drm/i915/debugfs: Include list totals
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
31169714
CW
61static LIST_HEAD(shrink_list);
62static DEFINE_SPINLOCK(shrink_list_lock);
63
30dbf0c0
CW
64int
65i915_gem_check_is_wedged(struct drm_device *dev)
66{
67 struct drm_i915_private *dev_priv = dev->dev_private;
68 struct completion *x = &dev_priv->error_completion;
69 unsigned long flags;
70 int ret;
71
72 if (!atomic_read(&dev_priv->mm.wedged))
73 return 0;
74
75 ret = wait_for_completion_interruptible(x);
76 if (ret)
77 return ret;
78
79 /* Success, we reset the GPU! */
80 if (!atomic_read(&dev_priv->mm.wedged))
81 return 0;
82
83 /* GPU is hung, bump the completion count to account for
84 * the token we just consumed so that we never hit zero and
85 * end up waiting upon a subsequent completion event that
86 * will never happen.
87 */
88 spin_lock_irqsave(&x->wait.lock, flags);
89 x->done++;
90 spin_unlock_irqrestore(&x->wait.lock, flags);
91 return -EIO;
92}
93
76c1dec1
CW
94static int i915_mutex_lock_interruptible(struct drm_device *dev)
95{
96 struct drm_i915_private *dev_priv = dev->dev_private;
97 int ret;
98
99 ret = i915_gem_check_is_wedged(dev);
100 if (ret)
101 return ret;
102
103 ret = mutex_lock_interruptible(&dev->struct_mutex);
104 if (ret)
105 return ret;
106
107 if (atomic_read(&dev_priv->mm.wedged)) {
108 mutex_unlock(&dev->struct_mutex);
109 return -EAGAIN;
110 }
111
23bc5982 112 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
113 return 0;
114}
30dbf0c0 115
7d1c4804
CW
116static inline bool
117i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
118{
119 return obj_priv->gtt_space &&
120 !obj_priv->active &&
121 obj_priv->pin_count == 0;
122}
123
79e53945
JB
124int i915_gem_do_init(struct drm_device *dev, unsigned long start,
125 unsigned long end)
673a394b
EA
126{
127 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 128
79e53945
JB
129 if (start >= end ||
130 (start & (PAGE_SIZE - 1)) != 0 ||
131 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
132 return -EINVAL;
133 }
134
79e53945
JB
135 drm_mm_init(&dev_priv->mm.gtt_space, start,
136 end - start);
673a394b 137
79e53945
JB
138 dev->gtt_total = (uint32_t) (end - start);
139
140 return 0;
141}
673a394b 142
79e53945
JB
143int
144i915_gem_init_ioctl(struct drm_device *dev, void *data,
145 struct drm_file *file_priv)
146{
147 struct drm_i915_gem_init *args = data;
148 int ret;
149
150 mutex_lock(&dev->struct_mutex);
151 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
152 mutex_unlock(&dev->struct_mutex);
153
79e53945 154 return ret;
673a394b
EA
155}
156
5a125c3c
EA
157int
158i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
159 struct drm_file *file_priv)
160{
5a125c3c 161 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
162
163 if (!(dev->driver->driver_features & DRIVER_GEM))
164 return -ENODEV;
165
166 args->aper_size = dev->gtt_total;
2678d9d6
KP
167 args->aper_available_size = (args->aper_size -
168 atomic_read(&dev->pin_memory));
5a125c3c
EA
169
170 return 0;
171}
172
673a394b
EA
173
174/**
175 * Creates a new mm object and returns a handle to it.
176 */
177int
178i915_gem_create_ioctl(struct drm_device *dev, void *data,
179 struct drm_file *file_priv)
180{
181 struct drm_i915_gem_create *args = data;
182 struct drm_gem_object *obj;
a1a2d1d3
PP
183 int ret;
184 u32 handle;
673a394b
EA
185
186 args->size = roundup(args->size, PAGE_SIZE);
187
188 /* Allocate the new object */
ac52bc56 189 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
190 if (obj == NULL)
191 return -ENOMEM;
192
193 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
194 if (ret) {
195 drm_gem_object_unreference_unlocked(obj);
673a394b 196 return ret;
1dfd9754 197 }
673a394b 198
1dfd9754
CW
199 /* Sink the floating reference from kref_init(handlecount) */
200 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 201
1dfd9754 202 args->handle = handle;
673a394b
EA
203 return 0;
204}
205
eb01459f
EA
206static inline int
207fast_shmem_read(struct page **pages,
208 loff_t page_base, int page_offset,
209 char __user *data,
210 int length)
211{
212 char __iomem *vaddr;
2bc43b5c 213 int unwritten;
eb01459f
EA
214
215 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
216 if (vaddr == NULL)
217 return -ENOMEM;
2bc43b5c 218 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
219 kunmap_atomic(vaddr, KM_USER0);
220
2bc43b5c
FM
221 if (unwritten)
222 return -EFAULT;
223
224 return 0;
eb01459f
EA
225}
226
280b713b
EA
227static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
228{
229 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 230 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
231
232 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
233 obj_priv->tiling_mode != I915_TILING_NONE;
234}
235
99a03df5 236static inline void
40123c1f
EA
237slow_shmem_copy(struct page *dst_page,
238 int dst_offset,
239 struct page *src_page,
240 int src_offset,
241 int length)
242{
243 char *dst_vaddr, *src_vaddr;
244
99a03df5
CW
245 dst_vaddr = kmap(dst_page);
246 src_vaddr = kmap(src_page);
40123c1f
EA
247
248 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
249
99a03df5
CW
250 kunmap(src_page);
251 kunmap(dst_page);
40123c1f
EA
252}
253
99a03df5 254static inline void
280b713b
EA
255slow_shmem_bit17_copy(struct page *gpu_page,
256 int gpu_offset,
257 struct page *cpu_page,
258 int cpu_offset,
259 int length,
260 int is_read)
261{
262 char *gpu_vaddr, *cpu_vaddr;
263
264 /* Use the unswizzled path if this page isn't affected. */
265 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
266 if (is_read)
267 return slow_shmem_copy(cpu_page, cpu_offset,
268 gpu_page, gpu_offset, length);
269 else
270 return slow_shmem_copy(gpu_page, gpu_offset,
271 cpu_page, cpu_offset, length);
272 }
273
99a03df5
CW
274 gpu_vaddr = kmap(gpu_page);
275 cpu_vaddr = kmap(cpu_page);
280b713b
EA
276
277 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
278 * XORing with the other bits (A9 for Y, A9 and A10 for X)
279 */
280 while (length > 0) {
281 int cacheline_end = ALIGN(gpu_offset + 1, 64);
282 int this_length = min(cacheline_end - gpu_offset, length);
283 int swizzled_gpu_offset = gpu_offset ^ 64;
284
285 if (is_read) {
286 memcpy(cpu_vaddr + cpu_offset,
287 gpu_vaddr + swizzled_gpu_offset,
288 this_length);
289 } else {
290 memcpy(gpu_vaddr + swizzled_gpu_offset,
291 cpu_vaddr + cpu_offset,
292 this_length);
293 }
294 cpu_offset += this_length;
295 gpu_offset += this_length;
296 length -= this_length;
297 }
298
99a03df5
CW
299 kunmap(cpu_page);
300 kunmap(gpu_page);
280b713b
EA
301}
302
eb01459f
EA
303/**
304 * This is the fast shmem pread path, which attempts to copy_from_user directly
305 * from the backing pages of the object to the user's address space. On a
306 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
307 */
308static int
309i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
310 struct drm_i915_gem_pread *args,
311 struct drm_file *file_priv)
312{
23010e43 313 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
314 ssize_t remain;
315 loff_t offset, page_base;
316 char __user *user_data;
317 int page_offset, page_length;
318 int ret;
319
320 user_data = (char __user *) (uintptr_t) args->data_ptr;
321 remain = args->size;
322
76c1dec1
CW
323 ret = i915_mutex_lock_interruptible(dev);
324 if (ret)
325 return ret;
eb01459f 326
4bdadb97 327 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
328 if (ret != 0)
329 goto fail_unlock;
330
331 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
332 args->size);
333 if (ret != 0)
334 goto fail_put_pages;
335
23010e43 336 obj_priv = to_intel_bo(obj);
eb01459f
EA
337 offset = args->offset;
338
339 while (remain > 0) {
340 /* Operation in this page
341 *
342 * page_base = page offset within aperture
343 * page_offset = offset within page
344 * page_length = bytes to copy for this page
345 */
346 page_base = (offset & ~(PAGE_SIZE-1));
347 page_offset = offset & (PAGE_SIZE-1);
348 page_length = remain;
349 if ((page_offset + remain) > PAGE_SIZE)
350 page_length = PAGE_SIZE - page_offset;
351
352 ret = fast_shmem_read(obj_priv->pages,
353 page_base, page_offset,
354 user_data, page_length);
355 if (ret)
356 goto fail_put_pages;
357
358 remain -= page_length;
359 user_data += page_length;
360 offset += page_length;
361 }
362
363fail_put_pages:
364 i915_gem_object_put_pages(obj);
365fail_unlock:
366 mutex_unlock(&dev->struct_mutex);
367
368 return ret;
369}
370
07f73f69
CW
371static int
372i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
373{
374 int ret;
375
4bdadb97 376 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
377
378 /* If we've insufficient memory to map in the pages, attempt
379 * to make some space by throwing out some old buffers.
380 */
381 if (ret == -ENOMEM) {
382 struct drm_device *dev = obj->dev;
07f73f69 383
0108a3ed
DV
384 ret = i915_gem_evict_something(dev, obj->size,
385 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
386 if (ret)
387 return ret;
388
4bdadb97 389 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
390 }
391
392 return ret;
393}
394
eb01459f
EA
395/**
396 * This is the fallback shmem pread path, which allocates temporary storage
397 * in kernel space to copy_to_user into outside of the struct_mutex, so we
398 * can copy out of the object's backing pages while holding the struct mutex
399 * and not take page faults.
400 */
401static int
402i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
403 struct drm_i915_gem_pread *args,
404 struct drm_file *file_priv)
405{
23010e43 406 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
407 struct mm_struct *mm = current->mm;
408 struct page **user_pages;
409 ssize_t remain;
410 loff_t offset, pinned_pages, i;
411 loff_t first_data_page, last_data_page, num_pages;
412 int shmem_page_index, shmem_page_offset;
413 int data_page_index, data_page_offset;
414 int page_length;
415 int ret;
416 uint64_t data_ptr = args->data_ptr;
280b713b 417 int do_bit17_swizzling;
eb01459f
EA
418
419 remain = args->size;
420
421 /* Pin the user pages containing the data. We can't fault while
422 * holding the struct mutex, yet we want to hold it while
423 * dereferencing the user data.
424 */
425 first_data_page = data_ptr / PAGE_SIZE;
426 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
427 num_pages = last_data_page - first_data_page + 1;
428
8e7d2b2c 429 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
430 if (user_pages == NULL)
431 return -ENOMEM;
432
433 down_read(&mm->mmap_sem);
434 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 435 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
436 up_read(&mm->mmap_sem);
437 if (pinned_pages < num_pages) {
438 ret = -EFAULT;
439 goto fail_put_user_pages;
440 }
441
280b713b
EA
442 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
443
76c1dec1
CW
444 ret = i915_mutex_lock_interruptible(dev);
445 if (ret)
446 goto fail_put_user_pages;
eb01459f 447
07f73f69
CW
448 ret = i915_gem_object_get_pages_or_evict(obj);
449 if (ret)
eb01459f
EA
450 goto fail_unlock;
451
452 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
453 args->size);
454 if (ret != 0)
455 goto fail_put_pages;
456
23010e43 457 obj_priv = to_intel_bo(obj);
eb01459f
EA
458 offset = args->offset;
459
460 while (remain > 0) {
461 /* Operation in this page
462 *
463 * shmem_page_index = page number within shmem file
464 * shmem_page_offset = offset within page in shmem file
465 * data_page_index = page number in get_user_pages return
466 * data_page_offset = offset with data_page_index page.
467 * page_length = bytes to copy for this page
468 */
469 shmem_page_index = offset / PAGE_SIZE;
470 shmem_page_offset = offset & ~PAGE_MASK;
471 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
472 data_page_offset = data_ptr & ~PAGE_MASK;
473
474 page_length = remain;
475 if ((shmem_page_offset + page_length) > PAGE_SIZE)
476 page_length = PAGE_SIZE - shmem_page_offset;
477 if ((data_page_offset + page_length) > PAGE_SIZE)
478 page_length = PAGE_SIZE - data_page_offset;
479
280b713b 480 if (do_bit17_swizzling) {
99a03df5 481 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 482 shmem_page_offset,
99a03df5
CW
483 user_pages[data_page_index],
484 data_page_offset,
485 page_length,
486 1);
487 } else {
488 slow_shmem_copy(user_pages[data_page_index],
489 data_page_offset,
490 obj_priv->pages[shmem_page_index],
491 shmem_page_offset,
492 page_length);
280b713b 493 }
eb01459f
EA
494
495 remain -= page_length;
496 data_ptr += page_length;
497 offset += page_length;
498 }
499
500fail_put_pages:
501 i915_gem_object_put_pages(obj);
502fail_unlock:
503 mutex_unlock(&dev->struct_mutex);
504fail_put_user_pages:
505 for (i = 0; i < pinned_pages; i++) {
506 SetPageDirty(user_pages[i]);
507 page_cache_release(user_pages[i]);
508 }
8e7d2b2c 509 drm_free_large(user_pages);
eb01459f
EA
510
511 return ret;
512}
513
673a394b
EA
514/**
515 * Reads data from the object referenced by handle.
516 *
517 * On error, the contents of *data are undefined.
518 */
519int
520i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521 struct drm_file *file_priv)
522{
523 struct drm_i915_gem_pread *args = data;
524 struct drm_gem_object *obj;
525 struct drm_i915_gem_object *obj_priv;
673a394b
EA
526 int ret;
527
528 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
529 if (obj == NULL)
bf79cb91 530 return -ENOENT;
23010e43 531 obj_priv = to_intel_bo(obj);
673a394b
EA
532
533 /* Bounds check source.
534 *
535 * XXX: This could use review for overflow issues...
536 */
537 if (args->offset > obj->size || args->size > obj->size ||
538 args->offset + args->size > obj->size) {
bc9025bd 539 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
540 return -EINVAL;
541 }
542
280b713b 543 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 544 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
545 } else {
546 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
547 if (ret != 0)
548 ret = i915_gem_shmem_pread_slow(dev, obj, args,
549 file_priv);
550 }
673a394b 551
bc9025bd 552 drm_gem_object_unreference_unlocked(obj);
673a394b 553
eb01459f 554 return ret;
673a394b
EA
555}
556
0839ccb8
KP
557/* This is the fast write path which cannot handle
558 * page faults in the source data
9b7530cc 559 */
0839ccb8
KP
560
561static inline int
562fast_user_write(struct io_mapping *mapping,
563 loff_t page_base, int page_offset,
564 char __user *user_data,
565 int length)
9b7530cc 566{
9b7530cc 567 char *vaddr_atomic;
0839ccb8 568 unsigned long unwritten;
9b7530cc 569
fca3ec01 570 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
571 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
572 user_data, length);
fca3ec01 573 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
574 if (unwritten)
575 return -EFAULT;
576 return 0;
577}
578
579/* Here's the write path which can sleep for
580 * page faults
581 */
582
ab34c226 583static inline void
3de09aa3
EA
584slow_kernel_write(struct io_mapping *mapping,
585 loff_t gtt_base, int gtt_offset,
586 struct page *user_page, int user_offset,
587 int length)
0839ccb8 588{
ab34c226
CW
589 char __iomem *dst_vaddr;
590 char *src_vaddr;
0839ccb8 591
ab34c226
CW
592 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
593 src_vaddr = kmap(user_page);
594
595 memcpy_toio(dst_vaddr + gtt_offset,
596 src_vaddr + user_offset,
597 length);
598
599 kunmap(user_page);
600 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
601}
602
40123c1f
EA
603static inline int
604fast_shmem_write(struct page **pages,
605 loff_t page_base, int page_offset,
606 char __user *data,
607 int length)
608{
609 char __iomem *vaddr;
d0088775 610 unsigned long unwritten;
40123c1f
EA
611
612 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
613 if (vaddr == NULL)
614 return -ENOMEM;
d0088775 615 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
616 kunmap_atomic(vaddr, KM_USER0);
617
d0088775
DA
618 if (unwritten)
619 return -EFAULT;
40123c1f
EA
620 return 0;
621}
622
3de09aa3
EA
623/**
624 * This is the fast pwrite path, where we copy the data directly from the
625 * user into the GTT, uncached.
626 */
673a394b 627static int
3de09aa3
EA
628i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
629 struct drm_i915_gem_pwrite *args,
630 struct drm_file *file_priv)
673a394b 631{
23010e43 632 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 633 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 634 ssize_t remain;
0839ccb8 635 loff_t offset, page_base;
673a394b 636 char __user *user_data;
0839ccb8
KP
637 int page_offset, page_length;
638 int ret;
673a394b
EA
639
640 user_data = (char __user *) (uintptr_t) args->data_ptr;
641 remain = args->size;
642 if (!access_ok(VERIFY_READ, user_data, remain))
643 return -EFAULT;
644
76c1dec1
CW
645 ret = i915_mutex_lock_interruptible(dev);
646 if (ret)
647 return ret;
673a394b 648
673a394b
EA
649 ret = i915_gem_object_pin(obj, 0);
650 if (ret) {
651 mutex_unlock(&dev->struct_mutex);
652 return ret;
653 }
2ef7eeaa 654 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
655 if (ret)
656 goto fail;
657
23010e43 658 obj_priv = to_intel_bo(obj);
673a394b 659 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
660
661 while (remain > 0) {
662 /* Operation in this page
663 *
0839ccb8
KP
664 * page_base = page offset within aperture
665 * page_offset = offset within page
666 * page_length = bytes to copy for this page
673a394b 667 */
0839ccb8
KP
668 page_base = (offset & ~(PAGE_SIZE-1));
669 page_offset = offset & (PAGE_SIZE-1);
670 page_length = remain;
671 if ((page_offset + remain) > PAGE_SIZE)
672 page_length = PAGE_SIZE - page_offset;
673
674 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
675 page_offset, user_data, page_length);
676
677 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
678 * source page isn't available. Return the error and we'll
679 * retry in the slow path.
0839ccb8 680 */
3de09aa3
EA
681 if (ret)
682 goto fail;
673a394b 683
0839ccb8
KP
684 remain -= page_length;
685 user_data += page_length;
686 offset += page_length;
673a394b 687 }
673a394b
EA
688
689fail:
690 i915_gem_object_unpin(obj);
691 mutex_unlock(&dev->struct_mutex);
692
693 return ret;
694}
695
3de09aa3
EA
696/**
697 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
698 * the memory and maps it using kmap_atomic for copying.
699 *
700 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
701 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
702 */
3043c60c 703static int
3de09aa3
EA
704i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
705 struct drm_i915_gem_pwrite *args,
706 struct drm_file *file_priv)
673a394b 707{
23010e43 708 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
709 drm_i915_private_t *dev_priv = dev->dev_private;
710 ssize_t remain;
711 loff_t gtt_page_base, offset;
712 loff_t first_data_page, last_data_page, num_pages;
713 loff_t pinned_pages, i;
714 struct page **user_pages;
715 struct mm_struct *mm = current->mm;
716 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 717 int ret;
3de09aa3
EA
718 uint64_t data_ptr = args->data_ptr;
719
720 remain = args->size;
721
722 /* Pin the user pages containing the data. We can't fault while
723 * holding the struct mutex, and all of the pwrite implementations
724 * want to hold it while dereferencing the user data.
725 */
726 first_data_page = data_ptr / PAGE_SIZE;
727 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
728 num_pages = last_data_page - first_data_page + 1;
729
8e7d2b2c 730 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
731 if (user_pages == NULL)
732 return -ENOMEM;
733
734 down_read(&mm->mmap_sem);
735 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
736 num_pages, 0, 0, user_pages, NULL);
737 up_read(&mm->mmap_sem);
738 if (pinned_pages < num_pages) {
739 ret = -EFAULT;
740 goto out_unpin_pages;
741 }
673a394b 742
76c1dec1
CW
743 ret = i915_mutex_lock_interruptible(dev);
744 if (ret)
745 goto out_unpin_pages;
746
3de09aa3
EA
747 ret = i915_gem_object_pin(obj, 0);
748 if (ret)
749 goto out_unlock;
750
751 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
752 if (ret)
753 goto out_unpin_object;
754
23010e43 755 obj_priv = to_intel_bo(obj);
3de09aa3
EA
756 offset = obj_priv->gtt_offset + args->offset;
757
758 while (remain > 0) {
759 /* Operation in this page
760 *
761 * gtt_page_base = page offset within aperture
762 * gtt_page_offset = offset within page in aperture
763 * data_page_index = page number in get_user_pages return
764 * data_page_offset = offset with data_page_index page.
765 * page_length = bytes to copy for this page
766 */
767 gtt_page_base = offset & PAGE_MASK;
768 gtt_page_offset = offset & ~PAGE_MASK;
769 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
770 data_page_offset = data_ptr & ~PAGE_MASK;
771
772 page_length = remain;
773 if ((gtt_page_offset + page_length) > PAGE_SIZE)
774 page_length = PAGE_SIZE - gtt_page_offset;
775 if ((data_page_offset + page_length) > PAGE_SIZE)
776 page_length = PAGE_SIZE - data_page_offset;
777
ab34c226
CW
778 slow_kernel_write(dev_priv->mm.gtt_mapping,
779 gtt_page_base, gtt_page_offset,
780 user_pages[data_page_index],
781 data_page_offset,
782 page_length);
3de09aa3
EA
783
784 remain -= page_length;
785 offset += page_length;
786 data_ptr += page_length;
787 }
788
789out_unpin_object:
790 i915_gem_object_unpin(obj);
791out_unlock:
792 mutex_unlock(&dev->struct_mutex);
793out_unpin_pages:
794 for (i = 0; i < pinned_pages; i++)
795 page_cache_release(user_pages[i]);
8e7d2b2c 796 drm_free_large(user_pages);
3de09aa3
EA
797
798 return ret;
799}
800
40123c1f
EA
801/**
802 * This is the fast shmem pwrite path, which attempts to directly
803 * copy_from_user into the kmapped pages backing the object.
804 */
3043c60c 805static int
40123c1f
EA
806i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
807 struct drm_i915_gem_pwrite *args,
808 struct drm_file *file_priv)
673a394b 809{
23010e43 810 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
811 ssize_t remain;
812 loff_t offset, page_base;
813 char __user *user_data;
814 int page_offset, page_length;
673a394b 815 int ret;
40123c1f
EA
816
817 user_data = (char __user *) (uintptr_t) args->data_ptr;
818 remain = args->size;
673a394b 819
76c1dec1
CW
820 ret = i915_mutex_lock_interruptible(dev);
821 if (ret)
822 return ret;
673a394b 823
4bdadb97 824 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
825 if (ret != 0)
826 goto fail_unlock;
673a394b 827
e47c68e9 828 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
829 if (ret != 0)
830 goto fail_put_pages;
831
23010e43 832 obj_priv = to_intel_bo(obj);
40123c1f
EA
833 offset = args->offset;
834 obj_priv->dirty = 1;
835
836 while (remain > 0) {
837 /* Operation in this page
838 *
839 * page_base = page offset within aperture
840 * page_offset = offset within page
841 * page_length = bytes to copy for this page
842 */
843 page_base = (offset & ~(PAGE_SIZE-1));
844 page_offset = offset & (PAGE_SIZE-1);
845 page_length = remain;
846 if ((page_offset + remain) > PAGE_SIZE)
847 page_length = PAGE_SIZE - page_offset;
848
849 ret = fast_shmem_write(obj_priv->pages,
850 page_base, page_offset,
851 user_data, page_length);
852 if (ret)
853 goto fail_put_pages;
854
855 remain -= page_length;
856 user_data += page_length;
857 offset += page_length;
858 }
859
860fail_put_pages:
861 i915_gem_object_put_pages(obj);
862fail_unlock:
863 mutex_unlock(&dev->struct_mutex);
864
865 return ret;
866}
867
868/**
869 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
870 * the memory and maps it using kmap_atomic for copying.
871 *
872 * This avoids taking mmap_sem for faulting on the user's address while the
873 * struct_mutex is held.
874 */
875static int
876i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
877 struct drm_i915_gem_pwrite *args,
878 struct drm_file *file_priv)
879{
23010e43 880 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
881 struct mm_struct *mm = current->mm;
882 struct page **user_pages;
883 ssize_t remain;
884 loff_t offset, pinned_pages, i;
885 loff_t first_data_page, last_data_page, num_pages;
886 int shmem_page_index, shmem_page_offset;
887 int data_page_index, data_page_offset;
888 int page_length;
889 int ret;
890 uint64_t data_ptr = args->data_ptr;
280b713b 891 int do_bit17_swizzling;
40123c1f
EA
892
893 remain = args->size;
894
895 /* Pin the user pages containing the data. We can't fault while
896 * holding the struct mutex, and all of the pwrite implementations
897 * want to hold it while dereferencing the user data.
898 */
899 first_data_page = data_ptr / PAGE_SIZE;
900 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
901 num_pages = last_data_page - first_data_page + 1;
902
8e7d2b2c 903 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
904 if (user_pages == NULL)
905 return -ENOMEM;
906
907 down_read(&mm->mmap_sem);
908 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
909 num_pages, 0, 0, user_pages, NULL);
910 up_read(&mm->mmap_sem);
911 if (pinned_pages < num_pages) {
912 ret = -EFAULT;
913 goto fail_put_user_pages;
673a394b
EA
914 }
915
280b713b
EA
916 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
917
76c1dec1
CW
918 ret = i915_mutex_lock_interruptible(dev);
919 if (ret)
920 goto fail_put_user_pages;
40123c1f 921
07f73f69
CW
922 ret = i915_gem_object_get_pages_or_evict(obj);
923 if (ret)
40123c1f
EA
924 goto fail_unlock;
925
926 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
927 if (ret != 0)
928 goto fail_put_pages;
929
23010e43 930 obj_priv = to_intel_bo(obj);
673a394b 931 offset = args->offset;
40123c1f 932 obj_priv->dirty = 1;
673a394b 933
40123c1f
EA
934 while (remain > 0) {
935 /* Operation in this page
936 *
937 * shmem_page_index = page number within shmem file
938 * shmem_page_offset = offset within page in shmem file
939 * data_page_index = page number in get_user_pages return
940 * data_page_offset = offset with data_page_index page.
941 * page_length = bytes to copy for this page
942 */
943 shmem_page_index = offset / PAGE_SIZE;
944 shmem_page_offset = offset & ~PAGE_MASK;
945 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
946 data_page_offset = data_ptr & ~PAGE_MASK;
947
948 page_length = remain;
949 if ((shmem_page_offset + page_length) > PAGE_SIZE)
950 page_length = PAGE_SIZE - shmem_page_offset;
951 if ((data_page_offset + page_length) > PAGE_SIZE)
952 page_length = PAGE_SIZE - data_page_offset;
953
280b713b 954 if (do_bit17_swizzling) {
99a03df5 955 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
956 shmem_page_offset,
957 user_pages[data_page_index],
958 data_page_offset,
99a03df5
CW
959 page_length,
960 0);
961 } else {
962 slow_shmem_copy(obj_priv->pages[shmem_page_index],
963 shmem_page_offset,
964 user_pages[data_page_index],
965 data_page_offset,
966 page_length);
280b713b 967 }
40123c1f
EA
968
969 remain -= page_length;
970 data_ptr += page_length;
971 offset += page_length;
673a394b
EA
972 }
973
40123c1f
EA
974fail_put_pages:
975 i915_gem_object_put_pages(obj);
976fail_unlock:
673a394b 977 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
978fail_put_user_pages:
979 for (i = 0; i < pinned_pages; i++)
980 page_cache_release(user_pages[i]);
8e7d2b2c 981 drm_free_large(user_pages);
673a394b 982
40123c1f 983 return ret;
673a394b
EA
984}
985
986/**
987 * Writes data to the object referenced by handle.
988 *
989 * On error, the contents of the buffer that were to be modified are undefined.
990 */
991int
992i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
993 struct drm_file *file_priv)
994{
995 struct drm_i915_gem_pwrite *args = data;
996 struct drm_gem_object *obj;
997 struct drm_i915_gem_object *obj_priv;
998 int ret = 0;
999
1000 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1001 if (obj == NULL)
bf79cb91 1002 return -ENOENT;
23010e43 1003 obj_priv = to_intel_bo(obj);
673a394b
EA
1004
1005 /* Bounds check destination.
1006 *
1007 * XXX: This could use review for overflow issues...
1008 */
1009 if (args->offset > obj->size || args->size > obj->size ||
1010 args->offset + args->size > obj->size) {
bc9025bd 1011 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1012 return -EINVAL;
1013 }
1014
1015 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1016 * it would end up going through the fenced access, and we'll get
1017 * different detiling behavior between reading and writing.
1018 * pread/pwrite currently are reading and writing from the CPU
1019 * perspective, requiring manual detiling by the client.
1020 */
71acb5eb
DA
1021 if (obj_priv->phys_obj)
1022 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
1023 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
1024 dev->gtt_total != 0 &&
1025 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
1026 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
1027 if (ret == -EFAULT) {
1028 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
1029 file_priv);
1030 }
280b713b
EA
1031 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1032 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
1033 } else {
1034 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1035 if (ret == -EFAULT) {
1036 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1037 file_priv);
1038 }
1039 }
673a394b
EA
1040
1041#if WATCH_PWRITE
1042 if (ret)
1043 DRM_INFO("pwrite failed %d\n", ret);
1044#endif
1045
bc9025bd 1046 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1047
1048 return ret;
1049}
1050
1051/**
2ef7eeaa
EA
1052 * Called when user space prepares to use an object with the CPU, either
1053 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1054 */
1055int
1056i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1057 struct drm_file *file_priv)
1058{
a09ba7fa 1059 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1060 struct drm_i915_gem_set_domain *args = data;
1061 struct drm_gem_object *obj;
652c393a 1062 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1063 uint32_t read_domains = args->read_domains;
1064 uint32_t write_domain = args->write_domain;
673a394b
EA
1065 int ret;
1066
1067 if (!(dev->driver->driver_features & DRIVER_GEM))
1068 return -ENODEV;
1069
2ef7eeaa 1070 /* Only handle setting domains to types used by the CPU. */
21d509e3 1071 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1072 return -EINVAL;
1073
21d509e3 1074 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1075 return -EINVAL;
1076
1077 /* Having something in the write domain implies it's in the read
1078 * domain, and only that read domain. Enforce that in the request.
1079 */
1080 if (write_domain != 0 && read_domains != write_domain)
1081 return -EINVAL;
1082
673a394b
EA
1083 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1084 if (obj == NULL)
bf79cb91 1085 return -ENOENT;
23010e43 1086 obj_priv = to_intel_bo(obj);
673a394b 1087
76c1dec1
CW
1088 ret = i915_mutex_lock_interruptible(dev);
1089 if (ret) {
1090 drm_gem_object_unreference_unlocked(obj);
1091 return ret;
1092 }
652c393a
JB
1093
1094 intel_mark_busy(dev, obj);
1095
2ef7eeaa
EA
1096 if (read_domains & I915_GEM_DOMAIN_GTT) {
1097 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1098
a09ba7fa
EA
1099 /* Update the LRU on the fence for the CPU access that's
1100 * about to occur.
1101 */
1102 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1103 struct drm_i915_fence_reg *reg =
1104 &dev_priv->fence_regs[obj_priv->fence_reg];
1105 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1106 &dev_priv->mm.fence_list);
1107 }
1108
02354392
EA
1109 /* Silently promote "you're not bound, there was nothing to do"
1110 * to success, since the client was just asking us to
1111 * make sure everything was done.
1112 */
1113 if (ret == -EINVAL)
1114 ret = 0;
2ef7eeaa 1115 } else {
e47c68e9 1116 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1117 }
1118
7d1c4804
CW
1119 /* Maintain LRU order of "inactive" objects */
1120 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1121 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1122
673a394b
EA
1123 drm_gem_object_unreference(obj);
1124 mutex_unlock(&dev->struct_mutex);
1125 return ret;
1126}
1127
1128/**
1129 * Called when user space has done writes to this buffer
1130 */
1131int
1132i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1133 struct drm_file *file_priv)
1134{
1135 struct drm_i915_gem_sw_finish *args = data;
1136 struct drm_gem_object *obj;
673a394b
EA
1137 int ret = 0;
1138
1139 if (!(dev->driver->driver_features & DRIVER_GEM))
1140 return -ENODEV;
1141
673a394b 1142 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
76c1dec1 1143 if (obj == NULL)
bf79cb91 1144 return -ENOENT;
76c1dec1
CW
1145
1146 ret = i915_mutex_lock_interruptible(dev);
1147 if (ret) {
1148 drm_gem_object_unreference_unlocked(obj);
1149 return ret;
673a394b
EA
1150 }
1151
673a394b 1152 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1153 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1154 i915_gem_object_flush_cpu_write_domain(obj);
1155
673a394b
EA
1156 drm_gem_object_unreference(obj);
1157 mutex_unlock(&dev->struct_mutex);
1158 return ret;
1159}
1160
1161/**
1162 * Maps the contents of an object, returning the address it is mapped
1163 * into.
1164 *
1165 * While the mapping holds a reference on the contents of the object, it doesn't
1166 * imply a ref on the object itself.
1167 */
1168int
1169i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1170 struct drm_file *file_priv)
1171{
1172 struct drm_i915_gem_mmap *args = data;
1173 struct drm_gem_object *obj;
1174 loff_t offset;
1175 unsigned long addr;
1176
1177 if (!(dev->driver->driver_features & DRIVER_GEM))
1178 return -ENODEV;
1179
1180 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1181 if (obj == NULL)
bf79cb91 1182 return -ENOENT;
673a394b
EA
1183
1184 offset = args->offset;
1185
1186 down_write(&current->mm->mmap_sem);
1187 addr = do_mmap(obj->filp, 0, args->size,
1188 PROT_READ | PROT_WRITE, MAP_SHARED,
1189 args->offset);
1190 up_write(&current->mm->mmap_sem);
bc9025bd 1191 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1192 if (IS_ERR((void *)addr))
1193 return addr;
1194
1195 args->addr_ptr = (uint64_t) addr;
1196
1197 return 0;
1198}
1199
de151cf6
JB
1200/**
1201 * i915_gem_fault - fault a page into the GTT
1202 * vma: VMA in question
1203 * vmf: fault info
1204 *
1205 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1206 * from userspace. The fault handler takes care of binding the object to
1207 * the GTT (if needed), allocating and programming a fence register (again,
1208 * only if needed based on whether the old reg is still valid or the object
1209 * is tiled) and inserting a new PTE into the faulting process.
1210 *
1211 * Note that the faulting process may involve evicting existing objects
1212 * from the GTT and/or fence registers to make room. So performance may
1213 * suffer if the GTT working set is large or there are few fence registers
1214 * left.
1215 */
1216int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1217{
1218 struct drm_gem_object *obj = vma->vm_private_data;
1219 struct drm_device *dev = obj->dev;
7d1c4804 1220 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1221 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1222 pgoff_t page_offset;
1223 unsigned long pfn;
1224 int ret = 0;
0f973f27 1225 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1226
1227 /* We don't use vmf->pgoff since that has the fake offset */
1228 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1229 PAGE_SHIFT;
1230
1231 /* Now bind it into the GTT if needed */
1232 mutex_lock(&dev->struct_mutex);
1233 if (!obj_priv->gtt_space) {
e67b8ce1 1234 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1235 if (ret)
1236 goto unlock;
07f4f3e8 1237
07f4f3e8 1238 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1239 if (ret)
1240 goto unlock;
de151cf6
JB
1241 }
1242
1243 /* Need a new fence register? */
a09ba7fa 1244 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1245 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1246 if (ret)
1247 goto unlock;
d9ddcb96 1248 }
de151cf6 1249
7d1c4804
CW
1250 if (i915_gem_object_is_inactive(obj_priv))
1251 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1252
de151cf6
JB
1253 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1254 page_offset;
1255
1256 /* Finally, remap it using the new GTT offset */
1257 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1258unlock:
de151cf6
JB
1259 mutex_unlock(&dev->struct_mutex);
1260
1261 switch (ret) {
c715089f
CW
1262 case 0:
1263 case -ERESTARTSYS:
1264 return VM_FAULT_NOPAGE;
de151cf6
JB
1265 case -ENOMEM:
1266 case -EAGAIN:
1267 return VM_FAULT_OOM;
de151cf6 1268 default:
c715089f 1269 return VM_FAULT_SIGBUS;
de151cf6
JB
1270 }
1271}
1272
1273/**
1274 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1275 * @obj: obj in question
1276 *
1277 * GEM memory mapping works by handing back to userspace a fake mmap offset
1278 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1279 * up the object based on the offset and sets up the various memory mapping
1280 * structures.
1281 *
1282 * This routine allocates and attaches a fake offset for @obj.
1283 */
1284static int
1285i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1286{
1287 struct drm_device *dev = obj->dev;
1288 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1289 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1290 struct drm_map_list *list;
f77d390c 1291 struct drm_local_map *map;
de151cf6
JB
1292 int ret = 0;
1293
1294 /* Set the object up for mmap'ing */
1295 list = &obj->map_list;
9a298b2a 1296 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1297 if (!list->map)
1298 return -ENOMEM;
1299
1300 map = list->map;
1301 map->type = _DRM_GEM;
1302 map->size = obj->size;
1303 map->handle = obj;
1304
1305 /* Get a DRM GEM mmap offset allocated... */
1306 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1307 obj->size / PAGE_SIZE, 0, 0);
1308 if (!list->file_offset_node) {
1309 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1310 ret = -ENOSPC;
de151cf6
JB
1311 goto out_free_list;
1312 }
1313
1314 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1315 obj->size / PAGE_SIZE, 0);
1316 if (!list->file_offset_node) {
1317 ret = -ENOMEM;
1318 goto out_free_list;
1319 }
1320
1321 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1322 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1323 if (ret) {
de151cf6
JB
1324 DRM_ERROR("failed to add to map hash\n");
1325 goto out_free_mm;
1326 }
1327
1328 /* By now we should be all set, any drm_mmap request on the offset
1329 * below will get to our mmap & fault handler */
1330 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1331
1332 return 0;
1333
1334out_free_mm:
1335 drm_mm_put_block(list->file_offset_node);
1336out_free_list:
9a298b2a 1337 kfree(list->map);
de151cf6
JB
1338
1339 return ret;
1340}
1341
901782b2
CW
1342/**
1343 * i915_gem_release_mmap - remove physical page mappings
1344 * @obj: obj in question
1345 *
af901ca1 1346 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1347 * relinquish ownership of the pages back to the system.
1348 *
1349 * It is vital that we remove the page mapping if we have mapped a tiled
1350 * object through the GTT and then lose the fence register due to
1351 * resource pressure. Similarly if the object has been moved out of the
1352 * aperture, than pages mapped into userspace must be revoked. Removing the
1353 * mapping will then trigger a page fault on the next user access, allowing
1354 * fixup by i915_gem_fault().
1355 */
d05ca301 1356void
901782b2
CW
1357i915_gem_release_mmap(struct drm_gem_object *obj)
1358{
1359 struct drm_device *dev = obj->dev;
23010e43 1360 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1361
1362 if (dev->dev_mapping)
1363 unmap_mapping_range(dev->dev_mapping,
1364 obj_priv->mmap_offset, obj->size, 1);
1365}
1366
ab00b3e5
JB
1367static void
1368i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1369{
1370 struct drm_device *dev = obj->dev;
23010e43 1371 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1372 struct drm_gem_mm *mm = dev->mm_private;
1373 struct drm_map_list *list;
1374
1375 list = &obj->map_list;
1376 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1377
1378 if (list->file_offset_node) {
1379 drm_mm_put_block(list->file_offset_node);
1380 list->file_offset_node = NULL;
1381 }
1382
1383 if (list->map) {
9a298b2a 1384 kfree(list->map);
ab00b3e5
JB
1385 list->map = NULL;
1386 }
1387
1388 obj_priv->mmap_offset = 0;
1389}
1390
de151cf6
JB
1391/**
1392 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1393 * @obj: object to check
1394 *
1395 * Return the required GTT alignment for an object, taking into account
1396 * potential fence register mapping if needed.
1397 */
1398static uint32_t
1399i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1400{
1401 struct drm_device *dev = obj->dev;
23010e43 1402 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1403 int start, i;
1404
1405 /*
1406 * Minimum alignment is 4k (GTT page size), but might be greater
1407 * if a fence register is needed for the object.
1408 */
a6c45cf0 1409 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1410 return 4096;
1411
1412 /*
1413 * Previous chips need to be aligned to the size of the smallest
1414 * fence register that can contain the object.
1415 */
a6c45cf0 1416 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1417 start = 1024*1024;
1418 else
1419 start = 512*1024;
1420
1421 for (i = start; i < obj->size; i <<= 1)
1422 ;
1423
1424 return i;
1425}
1426
1427/**
1428 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1429 * @dev: DRM device
1430 * @data: GTT mapping ioctl data
1431 * @file_priv: GEM object info
1432 *
1433 * Simply returns the fake offset to userspace so it can mmap it.
1434 * The mmap call will end up in drm_gem_mmap(), which will set things
1435 * up so we can get faults in the handler above.
1436 *
1437 * The fault handler will take care of binding the object into the GTT
1438 * (since it may have been evicted to make room for something), allocating
1439 * a fence register, and mapping the appropriate aperture address into
1440 * userspace.
1441 */
1442int
1443i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1444 struct drm_file *file_priv)
1445{
1446 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1447 struct drm_gem_object *obj;
1448 struct drm_i915_gem_object *obj_priv;
1449 int ret;
1450
1451 if (!(dev->driver->driver_features & DRIVER_GEM))
1452 return -ENODEV;
1453
1454 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1455 if (obj == NULL)
bf79cb91 1456 return -ENOENT;
de151cf6 1457
76c1dec1
CW
1458 ret = i915_mutex_lock_interruptible(dev);
1459 if (ret) {
1460 drm_gem_object_unreference_unlocked(obj);
1461 return ret;
1462 }
de151cf6 1463
23010e43 1464 obj_priv = to_intel_bo(obj);
de151cf6 1465
ab18282d
CW
1466 if (obj_priv->madv != I915_MADV_WILLNEED) {
1467 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1468 drm_gem_object_unreference(obj);
1469 mutex_unlock(&dev->struct_mutex);
1470 return -EINVAL;
1471 }
1472
1473
de151cf6
JB
1474 if (!obj_priv->mmap_offset) {
1475 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1476 if (ret) {
1477 drm_gem_object_unreference(obj);
1478 mutex_unlock(&dev->struct_mutex);
de151cf6 1479 return ret;
13af1062 1480 }
de151cf6
JB
1481 }
1482
1483 args->offset = obj_priv->mmap_offset;
1484
de151cf6
JB
1485 /*
1486 * Pull it into the GTT so that we have a page list (makes the
1487 * initial fault faster and any subsequent flushing possible).
1488 */
1489 if (!obj_priv->agp_mem) {
e67b8ce1 1490 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1491 if (ret) {
1492 drm_gem_object_unreference(obj);
1493 mutex_unlock(&dev->struct_mutex);
1494 return ret;
1495 }
de151cf6
JB
1496 }
1497
1498 drm_gem_object_unreference(obj);
1499 mutex_unlock(&dev->struct_mutex);
1500
1501 return 0;
1502}
1503
6911a9b8 1504void
856fa198 1505i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1506{
23010e43 1507 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1508 int page_count = obj->size / PAGE_SIZE;
1509 int i;
1510
856fa198 1511 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1512 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1513
856fa198
EA
1514 if (--obj_priv->pages_refcount != 0)
1515 return;
673a394b 1516
280b713b
EA
1517 if (obj_priv->tiling_mode != I915_TILING_NONE)
1518 i915_gem_object_save_bit_17_swizzle(obj);
1519
3ef94daa 1520 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1521 obj_priv->dirty = 0;
3ef94daa
CW
1522
1523 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1524 if (obj_priv->dirty)
1525 set_page_dirty(obj_priv->pages[i]);
1526
1527 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1528 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1529
1530 page_cache_release(obj_priv->pages[i]);
1531 }
673a394b
EA
1532 obj_priv->dirty = 0;
1533
8e7d2b2c 1534 drm_free_large(obj_priv->pages);
856fa198 1535 obj_priv->pages = NULL;
673a394b
EA
1536}
1537
a56ba56c
CW
1538static uint32_t
1539i915_gem_next_request_seqno(struct drm_device *dev,
1540 struct intel_ring_buffer *ring)
1541{
1542 drm_i915_private_t *dev_priv = dev->dev_private;
1543
1544 ring->outstanding_lazy_request = true;
1545 return dev_priv->next_seqno;
1546}
1547
673a394b 1548static void
617dbe27 1549i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1550 struct intel_ring_buffer *ring)
673a394b 1551{
a56ba56c 1552 struct drm_device *dev = obj->dev;
23010e43 1553 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1554 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1555
852835f3
ZN
1556 BUG_ON(ring == NULL);
1557 obj_priv->ring = ring;
673a394b
EA
1558
1559 /* Add a reference if we're newly entering the active list. */
1560 if (!obj_priv->active) {
1561 drm_gem_object_reference(obj);
1562 obj_priv->active = 1;
1563 }
e35a41de 1564
673a394b 1565 /* Move from whatever list we were on to the tail of execution. */
852835f3 1566 list_move_tail(&obj_priv->list, &ring->active_list);
a56ba56c 1567 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1568}
1569
ce44b0ea
EA
1570static void
1571i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1572{
1573 struct drm_device *dev = obj->dev;
1574 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1575 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1576
1577 BUG_ON(!obj_priv->active);
1578 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1579 obj_priv->last_rendering_seqno = 0;
1580}
673a394b 1581
963b4836
CW
1582/* Immediately discard the backing storage */
1583static void
1584i915_gem_object_truncate(struct drm_gem_object *obj)
1585{
23010e43 1586 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1587 struct inode *inode;
963b4836 1588
ae9fed6b
CW
1589 /* Our goal here is to return as much of the memory as
1590 * is possible back to the system as we are called from OOM.
1591 * To do this we must instruct the shmfs to drop all of its
1592 * backing pages, *now*. Here we mirror the actions taken
1593 * when by shmem_delete_inode() to release the backing store.
1594 */
bb6baf76 1595 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1596 truncate_inode_pages(inode->i_mapping, 0);
1597 if (inode->i_op->truncate_range)
1598 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1599
1600 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1601}
1602
1603static inline int
1604i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1605{
1606 return obj_priv->madv == I915_MADV_DONTNEED;
1607}
1608
673a394b
EA
1609static void
1610i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1611{
1612 struct drm_device *dev = obj->dev;
1613 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1614 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1615
673a394b 1616 if (obj_priv->pin_count != 0)
f13d3f73 1617 list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
673a394b
EA
1618 else
1619 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1620
99fcb766
DV
1621 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1622
ce44b0ea 1623 obj_priv->last_rendering_seqno = 0;
852835f3 1624 obj_priv->ring = NULL;
673a394b
EA
1625 if (obj_priv->active) {
1626 obj_priv->active = 0;
1627 drm_gem_object_unreference(obj);
1628 }
23bc5982 1629 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1630}
1631
9220434a 1632static void
63560396 1633i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1634 uint32_t flush_domains,
852835f3 1635 struct intel_ring_buffer *ring)
63560396
DV
1636{
1637 drm_i915_private_t *dev_priv = dev->dev_private;
1638 struct drm_i915_gem_object *obj_priv, *next;
1639
1640 list_for_each_entry_safe(obj_priv, next,
1641 &dev_priv->mm.gpu_write_list,
1642 gpu_write_list) {
a8089e84 1643 struct drm_gem_object *obj = &obj_priv->base;
63560396 1644
2b6efaa4
CW
1645 if (obj->write_domain & flush_domains &&
1646 obj_priv->ring == ring) {
63560396
DV
1647 uint32_t old_write_domain = obj->write_domain;
1648
1649 obj->write_domain = 0;
1650 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1651 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1652
1653 /* update the fence lru list */
007cc8ac
DV
1654 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1655 struct drm_i915_fence_reg *reg =
1656 &dev_priv->fence_regs[obj_priv->fence_reg];
1657 list_move_tail(&reg->lru_list,
63560396 1658 &dev_priv->mm.fence_list);
007cc8ac 1659 }
63560396
DV
1660
1661 trace_i915_gem_object_change_domain(obj,
1662 obj->read_domains,
1663 old_write_domain);
1664 }
1665 }
1666}
8187a2b7 1667
5a5a0c64 1668uint32_t
8a1a49f9 1669i915_add_request(struct drm_device *dev,
f787a5f5 1670 struct drm_file *file,
8dc5d147 1671 struct drm_i915_gem_request *request,
8a1a49f9 1672 struct intel_ring_buffer *ring)
673a394b
EA
1673{
1674 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1675 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1676 uint32_t seqno;
1677 int was_empty;
673a394b 1678
f787a5f5
CW
1679 if (file != NULL)
1680 file_priv = file->driver_priv;
b962442e 1681
8dc5d147
CW
1682 if (request == NULL) {
1683 request = kzalloc(sizeof(*request), GFP_KERNEL);
1684 if (request == NULL)
1685 return 0;
1686 }
673a394b 1687
f787a5f5 1688 seqno = ring->add_request(dev, ring, 0);
a56ba56c 1689 ring->outstanding_lazy_request = false;
673a394b
EA
1690
1691 request->seqno = seqno;
852835f3 1692 request->ring = ring;
673a394b 1693 request->emitted_jiffies = jiffies;
852835f3
ZN
1694 was_empty = list_empty(&ring->request_list);
1695 list_add_tail(&request->list, &ring->request_list);
1696
f787a5f5 1697 if (file_priv) {
1c25595f 1698 spin_lock(&file_priv->mm.lock);
f787a5f5 1699 request->file_priv = file_priv;
b962442e 1700 list_add_tail(&request->client_list,
f787a5f5 1701 &file_priv->mm.request_list);
1c25595f 1702 spin_unlock(&file_priv->mm.lock);
b962442e 1703 }
673a394b 1704
f65d9421 1705 if (!dev_priv->mm.suspended) {
b3b079db
CW
1706 mod_timer(&dev_priv->hangcheck_timer,
1707 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1708 if (was_empty)
b3b079db
CW
1709 queue_delayed_work(dev_priv->wq,
1710 &dev_priv->mm.retire_work, HZ);
f65d9421 1711 }
673a394b
EA
1712 return seqno;
1713}
1714
1715/**
1716 * Command execution barrier
1717 *
1718 * Ensures that all commands in the ring are finished
1719 * before signalling the CPU
1720 */
8a1a49f9 1721static void
852835f3 1722i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1723{
673a394b 1724 uint32_t flush_domains = 0;
673a394b
EA
1725
1726 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1727 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1728 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1729
1730 ring->flush(dev, ring,
1731 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1732}
1733
f787a5f5
CW
1734static inline void
1735i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1736{
1c25595f
CW
1737 struct drm_i915_file_private *file_priv = request->file_priv;
1738
1739 if (!file_priv)
1740 return;
1741
1742 spin_lock(&file_priv->mm.lock);
1743 list_del(&request->client_list);
1744 request->file_priv = NULL;
1745 spin_unlock(&file_priv->mm.lock);
673a394b
EA
1746}
1747
dfaae392
CW
1748static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1749 struct intel_ring_buffer *ring)
9375e446 1750{
dfaae392
CW
1751 while (!list_empty(&ring->request_list)) {
1752 struct drm_i915_gem_request *request;
9375e446 1753
dfaae392
CW
1754 request = list_first_entry(&ring->request_list,
1755 struct drm_i915_gem_request,
1756 list);
1757
1758 list_del(&request->list);
f787a5f5 1759 i915_gem_request_remove_from_client(request);
dfaae392
CW
1760 kfree(request);
1761 }
1762
1763 while (!list_empty(&ring->active_list)) {
9375e446
CW
1764 struct drm_i915_gem_object *obj_priv;
1765
dfaae392 1766 obj_priv = list_first_entry(&ring->active_list,
9375e446
CW
1767 struct drm_i915_gem_object,
1768 list);
1769
1770 obj_priv->base.write_domain = 0;
dfaae392 1771 list_del_init(&obj_priv->gpu_write_list);
9375e446
CW
1772 i915_gem_object_move_to_inactive(&obj_priv->base);
1773 }
1774}
1775
dfaae392 1776void i915_gem_reset_lists(struct drm_device *dev)
77f01230
CW
1777{
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 struct drm_i915_gem_object *obj_priv;
1780
dfaae392
CW
1781 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1782 if (HAS_BSD(dev))
1783 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1784
1785 /* Remove anything from the flushing lists. The GPU cache is likely
1786 * to be lost on reset along with the data, so simply move the
1787 * lost bo to the inactive list.
1788 */
1789 while (!list_empty(&dev_priv->mm.flushing_list)) {
1790 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1791 struct drm_i915_gem_object,
1792 list);
1793
1794 obj_priv->base.write_domain = 0;
1795 list_del_init(&obj_priv->gpu_write_list);
1796 i915_gem_object_move_to_inactive(&obj_priv->base);
1797 }
1798
1799 /* Move everything out of the GPU domains to ensure we do any
1800 * necessary invalidation upon reuse.
1801 */
77f01230
CW
1802 list_for_each_entry(obj_priv,
1803 &dev_priv->mm.inactive_list,
1804 list)
1805 {
1806 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1807 }
1808}
1809
673a394b
EA
1810/**
1811 * This function clears the request list as sequence numbers are passed.
1812 */
b09a1fec
CW
1813static void
1814i915_gem_retire_requests_ring(struct drm_device *dev,
1815 struct intel_ring_buffer *ring)
673a394b
EA
1816{
1817 drm_i915_private_t *dev_priv = dev->dev_private;
1818 uint32_t seqno;
1819
b84d5f0c
CW
1820 if (!ring->status_page.page_addr ||
1821 list_empty(&ring->request_list))
6c0594a3
KW
1822 return;
1823
23bc5982
CW
1824 WARN_ON(i915_verify_lists(dev));
1825
f787a5f5 1826 seqno = ring->get_seqno(dev, ring);
852835f3 1827 while (!list_empty(&ring->request_list)) {
673a394b 1828 struct drm_i915_gem_request *request;
673a394b 1829
852835f3 1830 request = list_first_entry(&ring->request_list,
673a394b
EA
1831 struct drm_i915_gem_request,
1832 list);
673a394b 1833
dfaae392 1834 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1835 break;
1836
1837 trace_i915_gem_request_retire(dev, request->seqno);
1838
1839 list_del(&request->list);
f787a5f5 1840 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1841 kfree(request);
1842 }
1843
1844 /* Move any buffers on the active list that are no longer referenced
1845 * by the ringbuffer to the flushing/inactive lists as appropriate.
1846 */
1847 while (!list_empty(&ring->active_list)) {
1848 struct drm_gem_object *obj;
1849 struct drm_i915_gem_object *obj_priv;
1850
1851 obj_priv = list_first_entry(&ring->active_list,
1852 struct drm_i915_gem_object,
1853 list);
673a394b 1854
dfaae392 1855 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1856 break;
b84d5f0c
CW
1857
1858 obj = &obj_priv->base;
b84d5f0c
CW
1859 if (obj->write_domain != 0)
1860 i915_gem_object_move_to_flushing(obj);
1861 else
1862 i915_gem_object_move_to_inactive(obj);
673a394b 1863 }
9d34e5db
CW
1864
1865 if (unlikely (dev_priv->trace_irq_seqno &&
1866 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7 1867 ring->user_irq_put(dev, ring);
9d34e5db
CW
1868 dev_priv->trace_irq_seqno = 0;
1869 }
23bc5982
CW
1870
1871 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1872}
1873
b09a1fec
CW
1874void
1875i915_gem_retire_requests(struct drm_device *dev)
1876{
1877 drm_i915_private_t *dev_priv = dev->dev_private;
1878
be72615b
CW
1879 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1880 struct drm_i915_gem_object *obj_priv, *tmp;
1881
1882 /* We must be careful that during unbind() we do not
1883 * accidentally infinitely recurse into retire requests.
1884 * Currently:
1885 * retire -> free -> unbind -> wait -> retire_ring
1886 */
1887 list_for_each_entry_safe(obj_priv, tmp,
1888 &dev_priv->mm.deferred_free_list,
1889 list)
1890 i915_gem_free_object_tail(&obj_priv->base);
1891 }
1892
b09a1fec
CW
1893 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1894 if (HAS_BSD(dev))
1895 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1896}
1897
75ef9da2 1898static void
673a394b
EA
1899i915_gem_retire_work_handler(struct work_struct *work)
1900{
1901 drm_i915_private_t *dev_priv;
1902 struct drm_device *dev;
1903
1904 dev_priv = container_of(work, drm_i915_private_t,
1905 mm.retire_work.work);
1906 dev = dev_priv->dev;
1907
891b48cf
CW
1908 /* Come back later if the device is busy... */
1909 if (!mutex_trylock(&dev->struct_mutex)) {
1910 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1911 return;
1912 }
1913
b09a1fec 1914 i915_gem_retire_requests(dev);
d1b851fc 1915
6dbe2772 1916 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1917 (!list_empty(&dev_priv->render_ring.request_list) ||
1918 (HAS_BSD(dev) &&
1919 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1920 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1921 mutex_unlock(&dev->struct_mutex);
1922}
1923
5a5a0c64 1924int
852835f3 1925i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1926 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1927{
1928 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1929 u32 ier;
673a394b
EA
1930 int ret = 0;
1931
1932 BUG_ON(seqno == 0);
1933
30dbf0c0
CW
1934 if (atomic_read(&dev_priv->mm.wedged))
1935 return -EAGAIN;
1936
a56ba56c 1937 if (ring->outstanding_lazy_request) {
8dc5d147 1938 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1939 if (seqno == 0)
1940 return -ENOMEM;
1941 }
a56ba56c 1942 BUG_ON(seqno == dev_priv->next_seqno);
e35a41de 1943
f787a5f5 1944 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
bad720ff 1945 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1946 ier = I915_READ(DEIER) | I915_READ(GTIER);
1947 else
1948 ier = I915_READ(IER);
802c7eb6
JB
1949 if (!ier) {
1950 DRM_ERROR("something (likely vbetool) disabled "
1951 "interrupts, re-enabling\n");
1952 i915_driver_irq_preinstall(dev);
1953 i915_driver_irq_postinstall(dev);
1954 }
1955
1c5d22f7
CW
1956 trace_i915_gem_request_wait_begin(dev, seqno);
1957
852835f3 1958 ring->waiting_gem_seqno = seqno;
8187a2b7 1959 ring->user_irq_get(dev, ring);
48764bf4 1960 if (interruptible)
852835f3
ZN
1961 ret = wait_event_interruptible(ring->irq_queue,
1962 i915_seqno_passed(
f787a5f5 1963 ring->get_seqno(dev, ring), seqno)
852835f3 1964 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1965 else
852835f3
ZN
1966 wait_event(ring->irq_queue,
1967 i915_seqno_passed(
f787a5f5 1968 ring->get_seqno(dev, ring), seqno)
852835f3 1969 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1970
8187a2b7 1971 ring->user_irq_put(dev, ring);
852835f3 1972 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1973
1974 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1975 }
ba1234d1 1976 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1977 ret = -EAGAIN;
673a394b
EA
1978
1979 if (ret && ret != -ERESTARTSYS)
8bff917c 1980 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
f787a5f5 1981 __func__, ret, seqno, ring->get_seqno(dev, ring),
8bff917c 1982 dev_priv->next_seqno);
673a394b
EA
1983
1984 /* Directly dispatch request retiring. While we have the work queue
1985 * to handle this, the waiter on a request often wants an associated
1986 * buffer to have made it to the inactive list, and we would need
1987 * a separate wait queue to handle that.
1988 */
1989 if (ret == 0)
b09a1fec 1990 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1991
1992 return ret;
1993}
1994
48764bf4
DV
1995/**
1996 * Waits for a sequence number to be signaled, and cleans up the
1997 * request and object lists appropriately for that event.
1998 */
1999static int
852835f3 2000i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2001 struct intel_ring_buffer *ring)
48764bf4 2002{
852835f3 2003 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2004}
2005
20f0cd55 2006static void
9220434a 2007i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2008 struct drm_file *file_priv,
9220434a
CW
2009 struct intel_ring_buffer *ring,
2010 uint32_t invalidate_domains,
2011 uint32_t flush_domains)
2012{
2013 ring->flush(dev, ring, invalidate_domains, flush_domains);
2014 i915_gem_process_flushing_list(dev, flush_domains, ring);
2015}
2016
8187a2b7
ZN
2017static void
2018i915_gem_flush(struct drm_device *dev,
c78ec30b 2019 struct drm_file *file_priv,
8187a2b7 2020 uint32_t invalidate_domains,
9220434a
CW
2021 uint32_t flush_domains,
2022 uint32_t flush_rings)
8187a2b7
ZN
2023{
2024 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2025
8187a2b7
ZN
2026 if (flush_domains & I915_GEM_DOMAIN_CPU)
2027 drm_agp_chipset_flush(dev);
8bff917c 2028
9220434a
CW
2029 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2030 if (flush_rings & RING_RENDER)
c78ec30b 2031 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2032 &dev_priv->render_ring,
2033 invalidate_domains, flush_domains);
2034 if (flush_rings & RING_BSD)
c78ec30b 2035 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2036 &dev_priv->bsd_ring,
2037 invalidate_domains, flush_domains);
2038 }
8187a2b7
ZN
2039}
2040
673a394b
EA
2041/**
2042 * Ensures that all rendering to the object has completed and the object is
2043 * safe to unbind from the GTT or access from the CPU.
2044 */
2045static int
2cf34d7b
CW
2046i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2047 bool interruptible)
673a394b
EA
2048{
2049 struct drm_device *dev = obj->dev;
23010e43 2050 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2051 int ret;
2052
e47c68e9
EA
2053 /* This function only exists to support waiting for existing rendering,
2054 * not for emitting required flushes.
673a394b 2055 */
e47c68e9 2056 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2057
2058 /* If there is rendering queued on the buffer being evicted, wait for
2059 * it.
2060 */
2061 if (obj_priv->active) {
2cf34d7b
CW
2062 ret = i915_do_wait_request(dev,
2063 obj_priv->last_rendering_seqno,
2064 interruptible,
2065 obj_priv->ring);
2066 if (ret)
673a394b
EA
2067 return ret;
2068 }
2069
2070 return 0;
2071}
2072
2073/**
2074 * Unbinds an object from the GTT aperture.
2075 */
0f973f27 2076int
673a394b
EA
2077i915_gem_object_unbind(struct drm_gem_object *obj)
2078{
2079 struct drm_device *dev = obj->dev;
23010e43 2080 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2081 int ret = 0;
2082
673a394b
EA
2083 if (obj_priv->gtt_space == NULL)
2084 return 0;
2085
2086 if (obj_priv->pin_count != 0) {
2087 DRM_ERROR("Attempting to unbind pinned buffer\n");
2088 return -EINVAL;
2089 }
2090
5323fd04
EA
2091 /* blow away mappings if mapped through GTT */
2092 i915_gem_release_mmap(obj);
2093
673a394b
EA
2094 /* Move the object to the CPU domain to ensure that
2095 * any possible CPU writes while it's not in the GTT
2096 * are flushed when we go to remap it. This will
2097 * also ensure that all pending GPU writes are finished
2098 * before we unbind.
2099 */
e47c68e9 2100 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2101 if (ret == -ERESTARTSYS)
673a394b 2102 return ret;
8dc1775d
CW
2103 /* Continue on if we fail due to EIO, the GPU is hung so we
2104 * should be safe and we need to cleanup or else we might
2105 * cause memory corruption through use-after-free.
2106 */
673a394b 2107
96b47b65
DV
2108 /* release the fence reg _after_ flushing */
2109 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2110 i915_gem_clear_fence_reg(obj);
2111
673a394b
EA
2112 if (obj_priv->agp_mem != NULL) {
2113 drm_unbind_agp(obj_priv->agp_mem);
2114 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2115 obj_priv->agp_mem = NULL;
2116 }
2117
856fa198 2118 i915_gem_object_put_pages(obj);
a32808c0 2119 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2120
2121 if (obj_priv->gtt_space) {
2122 atomic_dec(&dev->gtt_count);
2123 atomic_sub(obj->size, &dev->gtt_memory);
2124
2125 drm_mm_put_block(obj_priv->gtt_space);
2126 obj_priv->gtt_space = NULL;
2127 }
2128
f13d3f73 2129 list_del_init(&obj_priv->list);
673a394b 2130
963b4836
CW
2131 if (i915_gem_object_is_purgeable(obj_priv))
2132 i915_gem_object_truncate(obj);
2133
1c5d22f7
CW
2134 trace_i915_gem_object_unbind(obj);
2135
8dc1775d 2136 return ret;
673a394b
EA
2137}
2138
a56ba56c
CW
2139static int i915_ring_idle(struct drm_device *dev,
2140 struct intel_ring_buffer *ring)
2141{
2142 i915_gem_flush_ring(dev, NULL, ring,
2143 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2144 return i915_wait_request(dev,
2145 i915_gem_next_request_seqno(dev, ring),
2146 ring);
2147}
2148
b47eb4a2 2149int
4df2faf4
DV
2150i915_gpu_idle(struct drm_device *dev)
2151{
2152 drm_i915_private_t *dev_priv = dev->dev_private;
2153 bool lists_empty;
852835f3 2154 int ret;
4df2faf4 2155
d1b851fc
ZN
2156 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2157 list_empty(&dev_priv->render_ring.active_list) &&
2158 (!HAS_BSD(dev) ||
2159 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2160 if (lists_empty)
2161 return 0;
2162
2163 /* Flush everything onto the inactive list. */
a56ba56c 2164 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2165 if (ret)
2166 return ret;
d1b851fc
ZN
2167
2168 if (HAS_BSD(dev)) {
a56ba56c 2169 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
d1b851fc
ZN
2170 if (ret)
2171 return ret;
2172 }
2173
8a1a49f9 2174 return 0;
4df2faf4
DV
2175}
2176
6911a9b8 2177int
4bdadb97
CW
2178i915_gem_object_get_pages(struct drm_gem_object *obj,
2179 gfp_t gfpmask)
673a394b 2180{
23010e43 2181 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2182 int page_count, i;
2183 struct address_space *mapping;
2184 struct inode *inode;
2185 struct page *page;
673a394b 2186
778c3544
DV
2187 BUG_ON(obj_priv->pages_refcount
2188 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2189
856fa198 2190 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2191 return 0;
2192
2193 /* Get the list of pages out of our struct file. They'll be pinned
2194 * at this point until we release them.
2195 */
2196 page_count = obj->size / PAGE_SIZE;
856fa198 2197 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2198 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2199 if (obj_priv->pages == NULL) {
856fa198 2200 obj_priv->pages_refcount--;
673a394b
EA
2201 return -ENOMEM;
2202 }
2203
2204 inode = obj->filp->f_path.dentry->d_inode;
2205 mapping = inode->i_mapping;
2206 for (i = 0; i < page_count; i++) {
4bdadb97 2207 page = read_cache_page_gfp(mapping, i,
985b823b 2208 GFP_HIGHUSER |
4bdadb97 2209 __GFP_COLD |
cd9f040d 2210 __GFP_RECLAIMABLE |
4bdadb97 2211 gfpmask);
1f2b1013
CW
2212 if (IS_ERR(page))
2213 goto err_pages;
2214
856fa198 2215 obj_priv->pages[i] = page;
673a394b 2216 }
280b713b
EA
2217
2218 if (obj_priv->tiling_mode != I915_TILING_NONE)
2219 i915_gem_object_do_bit_17_swizzle(obj);
2220
673a394b 2221 return 0;
1f2b1013
CW
2222
2223err_pages:
2224 while (i--)
2225 page_cache_release(obj_priv->pages[i]);
2226
2227 drm_free_large(obj_priv->pages);
2228 obj_priv->pages = NULL;
2229 obj_priv->pages_refcount--;
2230 return PTR_ERR(page);
673a394b
EA
2231}
2232
4e901fdc
EA
2233static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2234{
2235 struct drm_gem_object *obj = reg->obj;
2236 struct drm_device *dev = obj->dev;
2237 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2238 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2239 int regnum = obj_priv->fence_reg;
2240 uint64_t val;
2241
2242 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2243 0xfffff000) << 32;
2244 val |= obj_priv->gtt_offset & 0xfffff000;
2245 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2246 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2247
2248 if (obj_priv->tiling_mode == I915_TILING_Y)
2249 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2250 val |= I965_FENCE_REG_VALID;
2251
2252 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2253}
2254
de151cf6
JB
2255static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2256{
2257 struct drm_gem_object *obj = reg->obj;
2258 struct drm_device *dev = obj->dev;
2259 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2260 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2261 int regnum = obj_priv->fence_reg;
2262 uint64_t val;
2263
2264 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2265 0xfffff000) << 32;
2266 val |= obj_priv->gtt_offset & 0xfffff000;
2267 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2268 if (obj_priv->tiling_mode == I915_TILING_Y)
2269 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2270 val |= I965_FENCE_REG_VALID;
2271
2272 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2273}
2274
2275static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2276{
2277 struct drm_gem_object *obj = reg->obj;
2278 struct drm_device *dev = obj->dev;
2279 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2280 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2281 int regnum = obj_priv->fence_reg;
0f973f27 2282 int tile_width;
dc529a4f 2283 uint32_t fence_reg, val;
de151cf6
JB
2284 uint32_t pitch_val;
2285
2286 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2287 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2288 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2289 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2290 return;
2291 }
2292
0f973f27
JB
2293 if (obj_priv->tiling_mode == I915_TILING_Y &&
2294 HAS_128_BYTE_Y_TILING(dev))
2295 tile_width = 128;
de151cf6 2296 else
0f973f27
JB
2297 tile_width = 512;
2298
2299 /* Note: pitch better be a power of two tile widths */
2300 pitch_val = obj_priv->stride / tile_width;
2301 pitch_val = ffs(pitch_val) - 1;
de151cf6 2302
c36a2a6d
DV
2303 if (obj_priv->tiling_mode == I915_TILING_Y &&
2304 HAS_128_BYTE_Y_TILING(dev))
2305 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2306 else
2307 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2308
de151cf6
JB
2309 val = obj_priv->gtt_offset;
2310 if (obj_priv->tiling_mode == I915_TILING_Y)
2311 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2312 val |= I915_FENCE_SIZE_BITS(obj->size);
2313 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2314 val |= I830_FENCE_REG_VALID;
2315
dc529a4f
EA
2316 if (regnum < 8)
2317 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2318 else
2319 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2320 I915_WRITE(fence_reg, val);
de151cf6
JB
2321}
2322
2323static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2324{
2325 struct drm_gem_object *obj = reg->obj;
2326 struct drm_device *dev = obj->dev;
2327 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2328 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2329 int regnum = obj_priv->fence_reg;
2330 uint32_t val;
2331 uint32_t pitch_val;
8d7773a3 2332 uint32_t fence_size_bits;
de151cf6 2333
8d7773a3 2334 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2335 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2336 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2337 __func__, obj_priv->gtt_offset);
de151cf6
JB
2338 return;
2339 }
2340
e76a16de
EA
2341 pitch_val = obj_priv->stride / 128;
2342 pitch_val = ffs(pitch_val) - 1;
2343 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2344
de151cf6
JB
2345 val = obj_priv->gtt_offset;
2346 if (obj_priv->tiling_mode == I915_TILING_Y)
2347 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2348 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2349 WARN_ON(fence_size_bits & ~0x00000f00);
2350 val |= fence_size_bits;
de151cf6
JB
2351 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2352 val |= I830_FENCE_REG_VALID;
2353
2354 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2355}
2356
2cf34d7b
CW
2357static int i915_find_fence_reg(struct drm_device *dev,
2358 bool interruptible)
ae3db24a
DV
2359{
2360 struct drm_i915_fence_reg *reg = NULL;
2361 struct drm_i915_gem_object *obj_priv = NULL;
2362 struct drm_i915_private *dev_priv = dev->dev_private;
2363 struct drm_gem_object *obj = NULL;
2364 int i, avail, ret;
2365
2366 /* First try to find a free reg */
2367 avail = 0;
2368 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2369 reg = &dev_priv->fence_regs[i];
2370 if (!reg->obj)
2371 return i;
2372
23010e43 2373 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2374 if (!obj_priv->pin_count)
2375 avail++;
2376 }
2377
2378 if (avail == 0)
2379 return -ENOSPC;
2380
2381 /* None available, try to steal one or wait for a user to finish */
2382 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2383 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2384 lru_list) {
2385 obj = reg->obj;
2386 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2387
2388 if (obj_priv->pin_count)
2389 continue;
2390
2391 /* found one! */
2392 i = obj_priv->fence_reg;
2393 break;
2394 }
2395
2396 BUG_ON(i == I915_FENCE_REG_NONE);
2397
2398 /* We only have a reference on obj from the active list. put_fence_reg
2399 * might drop that one, causing a use-after-free in it. So hold a
2400 * private reference to obj like the other callers of put_fence_reg
2401 * (set_tiling ioctl) do. */
2402 drm_gem_object_reference(obj);
2cf34d7b 2403 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2404 drm_gem_object_unreference(obj);
2405 if (ret != 0)
2406 return ret;
2407
2408 return i;
2409}
2410
de151cf6
JB
2411/**
2412 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2413 * @obj: object to map through a fence reg
2414 *
2415 * When mapping objects through the GTT, userspace wants to be able to write
2416 * to them without having to worry about swizzling if the object is tiled.
2417 *
2418 * This function walks the fence regs looking for a free one for @obj,
2419 * stealing one if it can't find any.
2420 *
2421 * It then sets up the reg based on the object's properties: address, pitch
2422 * and tiling format.
2423 */
8c4b8c3f 2424int
2cf34d7b
CW
2425i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2426 bool interruptible)
de151cf6
JB
2427{
2428 struct drm_device *dev = obj->dev;
79e53945 2429 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2430 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2431 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2432 int ret;
de151cf6 2433
a09ba7fa
EA
2434 /* Just update our place in the LRU if our fence is getting used. */
2435 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2436 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2437 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2438 return 0;
2439 }
2440
de151cf6
JB
2441 switch (obj_priv->tiling_mode) {
2442 case I915_TILING_NONE:
2443 WARN(1, "allocating a fence for non-tiled object?\n");
2444 break;
2445 case I915_TILING_X:
0f973f27
JB
2446 if (!obj_priv->stride)
2447 return -EINVAL;
2448 WARN((obj_priv->stride & (512 - 1)),
2449 "object 0x%08x is X tiled but has non-512B pitch\n",
2450 obj_priv->gtt_offset);
de151cf6
JB
2451 break;
2452 case I915_TILING_Y:
0f973f27
JB
2453 if (!obj_priv->stride)
2454 return -EINVAL;
2455 WARN((obj_priv->stride & (128 - 1)),
2456 "object 0x%08x is Y tiled but has non-128B pitch\n",
2457 obj_priv->gtt_offset);
de151cf6
JB
2458 break;
2459 }
2460
2cf34d7b 2461 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2462 if (ret < 0)
2463 return ret;
de151cf6 2464
ae3db24a
DV
2465 obj_priv->fence_reg = ret;
2466 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2467 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2468
de151cf6
JB
2469 reg->obj = obj;
2470
e259befd
CW
2471 switch (INTEL_INFO(dev)->gen) {
2472 case 6:
4e901fdc 2473 sandybridge_write_fence_reg(reg);
e259befd
CW
2474 break;
2475 case 5:
2476 case 4:
de151cf6 2477 i965_write_fence_reg(reg);
e259befd
CW
2478 break;
2479 case 3:
de151cf6 2480 i915_write_fence_reg(reg);
e259befd
CW
2481 break;
2482 case 2:
de151cf6 2483 i830_write_fence_reg(reg);
e259befd
CW
2484 break;
2485 }
d9ddcb96 2486
ae3db24a
DV
2487 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2488 obj_priv->tiling_mode);
1c5d22f7 2489
d9ddcb96 2490 return 0;
de151cf6
JB
2491}
2492
2493/**
2494 * i915_gem_clear_fence_reg - clear out fence register info
2495 * @obj: object to clear
2496 *
2497 * Zeroes out the fence register itself and clears out the associated
2498 * data structures in dev_priv and obj_priv.
2499 */
2500static void
2501i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2502{
2503 struct drm_device *dev = obj->dev;
79e53945 2504 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2505 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2506 struct drm_i915_fence_reg *reg =
2507 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2508 uint32_t fence_reg;
de151cf6 2509
e259befd
CW
2510 switch (INTEL_INFO(dev)->gen) {
2511 case 6:
4e901fdc
EA
2512 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2513 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2514 break;
2515 case 5:
2516 case 4:
de151cf6 2517 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2518 break;
2519 case 3:
9b74f734 2520 if (obj_priv->fence_reg >= 8)
e259befd 2521 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2522 else
e259befd
CW
2523 case 2:
2524 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2525
2526 I915_WRITE(fence_reg, 0);
e259befd 2527 break;
dc529a4f 2528 }
de151cf6 2529
007cc8ac 2530 reg->obj = NULL;
de151cf6 2531 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2532 list_del_init(&reg->lru_list);
de151cf6
JB
2533}
2534
52dc7d32
CW
2535/**
2536 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2537 * to the buffer to finish, and then resets the fence register.
2538 * @obj: tiled object holding a fence register.
2cf34d7b 2539 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2540 *
2541 * Zeroes out the fence register itself and clears out the associated
2542 * data structures in dev_priv and obj_priv.
2543 */
2544int
2cf34d7b
CW
2545i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2546 bool interruptible)
52dc7d32
CW
2547{
2548 struct drm_device *dev = obj->dev;
53640e1d 2549 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2550 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2551 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2552
2553 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2554 return 0;
2555
10ae9bd2
DV
2556 /* If we've changed tiling, GTT-mappings of the object
2557 * need to re-fault to ensure that the correct fence register
2558 * setup is in place.
2559 */
2560 i915_gem_release_mmap(obj);
2561
52dc7d32
CW
2562 /* On the i915, GPU access to tiled buffers is via a fence,
2563 * therefore we must wait for any outstanding access to complete
2564 * before clearing the fence.
2565 */
53640e1d
CW
2566 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2567 if (reg->gpu) {
52dc7d32
CW
2568 int ret;
2569
2cf34d7b 2570 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad
CW
2571 if (ret)
2572 return ret;
2573
2cf34d7b 2574 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2575 if (ret)
52dc7d32 2576 return ret;
53640e1d
CW
2577
2578 reg->gpu = false;
52dc7d32
CW
2579 }
2580
4a726612 2581 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2582 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2583
2584 return 0;
2585}
2586
673a394b
EA
2587/**
2588 * Finds free space in the GTT aperture and binds the object there.
2589 */
2590static int
2591i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2592{
2593 struct drm_device *dev = obj->dev;
2594 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2595 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2596 struct drm_mm_node *free_space;
4bdadb97 2597 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2598 int ret;
673a394b 2599
bb6baf76 2600 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2601 DRM_ERROR("Attempting to bind a purgeable object\n");
2602 return -EINVAL;
2603 }
2604
673a394b 2605 if (alignment == 0)
0f973f27 2606 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2607 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2608 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2609 return -EINVAL;
2610 }
2611
654fc607
CW
2612 /* If the object is bigger than the entire aperture, reject it early
2613 * before evicting everything in a vain attempt to find space.
2614 */
2615 if (obj->size > dev->gtt_total) {
2616 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2617 return -E2BIG;
2618 }
2619
673a394b
EA
2620 search_free:
2621 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2622 obj->size, alignment, 0);
2623 if (free_space != NULL) {
2624 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2625 alignment);
db3307a9 2626 if (obj_priv->gtt_space != NULL)
673a394b 2627 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2628 }
2629 if (obj_priv->gtt_space == NULL) {
2630 /* If the gtt is empty and we're still having trouble
2631 * fitting our object in, we're out of memory.
2632 */
0108a3ed 2633 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2634 if (ret)
673a394b 2635 return ret;
9731129c 2636
673a394b
EA
2637 goto search_free;
2638 }
2639
4bdadb97 2640 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2641 if (ret) {
2642 drm_mm_put_block(obj_priv->gtt_space);
2643 obj_priv->gtt_space = NULL;
07f73f69
CW
2644
2645 if (ret == -ENOMEM) {
2646 /* first try to clear up some space from the GTT */
0108a3ed
DV
2647 ret = i915_gem_evict_something(dev, obj->size,
2648 alignment);
07f73f69 2649 if (ret) {
07f73f69 2650 /* now try to shrink everyone else */
4bdadb97
CW
2651 if (gfpmask) {
2652 gfpmask = 0;
2653 goto search_free;
07f73f69
CW
2654 }
2655
2656 return ret;
2657 }
2658
2659 goto search_free;
2660 }
2661
673a394b
EA
2662 return ret;
2663 }
2664
673a394b
EA
2665 /* Create an AGP memory structure pointing at our pages, and bind it
2666 * into the GTT.
2667 */
2668 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2669 obj_priv->pages,
07f73f69 2670 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2671 obj_priv->gtt_offset,
2672 obj_priv->agp_type);
673a394b 2673 if (obj_priv->agp_mem == NULL) {
856fa198 2674 i915_gem_object_put_pages(obj);
673a394b
EA
2675 drm_mm_put_block(obj_priv->gtt_space);
2676 obj_priv->gtt_space = NULL;
07f73f69 2677
0108a3ed 2678 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2679 if (ret)
07f73f69 2680 return ret;
07f73f69
CW
2681
2682 goto search_free;
673a394b
EA
2683 }
2684 atomic_inc(&dev->gtt_count);
2685 atomic_add(obj->size, &dev->gtt_memory);
2686
bf1a1092
CW
2687 /* keep track of bounds object by adding it to the inactive list */
2688 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2689
673a394b
EA
2690 /* Assert that the object is not currently in any GPU domain. As it
2691 * wasn't in the GTT, there shouldn't be any way it could have been in
2692 * a GPU cache
2693 */
21d509e3
CW
2694 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2695 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2696
1c5d22f7
CW
2697 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2698
673a394b
EA
2699 return 0;
2700}
2701
2702void
2703i915_gem_clflush_object(struct drm_gem_object *obj)
2704{
23010e43 2705 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2706
2707 /* If we don't have a page list set up, then we're not pinned
2708 * to GPU, and we can ignore the cache flush because it'll happen
2709 * again at bind time.
2710 */
856fa198 2711 if (obj_priv->pages == NULL)
673a394b
EA
2712 return;
2713
1c5d22f7 2714 trace_i915_gem_object_clflush(obj);
cfa16a0d 2715
856fa198 2716 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2717}
2718
e47c68e9 2719/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2720static int
ba3d8d74
DV
2721i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2722 bool pipelined)
e47c68e9
EA
2723{
2724 struct drm_device *dev = obj->dev;
1c5d22f7 2725 uint32_t old_write_domain;
e47c68e9
EA
2726
2727 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2728 return 0;
e47c68e9
EA
2729
2730 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2731 old_write_domain = obj->write_domain;
c78ec30b 2732 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2733 to_intel_bo(obj)->ring,
2734 0, obj->write_domain);
48b956c5 2735 BUG_ON(obj->write_domain);
1c5d22f7
CW
2736
2737 trace_i915_gem_object_change_domain(obj,
2738 obj->read_domains,
2739 old_write_domain);
ba3d8d74
DV
2740
2741 if (pipelined)
2742 return 0;
2743
2cf34d7b 2744 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2745}
2746
2747/** Flushes the GTT write domain for the object if it's dirty. */
2748static void
2749i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2750{
1c5d22f7
CW
2751 uint32_t old_write_domain;
2752
e47c68e9
EA
2753 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2754 return;
2755
2756 /* No actual flushing is required for the GTT write domain. Writes
2757 * to it immediately go to main memory as far as we know, so there's
2758 * no chipset flush. It also doesn't land in render cache.
2759 */
1c5d22f7 2760 old_write_domain = obj->write_domain;
e47c68e9 2761 obj->write_domain = 0;
1c5d22f7
CW
2762
2763 trace_i915_gem_object_change_domain(obj,
2764 obj->read_domains,
2765 old_write_domain);
e47c68e9
EA
2766}
2767
2768/** Flushes the CPU write domain for the object if it's dirty. */
2769static void
2770i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2771{
2772 struct drm_device *dev = obj->dev;
1c5d22f7 2773 uint32_t old_write_domain;
e47c68e9
EA
2774
2775 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2776 return;
2777
2778 i915_gem_clflush_object(obj);
2779 drm_agp_chipset_flush(dev);
1c5d22f7 2780 old_write_domain = obj->write_domain;
e47c68e9 2781 obj->write_domain = 0;
1c5d22f7
CW
2782
2783 trace_i915_gem_object_change_domain(obj,
2784 obj->read_domains,
2785 old_write_domain);
e47c68e9
EA
2786}
2787
2ef7eeaa
EA
2788/**
2789 * Moves a single object to the GTT read, and possibly write domain.
2790 *
2791 * This function returns when the move is complete, including waiting on
2792 * flushes to occur.
2793 */
79e53945 2794int
2ef7eeaa
EA
2795i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2796{
23010e43 2797 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2798 uint32_t old_write_domain, old_read_domains;
e47c68e9 2799 int ret;
2ef7eeaa 2800
02354392
EA
2801 /* Not valid to be called on unbound objects. */
2802 if (obj_priv->gtt_space == NULL)
2803 return -EINVAL;
2804
ba3d8d74 2805 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2806 if (ret != 0)
2807 return ret;
2808
7213342d 2809 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2810
ba3d8d74 2811 if (write) {
2cf34d7b 2812 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2813 if (ret)
2814 return ret;
ba3d8d74 2815 }
2ef7eeaa 2816
7213342d
CW
2817 old_write_domain = obj->write_domain;
2818 old_read_domains = obj->read_domains;
2ef7eeaa 2819
e47c68e9
EA
2820 /* It should now be out of any other write domains, and we can update
2821 * the domain values for our changes.
2822 */
2823 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2824 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2825 if (write) {
7213342d 2826 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2827 obj->write_domain = I915_GEM_DOMAIN_GTT;
2828 obj_priv->dirty = 1;
2ef7eeaa
EA
2829 }
2830
1c5d22f7
CW
2831 trace_i915_gem_object_change_domain(obj,
2832 old_read_domains,
2833 old_write_domain);
2834
e47c68e9
EA
2835 return 0;
2836}
2837
b9241ea3
ZW
2838/*
2839 * Prepare buffer for display plane. Use uninterruptible for possible flush
2840 * wait, as in modesetting process we're not supposed to be interrupted.
2841 */
2842int
48b956c5
CW
2843i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2844 bool pipelined)
b9241ea3 2845{
23010e43 2846 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2847 uint32_t old_read_domains;
b9241ea3
ZW
2848 int ret;
2849
2850 /* Not valid to be called on unbound objects. */
2851 if (obj_priv->gtt_space == NULL)
2852 return -EINVAL;
2853
ced270fa 2854 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
48b956c5 2855 if (ret)
e35a41de 2856 return ret;
b9241ea3 2857
ced270fa
CW
2858 /* Currently, we are always called from an non-interruptible context. */
2859 if (!pipelined) {
2860 ret = i915_gem_object_wait_rendering(obj, false);
2861 if (ret)
2862 return ret;
2863 }
2864
b118c1e3
CW
2865 i915_gem_object_flush_cpu_write_domain(obj);
2866
b9241ea3 2867 old_read_domains = obj->read_domains;
c78ec30b 2868 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2869
2870 trace_i915_gem_object_change_domain(obj,
2871 old_read_domains,
ba3d8d74 2872 obj->write_domain);
b9241ea3
ZW
2873
2874 return 0;
2875}
2876
e47c68e9
EA
2877/**
2878 * Moves a single object to the CPU read, and possibly write domain.
2879 *
2880 * This function returns when the move is complete, including waiting on
2881 * flushes to occur.
2882 */
2883static int
2884i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2885{
1c5d22f7 2886 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2887 int ret;
2888
ba3d8d74 2889 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2890 if (ret != 0)
2891 return ret;
2ef7eeaa 2892
e47c68e9 2893 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2894
e47c68e9
EA
2895 /* If we have a partially-valid cache of the object in the CPU,
2896 * finish invalidating it and free the per-page flags.
2ef7eeaa 2897 */
e47c68e9 2898 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2899
7213342d 2900 if (write) {
2cf34d7b 2901 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2902 if (ret)
2903 return ret;
2904 }
2905
1c5d22f7
CW
2906 old_write_domain = obj->write_domain;
2907 old_read_domains = obj->read_domains;
2908
e47c68e9
EA
2909 /* Flush the CPU cache if it's still invalid. */
2910 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2911 i915_gem_clflush_object(obj);
2ef7eeaa 2912
e47c68e9 2913 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2914 }
2915
2916 /* It should now be out of any other write domains, and we can update
2917 * the domain values for our changes.
2918 */
e47c68e9
EA
2919 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2920
2921 /* If we're writing through the CPU, then the GPU read domains will
2922 * need to be invalidated at next use.
2923 */
2924 if (write) {
c78ec30b 2925 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
2926 obj->write_domain = I915_GEM_DOMAIN_CPU;
2927 }
2ef7eeaa 2928
1c5d22f7
CW
2929 trace_i915_gem_object_change_domain(obj,
2930 old_read_domains,
2931 old_write_domain);
2932
2ef7eeaa
EA
2933 return 0;
2934}
2935
673a394b
EA
2936/*
2937 * Set the next domain for the specified object. This
2938 * may not actually perform the necessary flushing/invaliding though,
2939 * as that may want to be batched with other set_domain operations
2940 *
2941 * This is (we hope) the only really tricky part of gem. The goal
2942 * is fairly simple -- track which caches hold bits of the object
2943 * and make sure they remain coherent. A few concrete examples may
2944 * help to explain how it works. For shorthand, we use the notation
2945 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2946 * a pair of read and write domain masks.
2947 *
2948 * Case 1: the batch buffer
2949 *
2950 * 1. Allocated
2951 * 2. Written by CPU
2952 * 3. Mapped to GTT
2953 * 4. Read by GPU
2954 * 5. Unmapped from GTT
2955 * 6. Freed
2956 *
2957 * Let's take these a step at a time
2958 *
2959 * 1. Allocated
2960 * Pages allocated from the kernel may still have
2961 * cache contents, so we set them to (CPU, CPU) always.
2962 * 2. Written by CPU (using pwrite)
2963 * The pwrite function calls set_domain (CPU, CPU) and
2964 * this function does nothing (as nothing changes)
2965 * 3. Mapped by GTT
2966 * This function asserts that the object is not
2967 * currently in any GPU-based read or write domains
2968 * 4. Read by GPU
2969 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2970 * As write_domain is zero, this function adds in the
2971 * current read domains (CPU+COMMAND, 0).
2972 * flush_domains is set to CPU.
2973 * invalidate_domains is set to COMMAND
2974 * clflush is run to get data out of the CPU caches
2975 * then i915_dev_set_domain calls i915_gem_flush to
2976 * emit an MI_FLUSH and drm_agp_chipset_flush
2977 * 5. Unmapped from GTT
2978 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2979 * flush_domains and invalidate_domains end up both zero
2980 * so no flushing/invalidating happens
2981 * 6. Freed
2982 * yay, done
2983 *
2984 * Case 2: The shared render buffer
2985 *
2986 * 1. Allocated
2987 * 2. Mapped to GTT
2988 * 3. Read/written by GPU
2989 * 4. set_domain to (CPU,CPU)
2990 * 5. Read/written by CPU
2991 * 6. Read/written by GPU
2992 *
2993 * 1. Allocated
2994 * Same as last example, (CPU, CPU)
2995 * 2. Mapped to GTT
2996 * Nothing changes (assertions find that it is not in the GPU)
2997 * 3. Read/written by GPU
2998 * execbuffer calls set_domain (RENDER, RENDER)
2999 * flush_domains gets CPU
3000 * invalidate_domains gets GPU
3001 * clflush (obj)
3002 * MI_FLUSH and drm_agp_chipset_flush
3003 * 4. set_domain (CPU, CPU)
3004 * flush_domains gets GPU
3005 * invalidate_domains gets CPU
3006 * wait_rendering (obj) to make sure all drawing is complete.
3007 * This will include an MI_FLUSH to get the data from GPU
3008 * to memory
3009 * clflush (obj) to invalidate the CPU cache
3010 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3011 * 5. Read/written by CPU
3012 * cache lines are loaded and dirtied
3013 * 6. Read written by GPU
3014 * Same as last GPU access
3015 *
3016 * Case 3: The constant buffer
3017 *
3018 * 1. Allocated
3019 * 2. Written by CPU
3020 * 3. Read by GPU
3021 * 4. Updated (written) by CPU again
3022 * 5. Read by GPU
3023 *
3024 * 1. Allocated
3025 * (CPU, CPU)
3026 * 2. Written by CPU
3027 * (CPU, CPU)
3028 * 3. Read by GPU
3029 * (CPU+RENDER, 0)
3030 * flush_domains = CPU
3031 * invalidate_domains = RENDER
3032 * clflush (obj)
3033 * MI_FLUSH
3034 * drm_agp_chipset_flush
3035 * 4. Updated (written) by CPU again
3036 * (CPU, CPU)
3037 * flush_domains = 0 (no previous write domain)
3038 * invalidate_domains = 0 (no new read domains)
3039 * 5. Read by GPU
3040 * (CPU+RENDER, 0)
3041 * flush_domains = CPU
3042 * invalidate_domains = RENDER
3043 * clflush (obj)
3044 * MI_FLUSH
3045 * drm_agp_chipset_flush
3046 */
c0d90829 3047static void
8b0e378a 3048i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
3049{
3050 struct drm_device *dev = obj->dev;
9220434a 3051 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 3052 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3053 uint32_t invalidate_domains = 0;
3054 uint32_t flush_domains = 0;
1c5d22f7 3055 uint32_t old_read_domains;
e47c68e9 3056
8b0e378a
EA
3057 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3058 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 3059
652c393a
JB
3060 intel_mark_busy(dev, obj);
3061
673a394b
EA
3062 /*
3063 * If the object isn't moving to a new write domain,
3064 * let the object stay in multiple read domains
3065 */
8b0e378a
EA
3066 if (obj->pending_write_domain == 0)
3067 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3068 else
3069 obj_priv->dirty = 1;
3070
3071 /*
3072 * Flush the current write domain if
3073 * the new read domains don't match. Invalidate
3074 * any read domains which differ from the old
3075 * write domain
3076 */
8b0e378a
EA
3077 if (obj->write_domain &&
3078 obj->write_domain != obj->pending_read_domains) {
673a394b 3079 flush_domains |= obj->write_domain;
8b0e378a
EA
3080 invalidate_domains |=
3081 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3082 }
3083 /*
3084 * Invalidate any read caches which may have
3085 * stale data. That is, any new read domains.
3086 */
8b0e378a 3087 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3088 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3089 i915_gem_clflush_object(obj);
673a394b 3090
1c5d22f7
CW
3091 old_read_domains = obj->read_domains;
3092
efbeed96
EA
3093 /* The actual obj->write_domain will be updated with
3094 * pending_write_domain after we emit the accumulated flush for all
3095 * of our domain changes in execbuffers (which clears objects'
3096 * write_domains). So if we have a current write domain that we
3097 * aren't changing, set pending_write_domain to that.
3098 */
3099 if (flush_domains == 0 && obj->pending_write_domain == 0)
3100 obj->pending_write_domain = obj->write_domain;
8b0e378a 3101 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3102
3103 dev->invalidate_domains |= invalidate_domains;
3104 dev->flush_domains |= flush_domains;
9220434a
CW
3105 if (obj_priv->ring)
3106 dev_priv->mm.flush_rings |= obj_priv->ring->id;
1c5d22f7
CW
3107
3108 trace_i915_gem_object_change_domain(obj,
3109 old_read_domains,
3110 obj->write_domain);
673a394b
EA
3111}
3112
3113/**
e47c68e9 3114 * Moves the object from a partially CPU read to a full one.
673a394b 3115 *
e47c68e9
EA
3116 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3117 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3118 */
e47c68e9
EA
3119static void
3120i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3121{
23010e43 3122 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3123
e47c68e9
EA
3124 if (!obj_priv->page_cpu_valid)
3125 return;
3126
3127 /* If we're partially in the CPU read domain, finish moving it in.
3128 */
3129 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3130 int i;
3131
3132 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3133 if (obj_priv->page_cpu_valid[i])
3134 continue;
856fa198 3135 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3136 }
e47c68e9
EA
3137 }
3138
3139 /* Free the page_cpu_valid mappings which are now stale, whether
3140 * or not we've got I915_GEM_DOMAIN_CPU.
3141 */
9a298b2a 3142 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3143 obj_priv->page_cpu_valid = NULL;
3144}
3145
3146/**
3147 * Set the CPU read domain on a range of the object.
3148 *
3149 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3150 * not entirely valid. The page_cpu_valid member of the object flags which
3151 * pages have been flushed, and will be respected by
3152 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3153 * of the whole object.
3154 *
3155 * This function returns when the move is complete, including waiting on
3156 * flushes to occur.
3157 */
3158static int
3159i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3160 uint64_t offset, uint64_t size)
3161{
23010e43 3162 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3163 uint32_t old_read_domains;
e47c68e9 3164 int i, ret;
673a394b 3165
e47c68e9
EA
3166 if (offset == 0 && size == obj->size)
3167 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3168
ba3d8d74 3169 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3170 if (ret != 0)
6a47baa6 3171 return ret;
e47c68e9
EA
3172 i915_gem_object_flush_gtt_write_domain(obj);
3173
3174 /* If we're already fully in the CPU read domain, we're done. */
3175 if (obj_priv->page_cpu_valid == NULL &&
3176 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3177 return 0;
673a394b 3178
e47c68e9
EA
3179 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3180 * newly adding I915_GEM_DOMAIN_CPU
3181 */
673a394b 3182 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3183 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3184 GFP_KERNEL);
e47c68e9
EA
3185 if (obj_priv->page_cpu_valid == NULL)
3186 return -ENOMEM;
3187 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3188 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3189
3190 /* Flush the cache on any pages that are still invalid from the CPU's
3191 * perspective.
3192 */
e47c68e9
EA
3193 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3194 i++) {
673a394b
EA
3195 if (obj_priv->page_cpu_valid[i])
3196 continue;
3197
856fa198 3198 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3199
3200 obj_priv->page_cpu_valid[i] = 1;
3201 }
3202
e47c68e9
EA
3203 /* It should now be out of any other write domains, and we can update
3204 * the domain values for our changes.
3205 */
3206 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3207
1c5d22f7 3208 old_read_domains = obj->read_domains;
e47c68e9
EA
3209 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3210
1c5d22f7
CW
3211 trace_i915_gem_object_change_domain(obj,
3212 old_read_domains,
3213 obj->write_domain);
3214
673a394b
EA
3215 return 0;
3216}
3217
673a394b
EA
3218/**
3219 * Pin an object to the GTT and evaluate the relocations landing in it.
3220 */
3221static int
3222i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3223 struct drm_file *file_priv,
76446cac 3224 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3225 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3226{
3227 struct drm_device *dev = obj->dev;
0839ccb8 3228 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3229 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3230 int i, ret;
0839ccb8 3231 void __iomem *reloc_page;
76446cac
JB
3232 bool need_fence;
3233
3234 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3235 obj_priv->tiling_mode != I915_TILING_NONE;
3236
3237 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3238 if (need_fence &&
3239 !i915_gem_object_fence_offset_ok(obj,
3240 obj_priv->tiling_mode)) {
3241 ret = i915_gem_object_unbind(obj);
3242 if (ret)
3243 return ret;
3244 }
673a394b
EA
3245
3246 /* Choose the GTT offset for our buffer and put it there. */
3247 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3248 if (ret)
3249 return ret;
3250
76446cac
JB
3251 /*
3252 * Pre-965 chips need a fence register set up in order to
3253 * properly handle blits to/from tiled surfaces.
3254 */
3255 if (need_fence) {
53640e1d 3256 ret = i915_gem_object_get_fence_reg(obj, true);
76446cac 3257 if (ret != 0) {
76446cac
JB
3258 i915_gem_object_unpin(obj);
3259 return ret;
3260 }
53640e1d
CW
3261
3262 dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
76446cac
JB
3263 }
3264
673a394b
EA
3265 entry->offset = obj_priv->gtt_offset;
3266
673a394b
EA
3267 /* Apply the relocations, using the GTT aperture to avoid cache
3268 * flushing requirements.
3269 */
3270 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3271 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3272 struct drm_gem_object *target_obj;
3273 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3274 uint32_t reloc_val, reloc_offset;
3275 uint32_t __iomem *reloc_entry;
673a394b 3276
673a394b 3277 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3278 reloc->target_handle);
673a394b
EA
3279 if (target_obj == NULL) {
3280 i915_gem_object_unpin(obj);
bf79cb91 3281 return -ENOENT;
673a394b 3282 }
23010e43 3283 target_obj_priv = to_intel_bo(target_obj);
673a394b 3284
8542a0bb
CW
3285#if WATCH_RELOC
3286 DRM_INFO("%s: obj %p offset %08x target %d "
3287 "read %08x write %08x gtt %08x "
3288 "presumed %08x delta %08x\n",
3289 __func__,
3290 obj,
3291 (int) reloc->offset,
3292 (int) reloc->target_handle,
3293 (int) reloc->read_domains,
3294 (int) reloc->write_domain,
3295 (int) target_obj_priv->gtt_offset,
3296 (int) reloc->presumed_offset,
3297 reloc->delta);
3298#endif
3299
673a394b
EA
3300 /* The target buffer should have appeared before us in the
3301 * exec_object list, so it should have a GTT space bound by now.
3302 */
3303 if (target_obj_priv->gtt_space == NULL) {
3304 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3305 reloc->target_handle);
673a394b
EA
3306 drm_gem_object_unreference(target_obj);
3307 i915_gem_object_unpin(obj);
3308 return -EINVAL;
3309 }
3310
8542a0bb 3311 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3312 if (reloc->write_domain & (reloc->write_domain - 1)) {
3313 DRM_ERROR("reloc with multiple write domains: "
3314 "obj %p target %d offset %d "
3315 "read %08x write %08x",
3316 obj, reloc->target_handle,
3317 (int) reloc->offset,
3318 reloc->read_domains,
3319 reloc->write_domain);
3320 return -EINVAL;
3321 }
40a5f0de
EA
3322 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3323 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3324 DRM_ERROR("reloc with read/write CPU domains: "
3325 "obj %p target %d offset %d "
3326 "read %08x write %08x",
40a5f0de
EA
3327 obj, reloc->target_handle,
3328 (int) reloc->offset,
3329 reloc->read_domains,
3330 reloc->write_domain);
491152b8
CW
3331 drm_gem_object_unreference(target_obj);
3332 i915_gem_object_unpin(obj);
e47c68e9
EA
3333 return -EINVAL;
3334 }
40a5f0de
EA
3335 if (reloc->write_domain && target_obj->pending_write_domain &&
3336 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3337 DRM_ERROR("Write domain conflict: "
3338 "obj %p target %d offset %d "
3339 "new %08x old %08x\n",
40a5f0de
EA
3340 obj, reloc->target_handle,
3341 (int) reloc->offset,
3342 reloc->write_domain,
673a394b
EA
3343 target_obj->pending_write_domain);
3344 drm_gem_object_unreference(target_obj);
3345 i915_gem_object_unpin(obj);
3346 return -EINVAL;
3347 }
3348
40a5f0de
EA
3349 target_obj->pending_read_domains |= reloc->read_domains;
3350 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3351
3352 /* If the relocation already has the right value in it, no
3353 * more work needs to be done.
3354 */
40a5f0de 3355 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3356 drm_gem_object_unreference(target_obj);
3357 continue;
3358 }
3359
8542a0bb
CW
3360 /* Check that the relocation address is valid... */
3361 if (reloc->offset > obj->size - 4) {
3362 DRM_ERROR("Relocation beyond object bounds: "
3363 "obj %p target %d offset %d size %d.\n",
3364 obj, reloc->target_handle,
3365 (int) reloc->offset, (int) obj->size);
3366 drm_gem_object_unreference(target_obj);
3367 i915_gem_object_unpin(obj);
3368 return -EINVAL;
3369 }
3370 if (reloc->offset & 3) {
3371 DRM_ERROR("Relocation not 4-byte aligned: "
3372 "obj %p target %d offset %d.\n",
3373 obj, reloc->target_handle,
3374 (int) reloc->offset);
3375 drm_gem_object_unreference(target_obj);
3376 i915_gem_object_unpin(obj);
3377 return -EINVAL;
3378 }
3379
3380 /* and points to somewhere within the target object. */
3381 if (reloc->delta >= target_obj->size) {
3382 DRM_ERROR("Relocation beyond target object bounds: "
3383 "obj %p target %d delta %d size %d.\n",
3384 obj, reloc->target_handle,
3385 (int) reloc->delta, (int) target_obj->size);
3386 drm_gem_object_unreference(target_obj);
3387 i915_gem_object_unpin(obj);
3388 return -EINVAL;
3389 }
3390
2ef7eeaa
EA
3391 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3392 if (ret != 0) {
3393 drm_gem_object_unreference(target_obj);
3394 i915_gem_object_unpin(obj);
3395 return -EINVAL;
673a394b
EA
3396 }
3397
3398 /* Map the page containing the relocation we're going to
3399 * perform.
3400 */
40a5f0de 3401 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3402 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3403 (reloc_offset &
fca3ec01
CW
3404 ~(PAGE_SIZE - 1)),
3405 KM_USER0);
3043c60c 3406 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3407 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3408 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b 3409
673a394b 3410 writel(reloc_val, reloc_entry);
fca3ec01 3411 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3412
40a5f0de
EA
3413 /* The updated presumed offset for this entry will be
3414 * copied back out to the user.
673a394b 3415 */
40a5f0de 3416 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3417
3418 drm_gem_object_unreference(target_obj);
3419 }
3420
673a394b
EA
3421 return 0;
3422}
3423
673a394b
EA
3424/* Throttle our rendering by waiting until the ring has completed our requests
3425 * emitted over 20 msec ago.
3426 *
b962442e
EA
3427 * Note that if we were to use the current jiffies each time around the loop,
3428 * we wouldn't escape the function with any frames outstanding if the time to
3429 * render a frame was over 20ms.
3430 *
673a394b
EA
3431 * This should get us reasonable parallelism between CPU and GPU but also
3432 * relatively low latency when blocking on a particular request to finish.
3433 */
3434static int
f787a5f5 3435i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
673a394b 3436{
f787a5f5
CW
3437 struct drm_i915_private *dev_priv = dev->dev_private;
3438 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3439 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3440 struct drm_i915_gem_request *request;
3441 struct intel_ring_buffer *ring = NULL;
3442 u32 seqno = 0;
3443 int ret;
673a394b 3444
1c25595f 3445 spin_lock(&file_priv->mm.lock);
f787a5f5 3446 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3447 if (time_after_eq(request->emitted_jiffies, recent_enough))
3448 break;
3449
f787a5f5
CW
3450 ring = request->ring;
3451 seqno = request->seqno;
b962442e 3452 }
1c25595f 3453 spin_unlock(&file_priv->mm.lock);
f787a5f5
CW
3454
3455 if (seqno == 0)
3456 return 0;
3457
3458 ret = 0;
3459 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3460 /* And wait for the seqno passing without holding any locks and
3461 * causing extra latency for others. This is safe as the irq
3462 * generation is designed to be run atomically and so is
3463 * lockless.
3464 */
3465 ring->user_irq_get(dev, ring);
3466 ret = wait_event_interruptible(ring->irq_queue,
3467 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3468 || atomic_read(&dev_priv->mm.wedged));
3469 ring->user_irq_put(dev, ring);
3470
3471 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3472 ret = -EIO;
3473 }
3474
3475 if (ret == 0)
3476 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
b962442e 3477
673a394b
EA
3478 return ret;
3479}
3480
40a5f0de 3481static int
76446cac 3482i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3483 uint32_t buffer_count,
3484 struct drm_i915_gem_relocation_entry **relocs)
3485{
3486 uint32_t reloc_count = 0, reloc_index = 0, i;
3487 int ret;
3488
3489 *relocs = NULL;
3490 for (i = 0; i < buffer_count; i++) {
3491 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3492 return -EINVAL;
3493 reloc_count += exec_list[i].relocation_count;
3494 }
3495
8e7d2b2c 3496 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3497 if (*relocs == NULL) {
3498 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3499 return -ENOMEM;
76446cac 3500 }
40a5f0de
EA
3501
3502 for (i = 0; i < buffer_count; i++) {
3503 struct drm_i915_gem_relocation_entry __user *user_relocs;
3504
3505 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3506
3507 ret = copy_from_user(&(*relocs)[reloc_index],
3508 user_relocs,
3509 exec_list[i].relocation_count *
3510 sizeof(**relocs));
3511 if (ret != 0) {
8e7d2b2c 3512 drm_free_large(*relocs);
40a5f0de 3513 *relocs = NULL;
2bc43b5c 3514 return -EFAULT;
40a5f0de
EA
3515 }
3516
3517 reloc_index += exec_list[i].relocation_count;
3518 }
3519
2bc43b5c 3520 return 0;
40a5f0de
EA
3521}
3522
3523static int
76446cac 3524i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3525 uint32_t buffer_count,
3526 struct drm_i915_gem_relocation_entry *relocs)
3527{
3528 uint32_t reloc_count = 0, i;
2bc43b5c 3529 int ret = 0;
40a5f0de 3530
93533c29
CW
3531 if (relocs == NULL)
3532 return 0;
3533
40a5f0de
EA
3534 for (i = 0; i < buffer_count; i++) {
3535 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3536 int unwritten;
40a5f0de
EA
3537
3538 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3539
2bc43b5c
FM
3540 unwritten = copy_to_user(user_relocs,
3541 &relocs[reloc_count],
3542 exec_list[i].relocation_count *
3543 sizeof(*relocs));
3544
3545 if (unwritten) {
3546 ret = -EFAULT;
3547 goto err;
40a5f0de
EA
3548 }
3549
3550 reloc_count += exec_list[i].relocation_count;
3551 }
3552
2bc43b5c 3553err:
8e7d2b2c 3554 drm_free_large(relocs);
40a5f0de
EA
3555
3556 return ret;
3557}
3558
83d60795 3559static int
76446cac 3560i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3561 uint64_t exec_offset)
3562{
3563 uint32_t exec_start, exec_len;
3564
3565 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3566 exec_len = (uint32_t) exec->batch_len;
3567
3568 if ((exec_start | exec_len) & 0x7)
3569 return -EINVAL;
3570
3571 if (!exec_start)
3572 return -EINVAL;
3573
3574 return 0;
3575}
3576
e6c3a2a6 3577static int
6b95a207
KH
3578i915_gem_wait_for_pending_flip(struct drm_device *dev,
3579 struct drm_gem_object **object_list,
3580 int count)
3581{
3582 drm_i915_private_t *dev_priv = dev->dev_private;
3583 struct drm_i915_gem_object *obj_priv;
3584 DEFINE_WAIT(wait);
3585 int i, ret = 0;
3586
3587 for (;;) {
3588 prepare_to_wait(&dev_priv->pending_flip_queue,
3589 &wait, TASK_INTERRUPTIBLE);
3590 for (i = 0; i < count; i++) {
23010e43 3591 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3592 if (atomic_read(&obj_priv->pending_flip) > 0)
3593 break;
3594 }
3595 if (i == count)
3596 break;
3597
3598 if (!signal_pending(current)) {
3599 mutex_unlock(&dev->struct_mutex);
3600 schedule();
3601 mutex_lock(&dev->struct_mutex);
3602 continue;
3603 }
3604 ret = -ERESTARTSYS;
3605 break;
3606 }
3607 finish_wait(&dev_priv->pending_flip_queue, &wait);
3608
3609 return ret;
3610}
3611
8dc5d147 3612static int
76446cac
JB
3613i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3614 struct drm_file *file_priv,
3615 struct drm_i915_gem_execbuffer2 *args,
3616 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3617{
3618 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3619 struct drm_gem_object **object_list = NULL;
3620 struct drm_gem_object *batch_obj;
b70d11da 3621 struct drm_i915_gem_object *obj_priv;
201361a5 3622 struct drm_clip_rect *cliprects = NULL;
93533c29 3623 struct drm_i915_gem_relocation_entry *relocs = NULL;
8dc5d147 3624 struct drm_i915_gem_request *request = NULL;
30dbf0c0 3625 int ret, ret2, i, pinned = 0;
673a394b 3626 uint64_t exec_offset;
5c12a07e 3627 uint32_t reloc_index;
6b95a207 3628 int pin_tries, flips;
673a394b 3629
852835f3
ZN
3630 struct intel_ring_buffer *ring = NULL;
3631
30dbf0c0
CW
3632 ret = i915_gem_check_is_wedged(dev);
3633 if (ret)
3634 return ret;
3635
673a394b
EA
3636#if WATCH_EXEC
3637 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3638 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3639#endif
d1b851fc
ZN
3640 if (args->flags & I915_EXEC_BSD) {
3641 if (!HAS_BSD(dev)) {
3642 DRM_ERROR("execbuf with wrong flag\n");
3643 return -EINVAL;
3644 }
3645 ring = &dev_priv->bsd_ring;
3646 } else {
3647 ring = &dev_priv->render_ring;
3648 }
3649
4f481ed2
EA
3650 if (args->buffer_count < 1) {
3651 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3652 return -EINVAL;
3653 }
c8e0f93a 3654 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3655 if (object_list == NULL) {
3656 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3657 args->buffer_count);
3658 ret = -ENOMEM;
3659 goto pre_mutex_err;
3660 }
673a394b 3661
201361a5 3662 if (args->num_cliprects != 0) {
9a298b2a
EA
3663 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3664 GFP_KERNEL);
a40e8d31
OA
3665 if (cliprects == NULL) {
3666 ret = -ENOMEM;
201361a5 3667 goto pre_mutex_err;
a40e8d31 3668 }
201361a5
EA
3669
3670 ret = copy_from_user(cliprects,
3671 (struct drm_clip_rect __user *)
3672 (uintptr_t) args->cliprects_ptr,
3673 sizeof(*cliprects) * args->num_cliprects);
3674 if (ret != 0) {
3675 DRM_ERROR("copy %d cliprects failed: %d\n",
3676 args->num_cliprects, ret);
c877cdce 3677 ret = -EFAULT;
201361a5
EA
3678 goto pre_mutex_err;
3679 }
3680 }
3681
8dc5d147
CW
3682 request = kzalloc(sizeof(*request), GFP_KERNEL);
3683 if (request == NULL) {
3684 ret = -ENOMEM;
3685 goto pre_mutex_err;
3686 }
3687
40a5f0de
EA
3688 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3689 &relocs);
3690 if (ret != 0)
3691 goto pre_mutex_err;
3692
76c1dec1
CW
3693 ret = i915_mutex_lock_interruptible(dev);
3694 if (ret)
3695 goto pre_mutex_err;
673a394b 3696
673a394b 3697 if (dev_priv->mm.suspended) {
673a394b 3698 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3699 ret = -EBUSY;
3700 goto pre_mutex_err;
673a394b
EA
3701 }
3702
ac94a962 3703 /* Look up object handles */
6b95a207 3704 flips = 0;
673a394b
EA
3705 for (i = 0; i < args->buffer_count; i++) {
3706 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3707 exec_list[i].handle);
3708 if (object_list[i] == NULL) {
3709 DRM_ERROR("Invalid object handle %d at index %d\n",
3710 exec_list[i].handle, i);
0ce907f8
CW
3711 /* prevent error path from reading uninitialized data */
3712 args->buffer_count = i + 1;
bf79cb91 3713 ret = -ENOENT;
673a394b
EA
3714 goto err;
3715 }
b70d11da 3716
23010e43 3717 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3718 if (obj_priv->in_execbuffer) {
3719 DRM_ERROR("Object %p appears more than once in object list\n",
3720 object_list[i]);
0ce907f8
CW
3721 /* prevent error path from reading uninitialized data */
3722 args->buffer_count = i + 1;
bf79cb91 3723 ret = -EINVAL;
b70d11da
KH
3724 goto err;
3725 }
3726 obj_priv->in_execbuffer = true;
6b95a207
KH
3727 flips += atomic_read(&obj_priv->pending_flip);
3728 }
3729
3730 if (flips > 0) {
3731 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3732 args->buffer_count);
3733 if (ret)
3734 goto err;
ac94a962 3735 }
673a394b 3736
ac94a962
KP
3737 /* Pin and relocate */
3738 for (pin_tries = 0; ; pin_tries++) {
3739 ret = 0;
40a5f0de
EA
3740 reloc_index = 0;
3741
ac94a962
KP
3742 for (i = 0; i < args->buffer_count; i++) {
3743 object_list[i]->pending_read_domains = 0;
3744 object_list[i]->pending_write_domain = 0;
3745 ret = i915_gem_object_pin_and_relocate(object_list[i],
3746 file_priv,
40a5f0de
EA
3747 &exec_list[i],
3748 &relocs[reloc_index]);
ac94a962
KP
3749 if (ret)
3750 break;
3751 pinned = i + 1;
40a5f0de 3752 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3753 }
3754 /* success */
3755 if (ret == 0)
3756 break;
3757
3758 /* error other than GTT full, or we've already tried again */
2939e1f5 3759 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3760 if (ret != -ERESTARTSYS) {
3761 unsigned long long total_size = 0;
3d1cc470
CW
3762 int num_fences = 0;
3763 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3764 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3765
07f73f69 3766 total_size += object_list[i]->size;
3d1cc470
CW
3767 num_fences +=
3768 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3769 obj_priv->tiling_mode != I915_TILING_NONE;
3770 }
3771 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3772 pinned+1, args->buffer_count,
3d1cc470
CW
3773 total_size, num_fences,
3774 ret);
07f73f69
CW
3775 DRM_ERROR("%d objects [%d pinned], "
3776 "%d object bytes [%d pinned], "
3777 "%d/%d gtt bytes\n",
3778 atomic_read(&dev->object_count),
3779 atomic_read(&dev->pin_count),
3780 atomic_read(&dev->object_memory),
3781 atomic_read(&dev->pin_memory),
3782 atomic_read(&dev->gtt_memory),
3783 dev->gtt_total);
3784 }
673a394b
EA
3785 goto err;
3786 }
ac94a962
KP
3787
3788 /* unpin all of our buffers */
3789 for (i = 0; i < pinned; i++)
3790 i915_gem_object_unpin(object_list[i]);
b1177636 3791 pinned = 0;
ac94a962
KP
3792
3793 /* evict everyone we can from the aperture */
3794 ret = i915_gem_evict_everything(dev);
07f73f69 3795 if (ret && ret != -ENOSPC)
ac94a962 3796 goto err;
673a394b
EA
3797 }
3798
3799 /* Set the pending read domains for the batch buffer to COMMAND */
3800 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3801 if (batch_obj->pending_write_domain) {
3802 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3803 ret = -EINVAL;
3804 goto err;
3805 }
3806 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3807
83d60795
CW
3808 /* Sanity check the batch buffer, prior to moving objects */
3809 exec_offset = exec_list[args->buffer_count - 1].offset;
3810 ret = i915_gem_check_execbuffer (args, exec_offset);
3811 if (ret != 0) {
3812 DRM_ERROR("execbuf with invalid offset/length\n");
3813 goto err;
3814 }
3815
646f0f6e
KP
3816 /* Zero the global flush/invalidate flags. These
3817 * will be modified as new domains are computed
3818 * for each object
3819 */
3820 dev->invalidate_domains = 0;
3821 dev->flush_domains = 0;
9220434a 3822 dev_priv->mm.flush_rings = 0;
646f0f6e 3823
673a394b
EA
3824 for (i = 0; i < args->buffer_count; i++) {
3825 struct drm_gem_object *obj = object_list[i];
673a394b 3826
646f0f6e 3827 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3828 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3829 }
3830
646f0f6e
KP
3831 if (dev->invalidate_domains | dev->flush_domains) {
3832#if WATCH_EXEC
3833 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3834 __func__,
3835 dev->invalidate_domains,
3836 dev->flush_domains);
3837#endif
c78ec30b 3838 i915_gem_flush(dev, file_priv,
646f0f6e 3839 dev->invalidate_domains,
9220434a
CW
3840 dev->flush_domains,
3841 dev_priv->mm.flush_rings);
a6910434
DV
3842 }
3843
efbeed96
EA
3844 for (i = 0; i < args->buffer_count; i++) {
3845 struct drm_gem_object *obj = object_list[i];
23010e43 3846 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3847 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3848
3849 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3850 if (obj->write_domain)
3851 list_move_tail(&obj_priv->gpu_write_list,
3852 &dev_priv->mm.gpu_write_list);
3853 else
3854 list_del_init(&obj_priv->gpu_write_list);
3855
1c5d22f7
CW
3856 trace_i915_gem_object_change_domain(obj,
3857 obj->read_domains,
3858 old_write_domain);
efbeed96
EA
3859 }
3860
673a394b
EA
3861#if WATCH_COHERENCY
3862 for (i = 0; i < args->buffer_count; i++) {
3863 i915_gem_object_check_coherency(object_list[i],
3864 exec_list[i].handle);
3865 }
3866#endif
3867
673a394b 3868#if WATCH_EXEC
6911a9b8 3869 i915_gem_dump_object(batch_obj,
673a394b
EA
3870 args->batch_len,
3871 __func__,
3872 ~0);
3873#endif
3874
673a394b 3875 /* Exec the batchbuffer */
852835f3
ZN
3876 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3877 cliprects, exec_offset);
673a394b
EA
3878 if (ret) {
3879 DRM_ERROR("dispatch failed %d\n", ret);
3880 goto err;
3881 }
3882
3883 /*
3884 * Ensure that the commands in the batch buffer are
3885 * finished before the interrupt fires
3886 */
8a1a49f9 3887 i915_retire_commands(dev, ring);
673a394b 3888
617dbe27
DV
3889 for (i = 0; i < args->buffer_count; i++) {
3890 struct drm_gem_object *obj = object_list[i];
3891 obj_priv = to_intel_bo(obj);
3892
3893 i915_gem_object_move_to_active(obj, ring);
617dbe27 3894 }
a56ba56c 3895
5c12a07e 3896 i915_add_request(dev, file_priv, request, ring);
8dc5d147 3897 request = NULL;
673a394b 3898
673a394b 3899err:
aad87dff
JL
3900 for (i = 0; i < pinned; i++)
3901 i915_gem_object_unpin(object_list[i]);
3902
b70d11da
KH
3903 for (i = 0; i < args->buffer_count; i++) {
3904 if (object_list[i]) {
23010e43 3905 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3906 obj_priv->in_execbuffer = false;
3907 }
aad87dff 3908 drm_gem_object_unreference(object_list[i]);
b70d11da 3909 }
673a394b 3910
673a394b
EA
3911 mutex_unlock(&dev->struct_mutex);
3912
93533c29 3913pre_mutex_err:
40a5f0de
EA
3914 /* Copy the updated relocations out regardless of current error
3915 * state. Failure to update the relocs would mean that the next
3916 * time userland calls execbuf, it would do so with presumed offset
3917 * state that didn't match the actual object state.
3918 */
3919 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3920 relocs);
3921 if (ret2 != 0) {
3922 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3923
3924 if (ret == 0)
3925 ret = ret2;
3926 }
3927
8e7d2b2c 3928 drm_free_large(object_list);
9a298b2a 3929 kfree(cliprects);
8dc5d147 3930 kfree(request);
673a394b
EA
3931
3932 return ret;
3933}
3934
76446cac
JB
3935/*
3936 * Legacy execbuffer just creates an exec2 list from the original exec object
3937 * list array and passes it to the real function.
3938 */
3939int
3940i915_gem_execbuffer(struct drm_device *dev, void *data,
3941 struct drm_file *file_priv)
3942{
3943 struct drm_i915_gem_execbuffer *args = data;
3944 struct drm_i915_gem_execbuffer2 exec2;
3945 struct drm_i915_gem_exec_object *exec_list = NULL;
3946 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3947 int ret, i;
3948
3949#if WATCH_EXEC
3950 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3951 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3952#endif
3953
3954 if (args->buffer_count < 1) {
3955 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3956 return -EINVAL;
3957 }
3958
3959 /* Copy in the exec list from userland */
3960 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3961 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3962 if (exec_list == NULL || exec2_list == NULL) {
3963 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3964 args->buffer_count);
3965 drm_free_large(exec_list);
3966 drm_free_large(exec2_list);
3967 return -ENOMEM;
3968 }
3969 ret = copy_from_user(exec_list,
3970 (struct drm_i915_relocation_entry __user *)
3971 (uintptr_t) args->buffers_ptr,
3972 sizeof(*exec_list) * args->buffer_count);
3973 if (ret != 0) {
3974 DRM_ERROR("copy %d exec entries failed %d\n",
3975 args->buffer_count, ret);
3976 drm_free_large(exec_list);
3977 drm_free_large(exec2_list);
3978 return -EFAULT;
3979 }
3980
3981 for (i = 0; i < args->buffer_count; i++) {
3982 exec2_list[i].handle = exec_list[i].handle;
3983 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3984 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3985 exec2_list[i].alignment = exec_list[i].alignment;
3986 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 3987 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
3988 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3989 else
3990 exec2_list[i].flags = 0;
3991 }
3992
3993 exec2.buffers_ptr = args->buffers_ptr;
3994 exec2.buffer_count = args->buffer_count;
3995 exec2.batch_start_offset = args->batch_start_offset;
3996 exec2.batch_len = args->batch_len;
3997 exec2.DR1 = args->DR1;
3998 exec2.DR4 = args->DR4;
3999 exec2.num_cliprects = args->num_cliprects;
4000 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4001 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
4002
4003 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4004 if (!ret) {
4005 /* Copy the new buffer offsets back to the user's exec list. */
4006 for (i = 0; i < args->buffer_count; i++)
4007 exec_list[i].offset = exec2_list[i].offset;
4008 /* ... and back out to userspace */
4009 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4010 (uintptr_t) args->buffers_ptr,
4011 exec_list,
4012 sizeof(*exec_list) * args->buffer_count);
4013 if (ret) {
4014 ret = -EFAULT;
4015 DRM_ERROR("failed to copy %d exec entries "
4016 "back to user (%d)\n",
4017 args->buffer_count, ret);
4018 }
76446cac
JB
4019 }
4020
4021 drm_free_large(exec_list);
4022 drm_free_large(exec2_list);
4023 return ret;
4024}
4025
4026int
4027i915_gem_execbuffer2(struct drm_device *dev, void *data,
4028 struct drm_file *file_priv)
4029{
4030 struct drm_i915_gem_execbuffer2 *args = data;
4031 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4032 int ret;
4033
4034#if WATCH_EXEC
4035 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4036 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4037#endif
4038
4039 if (args->buffer_count < 1) {
4040 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4041 return -EINVAL;
4042 }
4043
4044 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4045 if (exec2_list == NULL) {
4046 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4047 args->buffer_count);
4048 return -ENOMEM;
4049 }
4050 ret = copy_from_user(exec2_list,
4051 (struct drm_i915_relocation_entry __user *)
4052 (uintptr_t) args->buffers_ptr,
4053 sizeof(*exec2_list) * args->buffer_count);
4054 if (ret != 0) {
4055 DRM_ERROR("copy %d exec entries failed %d\n",
4056 args->buffer_count, ret);
4057 drm_free_large(exec2_list);
4058 return -EFAULT;
4059 }
4060
4061 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4062 if (!ret) {
4063 /* Copy the new buffer offsets back to the user's exec list. */
4064 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4065 (uintptr_t) args->buffers_ptr,
4066 exec2_list,
4067 sizeof(*exec2_list) * args->buffer_count);
4068 if (ret) {
4069 ret = -EFAULT;
4070 DRM_ERROR("failed to copy %d exec entries "
4071 "back to user (%d)\n",
4072 args->buffer_count, ret);
4073 }
4074 }
4075
4076 drm_free_large(exec2_list);
4077 return ret;
4078}
4079
673a394b
EA
4080int
4081i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4082{
4083 struct drm_device *dev = obj->dev;
f13d3f73 4084 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4085 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4086 int ret;
4087
778c3544 4088 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 4089 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4090
4091 if (obj_priv->gtt_space != NULL) {
4092 if (alignment == 0)
4093 alignment = i915_gem_get_gtt_alignment(obj);
4094 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4095 WARN(obj_priv->pin_count,
4096 "bo is already pinned with incorrect alignment:"
4097 " offset=%x, req.alignment=%x\n",
4098 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4099 ret = i915_gem_object_unbind(obj);
4100 if (ret)
4101 return ret;
4102 }
4103 }
4104
673a394b
EA
4105 if (obj_priv->gtt_space == NULL) {
4106 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4107 if (ret)
673a394b 4108 return ret;
22c344e9 4109 }
76446cac 4110
673a394b
EA
4111 obj_priv->pin_count++;
4112
4113 /* If the object is not active and not pending a flush,
4114 * remove it from the inactive list
4115 */
4116 if (obj_priv->pin_count == 1) {
4117 atomic_inc(&dev->pin_count);
4118 atomic_add(obj->size, &dev->pin_memory);
f13d3f73
CW
4119 if (!obj_priv->active)
4120 list_move_tail(&obj_priv->list,
4121 &dev_priv->mm.pinned_list);
673a394b 4122 }
673a394b 4123
23bc5982 4124 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4125 return 0;
4126}
4127
4128void
4129i915_gem_object_unpin(struct drm_gem_object *obj)
4130{
4131 struct drm_device *dev = obj->dev;
4132 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4133 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4134
23bc5982 4135 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4136 obj_priv->pin_count--;
4137 BUG_ON(obj_priv->pin_count < 0);
4138 BUG_ON(obj_priv->gtt_space == NULL);
4139
4140 /* If the object is no longer pinned, and is
4141 * neither active nor being flushed, then stick it on
4142 * the inactive list
4143 */
4144 if (obj_priv->pin_count == 0) {
f13d3f73 4145 if (!obj_priv->active)
673a394b
EA
4146 list_move_tail(&obj_priv->list,
4147 &dev_priv->mm.inactive_list);
4148 atomic_dec(&dev->pin_count);
4149 atomic_sub(obj->size, &dev->pin_memory);
4150 }
23bc5982 4151 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4152}
4153
4154int
4155i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4156 struct drm_file *file_priv)
4157{
4158 struct drm_i915_gem_pin *args = data;
4159 struct drm_gem_object *obj;
4160 struct drm_i915_gem_object *obj_priv;
4161 int ret;
4162
673a394b
EA
4163 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4164 if (obj == NULL) {
4165 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4166 args->handle);
bf79cb91 4167 return -ENOENT;
673a394b 4168 }
23010e43 4169 obj_priv = to_intel_bo(obj);
673a394b 4170
76c1dec1
CW
4171 ret = i915_mutex_lock_interruptible(dev);
4172 if (ret) {
4173 drm_gem_object_unreference_unlocked(obj);
4174 return ret;
4175 }
4176
bb6baf76
CW
4177 if (obj_priv->madv != I915_MADV_WILLNEED) {
4178 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4179 drm_gem_object_unreference(obj);
4180 mutex_unlock(&dev->struct_mutex);
4181 return -EINVAL;
4182 }
4183
79e53945
JB
4184 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4185 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4186 args->handle);
96dec61d 4187 drm_gem_object_unreference(obj);
673a394b 4188 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4189 return -EINVAL;
4190 }
4191
4192 obj_priv->user_pin_count++;
4193 obj_priv->pin_filp = file_priv;
4194 if (obj_priv->user_pin_count == 1) {
4195 ret = i915_gem_object_pin(obj, args->alignment);
4196 if (ret != 0) {
4197 drm_gem_object_unreference(obj);
4198 mutex_unlock(&dev->struct_mutex);
4199 return ret;
4200 }
673a394b
EA
4201 }
4202
4203 /* XXX - flush the CPU caches for pinned objects
4204 * as the X server doesn't manage domains yet
4205 */
e47c68e9 4206 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4207 args->offset = obj_priv->gtt_offset;
4208 drm_gem_object_unreference(obj);
4209 mutex_unlock(&dev->struct_mutex);
4210
4211 return 0;
4212}
4213
4214int
4215i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4216 struct drm_file *file_priv)
4217{
4218 struct drm_i915_gem_pin *args = data;
4219 struct drm_gem_object *obj;
79e53945 4220 struct drm_i915_gem_object *obj_priv;
76c1dec1 4221 int ret;
673a394b
EA
4222
4223 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4224 if (obj == NULL) {
4225 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4226 args->handle);
bf79cb91 4227 return -ENOENT;
673a394b
EA
4228 }
4229
23010e43 4230 obj_priv = to_intel_bo(obj);
76c1dec1
CW
4231
4232 ret = i915_mutex_lock_interruptible(dev);
4233 if (ret) {
4234 drm_gem_object_unreference_unlocked(obj);
4235 return ret;
4236 }
4237
79e53945
JB
4238 if (obj_priv->pin_filp != file_priv) {
4239 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4240 args->handle);
4241 drm_gem_object_unreference(obj);
4242 mutex_unlock(&dev->struct_mutex);
4243 return -EINVAL;
4244 }
4245 obj_priv->user_pin_count--;
4246 if (obj_priv->user_pin_count == 0) {
4247 obj_priv->pin_filp = NULL;
4248 i915_gem_object_unpin(obj);
4249 }
673a394b
EA
4250
4251 drm_gem_object_unreference(obj);
4252 mutex_unlock(&dev->struct_mutex);
4253 return 0;
4254}
4255
4256int
4257i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4258 struct drm_file *file_priv)
4259{
4260 struct drm_i915_gem_busy *args = data;
4261 struct drm_gem_object *obj;
4262 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4263 int ret;
4264
673a394b
EA
4265 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4266 if (obj == NULL) {
4267 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4268 args->handle);
bf79cb91 4269 return -ENOENT;
673a394b
EA
4270 }
4271
76c1dec1
CW
4272 ret = i915_mutex_lock_interruptible(dev);
4273 if (ret) {
4274 drm_gem_object_unreference_unlocked(obj);
4275 return ret;
30dbf0c0
CW
4276 }
4277
0be555b6
CW
4278 /* Count all active objects as busy, even if they are currently not used
4279 * by the gpu. Users of this interface expect objects to eventually
4280 * become non-busy without any further actions, therefore emit any
4281 * necessary flushes here.
c4de0a5d 4282 */
0be555b6
CW
4283 obj_priv = to_intel_bo(obj);
4284 args->busy = obj_priv->active;
4285 if (args->busy) {
4286 /* Unconditionally flush objects, even when the gpu still uses this
4287 * object. Userspace calling this function indicates that it wants to
4288 * use this buffer rather sooner than later, so issuing the required
4289 * flush earlier is beneficial.
4290 */
c78ec30b
CW
4291 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4292 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4293 obj_priv->ring,
4294 0, obj->write_domain);
0be555b6
CW
4295
4296 /* Update the active list for the hardware's current position.
4297 * Otherwise this only updates on a delayed timer or when irqs
4298 * are actually unmasked, and our working set ends up being
4299 * larger than required.
4300 */
4301 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4302
4303 args->busy = obj_priv->active;
4304 }
673a394b
EA
4305
4306 drm_gem_object_unreference(obj);
4307 mutex_unlock(&dev->struct_mutex);
76c1dec1 4308 return 0;
673a394b
EA
4309}
4310
4311int
4312i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4313 struct drm_file *file_priv)
4314{
4315 return i915_gem_ring_throttle(dev, file_priv);
4316}
4317
3ef94daa
CW
4318int
4319i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4320 struct drm_file *file_priv)
4321{
4322 struct drm_i915_gem_madvise *args = data;
4323 struct drm_gem_object *obj;
4324 struct drm_i915_gem_object *obj_priv;
76c1dec1 4325 int ret;
3ef94daa
CW
4326
4327 switch (args->madv) {
4328 case I915_MADV_DONTNEED:
4329 case I915_MADV_WILLNEED:
4330 break;
4331 default:
4332 return -EINVAL;
4333 }
4334
4335 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4336 if (obj == NULL) {
4337 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4338 args->handle);
bf79cb91 4339 return -ENOENT;
3ef94daa 4340 }
23010e43 4341 obj_priv = to_intel_bo(obj);
3ef94daa 4342
76c1dec1
CW
4343 ret = i915_mutex_lock_interruptible(dev);
4344 if (ret) {
4345 drm_gem_object_unreference_unlocked(obj);
4346 return ret;
4347 }
4348
3ef94daa
CW
4349 if (obj_priv->pin_count) {
4350 drm_gem_object_unreference(obj);
4351 mutex_unlock(&dev->struct_mutex);
4352
4353 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4354 return -EINVAL;
4355 }
4356
bb6baf76
CW
4357 if (obj_priv->madv != __I915_MADV_PURGED)
4358 obj_priv->madv = args->madv;
3ef94daa 4359
2d7ef395
CW
4360 /* if the object is no longer bound, discard its backing storage */
4361 if (i915_gem_object_is_purgeable(obj_priv) &&
4362 obj_priv->gtt_space == NULL)
4363 i915_gem_object_truncate(obj);
4364
bb6baf76
CW
4365 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4366
3ef94daa
CW
4367 drm_gem_object_unreference(obj);
4368 mutex_unlock(&dev->struct_mutex);
4369
4370 return 0;
4371}
4372
ac52bc56
DV
4373struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4374 size_t size)
4375{
c397b908 4376 struct drm_i915_gem_object *obj;
ac52bc56 4377
c397b908
DV
4378 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4379 if (obj == NULL)
4380 return NULL;
673a394b 4381
c397b908
DV
4382 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4383 kfree(obj);
4384 return NULL;
4385 }
673a394b 4386
c397b908
DV
4387 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4388 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4389
c397b908 4390 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4391 obj->base.driver_private = NULL;
c397b908
DV
4392 obj->fence_reg = I915_FENCE_REG_NONE;
4393 INIT_LIST_HEAD(&obj->list);
4394 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4395 obj->madv = I915_MADV_WILLNEED;
de151cf6 4396
c397b908
DV
4397 trace_i915_gem_object_create(&obj->base);
4398
4399 return &obj->base;
4400}
4401
4402int i915_gem_init_object(struct drm_gem_object *obj)
4403{
4404 BUG();
de151cf6 4405
673a394b
EA
4406 return 0;
4407}
4408
be72615b 4409static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4410{
de151cf6 4411 struct drm_device *dev = obj->dev;
be72615b 4412 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4413 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4414 int ret;
673a394b 4415
be72615b
CW
4416 ret = i915_gem_object_unbind(obj);
4417 if (ret == -ERESTARTSYS) {
4418 list_move(&obj_priv->list,
4419 &dev_priv->mm.deferred_free_list);
4420 return;
4421 }
673a394b 4422
7e616158
CW
4423 if (obj_priv->mmap_offset)
4424 i915_gem_free_mmap_offset(obj);
de151cf6 4425
c397b908
DV
4426 drm_gem_object_release(obj);
4427
9a298b2a 4428 kfree(obj_priv->page_cpu_valid);
280b713b 4429 kfree(obj_priv->bit_17);
c397b908 4430 kfree(obj_priv);
673a394b
EA
4431}
4432
be72615b
CW
4433void i915_gem_free_object(struct drm_gem_object *obj)
4434{
4435 struct drm_device *dev = obj->dev;
4436 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4437
4438 trace_i915_gem_object_destroy(obj);
4439
4440 while (obj_priv->pin_count > 0)
4441 i915_gem_object_unpin(obj);
4442
4443 if (obj_priv->phys_obj)
4444 i915_gem_detach_phys_object(dev, obj);
4445
4446 i915_gem_free_object_tail(obj);
4447}
4448
29105ccc
CW
4449int
4450i915_gem_idle(struct drm_device *dev)
4451{
4452 drm_i915_private_t *dev_priv = dev->dev_private;
4453 int ret;
28dfe52a 4454
29105ccc 4455 mutex_lock(&dev->struct_mutex);
1c5d22f7 4456
8187a2b7 4457 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4458 (dev_priv->render_ring.gem_object == NULL) ||
4459 (HAS_BSD(dev) &&
4460 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4461 mutex_unlock(&dev->struct_mutex);
4462 return 0;
28dfe52a
EA
4463 }
4464
29105ccc 4465 ret = i915_gpu_idle(dev);
6dbe2772
KP
4466 if (ret) {
4467 mutex_unlock(&dev->struct_mutex);
673a394b 4468 return ret;
6dbe2772 4469 }
673a394b 4470
29105ccc
CW
4471 /* Under UMS, be paranoid and evict. */
4472 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4473 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4474 if (ret) {
4475 mutex_unlock(&dev->struct_mutex);
4476 return ret;
4477 }
4478 }
4479
4480 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4481 * We need to replace this with a semaphore, or something.
4482 * And not confound mm.suspended!
4483 */
4484 dev_priv->mm.suspended = 1;
bc0c7f14 4485 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4486
4487 i915_kernel_lost_context(dev);
6dbe2772 4488 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4489
6dbe2772
KP
4490 mutex_unlock(&dev->struct_mutex);
4491
29105ccc
CW
4492 /* Cancel the retire work handler, which should be idle now. */
4493 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4494
673a394b
EA
4495 return 0;
4496}
4497
e552eb70
JB
4498/*
4499 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4500 * over cache flushing.
4501 */
8187a2b7 4502static int
e552eb70
JB
4503i915_gem_init_pipe_control(struct drm_device *dev)
4504{
4505 drm_i915_private_t *dev_priv = dev->dev_private;
4506 struct drm_gem_object *obj;
4507 struct drm_i915_gem_object *obj_priv;
4508 int ret;
4509
34dc4d44 4510 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4511 if (obj == NULL) {
4512 DRM_ERROR("Failed to allocate seqno page\n");
4513 ret = -ENOMEM;
4514 goto err;
4515 }
4516 obj_priv = to_intel_bo(obj);
4517 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4518
4519 ret = i915_gem_object_pin(obj, 4096);
4520 if (ret)
4521 goto err_unref;
4522
4523 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4524 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4525 if (dev_priv->seqno_page == NULL)
4526 goto err_unpin;
4527
4528 dev_priv->seqno_obj = obj;
4529 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4530
4531 return 0;
4532
4533err_unpin:
4534 i915_gem_object_unpin(obj);
4535err_unref:
4536 drm_gem_object_unreference(obj);
4537err:
4538 return ret;
4539}
4540
8187a2b7
ZN
4541
4542static void
e552eb70
JB
4543i915_gem_cleanup_pipe_control(struct drm_device *dev)
4544{
4545 drm_i915_private_t *dev_priv = dev->dev_private;
4546 struct drm_gem_object *obj;
4547 struct drm_i915_gem_object *obj_priv;
4548
4549 obj = dev_priv->seqno_obj;
4550 obj_priv = to_intel_bo(obj);
4551 kunmap(obj_priv->pages[0]);
4552 i915_gem_object_unpin(obj);
4553 drm_gem_object_unreference(obj);
4554 dev_priv->seqno_obj = NULL;
4555
4556 dev_priv->seqno_page = NULL;
673a394b
EA
4557}
4558
8187a2b7
ZN
4559int
4560i915_gem_init_ringbuffer(struct drm_device *dev)
4561{
4562 drm_i915_private_t *dev_priv = dev->dev_private;
4563 int ret;
68f95ba9 4564
8187a2b7
ZN
4565 if (HAS_PIPE_CONTROL(dev)) {
4566 ret = i915_gem_init_pipe_control(dev);
4567 if (ret)
4568 return ret;
4569 }
68f95ba9 4570
5c1143bb 4571 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4572 if (ret)
4573 goto cleanup_pipe_control;
4574
4575 if (HAS_BSD(dev)) {
5c1143bb 4576 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4577 if (ret)
4578 goto cleanup_render_ring;
d1b851fc 4579 }
68f95ba9 4580
6f392d54
CW
4581 dev_priv->next_seqno = 1;
4582
68f95ba9
CW
4583 return 0;
4584
4585cleanup_render_ring:
4586 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4587cleanup_pipe_control:
4588 if (HAS_PIPE_CONTROL(dev))
4589 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4590 return ret;
4591}
4592
4593void
4594i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4595{
4596 drm_i915_private_t *dev_priv = dev->dev_private;
4597
4598 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4599 if (HAS_BSD(dev))
4600 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4601 if (HAS_PIPE_CONTROL(dev))
4602 i915_gem_cleanup_pipe_control(dev);
4603}
4604
673a394b
EA
4605int
4606i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4607 struct drm_file *file_priv)
4608{
4609 drm_i915_private_t *dev_priv = dev->dev_private;
4610 int ret;
4611
79e53945
JB
4612 if (drm_core_check_feature(dev, DRIVER_MODESET))
4613 return 0;
4614
ba1234d1 4615 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4616 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4617 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4618 }
4619
673a394b 4620 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4621 dev_priv->mm.suspended = 0;
4622
4623 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4624 if (ret != 0) {
4625 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4626 return ret;
d816f6ac 4627 }
9bb2d6f9 4628
852835f3 4629 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4630 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
673a394b
EA
4631 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4632 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4633 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4634 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4635 mutex_unlock(&dev->struct_mutex);
dbb19d30 4636
5f35308b
CW
4637 ret = drm_irq_install(dev);
4638 if (ret)
4639 goto cleanup_ringbuffer;
dbb19d30 4640
673a394b 4641 return 0;
5f35308b
CW
4642
4643cleanup_ringbuffer:
4644 mutex_lock(&dev->struct_mutex);
4645 i915_gem_cleanup_ringbuffer(dev);
4646 dev_priv->mm.suspended = 1;
4647 mutex_unlock(&dev->struct_mutex);
4648
4649 return ret;
673a394b
EA
4650}
4651
4652int
4653i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4654 struct drm_file *file_priv)
4655{
79e53945
JB
4656 if (drm_core_check_feature(dev, DRIVER_MODESET))
4657 return 0;
4658
dbb19d30 4659 drm_irq_uninstall(dev);
e6890f6f 4660 return i915_gem_idle(dev);
673a394b
EA
4661}
4662
4663void
4664i915_gem_lastclose(struct drm_device *dev)
4665{
4666 int ret;
673a394b 4667
e806b495
EA
4668 if (drm_core_check_feature(dev, DRIVER_MODESET))
4669 return;
4670
6dbe2772
KP
4671 ret = i915_gem_idle(dev);
4672 if (ret)
4673 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4674}
4675
4676void
4677i915_gem_load(struct drm_device *dev)
4678{
b5aa8a0f 4679 int i;
673a394b
EA
4680 drm_i915_private_t *dev_priv = dev->dev_private;
4681
673a394b 4682 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4683 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4684 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4685 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4686 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4687 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4688 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4689 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4690 if (HAS_BSD(dev)) {
4691 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4692 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4693 }
007cc8ac
DV
4694 for (i = 0; i < 16; i++)
4695 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4696 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4697 i915_gem_retire_work_handler);
30dbf0c0 4698 init_completion(&dev_priv->error_completion);
31169714
CW
4699 spin_lock(&shrink_list_lock);
4700 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4701 spin_unlock(&shrink_list_lock);
4702
94400120
DA
4703 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4704 if (IS_GEN3(dev)) {
4705 u32 tmp = I915_READ(MI_ARB_STATE);
4706 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4707 /* arb state is a masked write, so set bit + bit in mask */
4708 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4709 I915_WRITE(MI_ARB_STATE, tmp);
4710 }
4711 }
4712
de151cf6 4713 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4714 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4715 dev_priv->fence_reg_start = 3;
de151cf6 4716
a6c45cf0 4717 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4718 dev_priv->num_fence_regs = 16;
4719 else
4720 dev_priv->num_fence_regs = 8;
4721
b5aa8a0f 4722 /* Initialize fence registers to zero */
a6c45cf0
CW
4723 switch (INTEL_INFO(dev)->gen) {
4724 case 6:
4725 for (i = 0; i < 16; i++)
4726 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4727 break;
4728 case 5:
4729 case 4:
b5aa8a0f
GH
4730 for (i = 0; i < 16; i++)
4731 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4732 break;
4733 case 3:
b5aa8a0f
GH
4734 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4735 for (i = 0; i < 8; i++)
4736 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4737 case 2:
4738 for (i = 0; i < 8; i++)
4739 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4740 break;
b5aa8a0f 4741 }
673a394b 4742 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4743 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4744}
71acb5eb
DA
4745
4746/*
4747 * Create a physically contiguous memory object for this object
4748 * e.g. for cursor + overlay regs
4749 */
995b6762
CW
4750static int i915_gem_init_phys_object(struct drm_device *dev,
4751 int id, int size, int align)
71acb5eb
DA
4752{
4753 drm_i915_private_t *dev_priv = dev->dev_private;
4754 struct drm_i915_gem_phys_object *phys_obj;
4755 int ret;
4756
4757 if (dev_priv->mm.phys_objs[id - 1] || !size)
4758 return 0;
4759
9a298b2a 4760 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4761 if (!phys_obj)
4762 return -ENOMEM;
4763
4764 phys_obj->id = id;
4765
6eeefaf3 4766 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4767 if (!phys_obj->handle) {
4768 ret = -ENOMEM;
4769 goto kfree_obj;
4770 }
4771#ifdef CONFIG_X86
4772 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4773#endif
4774
4775 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4776
4777 return 0;
4778kfree_obj:
9a298b2a 4779 kfree(phys_obj);
71acb5eb
DA
4780 return ret;
4781}
4782
995b6762 4783static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4784{
4785 drm_i915_private_t *dev_priv = dev->dev_private;
4786 struct drm_i915_gem_phys_object *phys_obj;
4787
4788 if (!dev_priv->mm.phys_objs[id - 1])
4789 return;
4790
4791 phys_obj = dev_priv->mm.phys_objs[id - 1];
4792 if (phys_obj->cur_obj) {
4793 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4794 }
4795
4796#ifdef CONFIG_X86
4797 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4798#endif
4799 drm_pci_free(dev, phys_obj->handle);
4800 kfree(phys_obj);
4801 dev_priv->mm.phys_objs[id - 1] = NULL;
4802}
4803
4804void i915_gem_free_all_phys_object(struct drm_device *dev)
4805{
4806 int i;
4807
260883c8 4808 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4809 i915_gem_free_phys_object(dev, i);
4810}
4811
4812void i915_gem_detach_phys_object(struct drm_device *dev,
4813 struct drm_gem_object *obj)
4814{
4815 struct drm_i915_gem_object *obj_priv;
4816 int i;
4817 int ret;
4818 int page_count;
4819
23010e43 4820 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4821 if (!obj_priv->phys_obj)
4822 return;
4823
4bdadb97 4824 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4825 if (ret)
4826 goto out;
4827
4828 page_count = obj->size / PAGE_SIZE;
4829
4830 for (i = 0; i < page_count; i++) {
856fa198 4831 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4832 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4833
4834 memcpy(dst, src, PAGE_SIZE);
4835 kunmap_atomic(dst, KM_USER0);
4836 }
856fa198 4837 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4838 drm_agp_chipset_flush(dev);
d78b47b9
CW
4839
4840 i915_gem_object_put_pages(obj);
71acb5eb
DA
4841out:
4842 obj_priv->phys_obj->cur_obj = NULL;
4843 obj_priv->phys_obj = NULL;
4844}
4845
4846int
4847i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4848 struct drm_gem_object *obj,
4849 int id,
4850 int align)
71acb5eb
DA
4851{
4852 drm_i915_private_t *dev_priv = dev->dev_private;
4853 struct drm_i915_gem_object *obj_priv;
4854 int ret = 0;
4855 int page_count;
4856 int i;
4857
4858 if (id > I915_MAX_PHYS_OBJECT)
4859 return -EINVAL;
4860
23010e43 4861 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4862
4863 if (obj_priv->phys_obj) {
4864 if (obj_priv->phys_obj->id == id)
4865 return 0;
4866 i915_gem_detach_phys_object(dev, obj);
4867 }
4868
71acb5eb
DA
4869 /* create a new object */
4870 if (!dev_priv->mm.phys_objs[id - 1]) {
4871 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4872 obj->size, align);
71acb5eb 4873 if (ret) {
aeb565df 4874 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4875 goto out;
4876 }
4877 }
4878
4879 /* bind to the object */
4880 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4881 obj_priv->phys_obj->cur_obj = obj;
4882
4bdadb97 4883 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4884 if (ret) {
4885 DRM_ERROR("failed to get page list\n");
4886 goto out;
4887 }
4888
4889 page_count = obj->size / PAGE_SIZE;
4890
4891 for (i = 0; i < page_count; i++) {
856fa198 4892 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4893 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4894
4895 memcpy(dst, src, PAGE_SIZE);
4896 kunmap_atomic(src, KM_USER0);
4897 }
4898
d78b47b9
CW
4899 i915_gem_object_put_pages(obj);
4900
71acb5eb
DA
4901 return 0;
4902out:
4903 return ret;
4904}
4905
4906static int
4907i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4908 struct drm_i915_gem_pwrite *args,
4909 struct drm_file *file_priv)
4910{
23010e43 4911 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4912 void *obj_addr;
4913 int ret;
4914 char __user *user_data;
4915
4916 user_data = (char __user *) (uintptr_t) args->data_ptr;
4917 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4918
44d98a61 4919 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4920 ret = copy_from_user(obj_addr, user_data, args->size);
4921 if (ret)
4922 return -EFAULT;
4923
4924 drm_agp_chipset_flush(dev);
4925 return 0;
4926}
b962442e 4927
f787a5f5 4928void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4929{
f787a5f5 4930 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4931
4932 /* Clean up our request list when the client is going away, so that
4933 * later retire_requests won't dereference our soon-to-be-gone
4934 * file_priv.
4935 */
1c25595f 4936 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4937 while (!list_empty(&file_priv->mm.request_list)) {
4938 struct drm_i915_gem_request *request;
4939
4940 request = list_first_entry(&file_priv->mm.request_list,
4941 struct drm_i915_gem_request,
4942 client_list);
4943 list_del(&request->client_list);
4944 request->file_priv = NULL;
4945 }
1c25595f 4946 spin_unlock(&file_priv->mm.lock);
b962442e 4947}
31169714 4948
1637ef41
CW
4949static int
4950i915_gpu_is_active(struct drm_device *dev)
4951{
4952 drm_i915_private_t *dev_priv = dev->dev_private;
4953 int lists_empty;
4954
1637ef41 4955 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4956 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4957 if (HAS_BSD(dev))
4958 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4959
4960 return !lists_empty;
4961}
4962
31169714 4963static int
7f8275d0 4964i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4965{
4966 drm_i915_private_t *dev_priv, *next_dev;
4967 struct drm_i915_gem_object *obj_priv, *next_obj;
4968 int cnt = 0;
4969 int would_deadlock = 1;
4970
4971 /* "fast-path" to count number of available objects */
4972 if (nr_to_scan == 0) {
4973 spin_lock(&shrink_list_lock);
4974 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4975 struct drm_device *dev = dev_priv->dev;
4976
4977 if (mutex_trylock(&dev->struct_mutex)) {
4978 list_for_each_entry(obj_priv,
4979 &dev_priv->mm.inactive_list,
4980 list)
4981 cnt++;
4982 mutex_unlock(&dev->struct_mutex);
4983 }
4984 }
4985 spin_unlock(&shrink_list_lock);
4986
4987 return (cnt / 100) * sysctl_vfs_cache_pressure;
4988 }
4989
4990 spin_lock(&shrink_list_lock);
4991
1637ef41 4992rescan:
31169714
CW
4993 /* first scan for clean buffers */
4994 list_for_each_entry_safe(dev_priv, next_dev,
4995 &shrink_list, mm.shrink_list) {
4996 struct drm_device *dev = dev_priv->dev;
4997
4998 if (! mutex_trylock(&dev->struct_mutex))
4999 continue;
5000
5001 spin_unlock(&shrink_list_lock);
b09a1fec 5002 i915_gem_retire_requests(dev);
31169714
CW
5003
5004 list_for_each_entry_safe(obj_priv, next_obj,
5005 &dev_priv->mm.inactive_list,
5006 list) {
5007 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 5008 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5009 if (--nr_to_scan <= 0)
5010 break;
5011 }
5012 }
5013
5014 spin_lock(&shrink_list_lock);
5015 mutex_unlock(&dev->struct_mutex);
5016
963b4836
CW
5017 would_deadlock = 0;
5018
31169714
CW
5019 if (nr_to_scan <= 0)
5020 break;
5021 }
5022
5023 /* second pass, evict/count anything still on the inactive list */
5024 list_for_each_entry_safe(dev_priv, next_dev,
5025 &shrink_list, mm.shrink_list) {
5026 struct drm_device *dev = dev_priv->dev;
5027
5028 if (! mutex_trylock(&dev->struct_mutex))
5029 continue;
5030
5031 spin_unlock(&shrink_list_lock);
5032
5033 list_for_each_entry_safe(obj_priv, next_obj,
5034 &dev_priv->mm.inactive_list,
5035 list) {
5036 if (nr_to_scan > 0) {
a8089e84 5037 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5038 nr_to_scan--;
5039 } else
5040 cnt++;
5041 }
5042
5043 spin_lock(&shrink_list_lock);
5044 mutex_unlock(&dev->struct_mutex);
5045
5046 would_deadlock = 0;
5047 }
5048
1637ef41
CW
5049 if (nr_to_scan) {
5050 int active = 0;
5051
5052 /*
5053 * We are desperate for pages, so as a last resort, wait
5054 * for the GPU to finish and discard whatever we can.
5055 * This has a dramatic impact to reduce the number of
5056 * OOM-killer events whilst running the GPU aggressively.
5057 */
5058 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5059 struct drm_device *dev = dev_priv->dev;
5060
5061 if (!mutex_trylock(&dev->struct_mutex))
5062 continue;
5063
5064 spin_unlock(&shrink_list_lock);
5065
5066 if (i915_gpu_is_active(dev)) {
5067 i915_gpu_idle(dev);
5068 active++;
5069 }
5070
5071 spin_lock(&shrink_list_lock);
5072 mutex_unlock(&dev->struct_mutex);
5073 }
5074
5075 if (active)
5076 goto rescan;
5077 }
5078
31169714
CW
5079 spin_unlock(&shrink_list_lock);
5080
5081 if (would_deadlock)
5082 return -1;
5083 else if (cnt > 0)
5084 return (cnt / 100) * sysctl_vfs_cache_pressure;
5085 else
5086 return 0;
5087}
5088
5089static struct shrinker shrinker = {
5090 .shrink = i915_gem_shrink,
5091 .seeks = DEFAULT_SEEKS,
5092};
5093
5094__init void
5095i915_gem_shrinker_init(void)
5096{
5097 register_shrinker(&shrinker);
5098}
5099
5100__exit void
5101i915_gem_shrinker_exit(void)
5102{
5103 unregister_shrinker(&shrinker);
5104}