Revert "drm/i915: Remove superfluous NULL check"
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 49
c76ce038
CW
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
2c22569b
CW
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
73aa808f
CW
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
c20e8355 68 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
c20e8355 71 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
c20e8355 77 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
c20e8355 80 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
81}
82
21dd3734 83static int
33196ded 84i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 85{
30dbf0c0
CW
86 int ret;
87
7abb690a
DV
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
1f83fee0 90 if (EXIT_COND)
30dbf0c0
CW
91 return 0;
92
0a6759c6
DV
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
1f83fee0
DV
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
0a6759c6
DV
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
30dbf0c0 105 return ret;
0a6759c6 106 }
1f83fee0 107#undef EXIT_COND
30dbf0c0 108
21dd3734 109 return 0;
30dbf0c0
CW
110}
111
54cf91dc 112int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 113{
33196ded 114 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
115 int ret;
116
33196ded 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
23bc5982 125 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
126 return 0;
127}
30dbf0c0 128
5a125c3c
EA
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 131 struct drm_file *file)
5a125c3c 132{
73aa808f 133 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 134 struct drm_i915_gem_get_aperture *args = data;
ca1543be
TU
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
6299f992 137 size_t pinned;
5a125c3c 138
6299f992 139 pinned = 0;
73aa808f 140 mutex_lock(&dev->struct_mutex);
ca1543be
TU
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
73aa808f 147 mutex_unlock(&dev->struct_mutex);
5a125c3c 148
853ba5d2 149 args->aper_size = dev_priv->gtt.base.total;
0206e353 150 args->aper_available_size = args->aper_size - pinned;
6299f992 151
5a125c3c
EA
152 return 0;
153}
154
6a2c4232
CW
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 157{
6a2c4232
CW
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
00731155 163
6a2c4232
CW
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
00731155 198
6a2c4232
CW
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
6a2c4232
CW
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 212
6a2c4232
CW
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
00731155 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 227 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
00731155 245 mark_page_accessed(page);
6a2c4232 246 page_cache_release(page);
00731155
CW
247 vaddr += PAGE_SIZE;
248 }
6a2c4232 249 obj->dirty = 0;
00731155
CW
250 }
251
6a2c4232
CW
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
6a2c4232
CW
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
00731155
CW
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
6a2c4232 290 int ret;
00731155
CW
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
6a2c4232
CW
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
00731155
CW
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
00731155 314 obj->phys_handle = phys;
6a2c4232
CW
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
00731155
CW
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 328 int ret = 0;
6a2c4232
CW
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
00731155 336
77a0d1ca 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
00731155
CW
352 }
353
6a2c4232 354 drm_clflush_virt_range(vaddr, args->size);
00731155 355 i915_gem_chipset_flush(dev);
063e4e6b
PZ
356
357out:
de152b62 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 359 return ret;
00731155
CW
360}
361
42dcedd4
CW
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 371 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
372}
373
ff72145b
DA
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
673a394b 379{
05394f39 380 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
381 int ret;
382 u32 handle;
673a394b 383
ff72145b 384 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
385 if (size == 0)
386 return -EINVAL;
673a394b
EA
387
388 /* Allocate the new object */
ff72145b 389 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
390 if (obj == NULL)
391 return -ENOMEM;
392
05394f39 393 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 394 /* drop reference from allocate - handle holds it now */
d861e338
DV
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
202f2fef 398
ff72145b 399 *handle_p = handle;
673a394b
EA
400 return 0;
401}
402
ff72145b
DA
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
de45eaf7 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
da6b51d0 412 args->size, &args->handle);
ff72145b
DA
413}
414
ff72145b
DA
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
63ed2cb2 423
ff72145b 424 return i915_gem_create(file, dev,
da6b51d0 425 args->size, &args->handle);
ff72145b
DA
426}
427
8461d226
DV
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
8c59967c 454static inline int
4f0c7cfb
BW
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
8c59967c
DV
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
4c914c0c
BV
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
d174bd64
DV
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
eb01459f 519static int
d174bd64
DV
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
e7e58eb5 527 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
f60d7f0c 539 return ret ? -EFAULT : 0;
d174bd64
DV
540}
541
23c18c71
DV
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
e7e58eb5 546 if (unlikely(swizzled)) {
23c18c71
DV
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
d174bd64
DV
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
23c18c71
DV
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
d174bd64
DV
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
f60d7f0c 590 return ret ? - EFAULT : 0;
d174bd64
DV
591}
592
eb01459f 593static int
dbf7bff0
DV
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
eb01459f 598{
8461d226 599 char __user *user_data;
eb01459f 600 ssize_t remain;
8461d226 601 loff_t offset;
eb2c0c81 602 int shmem_page_offset, page_length, ret = 0;
8461d226 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 604 int prefaulted = 0;
8489731c 605 int needs_clflush = 0;
67d5a50c 606 struct sg_page_iter sg_iter;
eb01459f 607
2bb4629a 608 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
609 remain = args->size;
610
8461d226 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 612
4c914c0c 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
614 if (ret)
615 return ret;
616
8461d226 617 offset = args->offset;
eb01459f 618
67d5a50c
ID
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
2db76d7c 621 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
622
623 if (remain <= 0)
624 break;
625
eb01459f
EA
626 /* Operation in this page
627 *
eb01459f 628 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
629 * page_length = bytes to copy for this page
630 */
c8cbbb8b 631 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 635
8461d226
DV
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
d174bd64
DV
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
dbf7bff0 644
dbf7bff0
DV
645 mutex_unlock(&dev->struct_mutex);
646
d330a953 647 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 648 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
eb01459f 656
d174bd64
DV
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
eb01459f 660
dbf7bff0 661 mutex_lock(&dev->struct_mutex);
f60d7f0c 662
f60d7f0c 663 if (ret)
8461d226 664 goto out;
8461d226 665
17793c9a 666next_page:
eb01459f 667 remain -= page_length;
8461d226 668 user_data += page_length;
eb01459f
EA
669 offset += page_length;
670 }
671
4f27b75d 672out:
f60d7f0c
CW
673 i915_gem_object_unpin_pages(obj);
674
eb01459f
EA
675 return ret;
676}
677
673a394b
EA
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 685 struct drm_file *file)
673a394b
EA
686{
687 struct drm_i915_gem_pread *args = data;
05394f39 688 struct drm_i915_gem_object *obj;
35b62a89 689 int ret = 0;
673a394b 690
51311d0a
CW
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
2bb4629a 695 to_user_ptr(args->data_ptr),
51311d0a
CW
696 args->size))
697 return -EFAULT;
698
4f27b75d 699 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 700 if (ret)
4f27b75d 701 return ret;
673a394b 702
05394f39 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 704 if (&obj->base == NULL) {
1d7cfea1
CW
705 ret = -ENOENT;
706 goto unlock;
4f27b75d 707 }
673a394b 708
7dcd2499 709 /* Bounds check source. */
05394f39
CW
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
ce9d419d 712 ret = -EINVAL;
35b62a89 713 goto out;
ce9d419d
CW
714 }
715
1286ff73
DV
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
db53a302
CW
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
dbf7bff0 726 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 727
35b62a89 728out:
05394f39 729 drm_gem_object_unreference(&obj->base);
1d7cfea1 730unlock:
4f27b75d 731 mutex_unlock(&dev->struct_mutex);
eb01459f 732 return ret;
673a394b
EA
733}
734
0839ccb8
KP
735/* This is the fast write path which cannot handle
736 * page faults in the source data
9b7530cc 737 */
0839ccb8
KP
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
9b7530cc 744{
4f0c7cfb
BW
745 void __iomem *vaddr_atomic;
746 void *vaddr;
0839ccb8 747 unsigned long unwritten;
9b7530cc 748
3e4d3af5 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 753 user_data, length);
3e4d3af5 754 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 755 return unwritten;
0839ccb8
KP
756}
757
3de09aa3
EA
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
673a394b 762static int
05394f39
CW
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
3de09aa3 765 struct drm_i915_gem_pwrite *args,
05394f39 766 struct drm_file *file)
673a394b 767{
3e31c6c0 768 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 769 ssize_t remain;
0839ccb8 770 loff_t offset, page_base;
673a394b 771 char __user *user_data;
935aaa69
DV
772 int page_offset, page_length, ret;
773
1ec9e26d 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
673a394b 785
2bb4629a 786 user_data = to_user_ptr(args->data_ptr);
673a394b 787 remain = args->size;
673a394b 788
f343c5f6 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 790
77a0d1ca 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 792
673a394b
EA
793 while (remain > 0) {
794 /* Operation in this page
795 *
0839ccb8
KP
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
673a394b 799 */
c8cbbb8b
CW
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
0839ccb8
KP
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
0839ccb8 806 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
0839ccb8 809 */
5d4545ae 810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
063e4e6b 813 goto out_flush;
935aaa69 814 }
673a394b 815
0839ccb8
KP
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
673a394b 819 }
673a394b 820
063e4e6b 821out_flush:
de152b62 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 823out_unpin:
d7f46fc4 824 i915_gem_object_ggtt_unpin(obj);
935aaa69 825out:
3de09aa3 826 return ret;
673a394b
EA
827}
828
d174bd64
DV
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
3043c60c 833static int
d174bd64
DV
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
673a394b 839{
d174bd64 840 char *vaddr;
673a394b 841 int ret;
3de09aa3 842
e7e58eb5 843 if (unlikely(page_do_bit17_swizzling))
d174bd64 844 return -EINVAL;
3de09aa3 845
d174bd64
DV
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
c2831a94
CW
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
d174bd64
DV
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
3de09aa3 856
755d2218 857 return ret ? -EFAULT : 0;
3de09aa3
EA
858}
859
d174bd64
DV
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
3043c60c 862static int
d174bd64
DV
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
673a394b 868{
d174bd64
DV
869 char *vaddr;
870 int ret;
e5281ccd 871
d174bd64 872 vaddr = kmap(page);
e7e58eb5 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
d174bd64
DV
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
879 user_data,
880 page_length);
d174bd64
DV
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
23c18c71
DV
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
d174bd64 889 kunmap(page);
40123c1f 890
755d2218 891 return ret ? -EFAULT : 0;
40123c1f
EA
892}
893
40123c1f 894static int
e244a443
DV
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
40123c1f 899{
40123c1f 900 ssize_t remain;
8c59967c
DV
901 loff_t offset;
902 char __user *user_data;
eb2c0c81 903 int shmem_page_offset, page_length, ret = 0;
8c59967c 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 905 int hit_slowpath = 0;
58642885
DV
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
67d5a50c 908 struct sg_page_iter sg_iter;
40123c1f 909
2bb4629a 910 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
911 remain = args->size;
912
8c59967c 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 914
58642885
DV
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
2c22569b 920 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
58642885 924 }
c76ce038
CW
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 930
755d2218
CW
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
77a0d1ca 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 936
755d2218
CW
937 i915_gem_object_pin_pages(obj);
938
673a394b 939 offset = args->offset;
05394f39 940 obj->dirty = 1;
673a394b 941
67d5a50c
ID
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
2db76d7c 944 struct page *page = sg_page_iter_page(&sg_iter);
58642885 945 int partial_cacheline_write;
e5281ccd 946
9da3da66
CW
947 if (remain <= 0)
948 break;
949
40123c1f
EA
950 /* Operation in this page
951 *
40123c1f 952 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
953 * page_length = bytes to copy for this page
954 */
c8cbbb8b 955 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 960
58642885
DV
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
8c59967c
DV
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
d174bd64
DV
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
e244a443
DV
977
978 hit_slowpath = 1;
e244a443 979 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
40123c1f 984
e244a443 985 mutex_lock(&dev->struct_mutex);
755d2218 986
755d2218 987 if (ret)
8c59967c 988 goto out;
8c59967c 989
17793c9a 990next_page:
40123c1f 991 remain -= page_length;
8c59967c 992 user_data += page_length;
40123c1f 993 offset += page_length;
673a394b
EA
994 }
995
fbd5a26d 996out:
755d2218
CW
997 i915_gem_object_unpin_pages(obj);
998
e244a443 999 if (hit_slowpath) {
8dcf015e
DV
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1007 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1008 needs_clflush_after = true;
e244a443 1009 }
8c59967c 1010 }
673a394b 1011
58642885 1012 if (needs_clflush_after)
e76e9aeb 1013 i915_gem_chipset_flush(dev);
ed75a55b
VS
1014 else
1015 obj->cache_dirty = true;
58642885 1016
de152b62 1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1018 return ret;
673a394b
EA
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1028 struct drm_file *file)
673a394b 1029{
5d77d9c5 1030 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1031 struct drm_i915_gem_pwrite *args = data;
05394f39 1032 struct drm_i915_gem_object *obj;
51311d0a
CW
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
2bb4629a 1039 to_user_ptr(args->data_ptr),
51311d0a
CW
1040 args->size))
1041 return -EFAULT;
1042
d330a953 1043 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
673a394b 1049
5d77d9c5
ID
1050 intel_runtime_pm_get(dev_priv);
1051
fbd5a26d 1052 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1053 if (ret)
5d77d9c5 1054 goto put_rpm;
1d7cfea1 1055
05394f39 1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1057 if (&obj->base == NULL) {
1d7cfea1
CW
1058 ret = -ENOENT;
1059 goto unlock;
fbd5a26d 1060 }
673a394b 1061
7dcd2499 1062 /* Bounds check destination. */
05394f39
CW
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
ce9d419d 1065 ret = -EINVAL;
35b62a89 1066 goto out;
ce9d419d
CW
1067 }
1068
1286ff73
DV
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
db53a302
CW
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
935aaa69 1079 ret = -EFAULT;
673a394b
EA
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
2c22569b
CW
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
fbd5a26d 1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1093 }
673a394b 1094
6a2c4232
CW
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
5c0480f2 1101
35b62a89 1102out:
05394f39 1103 drm_gem_object_unreference(&obj->base);
1d7cfea1 1104unlock:
fbd5a26d 1105 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1106put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
673a394b
EA
1109 return ret;
1110}
1111
b361237b 1112int
33196ded 1113i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1114 bool interruptible)
1115{
1f83fee0 1116 if (i915_reset_in_progress(error)) {
b361237b
CW
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1f83fee0
DV
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
b361237b
CW
1124 return -EIO;
1125
6689c167
MA
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
b361237b
CW
1133 }
1134
1135 return 0;
1136}
1137
094f9a54
CW
1138static void fake_irq(unsigned long data)
1139{
1140 wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1144 struct intel_engine_cs *ring)
094f9a54
CW
1145{
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
eed29a5b 1149static int __i915_spin_request(struct drm_i915_gem_request *req)
b29c19b6 1150{
2def4ad9
CW
1151 unsigned long timeout;
1152
eed29a5b 1153 if (i915_gem_request_get_ring(req)->irq_refcount)
2def4ad9
CW
1154 return -EBUSY;
1155
1156 timeout = jiffies + 1;
1157 while (!need_resched()) {
eed29a5b 1158 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1159 return 0;
1160
1161 if (time_after_eq(jiffies, timeout))
1162 break;
b29c19b6 1163
2def4ad9
CW
1164 cpu_relax_lowlatency();
1165 }
eed29a5b 1166 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1167 return 0;
1168
1169 return -EAGAIN;
b29c19b6
CW
1170}
1171
b361237b 1172/**
9c654818
JH
1173 * __i915_wait_request - wait until execution of request has finished
1174 * @req: duh!
1175 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1176 * @interruptible: do an interruptible wait (normally yes)
1177 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1178 *
f69061be
DV
1179 * Note: It is of utmost importance that the passed in seqno and reset_counter
1180 * values have been read by the caller in an smp safe manner. Where read-side
1181 * locks are involved, it is sufficient to read the reset_counter before
1182 * unlocking the lock that protects the seqno. For lockless tricks, the
1183 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1184 * inserted.
1185 *
9c654818 1186 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1187 * errno with remaining time filled in timeout argument.
1188 */
9c654818 1189int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1190 unsigned reset_counter,
b29c19b6 1191 bool interruptible,
5ed0bdf2 1192 s64 *timeout,
2e1b8730 1193 struct intel_rps_client *rps)
b361237b 1194{
9c654818 1195 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1196 struct drm_device *dev = ring->dev;
3e31c6c0 1197 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1198 const bool irq_test_in_progress =
1199 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1200 DEFINE_WAIT(wait);
47e9766d 1201 unsigned long timeout_expire;
5ed0bdf2 1202 s64 before, now;
b361237b
CW
1203 int ret;
1204
9df7575f 1205 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1206
b4716185
CW
1207 if (list_empty(&req->list))
1208 return 0;
1209
1b5a433a 1210 if (i915_gem_request_completed(req, true))
b361237b
CW
1211 return 0;
1212
7bd0e226
DV
1213 timeout_expire = timeout ?
1214 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1215
2e1b8730 1216 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1217 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1218
094f9a54 1219 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1220 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1221 before = ktime_get_raw_ns();
2def4ad9
CW
1222
1223 /* Optimistic spin for the next jiffie before touching IRQs */
1224 ret = __i915_spin_request(req);
1225 if (ret == 0)
1226 goto out;
1227
1228 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1229 ret = -ENODEV;
1230 goto out;
1231 }
1232
094f9a54
CW
1233 for (;;) {
1234 struct timer_list timer;
b361237b 1235
094f9a54
CW
1236 prepare_to_wait(&ring->irq_queue, &wait,
1237 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1238
f69061be
DV
1239 /* We need to check whether any gpu reset happened in between
1240 * the caller grabbing the seqno and now ... */
094f9a54
CW
1241 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1242 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1243 * is truely gone. */
1244 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1245 if (ret == 0)
1246 ret = -EAGAIN;
1247 break;
1248 }
f69061be 1249
1b5a433a 1250 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1251 ret = 0;
1252 break;
1253 }
b361237b 1254
094f9a54
CW
1255 if (interruptible && signal_pending(current)) {
1256 ret = -ERESTARTSYS;
1257 break;
1258 }
1259
47e9766d 1260 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1261 ret = -ETIME;
1262 break;
1263 }
1264
1265 timer.function = NULL;
1266 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1267 unsigned long expire;
1268
094f9a54 1269 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1270 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1271 mod_timer(&timer, expire);
1272 }
1273
5035c275 1274 io_schedule();
094f9a54 1275
094f9a54
CW
1276 if (timer.function) {
1277 del_singleshot_timer_sync(&timer);
1278 destroy_timer_on_stack(&timer);
1279 }
1280 }
168c3f21
MK
1281 if (!irq_test_in_progress)
1282 ring->irq_put(ring);
094f9a54
CW
1283
1284 finish_wait(&ring->irq_queue, &wait);
b361237b 1285
2def4ad9
CW
1286out:
1287 now = ktime_get_raw_ns();
1288 trace_i915_gem_request_wait_end(req);
1289
b361237b 1290 if (timeout) {
5ed0bdf2
TG
1291 s64 tres = *timeout - (now - before);
1292
1293 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1294
1295 /*
1296 * Apparently ktime isn't accurate enough and occasionally has a
1297 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1298 * things up to make the test happy. We allow up to 1 jiffy.
1299 *
1300 * This is a regrssion from the timespec->ktime conversion.
1301 */
1302 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1303 *timeout = 0;
b361237b
CW
1304 }
1305
094f9a54 1306 return ret;
b361237b
CW
1307}
1308
fcfa423c
JH
1309int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1310 struct drm_file *file)
1311{
1312 struct drm_i915_private *dev_private;
1313 struct drm_i915_file_private *file_priv;
1314
1315 WARN_ON(!req || !file || req->file_priv);
1316
1317 if (!req || !file)
1318 return -EINVAL;
1319
1320 if (req->file_priv)
1321 return -EINVAL;
1322
1323 dev_private = req->ring->dev->dev_private;
1324 file_priv = file->driver_priv;
1325
1326 spin_lock(&file_priv->mm.lock);
1327 req->file_priv = file_priv;
1328 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1329 spin_unlock(&file_priv->mm.lock);
1330
1331 req->pid = get_pid(task_pid(current));
1332
1333 return 0;
1334}
1335
b4716185
CW
1336static inline void
1337i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1338{
1339 struct drm_i915_file_private *file_priv = request->file_priv;
1340
1341 if (!file_priv)
1342 return;
1343
1344 spin_lock(&file_priv->mm.lock);
1345 list_del(&request->client_list);
1346 request->file_priv = NULL;
1347 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1348
1349 put_pid(request->pid);
1350 request->pid = NULL;
b4716185
CW
1351}
1352
1353static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1354{
1355 trace_i915_gem_request_retire(request);
1356
6d65ba94
NH
1357 if (i915.enable_execlists)
1358 intel_lr_context_complete_check(request);
1359
b4716185
CW
1360 /* We know the GPU must have read the request to have
1361 * sent us the seqno + interrupt, so use the position
1362 * of tail of the request to update the last known position
1363 * of the GPU head.
1364 *
1365 * Note this requires that we are always called in request
1366 * completion order.
1367 */
1368 request->ringbuf->last_retired_head = request->postfix;
1369
1370 list_del_init(&request->list);
1371 i915_gem_request_remove_from_client(request);
1372
b4716185
CW
1373 i915_gem_request_unreference(request);
1374}
1375
1376static void
1377__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1378{
1379 struct intel_engine_cs *engine = req->ring;
1380 struct drm_i915_gem_request *tmp;
1381
1382 lockdep_assert_held(&engine->dev->struct_mutex);
1383
1384 if (list_empty(&req->list))
1385 return;
1386
1387 do {
1388 tmp = list_first_entry(&engine->request_list,
1389 typeof(*tmp), list);
1390
1391 i915_gem_request_retire(tmp);
1392 } while (tmp != req);
1393
1394 WARN_ON(i915_verify_lists(engine->dev));
1395}
1396
b361237b 1397/**
a4b3a571 1398 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1399 * request and object lists appropriately for that event.
1400 */
1401int
a4b3a571 1402i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1403{
a4b3a571
DV
1404 struct drm_device *dev;
1405 struct drm_i915_private *dev_priv;
1406 bool interruptible;
b361237b
CW
1407 int ret;
1408
a4b3a571
DV
1409 BUG_ON(req == NULL);
1410
1411 dev = req->ring->dev;
1412 dev_priv = dev->dev_private;
1413 interruptible = dev_priv->mm.interruptible;
1414
b361237b 1415 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1416
33196ded 1417 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1418 if (ret)
1419 return ret;
1420
b4716185
CW
1421 ret = __i915_wait_request(req,
1422 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1423 interruptible, NULL, NULL);
b4716185
CW
1424 if (ret)
1425 return ret;
d26e3af8 1426
b4716185 1427 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1428 return 0;
1429}
1430
b361237b
CW
1431/**
1432 * Ensures that all rendering to the object has completed and the object is
1433 * safe to unbind from the GTT or access from the CPU.
1434 */
2e2f351d 1435int
b361237b
CW
1436i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1437 bool readonly)
1438{
b4716185 1439 int ret, i;
b361237b 1440
b4716185 1441 if (!obj->active)
b361237b
CW
1442 return 0;
1443
b4716185
CW
1444 if (readonly) {
1445 if (obj->last_write_req != NULL) {
1446 ret = i915_wait_request(obj->last_write_req);
1447 if (ret)
1448 return ret;
b361237b 1449
b4716185
CW
1450 i = obj->last_write_req->ring->id;
1451 if (obj->last_read_req[i] == obj->last_write_req)
1452 i915_gem_object_retire__read(obj, i);
1453 else
1454 i915_gem_object_retire__write(obj);
1455 }
1456 } else {
1457 for (i = 0; i < I915_NUM_RINGS; i++) {
1458 if (obj->last_read_req[i] == NULL)
1459 continue;
1460
1461 ret = i915_wait_request(obj->last_read_req[i]);
1462 if (ret)
1463 return ret;
1464
1465 i915_gem_object_retire__read(obj, i);
1466 }
1467 RQ_BUG_ON(obj->active);
1468 }
1469
1470 return 0;
1471}
1472
1473static void
1474i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1475 struct drm_i915_gem_request *req)
1476{
1477 int ring = req->ring->id;
1478
1479 if (obj->last_read_req[ring] == req)
1480 i915_gem_object_retire__read(obj, ring);
1481 else if (obj->last_write_req == req)
1482 i915_gem_object_retire__write(obj);
1483
1484 __i915_gem_request_retire__upto(req);
b361237b
CW
1485}
1486
3236f57a
CW
1487/* A nonblocking variant of the above wait. This is a highly dangerous routine
1488 * as the object state may change during this call.
1489 */
1490static __must_check int
1491i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1492 struct intel_rps_client *rps,
3236f57a
CW
1493 bool readonly)
1494{
1495 struct drm_device *dev = obj->base.dev;
1496 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1497 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1498 unsigned reset_counter;
b4716185 1499 int ret, i, n = 0;
3236f57a
CW
1500
1501 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1502 BUG_ON(!dev_priv->mm.interruptible);
1503
b4716185 1504 if (!obj->active)
3236f57a
CW
1505 return 0;
1506
33196ded 1507 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1508 if (ret)
1509 return ret;
1510
f69061be 1511 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1512
1513 if (readonly) {
1514 struct drm_i915_gem_request *req;
1515
1516 req = obj->last_write_req;
1517 if (req == NULL)
1518 return 0;
1519
b4716185
CW
1520 requests[n++] = i915_gem_request_reference(req);
1521 } else {
1522 for (i = 0; i < I915_NUM_RINGS; i++) {
1523 struct drm_i915_gem_request *req;
1524
1525 req = obj->last_read_req[i];
1526 if (req == NULL)
1527 continue;
1528
b4716185
CW
1529 requests[n++] = i915_gem_request_reference(req);
1530 }
1531 }
1532
3236f57a 1533 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1534 for (i = 0; ret == 0 && i < n; i++)
1535 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1536 NULL, rps);
3236f57a
CW
1537 mutex_lock(&dev->struct_mutex);
1538
b4716185
CW
1539 for (i = 0; i < n; i++) {
1540 if (ret == 0)
1541 i915_gem_object_retire_request(obj, requests[i]);
1542 i915_gem_request_unreference(requests[i]);
1543 }
1544
1545 return ret;
3236f57a
CW
1546}
1547
2e1b8730
CW
1548static struct intel_rps_client *to_rps_client(struct drm_file *file)
1549{
1550 struct drm_i915_file_private *fpriv = file->driver_priv;
1551 return &fpriv->rps;
1552}
1553
673a394b 1554/**
2ef7eeaa
EA
1555 * Called when user space prepares to use an object with the CPU, either
1556 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1557 */
1558int
1559i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1560 struct drm_file *file)
673a394b
EA
1561{
1562 struct drm_i915_gem_set_domain *args = data;
05394f39 1563 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1564 uint32_t read_domains = args->read_domains;
1565 uint32_t write_domain = args->write_domain;
673a394b
EA
1566 int ret;
1567
2ef7eeaa 1568 /* Only handle setting domains to types used by the CPU. */
21d509e3 1569 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1570 return -EINVAL;
1571
21d509e3 1572 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1573 return -EINVAL;
1574
1575 /* Having something in the write domain implies it's in the read
1576 * domain, and only that read domain. Enforce that in the request.
1577 */
1578 if (write_domain != 0 && read_domains != write_domain)
1579 return -EINVAL;
1580
76c1dec1 1581 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1582 if (ret)
76c1dec1 1583 return ret;
1d7cfea1 1584
05394f39 1585 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1586 if (&obj->base == NULL) {
1d7cfea1
CW
1587 ret = -ENOENT;
1588 goto unlock;
76c1dec1 1589 }
673a394b 1590
3236f57a
CW
1591 /* Try to flush the object off the GPU without holding the lock.
1592 * We will repeat the flush holding the lock in the normal manner
1593 * to catch cases where we are gazumped.
1594 */
6e4930f6 1595 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1596 to_rps_client(file),
6e4930f6 1597 !write_domain);
3236f57a
CW
1598 if (ret)
1599 goto unref;
1600
43566ded 1601 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1602 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1603 else
e47c68e9 1604 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1605
031b698a
DV
1606 if (write_domain != 0)
1607 intel_fb_obj_invalidate(obj,
1608 write_domain == I915_GEM_DOMAIN_GTT ?
1609 ORIGIN_GTT : ORIGIN_CPU);
1610
3236f57a 1611unref:
05394f39 1612 drm_gem_object_unreference(&obj->base);
1d7cfea1 1613unlock:
673a394b
EA
1614 mutex_unlock(&dev->struct_mutex);
1615 return ret;
1616}
1617
1618/**
1619 * Called when user space has done writes to this buffer
1620 */
1621int
1622i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1623 struct drm_file *file)
673a394b
EA
1624{
1625 struct drm_i915_gem_sw_finish *args = data;
05394f39 1626 struct drm_i915_gem_object *obj;
673a394b
EA
1627 int ret = 0;
1628
76c1dec1 1629 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1630 if (ret)
76c1dec1 1631 return ret;
1d7cfea1 1632
05394f39 1633 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1634 if (&obj->base == NULL) {
1d7cfea1
CW
1635 ret = -ENOENT;
1636 goto unlock;
673a394b
EA
1637 }
1638
673a394b 1639 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1640 if (obj->pin_display)
e62b59e4 1641 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1642
05394f39 1643 drm_gem_object_unreference(&obj->base);
1d7cfea1 1644unlock:
673a394b
EA
1645 mutex_unlock(&dev->struct_mutex);
1646 return ret;
1647}
1648
1649/**
1650 * Maps the contents of an object, returning the address it is mapped
1651 * into.
1652 *
1653 * While the mapping holds a reference on the contents of the object, it doesn't
1654 * imply a ref on the object itself.
34367381
DV
1655 *
1656 * IMPORTANT:
1657 *
1658 * DRM driver writers who look a this function as an example for how to do GEM
1659 * mmap support, please don't implement mmap support like here. The modern way
1660 * to implement DRM mmap support is with an mmap offset ioctl (like
1661 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1662 * That way debug tooling like valgrind will understand what's going on, hiding
1663 * the mmap call in a driver private ioctl will break that. The i915 driver only
1664 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1665 */
1666int
1667i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1668 struct drm_file *file)
673a394b
EA
1669{
1670 struct drm_i915_gem_mmap *args = data;
1671 struct drm_gem_object *obj;
673a394b
EA
1672 unsigned long addr;
1673
1816f923
AG
1674 if (args->flags & ~(I915_MMAP_WC))
1675 return -EINVAL;
1676
1677 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1678 return -ENODEV;
1679
05394f39 1680 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1681 if (obj == NULL)
bf79cb91 1682 return -ENOENT;
673a394b 1683
1286ff73
DV
1684 /* prime objects have no backing filp to GEM mmap
1685 * pages from.
1686 */
1687 if (!obj->filp) {
1688 drm_gem_object_unreference_unlocked(obj);
1689 return -EINVAL;
1690 }
1691
6be5ceb0 1692 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1693 PROT_READ | PROT_WRITE, MAP_SHARED,
1694 args->offset);
1816f923
AG
1695 if (args->flags & I915_MMAP_WC) {
1696 struct mm_struct *mm = current->mm;
1697 struct vm_area_struct *vma;
1698
1699 down_write(&mm->mmap_sem);
1700 vma = find_vma(mm, addr);
1701 if (vma)
1702 vma->vm_page_prot =
1703 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1704 else
1705 addr = -ENOMEM;
1706 up_write(&mm->mmap_sem);
1707 }
bc9025bd 1708 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1709 if (IS_ERR((void *)addr))
1710 return addr;
1711
1712 args->addr_ptr = (uint64_t) addr;
1713
1714 return 0;
1715}
1716
de151cf6
JB
1717/**
1718 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1719 * @vma: VMA in question
1720 * @vmf: fault info
de151cf6
JB
1721 *
1722 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1723 * from userspace. The fault handler takes care of binding the object to
1724 * the GTT (if needed), allocating and programming a fence register (again,
1725 * only if needed based on whether the old reg is still valid or the object
1726 * is tiled) and inserting a new PTE into the faulting process.
1727 *
1728 * Note that the faulting process may involve evicting existing objects
1729 * from the GTT and/or fence registers to make room. So performance may
1730 * suffer if the GTT working set is large or there are few fence registers
1731 * left.
1732 */
1733int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1734{
05394f39
CW
1735 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1736 struct drm_device *dev = obj->base.dev;
3e31c6c0 1737 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1738 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1739 pgoff_t page_offset;
1740 unsigned long pfn;
1741 int ret = 0;
0f973f27 1742 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1743
f65c9168
PZ
1744 intel_runtime_pm_get(dev_priv);
1745
de151cf6
JB
1746 /* We don't use vmf->pgoff since that has the fake offset */
1747 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1748 PAGE_SHIFT;
1749
d9bc7e9f
CW
1750 ret = i915_mutex_lock_interruptible(dev);
1751 if (ret)
1752 goto out;
a00b10c3 1753
db53a302
CW
1754 trace_i915_gem_object_fault(obj, page_offset, true, write);
1755
6e4930f6
CW
1756 /* Try to flush the object off the GPU first without holding the lock.
1757 * Upon reacquiring the lock, we will perform our sanity checks and then
1758 * repeat the flush holding the lock in the normal manner to catch cases
1759 * where we are gazumped.
1760 */
1761 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1762 if (ret)
1763 goto unlock;
1764
eb119bd6
CW
1765 /* Access to snoopable pages through the GTT is incoherent. */
1766 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1767 ret = -EFAULT;
eb119bd6
CW
1768 goto unlock;
1769 }
1770
c5ad54cf 1771 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1772 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1773 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1774 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1775
c5ad54cf
JL
1776 memset(&view, 0, sizeof(view));
1777 view.type = I915_GGTT_VIEW_PARTIAL;
1778 view.params.partial.offset = rounddown(page_offset, chunk_size);
1779 view.params.partial.size =
1780 min_t(unsigned int,
1781 chunk_size,
1782 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1783 view.params.partial.offset);
1784 }
1785
1786 /* Now pin it into the GTT if needed */
1787 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1788 if (ret)
1789 goto unlock;
4a684a41 1790
c9839303
CW
1791 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1792 if (ret)
1793 goto unpin;
74898d7e 1794
06d98131 1795 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1796 if (ret)
c9839303 1797 goto unpin;
7d1c4804 1798
b90b91d8 1799 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1800 pfn = dev_priv->gtt.mappable_base +
1801 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1802 pfn >>= PAGE_SHIFT;
de151cf6 1803
c5ad54cf
JL
1804 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1805 /* Overriding existing pages in partial view does not cause
1806 * us any trouble as TLBs are still valid because the fault
1807 * is due to userspace losing part of the mapping or never
1808 * having accessed it before (at this partials' range).
1809 */
1810 unsigned long base = vma->vm_start +
1811 (view.params.partial.offset << PAGE_SHIFT);
1812 unsigned int i;
b90b91d8 1813
c5ad54cf
JL
1814 for (i = 0; i < view.params.partial.size; i++) {
1815 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1816 if (ret)
1817 break;
1818 }
1819
1820 obj->fault_mappable = true;
c5ad54cf
JL
1821 } else {
1822 if (!obj->fault_mappable) {
1823 unsigned long size = min_t(unsigned long,
1824 vma->vm_end - vma->vm_start,
1825 obj->base.size);
1826 int i;
1827
1828 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1829 ret = vm_insert_pfn(vma,
1830 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1831 pfn + i);
1832 if (ret)
1833 break;
1834 }
1835
1836 obj->fault_mappable = true;
1837 } else
1838 ret = vm_insert_pfn(vma,
1839 (unsigned long)vmf->virtual_address,
1840 pfn + page_offset);
1841 }
c9839303 1842unpin:
c5ad54cf 1843 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1844unlock:
de151cf6 1845 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1846out:
de151cf6 1847 switch (ret) {
d9bc7e9f 1848 case -EIO:
2232f031
DV
1849 /*
1850 * We eat errors when the gpu is terminally wedged to avoid
1851 * userspace unduly crashing (gl has no provisions for mmaps to
1852 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1853 * and so needs to be reported.
1854 */
1855 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1856 ret = VM_FAULT_SIGBUS;
1857 break;
1858 }
045e769a 1859 case -EAGAIN:
571c608d
DV
1860 /*
1861 * EAGAIN means the gpu is hung and we'll wait for the error
1862 * handler to reset everything when re-faulting in
1863 * i915_mutex_lock_interruptible.
d9bc7e9f 1864 */
c715089f
CW
1865 case 0:
1866 case -ERESTARTSYS:
bed636ab 1867 case -EINTR:
e79e0fe3
DR
1868 case -EBUSY:
1869 /*
1870 * EBUSY is ok: this just means that another thread
1871 * already did the job.
1872 */
f65c9168
PZ
1873 ret = VM_FAULT_NOPAGE;
1874 break;
de151cf6 1875 case -ENOMEM:
f65c9168
PZ
1876 ret = VM_FAULT_OOM;
1877 break;
a7c2e1aa 1878 case -ENOSPC:
45d67817 1879 case -EFAULT:
f65c9168
PZ
1880 ret = VM_FAULT_SIGBUS;
1881 break;
de151cf6 1882 default:
a7c2e1aa 1883 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1884 ret = VM_FAULT_SIGBUS;
1885 break;
de151cf6 1886 }
f65c9168
PZ
1887
1888 intel_runtime_pm_put(dev_priv);
1889 return ret;
de151cf6
JB
1890}
1891
901782b2
CW
1892/**
1893 * i915_gem_release_mmap - remove physical page mappings
1894 * @obj: obj in question
1895 *
af901ca1 1896 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1897 * relinquish ownership of the pages back to the system.
1898 *
1899 * It is vital that we remove the page mapping if we have mapped a tiled
1900 * object through the GTT and then lose the fence register due to
1901 * resource pressure. Similarly if the object has been moved out of the
1902 * aperture, than pages mapped into userspace must be revoked. Removing the
1903 * mapping will then trigger a page fault on the next user access, allowing
1904 * fixup by i915_gem_fault().
1905 */
d05ca301 1906void
05394f39 1907i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1908{
6299f992
CW
1909 if (!obj->fault_mappable)
1910 return;
901782b2 1911
6796cb16
DH
1912 drm_vma_node_unmap(&obj->base.vma_node,
1913 obj->base.dev->anon_inode->i_mapping);
6299f992 1914 obj->fault_mappable = false;
901782b2
CW
1915}
1916
eedd10f4
CW
1917void
1918i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1919{
1920 struct drm_i915_gem_object *obj;
1921
1922 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1923 i915_gem_release_mmap(obj);
1924}
1925
0fa87796 1926uint32_t
e28f8711 1927i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1928{
e28f8711 1929 uint32_t gtt_size;
92b88aeb
CW
1930
1931 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1932 tiling_mode == I915_TILING_NONE)
1933 return size;
92b88aeb
CW
1934
1935 /* Previous chips need a power-of-two fence region when tiling */
1936 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1937 gtt_size = 1024*1024;
92b88aeb 1938 else
e28f8711 1939 gtt_size = 512*1024;
92b88aeb 1940
e28f8711
CW
1941 while (gtt_size < size)
1942 gtt_size <<= 1;
92b88aeb 1943
e28f8711 1944 return gtt_size;
92b88aeb
CW
1945}
1946
de151cf6
JB
1947/**
1948 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1949 * @obj: object to check
1950 *
1951 * Return the required GTT alignment for an object, taking into account
5e783301 1952 * potential fence register mapping.
de151cf6 1953 */
d865110c
ID
1954uint32_t
1955i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1956 int tiling_mode, bool fenced)
de151cf6 1957{
de151cf6
JB
1958 /*
1959 * Minimum alignment is 4k (GTT page size), but might be greater
1960 * if a fence register is needed for the object.
1961 */
d865110c 1962 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1963 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1964 return 4096;
1965
a00b10c3
CW
1966 /*
1967 * Previous chips need to be aligned to the size of the smallest
1968 * fence register that can contain the object.
1969 */
e28f8711 1970 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1971}
1972
d8cb5086
CW
1973static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1974{
1975 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1976 int ret;
1977
0de23977 1978 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1979 return 0;
1980
da494d7c
DV
1981 dev_priv->mm.shrinker_no_lock_stealing = true;
1982
d8cb5086
CW
1983 ret = drm_gem_create_mmap_offset(&obj->base);
1984 if (ret != -ENOSPC)
da494d7c 1985 goto out;
d8cb5086
CW
1986
1987 /* Badly fragmented mmap space? The only way we can recover
1988 * space is by destroying unwanted objects. We can't randomly release
1989 * mmap_offsets as userspace expects them to be persistent for the
1990 * lifetime of the objects. The closest we can is to release the
1991 * offsets on purgeable objects by truncating it and marking it purged,
1992 * which prevents userspace from ever using that object again.
1993 */
21ab4e74
CW
1994 i915_gem_shrink(dev_priv,
1995 obj->base.size >> PAGE_SHIFT,
1996 I915_SHRINK_BOUND |
1997 I915_SHRINK_UNBOUND |
1998 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1999 ret = drm_gem_create_mmap_offset(&obj->base);
2000 if (ret != -ENOSPC)
da494d7c 2001 goto out;
d8cb5086
CW
2002
2003 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2004 ret = drm_gem_create_mmap_offset(&obj->base);
2005out:
2006 dev_priv->mm.shrinker_no_lock_stealing = false;
2007
2008 return ret;
d8cb5086
CW
2009}
2010
2011static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2012{
d8cb5086
CW
2013 drm_gem_free_mmap_offset(&obj->base);
2014}
2015
da6b51d0 2016int
ff72145b
DA
2017i915_gem_mmap_gtt(struct drm_file *file,
2018 struct drm_device *dev,
da6b51d0 2019 uint32_t handle,
ff72145b 2020 uint64_t *offset)
de151cf6 2021{
05394f39 2022 struct drm_i915_gem_object *obj;
de151cf6
JB
2023 int ret;
2024
76c1dec1 2025 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2026 if (ret)
76c1dec1 2027 return ret;
de151cf6 2028
ff72145b 2029 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2030 if (&obj->base == NULL) {
1d7cfea1
CW
2031 ret = -ENOENT;
2032 goto unlock;
2033 }
de151cf6 2034
05394f39 2035 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2036 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2037 ret = -EFAULT;
1d7cfea1 2038 goto out;
ab18282d
CW
2039 }
2040
d8cb5086
CW
2041 ret = i915_gem_object_create_mmap_offset(obj);
2042 if (ret)
2043 goto out;
de151cf6 2044
0de23977 2045 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2046
1d7cfea1 2047out:
05394f39 2048 drm_gem_object_unreference(&obj->base);
1d7cfea1 2049unlock:
de151cf6 2050 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2051 return ret;
de151cf6
JB
2052}
2053
ff72145b
DA
2054/**
2055 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2056 * @dev: DRM device
2057 * @data: GTT mapping ioctl data
2058 * @file: GEM object info
2059 *
2060 * Simply returns the fake offset to userspace so it can mmap it.
2061 * The mmap call will end up in drm_gem_mmap(), which will set things
2062 * up so we can get faults in the handler above.
2063 *
2064 * The fault handler will take care of binding the object into the GTT
2065 * (since it may have been evicted to make room for something), allocating
2066 * a fence register, and mapping the appropriate aperture address into
2067 * userspace.
2068 */
2069int
2070i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2071 struct drm_file *file)
2072{
2073 struct drm_i915_gem_mmap_gtt *args = data;
2074
da6b51d0 2075 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2076}
2077
225067ee
DV
2078/* Immediately discard the backing storage */
2079static void
2080i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2081{
4d6294bf 2082 i915_gem_object_free_mmap_offset(obj);
1286ff73 2083
4d6294bf
CW
2084 if (obj->base.filp == NULL)
2085 return;
e5281ccd 2086
225067ee
DV
2087 /* Our goal here is to return as much of the memory as
2088 * is possible back to the system as we are called from OOM.
2089 * To do this we must instruct the shmfs to drop all of its
2090 * backing pages, *now*.
2091 */
5537252b 2092 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2093 obj->madv = __I915_MADV_PURGED;
2094}
e5281ccd 2095
5537252b
CW
2096/* Try to discard unwanted pages */
2097static void
2098i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2099{
5537252b
CW
2100 struct address_space *mapping;
2101
2102 switch (obj->madv) {
2103 case I915_MADV_DONTNEED:
2104 i915_gem_object_truncate(obj);
2105 case __I915_MADV_PURGED:
2106 return;
2107 }
2108
2109 if (obj->base.filp == NULL)
2110 return;
2111
2112 mapping = file_inode(obj->base.filp)->i_mapping,
2113 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2114}
2115
5cdf5881 2116static void
05394f39 2117i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2118{
90797e6d
ID
2119 struct sg_page_iter sg_iter;
2120 int ret;
1286ff73 2121
05394f39 2122 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2123
6c085a72
CW
2124 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2125 if (ret) {
2126 /* In the event of a disaster, abandon all caches and
2127 * hope for the best.
2128 */
2129 WARN_ON(ret != -EIO);
2c22569b 2130 i915_gem_clflush_object(obj, true);
6c085a72
CW
2131 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2132 }
2133
e2273302
ID
2134 i915_gem_gtt_finish_object(obj);
2135
6dacfd2f 2136 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2137 i915_gem_object_save_bit_17_swizzle(obj);
2138
05394f39
CW
2139 if (obj->madv == I915_MADV_DONTNEED)
2140 obj->dirty = 0;
3ef94daa 2141
90797e6d 2142 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2143 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2144
05394f39 2145 if (obj->dirty)
9da3da66 2146 set_page_dirty(page);
3ef94daa 2147
05394f39 2148 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2149 mark_page_accessed(page);
3ef94daa 2150
9da3da66 2151 page_cache_release(page);
3ef94daa 2152 }
05394f39 2153 obj->dirty = 0;
673a394b 2154
9da3da66
CW
2155 sg_free_table(obj->pages);
2156 kfree(obj->pages);
37e680a1 2157}
6c085a72 2158
dd624afd 2159int
37e680a1
CW
2160i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2161{
2162 const struct drm_i915_gem_object_ops *ops = obj->ops;
2163
2f745ad3 2164 if (obj->pages == NULL)
37e680a1
CW
2165 return 0;
2166
a5570178
CW
2167 if (obj->pages_pin_count)
2168 return -EBUSY;
2169
9843877d 2170 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2171
a2165e31
CW
2172 /* ->put_pages might need to allocate memory for the bit17 swizzle
2173 * array, hence protect them from being reaped by removing them from gtt
2174 * lists early. */
35c20a60 2175 list_del(&obj->global_list);
a2165e31 2176
37e680a1 2177 ops->put_pages(obj);
05394f39 2178 obj->pages = NULL;
37e680a1 2179
5537252b 2180 i915_gem_object_invalidate(obj);
6c085a72
CW
2181
2182 return 0;
2183}
2184
37e680a1 2185static int
6c085a72 2186i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2187{
6c085a72 2188 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2189 int page_count, i;
2190 struct address_space *mapping;
9da3da66
CW
2191 struct sg_table *st;
2192 struct scatterlist *sg;
90797e6d 2193 struct sg_page_iter sg_iter;
e5281ccd 2194 struct page *page;
90797e6d 2195 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2196 int ret;
6c085a72 2197 gfp_t gfp;
e5281ccd 2198
6c085a72
CW
2199 /* Assert that the object is not currently in any GPU domain. As it
2200 * wasn't in the GTT, there shouldn't be any way it could have been in
2201 * a GPU cache
2202 */
2203 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2204 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2205
9da3da66
CW
2206 st = kmalloc(sizeof(*st), GFP_KERNEL);
2207 if (st == NULL)
2208 return -ENOMEM;
2209
05394f39 2210 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2211 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2212 kfree(st);
e5281ccd 2213 return -ENOMEM;
9da3da66 2214 }
e5281ccd 2215
9da3da66
CW
2216 /* Get the list of pages out of our struct file. They'll be pinned
2217 * at this point until we release them.
2218 *
2219 * Fail silently without starting the shrinker
2220 */
496ad9aa 2221 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2222 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2223 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2224 sg = st->sgl;
2225 st->nents = 0;
2226 for (i = 0; i < page_count; i++) {
6c085a72
CW
2227 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2228 if (IS_ERR(page)) {
21ab4e74
CW
2229 i915_gem_shrink(dev_priv,
2230 page_count,
2231 I915_SHRINK_BOUND |
2232 I915_SHRINK_UNBOUND |
2233 I915_SHRINK_PURGEABLE);
6c085a72
CW
2234 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2235 }
2236 if (IS_ERR(page)) {
2237 /* We've tried hard to allocate the memory by reaping
2238 * our own buffer, now let the real VM do its job and
2239 * go down in flames if truly OOM.
2240 */
6c085a72 2241 i915_gem_shrink_all(dev_priv);
f461d1be 2242 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2243 if (IS_ERR(page)) {
2244 ret = PTR_ERR(page);
6c085a72 2245 goto err_pages;
e2273302 2246 }
6c085a72 2247 }
426729dc
KRW
2248#ifdef CONFIG_SWIOTLB
2249 if (swiotlb_nr_tbl()) {
2250 st->nents++;
2251 sg_set_page(sg, page, PAGE_SIZE, 0);
2252 sg = sg_next(sg);
2253 continue;
2254 }
2255#endif
90797e6d
ID
2256 if (!i || page_to_pfn(page) != last_pfn + 1) {
2257 if (i)
2258 sg = sg_next(sg);
2259 st->nents++;
2260 sg_set_page(sg, page, PAGE_SIZE, 0);
2261 } else {
2262 sg->length += PAGE_SIZE;
2263 }
2264 last_pfn = page_to_pfn(page);
3bbbe706
DV
2265
2266 /* Check that the i965g/gm workaround works. */
2267 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2268 }
426729dc
KRW
2269#ifdef CONFIG_SWIOTLB
2270 if (!swiotlb_nr_tbl())
2271#endif
2272 sg_mark_end(sg);
74ce6b6c
CW
2273 obj->pages = st;
2274
e2273302
ID
2275 ret = i915_gem_gtt_prepare_object(obj);
2276 if (ret)
2277 goto err_pages;
2278
6dacfd2f 2279 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2280 i915_gem_object_do_bit_17_swizzle(obj);
2281
656bfa3a
DV
2282 if (obj->tiling_mode != I915_TILING_NONE &&
2283 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2284 i915_gem_object_pin_pages(obj);
2285
e5281ccd
CW
2286 return 0;
2287
2288err_pages:
90797e6d
ID
2289 sg_mark_end(sg);
2290 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2291 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2292 sg_free_table(st);
2293 kfree(st);
0820baf3
CW
2294
2295 /* shmemfs first checks if there is enough memory to allocate the page
2296 * and reports ENOSPC should there be insufficient, along with the usual
2297 * ENOMEM for a genuine allocation failure.
2298 *
2299 * We use ENOSPC in our driver to mean that we have run out of aperture
2300 * space and so want to translate the error from shmemfs back to our
2301 * usual understanding of ENOMEM.
2302 */
e2273302
ID
2303 if (ret == -ENOSPC)
2304 ret = -ENOMEM;
2305
2306 return ret;
673a394b
EA
2307}
2308
37e680a1
CW
2309/* Ensure that the associated pages are gathered from the backing storage
2310 * and pinned into our object. i915_gem_object_get_pages() may be called
2311 * multiple times before they are released by a single call to
2312 * i915_gem_object_put_pages() - once the pages are no longer referenced
2313 * either as a result of memory pressure (reaping pages under the shrinker)
2314 * or as the object is itself released.
2315 */
2316int
2317i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2318{
2319 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2320 const struct drm_i915_gem_object_ops *ops = obj->ops;
2321 int ret;
2322
2f745ad3 2323 if (obj->pages)
37e680a1
CW
2324 return 0;
2325
43e28f09 2326 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2327 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2328 return -EFAULT;
43e28f09
CW
2329 }
2330
a5570178
CW
2331 BUG_ON(obj->pages_pin_count);
2332
37e680a1
CW
2333 ret = ops->get_pages(obj);
2334 if (ret)
2335 return ret;
2336
35c20a60 2337 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2338
2339 obj->get_page.sg = obj->pages->sgl;
2340 obj->get_page.last = 0;
2341
37e680a1 2342 return 0;
673a394b
EA
2343}
2344
b4716185 2345void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2346 struct drm_i915_gem_request *req)
673a394b 2347{
b4716185 2348 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2349 struct intel_engine_cs *ring;
2350
2351 ring = i915_gem_request_get_ring(req);
673a394b
EA
2352
2353 /* Add a reference if we're newly entering the active list. */
b4716185 2354 if (obj->active == 0)
05394f39 2355 drm_gem_object_reference(&obj->base);
b4716185 2356 obj->active |= intel_ring_flag(ring);
e35a41de 2357
b4716185 2358 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2359 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2360
b4716185 2361 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2362}
2363
b4716185
CW
2364static void
2365i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2366{
b4716185
CW
2367 RQ_BUG_ON(obj->last_write_req == NULL);
2368 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2369
2370 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2371 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2372}
2373
caea7476 2374static void
b4716185 2375i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2376{
feb822cf 2377 struct i915_vma *vma;
ce44b0ea 2378
b4716185
CW
2379 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2380 RQ_BUG_ON(!(obj->active & (1 << ring)));
2381
2382 list_del_init(&obj->ring_list[ring]);
2383 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2384
2385 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2386 i915_gem_object_retire__write(obj);
2387
2388 obj->active &= ~(1 << ring);
2389 if (obj->active)
2390 return;
caea7476 2391
6c246959
CW
2392 /* Bump our place on the bound list to keep it roughly in LRU order
2393 * so that we don't steal from recently used but inactive objects
2394 * (unless we are forced to ofc!)
2395 */
2396 list_move_tail(&obj->global_list,
2397 &to_i915(obj->base.dev)->mm.bound_list);
2398
fe14d5f4
TU
2399 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2400 if (!list_empty(&vma->mm_list))
2401 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2402 }
caea7476 2403
97b2a6a1 2404 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2405 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2406}
2407
9d773091 2408static int
fca26bb4 2409i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2410{
9d773091 2411 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2412 struct intel_engine_cs *ring;
9d773091 2413 int ret, i, j;
53d227f2 2414
107f27a5 2415 /* Carefully retire all requests without writing to the rings */
9d773091 2416 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2417 ret = intel_ring_idle(ring);
2418 if (ret)
2419 return ret;
9d773091 2420 }
9d773091 2421 i915_gem_retire_requests(dev);
107f27a5
CW
2422
2423 /* Finally reset hw state */
9d773091 2424 for_each_ring(ring, dev_priv, i) {
fca26bb4 2425 intel_ring_init_seqno(ring, seqno);
498d2ac1 2426
ebc348b2
BW
2427 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2428 ring->semaphore.sync_seqno[j] = 0;
9d773091 2429 }
53d227f2 2430
9d773091 2431 return 0;
53d227f2
DV
2432}
2433
fca26bb4
MK
2434int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2435{
2436 struct drm_i915_private *dev_priv = dev->dev_private;
2437 int ret;
2438
2439 if (seqno == 0)
2440 return -EINVAL;
2441
2442 /* HWS page needs to be set less than what we
2443 * will inject to ring
2444 */
2445 ret = i915_gem_init_seqno(dev, seqno - 1);
2446 if (ret)
2447 return ret;
2448
2449 /* Carefully set the last_seqno value so that wrap
2450 * detection still works
2451 */
2452 dev_priv->next_seqno = seqno;
2453 dev_priv->last_seqno = seqno - 1;
2454 if (dev_priv->last_seqno == 0)
2455 dev_priv->last_seqno--;
2456
2457 return 0;
2458}
2459
9d773091
CW
2460int
2461i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2462{
9d773091
CW
2463 struct drm_i915_private *dev_priv = dev->dev_private;
2464
2465 /* reserve 0 for non-seqno */
2466 if (dev_priv->next_seqno == 0) {
fca26bb4 2467 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2468 if (ret)
2469 return ret;
53d227f2 2470
9d773091
CW
2471 dev_priv->next_seqno = 1;
2472 }
53d227f2 2473
f72b3435 2474 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2475 return 0;
53d227f2
DV
2476}
2477
bf7dc5b7
JH
2478/*
2479 * NB: This function is not allowed to fail. Doing so would mean the the
2480 * request is not being tracked for completion but the work itself is
2481 * going to happen on the hardware. This would be a Bad Thing(tm).
2482 */
75289874 2483void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2484 struct drm_i915_gem_object *obj,
2485 bool flush_caches)
673a394b 2486{
75289874
JH
2487 struct intel_engine_cs *ring;
2488 struct drm_i915_private *dev_priv;
48e29f55 2489 struct intel_ringbuffer *ringbuf;
6d3d8274 2490 u32 request_start;
3cce469c
CW
2491 int ret;
2492
48e29f55 2493 if (WARN_ON(request == NULL))
bf7dc5b7 2494 return;
48e29f55 2495
75289874
JH
2496 ring = request->ring;
2497 dev_priv = ring->dev->dev_private;
2498 ringbuf = request->ringbuf;
2499
29b1b415
JH
2500 /*
2501 * To ensure that this call will not fail, space for its emissions
2502 * should already have been reserved in the ring buffer. Let the ring
2503 * know that it is time to use that space up.
2504 */
2505 intel_ring_reserved_space_use(ringbuf);
2506
48e29f55 2507 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2508 /*
2509 * Emit any outstanding flushes - execbuf can fail to emit the flush
2510 * after having emitted the batchbuffer command. Hence we need to fix
2511 * things up similar to emitting the lazy request. The difference here
2512 * is that the flush _must_ happen before the next request, no matter
2513 * what.
2514 */
5b4a60c2
JH
2515 if (flush_caches) {
2516 if (i915.enable_execlists)
4866d729 2517 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2518 else
4866d729 2519 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2520 /* Not allowed to fail! */
2521 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2522 }
cc889e0f 2523
a71d8d94
CW
2524 /* Record the position of the start of the request so that
2525 * should we detect the updated seqno part-way through the
2526 * GPU processing the request, we never over-estimate the
2527 * position of the head.
2528 */
6d3d8274 2529 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2530
bf7dc5b7 2531 if (i915.enable_execlists)
c4e76638 2532 ret = ring->emit_request(request);
bf7dc5b7 2533 else {
ee044a88 2534 ret = ring->add_request(request);
53292cdb
MT
2535
2536 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2537 }
bf7dc5b7
JH
2538 /* Not allowed to fail! */
2539 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2540
7d736f4f 2541 request->head = request_start;
7d736f4f
MK
2542
2543 /* Whilst this request exists, batch_obj will be on the
2544 * active_list, and so will hold the active reference. Only when this
2545 * request is retired will the the batch_obj be moved onto the
2546 * inactive_list and lose its active reference. Hence we do not need
2547 * to explicitly hold another reference here.
2548 */
9a7e0c2a 2549 request->batch_obj = obj;
0e50e96b 2550
673a394b 2551 request->emitted_jiffies = jiffies;
94f7bbe1 2552 ring->last_submitted_seqno = request->seqno;
852835f3 2553 list_add_tail(&request->list, &ring->request_list);
673a394b 2554
74328ee5 2555 trace_i915_gem_request_add(request);
db53a302 2556
87255483 2557 i915_queue_hangcheck(ring->dev);
10cd45b6 2558
87255483
DV
2559 queue_delayed_work(dev_priv->wq,
2560 &dev_priv->mm.retire_work,
2561 round_jiffies_up_relative(HZ));
2562 intel_mark_busy(dev_priv->dev);
cc889e0f 2563
29b1b415
JH
2564 /* Sanity check that the reserved size was large enough. */
2565 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2566}
2567
939fd762 2568static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2569 const struct intel_context *ctx)
be62acb4 2570{
44e2c070 2571 unsigned long elapsed;
be62acb4 2572
44e2c070
MK
2573 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2574
2575 if (ctx->hang_stats.banned)
be62acb4
MK
2576 return true;
2577
676fa572
CW
2578 if (ctx->hang_stats.ban_period_seconds &&
2579 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2580 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2581 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2582 return true;
88b4aa87
MK
2583 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2584 if (i915_stop_ring_allow_warn(dev_priv))
2585 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2586 return true;
3fac8978 2587 }
be62acb4
MK
2588 }
2589
2590 return false;
2591}
2592
939fd762 2593static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2594 struct intel_context *ctx,
b6b0fac0 2595 const bool guilty)
aa60c664 2596{
44e2c070
MK
2597 struct i915_ctx_hang_stats *hs;
2598
2599 if (WARN_ON(!ctx))
2600 return;
aa60c664 2601
44e2c070
MK
2602 hs = &ctx->hang_stats;
2603
2604 if (guilty) {
939fd762 2605 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2606 hs->batch_active++;
2607 hs->guilty_ts = get_seconds();
2608 } else {
2609 hs->batch_pending++;
aa60c664
MK
2610 }
2611}
2612
abfe262a
JH
2613void i915_gem_request_free(struct kref *req_ref)
2614{
2615 struct drm_i915_gem_request *req = container_of(req_ref,
2616 typeof(*req), ref);
2617 struct intel_context *ctx = req->ctx;
2618
fcfa423c
JH
2619 if (req->file_priv)
2620 i915_gem_request_remove_from_client(req);
2621
0794aed3
TD
2622 if (ctx) {
2623 if (i915.enable_execlists) {
8ba319da
MK
2624 if (ctx != req->ring->default_context)
2625 intel_lr_context_unpin(req);
0794aed3 2626 }
abfe262a 2627
dcb4c12a
OM
2628 i915_gem_context_unreference(ctx);
2629 }
abfe262a 2630
efab6d8d 2631 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2632}
2633
6689cb2b 2634int i915_gem_request_alloc(struct intel_engine_cs *ring,
217e46b5
JH
2635 struct intel_context *ctx,
2636 struct drm_i915_gem_request **req_out)
6689cb2b 2637{
efab6d8d 2638 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2639 struct drm_i915_gem_request *req;
6689cb2b 2640 int ret;
6689cb2b 2641
217e46b5
JH
2642 if (!req_out)
2643 return -EINVAL;
2644
bccca494 2645 *req_out = NULL;
6689cb2b 2646
eed29a5b
DV
2647 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2648 if (req == NULL)
6689cb2b
JH
2649 return -ENOMEM;
2650
eed29a5b 2651 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2652 if (ret)
2653 goto err;
6689cb2b 2654
40e895ce
JH
2655 kref_init(&req->ref);
2656 req->i915 = dev_priv;
eed29a5b 2657 req->ring = ring;
40e895ce
JH
2658 req->ctx = ctx;
2659 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2660
2661 if (i915.enable_execlists)
40e895ce 2662 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2663 else
eed29a5b 2664 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2665 if (ret) {
2666 i915_gem_context_unreference(req->ctx);
9a0c1e27 2667 goto err;
40e895ce 2668 }
6689cb2b 2669
29b1b415
JH
2670 /*
2671 * Reserve space in the ring buffer for all the commands required to
2672 * eventually emit this request. This is to guarantee that the
2673 * i915_add_request() call can't fail. Note that the reserve may need
2674 * to be redone if the request is not actually submitted straight
2675 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2676 */
ccd98fe4
JH
2677 if (i915.enable_execlists)
2678 ret = intel_logical_ring_reserve_space(req);
2679 else
2680 ret = intel_ring_reserve_space(req);
2681 if (ret) {
2682 /*
2683 * At this point, the request is fully allocated even if not
2684 * fully prepared. Thus it can be cleaned up using the proper
2685 * free code.
2686 */
2687 i915_gem_request_cancel(req);
2688 return ret;
2689 }
29b1b415 2690
bccca494 2691 *req_out = req;
6689cb2b 2692 return 0;
9a0c1e27
CW
2693
2694err:
2695 kmem_cache_free(dev_priv->requests, req);
2696 return ret;
0e50e96b
MK
2697}
2698
29b1b415
JH
2699void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2700{
2701 intel_ring_reserved_space_cancel(req->ringbuf);
2702
2703 i915_gem_request_unreference(req);
2704}
2705
8d9fc7fd 2706struct drm_i915_gem_request *
a4872ba6 2707i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2708{
4db080f9
CW
2709 struct drm_i915_gem_request *request;
2710
2711 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2712 if (i915_gem_request_completed(request, false))
4db080f9 2713 continue;
aa60c664 2714
b6b0fac0 2715 return request;
4db080f9 2716 }
b6b0fac0
MK
2717
2718 return NULL;
2719}
2720
2721static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2722 struct intel_engine_cs *ring)
b6b0fac0
MK
2723{
2724 struct drm_i915_gem_request *request;
2725 bool ring_hung;
2726
8d9fc7fd 2727 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2728
2729 if (request == NULL)
2730 return;
2731
2732 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2733
939fd762 2734 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2735
2736 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2737 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2738}
aa60c664 2739
4db080f9 2740static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2741 struct intel_engine_cs *ring)
4db080f9 2742{
608c1a52
CW
2743 struct intel_ringbuffer *buffer;
2744
dfaae392 2745 while (!list_empty(&ring->active_list)) {
05394f39 2746 struct drm_i915_gem_object *obj;
9375e446 2747
05394f39
CW
2748 obj = list_first_entry(&ring->active_list,
2749 struct drm_i915_gem_object,
b4716185 2750 ring_list[ring->id]);
9375e446 2751
b4716185 2752 i915_gem_object_retire__read(obj, ring->id);
673a394b 2753 }
1d62beea 2754
dcb4c12a
OM
2755 /*
2756 * Clear the execlists queue up before freeing the requests, as those
2757 * are the ones that keep the context and ringbuffer backing objects
2758 * pinned in place.
2759 */
dcb4c12a 2760
7de1691a
TE
2761 if (i915.enable_execlists) {
2762 spin_lock_irq(&ring->execlist_lock);
2763 while (!list_empty(&ring->execlist_queue)) {
2764 struct drm_i915_gem_request *submit_req;
1197b4f2 2765
7de1691a
TE
2766 submit_req = list_first_entry(&ring->execlist_queue,
2767 struct drm_i915_gem_request,
2768 execlist_link);
2769 list_del(&submit_req->execlist_link);
7de1691a
TE
2770 i915_gem_request_unreference(submit_req);
2771 }
2772 spin_unlock_irq(&ring->execlist_lock);
dcb4c12a
OM
2773 }
2774
1d62beea
BW
2775 /*
2776 * We must free the requests after all the corresponding objects have
2777 * been moved off active lists. Which is the same order as the normal
2778 * retire_requests function does. This is important if object hold
2779 * implicit references on things like e.g. ppgtt address spaces through
2780 * the request.
2781 */
2782 while (!list_empty(&ring->request_list)) {
2783 struct drm_i915_gem_request *request;
2784
2785 request = list_first_entry(&ring->request_list,
2786 struct drm_i915_gem_request,
2787 list);
2788
b4716185 2789 i915_gem_request_retire(request);
1d62beea 2790 }
608c1a52
CW
2791
2792 /* Having flushed all requests from all queues, we know that all
2793 * ringbuffers must now be empty. However, since we do not reclaim
2794 * all space when retiring the request (to prevent HEADs colliding
2795 * with rapid ringbuffer wraparound) the amount of available space
2796 * upon reset is less than when we start. Do one more pass over
2797 * all the ringbuffers to reset last_retired_head.
2798 */
2799 list_for_each_entry(buffer, &ring->buffers, link) {
2800 buffer->last_retired_head = buffer->tail;
2801 intel_ring_update_space(buffer);
2802 }
673a394b
EA
2803}
2804
069efc1d 2805void i915_gem_reset(struct drm_device *dev)
673a394b 2806{
77f01230 2807 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2808 struct intel_engine_cs *ring;
1ec14ad3 2809 int i;
673a394b 2810
4db080f9
CW
2811 /*
2812 * Before we free the objects from the requests, we need to inspect
2813 * them for finding the guilty party. As the requests only borrow
2814 * their reference to the objects, the inspection must be done first.
2815 */
2816 for_each_ring(ring, dev_priv, i)
2817 i915_gem_reset_ring_status(dev_priv, ring);
2818
b4519513 2819 for_each_ring(ring, dev_priv, i)
4db080f9 2820 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2821
acce9ffa
BW
2822 i915_gem_context_reset(dev);
2823
19b2dbde 2824 i915_gem_restore_fences(dev);
b4716185
CW
2825
2826 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2827}
2828
2829/**
2830 * This function clears the request list as sequence numbers are passed.
2831 */
1cf0ba14 2832void
a4872ba6 2833i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2834{
db53a302 2835 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2836
832a3aad
CW
2837 /* Retire requests first as we use it above for the early return.
2838 * If we retire requests last, we may use a later seqno and so clear
2839 * the requests lists without clearing the active list, leading to
2840 * confusion.
e9103038 2841 */
852835f3 2842 while (!list_empty(&ring->request_list)) {
673a394b 2843 struct drm_i915_gem_request *request;
673a394b 2844
852835f3 2845 request = list_first_entry(&ring->request_list,
673a394b
EA
2846 struct drm_i915_gem_request,
2847 list);
673a394b 2848
1b5a433a 2849 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2850 break;
2851
b4716185 2852 i915_gem_request_retire(request);
b84d5f0c 2853 }
673a394b 2854
832a3aad
CW
2855 /* Move any buffers on the active list that are no longer referenced
2856 * by the ringbuffer to the flushing/inactive lists as appropriate,
2857 * before we free the context associated with the requests.
2858 */
2859 while (!list_empty(&ring->active_list)) {
2860 struct drm_i915_gem_object *obj;
2861
2862 obj = list_first_entry(&ring->active_list,
2863 struct drm_i915_gem_object,
b4716185 2864 ring_list[ring->id]);
832a3aad 2865
b4716185 2866 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2867 break;
2868
b4716185 2869 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2870 }
2871
581c26e8
JH
2872 if (unlikely(ring->trace_irq_req &&
2873 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2874 ring->irq_put(ring);
581c26e8 2875 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2876 }
23bc5982 2877
db53a302 2878 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2879}
2880
b29c19b6 2881bool
b09a1fec
CW
2882i915_gem_retire_requests(struct drm_device *dev)
2883{
3e31c6c0 2884 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2885 struct intel_engine_cs *ring;
b29c19b6 2886 bool idle = true;
1ec14ad3 2887 int i;
b09a1fec 2888
b29c19b6 2889 for_each_ring(ring, dev_priv, i) {
b4519513 2890 i915_gem_retire_requests_ring(ring);
b29c19b6 2891 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2892 if (i915.enable_execlists) {
2893 unsigned long flags;
2894
2895 spin_lock_irqsave(&ring->execlist_lock, flags);
2896 idle &= list_empty(&ring->execlist_queue);
2897 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2898
2899 intel_execlists_retire_requests(ring);
2900 }
b29c19b6
CW
2901 }
2902
2903 if (idle)
2904 mod_delayed_work(dev_priv->wq,
2905 &dev_priv->mm.idle_work,
2906 msecs_to_jiffies(100));
2907
2908 return idle;
b09a1fec
CW
2909}
2910
75ef9da2 2911static void
673a394b
EA
2912i915_gem_retire_work_handler(struct work_struct *work)
2913{
b29c19b6
CW
2914 struct drm_i915_private *dev_priv =
2915 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2916 struct drm_device *dev = dev_priv->dev;
0a58705b 2917 bool idle;
673a394b 2918
891b48cf 2919 /* Come back later if the device is busy... */
b29c19b6
CW
2920 idle = false;
2921 if (mutex_trylock(&dev->struct_mutex)) {
2922 idle = i915_gem_retire_requests(dev);
2923 mutex_unlock(&dev->struct_mutex);
673a394b 2924 }
b29c19b6 2925 if (!idle)
bcb45086
CW
2926 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2927 round_jiffies_up_relative(HZ));
b29c19b6 2928}
0a58705b 2929
b29c19b6
CW
2930static void
2931i915_gem_idle_work_handler(struct work_struct *work)
2932{
2933 struct drm_i915_private *dev_priv =
2934 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2935 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2936 struct intel_engine_cs *ring;
2937 int i;
b29c19b6 2938
423795cb
CW
2939 for_each_ring(ring, dev_priv, i)
2940 if (!list_empty(&ring->request_list))
2941 return;
35c94185
CW
2942
2943 intel_mark_idle(dev);
2944
2945 if (mutex_trylock(&dev->struct_mutex)) {
2946 struct intel_engine_cs *ring;
2947 int i;
2948
2949 for_each_ring(ring, dev_priv, i)
2950 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2951
35c94185
CW
2952 mutex_unlock(&dev->struct_mutex);
2953 }
673a394b
EA
2954}
2955
30dfebf3
DV
2956/**
2957 * Ensures that an object will eventually get non-busy by flushing any required
2958 * write domains, emitting any outstanding lazy request and retiring and
2959 * completed requests.
2960 */
2961static int
2962i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2963{
a5ac0f90 2964 int i;
b4716185
CW
2965
2966 if (!obj->active)
2967 return 0;
30dfebf3 2968
b4716185
CW
2969 for (i = 0; i < I915_NUM_RINGS; i++) {
2970 struct drm_i915_gem_request *req;
41c52415 2971
b4716185
CW
2972 req = obj->last_read_req[i];
2973 if (req == NULL)
2974 continue;
2975
2976 if (list_empty(&req->list))
2977 goto retire;
2978
b4716185
CW
2979 if (i915_gem_request_completed(req, true)) {
2980 __i915_gem_request_retire__upto(req);
2981retire:
2982 i915_gem_object_retire__read(obj, i);
2983 }
30dfebf3
DV
2984 }
2985
2986 return 0;
2987}
2988
23ba4fd0
BW
2989/**
2990 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2991 * @DRM_IOCTL_ARGS: standard ioctl arguments
2992 *
2993 * Returns 0 if successful, else an error is returned with the remaining time in
2994 * the timeout parameter.
2995 * -ETIME: object is still busy after timeout
2996 * -ERESTARTSYS: signal interrupted the wait
2997 * -ENONENT: object doesn't exist
2998 * Also possible, but rare:
2999 * -EAGAIN: GPU wedged
3000 * -ENOMEM: damn
3001 * -ENODEV: Internal IRQ fail
3002 * -E?: The add request failed
3003 *
3004 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3005 * non-zero timeout parameter the wait ioctl will wait for the given number of
3006 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3007 * without holding struct_mutex the object may become re-busied before this
3008 * function completes. A similar but shorter * race condition exists in the busy
3009 * ioctl
3010 */
3011int
3012i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3013{
3e31c6c0 3014 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3015 struct drm_i915_gem_wait *args = data;
3016 struct drm_i915_gem_object *obj;
b4716185 3017 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3018 unsigned reset_counter;
b4716185
CW
3019 int i, n = 0;
3020 int ret;
23ba4fd0 3021
11b5d511
DV
3022 if (args->flags != 0)
3023 return -EINVAL;
3024
23ba4fd0
BW
3025 ret = i915_mutex_lock_interruptible(dev);
3026 if (ret)
3027 return ret;
3028
3029 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3030 if (&obj->base == NULL) {
3031 mutex_unlock(&dev->struct_mutex);
3032 return -ENOENT;
3033 }
3034
30dfebf3
DV
3035 /* Need to make sure the object gets inactive eventually. */
3036 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3037 if (ret)
3038 goto out;
3039
b4716185 3040 if (!obj->active)
97b2a6a1 3041 goto out;
23ba4fd0 3042
23ba4fd0 3043 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3044 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3045 */
762e4583 3046 if (args->timeout_ns == 0) {
23ba4fd0
BW
3047 ret = -ETIME;
3048 goto out;
3049 }
3050
3051 drm_gem_object_unreference(&obj->base);
f69061be 3052 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3053
3054 for (i = 0; i < I915_NUM_RINGS; i++) {
3055 if (obj->last_read_req[i] == NULL)
3056 continue;
3057
3058 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3059 }
3060
23ba4fd0
BW
3061 mutex_unlock(&dev->struct_mutex);
3062
b4716185
CW
3063 for (i = 0; i < n; i++) {
3064 if (ret == 0)
3065 ret = __i915_wait_request(req[i], reset_counter, true,
3066 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3067 file->driver_priv);
3068 i915_gem_request_unreference__unlocked(req[i]);
3069 }
ff865885 3070 return ret;
23ba4fd0
BW
3071
3072out:
3073 drm_gem_object_unreference(&obj->base);
3074 mutex_unlock(&dev->struct_mutex);
3075 return ret;
3076}
3077
b4716185
CW
3078static int
3079__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3080 struct intel_engine_cs *to,
91af127f
JH
3081 struct drm_i915_gem_request *from_req,
3082 struct drm_i915_gem_request **to_req)
b4716185
CW
3083{
3084 struct intel_engine_cs *from;
3085 int ret;
3086
91af127f 3087 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3088 if (to == from)
3089 return 0;
3090
91af127f 3091 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3092 return 0;
3093
b4716185 3094 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3095 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3096 ret = __i915_wait_request(from_req,
a6f766f3
CW
3097 atomic_read(&i915->gpu_error.reset_counter),
3098 i915->mm.interruptible,
3099 NULL,
3100 &i915->rps.semaphores);
b4716185
CW
3101 if (ret)
3102 return ret;
3103
91af127f 3104 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3105 } else {
3106 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3107 u32 seqno = i915_gem_request_get_seqno(from_req);
3108
3109 WARN_ON(!to_req);
b4716185
CW
3110
3111 if (seqno <= from->semaphore.sync_seqno[idx])
3112 return 0;
3113
91af127f
JH
3114 if (*to_req == NULL) {
3115 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3116 if (ret)
3117 return ret;
3118 }
3119
599d924c
JH
3120 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3121 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3122 if (ret)
3123 return ret;
3124
3125 /* We use last_read_req because sync_to()
3126 * might have just caused seqno wrap under
3127 * the radar.
3128 */
3129 from->semaphore.sync_seqno[idx] =
3130 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3131 }
3132
3133 return 0;
3134}
3135
5816d648
BW
3136/**
3137 * i915_gem_object_sync - sync an object to a ring.
3138 *
3139 * @obj: object which may be in use on another ring.
3140 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3141 * @to_req: request we wish to use the object for. See below.
3142 * This will be allocated and returned if a request is
3143 * required but not passed in.
5816d648
BW
3144 *
3145 * This code is meant to abstract object synchronization with the GPU.
3146 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3147 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3148 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3149 * into a buffer at any time, but multiple readers. To ensure each has
3150 * a coherent view of memory, we must:
3151 *
3152 * - If there is an outstanding write request to the object, the new
3153 * request must wait for it to complete (either CPU or in hw, requests
3154 * on the same ring will be naturally ordered).
3155 *
3156 * - If we are a write request (pending_write_domain is set), the new
3157 * request must wait for outstanding read requests to complete.
5816d648 3158 *
91af127f
JH
3159 * For CPU synchronisation (NULL to) no request is required. For syncing with
3160 * rings to_req must be non-NULL. However, a request does not have to be
3161 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3162 * request will be allocated automatically and returned through *to_req. Note
3163 * that it is not guaranteed that commands will be emitted (because the system
3164 * might already be idle). Hence there is no need to create a request that
3165 * might never have any work submitted. Note further that if a request is
3166 * returned in *to_req, it is the responsibility of the caller to submit
3167 * that request (after potentially adding more work to it).
3168 *
5816d648
BW
3169 * Returns 0 if successful, else propagates up the lower layer error.
3170 */
2911a35b
BW
3171int
3172i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3173 struct intel_engine_cs *to,
3174 struct drm_i915_gem_request **to_req)
2911a35b 3175{
b4716185
CW
3176 const bool readonly = obj->base.pending_write_domain == 0;
3177 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3178 int ret, i, n;
41c52415 3179
b4716185 3180 if (!obj->active)
2911a35b
BW
3181 return 0;
3182
b4716185
CW
3183 if (to == NULL)
3184 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3185
b4716185
CW
3186 n = 0;
3187 if (readonly) {
3188 if (obj->last_write_req)
3189 req[n++] = obj->last_write_req;
3190 } else {
3191 for (i = 0; i < I915_NUM_RINGS; i++)
3192 if (obj->last_read_req[i])
3193 req[n++] = obj->last_read_req[i];
3194 }
3195 for (i = 0; i < n; i++) {
91af127f 3196 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3197 if (ret)
3198 return ret;
3199 }
2911a35b 3200
b4716185 3201 return 0;
2911a35b
BW
3202}
3203
b5ffc9bc
CW
3204static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3205{
3206 u32 old_write_domain, old_read_domains;
3207
b5ffc9bc
CW
3208 /* Force a pagefault for domain tracking on next user access */
3209 i915_gem_release_mmap(obj);
3210
b97c3d9c
KP
3211 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3212 return;
3213
97c809fd
CW
3214 /* Wait for any direct GTT access to complete */
3215 mb();
3216
b5ffc9bc
CW
3217 old_read_domains = obj->base.read_domains;
3218 old_write_domain = obj->base.write_domain;
3219
3220 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3221 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3222
3223 trace_i915_gem_object_change_domain(obj,
3224 old_read_domains,
3225 old_write_domain);
3226}
3227
e9f24d5f 3228static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3229{
07fe0b12 3230 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3231 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3232 int ret;
673a394b 3233
07fe0b12 3234 if (list_empty(&vma->vma_link))
673a394b
EA
3235 return 0;
3236
0ff501cb
DV
3237 if (!drm_mm_node_allocated(&vma->node)) {
3238 i915_gem_vma_destroy(vma);
0ff501cb
DV
3239 return 0;
3240 }
433544bd 3241
d7f46fc4 3242 if (vma->pin_count)
31d8d651 3243 return -EBUSY;
673a394b 3244
c4670ad0
CW
3245 BUG_ON(obj->pages == NULL);
3246
e9f24d5f
TU
3247 if (wait) {
3248 ret = i915_gem_object_wait_rendering(obj, false);
3249 if (ret)
3250 return ret;
3251 }
a8198eea 3252
fe14d5f4
TU
3253 if (i915_is_ggtt(vma->vm) &&
3254 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3255 i915_gem_object_finish_gtt(obj);
5323fd04 3256
8b1bc9b4
DV
3257 /* release the fence reg _after_ flushing */
3258 ret = i915_gem_object_put_fence(obj);
3259 if (ret)
3260 return ret;
3261 }
96b47b65 3262
07fe0b12 3263 trace_i915_vma_unbind(vma);
db53a302 3264
777dc5bb 3265 vma->vm->unbind_vma(vma);
5e562f1d 3266 vma->bound = 0;
6f65e29a 3267
64bf9303 3268 list_del_init(&vma->mm_list);
fe14d5f4
TU
3269 if (i915_is_ggtt(vma->vm)) {
3270 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3271 obj->map_and_fenceable = false;
3272 } else if (vma->ggtt_view.pages) {
3273 sg_free_table(vma->ggtt_view.pages);
3274 kfree(vma->ggtt_view.pages);
fe14d5f4 3275 }
016a65a3 3276 vma->ggtt_view.pages = NULL;
fe14d5f4 3277 }
673a394b 3278
2f633156
BW
3279 drm_mm_remove_node(&vma->node);
3280 i915_gem_vma_destroy(vma);
3281
3282 /* Since the unbound list is global, only move to that list if
b93dab6e 3283 * no more VMAs exist. */
e2273302 3284 if (list_empty(&obj->vma_list))
2f633156 3285 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3286
70903c3b
CW
3287 /* And finally now the object is completely decoupled from this vma,
3288 * we can drop its hold on the backing storage and allow it to be
3289 * reaped by the shrinker.
3290 */
3291 i915_gem_object_unpin_pages(obj);
3292
88241785 3293 return 0;
54cf91dc
CW
3294}
3295
e9f24d5f
TU
3296int i915_vma_unbind(struct i915_vma *vma)
3297{
3298 return __i915_vma_unbind(vma, true);
3299}
3300
3301int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3302{
3303 return __i915_vma_unbind(vma, false);
3304}
3305
b2da9fe5 3306int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3307{
3e31c6c0 3308 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3309 struct intel_engine_cs *ring;
1ec14ad3 3310 int ret, i;
4df2faf4 3311
4df2faf4 3312 /* Flush everything onto the inactive list. */
b4519513 3313 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3314 if (!i915.enable_execlists) {
73cfa865
JH
3315 struct drm_i915_gem_request *req;
3316
3317 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
ecdb5fd8
TD
3318 if (ret)
3319 return ret;
73cfa865 3320
ba01cc93 3321 ret = i915_switch_context(req);
73cfa865
JH
3322 if (ret) {
3323 i915_gem_request_cancel(req);
3324 return ret;
3325 }
3326
75289874 3327 i915_add_request_no_flush(req);
ecdb5fd8 3328 }
b6c7488d 3329
3e960501 3330 ret = intel_ring_idle(ring);
1ec14ad3
CW
3331 if (ret)
3332 return ret;
3333 }
4df2faf4 3334
b4716185 3335 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3336 return 0;
4df2faf4
DV
3337}
3338
4144f9b5 3339static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3340 unsigned long cache_level)
3341{
4144f9b5 3342 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3343 struct drm_mm_node *other;
3344
4144f9b5
CW
3345 /*
3346 * On some machines we have to be careful when putting differing types
3347 * of snoopable memory together to avoid the prefetcher crossing memory
3348 * domains and dying. During vm initialisation, we decide whether or not
3349 * these constraints apply and set the drm_mm.color_adjust
3350 * appropriately.
42d6ab48 3351 */
4144f9b5 3352 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3353 return true;
3354
c6cfb325 3355 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3356 return true;
3357
3358 if (list_empty(&gtt_space->node_list))
3359 return true;
3360
3361 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3362 if (other->allocated && !other->hole_follows && other->color != cache_level)
3363 return false;
3364
3365 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3366 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3367 return false;
3368
3369 return true;
3370}
3371
673a394b 3372/**
91e6711e
JL
3373 * Finds free space in the GTT aperture and binds the object or a view of it
3374 * there.
673a394b 3375 */
262de145 3376static struct i915_vma *
07fe0b12
BW
3377i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3378 struct i915_address_space *vm,
ec7adb6e 3379 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3380 unsigned alignment,
ec7adb6e 3381 uint64_t flags)
673a394b 3382{
05394f39 3383 struct drm_device *dev = obj->base.dev;
3e31c6c0 3384 struct drm_i915_private *dev_priv = dev->dev_private;
65bd342f 3385 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3386 u32 search_flag, alloc_flag;
3387 u64 start, end;
65bd342f 3388 u64 size, fence_size;
2f633156 3389 struct i915_vma *vma;
07f73f69 3390 int ret;
673a394b 3391
91e6711e
JL
3392 if (i915_is_ggtt(vm)) {
3393 u32 view_size;
3394
3395 if (WARN_ON(!ggtt_view))
3396 return ERR_PTR(-EINVAL);
ec7adb6e 3397
91e6711e
JL
3398 view_size = i915_ggtt_view_size(obj, ggtt_view);
3399
3400 fence_size = i915_gem_get_gtt_size(dev,
3401 view_size,
3402 obj->tiling_mode);
3403 fence_alignment = i915_gem_get_gtt_alignment(dev,
3404 view_size,
3405 obj->tiling_mode,
3406 true);
3407 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3408 view_size,
3409 obj->tiling_mode,
3410 false);
3411 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3412 } else {
3413 fence_size = i915_gem_get_gtt_size(dev,
3414 obj->base.size,
3415 obj->tiling_mode);
3416 fence_alignment = i915_gem_get_gtt_alignment(dev,
3417 obj->base.size,
3418 obj->tiling_mode,
3419 true);
3420 unfenced_alignment =
3421 i915_gem_get_gtt_alignment(dev,
3422 obj->base.size,
3423 obj->tiling_mode,
3424 false);
3425 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3426 }
a00b10c3 3427
101b506a
MT
3428 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3429 end = vm->total;
3430 if (flags & PIN_MAPPABLE)
3431 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3432 if (flags & PIN_ZONE_4G)
3433 end = min_t(u64, end, (1ULL << 32));
3434
673a394b 3435 if (alignment == 0)
1ec9e26d 3436 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3437 unfenced_alignment;
1ec9e26d 3438 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3439 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3440 ggtt_view ? ggtt_view->type : 0,
3441 alignment);
262de145 3442 return ERR_PTR(-EINVAL);
673a394b
EA
3443 }
3444
91e6711e
JL
3445 /* If binding the object/GGTT view requires more space than the entire
3446 * aperture has, reject it early before evicting everything in a vain
3447 * attempt to find space.
654fc607 3448 */
91e6711e 3449 if (size > end) {
65bd342f 3450 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3451 ggtt_view ? ggtt_view->type : 0,
3452 size,
1ec9e26d 3453 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3454 end);
262de145 3455 return ERR_PTR(-E2BIG);
654fc607
CW
3456 }
3457
37e680a1 3458 ret = i915_gem_object_get_pages(obj);
6c085a72 3459 if (ret)
262de145 3460 return ERR_PTR(ret);
6c085a72 3461
fbdda6fb
CW
3462 i915_gem_object_pin_pages(obj);
3463
ec7adb6e
JL
3464 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3465 i915_gem_obj_lookup_or_create_vma(obj, vm);
3466
262de145 3467 if (IS_ERR(vma))
bc6bc15b 3468 goto err_unpin;
2f633156 3469
101b506a
MT
3470 if (flags & PIN_HIGH) {
3471 search_flag = DRM_MM_SEARCH_BELOW;
3472 alloc_flag = DRM_MM_CREATE_TOP;
3473 } else {
3474 search_flag = DRM_MM_SEARCH_DEFAULT;
3475 alloc_flag = DRM_MM_CREATE_DEFAULT;
3476 }
3477
0a9ae0d7 3478search_free:
07fe0b12 3479 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3480 size, alignment,
d23db88c
CW
3481 obj->cache_level,
3482 start, end,
101b506a
MT
3483 search_flag,
3484 alloc_flag);
dc9dd7a2 3485 if (ret) {
f6cd1f15 3486 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3487 obj->cache_level,
3488 start, end,
3489 flags);
dc9dd7a2
CW
3490 if (ret == 0)
3491 goto search_free;
9731129c 3492
bc6bc15b 3493 goto err_free_vma;
673a394b 3494 }
4144f9b5 3495 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3496 ret = -EINVAL;
bc6bc15b 3497 goto err_remove_node;
673a394b
EA
3498 }
3499
fe14d5f4 3500 trace_i915_vma_bind(vma, flags);
0875546c 3501 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3502 if (ret)
e2273302 3503 goto err_remove_node;
fe14d5f4 3504
35c20a60 3505 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3506 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3507
262de145 3508 return vma;
2f633156 3509
bc6bc15b 3510err_remove_node:
6286ef9b 3511 drm_mm_remove_node(&vma->node);
bc6bc15b 3512err_free_vma:
2f633156 3513 i915_gem_vma_destroy(vma);
262de145 3514 vma = ERR_PTR(ret);
bc6bc15b 3515err_unpin:
2f633156 3516 i915_gem_object_unpin_pages(obj);
262de145 3517 return vma;
673a394b
EA
3518}
3519
000433b6 3520bool
2c22569b
CW
3521i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3522 bool force)
673a394b 3523{
673a394b
EA
3524 /* If we don't have a page list set up, then we're not pinned
3525 * to GPU, and we can ignore the cache flush because it'll happen
3526 * again at bind time.
3527 */
05394f39 3528 if (obj->pages == NULL)
000433b6 3529 return false;
673a394b 3530
769ce464
ID
3531 /*
3532 * Stolen memory is always coherent with the GPU as it is explicitly
3533 * marked as wc by the system, or the system is cache-coherent.
3534 */
6a2c4232 3535 if (obj->stolen || obj->phys_handle)
000433b6 3536 return false;
769ce464 3537
9c23f7fc
CW
3538 /* If the GPU is snooping the contents of the CPU cache,
3539 * we do not need to manually clear the CPU cache lines. However,
3540 * the caches are only snooped when the render cache is
3541 * flushed/invalidated. As we always have to emit invalidations
3542 * and flushes when moving into and out of the RENDER domain, correct
3543 * snooping behaviour occurs naturally as the result of our domain
3544 * tracking.
3545 */
0f71979a
CW
3546 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3547 obj->cache_dirty = true;
000433b6 3548 return false;
0f71979a 3549 }
9c23f7fc 3550
1c5d22f7 3551 trace_i915_gem_object_clflush(obj);
9da3da66 3552 drm_clflush_sg(obj->pages);
0f71979a 3553 obj->cache_dirty = false;
000433b6
CW
3554
3555 return true;
e47c68e9
EA
3556}
3557
3558/** Flushes the GTT write domain for the object if it's dirty. */
3559static void
05394f39 3560i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3561{
1c5d22f7
CW
3562 uint32_t old_write_domain;
3563
05394f39 3564 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3565 return;
3566
63256ec5 3567 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3568 * to it immediately go to main memory as far as we know, so there's
3569 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3570 *
3571 * However, we do have to enforce the order so that all writes through
3572 * the GTT land before any writes to the device, such as updates to
3573 * the GATT itself.
e47c68e9 3574 */
63256ec5
CW
3575 wmb();
3576
05394f39
CW
3577 old_write_domain = obj->base.write_domain;
3578 obj->base.write_domain = 0;
1c5d22f7 3579
de152b62 3580 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3581
1c5d22f7 3582 trace_i915_gem_object_change_domain(obj,
05394f39 3583 obj->base.read_domains,
1c5d22f7 3584 old_write_domain);
e47c68e9
EA
3585}
3586
3587/** Flushes the CPU write domain for the object if it's dirty. */
3588static void
e62b59e4 3589i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3590{
1c5d22f7 3591 uint32_t old_write_domain;
e47c68e9 3592
05394f39 3593 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3594 return;
3595
e62b59e4 3596 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3597 i915_gem_chipset_flush(obj->base.dev);
3598
05394f39
CW
3599 old_write_domain = obj->base.write_domain;
3600 obj->base.write_domain = 0;
1c5d22f7 3601
de152b62 3602 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3603
1c5d22f7 3604 trace_i915_gem_object_change_domain(obj,
05394f39 3605 obj->base.read_domains,
1c5d22f7 3606 old_write_domain);
e47c68e9
EA
3607}
3608
2ef7eeaa
EA
3609/**
3610 * Moves a single object to the GTT read, and possibly write domain.
3611 *
3612 * This function returns when the move is complete, including waiting on
3613 * flushes to occur.
3614 */
79e53945 3615int
2021746e 3616i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3617{
1c5d22f7 3618 uint32_t old_write_domain, old_read_domains;
43566ded 3619 struct i915_vma *vma;
e47c68e9 3620 int ret;
2ef7eeaa 3621
8d7e3de1
CW
3622 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3623 return 0;
3624
0201f1ec 3625 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3626 if (ret)
3627 return ret;
3628
43566ded
CW
3629 /* Flush and acquire obj->pages so that we are coherent through
3630 * direct access in memory with previous cached writes through
3631 * shmemfs and that our cache domain tracking remains valid.
3632 * For example, if the obj->filp was moved to swap without us
3633 * being notified and releasing the pages, we would mistakenly
3634 * continue to assume that the obj remained out of the CPU cached
3635 * domain.
3636 */
3637 ret = i915_gem_object_get_pages(obj);
3638 if (ret)
3639 return ret;
3640
e62b59e4 3641 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3642
d0a57789
CW
3643 /* Serialise direct access to this object with the barriers for
3644 * coherent writes from the GPU, by effectively invalidating the
3645 * GTT domain upon first access.
3646 */
3647 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3648 mb();
3649
05394f39
CW
3650 old_write_domain = obj->base.write_domain;
3651 old_read_domains = obj->base.read_domains;
1c5d22f7 3652
e47c68e9
EA
3653 /* It should now be out of any other write domains, and we can update
3654 * the domain values for our changes.
3655 */
05394f39
CW
3656 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3657 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3658 if (write) {
05394f39
CW
3659 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3660 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3661 obj->dirty = 1;
2ef7eeaa
EA
3662 }
3663
1c5d22f7
CW
3664 trace_i915_gem_object_change_domain(obj,
3665 old_read_domains,
3666 old_write_domain);
3667
8325a09d 3668 /* And bump the LRU for this access */
43566ded
CW
3669 vma = i915_gem_obj_to_ggtt(obj);
3670 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3671 list_move_tail(&vma->mm_list,
43566ded 3672 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3673
e47c68e9
EA
3674 return 0;
3675}
3676
ef55f92a
CW
3677/**
3678 * Changes the cache-level of an object across all VMA.
3679 *
3680 * After this function returns, the object will be in the new cache-level
3681 * across all GTT and the contents of the backing storage will be coherent,
3682 * with respect to the new cache-level. In order to keep the backing storage
3683 * coherent for all users, we only allow a single cache level to be set
3684 * globally on the object and prevent it from being changed whilst the
3685 * hardware is reading from the object. That is if the object is currently
3686 * on the scanout it will be set to uncached (or equivalent display
3687 * cache coherency) and all non-MOCS GPU access will also be uncached so
3688 * that all direct access to the scanout remains coherent.
3689 */
e4ffd173
CW
3690int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3691 enum i915_cache_level cache_level)
3692{
7bddb01f 3693 struct drm_device *dev = obj->base.dev;
df6f783a 3694 struct i915_vma *vma, *next;
ef55f92a 3695 bool bound = false;
ed75a55b 3696 int ret = 0;
e4ffd173
CW
3697
3698 if (obj->cache_level == cache_level)
ed75a55b 3699 goto out;
e4ffd173 3700
ef55f92a
CW
3701 /* Inspect the list of currently bound VMA and unbind any that would
3702 * be invalid given the new cache-level. This is principally to
3703 * catch the issue of the CS prefetch crossing page boundaries and
3704 * reading an invalid PTE on older architectures.
3705 */
df6f783a 3706 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
ef55f92a
CW
3707 if (!drm_mm_node_allocated(&vma->node))
3708 continue;
3709
3710 if (vma->pin_count) {
3711 DRM_DEBUG("can not change the cache level of pinned objects\n");
3712 return -EBUSY;
3713 }
3714
4144f9b5 3715 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3716 ret = i915_vma_unbind(vma);
3089c6f2
BW
3717 if (ret)
3718 return ret;
ef55f92a
CW
3719 } else
3720 bound = true;
42d6ab48
CW
3721 }
3722
ef55f92a
CW
3723 /* We can reuse the existing drm_mm nodes but need to change the
3724 * cache-level on the PTE. We could simply unbind them all and
3725 * rebind with the correct cache-level on next use. However since
3726 * we already have a valid slot, dma mapping, pages etc, we may as
3727 * rewrite the PTE in the belief that doing so tramples upon less
3728 * state and so involves less work.
3729 */
3730 if (bound) {
3731 /* Before we change the PTE, the GPU must not be accessing it.
3732 * If we wait upon the object, we know that all the bound
3733 * VMA are no longer active.
3734 */
2e2f351d 3735 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3736 if (ret)
3737 return ret;
3738
ef55f92a
CW
3739 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3740 /* Access to snoopable pages through the GTT is
3741 * incoherent and on some machines causes a hard
3742 * lockup. Relinquish the CPU mmaping to force
3743 * userspace to refault in the pages and we can
3744 * then double check if the GTT mapping is still
3745 * valid for that pointer access.
3746 */
3747 i915_gem_release_mmap(obj);
3748
3749 /* As we no longer need a fence for GTT access,
3750 * we can relinquish it now (and so prevent having
3751 * to steal a fence from someone else on the next
3752 * fence request). Note GPU activity would have
3753 * dropped the fence as all snoopable access is
3754 * supposed to be linear.
3755 */
e4ffd173
CW
3756 ret = i915_gem_object_put_fence(obj);
3757 if (ret)
3758 return ret;
ef55f92a
CW
3759 } else {
3760 /* We either have incoherent backing store and
3761 * so no GTT access or the architecture is fully
3762 * coherent. In such cases, existing GTT mmaps
3763 * ignore the cache bit in the PTE and we can
3764 * rewrite it without confusing the GPU or having
3765 * to force userspace to fault back in its mmaps.
3766 */
e4ffd173
CW
3767 }
3768
ef55f92a
CW
3769 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3770 if (!drm_mm_node_allocated(&vma->node))
3771 continue;
3772
3773 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3774 if (ret)
3775 return ret;
3776 }
e4ffd173
CW
3777 }
3778
2c22569b
CW
3779 list_for_each_entry(vma, &obj->vma_list, vma_link)
3780 vma->node.color = cache_level;
3781 obj->cache_level = cache_level;
3782
ed75a55b 3783out:
ef55f92a
CW
3784 /* Flush the dirty CPU caches to the backing storage so that the
3785 * object is now coherent at its new cache level (with respect
3786 * to the access domain).
3787 */
0f71979a
CW
3788 if (obj->cache_dirty &&
3789 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3790 cpu_write_needs_clflush(obj)) {
3791 if (i915_gem_clflush_object(obj, true))
3792 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3793 }
3794
e4ffd173
CW
3795 return 0;
3796}
3797
199adf40
BW
3798int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3799 struct drm_file *file)
e6994aee 3800{
199adf40 3801 struct drm_i915_gem_caching *args = data;
e6994aee 3802 struct drm_i915_gem_object *obj;
e6994aee
CW
3803
3804 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3805 if (&obj->base == NULL)
3806 return -ENOENT;
e6994aee 3807
651d794f
CW
3808 switch (obj->cache_level) {
3809 case I915_CACHE_LLC:
3810 case I915_CACHE_L3_LLC:
3811 args->caching = I915_CACHING_CACHED;
3812 break;
3813
4257d3ba
CW
3814 case I915_CACHE_WT:
3815 args->caching = I915_CACHING_DISPLAY;
3816 break;
3817
651d794f
CW
3818 default:
3819 args->caching = I915_CACHING_NONE;
3820 break;
3821 }
e6994aee 3822
432be69d
CW
3823 drm_gem_object_unreference_unlocked(&obj->base);
3824 return 0;
e6994aee
CW
3825}
3826
199adf40
BW
3827int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3828 struct drm_file *file)
e6994aee 3829{
fd0fe6ac 3830 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3831 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3832 struct drm_i915_gem_object *obj;
3833 enum i915_cache_level level;
3834 int ret;
3835
199adf40
BW
3836 switch (args->caching) {
3837 case I915_CACHING_NONE:
e6994aee
CW
3838 level = I915_CACHE_NONE;
3839 break;
199adf40 3840 case I915_CACHING_CACHED:
e5756c10
ID
3841 /*
3842 * Due to a HW issue on BXT A stepping, GPU stores via a
3843 * snooped mapping may leave stale data in a corresponding CPU
3844 * cacheline, whereas normally such cachelines would get
3845 * invalidated.
3846 */
e87a005d 3847 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
e5756c10
ID
3848 return -ENODEV;
3849
e6994aee
CW
3850 level = I915_CACHE_LLC;
3851 break;
4257d3ba
CW
3852 case I915_CACHING_DISPLAY:
3853 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3854 break;
e6994aee
CW
3855 default:
3856 return -EINVAL;
3857 }
3858
fd0fe6ac
ID
3859 intel_runtime_pm_get(dev_priv);
3860
3bc2913e
BW
3861 ret = i915_mutex_lock_interruptible(dev);
3862 if (ret)
fd0fe6ac 3863 goto rpm_put;
3bc2913e 3864
e6994aee
CW
3865 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3866 if (&obj->base == NULL) {
3867 ret = -ENOENT;
3868 goto unlock;
3869 }
3870
3871 ret = i915_gem_object_set_cache_level(obj, level);
3872
3873 drm_gem_object_unreference(&obj->base);
3874unlock:
3875 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3876rpm_put:
3877 intel_runtime_pm_put(dev_priv);
3878
e6994aee
CW
3879 return ret;
3880}
3881
b9241ea3 3882/*
2da3b9b9
CW
3883 * Prepare buffer for display plane (scanout, cursors, etc).
3884 * Can be called from an uninterruptible phase (modesetting) and allows
3885 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3886 */
3887int
2da3b9b9
CW
3888i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3889 u32 alignment,
e6617330 3890 const struct i915_ggtt_view *view)
b9241ea3 3891{
2da3b9b9 3892 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3893 int ret;
3894
cc98b413
CW
3895 /* Mark the pin_display early so that we account for the
3896 * display coherency whilst setting up the cache domains.
3897 */
8a0c39b1 3898 obj->pin_display++;
cc98b413 3899
a7ef0640
EA
3900 /* The display engine is not coherent with the LLC cache on gen6. As
3901 * a result, we make sure that the pinning that is about to occur is
3902 * done with uncached PTEs. This is lowest common denominator for all
3903 * chipsets.
3904 *
3905 * However for gen6+, we could do better by using the GFDT bit instead
3906 * of uncaching, which would allow us to flush all the LLC-cached data
3907 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3908 */
651d794f
CW
3909 ret = i915_gem_object_set_cache_level(obj,
3910 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3911 if (ret)
cc98b413 3912 goto err_unpin_display;
a7ef0640 3913
2da3b9b9
CW
3914 /* As the user may map the buffer once pinned in the display plane
3915 * (e.g. libkms for the bootup splash), we have to ensure that we
3916 * always use map_and_fenceable for all scanout buffers.
3917 */
50470bb0
TU
3918 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3919 view->type == I915_GGTT_VIEW_NORMAL ?
3920 PIN_MAPPABLE : 0);
2da3b9b9 3921 if (ret)
cc98b413 3922 goto err_unpin_display;
2da3b9b9 3923
e62b59e4 3924 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3925
2da3b9b9 3926 old_write_domain = obj->base.write_domain;
05394f39 3927 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3928
3929 /* It should now be out of any other write domains, and we can update
3930 * the domain values for our changes.
3931 */
e5f1d962 3932 obj->base.write_domain = 0;
05394f39 3933 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3934
3935 trace_i915_gem_object_change_domain(obj,
3936 old_read_domains,
2da3b9b9 3937 old_write_domain);
b9241ea3
ZW
3938
3939 return 0;
cc98b413
CW
3940
3941err_unpin_display:
8a0c39b1 3942 obj->pin_display--;
cc98b413
CW
3943 return ret;
3944}
3945
3946void
e6617330
TU
3947i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3948 const struct i915_ggtt_view *view)
cc98b413 3949{
8a0c39b1
TU
3950 if (WARN_ON(obj->pin_display == 0))
3951 return;
3952
e6617330
TU
3953 i915_gem_object_ggtt_unpin_view(obj, view);
3954
8a0c39b1 3955 obj->pin_display--;
b9241ea3
ZW
3956}
3957
e47c68e9
EA
3958/**
3959 * Moves a single object to the CPU read, and possibly write domain.
3960 *
3961 * This function returns when the move is complete, including waiting on
3962 * flushes to occur.
3963 */
dabdfe02 3964int
919926ae 3965i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3966{
1c5d22f7 3967 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3968 int ret;
3969
8d7e3de1
CW
3970 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3971 return 0;
3972
0201f1ec 3973 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3974 if (ret)
3975 return ret;
3976
e47c68e9 3977 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3978
05394f39
CW
3979 old_write_domain = obj->base.write_domain;
3980 old_read_domains = obj->base.read_domains;
1c5d22f7 3981
e47c68e9 3982 /* Flush the CPU cache if it's still invalid. */
05394f39 3983 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3984 i915_gem_clflush_object(obj, false);
2ef7eeaa 3985
05394f39 3986 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3987 }
3988
3989 /* It should now be out of any other write domains, and we can update
3990 * the domain values for our changes.
3991 */
05394f39 3992 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3993
3994 /* If we're writing through the CPU, then the GPU read domains will
3995 * need to be invalidated at next use.
3996 */
3997 if (write) {
05394f39
CW
3998 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3999 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4000 }
2ef7eeaa 4001
1c5d22f7
CW
4002 trace_i915_gem_object_change_domain(obj,
4003 old_read_domains,
4004 old_write_domain);
4005
2ef7eeaa
EA
4006 return 0;
4007}
4008
673a394b
EA
4009/* Throttle our rendering by waiting until the ring has completed our requests
4010 * emitted over 20 msec ago.
4011 *
b962442e
EA
4012 * Note that if we were to use the current jiffies each time around the loop,
4013 * we wouldn't escape the function with any frames outstanding if the time to
4014 * render a frame was over 20ms.
4015 *
673a394b
EA
4016 * This should get us reasonable parallelism between CPU and GPU but also
4017 * relatively low latency when blocking on a particular request to finish.
4018 */
40a5f0de 4019static int
f787a5f5 4020i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4021{
f787a5f5
CW
4022 struct drm_i915_private *dev_priv = dev->dev_private;
4023 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4024 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4025 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4026 unsigned reset_counter;
f787a5f5 4027 int ret;
93533c29 4028
308887aa
DV
4029 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4030 if (ret)
4031 return ret;
4032
4033 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4034 if (ret)
4035 return ret;
e110e8d6 4036
1c25595f 4037 spin_lock(&file_priv->mm.lock);
f787a5f5 4038 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4039 if (time_after_eq(request->emitted_jiffies, recent_enough))
4040 break;
40a5f0de 4041
fcfa423c
JH
4042 /*
4043 * Note that the request might not have been submitted yet.
4044 * In which case emitted_jiffies will be zero.
4045 */
4046 if (!request->emitted_jiffies)
4047 continue;
4048
54fb2411 4049 target = request;
b962442e 4050 }
f69061be 4051 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4052 if (target)
4053 i915_gem_request_reference(target);
1c25595f 4054 spin_unlock(&file_priv->mm.lock);
40a5f0de 4055
54fb2411 4056 if (target == NULL)
f787a5f5 4057 return 0;
2bc43b5c 4058
9c654818 4059 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4060 if (ret == 0)
4061 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4062
41037f9f 4063 i915_gem_request_unreference__unlocked(target);
ff865885 4064
40a5f0de
EA
4065 return ret;
4066}
4067
d23db88c
CW
4068static bool
4069i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4070{
4071 struct drm_i915_gem_object *obj = vma->obj;
4072
4073 if (alignment &&
4074 vma->node.start & (alignment - 1))
4075 return true;
4076
4077 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4078 return true;
4079
4080 if (flags & PIN_OFFSET_BIAS &&
4081 vma->node.start < (flags & PIN_OFFSET_MASK))
4082 return true;
4083
4084 return false;
4085}
4086
ec7adb6e
JL
4087static int
4088i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4089 struct i915_address_space *vm,
4090 const struct i915_ggtt_view *ggtt_view,
4091 uint32_t alignment,
4092 uint64_t flags)
673a394b 4093{
6e7186af 4094 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4095 struct i915_vma *vma;
ef79e17c 4096 unsigned bound;
673a394b
EA
4097 int ret;
4098
6e7186af
BW
4099 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4100 return -ENODEV;
4101
bf3d149b 4102 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4103 return -EINVAL;
07fe0b12 4104
c826c449
CW
4105 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4106 return -EINVAL;
4107
ec7adb6e
JL
4108 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4109 return -EINVAL;
4110
4111 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4112 i915_gem_obj_to_vma(obj, vm);
4113
4114 if (IS_ERR(vma))
4115 return PTR_ERR(vma);
4116
07fe0b12 4117 if (vma) {
d7f46fc4
BW
4118 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4119 return -EBUSY;
4120
d23db88c 4121 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4122 WARN(vma->pin_count,
ec7adb6e 4123 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4124 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4125 " obj->map_and_fenceable=%d\n",
ec7adb6e 4126 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4127 upper_32_bits(vma->node.start),
4128 lower_32_bits(vma->node.start),
fe14d5f4 4129 alignment,
d23db88c 4130 !!(flags & PIN_MAPPABLE),
05394f39 4131 obj->map_and_fenceable);
07fe0b12 4132 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4133 if (ret)
4134 return ret;
8ea99c92
DV
4135
4136 vma = NULL;
ac0c6b5a
CW
4137 }
4138 }
4139
ef79e17c 4140 bound = vma ? vma->bound : 0;
8ea99c92 4141 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4142 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4143 flags);
262de145
DV
4144 if (IS_ERR(vma))
4145 return PTR_ERR(vma);
0875546c
DV
4146 } else {
4147 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4148 if (ret)
4149 return ret;
4150 }
74898d7e 4151
91e6711e
JL
4152 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4153 (bound ^ vma->bound) & GLOBAL_BIND) {
ef79e17c
CW
4154 bool mappable, fenceable;
4155 u32 fence_size, fence_alignment;
4156
4157 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4158 obj->base.size,
4159 obj->tiling_mode);
4160 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4161 obj->base.size,
4162 obj->tiling_mode,
4163 true);
4164
4165 fenceable = (vma->node.size == fence_size &&
4166 (vma->node.start & (fence_alignment - 1)) == 0);
4167
e8dec1dd 4168 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4169 dev_priv->gtt.mappable_end);
4170
4171 obj->map_and_fenceable = mappable && fenceable;
ef79e17c 4172
91e6711e
JL
4173 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4174 }
ef79e17c 4175
8ea99c92 4176 vma->pin_count++;
673a394b
EA
4177 return 0;
4178}
4179
ec7adb6e
JL
4180int
4181i915_gem_object_pin(struct drm_i915_gem_object *obj,
4182 struct i915_address_space *vm,
4183 uint32_t alignment,
4184 uint64_t flags)
4185{
4186 return i915_gem_object_do_pin(obj, vm,
4187 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4188 alignment, flags);
4189}
4190
4191int
4192i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4193 const struct i915_ggtt_view *view,
4194 uint32_t alignment,
4195 uint64_t flags)
4196{
4197 if (WARN_ONCE(!view, "no view specified"))
4198 return -EINVAL;
4199
4200 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4201 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4202}
4203
673a394b 4204void
e6617330
TU
4205i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4206 const struct i915_ggtt_view *view)
673a394b 4207{
e6617330 4208 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4209
d7f46fc4 4210 BUG_ON(!vma);
e6617330 4211 WARN_ON(vma->pin_count == 0);
9abc4648 4212 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4213
30154650 4214 --vma->pin_count;
673a394b
EA
4215}
4216
673a394b
EA
4217int
4218i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4219 struct drm_file *file)
673a394b
EA
4220{
4221 struct drm_i915_gem_busy *args = data;
05394f39 4222 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4223 int ret;
4224
76c1dec1 4225 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4226 if (ret)
76c1dec1 4227 return ret;
673a394b 4228
05394f39 4229 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4230 if (&obj->base == NULL) {
1d7cfea1
CW
4231 ret = -ENOENT;
4232 goto unlock;
673a394b 4233 }
d1b851fc 4234
0be555b6
CW
4235 /* Count all active objects as busy, even if they are currently not used
4236 * by the gpu. Users of this interface expect objects to eventually
4237 * become non-busy without any further actions, therefore emit any
4238 * necessary flushes here.
c4de0a5d 4239 */
30dfebf3 4240 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4241 if (ret)
4242 goto unref;
0be555b6 4243
b4716185
CW
4244 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4245 args->busy = obj->active << 16;
4246 if (obj->last_write_req)
4247 args->busy |= obj->last_write_req->ring->id;
673a394b 4248
b4716185 4249unref:
05394f39 4250 drm_gem_object_unreference(&obj->base);
1d7cfea1 4251unlock:
673a394b 4252 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4253 return ret;
673a394b
EA
4254}
4255
4256int
4257i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4258 struct drm_file *file_priv)
4259{
0206e353 4260 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4261}
4262
3ef94daa
CW
4263int
4264i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4265 struct drm_file *file_priv)
4266{
656bfa3a 4267 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4268 struct drm_i915_gem_madvise *args = data;
05394f39 4269 struct drm_i915_gem_object *obj;
76c1dec1 4270 int ret;
3ef94daa
CW
4271
4272 switch (args->madv) {
4273 case I915_MADV_DONTNEED:
4274 case I915_MADV_WILLNEED:
4275 break;
4276 default:
4277 return -EINVAL;
4278 }
4279
1d7cfea1
CW
4280 ret = i915_mutex_lock_interruptible(dev);
4281 if (ret)
4282 return ret;
4283
05394f39 4284 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4285 if (&obj->base == NULL) {
1d7cfea1
CW
4286 ret = -ENOENT;
4287 goto unlock;
3ef94daa 4288 }
3ef94daa 4289
d7f46fc4 4290 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4291 ret = -EINVAL;
4292 goto out;
3ef94daa
CW
4293 }
4294
656bfa3a
DV
4295 if (obj->pages &&
4296 obj->tiling_mode != I915_TILING_NONE &&
4297 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4298 if (obj->madv == I915_MADV_WILLNEED)
4299 i915_gem_object_unpin_pages(obj);
4300 if (args->madv == I915_MADV_WILLNEED)
4301 i915_gem_object_pin_pages(obj);
4302 }
4303
05394f39
CW
4304 if (obj->madv != __I915_MADV_PURGED)
4305 obj->madv = args->madv;
3ef94daa 4306
6c085a72 4307 /* if the object is no longer attached, discard its backing storage */
be6a0376 4308 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4309 i915_gem_object_truncate(obj);
4310
05394f39 4311 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4312
1d7cfea1 4313out:
05394f39 4314 drm_gem_object_unreference(&obj->base);
1d7cfea1 4315unlock:
3ef94daa 4316 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4317 return ret;
3ef94daa
CW
4318}
4319
37e680a1
CW
4320void i915_gem_object_init(struct drm_i915_gem_object *obj,
4321 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4322{
b4716185
CW
4323 int i;
4324
35c20a60 4325 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4326 for (i = 0; i < I915_NUM_RINGS; i++)
4327 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4328 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4329 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4330 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4331
37e680a1
CW
4332 obj->ops = ops;
4333
0327d6ba
CW
4334 obj->fence_reg = I915_FENCE_REG_NONE;
4335 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4336
4337 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4338}
4339
37e680a1
CW
4340static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4341 .get_pages = i915_gem_object_get_pages_gtt,
4342 .put_pages = i915_gem_object_put_pages_gtt,
4343};
4344
05394f39
CW
4345struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4346 size_t size)
ac52bc56 4347{
c397b908 4348 struct drm_i915_gem_object *obj;
5949eac4 4349 struct address_space *mapping;
1a240d4d 4350 gfp_t mask;
ac52bc56 4351
42dcedd4 4352 obj = i915_gem_object_alloc(dev);
c397b908
DV
4353 if (obj == NULL)
4354 return NULL;
673a394b 4355
c397b908 4356 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4357 i915_gem_object_free(obj);
c397b908
DV
4358 return NULL;
4359 }
673a394b 4360
bed1ea95
CW
4361 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4362 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4363 /* 965gm cannot relocate objects above 4GiB. */
4364 mask &= ~__GFP_HIGHMEM;
4365 mask |= __GFP_DMA32;
4366 }
4367
496ad9aa 4368 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4369 mapping_set_gfp_mask(mapping, mask);
5949eac4 4370
37e680a1 4371 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4372
c397b908
DV
4373 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4374 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4375
3d29b842
ED
4376 if (HAS_LLC(dev)) {
4377 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4378 * cache) for about a 10% performance improvement
4379 * compared to uncached. Graphics requests other than
4380 * display scanout are coherent with the CPU in
4381 * accessing this cache. This means in this mode we
4382 * don't need to clflush on the CPU side, and on the
4383 * GPU side we only need to flush internal caches to
4384 * get data visible to the CPU.
4385 *
4386 * However, we maintain the display planes as UC, and so
4387 * need to rebind when first used as such.
4388 */
4389 obj->cache_level = I915_CACHE_LLC;
4390 } else
4391 obj->cache_level = I915_CACHE_NONE;
4392
d861e338
DV
4393 trace_i915_gem_object_create(obj);
4394
05394f39 4395 return obj;
c397b908
DV
4396}
4397
340fbd8c
CW
4398static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4399{
4400 /* If we are the last user of the backing storage (be it shmemfs
4401 * pages or stolen etc), we know that the pages are going to be
4402 * immediately released. In this case, we can then skip copying
4403 * back the contents from the GPU.
4404 */
4405
4406 if (obj->madv != I915_MADV_WILLNEED)
4407 return false;
4408
4409 if (obj->base.filp == NULL)
4410 return true;
4411
4412 /* At first glance, this looks racy, but then again so would be
4413 * userspace racing mmap against close. However, the first external
4414 * reference to the filp can only be obtained through the
4415 * i915_gem_mmap_ioctl() which safeguards us against the user
4416 * acquiring such a reference whilst we are in the middle of
4417 * freeing the object.
4418 */
4419 return atomic_long_read(&obj->base.filp->f_count) == 1;
4420}
4421
1488fc08 4422void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4423{
1488fc08 4424 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4425 struct drm_device *dev = obj->base.dev;
3e31c6c0 4426 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4427 struct i915_vma *vma, *next;
673a394b 4428
f65c9168
PZ
4429 intel_runtime_pm_get(dev_priv);
4430
26e12f89
CW
4431 trace_i915_gem_object_destroy(obj);
4432
07fe0b12 4433 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4434 int ret;
4435
4436 vma->pin_count = 0;
4437 ret = i915_vma_unbind(vma);
07fe0b12
BW
4438 if (WARN_ON(ret == -ERESTARTSYS)) {
4439 bool was_interruptible;
1488fc08 4440
07fe0b12
BW
4441 was_interruptible = dev_priv->mm.interruptible;
4442 dev_priv->mm.interruptible = false;
1488fc08 4443
07fe0b12 4444 WARN_ON(i915_vma_unbind(vma));
1488fc08 4445
07fe0b12
BW
4446 dev_priv->mm.interruptible = was_interruptible;
4447 }
1488fc08
CW
4448 }
4449
1d64ae71
BW
4450 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4451 * before progressing. */
4452 if (obj->stolen)
4453 i915_gem_object_unpin_pages(obj);
4454
a071fa00
DV
4455 WARN_ON(obj->frontbuffer_bits);
4456
656bfa3a
DV
4457 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4458 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4459 obj->tiling_mode != I915_TILING_NONE)
4460 i915_gem_object_unpin_pages(obj);
4461
401c29f6
BW
4462 if (WARN_ON(obj->pages_pin_count))
4463 obj->pages_pin_count = 0;
340fbd8c 4464 if (discard_backing_storage(obj))
5537252b 4465 obj->madv = I915_MADV_DONTNEED;
37e680a1 4466 i915_gem_object_put_pages(obj);
d8cb5086 4467 i915_gem_object_free_mmap_offset(obj);
de151cf6 4468
9da3da66
CW
4469 BUG_ON(obj->pages);
4470
2f745ad3
CW
4471 if (obj->base.import_attach)
4472 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4473
5cc9ed4b
CW
4474 if (obj->ops->release)
4475 obj->ops->release(obj);
4476
05394f39
CW
4477 drm_gem_object_release(&obj->base);
4478 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4479
05394f39 4480 kfree(obj->bit_17);
42dcedd4 4481 i915_gem_object_free(obj);
f65c9168
PZ
4482
4483 intel_runtime_pm_put(dev_priv);
673a394b
EA
4484}
4485
ec7adb6e
JL
4486struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4487 struct i915_address_space *vm)
e656a6cb
DV
4488{
4489 struct i915_vma *vma;
ec7adb6e 4490 list_for_each_entry(vma, &obj->vma_list, vma_link) {
1b683729
TU
4491 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4492 vma->vm == vm)
e656a6cb 4493 return vma;
ec7adb6e
JL
4494 }
4495 return NULL;
4496}
4497
4498struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4499 const struct i915_ggtt_view *view)
4500{
4501 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4502 struct i915_vma *vma;
e656a6cb 4503
ec7adb6e
JL
4504 if (WARN_ONCE(!view, "no view specified"))
4505 return ERR_PTR(-EINVAL);
4506
4507 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4508 if (vma->vm == ggtt &&
4509 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4510 return vma;
e656a6cb
DV
4511 return NULL;
4512}
4513
2f633156
BW
4514void i915_gem_vma_destroy(struct i915_vma *vma)
4515{
b9d06dd9 4516 struct i915_address_space *vm = NULL;
2f633156 4517 WARN_ON(vma->node.allocated);
aaa05667
CW
4518
4519 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4520 if (!list_empty(&vma->exec_list))
4521 return;
4522
b9d06dd9 4523 vm = vma->vm;
b9d06dd9 4524
841cd773
DV
4525 if (!i915_is_ggtt(vm))
4526 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4527
8b9c2b94 4528 list_del(&vma->vma_link);
b93dab6e 4529
e20d2ab7 4530 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4531}
4532
e3efda49
CW
4533static void
4534i915_gem_stop_ringbuffers(struct drm_device *dev)
4535{
4536 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4537 struct intel_engine_cs *ring;
e3efda49
CW
4538 int i;
4539
4540 for_each_ring(ring, dev_priv, i)
a83014d3 4541 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4542}
4543
29105ccc 4544int
45c5f202 4545i915_gem_suspend(struct drm_device *dev)
29105ccc 4546{
3e31c6c0 4547 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4548 int ret = 0;
28dfe52a 4549
45c5f202 4550 mutex_lock(&dev->struct_mutex);
b2da9fe5 4551 ret = i915_gpu_idle(dev);
f7403347 4552 if (ret)
45c5f202 4553 goto err;
f7403347 4554
b2da9fe5 4555 i915_gem_retire_requests(dev);
673a394b 4556
e3efda49 4557 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4558 mutex_unlock(&dev->struct_mutex);
4559
737b1506 4560 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4561 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4562 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4563
bdcf120b
CW
4564 /* Assert that we sucessfully flushed all the work and
4565 * reset the GPU back to its idle, low power state.
4566 */
4567 WARN_ON(dev_priv->mm.busy);
4568
673a394b 4569 return 0;
45c5f202
CW
4570
4571err:
4572 mutex_unlock(&dev->struct_mutex);
4573 return ret;
673a394b
EA
4574}
4575
6909a666 4576int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4577{
6909a666 4578 struct intel_engine_cs *ring = req->ring;
c3787e2e 4579 struct drm_device *dev = ring->dev;
3e31c6c0 4580 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4581 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4582 int i, ret;
b9524a1e 4583
040d2baa 4584 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4585 return 0;
b9524a1e 4586
5fb9de1a 4587 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4588 if (ret)
4589 return ret;
b9524a1e 4590
c3787e2e
BW
4591 /*
4592 * Note: We do not worry about the concurrent register cacheline hang
4593 * here because no other code should access these registers other than
4594 * at initialization time.
4595 */
6fa1c5f1 4596 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
c3787e2e 4597 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
f92a9162 4598 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
6fa1c5f1 4599 intel_ring_emit(ring, remap_info[i]);
b9524a1e
BW
4600 }
4601
c3787e2e 4602 intel_ring_advance(ring);
b9524a1e 4603
c3787e2e 4604 return ret;
b9524a1e
BW
4605}
4606
f691e2f4
DV
4607void i915_gem_init_swizzling(struct drm_device *dev)
4608{
3e31c6c0 4609 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4610
11782b02 4611 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4612 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4613 return;
4614
4615 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4616 DISP_TILE_SURFACE_SWIZZLING);
4617
11782b02
DV
4618 if (IS_GEN5(dev))
4619 return;
4620
f691e2f4
DV
4621 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4622 if (IS_GEN6(dev))
6b26c86d 4623 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4624 else if (IS_GEN7(dev))
6b26c86d 4625 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4626 else if (IS_GEN8(dev))
4627 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4628 else
4629 BUG();
f691e2f4 4630}
e21af88d 4631
81e7f200
VS
4632static void init_unused_ring(struct drm_device *dev, u32 base)
4633{
4634 struct drm_i915_private *dev_priv = dev->dev_private;
4635
4636 I915_WRITE(RING_CTL(base), 0);
4637 I915_WRITE(RING_HEAD(base), 0);
4638 I915_WRITE(RING_TAIL(base), 0);
4639 I915_WRITE(RING_START(base), 0);
4640}
4641
4642static void init_unused_rings(struct drm_device *dev)
4643{
4644 if (IS_I830(dev)) {
4645 init_unused_ring(dev, PRB1_BASE);
4646 init_unused_ring(dev, SRB0_BASE);
4647 init_unused_ring(dev, SRB1_BASE);
4648 init_unused_ring(dev, SRB2_BASE);
4649 init_unused_ring(dev, SRB3_BASE);
4650 } else if (IS_GEN2(dev)) {
4651 init_unused_ring(dev, SRB0_BASE);
4652 init_unused_ring(dev, SRB1_BASE);
4653 } else if (IS_GEN3(dev)) {
4654 init_unused_ring(dev, PRB1_BASE);
4655 init_unused_ring(dev, PRB2_BASE);
4656 }
4657}
4658
a83014d3 4659int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4660{
4fc7c971 4661 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4662 int ret;
68f95ba9 4663
5c1143bb 4664 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4665 if (ret)
b6913e4b 4666 return ret;
68f95ba9
CW
4667
4668 if (HAS_BSD(dev)) {
5c1143bb 4669 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4670 if (ret)
4671 goto cleanup_render_ring;
d1b851fc 4672 }
68f95ba9 4673
d39398f5 4674 if (HAS_BLT(dev)) {
549f7365
CW
4675 ret = intel_init_blt_ring_buffer(dev);
4676 if (ret)
4677 goto cleanup_bsd_ring;
4678 }
4679
9a8a2213
BW
4680 if (HAS_VEBOX(dev)) {
4681 ret = intel_init_vebox_ring_buffer(dev);
4682 if (ret)
4683 goto cleanup_blt_ring;
4684 }
4685
845f74a7
ZY
4686 if (HAS_BSD2(dev)) {
4687 ret = intel_init_bsd2_ring_buffer(dev);
4688 if (ret)
4689 goto cleanup_vebox_ring;
4690 }
9a8a2213 4691
4fc7c971
BW
4692 return 0;
4693
9a8a2213
BW
4694cleanup_vebox_ring:
4695 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4696cleanup_blt_ring:
4697 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4698cleanup_bsd_ring:
4699 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4700cleanup_render_ring:
4701 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4702
4703 return ret;
4704}
4705
4706int
4707i915_gem_init_hw(struct drm_device *dev)
4708{
3e31c6c0 4709 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4710 struct intel_engine_cs *ring;
4ad2fd88 4711 int ret, i, j;
4fc7c971
BW
4712
4713 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4714 return -EIO;
4715
5e4f5189
CW
4716 /* Double layer security blanket, see i915_gem_init() */
4717 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4718
59124506 4719 if (dev_priv->ellc_size)
05e21cc4 4720 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4721
0bf21347
VS
4722 if (IS_HASWELL(dev))
4723 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4724 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4725
88a2b2a3 4726 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4727 if (IS_IVYBRIDGE(dev)) {
4728 u32 temp = I915_READ(GEN7_MSG_CTL);
4729 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4730 I915_WRITE(GEN7_MSG_CTL, temp);
4731 } else if (INTEL_INFO(dev)->gen >= 7) {
4732 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4733 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4734 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4735 }
88a2b2a3
BW
4736 }
4737
4fc7c971
BW
4738 i915_gem_init_swizzling(dev);
4739
d5abdfda
DV
4740 /*
4741 * At least 830 can leave some of the unused rings
4742 * "active" (ie. head != tail) after resume which
4743 * will prevent c3 entry. Makes sure all unused rings
4744 * are totally idle.
4745 */
4746 init_unused_rings(dev);
4747
90638cc1
JH
4748 BUG_ON(!dev_priv->ring[RCS].default_context);
4749
4ad2fd88
JH
4750 ret = i915_ppgtt_init_hw(dev);
4751 if (ret) {
4752 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4753 goto out;
4754 }
4755
4756 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
4757 for_each_ring(ring, dev_priv, i) {
4758 ret = ring->init_hw(ring);
4759 if (ret)
5e4f5189 4760 goto out;
35a57ffb 4761 }
99433931 4762
33a732f4 4763 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4764 if (HAS_GUC_UCODE(dev)) {
4765 ret = intel_guc_ucode_load(dev);
4766 if (ret) {
9f9e539f
DV
4767 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4768 ret = -EIO;
4769 goto out;
87bcdd2e 4770 }
33a732f4
AD
4771 }
4772
e84fe803
NH
4773 /*
4774 * Increment the next seqno by 0x100 so we have a visible break
4775 * on re-initialisation
4776 */
4777 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4778 if (ret)
4779 goto out;
4780
4ad2fd88
JH
4781 /* Now it is safe to go back round and do everything else: */
4782 for_each_ring(ring, dev_priv, i) {
dc4be607
JH
4783 struct drm_i915_gem_request *req;
4784
90638cc1
JH
4785 WARN_ON(!ring->default_context);
4786
dc4be607
JH
4787 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4788 if (ret) {
4789 i915_gem_cleanup_ringbuffer(dev);
4790 goto out;
4791 }
4792
4ad2fd88
JH
4793 if (ring->id == RCS) {
4794 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 4795 i915_gem_l3_remap(req, j);
4ad2fd88 4796 }
c3787e2e 4797
b3dd6b96 4798 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
4799 if (ret && ret != -EIO) {
4800 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 4801 i915_gem_request_cancel(req);
4ad2fd88
JH
4802 i915_gem_cleanup_ringbuffer(dev);
4803 goto out;
4804 }
82460d97 4805
b3dd6b96 4806 ret = i915_gem_context_enable(req);
90638cc1
JH
4807 if (ret && ret != -EIO) {
4808 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 4809 i915_gem_request_cancel(req);
90638cc1
JH
4810 i915_gem_cleanup_ringbuffer(dev);
4811 goto out;
4812 }
dc4be607 4813
75289874 4814 i915_add_request_no_flush(req);
b7c36d25 4815 }
e21af88d 4816
5e4f5189
CW
4817out:
4818 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4819 return ret;
8187a2b7
ZN
4820}
4821
1070a42b
CW
4822int i915_gem_init(struct drm_device *dev)
4823{
4824 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4825 int ret;
4826
127f1003
OM
4827 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4828 i915.enable_execlists);
4829
1070a42b 4830 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4831
4832 if (IS_VALLEYVIEW(dev)) {
4833 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4834 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4835 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4836 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4837 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4838 }
4839
a83014d3 4840 if (!i915.enable_execlists) {
f3dc74c0 4841 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
4842 dev_priv->gt.init_rings = i915_gem_init_rings;
4843 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4844 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 4845 } else {
f3dc74c0 4846 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
4847 dev_priv->gt.init_rings = intel_logical_rings_init;
4848 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4849 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4850 }
4851
5e4f5189
CW
4852 /* This is just a security blanket to placate dragons.
4853 * On some systems, we very sporadically observe that the first TLBs
4854 * used by the CS may be stale, despite us poking the TLB reset. If
4855 * we hold the forcewake during initialisation these problems
4856 * just magically go away.
4857 */
4858 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4859
6c5566a8 4860 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4861 if (ret)
4862 goto out_unlock;
6c5566a8 4863
d7e5008f 4864 i915_gem_init_global_gtt(dev);
d62b4892 4865
2fa48d8d 4866 ret = i915_gem_context_init(dev);
7bcc3777
JN
4867 if (ret)
4868 goto out_unlock;
2fa48d8d 4869
35a57ffb
DV
4870 ret = dev_priv->gt.init_rings(dev);
4871 if (ret)
7bcc3777 4872 goto out_unlock;
2fa48d8d 4873
1070a42b 4874 ret = i915_gem_init_hw(dev);
60990320
CW
4875 if (ret == -EIO) {
4876 /* Allow ring initialisation to fail by marking the GPU as
4877 * wedged. But we only want to do this where the GPU is angry,
4878 * for all other failure, such as an allocation failure, bail.
4879 */
4880 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4881 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4882 ret = 0;
1070a42b 4883 }
7bcc3777
JN
4884
4885out_unlock:
5e4f5189 4886 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4887 mutex_unlock(&dev->struct_mutex);
1070a42b 4888
60990320 4889 return ret;
1070a42b
CW
4890}
4891
8187a2b7
ZN
4892void
4893i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4894{
3e31c6c0 4895 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4896 struct intel_engine_cs *ring;
1ec14ad3 4897 int i;
8187a2b7 4898
b4519513 4899 for_each_ring(ring, dev_priv, i)
a83014d3 4900 dev_priv->gt.cleanup_ring(ring);
a647828a
NB
4901
4902 if (i915.enable_execlists)
4903 /*
4904 * Neither the BIOS, ourselves or any other kernel
4905 * expects the system to be in execlists mode on startup,
4906 * so we need to reset the GPU back to legacy mode.
4907 */
4908 intel_gpu_reset(dev);
8187a2b7
ZN
4909}
4910
64193406 4911static void
a4872ba6 4912init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4913{
4914 INIT_LIST_HEAD(&ring->active_list);
4915 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4916}
4917
673a394b
EA
4918void
4919i915_gem_load(struct drm_device *dev)
4920{
3e31c6c0 4921 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4922 int i;
4923
efab6d8d 4924 dev_priv->objects =
42dcedd4
CW
4925 kmem_cache_create("i915_gem_object",
4926 sizeof(struct drm_i915_gem_object), 0,
4927 SLAB_HWCACHE_ALIGN,
4928 NULL);
e20d2ab7
CW
4929 dev_priv->vmas =
4930 kmem_cache_create("i915_gem_vma",
4931 sizeof(struct i915_vma), 0,
4932 SLAB_HWCACHE_ALIGN,
4933 NULL);
efab6d8d
CW
4934 dev_priv->requests =
4935 kmem_cache_create("i915_gem_request",
4936 sizeof(struct drm_i915_gem_request), 0,
4937 SLAB_HWCACHE_ALIGN,
4938 NULL);
673a394b 4939
fc8c067e 4940 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 4941 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4942 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4943 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4944 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4945 for (i = 0; i < I915_NUM_RINGS; i++)
4946 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4947 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4948 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4949 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4950 i915_gem_retire_work_handler);
b29c19b6
CW
4951 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4952 i915_gem_idle_work_handler);
1f83fee0 4953 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4954
72bfa19c
CW
4955 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4956
42b5aeab
VS
4957 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4958 dev_priv->num_fence_regs = 32;
4959 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4960 dev_priv->num_fence_regs = 16;
4961 else
4962 dev_priv->num_fence_regs = 8;
4963
eb82289a
YZ
4964 if (intel_vgpu_active(dev))
4965 dev_priv->num_fence_regs =
4966 I915_READ(vgtif_reg(avail_rs.fence_num));
4967
e84fe803
NH
4968 /*
4969 * Set initial sequence number for requests.
4970 * Using this number allows the wraparound to happen early,
4971 * catching any obvious problems.
4972 */
4973 dev_priv->next_seqno = ((u32)~0 - 0x1100);
4974 dev_priv->last_seqno = ((u32)~0 - 0x1101);
4975
b5aa8a0f 4976 /* Initialize fence registers to zero */
19b2dbde
CW
4977 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4978 i915_gem_restore_fences(dev);
10ed13e4 4979
673a394b 4980 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4981 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4982
ce453d81
CW
4983 dev_priv->mm.interruptible = true;
4984
be6a0376 4985 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
4986
4987 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 4988}
71acb5eb 4989
f787a5f5 4990void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4991{
f787a5f5 4992 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4993
4994 /* Clean up our request list when the client is going away, so that
4995 * later retire_requests won't dereference our soon-to-be-gone
4996 * file_priv.
4997 */
1c25595f 4998 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4999 while (!list_empty(&file_priv->mm.request_list)) {
5000 struct drm_i915_gem_request *request;
5001
5002 request = list_first_entry(&file_priv->mm.request_list,
5003 struct drm_i915_gem_request,
5004 client_list);
5005 list_del(&request->client_list);
5006 request->file_priv = NULL;
5007 }
1c25595f 5008 spin_unlock(&file_priv->mm.lock);
b29c19b6 5009
2e1b8730 5010 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5011 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5012 list_del(&file_priv->rps.link);
8d3afd7d 5013 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5014 }
b29c19b6
CW
5015}
5016
5017int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5018{
5019 struct drm_i915_file_private *file_priv;
e422b888 5020 int ret;
b29c19b6
CW
5021
5022 DRM_DEBUG_DRIVER("\n");
5023
5024 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5025 if (!file_priv)
5026 return -ENOMEM;
5027
5028 file->driver_priv = file_priv;
5029 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5030 file_priv->file = file;
2e1b8730 5031 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5032
5033 spin_lock_init(&file_priv->mm.lock);
5034 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5035
e422b888
BW
5036 ret = i915_gem_context_open(dev, file);
5037 if (ret)
5038 kfree(file_priv);
b29c19b6 5039
e422b888 5040 return ret;
b29c19b6
CW
5041}
5042
b680c37a
DV
5043/**
5044 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5045 * @old: current GEM buffer for the frontbuffer slots
5046 * @new: new GEM buffer for the frontbuffer slots
5047 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5048 *
5049 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5050 * from @old and setting them in @new. Both @old and @new can be NULL.
5051 */
a071fa00
DV
5052void i915_gem_track_fb(struct drm_i915_gem_object *old,
5053 struct drm_i915_gem_object *new,
5054 unsigned frontbuffer_bits)
5055{
5056 if (old) {
5057 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5058 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5059 old->frontbuffer_bits &= ~frontbuffer_bits;
5060 }
5061
5062 if (new) {
5063 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5064 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5065 new->frontbuffer_bits |= frontbuffer_bits;
5066 }
5067}
5068
a70a3148 5069/* All the new VM stuff */
088e0df4
MT
5070u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5071 struct i915_address_space *vm)
a70a3148
BW
5072{
5073 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5074 struct i915_vma *vma;
5075
896ab1a5 5076 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5077
a70a3148 5078 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5079 if (i915_is_ggtt(vma->vm) &&
5080 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5081 continue;
5082 if (vma->vm == vm)
a70a3148 5083 return vma->node.start;
a70a3148 5084 }
ec7adb6e 5085
f25748ea
DV
5086 WARN(1, "%s vma for this object not found.\n",
5087 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5088 return -1;
5089}
5090
088e0df4
MT
5091u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5092 const struct i915_ggtt_view *view)
a70a3148 5093{
ec7adb6e 5094 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5095 struct i915_vma *vma;
5096
5097 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5098 if (vma->vm == ggtt &&
5099 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5100 return vma->node.start;
5101
5678ad73 5102 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5103 return -1;
5104}
5105
5106bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5107 struct i915_address_space *vm)
5108{
5109 struct i915_vma *vma;
5110
5111 list_for_each_entry(vma, &o->vma_list, vma_link) {
5112 if (i915_is_ggtt(vma->vm) &&
5113 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5114 continue;
5115 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5116 return true;
5117 }
5118
5119 return false;
5120}
5121
5122bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5123 const struct i915_ggtt_view *view)
ec7adb6e
JL
5124{
5125 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5126 struct i915_vma *vma;
5127
5128 list_for_each_entry(vma, &o->vma_list, vma_link)
5129 if (vma->vm == ggtt &&
9abc4648 5130 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5131 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5132 return true;
5133
5134 return false;
5135}
5136
5137bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5138{
5a1d5eb0 5139 struct i915_vma *vma;
a70a3148 5140
5a1d5eb0
CW
5141 list_for_each_entry(vma, &o->vma_list, vma_link)
5142 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5143 return true;
5144
5145 return false;
5146}
5147
5148unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5149 struct i915_address_space *vm)
5150{
5151 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5152 struct i915_vma *vma;
5153
896ab1a5 5154 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5155
5156 BUG_ON(list_empty(&o->vma_list));
5157
ec7adb6e
JL
5158 list_for_each_entry(vma, &o->vma_list, vma_link) {
5159 if (i915_is_ggtt(vma->vm) &&
5160 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5161 continue;
a70a3148
BW
5162 if (vma->vm == vm)
5163 return vma->node.size;
ec7adb6e 5164 }
a70a3148
BW
5165 return 0;
5166}
5167
ec7adb6e 5168bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5169{
5170 struct i915_vma *vma;
a6631ae1 5171 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5172 if (vma->pin_count > 0)
5173 return true;
a6631ae1 5174
ec7adb6e 5175 return false;
5c2abbea 5176}
ea70299d
DG
5177
5178/* Allocate a new GEM object and fill it with the supplied data */
5179struct drm_i915_gem_object *
5180i915_gem_object_create_from_data(struct drm_device *dev,
5181 const void *data, size_t size)
5182{
5183 struct drm_i915_gem_object *obj;
5184 struct sg_table *sg;
5185 size_t bytes;
5186 int ret;
5187
5188 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5189 if (IS_ERR_OR_NULL(obj))
5190 return obj;
5191
5192 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5193 if (ret)
5194 goto fail;
5195
5196 ret = i915_gem_object_get_pages(obj);
5197 if (ret)
5198 goto fail;
5199
5200 i915_gem_object_pin_pages(obj);
5201 sg = obj->pages;
5202 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5203 i915_gem_object_unpin_pages(obj);
5204
5205 if (WARN_ON(bytes != size)) {
5206 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5207 ret = -EFAULT;
5208 goto fail;
5209 }
5210
5211 return obj;
5212
5213fail:
5214 drm_gem_object_unreference(&obj->base);
5215 return ERR_PTR(ret);
5216}