1701 * fenced access.)
1702 *
1703 * Restrictions:
1704 *
1705 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1706 * hangs on some architectures, corruption on others. An attempt to service
1707 * a GTT page fault from a snoopable object will generate a SIGBUS.
1708 *
1709 * * the object must be able to fit into RAM (physical memory, though no
1710 * limited to the mappable aperture).
1711 *
1712 *
1713 * Caveats:
1714 *
1715 * * a new GTT page fault will synchronize rendering from the GPU and flush
1716 * all data to system memory. Subsequent access will not be synchronized.
1717 *
1718 * * all mappings are revoked on runtime device suspend.
1719 *
1720 * * there are only 8, 16 or 32 fence registers to share between all users
1721 * (older machines require fence register for display and blitter access
1722 * as well). Contention of the fence registers will cause the previous users
1723 * to be unmapped and any new access will generate new page faults.
1724 *
1725 * * running out of memory while servicing a fault may generate a SIGBUS,
1726 * rather than the expected SIGSEGV.
1727 */
1728int i915_gem_mmap_gtt_version(void)
1729{
1730 return 1;
1731}
1732
de151cf6
JB
1733/**
1734 * i915_gem_fault - fault a page into the GTT
058d88c4 1735 * @area: CPU VMA in question
d9072a3e 1736 * @vmf: fault info
de151cf6
JB
1737 *
1738 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1739 * from userspace. The fault handler takes care of binding the object to
1740 * the GTT (if needed), allocating and programming a fence register (again,
1741 * only if needed based on whether the old reg is still valid or the object
1742 * is tiled) and inserting a new PTE into the faulting process.
1743 *
1744 * Note that the faulting process may involve evicting existing objects
1745 * from the GTT and/or fence registers to make room. So performance may
1746 * suffer if the GTT working set is large or there are few fence registers
1747 * left.
4cc69075
CW
1748 *
1749 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1750 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1751 */
058d88c4 1752int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1753{
03af84fe 1754#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
058d88c4 1755 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1756 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1757 struct drm_i915_private *dev_priv = to_i915(dev);
1758 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1759 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1760 struct i915_vma *vma;
de151cf6 1761 pgoff_t page_offset;
82118877 1762 unsigned int flags;
b8f9096d 1763 int ret;
f65c9168 1764
de151cf6 1765 /* We don't use vmf->pgoff since that has the fake offset */
058d88c4 1766 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
de151cf6
JB
1767 PAGE_SHIFT;
1768
db53a302
CW
1769 trace_i915_gem_object_fault(obj, page_offset, true, write);
1770
6e4930f6 1771 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1772 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1773 * repeat the flush holding the lock in the normal manner to catch cases
1774 * where we are gazumped.
1775 */
b8f9096d 1776 ret = __unsafe_wait_rendering(obj, NULL, !write);
6e4930f6 1777 if (ret)
b8f9096d
CW
1778 goto err;
1779
1780 intel_runtime_pm_get(dev_priv);
1781
1782 ret = i915_mutex_lock_interruptible(dev);
1783 if (ret)
1784 goto err_rpm;
6e4930f6 1785
eb119bd6
CW
1786 /* Access to snoopable pages through the GTT is incoherent. */
1787 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1788 ret = -EFAULT;
b8f9096d 1789 goto err_unlock;
eb119bd6
CW
1790 }
1791
82118877
CW
1792 /* If the object is smaller than a couple of partial vma, it is
1793 * not worth only creating a single partial vma - we may as well
1794 * clear enough space for the full object.
1795 */
1796 flags = PIN_MAPPABLE;
1797 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1798 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1799
a61007a8 1800 /* Now pin it into the GTT as needed */
82118877 1801 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8
CW
1802 if (IS_ERR(vma)) {
1803 struct i915_ggtt_view view;
03af84fe
CW
1804 unsigned int chunk_size;
1805
a61007a8 1806 /* Use a partial view if it is bigger than available space */
03af84fe
CW
1807 chunk_size = MIN_CHUNK_PAGES;
1808 if (i915_gem_object_is_tiled(obj))
1809 chunk_size = max(chunk_size, tile_row_pages(obj));
e7ded2d7 1810
c5ad54cf
JL
1811 memset(&view, 0, sizeof(view));
1812 view.type = I915_GGTT_VIEW_PARTIAL;
1813 view.params.partial.offset = rounddown(page_offset, chunk_size);
1814 view.params.partial.size =
a61007a8 1815 min_t(unsigned int, chunk_size,
058d88c4 1816 (area->vm_end - area->vm_start) / PAGE_SIZE -
c5ad54cf 1817 view.params.partial.offset);
c5ad54cf 1818
aa136d9d
CW
1819 /* If the partial covers the entire object, just create a
1820 * normal VMA.
1821 */
1822 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1823 view.type = I915_GGTT_VIEW_NORMAL;
1824
50349247
CW
1825 /* Userspace is now writing through an untracked VMA, abandon
1826 * all hope that the hardware is able to track future writes.
1827 */
1828 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1829
a61007a8
CW
1830 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1831 }
058d88c4
CW
1832 if (IS_ERR(vma)) {
1833 ret = PTR_ERR(vma);
b8f9096d 1834 goto err_unlock;
058d88c4 1835 }
4a684a41 1836
c9839303
CW
1837 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1838 if (ret)
b8f9096d 1839 goto err_unpin;
74898d7e 1840
49ef5294 1841 ret = i915_vma_get_fence(vma);
d9e86c0e 1842 if (ret)
b8f9096d 1843 goto err_unpin;
7d1c4804 1844
b90b91d8 1845 /* Finally, remap it using the new GTT offset */
c58305af
CW
1846 ret = remap_io_mapping(area,
1847 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1848 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1849 min_t(u64, vma->size, area->vm_end - area->vm_start),
1850 &ggtt->mappable);
1851 if (ret)
1852 goto err_unpin;
a61007a8
CW
1853
1854 obj->fault_mappable = true;
b8f9096d 1855err_unpin:
058d88c4 1856 __i915_vma_unpin(vma);
b8f9096d 1857err_unlock:
de151cf6 1858 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1859err_rpm:
1860 intel_runtime_pm_put(dev_priv);
1861err:
de151cf6 1862 switch (ret) {
d9bc7e9f 1863 case -EIO:
2232f031
DV
1864 /*
1865 * We eat errors when the gpu is terminally wedged to avoid
1866 * userspace unduly crashing (gl has no provisions for mmaps to
1867 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1868 * and so needs to be reported.
1869 */
1870 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1871 ret = VM_FAULT_SIGBUS;
1872 break;
1873 }
045e769a 1874 case -EAGAIN:
571c608d
DV
1875 /*
1876 * EAGAIN means the gpu is hung and we'll wait for the error
1877 * handler to reset everything when re-faulting in
1878 * i915_mutex_lock_interruptible.
d9bc7e9f 1879 */
c715089f
CW
1880 case 0:
1881 case -ERESTARTSYS:
bed636ab 1882 case -EINTR:
e79e0fe3
DR
1883 case -EBUSY:
1884 /*
1885 * EBUSY is ok: this just means that another thread
1886 * already did the job.
1887 */
f65c9168
PZ
1888 ret = VM_FAULT_NOPAGE;
1889 break;
de151cf6 1890 case -ENOMEM:
f65c9168
PZ
1891 ret = VM_FAULT_OOM;
1892 break;
a7c2e1aa 1893 case -ENOSPC:
45d67817 1894 case -EFAULT:
f65c9168
PZ
1895 ret = VM_FAULT_SIGBUS;
1896 break;
de151cf6 1897 default:
a7c2e1aa 1898 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1899 ret = VM_FAULT_SIGBUS;
1900 break;
de151cf6 1901 }
f65c9168 1902 return ret;
de151cf6
JB
1903}
1904
901782b2
CW
1905/**
1906 * i915_gem_release_mmap - remove physical page mappings
1907 * @obj: obj in question
1908 *
af901ca1 1909 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1910 * relinquish ownership of the pages back to the system.
1911 *
1912 * It is vital that we remove the page mapping if we have mapped a tiled
1913 * object through the GTT and then lose the fence register due to
1914 * resource pressure. Similarly if the object has been moved out of the
1915 * aperture, than pages mapped into userspace must be revoked. Removing the
1916 * mapping will then trigger a page fault on the next user access, allowing
1917 * fixup by i915_gem_fault().
1918 */
d05ca301 1919void
05394f39 1920i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1921{
349f2ccf
CW
1922 /* Serialisation between user GTT access and our code depends upon
1923 * revoking the CPU's PTE whilst the mutex is held. The next user
1924 * pagefault then has to wait until we release the mutex.
1925 */
1926 lockdep_assert_held(&obj->base.dev->struct_mutex);
1927
6299f992
CW
1928 if (!obj->fault_mappable)
1929 return;
901782b2 1930
6796cb16
DH
1931 drm_vma_node_unmap(&obj->base.vma_node,
1932 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1933
1934 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1935 * memory transactions from userspace before we return. The TLB
1936 * flushing implied above by changing the PTE above *should* be
1937 * sufficient, an extra barrier here just provides us with a bit
1938 * of paranoid documentation about our requirement to serialise
1939 * memory writes before touching registers / GSM.
1940 */
1941 wmb();
1942
6299f992 1943 obj->fault_mappable = false;
901782b2
CW
1944}
1945
eedd10f4
CW
1946void
1947i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1948{
1949 struct drm_i915_gem_object *obj;
1950
1951 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1952 i915_gem_release_mmap(obj);
1953}
1954
ad1a7d20
CW
1955/**
1956 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 1957 * @dev_priv: i915 device
ad1a7d20
CW
1958 * @size: object size
1959 * @tiling_mode: tiling mode
1960 *
1961 * Return the required global GTT size for an object, taking into account
1962 * potential fence register mapping.
1963 */
a9f1481f
CW
1964u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1965 u64 size, int tiling_mode)
92b88aeb 1966{
ad1a7d20 1967 u64 ggtt_size;
92b88aeb 1968
ad1a7d20
CW
1969 GEM_BUG_ON(size == 0);
1970
a9f1481f 1971 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
1972 tiling_mode == I915_TILING_NONE)
1973 return size;
92b88aeb
CW
1974
1975 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 1976 if (IS_GEN3(dev_priv))
ad1a7d20 1977 ggtt_size = 1024*1024;
92b88aeb 1978 else
ad1a7d20 1979 ggtt_size = 512*1024;
92b88aeb 1980
ad1a7d20
CW
1981 while (ggtt_size < size)
1982 ggtt_size <<= 1;
92b88aeb 1983
ad1a7d20 1984 return ggtt_size;
92b88aeb
CW
1985}
1986
de151cf6 1987/**
ad1a7d20 1988 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 1989 * @dev_priv: i915 device
14bb2c11
TU
1990 * @size: object size
1991 * @tiling_mode: tiling mode
ad1a7d20 1992 * @fenced: is fenced alignment required or not
de151cf6 1993 *
ad1a7d20 1994 * Return the required global GTT alignment for an object, taking into account
5e783301 1995 * potential fence register mapping.
de151cf6 1996 */
a9f1481f 1997u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 1998 int tiling_mode, bool fenced)
de151cf6 1999{
ad1a7d20
CW
2000 GEM_BUG_ON(size == 0);
2001
de151cf6
JB
2002 /*
2003 * Minimum alignment is 4k (GTT page size), but might be greater
2004 * if a fence register is needed for the object.
2005 */
a9f1481f 2006 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 2007 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2008 return 4096;
2009
a00b10c3
CW
2010 /*
2011 * Previous chips need to be aligned to the size of the smallest
2012 * fence register that can contain the object.
2013 */
a9f1481f 2014 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
2015}
2016
d8cb5086
CW
2017static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2018{
fac5e23e 2019 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2020 int err;
da494d7c 2021
f3f6184c
CW
2022 err = drm_gem_create_mmap_offset(&obj->base);
2023 if (!err)
2024 return 0;
d8cb5086 2025
f3f6184c
CW
2026 /* We can idle the GPU locklessly to flush stale objects, but in order
2027 * to claim that space for ourselves, we need to take the big
2028 * struct_mutex to free the requests+objects and allocate our slot.
d8cb5086 2029 */
ea746f36 2030 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
f3f6184c
CW
2031 if (err)
2032 return err;
2033
2034 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2035 if (!err) {
2036 i915_gem_retire_requests(dev_priv);
2037 err = drm_gem_create_mmap_offset(&obj->base);
2038 mutex_unlock(&dev_priv->drm.struct_mutex);
2039 }
da494d7c 2040
f3f6184c 2041 return err;
d8cb5086
CW
2042}
2043
2044static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2045{
d8cb5086
CW
2046 drm_gem_free_mmap_offset(&obj->base);
2047}
2048
da6b51d0 2049int
ff72145b
DA
2050i915_gem_mmap_gtt(struct drm_file *file,
2051 struct drm_device *dev,
da6b51d0 2052 uint32_t handle,
ff72145b 2053 uint64_t *offset)
de151cf6 2054{
05394f39 2055 struct drm_i915_gem_object *obj;
de151cf6
JB
2056 int ret;
2057
03ac0642 2058 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2059 if (!obj)
2060 return -ENOENT;
ab18282d 2061
d8cb5086 2062 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2063 if (ret == 0)
2064 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2065
f3f6184c 2066 i915_gem_object_put_unlocked(obj);
1d7cfea1 2067 return ret;
de151cf6
JB
2068}
2069
ff72145b
DA
2070/**
2071 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2072 * @dev: DRM device
2073 * @data: GTT mapping ioctl data
2074 * @file: GEM object info
2075 *
2076 * Simply returns the fake offset to userspace so it can mmap it.
2077 * The mmap call will end up in drm_gem_mmap(), which will set things
2078 * up so we can get faults in the handler above.
2079 *
2080 * The fault handler will take care of binding the object into the GTT
2081 * (since it may have been evicted to make room for something), allocating
2082 * a fence register, and mapping the appropriate aperture address into
2083 * userspace.
2084 */
2085int
2086i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2087 struct drm_file *file)
2088{
2089 struct drm_i915_gem_mmap_gtt *args = data;
2090
da6b51d0 2091 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2092}
2093
225067ee
DV
2094/* Immediately discard the backing storage */
2095static void
2096i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2097{
4d6294bf 2098 i915_gem_object_free_mmap_offset(obj);
1286ff73 2099
4d6294bf
CW
2100 if (obj->base.filp == NULL)
2101 return;
e5281ccd 2102
225067ee
DV
2103 /* Our goal here is to return as much of the memory as
2104 * is possible back to the system as we are called from OOM.
2105 * To do this we must instruct the shmfs to drop all of its
2106 * backing pages, *now*.
2107 */
5537252b 2108 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2109 obj->madv = __I915_MADV_PURGED;
2110}
e5281ccd 2111
5537252b
CW
2112/* Try to discard unwanted pages */
2113static void
2114i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2115{
5537252b
CW
2116 struct address_space *mapping;
2117
2118 switch (obj->madv) {
2119 case I915_MADV_DONTNEED:
2120 i915_gem_object_truncate(obj);
2121 case __I915_MADV_PURGED:
2122 return;
2123 }
2124
2125 if (obj->base.filp == NULL)
2126 return;
2127
93c76a3d 2128 mapping = obj->base.filp->f_mapping,
5537252b 2129 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2130}
2131
5cdf5881 2132static void
05394f39 2133i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2134{
85d1225e
DG
2135 struct sgt_iter sgt_iter;
2136 struct page *page;
90797e6d 2137 int ret;
1286ff73 2138
05394f39 2139 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2140
6c085a72 2141 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2142 if (WARN_ON(ret)) {
6c085a72
CW
2143 /* In the event of a disaster, abandon all caches and
2144 * hope for the best.
2145 */
2c22569b 2146 i915_gem_clflush_object(obj, true);
6c085a72
CW
2147 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2148 }
2149
e2273302
ID
2150 i915_gem_gtt_finish_object(obj);
2151
6dacfd2f 2152 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2153 i915_gem_object_save_bit_17_swizzle(obj);
2154
05394f39
CW
2155 if (obj->madv == I915_MADV_DONTNEED)
2156 obj->dirty = 0;
3ef94daa 2157
85d1225e 2158 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2159 if (obj->dirty)
9da3da66 2160 set_page_dirty(page);
3ef94daa 2161
05394f39 2162 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2163 mark_page_accessed(page);
3ef94daa 2164
09cbfeaf 2165 put_page(page);
3ef94daa 2166 }
05394f39 2167 obj->dirty = 0;
673a394b 2168
9da3da66
CW
2169 sg_free_table(obj->pages);
2170 kfree(obj->pages);
37e680a1 2171}
6c085a72 2172
dd624afd 2173int
37e680a1
CW
2174i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2175{
2176 const struct drm_i915_gem_object_ops *ops = obj->ops;
2177
2f745ad3 2178 if (obj->pages == NULL)
37e680a1
CW
2179 return 0;
2180
a5570178
CW
2181 if (obj->pages_pin_count)
2182 return -EBUSY;
2183
15717de2 2184 GEM_BUG_ON(obj->bind_count);
3e123027 2185
a2165e31
CW
2186 /* ->put_pages might need to allocate memory for the bit17 swizzle
2187 * array, hence protect them from being reaped by removing them from gtt
2188 * lists early. */
35c20a60 2189 list_del(&obj->global_list);
a2165e31 2190
0a798eb9 2191 if (obj->mapping) {
4b30cb23
CW
2192 void *ptr;
2193
2194 ptr = ptr_mask_bits(obj->mapping);
2195 if (is_vmalloc_addr(ptr))
2196 vunmap(ptr);
fb8621d3 2197 else
4b30cb23
CW
2198 kunmap(kmap_to_page(ptr));
2199
0a798eb9
CW
2200 obj->mapping = NULL;
2201 }
2202
37e680a1 2203 ops->put_pages(obj);
05394f39 2204 obj->pages = NULL;
37e680a1 2205
5537252b 2206 i915_gem_object_invalidate(obj);
6c085a72
CW
2207
2208 return 0;
2209}
2210
37e680a1 2211static int
6c085a72 2212i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2213{
fac5e23e 2214 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2215 int page_count, i;
2216 struct address_space *mapping;
9da3da66
CW
2217 struct sg_table *st;
2218 struct scatterlist *sg;
85d1225e 2219 struct sgt_iter sgt_iter;
e5281ccd 2220 struct page *page;
90797e6d 2221 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2222 int ret;
6c085a72 2223 gfp_t gfp;
e5281ccd 2224
6c085a72
CW
2225 /* Assert that the object is not currently in any GPU domain. As it
2226 * wasn't in the GTT, there shouldn't be any way it could have been in
2227 * a GPU cache
2228 */
2229 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2230 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2231
9da3da66
CW
2232 st = kmalloc(sizeof(*st), GFP_KERNEL);
2233 if (st == NULL)
2234 return -ENOMEM;
2235
05394f39 2236 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2237 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2238 kfree(st);
e5281ccd 2239 return -ENOMEM;
9da3da66 2240 }
e5281ccd 2241
9da3da66
CW
2242 /* Get the list of pages out of our struct file. They'll be pinned
2243 * at this point until we release them.
2244 *
2245 * Fail silently without starting the shrinker
2246 */
93c76a3d 2247 mapping = obj->base.filp->f_mapping;
c62d2555 2248 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2249 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2250 sg = st->sgl;
2251 st->nents = 0;
2252 for (i = 0; i < page_count; i++) {
6c085a72
CW
2253 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2254 if (IS_ERR(page)) {
21ab4e74
CW
2255 i915_gem_shrink(dev_priv,
2256 page_count,
2257 I915_SHRINK_BOUND |
2258 I915_SHRINK_UNBOUND |
2259 I915_SHRINK_PURGEABLE);
6c085a72
CW
2260 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2261 }
2262 if (IS_ERR(page)) {
2263 /* We've tried hard to allocate the memory by reaping
2264 * our own buffer, now let the real VM do its job and
2265 * go down in flames if truly OOM.
2266 */
6c085a72 2267 i915_gem_shrink_all(dev_priv);
f461d1be 2268 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2269 if (IS_ERR(page)) {
2270 ret = PTR_ERR(page);
6c085a72 2271 goto err_pages;
e2273302 2272 }
6c085a72 2273 }
426729dc
KRW
2274#ifdef CONFIG_SWIOTLB
2275 if (swiotlb_nr_tbl()) {
2276 st->nents++;
2277 sg_set_page(sg, page, PAGE_SIZE, 0);
2278 sg = sg_next(sg);
2279 continue;
2280 }
2281#endif
90797e6d
ID
2282 if (!i || page_to_pfn(page) != last_pfn + 1) {
2283 if (i)
2284 sg = sg_next(sg);
2285 st->nents++;
2286 sg_set_page(sg, page, PAGE_SIZE, 0);
2287 } else {
2288 sg->length += PAGE_SIZE;
2289 }
2290 last_pfn = page_to_pfn(page);
3bbbe706
DV
2291
2292 /* Check that the i965g/gm workaround works. */
2293 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2294 }
426729dc
KRW
2295#ifdef CONFIG_SWIOTLB
2296 if (!swiotlb_nr_tbl())
2297#endif
2298 sg_mark_end(sg);
74ce6b6c
CW
2299 obj->pages = st;
2300
e2273302
ID
2301 ret = i915_gem_gtt_prepare_object(obj);
2302 if (ret)
2303 goto err_pages;
2304
6dacfd2f 2305 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2306 i915_gem_object_do_bit_17_swizzle(obj);
2307
3e510a8e 2308 if (i915_gem_object_is_tiled(obj) &&
656bfa3a
DV
2309 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2310 i915_gem_object_pin_pages(obj);
2311
e5281ccd
CW
2312 return 0;
2313
2314err_pages:
90797e6d 2315 sg_mark_end(sg);
85d1225e
DG
2316 for_each_sgt_page(page, sgt_iter, st)
2317 put_page(page);
9da3da66
CW
2318 sg_free_table(st);
2319 kfree(st);
0820baf3
CW
2320
2321 /* shmemfs first checks if there is enough memory to allocate the page
2322 * and reports ENOSPC should there be insufficient, along with the usual
2323 * ENOMEM for a genuine allocation failure.
2324 *
2325 * We use ENOSPC in our driver to mean that we have run out of aperture
2326 * space and so want to translate the error from shmemfs back to our
2327 * usual understanding of ENOMEM.
2328 */
e2273302
ID
2329 if (ret == -ENOSPC)
2330 ret = -ENOMEM;
2331
2332 return ret;
673a394b
EA
2333}
2334
37e680a1
CW
2335/* Ensure that the associated pages are gathered from the backing storage
2336 * and pinned into our object. i915_gem_object_get_pages() may be called
2337 * multiple times before they are released by a single call to
2338 * i915_gem_object_put_pages() - once the pages are no longer referenced
2339 * either as a result of memory pressure (reaping pages under the shrinker)
2340 * or as the object is itself released.
2341 */
2342int
2343i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2344{
fac5e23e 2345 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
37e680a1
CW
2346 const struct drm_i915_gem_object_ops *ops = obj->ops;
2347 int ret;
2348
2f745ad3 2349 if (obj->pages)
37e680a1
CW
2350 return 0;
2351
43e28f09 2352 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2353 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2354 return -EFAULT;
43e28f09
CW
2355 }
2356
a5570178
CW
2357 BUG_ON(obj->pages_pin_count);
2358
37e680a1
CW
2359 ret = ops->get_pages(obj);
2360 if (ret)
2361 return ret;
2362
35c20a60 2363 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2364
2365 obj->get_page.sg = obj->pages->sgl;
2366 obj->get_page.last = 0;
2367
37e680a1 2368 return 0;
673a394b
EA
2369}
2370
dd6034c6 2371/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2372static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2373 enum i915_map_type type)
dd6034c6
DG
2374{
2375 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2376 struct sg_table *sgt = obj->pages;
85d1225e
DG
2377 struct sgt_iter sgt_iter;
2378 struct page *page;
b338fa47
DG
2379 struct page *stack_pages[32];
2380 struct page **pages = stack_pages;
dd6034c6 2381 unsigned long i = 0;
d31d7cb1 2382 pgprot_t pgprot;
dd6034c6
DG
2383 void *addr;
2384
2385 /* A single page can always be kmapped */
d31d7cb1 2386 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2387 return kmap(sg_page(sgt->sgl));
2388
b338fa47
DG
2389 if (n_pages > ARRAY_SIZE(stack_pages)) {
2390 /* Too big for stack -- allocate temporary array instead */
2391 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2392 if (!pages)
2393 return NULL;
2394 }
dd6034c6 2395
85d1225e
DG
2396 for_each_sgt_page(page, sgt_iter, sgt)
2397 pages[i++] = page;
dd6034c6
DG
2398
2399 /* Check that we have the expected number of pages */
2400 GEM_BUG_ON(i != n_pages);
2401
d31d7cb1
CW
2402 switch (type) {
2403 case I915_MAP_WB:
2404 pgprot = PAGE_KERNEL;
2405 break;
2406 case I915_MAP_WC:
2407 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2408 break;
2409 }
2410 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2411
b338fa47
DG
2412 if (pages != stack_pages)
2413 drm_free_large(pages);
dd6034c6
DG
2414
2415 return addr;
2416}
2417
2418/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2419void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2420 enum i915_map_type type)
0a798eb9 2421{
d31d7cb1
CW
2422 enum i915_map_type has_type;
2423 bool pinned;
2424 void *ptr;
0a798eb9
CW
2425 int ret;
2426
2427 lockdep_assert_held(&obj->base.dev->struct_mutex);
d31d7cb1 2428 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9
CW
2429
2430 ret = i915_gem_object_get_pages(obj);
2431 if (ret)
2432 return ERR_PTR(ret);
2433
2434 i915_gem_object_pin_pages(obj);
d31d7cb1 2435 pinned = obj->pages_pin_count > 1;
0a798eb9 2436
d31d7cb1
CW
2437 ptr = ptr_unpack_bits(obj->mapping, has_type);
2438 if (ptr && has_type != type) {
2439 if (pinned) {
2440 ret = -EBUSY;
2441 goto err;
0a798eb9 2442 }
d31d7cb1
CW
2443
2444 if (is_vmalloc_addr(ptr))
2445 vunmap(ptr);
2446 else
2447 kunmap(kmap_to_page(ptr));
2448
2449 ptr = obj->mapping = NULL;
0a798eb9
CW
2450 }
2451
d31d7cb1
CW
2452 if (!ptr) {
2453 ptr = i915_gem_object_map(obj, type);
2454 if (!ptr) {
2455 ret = -ENOMEM;
2456 goto err;
2457 }
2458
2459 obj->mapping = ptr_pack_bits(ptr, type);
2460 }
2461
2462 return ptr;
2463
2464err:
2465 i915_gem_object_unpin_pages(obj);
2466 return ERR_PTR(ret);
0a798eb9
CW
2467}
2468
b4716185 2469static void
fa545cbf
CW
2470i915_gem_object_retire__write(struct i915_gem_active *active,
2471 struct drm_i915_gem_request *request)
e2d05a8b 2472{
fa545cbf
CW
2473 struct drm_i915_gem_object *obj =
2474 container_of(active, struct drm_i915_gem_object, last_write);
b4716185 2475
de152b62 2476 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2477}
2478
caea7476 2479static void
fa545cbf
CW
2480i915_gem_object_retire__read(struct i915_gem_active *active,
2481 struct drm_i915_gem_request *request)
ce44b0ea 2482{
fa545cbf
CW
2483 int idx = request->engine->id;
2484 struct drm_i915_gem_object *obj =
2485 container_of(active, struct drm_i915_gem_object, last_read[idx]);
ce44b0ea 2486
573adb39 2487 GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
b4716185 2488
573adb39
CW
2489 i915_gem_object_clear_active(obj, idx);
2490 if (i915_gem_object_is_active(obj))
b4716185 2491 return;
caea7476 2492
6c246959
CW
2493 /* Bump our place on the bound list to keep it roughly in LRU order
2494 * so that we don't steal from recently used but inactive objects
2495 * (unless we are forced to ofc!)
2496 */
b0decaf7
CW
2497 if (obj->bind_count)
2498 list_move_tail(&obj->global_list,
2499 &request->i915->mm.bound_list);
caea7476 2500
f8c417cd 2501 i915_gem_object_put(obj);
c8725f3d
CW
2502}
2503
7b4d3a16 2504static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2505{
44e2c070 2506 unsigned long elapsed;
be62acb4 2507
44e2c070 2508 if (ctx->hang_stats.banned)
be62acb4
MK
2509 return true;
2510
7b4d3a16 2511 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2512 if (ctx->hang_stats.ban_period_seconds &&
2513 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2514 DRM_DEBUG("context hanging too fast, banning!\n");
2515 return true;
be62acb4
MK
2516 }
2517
2518 return false;
2519}
2520
7b4d3a16 2521static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2522 const bool guilty)
aa60c664 2523{
7b4d3a16 2524 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2525
2526 if (guilty) {
7b4d3a16 2527 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2528 hs->batch_active++;
2529 hs->guilty_ts = get_seconds();
2530 } else {
2531 hs->batch_pending++;
aa60c664
MK
2532 }
2533}
2534
8d9fc7fd 2535struct drm_i915_gem_request *
0bc40be8 2536i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2537{
4db080f9
CW
2538 struct drm_i915_gem_request *request;
2539
f69a02c9
CW
2540 /* We are called by the error capture and reset at a random
2541 * point in time. In particular, note that neither is crucially
2542 * ordered with an interrupt. After a hang, the GPU is dead and we
2543 * assume that no more writes can happen (we waited long enough for
2544 * all writes that were in transaction to be flushed) - adding an
2545 * extra delay for a recent interrupt is pointless. Hence, we do
2546 * not need an engine->irq_seqno_barrier() before the seqno reads.
2547 */
efdf7c06 2548 list_for_each_entry(request, &engine->request_list, link) {
f69a02c9 2549 if (i915_gem_request_completed(request))
4db080f9 2550 continue;
aa60c664 2551
b6b0fac0 2552 return request;
4db080f9 2553 }
b6b0fac0
MK
2554
2555 return NULL;
2556}
2557
7b4d3a16 2558static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
b6b0fac0
MK
2559{
2560 struct drm_i915_gem_request *request;
2561 bool ring_hung;
2562
0bc40be8 2563 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2564 if (request == NULL)
2565 return;
2566
0bc40be8 2567 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2568
7b4d3a16 2569 i915_set_reset_status(request->ctx, ring_hung);
efdf7c06 2570 list_for_each_entry_continue(request, &engine->request_list, link)
7b4d3a16 2571 i915_set_reset_status(request->ctx, false);
4db080f9 2572}
aa60c664 2573
7b4d3a16 2574static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
4db080f9 2575{
dcff85c8 2576 struct drm_i915_gem_request *request;
7e37f889 2577 struct intel_ring *ring;
608c1a52 2578
70c2a24d
CW
2579 /* Ensure irq handler finishes, and not run again. */
2580 tasklet_kill(&engine->irq_tasklet);
2581
c4b0930b
CW
2582 /* Mark all pending requests as complete so that any concurrent
2583 * (lockless) lookup doesn't try and wait upon the request as we
2584 * reset it.
2585 */
87b723a1 2586 intel_engine_init_seqno(engine, engine->last_submitted_seqno);
c4b0930b 2587
dcb4c12a
OM
2588 /*
2589 * Clear the execlists queue up before freeing the requests, as those
2590 * are the ones that keep the context and ringbuffer backing objects
2591 * pinned in place.
2592 */
dcb4c12a 2593
7de1691a 2594 if (i915.enable_execlists) {
70c2a24d
CW
2595 spin_lock(&engine->execlist_lock);
2596 INIT_LIST_HEAD(&engine->execlist_queue);
2597 i915_gem_request_put(engine->execlist_port[0].request);
2598 i915_gem_request_put(engine->execlist_port[1].request);
2599 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2600 spin_unlock(&engine->execlist_lock);
dcb4c12a
OM
2601 }
2602
1d62beea
BW
2603 /*
2604 * We must free the requests after all the corresponding objects have
2605 * been moved off active lists. Which is the same order as the normal
2606 * retire_requests function does. This is important if object hold
2607 * implicit references on things like e.g. ppgtt address spaces through
2608 * the request.
2609 */
87b723a1
CW
2610 request = i915_gem_active_raw(&engine->last_request,
2611 &engine->i915->drm.struct_mutex);
dcff85c8 2612 if (request)
05235c53 2613 i915_gem_request_retire_upto(request);
dcff85c8 2614 GEM_BUG_ON(intel_engine_is_active(engine));
608c1a52
CW
2615
2616 /* Having flushed all requests from all queues, we know that all
2617 * ringbuffers must now be empty. However, since we do not reclaim
2618 * all space when retiring the request (to prevent HEADs colliding
2619 * with rapid ringbuffer wraparound) the amount of available space
2620 * upon reset is less than when we start. Do one more pass over
2621 * all the ringbuffers to reset last_retired_head.
2622 */
7e37f889
CW
2623 list_for_each_entry(ring, &engine->buffers, link) {
2624 ring->last_retired_head = ring->tail;
2625 intel_ring_update_space(ring);
608c1a52 2626 }
2ed53a94 2627
b913b33c 2628 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
673a394b
EA
2629}
2630
069efc1d 2631void i915_gem_reset(struct drm_device *dev)
673a394b 2632{
fac5e23e 2633 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 2634 struct intel_engine_cs *engine;
673a394b 2635
4db080f9
CW
2636 /*
2637 * Before we free the objects from the requests, we need to inspect
2638 * them for finding the guilty party. As the requests only borrow
2639 * their reference to the objects, the inspection must be done first.
2640 */
b4ac5afc 2641 for_each_engine(engine, dev_priv)
7b4d3a16 2642 i915_gem_reset_engine_status(engine);
4db080f9 2643
b4ac5afc 2644 for_each_engine(engine, dev_priv)
7b4d3a16 2645 i915_gem_reset_engine_cleanup(engine);
b913b33c 2646 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2647
acce9ffa
BW
2648 i915_gem_context_reset(dev);
2649
19b2dbde 2650 i915_gem_restore_fences(dev);
673a394b
EA
2651}
2652
75ef9da2 2653static void
673a394b
EA
2654i915_gem_retire_work_handler(struct work_struct *work)
2655{
b29c19b6 2656 struct drm_i915_private *dev_priv =
67d97da3 2657 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2658 struct drm_device *dev = &dev_priv->drm;
673a394b 2659
891b48cf 2660 /* Come back later if the device is busy... */
b29c19b6 2661 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2662 i915_gem_retire_requests(dev_priv);
b29c19b6 2663 mutex_unlock(&dev->struct_mutex);
673a394b 2664 }
67d97da3
CW
2665
2666 /* Keep the retire handler running until we are finally idle.
2667 * We do not need to do this test under locking as in the worst-case
2668 * we queue the retire worker once too often.
2669 */
c9615613
CW
2670 if (READ_ONCE(dev_priv->gt.awake)) {
2671 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2672 queue_delayed_work(dev_priv->wq,
2673 &dev_priv->gt.retire_work,
bcb45086 2674 round_jiffies_up_relative(HZ));
c9615613 2675 }
b29c19b6 2676}
0a58705b 2677
b29c19b6
CW
2678static void
2679i915_gem_idle_work_handler(struct work_struct *work)
2680{
2681 struct drm_i915_private *dev_priv =
67d97da3 2682 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2683 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2684 struct intel_engine_cs *engine;
67d97da3
CW
2685 bool rearm_hangcheck;
2686
2687 if (!READ_ONCE(dev_priv->gt.awake))
2688 return;
2689
2690 if (READ_ONCE(dev_priv->gt.active_engines))
2691 return;
2692
2693 rearm_hangcheck =
2694 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2695
2696 if (!mutex_trylock(&dev->struct_mutex)) {
2697 /* Currently busy, come back later */
2698 mod_delayed_work(dev_priv->wq,
2699 &dev_priv->gt.idle_work,
2700 msecs_to_jiffies(50));
2701 goto out_rearm;
2702 }
2703
2704 if (dev_priv->gt.active_engines)
2705 goto out_unlock;
b29c19b6 2706
b4ac5afc 2707 for_each_engine(engine, dev_priv)
67d97da3 2708 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2709
67d97da3
CW
2710 GEM_BUG_ON(!dev_priv->gt.awake);
2711 dev_priv->gt.awake = false;
2712 rearm_hangcheck = false;
30ecad77 2713
67d97da3
CW
2714 if (INTEL_GEN(dev_priv) >= 6)
2715 gen6_rps_idle(dev_priv);
2716 intel_runtime_pm_put(dev_priv);
2717out_unlock:
2718 mutex_unlock(&dev->struct_mutex);
b29c19b6 2719
67d97da3
CW
2720out_rearm:
2721 if (rearm_hangcheck) {
2722 GEM_BUG_ON(!dev_priv->gt.awake);
2723 i915_queue_hangcheck(dev_priv);
35c94185 2724 }
673a394b
EA
2725}
2726
b1f788c6
CW
2727void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2728{
2729 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2730 struct drm_i915_file_private *fpriv = file->driver_priv;
2731 struct i915_vma *vma, *vn;
2732
2733 mutex_lock(&obj->base.dev->struct_mutex);
2734 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2735 if (vma->vm->file == fpriv)
2736 i915_vma_close(vma);
2737 mutex_unlock(&obj->base.dev->struct_mutex);
2738}
2739
23ba4fd0
BW
2740/**
2741 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2742 * @dev: drm device pointer
2743 * @data: ioctl data blob
2744 * @file: drm file pointer
23ba4fd0
BW
2745 *
2746 * Returns 0 if successful, else an error is returned with the remaining time in
2747 * the timeout parameter.
2748 * -ETIME: object is still busy after timeout
2749 * -ERESTARTSYS: signal interrupted the wait
2750 * -ENONENT: object doesn't exist
2751 * Also possible, but rare:
2752 * -EAGAIN: GPU wedged
2753 * -ENOMEM: damn
2754 * -ENODEV: Internal IRQ fail
2755 * -E?: The add request failed
2756 *
2757 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2758 * non-zero timeout parameter the wait ioctl will wait for the given number of
2759 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2760 * without holding struct_mutex the object may become re-busied before this
2761 * function completes. A similar but shorter * race condition exists in the busy
2762 * ioctl
2763 */
2764int
2765i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2766{
2767 struct drm_i915_gem_wait *args = data;
033d549b 2768 struct intel_rps_client *rps = to_rps_client(file);
23ba4fd0 2769 struct drm_i915_gem_object *obj;
033d549b
CW
2770 unsigned long active;
2771 int idx, ret = 0;
23ba4fd0 2772
11b5d511
DV
2773 if (args->flags != 0)
2774 return -EINVAL;
2775
03ac0642 2776 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 2777 if (!obj)
23ba4fd0 2778 return -ENOENT;
23ba4fd0 2779
033d549b
CW
2780 active = __I915_BO_ACTIVE(obj);
2781 for_each_active(active, idx) {
2782 s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
ea746f36
CW
2783 ret = i915_gem_active_wait_unlocked(&obj->last_read[idx],
2784 I915_WAIT_INTERRUPTIBLE,
033d549b
CW
2785 timeout, rps);
2786 if (ret)
2787 break;
b4716185
CW
2788 }
2789
033d549b 2790 i915_gem_object_put_unlocked(obj);
ff865885 2791 return ret;
23ba4fd0
BW
2792}
2793
b4716185 2794static int
fa545cbf 2795__i915_gem_object_sync(struct drm_i915_gem_request *to,
8e637178 2796 struct drm_i915_gem_request *from)
b4716185 2797{
b4716185
CW
2798 int ret;
2799
8e637178 2800 if (to->engine == from->engine)
b4716185
CW
2801 return 0;
2802
39df9190 2803 if (!i915.semaphores) {
776f3236
CW
2804 ret = i915_wait_request(from,
2805 from->i915->mm.interruptible,
2806 NULL,
2807 NO_WAITBOOST);
b4716185
CW
2808 if (ret)
2809 return ret;
b4716185 2810 } else {
8e637178 2811 int idx = intel_engine_sync_index(from->engine, to->engine);
ddf07be7 2812 if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
b4716185
CW
2813 return 0;
2814
8e637178 2815 trace_i915_gem_ring_sync_to(to, from);
ddf07be7 2816 ret = to->engine->semaphore.sync_to(to, from);
b4716185
CW
2817 if (ret)
2818 return ret;
2819
ddf07be7 2820 from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
b4716185
CW
2821 }
2822
2823 return 0;
2824}
2825
5816d648
BW
2826/**
2827 * i915_gem_object_sync - sync an object to a ring.
2828 *
2829 * @obj: object which may be in use on another ring.
8e637178 2830 * @to: request we are wishing to use
5816d648
BW
2831 *
2832 * This code is meant to abstract object synchronization with the GPU.
8e637178
CW
2833 * Conceptually we serialise writes between engines inside the GPU.
2834 * We only allow one engine to write into a buffer at any time, but
2835 * multiple readers. To ensure each has a coherent view of memory, we must:
b4716185
CW
2836 *
2837 * - If there is an outstanding write request to the object, the new
2838 * request must wait for it to complete (either CPU or in hw, requests
2839 * on the same ring will be naturally ordered).
2840 *
2841 * - If we are a write request (pending_write_domain is set), the new
2842 * request must wait for outstanding read requests to complete.
5816d648
BW
2843 *
2844 * Returns 0 if successful, else propagates up the lower layer error.
2845 */
2911a35b
BW
2846int
2847i915_gem_object_sync(struct drm_i915_gem_object *obj,
8e637178 2848 struct drm_i915_gem_request *to)
2911a35b 2849{
8cac6f6c
CW
2850 struct i915_gem_active *active;
2851 unsigned long active_mask;
2852 int idx;
41c52415 2853
8cac6f6c 2854 lockdep_assert_held(&obj->base.dev->struct_mutex);
2911a35b 2855
573adb39 2856 active_mask = i915_gem_object_get_active(obj);
8cac6f6c
CW
2857 if (!active_mask)
2858 return 0;
27c01aae 2859
8cac6f6c
CW
2860 if (obj->base.pending_write_domain) {
2861 active = obj->last_read;
b4716185 2862 } else {
8cac6f6c
CW
2863 active_mask = 1;
2864 active = &obj->last_write;
b4716185 2865 }
8cac6f6c
CW
2866
2867 for_each_active(active_mask, idx) {
2868 struct drm_i915_gem_request *request;
2869 int ret;
2870
2871 request = i915_gem_active_peek(&active[idx],
2872 &obj->base.dev->struct_mutex);
2873 if (!request)
2874 continue;
2875
fa545cbf 2876 ret = __i915_gem_object_sync(to, request);
b4716185
CW
2877 if (ret)
2878 return ret;
2879 }
2911a35b 2880
b4716185 2881 return 0;
2911a35b
BW
2882}
2883
8ef8561f
CW
2884static void __i915_vma_iounmap(struct i915_vma *vma)
2885{
20dfbde4 2886 GEM_BUG_ON(i915_vma_is_pinned(vma));
8ef8561f
CW
2887
2888 if (vma->iomap == NULL)
2889 return;
2890
2891 io_mapping_unmap(vma->iomap);
2892 vma->iomap = NULL;
2893}
2894
df0e9a28 2895int i915_vma_unbind(struct i915_vma *vma)
673a394b 2896{
07fe0b12 2897 struct drm_i915_gem_object *obj = vma->obj;
b0decaf7 2898 unsigned long active;
43e28f09 2899 int ret;
673a394b 2900
b0decaf7
CW
2901 /* First wait upon any activity as retiring the request may
2902 * have side-effects such as unpinning or even unbinding this vma.
2903 */
2904 active = i915_vma_get_active(vma);
df0e9a28 2905 if (active) {
b0decaf7
CW
2906 int idx;
2907
b1f788c6
CW
2908 /* When a closed VMA is retired, it is unbound - eek.
2909 * In order to prevent it from being recursively closed,
2910 * take a pin on the vma so that the second unbind is
2911 * aborted.
2912 */
20dfbde4 2913 __i915_vma_pin(vma);
b1f788c6 2914
b0decaf7
CW
2915 for_each_active(active, idx) {
2916 ret = i915_gem_active_retire(&vma->last_read[idx],
2917 &vma->vm->dev->struct_mutex);
2918 if (ret)
b1f788c6 2919 break;
b0decaf7
CW
2920 }
2921
20dfbde4 2922 __i915_vma_unpin(vma);
b1f788c6
CW
2923 if (ret)
2924 return ret;
2925
b0decaf7
CW
2926 GEM_BUG_ON(i915_vma_is_active(vma));
2927 }
2928
20dfbde4 2929 if (i915_vma_is_pinned(vma))
b0decaf7
CW
2930 return -EBUSY;
2931
b1f788c6
CW
2932 if (!drm_mm_node_allocated(&vma->node))
2933 goto destroy;
433544bd 2934
15717de2
CW
2935 GEM_BUG_ON(obj->bind_count == 0);
2936 GEM_BUG_ON(!obj->pages);
c4670ad0 2937
05a20d09 2938 if (i915_vma_is_map_and_fenceable(vma)) {
8b1bc9b4 2939 /* release the fence reg _after_ flushing */
49ef5294 2940 ret = i915_vma_put_fence(vma);
8b1bc9b4
DV
2941 if (ret)
2942 return ret;
8ef8561f 2943
cd3127d6
CW
2944 /* Force a pagefault for domain tracking on next user access */
2945 i915_gem_release_mmap(obj);
2946
8ef8561f 2947 __i915_vma_iounmap(vma);
05a20d09 2948 vma->flags &= ~I915_VMA_CAN_FENCE;
8b1bc9b4 2949 }
96b47b65 2950
50e046b6
CW
2951 if (likely(!vma->vm->closed)) {
2952 trace_i915_vma_unbind(vma);
2953 vma->vm->unbind_vma(vma);
2954 }
3272db53 2955 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
6f65e29a 2956
50e046b6
CW
2957 drm_mm_remove_node(&vma->node);
2958 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2959
05a20d09
CW
2960 if (vma->pages != obj->pages) {
2961 GEM_BUG_ON(!vma->pages);
2962 sg_free_table(vma->pages);
2963 kfree(vma->pages);
fe14d5f4 2964 }
247177dd 2965 vma->pages = NULL;
673a394b 2966
2f633156 2967 /* Since the unbound list is global, only move to that list if
b93dab6e 2968 * no more VMAs exist. */
15717de2
CW
2969 if (--obj->bind_count == 0)
2970 list_move_tail(&obj->global_list,
2971 &to_i915(obj->base.dev)->mm.unbound_list);
673a394b 2972
70903c3b
CW
2973 /* And finally now the object is completely decoupled from this vma,
2974 * we can drop its hold on the backing storage and allow it to be
2975 * reaped by the shrinker.
2976 */
2977 i915_gem_object_unpin_pages(obj);
2978
b1f788c6 2979destroy:
3272db53 2980 if (unlikely(i915_vma_is_closed(vma)))
b1f788c6
CW
2981 i915_vma_destroy(vma);
2982
88241785 2983 return 0;
54cf91dc
CW
2984}
2985
dcff85c8 2986int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
ea746f36 2987 unsigned int flags)
4df2faf4 2988{
e2f80391 2989 struct intel_engine_cs *engine;
b4ac5afc 2990 int ret;
4df2faf4 2991
b4ac5afc 2992 for_each_engine(engine, dev_priv) {
62e63007
CW
2993 if (engine->last_context == NULL)
2994 continue;
2995
ea746f36 2996 ret = intel_engine_idle(engine, flags);
1ec14ad3
CW
2997 if (ret)
2998 return ret;
2999 }
4df2faf4 3000
8a1a49f9 3001 return 0;
4df2faf4
DV
3002}
3003
4144f9b5 3004static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3005 unsigned long cache_level)
3006{
4144f9b5 3007 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3008 struct drm_mm_node *other;
3009
4144f9b5
CW
3010 /*
3011 * On some machines we have to be careful when putting differing types
3012 * of snoopable memory together to avoid the prefetcher crossing memory
3013 * domains and dying. During vm initialisation, we decide whether or not
3014 * these constraints apply and set the drm_mm.color_adjust
3015 * appropriately.
42d6ab48 3016 */
4144f9b5 3017 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3018 return true;
3019
c6cfb325 3020 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3021 return true;
3022
3023 if (list_empty(&gtt_space->node_list))
3024 return true;
3025
3026 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3027 if (other->allocated && !other->hole_follows && other->color != cache_level)
3028 return false;
3029
3030 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3031 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3032 return false;
3033
3034 return true;
3035}
3036
673a394b 3037/**
59bfa124
CW
3038 * i915_vma_insert - finds a slot for the vma in its address space
3039 * @vma: the vma
91b2db6f 3040 * @size: requested size in bytes (can be larger than the VMA)
59bfa124 3041 * @alignment: required alignment
14bb2c11 3042 * @flags: mask of PIN_* flags to use
59bfa124
CW
3043 *
3044 * First we try to allocate some free space that meets the requirements for
3045 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
3046 * preferrably the oldest idle entry to make room for the new VMA.
3047 *
3048 * Returns:
3049 * 0 on success, negative error code otherwise.
673a394b 3050 */
59bfa124
CW
3051static int
3052i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
673a394b 3053{
59bfa124
CW
3054 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
3055 struct drm_i915_gem_object *obj = vma->obj;
de180033 3056 u64 start, end;
07f73f69 3057 int ret;
673a394b 3058
3272db53 3059 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
59bfa124 3060 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
de180033
CW
3061
3062 size = max(size, vma->size);
3063 if (flags & PIN_MAPPABLE)
3e510a8e
CW
3064 size = i915_gem_get_ggtt_size(dev_priv, size,
3065 i915_gem_object_get_tiling(obj));
de180033 3066
d8923dcf
CW
3067 alignment = max(max(alignment, vma->display_alignment),
3068 i915_gem_get_ggtt_alignment(dev_priv, size,
3069 i915_gem_object_get_tiling(obj),
3070 flags & PIN_MAPPABLE));
a00b10c3 3071
101b506a 3072 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
de180033
CW
3073
3074 end = vma->vm->total;
101b506a 3075 if (flags & PIN_MAPPABLE)
91b2db6f 3076 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
101b506a 3077 if (flags & PIN_ZONE_4G)
48ea1e32 3078 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3079
91e6711e
JL
3080 /* If binding the object/GGTT view requires more space than the entire
3081 * aperture has, reject it early before evicting everything in a vain
3082 * attempt to find space.
654fc607 3083 */
91e6711e 3084 if (size > end) {
de180033 3085 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
91b2db6f 3086 size, obj->base.size,
1ec9e26d 3087 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3088 end);
59bfa124 3089 return -E2BIG;
654fc607
CW
3090 }
3091
37e680a1 3092 ret = i915_gem_object_get_pages(obj);
6c085a72 3093 if (ret)
59bfa124 3094 return ret;
6c085a72 3095
fbdda6fb
CW
3096 i915_gem_object_pin_pages(obj);
3097
506a8e87 3098 if (flags & PIN_OFFSET_FIXED) {
59bfa124 3099 u64 offset = flags & PIN_OFFSET_MASK;
de180033 3100 if (offset & (alignment - 1) || offset > end - size) {
506a8e87 3101 ret = -EINVAL;
de180033 3102 goto err_unpin;
506a8e87 3103 }
de180033 3104
506a8e87
CW
3105 vma->node.start = offset;
3106 vma->node.size = size;
3107 vma->node.color = obj->cache_level;
de180033 3108 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
506a8e87
CW
3109 if (ret) {
3110 ret = i915_gem_evict_for_vma(vma);
3111 if (ret == 0)
de180033
CW
3112 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3113 if (ret)
3114 goto err_unpin;
506a8e87 3115 }
101b506a 3116 } else {
de180033
CW
3117 u32 search_flag, alloc_flag;
3118
506a8e87
CW
3119 if (flags & PIN_HIGH) {
3120 search_flag = DRM_MM_SEARCH_BELOW;
3121 alloc_flag = DRM_MM_CREATE_TOP;
3122 } else {
3123 search_flag = DRM_MM_SEARCH_DEFAULT;
3124 alloc_flag = DRM_MM_CREATE_DEFAULT;
3125 }
101b506a 3126
954c4691
CW
3127 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3128 * so we know that we always have a minimum alignment of 4096.
3129 * The drm_mm range manager is optimised to return results
3130 * with zero alignment, so where possible use the optimal
3131 * path.
3132 */
3133 if (alignment <= 4096)
3134 alignment = 0;
3135
0a9ae0d7 3136search_free:
de180033
CW
3137 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3138 &vma->node,
506a8e87
CW
3139 size, alignment,
3140 obj->cache_level,
3141 start, end,
3142 search_flag,
3143 alloc_flag);
3144 if (ret) {
de180033 3145 ret = i915_gem_evict_something(vma->vm, size, alignment,
506a8e87
CW
3146 obj->cache_level,
3147 start, end,
3148 flags);
3149 if (ret == 0)
3150 goto search_free;
9731129c 3151
de180033 3152 goto err_unpin;
506a8e87 3153 }
673a394b 3154 }
37508589 3155 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
673a394b 3156
35c20a60 3157 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
de180033 3158 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
15717de2 3159 obj->bind_count++;
bf1a1092 3160
59bfa124 3161 return 0;
2f633156 3162
bc6bc15b 3163err_unpin:
2f633156 3164 i915_gem_object_unpin_pages(obj);
59bfa124 3165 return ret;
673a394b
EA
3166}
3167
000433b6 3168bool
2c22569b
CW
3169i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3170 bool force)
673a394b 3171{
673a394b
EA
3172 /* If we don't have a page list set up, then we're not pinned
3173 * to GPU, and we can ignore the cache flush because it'll happen
3174 * again at bind time.
3175 */
05394f39 3176 if (obj->pages == NULL)
000433b6 3177 return false;
673a394b 3178
769ce464
ID
3179 /*
3180 * Stolen memory is always coherent with the GPU as it is explicitly
3181 * marked as wc by the system, or the system is cache-coherent.
3182 */
6a2c4232 3183 if (obj->stolen || obj->phys_handle)
000433b6 3184 return false;
769ce464 3185
9c23f7fc
CW
3186 /* If the GPU is snooping the contents of the CPU cache,
3187 * we do not need to manually clear the CPU cache lines. However,
3188 * the caches are only snooped when the render cache is
3189 * flushed/invalidated. As we always have to emit invalidations
3190 * and flushes when moving into and out of the RENDER domain, correct
3191 * snooping behaviour occurs naturally as the result of our domain
3192 * tracking.
3193 */
0f71979a
CW
3194 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3195 obj->cache_dirty = true;
000433b6 3196 return false;
0f71979a 3197 }
9c23f7fc 3198
1c5d22f7 3199 trace_i915_gem_object_clflush(obj);
9da3da66 3200 drm_clflush_sg(obj->pages);
0f71979a 3201 obj->cache_dirty = false;
000433b6
CW
3202
3203 return true;
e47c68e9
EA
3204}
3205
3206/** Flushes the GTT write domain for the object if it's dirty. */
3207static void
05394f39 3208i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3209{
3b5724d7 3210 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3211
05394f39 3212 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3213 return;
3214
63256ec5 3215 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3216 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3217 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3218 *
3219 * However, we do have to enforce the order so that all writes through
3220 * the GTT land before any writes to the device, such as updates to
3221 * the GATT itself.
3b5724d7
CW
3222 *
3223 * We also have to wait a bit for the writes to land from the GTT.
3224 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3225 * timing. This issue has only been observed when switching quickly
3226 * between GTT writes and CPU reads from inside the kernel on recent hw,
3227 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3228 * system agents we cannot reproduce this behaviour).
e47c68e9 3229 */
63256ec5 3230 wmb();
3b5724d7
CW
3231 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3232 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
63256ec5 3233
d243ad82 3234 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3235
b0dc465f 3236 obj->base.write_domain = 0;
1c5d22f7 3237 trace_i915_gem_object_change_domain(obj,
05394f39 3238 obj->base.read_domains,
b0dc465f 3239 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3240}
3241
3242/** Flushes the CPU write domain for the object if it's dirty. */
3243static void
e62b59e4 3244i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3245{
05394f39 3246 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3247 return;
3248
e62b59e4 3249 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3250 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3251
de152b62 3252 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3253
b0dc465f 3254 obj->base.write_domain = 0;
1c5d22f7 3255 trace_i915_gem_object_change_domain(obj,
05394f39 3256 obj->base.read_domains,
b0dc465f 3257 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3258}
3259
383d5823
CW
3260static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
3261{
3262 struct i915_vma *vma;
3263
3264 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3265 if (!i915_vma_is_ggtt(vma))
3266 continue;
3267
3268 if (i915_vma_is_active(vma))
3269 continue;
3270
3271 if (!drm_mm_node_allocated(&vma->node))
3272 continue;
3273
3274 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3275 }
3276}
3277
2ef7eeaa
EA
3278/**
3279 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3280 * @obj: object to act on
3281 * @write: ask for write access or read only
2ef7eeaa
EA
3282 *
3283 * This function returns when the move is complete, including waiting on
3284 * flushes to occur.
3285 */
79e53945 3286int
2021746e 3287i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3288{
1c5d22f7 3289 uint32_t old_write_domain, old_read_domains;
e47c68e9 3290 int ret;
2ef7eeaa 3291
0201f1ec 3292 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3293 if (ret)
3294 return ret;
3295
c13d87ea
CW
3296 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3297 return 0;
3298
43566ded
CW
3299 /* Flush and acquire obj->pages so that we are coherent through
3300 * direct access in memory with previous cached writes through
3301 * shmemfs and that our cache domain tracking remains valid.
3302 * For example, if the obj->filp was moved to swap without us
3303 * being notified and releasing the pages, we would mistakenly
3304 * continue to assume that the obj remained out of the CPU cached
3305 * domain.
3306 */
3307 ret = i915_gem_object_get_pages(obj);
3308 if (ret)
3309 return ret;
3310
e62b59e4 3311 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3312
d0a57789
CW
3313 /* Serialise direct access to this object with the barriers for
3314 * coherent writes from the GPU, by effectively invalidating the
3315 * GTT domain upon first access.
3316 */
3317 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3318 mb();
3319
05394f39
CW
3320 old_write_domain = obj->base.write_domain;
3321 old_read_domains = obj->base.read_domains;
1c5d22f7 3322
e47c68e9
EA
3323 /* It should now be out of any other write domains, and we can update
3324 * the domain values for our changes.
3325 */
05394f39
CW
3326 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3327 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3328 if (write) {
05394f39
CW
3329 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3330 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3331 obj->dirty = 1;
2ef7eeaa
EA
3332 }
3333
1c5d22f7
CW
3334 trace_i915_gem_object_change_domain(obj,
3335 old_read_domains,
3336 old_write_domain);
3337
8325a09d 3338 /* And bump the LRU for this access */
383d5823 3339 i915_gem_object_bump_inactive_ggtt(obj);
8325a09d 3340
e47c68e9
EA
3341 return 0;
3342}
3343
ef55f92a
CW
3344/**
3345 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3346 * @obj: object to act on
3347 * @cache_level: new cache level to set for the object
ef55f92a
CW
3348 *
3349 * After this function returns, the object will be in the new cache-level
3350 * across all GTT and the contents of the backing storage will be coherent,
3351 * with respect to the new cache-level. In order to keep the backing storage
3352 * coherent for all users, we only allow a single cache level to be set
3353 * globally on the object and prevent it from being changed whilst the
3354 * hardware is reading from the object. That is if the object is currently
3355 * on the scanout it will be set to uncached (or equivalent display
3356 * cache coherency) and all non-MOCS GPU access will also be uncached so
3357 * that all direct access to the scanout remains coherent.
3358 */
e4ffd173
CW
3359int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3360 enum i915_cache_level cache_level)
3361{
aa653a68 3362 struct i915_vma *vma;
ed75a55b 3363 int ret = 0;
e4ffd173
CW
3364
3365 if (obj->cache_level == cache_level)
ed75a55b 3366 goto out;
e4ffd173 3367
ef55f92a
CW
3368 /* Inspect the list of currently bound VMA and unbind any that would
3369 * be invalid given the new cache-level. This is principally to
3370 * catch the issue of the CS prefetch crossing page boundaries and
3371 * reading an invalid PTE on older architectures.
3372 */
aa653a68
CW
3373restart:
3374 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3375 if (!drm_mm_node_allocated(&vma->node))
3376 continue;
3377
20dfbde4 3378 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3379 DRM_DEBUG("can not change the cache level of pinned objects\n");
3380 return -EBUSY;
3381 }
3382
aa653a68
CW
3383 if (i915_gem_valid_gtt_space(vma, cache_level))
3384 continue;
3385
3386 ret = i915_vma_unbind(vma);
3387 if (ret)
3388 return ret;
3389
3390 /* As unbinding may affect other elements in the
3391 * obj->vma_list (due to side-effects from retiring
3392 * an active vma), play safe and restart the iterator.
3393 */
3394 goto restart;
42d6ab48
CW
3395 }
3396
ef55f92a
CW
3397 /* We can reuse the existing drm_mm nodes but need to change the
3398 * cache-level on the PTE. We could simply unbind them all and
3399 * rebind with the correct cache-level on next use. However since
3400 * we already have a valid slot, dma mapping, pages etc, we may as
3401 * rewrite the PTE in the belief that doing so tramples upon less
3402 * state and so involves less work.
3403 */
15717de2 3404 if (obj->bind_count) {
ef55f92a
CW
3405 /* Before we change the PTE, the GPU must not be accessing it.
3406 * If we wait upon the object, we know that all the bound
3407 * VMA are no longer active.
3408 */
2e2f351d 3409 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3410 if (ret)
3411 return ret;
3412
aa653a68 3413 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3414 /* Access to snoopable pages through the GTT is
3415 * incoherent and on some machines causes a hard
3416 * lockup. Relinquish the CPU mmaping to force
3417 * userspace to refault in the pages and we can
3418 * then double check if the GTT mapping is still
3419 * valid for that pointer access.
3420 */
3421 i915_gem_release_mmap(obj);
3422
3423 /* As we no longer need a fence for GTT access,
3424 * we can relinquish it now (and so prevent having
3425 * to steal a fence from someone else on the next
3426 * fence request). Note GPU activity would have
3427 * dropped the fence as all snoopable access is
3428 * supposed to be linear.
3429 */
49ef5294
CW
3430 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3431 ret = i915_vma_put_fence(vma);
3432 if (ret)
3433 return ret;
3434 }
ef55f92a
CW
3435 } else {
3436 /* We either have incoherent backing store and
3437 * so no GTT access or the architecture is fully
3438 * coherent. In such cases, existing GTT mmaps
3439 * ignore the cache bit in the PTE and we can
3440 * rewrite it without confusing the GPU or having
3441 * to force userspace to fault back in its mmaps.
3442 */
e4ffd173
CW
3443 }
3444
1c7f4bca 3445 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3446 if (!drm_mm_node_allocated(&vma->node))
3447 continue;
3448
3449 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3450 if (ret)
3451 return ret;
3452 }
e4ffd173
CW
3453 }
3454
1c7f4bca 3455 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3456 vma->node.color = cache_level;
3457 obj->cache_level = cache_level;
3458
ed75a55b 3459out:
ef55f92a
CW
3460 /* Flush the dirty CPU caches to the backing storage so that the
3461 * object is now coherent at its new cache level (with respect
3462 * to the access domain).
3463 */
b50a5371 3464 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 3465 if (i915_gem_clflush_object(obj, true))
c033666a 3466 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3467 }
3468
e4ffd173
CW
3469 return 0;
3470}
3471
199adf40
BW
3472int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3473 struct drm_file *file)
e6994aee 3474{
199adf40 3475 struct drm_i915_gem_caching *args = data;
e6994aee 3476 struct drm_i915_gem_object *obj;
e6994aee 3477
03ac0642
CW
3478 obj = i915_gem_object_lookup(file, args->handle);
3479 if (!obj)
432be69d 3480 return -ENOENT;
e6994aee 3481
651d794f
CW
3482 switch (obj->cache_level) {
3483 case I915_CACHE_LLC:
3484 case I915_CACHE_L3_LLC:
3485 args->caching = I915_CACHING_CACHED;
3486 break;
3487
4257d3ba
CW
3488 case I915_CACHE_WT:
3489 args->caching = I915_CACHING_DISPLAY;
3490 break;
3491
651d794f
CW
3492 default:
3493 args->caching = I915_CACHING_NONE;
3494 break;
3495 }
e6994aee 3496
34911fd3 3497 i915_gem_object_put_unlocked(obj);
432be69d 3498 return 0;
e6994aee
CW
3499}
3500
199adf40
BW
3501int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3502 struct drm_file *file)
e6994aee 3503{
fac5e23e 3504 struct drm_i915_private *dev_priv = to_i915(dev);
199adf40 3505 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3506 struct drm_i915_gem_object *obj;
3507 enum i915_cache_level level;
3508 int ret;
3509
199adf40
BW
3510 switch (args->caching) {
3511 case I915_CACHING_NONE:
e6994aee
CW
3512 level = I915_CACHE_NONE;
3513 break;
199adf40 3514 case I915_CACHING_CACHED:
e5756c10
ID
3515 /*
3516 * Due to a HW issue on BXT A stepping, GPU stores via a
3517 * snooped mapping may leave stale data in a corresponding CPU
3518 * cacheline, whereas normally such cachelines would get
3519 * invalidated.
3520 */
ca377809 3521 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3522 return -ENODEV;
3523
e6994aee
CW
3524 level = I915_CACHE_LLC;
3525 break;
4257d3ba
CW
3526 case I915_CACHING_DISPLAY:
3527 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3528 break;
e6994aee
CW
3529 default:
3530 return -EINVAL;
3531 }
3532
fd0fe6ac
ID
3533 intel_runtime_pm_get(dev_priv);
3534
3bc2913e
BW
3535 ret = i915_mutex_lock_interruptible(dev);
3536 if (ret)
fd0fe6ac 3537 goto rpm_put;
3bc2913e 3538
03ac0642
CW
3539 obj = i915_gem_object_lookup(file, args->handle);
3540 if (!obj) {
e6994aee
CW
3541 ret = -ENOENT;
3542 goto unlock;
3543 }
3544
3545 ret = i915_gem_object_set_cache_level(obj, level);
3546
f8c417cd 3547 i915_gem_object_put(obj);
e6994aee
CW
3548unlock:
3549 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3550rpm_put:
3551 intel_runtime_pm_put(dev_priv);
3552
e6994aee
CW
3553 return ret;
3554}
3555
b9241ea3 3556/*
2da3b9b9
CW
3557 * Prepare buffer for display plane (scanout, cursors, etc).
3558 * Can be called from an uninterruptible phase (modesetting) and allows
3559 * any flushes to be pipelined (for pageflips).
b9241ea3 3560 */
058d88c4 3561struct i915_vma *
2da3b9b9
CW
3562i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3563 u32 alignment,
e6617330 3564 const struct i915_ggtt_view *view)
b9241ea3 3565{
058d88c4 3566 struct i915_vma *vma;
2da3b9b9 3567 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3568 int ret;
3569
cc98b413
CW
3570 /* Mark the pin_display early so that we account for the
3571 * display coherency whilst setting up the cache domains.
3572 */
8a0c39b1 3573 obj->pin_display++;
cc98b413 3574
a7ef0640
EA
3575 /* The display engine is not coherent with the LLC cache on gen6. As
3576 * a result, we make sure that the pinning that is about to occur is
3577 * done with uncached PTEs. This is lowest common denominator for all
3578 * chipsets.
3579 *
3580 * However for gen6+, we could do better by using the GFDT bit instead
3581 * of uncaching, which would allow us to flush all the LLC-cached data
3582 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3583 */
651d794f
CW
3584 ret = i915_gem_object_set_cache_level(obj,
3585 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3586 if (ret) {
3587 vma = ERR_PTR(ret);
cc98b413 3588 goto err_unpin_display;
058d88c4 3589 }
a7ef0640 3590
2da3b9b9
CW
3591 /* As the user may map the buffer once pinned in the display plane
3592 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3593 * always use map_and_fenceable for all scanout buffers. However,
3594 * it may simply be too big to fit into mappable, in which case
3595 * put it anyway and hope that userspace can cope (but always first
3596 * try to preserve the existing ABI).
2da3b9b9 3597 */
2efb813d
CW
3598 vma = ERR_PTR(-ENOSPC);
3599 if (view->type == I915_GGTT_VIEW_NORMAL)
3600 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3601 PIN_MAPPABLE | PIN_NONBLOCK);
3602 if (IS_ERR(vma))
3603 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
058d88c4 3604 if (IS_ERR(vma))
cc98b413 3605 goto err_unpin_display;
2da3b9b9 3606
d8923dcf
CW
3607 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3608
058d88c4
CW
3609 WARN_ON(obj->pin_display > i915_vma_pin_count(vma));
3610
e62b59e4 3611 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3612
2da3b9b9 3613 old_write_domain = obj->base.write_domain;
05394f39 3614 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3615
3616 /* It should now be out of any other write domains, and we can update
3617 * the domain values for our changes.
3618 */
e5f1d962 3619 obj->base.write_domain = 0;
05394f39 3620 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3621
3622 trace_i915_gem_object_change_domain(obj,
3623 old_read_domains,
2da3b9b9 3624 old_write_domain);
b9241ea3 3625
058d88c4 3626 return vma;
cc98b413
CW
3627
3628err_unpin_display:
8a0c39b1 3629 obj->pin_display--;
058d88c4 3630 return vma;
cc98b413
CW
3631}
3632
3633void
058d88c4 3634i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3635{
058d88c4 3636 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3637 return;
3638
d8923dcf
CW
3639 if (--vma->obj->pin_display == 0)
3640 vma->display_alignment = 0;
e6617330 3641
383d5823
CW
3642 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3643 if (!i915_vma_is_active(vma))
3644 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3645
058d88c4
CW
3646 i915_vma_unpin(vma);
3647 WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
b9241ea3
ZW
3648}
3649
e47c68e9
EA
3650/**
3651 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3652 * @obj: object to act on
3653 * @write: requesting write or read-only access
e47c68e9
EA
3654 *
3655 * This function returns when the move is complete, including waiting on
3656 * flushes to occur.
3657 */
dabdfe02 3658int
919926ae 3659i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3660{
1c5d22f7 3661 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3662 int ret;
3663
0201f1ec 3664 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3665 if (ret)
3666 return ret;
3667
c13d87ea
CW
3668 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3669 return 0;
3670
e47c68e9 3671 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3672
05394f39
CW
3673 old_write_domain = obj->base.write_domain;
3674 old_read_domains = obj->base.read_domains;
1c5d22f7 3675
e47c68e9 3676 /* Flush the CPU cache if it's still invalid. */
05394f39 3677 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3678 i915_gem_clflush_object(obj, false);
2ef7eeaa 3679
05394f39 3680 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3681 }
3682
3683 /* It should now be out of any other write domains, and we can update
3684 * the domain values for our changes.
3685 */
05394f39 3686 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3687
3688 /* If we're writing through the CPU, then the GPU read domains will
3689 * need to be invalidated at next use.
3690 */
3691 if (write) {
05394f39
CW
3692 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3693 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3694 }
2ef7eeaa 3695
1c5d22f7
CW
3696 trace_i915_gem_object_change_domain(obj,
3697 old_read_domains,
3698 old_write_domain);
3699
2ef7eeaa
EA
3700 return 0;
3701}
3702
673a394b
EA
3703/* Throttle our rendering by waiting until the ring has completed our requests
3704 * emitted over 20 msec ago.
3705 *
b962442e
EA
3706 * Note that if we were to use the current jiffies each time around the loop,
3707 * we wouldn't escape the function with any frames outstanding if the time to
3708 * render a frame was over 20ms.
3709 *
673a394b
EA
3710 * This should get us reasonable parallelism between CPU and GPU but also
3711 * relatively low latency when blocking on a particular request to finish.
3712 */
40a5f0de 3713static int
f787a5f5 3714i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3715{
fac5e23e 3716 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3717 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3718 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3719 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 3720 int ret;
93533c29 3721
308887aa
DV
3722 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3723 if (ret)
3724 return ret;
3725
f4457ae7
CW
3726 /* ABI: return -EIO if already wedged */
3727 if (i915_terminally_wedged(&dev_priv->gpu_error))
3728 return -EIO;
e110e8d6 3729
1c25595f 3730 spin_lock(&file_priv->mm.lock);
f787a5f5 3731 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3732 if (time_after_eq(request->emitted_jiffies, recent_enough))
3733 break;
40a5f0de 3734
fcfa423c
JH
3735 /*
3736 * Note that the request might not have been submitted yet.
3737 * In which case emitted_jiffies will be zero.
3738 */
3739 if (!request->emitted_jiffies)
3740 continue;
3741
54fb2411 3742 target = request;
b962442e 3743 }
ff865885 3744 if (target)
e8a261ea 3745 i915_gem_request_get(target);
1c25595f 3746 spin_unlock(&file_priv->mm.lock);
40a5f0de 3747
54fb2411 3748 if (target == NULL)
f787a5f5 3749 return 0;
2bc43b5c 3750
ea746f36 3751 ret = i915_wait_request(target, I915_WAIT_INTERRUPTIBLE, NULL, NULL);
e8a261ea 3752 i915_gem_request_put(target);
ff865885 3753
40a5f0de
EA
3754 return ret;
3755}
3756
d23db88c 3757static bool
91b2db6f 3758i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
d23db88c 3759{
59bfa124
CW
3760 if (!drm_mm_node_allocated(&vma->node))
3761 return false;
3762
91b2db6f
CW
3763 if (vma->node.size < size)
3764 return true;
3765
3766 if (alignment && vma->node.start & (alignment - 1))
d23db88c
CW
3767 return true;
3768
05a20d09 3769 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
d23db88c
CW
3770 return true;
3771
3772 if (flags & PIN_OFFSET_BIAS &&
3773 vma->node.start < (flags & PIN_OFFSET_MASK))
3774 return true;
3775
506a8e87
CW
3776 if (flags & PIN_OFFSET_FIXED &&
3777 vma->node.start != (flags & PIN_OFFSET_MASK))
3778 return true;
3779
d23db88c
CW
3780 return false;
3781}
3782
d0710abb
CW
3783void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3784{
3785 struct drm_i915_gem_object *obj = vma->obj;
a9f1481f 3786 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d0710abb
CW
3787 bool mappable, fenceable;
3788 u32 fence_size, fence_alignment;
3789
a9f1481f 3790 fence_size = i915_gem_get_ggtt_size(dev_priv,
05a20d09 3791 vma->size,
3e510a8e 3792 i915_gem_object_get_tiling(obj));
a9f1481f 3793 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
05a20d09 3794 vma->size,
3e510a8e 3795 i915_gem_object_get_tiling(obj),
ad1a7d20 3796 true);
d0710abb
CW
3797
3798 fenceable = (vma->node.size == fence_size &&
3799 (vma->node.start & (fence_alignment - 1)) == 0);
3800
3801 mappable = (vma->node.start + fence_size <=
a9f1481f 3802 dev_priv->ggtt.mappable_end);
d0710abb 3803
05a20d09
CW
3804 if (mappable && fenceable)
3805 vma->flags |= I915_VMA_CAN_FENCE;
3806 else
3807 vma->flags &= ~I915_VMA_CAN_FENCE;
d0710abb
CW
3808}
3809
305bc234
CW
3810int __i915_vma_do_pin(struct i915_vma *vma,
3811 u64 size, u64 alignment, u64 flags)
673a394b 3812{
305bc234 3813 unsigned int bound = vma->flags;
673a394b
EA
3814 int ret;
3815
59bfa124 3816 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3272db53 3817 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
d7f46fc4 3818
305bc234
CW
3819 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3820 ret = -EBUSY;
3821 goto err;
3822 }
ac0c6b5a 3823
de895082 3824 if ((bound & I915_VMA_BIND_MASK) == 0) {
59bfa124
CW
3825 ret = i915_vma_insert(vma, size, alignment, flags);
3826 if (ret)
3827 goto err;
fe14d5f4 3828 }
74898d7e 3829
59bfa124 3830 ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3b16525c 3831 if (ret)
59bfa124 3832 goto err;
3b16525c 3833
3272db53 3834 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
d0710abb 3835 __i915_vma_set_map_and_fenceable(vma);
ef79e17c 3836
3b16525c 3837 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
673a394b 3838 return 0;
673a394b 3839
59bfa124
CW
3840err:
3841 __i915_vma_unpin(vma);
3842 return ret;
ec7adb6e
JL
3843}
3844
058d88c4 3845struct i915_vma *
ec7adb6e
JL
3846i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3847 const struct i915_ggtt_view *view,
91b2db6f 3848 u64 size,
2ffffd0f
CW
3849 u64 alignment,
3850 u64 flags)
ec7adb6e 3851{
058d88c4 3852 struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
59bfa124
CW
3853 struct i915_vma *vma;
3854 int ret;
72e96d64 3855
058d88c4 3856 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
59bfa124 3857 if (IS_ERR(vma))
058d88c4 3858 return vma;
59bfa124
CW
3859
3860 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3861 if (flags & PIN_NONBLOCK &&
3862 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3863 return ERR_PTR(-ENOSPC);
59bfa124
CW
3864
3865 WARN(i915_vma_is_pinned(vma),
3866 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3867 " offset=%08x, req.alignment=%llx,"
3868 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3869 i915_ggtt_offset(vma), alignment,
59bfa124 3870 !!(flags & PIN_MAPPABLE),
05a20d09 3871 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3872 ret = i915_vma_unbind(vma);
3873 if (ret)
058d88c4 3874 return ERR_PTR(ret);
59bfa124
CW
3875 }
3876
058d88c4
CW
3877 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3878 if (ret)
3879 return ERR_PTR(ret);
ec7adb6e 3880
058d88c4 3881 return vma;
673a394b
EA
3882}
3883
edf6b76f 3884static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3885{
3886 /* Note that we could alias engines in the execbuf API, but
3887 * that would be very unwise as it prevents userspace from
3888 * fine control over engine selection. Ahem.
3889 *
3890 * This should be something like EXEC_MAX_ENGINE instead of
3891 * I915_NUM_ENGINES.
3892 */
3893 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3894 return 0x10000 << id;
3895}
3896
3897static __always_inline unsigned int __busy_write_id(unsigned int id)
3898{
70cb472c
CW
3899 /* The uABI guarantees an active writer is also amongst the read
3900 * engines. This would be true if we accessed the activity tracking
3901 * under the lock, but as we perform the lookup of the object and
3902 * its activity locklessly we can not guarantee that the last_write
3903 * being active implies that we have set the same engine flag from
3904 * last_read - hence we always set both read and write busy for
3905 * last_write.
3906 */
3907 return id | __busy_read_flag(id);
3fdc13c7
CW
3908}
3909
edf6b76f 3910static __always_inline unsigned int
3fdc13c7
CW
3911__busy_set_if_active(const struct i915_gem_active *active,
3912 unsigned int (*flag)(unsigned int id))
3913{
1255501d 3914 struct drm_i915_gem_request *request;
3fdc13c7 3915
1255501d
CW
3916 request = rcu_dereference(active->request);
3917 if (!request || i915_gem_request_completed(request))
3918 return 0;
3fdc13c7 3919
1255501d
CW
3920 /* This is racy. See __i915_gem_active_get_rcu() for an in detail
3921 * discussion of how to handle the race correctly, but for reporting
3922 * the busy state we err on the side of potentially reporting the
3923 * wrong engine as being busy (but we guarantee that the result
3924 * is at least self-consistent).
3925 *
3926 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
3927 * whilst we are inspecting it, even under the RCU read lock as we are.
3928 * This means that there is a small window for the engine and/or the
3929 * seqno to have been overwritten. The seqno will always be in the
3930 * future compared to the intended, and so we know that if that
3931 * seqno is idle (on whatever engine) our request is idle and the
3932 * return 0 above is correct.
3933 *
3934 * The issue is that if the engine is switched, it is just as likely
3935 * to report that it is busy (but since the switch happened, we know
3936 * the request should be idle). So there is a small chance that a busy
3937 * result is actually the wrong engine.
3938 *
3939 * So why don't we care?
3940 *
3941 * For starters, the busy ioctl is a heuristic that is by definition
3942 * racy. Even with perfect serialisation in the driver, the hardware
3943 * state is constantly advancing - the state we report to the user
3944 * is stale.
3945 *
3946 * The critical information for the busy-ioctl is whether the object
3947 * is idle as userspace relies on that to detect whether its next
3948 * access will stall, or if it has missed submitting commands to
3949 * the hardware allowing the GPU to stall. We never generate a
3950 * false-positive for idleness, thus busy-ioctl is reliable at the
3951 * most fundamental level, and we maintain the guarantee that a
3952 * busy object left to itself will eventually become idle (and stay
3953 * idle!).
3954 *
3955 * We allow ourselves the leeway of potentially misreporting the busy
3956 * state because that is an optimisation heuristic that is constantly
3957 * in flux. Being quickly able to detect the busy/idle state is much
3958 * more important than accurate logging of exactly which engines were
3959 * busy.
3960 *
3961 * For accuracy in reporting the engine, we could use
3962 *
3963 * result = 0;
3964 * request = __i915_gem_active_get_rcu(active);
3965 * if (request) {
3966 * if (!i915_gem_request_completed(request))
3967 * result = flag(request->engine->exec_id);
3968 * i915_gem_request_put(request);
3969 * }
3970 *
3971 * but that still remains susceptible to both hardware and userspace
3972 * races. So we accept making the result of that race slightly worse,
3973 * given the rarity of the race and its low impact on the result.
3974 */
3975 return flag(READ_ONCE(request->engine->exec_id));
3fdc13c7
CW
3976}
3977
edf6b76f 3978static __always_inline unsigned int
3fdc13c7
CW
3979busy_check_reader(const struct i915_gem_active *active)
3980{
3981 return __busy_set_if_active(active, __busy_read_flag);
3982}
3983
edf6b76f 3984static __always_inline unsigned int
3fdc13c7
CW
3985busy_check_writer(const struct i915_gem_active *active)
3986{
3987 return __busy_set_if_active(active, __busy_write_id);
3988}
3989
673a394b
EA
3990int
3991i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3992 struct drm_file *file)
673a394b
EA
3993{
3994 struct drm_i915_gem_busy *args = data;
05394f39 3995 struct drm_i915_gem_object *obj;
3fdc13c7 3996 unsigned long active;
673a394b 3997
03ac0642 3998 obj = i915_gem_object_lookup(file, args->handle);
3fdc13c7
CW
3999 if (!obj)
4000 return -ENOENT;
d1b851fc 4001
426960be 4002 args->busy = 0;
3fdc13c7
CW
4003 active = __I915_BO_ACTIVE(obj);
4004 if (active) {
4005 int idx;
426960be 4006
3fdc13c7
CW
4007 /* Yes, the lookups are intentionally racy.
4008 *
4009 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
4010 * to regard the value as stale and as our ABI guarantees
4011 * forward progress, we confirm the status of each active
4012 * request with the hardware.
4013 *
4014 * Even though we guard the pointer lookup by RCU, that only
4015 * guarantees that the pointer and its contents remain
4016 * dereferencable and does *not* mean that the request we
4017 * have is the same as the one being tracked by the object.
4018 *
4019 * Consider that we lookup the request just as it is being
4020 * retired and freed. We take a local copy of the pointer,
4021 * but before we add its engine into the busy set, the other
4022 * thread reallocates it and assigns it to a task on another
1255501d
CW
4023 * engine with a fresh and incomplete seqno. Guarding against
4024 * that requires careful serialisation and reference counting,
4025 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
4026 * instead we expect that if the result is busy, which engines
4027 * are busy is not completely reliable - we only guarantee
4028 * that the object was busy.
3fdc13c7
CW
4029 */
4030 rcu_read_lock();
4031
4032 for_each_active(active, idx)
4033 args->busy |= busy_check_reader(&obj->last_read[idx]);
4034
4035 /* For ABI sanity, we only care that the write engine is in
70cb472c
CW
4036 * the set of read engines. This should be ensured by the
4037 * ordering of setting last_read/last_write in
4038 * i915_vma_move_to_active(), and then in reverse in retire.
4039 * However, for good measure, we always report the last_write
4040 * request as a busy read as well as being a busy write.
3fdc13c7
CW
4041 *
4042 * We don't care that the set of active read/write engines
4043 * may change during construction of the result, as it is
4044 * equally liable to change before userspace can inspect
4045 * the result.
4046 */
4047 args->busy |= busy_check_writer(&obj->last_write);
4048
4049 rcu_read_unlock();
426960be 4050 }
673a394b 4051
3fdc13c7
CW
4052 i915_gem_object_put_unlocked(obj);
4053 return 0;
673a394b
EA
4054}
4055
4056int
4057i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4058 struct drm_file *file_priv)
4059{
0206e353 4060 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4061}
4062
3ef94daa
CW
4063int
4064i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4065 struct drm_file *file_priv)
4066{
fac5e23e 4067 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4068 struct drm_i915_gem_madvise *args = data;
05394f39 4069 struct drm_i915_gem_object *obj;
76c1dec1 4070 int ret;
3ef94daa
CW
4071
4072 switch (args->madv) {
4073 case I915_MADV_DONTNEED:
4074 case I915_MADV_WILLNEED:
4075 break;
4076 default:
4077 return -EINVAL;
4078 }
4079
1d7cfea1
CW
4080 ret = i915_mutex_lock_interruptible(dev);
4081 if (ret)
4082 return ret;
4083
03ac0642
CW
4084 obj = i915_gem_object_lookup(file_priv, args->handle);
4085 if (!obj) {
1d7cfea1
CW
4086 ret = -ENOENT;
4087 goto unlock;
3ef94daa 4088 }
3ef94daa 4089
656bfa3a 4090 if (obj->pages &&
3e510a8e 4091 i915_gem_object_is_tiled(obj) &&
656bfa3a
DV
4092 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4093 if (obj->madv == I915_MADV_WILLNEED)
4094 i915_gem_object_unpin_pages(obj);
4095 if (args->madv == I915_MADV_WILLNEED)
4096 i915_gem_object_pin_pages(obj);
4097 }
4098
05394f39
CW
4099 if (obj->madv != __I915_MADV_PURGED)
4100 obj->madv = args->madv;
3ef94daa 4101
6c085a72 4102 /* if the object is no longer attached, discard its backing storage */
be6a0376 4103 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4104 i915_gem_object_truncate(obj);
4105
05394f39 4106 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4107
f8c417cd 4108 i915_gem_object_put(obj);
1d7cfea1 4109unlock:
3ef94daa 4110 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4111 return ret;
3ef94daa
CW
4112}
4113
37e680a1
CW
4114void i915_gem_object_init(struct drm_i915_gem_object *obj,
4115 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4116{
b4716185
CW
4117 int i;
4118
35c20a60 4119 INIT_LIST_HEAD(&obj->global_list);
666796da 4120 for (i = 0; i < I915_NUM_ENGINES; i++)
fa545cbf
CW
4121 init_request_active(&obj->last_read[i],
4122 i915_gem_object_retire__read);
4123 init_request_active(&obj->last_write,
4124 i915_gem_object_retire__write);
b25cb2f8 4125 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4126 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4127 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4128
37e680a1
CW
4129 obj->ops = ops;
4130
50349247 4131 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
0327d6ba 4132 obj->madv = I915_MADV_WILLNEED;
0327d6ba 4133
f19ec8cb 4134 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4135}
4136
37e680a1 4137static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4138 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4139 .get_pages = i915_gem_object_get_pages_gtt,
4140 .put_pages = i915_gem_object_put_pages_gtt,
4141};
4142
d37cd8a8 4143struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 4144 size_t size)
ac52bc56 4145{
c397b908 4146 struct drm_i915_gem_object *obj;
5949eac4 4147 struct address_space *mapping;
1a240d4d 4148 gfp_t mask;
fe3db79b 4149 int ret;
ac52bc56 4150
42dcedd4 4151 obj = i915_gem_object_alloc(dev);
c397b908 4152 if (obj == NULL)
fe3db79b 4153 return ERR_PTR(-ENOMEM);
673a394b 4154
fe3db79b
CW
4155 ret = drm_gem_object_init(dev, &obj->base, size);
4156 if (ret)
4157 goto fail;
673a394b 4158
bed1ea95
CW
4159 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4160 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4161 /* 965gm cannot relocate objects above 4GiB. */
4162 mask &= ~__GFP_HIGHMEM;
4163 mask |= __GFP_DMA32;
4164 }
4165
93c76a3d 4166 mapping = obj->base.filp->f_mapping;
bed1ea95 4167 mapping_set_gfp_mask(mapping, mask);
5949eac4 4168
37e680a1 4169 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4170
c397b908
DV
4171 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4172 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4173
3d29b842
ED
4174 if (HAS_LLC(dev)) {
4175 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4176 * cache) for about a 10% performance improvement
4177 * compared to uncached. Graphics requests other than
4178 * display scanout are coherent with the CPU in
4179 * accessing this cache. This means in this mode we
4180 * don't need to clflush on the CPU side, and on the
4181 * GPU side we only need to flush internal caches to
4182 * get data visible to the CPU.
4183 *
4184 * However, we maintain the display planes as UC, and so
4185 * need to rebind when first used as such.
4186 */
4187 obj->cache_level = I915_CACHE_LLC;
4188 } else
4189 obj->cache_level = I915_CACHE_NONE;
4190
d861e338
DV
4191 trace_i915_gem_object_create(obj);
4192
05394f39 4193 return obj;
fe3db79b
CW
4194
4195fail:
4196 i915_gem_object_free(obj);
4197
4198 return ERR_PTR(ret);
c397b908
DV
4199}
4200
340fbd8c
CW
4201static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4202{
4203 /* If we are the last user of the backing storage (be it shmemfs
4204 * pages or stolen etc), we know that the pages are going to be
4205 * immediately released. In this case, we can then skip copying
4206 * back the contents from the GPU.
4207 */
4208
4209 if (obj->madv != I915_MADV_WILLNEED)
4210 return false;
4211
4212 if (obj->base.filp == NULL)
4213 return true;
4214
4215 /* At first glance, this looks racy, but then again so would be
4216 * userspace racing mmap against close. However, the first external
4217 * reference to the filp can only be obtained through the
4218 * i915_gem_mmap_ioctl() which safeguards us against the user
4219 * acquiring such a reference whilst we are in the middle of
4220 * freeing the object.
4221 */
4222 return atomic_long_read(&obj->base.filp->f_count) == 1;
4223}
4224
1488fc08 4225void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4226{
1488fc08 4227 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4228 struct drm_device *dev = obj->base.dev;
fac5e23e 4229 struct drm_i915_private *dev_priv = to_i915(dev);
07fe0b12 4230 struct i915_vma *vma, *next;
673a394b 4231
f65c9168
PZ
4232 intel_runtime_pm_get(dev_priv);
4233
26e12f89
CW
4234 trace_i915_gem_object_destroy(obj);
4235
b1f788c6
CW
4236 /* All file-owned VMA should have been released by this point through
4237 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4238 * However, the object may also be bound into the global GTT (e.g.
4239 * older GPUs without per-process support, or for direct access through
4240 * the GTT either for the user or for scanout). Those VMA still need to
4241 * unbound now.
4242 */
1c7f4bca 4243 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3272db53 4244 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
b1f788c6 4245 GEM_BUG_ON(i915_vma_is_active(vma));
3272db53 4246 vma->flags &= ~I915_VMA_PIN_MASK;
b1f788c6 4247 i915_vma_close(vma);
1488fc08 4248 }
15717de2 4249 GEM_BUG_ON(obj->bind_count);
1488fc08 4250
1d64ae71
BW
4251 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4252 * before progressing. */
4253 if (obj->stolen)
4254 i915_gem_object_unpin_pages(obj);
4255
faf5bf0a 4256 WARN_ON(atomic_read(&obj->frontbuffer_bits));
a071fa00 4257
656bfa3a
DV
4258 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4259 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
3e510a8e 4260 i915_gem_object_is_tiled(obj))
656bfa3a
DV
4261 i915_gem_object_unpin_pages(obj);
4262
401c29f6
BW
4263 if (WARN_ON(obj->pages_pin_count))
4264 obj->pages_pin_count = 0;
340fbd8c 4265 if (discard_backing_storage(obj))
5537252b 4266 obj->madv = I915_MADV_DONTNEED;
37e680a1 4267 i915_gem_object_put_pages(obj);
de151cf6 4268
9da3da66
CW
4269 BUG_ON(obj->pages);
4270
2f745ad3
CW
4271 if (obj->base.import_attach)
4272 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4273
5cc9ed4b
CW
4274 if (obj->ops->release)
4275 obj->ops->release(obj);
4276
05394f39
CW
4277 drm_gem_object_release(&obj->base);
4278 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4279
05394f39 4280 kfree(obj->bit_17);
42dcedd4 4281 i915_gem_object_free(obj);
f65c9168
PZ
4282
4283 intel_runtime_pm_put(dev_priv);
673a394b
EA
4284}
4285
dcff85c8 4286int i915_gem_suspend(struct drm_device *dev)
29105ccc 4287{
fac5e23e 4288 struct drm_i915_private *dev_priv = to_i915(dev);
dcff85c8 4289 int ret;
28dfe52a 4290
54b4f68f
CW
4291 intel_suspend_gt_powersave(dev_priv);
4292
45c5f202 4293 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4294
4295 /* We have to flush all the executing contexts to main memory so
4296 * that they can saved in the hibernation image. To ensure the last
4297 * context image is coherent, we have to switch away from it. That
4298 * leaves the dev_priv->kernel_context still active when
4299 * we actually suspend, and its image in memory may not match the GPU
4300 * state. Fortunately, the kernel_context is disposable and we do
4301 * not rely on its state.
4302 */
4303 ret = i915_gem_switch_to_kernel_context(dev_priv);
4304 if (ret)
4305 goto err;
4306
ea746f36 4307 ret = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
f7403347 4308 if (ret)
45c5f202 4309 goto err;
f7403347 4310
c033666a 4311 i915_gem_retire_requests(dev_priv);
673a394b 4312
b2e862d0 4313 i915_gem_context_lost(dev_priv);
45c5f202
CW
4314 mutex_unlock(&dev->struct_mutex);
4315
737b1506 4316 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4317 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4318 flush_delayed_work(&dev_priv->gt.idle_work);
29105ccc 4319
bdcf120b
CW
4320 /* Assert that we sucessfully flushed all the work and
4321 * reset the GPU back to its idle, low power state.
4322 */
67d97da3 4323 WARN_ON(dev_priv->gt.awake);
bdcf120b 4324
673a394b 4325 return 0;
45c5f202
CW
4326
4327err:
4328 mutex_unlock(&dev->struct_mutex);
4329 return ret;
673a394b
EA
4330}
4331
5ab57c70
CW
4332void i915_gem_resume(struct drm_device *dev)
4333{
4334 struct drm_i915_private *dev_priv = to_i915(dev);
4335
4336 mutex_lock(&dev->struct_mutex);
4337 i915_gem_restore_gtt_mappings(dev);
4338
4339 /* As we didn't flush the kernel context before suspend, we cannot
4340 * guarantee that the context image is complete. So let's just reset
4341 * it and start again.
4342 */
4343 if (i915.enable_execlists)
4344 intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
4345
4346 mutex_unlock(&dev->struct_mutex);
4347}
4348
f691e2f4
DV
4349void i915_gem_init_swizzling(struct drm_device *dev)
4350{
fac5e23e 4351 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 4352
11782b02 4353 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4354 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4355 return;
4356
4357 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4358 DISP_TILE_SURFACE_SWIZZLING);
4359
11782b02
DV
4360 if (IS_GEN5(dev))
4361 return;
4362
f691e2f4
DV
4363 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4364 if (IS_GEN6(dev))
6b26c86d 4365 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4366 else if (IS_GEN7(dev))
6b26c86d 4367 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4368 else if (IS_GEN8(dev))
4369 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4370 else
4371 BUG();
f691e2f4 4372}
e21af88d 4373
81e7f200
VS
4374static void init_unused_ring(struct drm_device *dev, u32 base)
4375{
fac5e23e 4376 struct drm_i915_private *dev_priv = to_i915(dev);
81e7f200
VS
4377
4378 I915_WRITE(RING_CTL(base), 0);
4379 I915_WRITE(RING_HEAD(base), 0);
4380 I915_WRITE(RING_TAIL(base), 0);
4381 I915_WRITE(RING_START(base), 0);
4382}
4383
4384static void init_unused_rings(struct drm_device *dev)
4385{
4386 if (IS_I830(dev)) {
4387 init_unused_ring(dev, PRB1_BASE);
4388 init_unused_ring(dev, SRB0_BASE);
4389 init_unused_ring(dev, SRB1_BASE);
4390 init_unused_ring(dev, SRB2_BASE);
4391 init_unused_ring(dev, SRB3_BASE);
4392 } else if (IS_GEN2(dev)) {
4393 init_unused_ring(dev, SRB0_BASE);
4394 init_unused_ring(dev, SRB1_BASE);
4395 } else if (IS_GEN3(dev)) {
4396 init_unused_ring(dev, PRB1_BASE);
4397 init_unused_ring(dev, PRB2_BASE);
4398 }
4399}
4400
4fc7c971
BW
4401int
4402i915_gem_init_hw(struct drm_device *dev)
4403{
fac5e23e 4404 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4405 struct intel_engine_cs *engine;
d200cda6 4406 int ret;
4fc7c971 4407
5e4f5189
CW
4408 /* Double layer security blanket, see i915_gem_init() */
4409 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4410
3accaf7e 4411 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4412 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4413
0bf21347
VS
4414 if (IS_HASWELL(dev))
4415 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4416 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4417
88a2b2a3 4418 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4419 if (IS_IVYBRIDGE(dev)) {
4420 u32 temp = I915_READ(GEN7_MSG_CTL);
4421 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4422 I915_WRITE(GEN7_MSG_CTL, temp);
4423 } else if (INTEL_INFO(dev)->gen >= 7) {
4424 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4425 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4426 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4427 }
88a2b2a3
BW
4428 }
4429
4fc7c971
BW
4430 i915_gem_init_swizzling(dev);
4431
d5abdfda
DV
4432 /*
4433 * At least 830 can leave some of the unused rings
4434 * "active" (ie. head != tail) after resume which
4435 * will prevent c3 entry. Makes sure all unused rings
4436 * are totally idle.
4437 */
4438 init_unused_rings(dev);
4439
ed54c1a1 4440 BUG_ON(!dev_priv->kernel_context);
90638cc1 4441
4ad2fd88
JH
4442 ret = i915_ppgtt_init_hw(dev);
4443 if (ret) {
4444 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4445 goto out;
4446 }
4447
4448 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4449 for_each_engine(engine, dev_priv) {
e2f80391 4450 ret = engine->init_hw(engine);
35a57ffb 4451 if (ret)
5e4f5189 4452 goto out;
35a57ffb 4453 }
99433931 4454
0ccdacf6
PA
4455 intel_mocs_init_l3cc_table(dev);
4456
33a732f4 4457 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4458 ret = intel_guc_setup(dev);
4459 if (ret)
4460 goto out;
33a732f4 4461
5e4f5189
CW
4462out:
4463 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4464 return ret;
8187a2b7
ZN
4465}
4466
39df9190
CW
4467bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4468{
4469 if (INTEL_INFO(dev_priv)->gen < 6)
4470 return false;
4471
4472 /* TODO: make semaphores and Execlists play nicely together */
4473 if (i915.enable_execlists)
4474 return false;
4475
4476 if (value >= 0)
4477 return value;
4478
4479#ifdef CONFIG_INTEL_IOMMU
4480 /* Enable semaphores on SNB when IO remapping is off */
4481 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4482 return false;
4483#endif
4484
4485 return true;
4486}
4487
1070a42b
CW
4488int i915_gem_init(struct drm_device *dev)
4489{
fac5e23e 4490 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4491 int ret;
4492
1070a42b 4493 mutex_lock(&dev->struct_mutex);
d62b4892 4494
a83014d3 4495 if (!i915.enable_execlists) {
7e37f889 4496 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4497 } else {
117897f4 4498 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4499 }
4500
5e4f5189
CW
4501 /* This is just a security blanket to placate dragons.
4502 * On some systems, we very sporadically observe that the first TLBs
4503 * used by the CS may be stale, despite us poking the TLB reset. If
4504 * we hold the forcewake during initialisation these problems
4505 * just magically go away.
4506 */
4507 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4508
72778cb2 4509 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4510
4511 ret = i915_gem_init_ggtt(dev_priv);
4512 if (ret)
4513 goto out_unlock;
d62b4892 4514
2fa48d8d 4515 ret = i915_gem_context_init(dev);
7bcc3777
JN
4516 if (ret)
4517 goto out_unlock;
2fa48d8d 4518
8b3e2d36 4519 ret = intel_engines_init(dev);
35a57ffb 4520 if (ret)
7bcc3777 4521 goto out_unlock;
2fa48d8d 4522
1070a42b 4523 ret = i915_gem_init_hw(dev);
60990320 4524 if (ret == -EIO) {
7e21d648 4525 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4526 * wedged. But we only want to do this where the GPU is angry,
4527 * for all other failure, such as an allocation failure, bail.
4528 */
4529 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
8af29b0c 4530 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
60990320 4531 ret = 0;
1070a42b 4532 }
7bcc3777
JN
4533
4534out_unlock:
5e4f5189 4535 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4536 mutex_unlock(&dev->struct_mutex);
1070a42b 4537
60990320 4538 return ret;
1070a42b
CW
4539}
4540
8187a2b7 4541void
117897f4 4542i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4543{
fac5e23e 4544 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4545 struct intel_engine_cs *engine;
8187a2b7 4546
b4ac5afc 4547 for_each_engine(engine, dev_priv)
117897f4 4548 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4549}
4550
64193406 4551static void
666796da 4552init_engine_lists(struct intel_engine_cs *engine)
64193406 4553{
0bc40be8 4554 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4555}
4556
40ae4e16
ID
4557void
4558i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4559{
91c8a326 4560 struct drm_device *dev = &dev_priv->drm;
49ef5294 4561 int i;
40ae4e16
ID
4562
4563 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4564 !IS_CHERRYVIEW(dev_priv))
4565 dev_priv->num_fence_regs = 32;
4566 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4567 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4568 dev_priv->num_fence_regs = 16;
4569 else
4570 dev_priv->num_fence_regs = 8;
4571
c033666a 4572 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4573 dev_priv->num_fence_regs =
4574 I915_READ(vgtif_reg(avail_rs.fence_num));
4575
4576 /* Initialize fence registers to zero */
49ef5294
CW
4577 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4578 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4579
4580 fence->i915 = dev_priv;
4581 fence->id = i;
4582 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4583 }
40ae4e16
ID
4584 i915_gem_restore_fences(dev);
4585
4586 i915_gem_detect_bit_6_swizzle(dev);
4587}
4588
673a394b 4589void
d64aa096 4590i915_gem_load_init(struct drm_device *dev)
673a394b 4591{
fac5e23e 4592 struct drm_i915_private *dev_priv = to_i915(dev);
42dcedd4
CW
4593 int i;
4594
efab6d8d 4595 dev_priv->objects =
42dcedd4
CW
4596 kmem_cache_create("i915_gem_object",
4597 sizeof(struct drm_i915_gem_object), 0,
4598 SLAB_HWCACHE_ALIGN,
4599 NULL);
e20d2ab7
CW
4600 dev_priv->vmas =
4601 kmem_cache_create("i915_gem_vma",
4602 sizeof(struct i915_vma), 0,
4603 SLAB_HWCACHE_ALIGN,
4604 NULL);
efab6d8d
CW
4605 dev_priv->requests =
4606 kmem_cache_create("i915_gem_request",
4607 sizeof(struct drm_i915_gem_request), 0,
0eafec6d
CW
4608 SLAB_HWCACHE_ALIGN |
4609 SLAB_RECLAIM_ACCOUNT |
4610 SLAB_DESTROY_BY_RCU,
efab6d8d 4611 NULL);
673a394b 4612
a33afea5 4613 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4614 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4615 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4616 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
4617 for (i = 0; i < I915_NUM_ENGINES; i++)
4618 init_engine_lists(&dev_priv->engine[i]);
67d97da3 4619 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4620 i915_gem_retire_work_handler);
67d97da3 4621 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4622 i915_gem_idle_work_handler);
1f15b76f 4623 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4624 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4625
72bfa19c
CW
4626 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4627
6b95a207 4628 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4629
ce453d81
CW
4630 dev_priv->mm.interruptible = true;
4631
6f633402
JL
4632 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4633
b5add959 4634 spin_lock_init(&dev_priv->fb_tracking.lock);
673a394b 4635}
71acb5eb 4636
d64aa096
ID
4637void i915_gem_load_cleanup(struct drm_device *dev)
4638{
4639 struct drm_i915_private *dev_priv = to_i915(dev);
4640
4641 kmem_cache_destroy(dev_priv->requests);
4642 kmem_cache_destroy(dev_priv->vmas);
4643 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4644
4645 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4646 rcu_barrier();
d64aa096
ID
4647}
4648
461fb99c
CW
4649int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4650{
4651 struct drm_i915_gem_object *obj;
4652
4653 /* Called just before we write the hibernation image.
4654 *
4655 * We need to update the domain tracking to reflect that the CPU
4656 * will be accessing all the pages to create and restore from the
4657 * hibernation, and so upon restoration those pages will be in the
4658 * CPU domain.
4659 *
4660 * To make sure the hibernation image contains the latest state,
4661 * we update that state just before writing out the image.
4662 */
4663
4664 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
4665 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4666 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4667 }
4668
4669 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4670 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4671 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4672 }
4673
4674 return 0;
4675}
4676
f787a5f5 4677void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4678{
f787a5f5 4679 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4680 struct drm_i915_gem_request *request;
b962442e
EA
4681
4682 /* Clean up our request list when the client is going away, so that
4683 * later retire_requests won't dereference our soon-to-be-gone
4684 * file_priv.
4685 */
1c25595f 4686 spin_lock(&file_priv->mm.lock);
15f7bbc7 4687 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4688 request->file_priv = NULL;
1c25595f 4689 spin_unlock(&file_priv->mm.lock);
b29c19b6 4690
2e1b8730 4691 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4692 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4693 list_del(&file_priv->rps.link);
8d3afd7d 4694 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4695 }
b29c19b6
CW
4696}
4697
4698int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4699{
4700 struct drm_i915_file_private *file_priv;
e422b888 4701 int ret;
b29c19b6
CW
4702
4703 DRM_DEBUG_DRIVER("\n");
4704
4705 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4706 if (!file_priv)
4707 return -ENOMEM;
4708
4709 file->driver_priv = file_priv;
f19ec8cb 4710 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4711 file_priv->file = file;
2e1b8730 4712 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4713
4714 spin_lock_init(&file_priv->mm.lock);
4715 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4716
c80ff16e 4717 file_priv->bsd_engine = -1;
de1add36 4718
e422b888
BW
4719 ret = i915_gem_context_open(dev, file);
4720 if (ret)
4721 kfree(file_priv);
b29c19b6 4722
e422b888 4723 return ret;
b29c19b6
CW
4724}
4725
b680c37a
DV
4726/**
4727 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4728 * @old: current GEM buffer for the frontbuffer slots
4729 * @new: new GEM buffer for the frontbuffer slots
4730 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4731 *
4732 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4733 * from @old and setting them in @new. Both @old and @new can be NULL.
4734 */
a071fa00
DV
4735void i915_gem_track_fb(struct drm_i915_gem_object *old,
4736 struct drm_i915_gem_object *new,
4737 unsigned frontbuffer_bits)
4738{
faf5bf0a
CW
4739 /* Control of individual bits within the mask are guarded by
4740 * the owning plane->mutex, i.e. we can never see concurrent
4741 * manipulation of individual bits. But since the bitfield as a whole
4742 * is updated using RMW, we need to use atomics in order to update
4743 * the bits.
4744 */
4745 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4746 sizeof(atomic_t) * BITS_PER_BYTE);
4747
a071fa00 4748 if (old) {
faf5bf0a
CW
4749 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4750 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4751 }
4752
4753 if (new) {
faf5bf0a
CW
4754 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4755 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4756 }
4757}
4758
033908ae
DG
4759/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4760struct page *
4761i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4762{
4763 struct page *page;
4764
4765 /* Only default objects have per-page dirty tracking */
b9bcd14a 4766 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
033908ae
DG
4767 return NULL;
4768
4769 page = i915_gem_object_get_page(obj, n);
4770 set_page_dirty(page);
4771 return page;
4772}
4773
ea70299d
DG
4774/* Allocate a new GEM object and fill it with the supplied data */
4775struct drm_i915_gem_object *
4776i915_gem_object_create_from_data(struct drm_device *dev,
4777 const void *data, size_t size)
4778{
4779 struct drm_i915_gem_object *obj;
4780 struct sg_table *sg;
4781 size_t bytes;
4782 int ret;
4783
d37cd8a8 4784 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4785 if (IS_ERR(obj))
ea70299d
DG
4786 return obj;
4787
4788 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4789 if (ret)
4790 goto fail;
4791
4792 ret = i915_gem_object_get_pages(obj);
4793 if (ret)
4794 goto fail;
4795
4796 i915_gem_object_pin_pages(obj);
4797 sg = obj->pages;
4798 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 4799 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
4800 i915_gem_object_unpin_pages(obj);
4801
4802 if (WARN_ON(bytes != size)) {
4803 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4804 ret = -EFAULT;
4805 goto fail;
4806 }
4807
4808 return obj;
4809
4810fail:
f8c417cd 4811 i915_gem_object_put(obj);
ea70299d
DG
4812 return ERR_PTR(ret);
4813}