drm/i915: Remove the definitions for Primary Ring Buffer
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0f8c6d7c
CW
39struct change_domains {
40 uint32_t invalidate_domains;
41 uint32_t flush_domains;
42 uint32_t flush_rings;
43};
44
a00b10c3
CW
45static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
46static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
ba3d8d74
DV
47
48static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
49 bool pipelined);
e47c68e9
EA
50static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
51static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
52static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
53 int write);
54static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
55 uint64_t offset,
56 uint64_t size);
57static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
58static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
59 bool interruptible);
de151cf6 60static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
a00b10c3 61 unsigned alignment,
75e9e915 62 bool map_and_fenceable);
de151cf6 63static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
64static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
65 struct drm_i915_gem_pwrite *args,
66 struct drm_file *file_priv);
be72615b 67static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 68
17250b71
CW
69static int i915_gem_inactive_shrink(struct shrinker *shrinker,
70 int nr_to_scan,
71 gfp_t gfp_mask);
72
31169714 73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
89static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
a00b10c3 90 struct drm_i915_gem_object *obj)
73aa808f
CW
91{
92 dev_priv->mm.gtt_count++;
a00b10c3
CW
93 dev_priv->mm.gtt_memory += obj->gtt_space->size;
94 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
fb7d516a 95 dev_priv->mm.mappable_gtt_used +=
a00b10c3
CW
96 min_t(size_t, obj->gtt_space->size,
97 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
fb7d516a 98 }
73aa808f
CW
99}
100
101static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
a00b10c3 102 struct drm_i915_gem_object *obj)
73aa808f
CW
103{
104 dev_priv->mm.gtt_count--;
a00b10c3
CW
105 dev_priv->mm.gtt_memory -= obj->gtt_space->size;
106 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
fb7d516a 107 dev_priv->mm.mappable_gtt_used -=
a00b10c3
CW
108 min_t(size_t, obj->gtt_space->size,
109 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
fb7d516a
DV
110 }
111}
112
113/**
114 * Update the mappable working set counters. Call _only_ when there is a change
115 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
116 * @mappable: new state the changed mappable flag (either pin_ or fault_).
117 */
118static void
119i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
a00b10c3 120 struct drm_i915_gem_object *obj,
fb7d516a
DV
121 bool mappable)
122{
fb7d516a 123 if (mappable) {
a00b10c3 124 if (obj->pin_mappable && obj->fault_mappable)
fb7d516a
DV
125 /* Combined state was already mappable. */
126 return;
127 dev_priv->mm.gtt_mappable_count++;
a00b10c3 128 dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
fb7d516a 129 } else {
a00b10c3 130 if (obj->pin_mappable || obj->fault_mappable)
fb7d516a
DV
131 /* Combined state still mappable. */
132 return;
133 dev_priv->mm.gtt_mappable_count--;
a00b10c3 134 dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
fb7d516a 135 }
73aa808f
CW
136}
137
138static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
a00b10c3 139 struct drm_i915_gem_object *obj,
fb7d516a 140 bool mappable)
73aa808f
CW
141{
142 dev_priv->mm.pin_count++;
a00b10c3 143 dev_priv->mm.pin_memory += obj->gtt_space->size;
fb7d516a 144 if (mappable) {
a00b10c3 145 obj->pin_mappable = true;
fb7d516a
DV
146 i915_gem_info_update_mappable(dev_priv, obj, true);
147 }
73aa808f
CW
148}
149
150static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
a00b10c3 151 struct drm_i915_gem_object *obj)
73aa808f
CW
152{
153 dev_priv->mm.pin_count--;
a00b10c3
CW
154 dev_priv->mm.pin_memory -= obj->gtt_space->size;
155 if (obj->pin_mappable) {
156 obj->pin_mappable = false;
fb7d516a
DV
157 i915_gem_info_update_mappable(dev_priv, obj, false);
158 }
73aa808f
CW
159}
160
30dbf0c0
CW
161int
162i915_gem_check_is_wedged(struct drm_device *dev)
163{
164 struct drm_i915_private *dev_priv = dev->dev_private;
165 struct completion *x = &dev_priv->error_completion;
166 unsigned long flags;
167 int ret;
168
169 if (!atomic_read(&dev_priv->mm.wedged))
170 return 0;
171
172 ret = wait_for_completion_interruptible(x);
173 if (ret)
174 return ret;
175
176 /* Success, we reset the GPU! */
177 if (!atomic_read(&dev_priv->mm.wedged))
178 return 0;
179
180 /* GPU is hung, bump the completion count to account for
181 * the token we just consumed so that we never hit zero and
182 * end up waiting upon a subsequent completion event that
183 * will never happen.
184 */
185 spin_lock_irqsave(&x->wait.lock, flags);
186 x->done++;
187 spin_unlock_irqrestore(&x->wait.lock, flags);
188 return -EIO;
189}
190
76c1dec1
CW
191static int i915_mutex_lock_interruptible(struct drm_device *dev)
192{
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 int ret;
195
196 ret = i915_gem_check_is_wedged(dev);
197 if (ret)
198 return ret;
199
200 ret = mutex_lock_interruptible(&dev->struct_mutex);
201 if (ret)
202 return ret;
203
204 if (atomic_read(&dev_priv->mm.wedged)) {
205 mutex_unlock(&dev->struct_mutex);
206 return -EAGAIN;
207 }
208
23bc5982 209 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
210 return 0;
211}
30dbf0c0 212
7d1c4804
CW
213static inline bool
214i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
215{
216 return obj_priv->gtt_space &&
217 !obj_priv->active &&
218 obj_priv->pin_count == 0;
219}
220
73aa808f
CW
221int i915_gem_do_init(struct drm_device *dev,
222 unsigned long start,
53984635 223 unsigned long mappable_end,
79e53945 224 unsigned long end)
673a394b
EA
225{
226 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 227
79e53945
JB
228 if (start >= end ||
229 (start & (PAGE_SIZE - 1)) != 0 ||
230 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
231 return -EINVAL;
232 }
233
79e53945
JB
234 drm_mm_init(&dev_priv->mm.gtt_space, start,
235 end - start);
673a394b 236
73aa808f 237 dev_priv->mm.gtt_total = end - start;
fb7d516a 238 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
53984635 239 dev_priv->mm.gtt_mappable_end = mappable_end;
79e53945
JB
240
241 return 0;
242}
673a394b 243
79e53945
JB
244int
245i915_gem_init_ioctl(struct drm_device *dev, void *data,
246 struct drm_file *file_priv)
247{
248 struct drm_i915_gem_init *args = data;
249 int ret;
250
251 mutex_lock(&dev->struct_mutex);
53984635 252 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
253 mutex_unlock(&dev->struct_mutex);
254
79e53945 255 return ret;
673a394b
EA
256}
257
5a125c3c
EA
258int
259i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
260 struct drm_file *file_priv)
261{
73aa808f 262 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 263 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
264
265 if (!(dev->driver->driver_features & DRIVER_GEM))
266 return -ENODEV;
267
73aa808f
CW
268 mutex_lock(&dev->struct_mutex);
269 args->aper_size = dev_priv->mm.gtt_total;
270 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
271 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
272
273 return 0;
274}
275
673a394b
EA
276
277/**
278 * Creates a new mm object and returns a handle to it.
279 */
280int
281i915_gem_create_ioctl(struct drm_device *dev, void *data,
282 struct drm_file *file_priv)
283{
284 struct drm_i915_gem_create *args = data;
285 struct drm_gem_object *obj;
a1a2d1d3
PP
286 int ret;
287 u32 handle;
673a394b
EA
288
289 args->size = roundup(args->size, PAGE_SIZE);
290
291 /* Allocate the new object */
ac52bc56 292 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
293 if (obj == NULL)
294 return -ENOMEM;
295
296 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754 297 if (ret) {
202f2fef
CW
298 drm_gem_object_release(obj);
299 i915_gem_info_remove_obj(dev->dev_private, obj->size);
300 kfree(obj);
673a394b 301 return ret;
1dfd9754 302 }
673a394b 303
202f2fef
CW
304 /* drop reference from allocate - handle holds it now */
305 drm_gem_object_unreference(obj);
306 trace_i915_gem_object_create(obj);
307
1dfd9754 308 args->handle = handle;
673a394b
EA
309 return 0;
310}
311
280b713b
EA
312static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
313{
314 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 315 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
316
317 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
318 obj_priv->tiling_mode != I915_TILING_NONE;
319}
320
99a03df5 321static inline void
40123c1f
EA
322slow_shmem_copy(struct page *dst_page,
323 int dst_offset,
324 struct page *src_page,
325 int src_offset,
326 int length)
327{
328 char *dst_vaddr, *src_vaddr;
329
99a03df5
CW
330 dst_vaddr = kmap(dst_page);
331 src_vaddr = kmap(src_page);
40123c1f
EA
332
333 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
334
99a03df5
CW
335 kunmap(src_page);
336 kunmap(dst_page);
40123c1f
EA
337}
338
99a03df5 339static inline void
280b713b
EA
340slow_shmem_bit17_copy(struct page *gpu_page,
341 int gpu_offset,
342 struct page *cpu_page,
343 int cpu_offset,
344 int length,
345 int is_read)
346{
347 char *gpu_vaddr, *cpu_vaddr;
348
349 /* Use the unswizzled path if this page isn't affected. */
350 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
351 if (is_read)
352 return slow_shmem_copy(cpu_page, cpu_offset,
353 gpu_page, gpu_offset, length);
354 else
355 return slow_shmem_copy(gpu_page, gpu_offset,
356 cpu_page, cpu_offset, length);
357 }
358
99a03df5
CW
359 gpu_vaddr = kmap(gpu_page);
360 cpu_vaddr = kmap(cpu_page);
280b713b
EA
361
362 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
363 * XORing with the other bits (A9 for Y, A9 and A10 for X)
364 */
365 while (length > 0) {
366 int cacheline_end = ALIGN(gpu_offset + 1, 64);
367 int this_length = min(cacheline_end - gpu_offset, length);
368 int swizzled_gpu_offset = gpu_offset ^ 64;
369
370 if (is_read) {
371 memcpy(cpu_vaddr + cpu_offset,
372 gpu_vaddr + swizzled_gpu_offset,
373 this_length);
374 } else {
375 memcpy(gpu_vaddr + swizzled_gpu_offset,
376 cpu_vaddr + cpu_offset,
377 this_length);
378 }
379 cpu_offset += this_length;
380 gpu_offset += this_length;
381 length -= this_length;
382 }
383
99a03df5
CW
384 kunmap(cpu_page);
385 kunmap(gpu_page);
280b713b
EA
386}
387
eb01459f
EA
388/**
389 * This is the fast shmem pread path, which attempts to copy_from_user directly
390 * from the backing pages of the object to the user's address space. On a
391 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
392 */
393static int
394i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
395 struct drm_i915_gem_pread *args,
396 struct drm_file *file_priv)
397{
23010e43 398 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
e5281ccd 399 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
eb01459f 400 ssize_t remain;
e5281ccd 401 loff_t offset;
eb01459f
EA
402 char __user *user_data;
403 int page_offset, page_length;
eb01459f
EA
404
405 user_data = (char __user *) (uintptr_t) args->data_ptr;
406 remain = args->size;
407
23010e43 408 obj_priv = to_intel_bo(obj);
eb01459f
EA
409 offset = args->offset;
410
411 while (remain > 0) {
e5281ccd
CW
412 struct page *page;
413 char *vaddr;
414 int ret;
415
eb01459f
EA
416 /* Operation in this page
417 *
eb01459f
EA
418 * page_offset = offset within page
419 * page_length = bytes to copy for this page
420 */
eb01459f
EA
421 page_offset = offset & (PAGE_SIZE-1);
422 page_length = remain;
423 if ((page_offset + remain) > PAGE_SIZE)
424 page_length = PAGE_SIZE - page_offset;
425
e5281ccd
CW
426 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
427 GFP_HIGHUSER | __GFP_RECLAIMABLE);
428 if (IS_ERR(page))
429 return PTR_ERR(page);
430
431 vaddr = kmap_atomic(page);
432 ret = __copy_to_user_inatomic(user_data,
433 vaddr + page_offset,
434 page_length);
435 kunmap_atomic(vaddr);
436
437 mark_page_accessed(page);
438 page_cache_release(page);
439 if (ret)
4f27b75d 440 return -EFAULT;
eb01459f
EA
441
442 remain -= page_length;
443 user_data += page_length;
444 offset += page_length;
445 }
446
4f27b75d 447 return 0;
eb01459f
EA
448}
449
450/**
451 * This is the fallback shmem pread path, which allocates temporary storage
452 * in kernel space to copy_to_user into outside of the struct_mutex, so we
453 * can copy out of the object's backing pages while holding the struct mutex
454 * and not take page faults.
455 */
456static int
457i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
458 struct drm_i915_gem_pread *args,
459 struct drm_file *file_priv)
460{
e5281ccd 461 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 462 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
463 struct mm_struct *mm = current->mm;
464 struct page **user_pages;
465 ssize_t remain;
466 loff_t offset, pinned_pages, i;
467 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
468 int shmem_page_offset;
469 int data_page_index, data_page_offset;
eb01459f
EA
470 int page_length;
471 int ret;
472 uint64_t data_ptr = args->data_ptr;
280b713b 473 int do_bit17_swizzling;
eb01459f
EA
474
475 remain = args->size;
476
477 /* Pin the user pages containing the data. We can't fault while
478 * holding the struct mutex, yet we want to hold it while
479 * dereferencing the user data.
480 */
481 first_data_page = data_ptr / PAGE_SIZE;
482 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
483 num_pages = last_data_page - first_data_page + 1;
484
4f27b75d 485 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
486 if (user_pages == NULL)
487 return -ENOMEM;
488
4f27b75d 489 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
490 down_read(&mm->mmap_sem);
491 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 492 num_pages, 1, 0, user_pages, NULL);
eb01459f 493 up_read(&mm->mmap_sem);
4f27b75d 494 mutex_lock(&dev->struct_mutex);
eb01459f
EA
495 if (pinned_pages < num_pages) {
496 ret = -EFAULT;
4f27b75d 497 goto out;
eb01459f
EA
498 }
499
4f27b75d
CW
500 ret = i915_gem_object_set_cpu_read_domain_range(obj,
501 args->offset,
502 args->size);
07f73f69 503 if (ret)
4f27b75d 504 goto out;
eb01459f 505
4f27b75d 506 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 507
23010e43 508 obj_priv = to_intel_bo(obj);
eb01459f
EA
509 offset = args->offset;
510
511 while (remain > 0) {
e5281ccd
CW
512 struct page *page;
513
eb01459f
EA
514 /* Operation in this page
515 *
eb01459f
EA
516 * shmem_page_offset = offset within page in shmem file
517 * data_page_index = page number in get_user_pages return
518 * data_page_offset = offset with data_page_index page.
519 * page_length = bytes to copy for this page
520 */
eb01459f
EA
521 shmem_page_offset = offset & ~PAGE_MASK;
522 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
523 data_page_offset = data_ptr & ~PAGE_MASK;
524
525 page_length = remain;
526 if ((shmem_page_offset + page_length) > PAGE_SIZE)
527 page_length = PAGE_SIZE - shmem_page_offset;
528 if ((data_page_offset + page_length) > PAGE_SIZE)
529 page_length = PAGE_SIZE - data_page_offset;
530
e5281ccd
CW
531 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
532 GFP_HIGHUSER | __GFP_RECLAIMABLE);
533 if (IS_ERR(page))
534 return PTR_ERR(page);
535
280b713b 536 if (do_bit17_swizzling) {
e5281ccd 537 slow_shmem_bit17_copy(page,
280b713b 538 shmem_page_offset,
99a03df5
CW
539 user_pages[data_page_index],
540 data_page_offset,
541 page_length,
542 1);
543 } else {
544 slow_shmem_copy(user_pages[data_page_index],
545 data_page_offset,
e5281ccd 546 page,
99a03df5
CW
547 shmem_page_offset,
548 page_length);
280b713b 549 }
eb01459f 550
e5281ccd
CW
551 mark_page_accessed(page);
552 page_cache_release(page);
553
eb01459f
EA
554 remain -= page_length;
555 data_ptr += page_length;
556 offset += page_length;
557 }
558
4f27b75d 559out:
eb01459f
EA
560 for (i = 0; i < pinned_pages; i++) {
561 SetPageDirty(user_pages[i]);
e5281ccd 562 mark_page_accessed(user_pages[i]);
eb01459f
EA
563 page_cache_release(user_pages[i]);
564 }
8e7d2b2c 565 drm_free_large(user_pages);
eb01459f
EA
566
567 return ret;
568}
569
673a394b
EA
570/**
571 * Reads data from the object referenced by handle.
572 *
573 * On error, the contents of *data are undefined.
574 */
575int
576i915_gem_pread_ioctl(struct drm_device *dev, void *data,
577 struct drm_file *file_priv)
578{
579 struct drm_i915_gem_pread *args = data;
580 struct drm_gem_object *obj;
581 struct drm_i915_gem_object *obj_priv;
35b62a89 582 int ret = 0;
673a394b 583
4f27b75d 584 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 585 if (ret)
4f27b75d 586 return ret;
673a394b
EA
587
588 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
589 if (obj == NULL) {
590 ret = -ENOENT;
591 goto unlock;
4f27b75d 592 }
23010e43 593 obj_priv = to_intel_bo(obj);
673a394b 594
7dcd2499
CW
595 /* Bounds check source. */
596 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 597 ret = -EINVAL;
35b62a89 598 goto out;
ce9d419d
CW
599 }
600
35b62a89
CW
601 if (args->size == 0)
602 goto out;
603
ce9d419d
CW
604 if (!access_ok(VERIFY_WRITE,
605 (char __user *)(uintptr_t)args->data_ptr,
606 args->size)) {
607 ret = -EFAULT;
35b62a89 608 goto out;
673a394b
EA
609 }
610
b5e4feb6
CW
611 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
612 args->size);
613 if (ret) {
614 ret = -EFAULT;
615 goto out;
280b713b 616 }
673a394b 617
4f27b75d
CW
618 ret = i915_gem_object_set_cpu_read_domain_range(obj,
619 args->offset,
620 args->size);
621 if (ret)
e5281ccd 622 goto out;
4f27b75d
CW
623
624 ret = -EFAULT;
625 if (!i915_gem_object_needs_bit17_swizzle(obj))
280b713b 626 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
4f27b75d
CW
627 if (ret == -EFAULT)
628 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b 629
35b62a89 630out:
4f27b75d 631 drm_gem_object_unreference(obj);
1d7cfea1 632unlock:
4f27b75d 633 mutex_unlock(&dev->struct_mutex);
eb01459f 634 return ret;
673a394b
EA
635}
636
0839ccb8
KP
637/* This is the fast write path which cannot handle
638 * page faults in the source data
9b7530cc 639 */
0839ccb8
KP
640
641static inline int
642fast_user_write(struct io_mapping *mapping,
643 loff_t page_base, int page_offset,
644 char __user *user_data,
645 int length)
9b7530cc 646{
9b7530cc 647 char *vaddr_atomic;
0839ccb8 648 unsigned long unwritten;
9b7530cc 649
3e4d3af5 650 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
651 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
652 user_data, length);
3e4d3af5 653 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 654 return unwritten;
0839ccb8
KP
655}
656
657/* Here's the write path which can sleep for
658 * page faults
659 */
660
ab34c226 661static inline void
3de09aa3
EA
662slow_kernel_write(struct io_mapping *mapping,
663 loff_t gtt_base, int gtt_offset,
664 struct page *user_page, int user_offset,
665 int length)
0839ccb8 666{
ab34c226
CW
667 char __iomem *dst_vaddr;
668 char *src_vaddr;
0839ccb8 669
ab34c226
CW
670 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
671 src_vaddr = kmap(user_page);
672
673 memcpy_toio(dst_vaddr + gtt_offset,
674 src_vaddr + user_offset,
675 length);
676
677 kunmap(user_page);
678 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
679}
680
3de09aa3
EA
681/**
682 * This is the fast pwrite path, where we copy the data directly from the
683 * user into the GTT, uncached.
684 */
673a394b 685static int
3de09aa3
EA
686i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
687 struct drm_i915_gem_pwrite *args,
688 struct drm_file *file_priv)
673a394b 689{
23010e43 690 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 691 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 692 ssize_t remain;
0839ccb8 693 loff_t offset, page_base;
673a394b 694 char __user *user_data;
0839ccb8 695 int page_offset, page_length;
673a394b
EA
696
697 user_data = (char __user *) (uintptr_t) args->data_ptr;
698 remain = args->size;
673a394b 699
23010e43 700 obj_priv = to_intel_bo(obj);
673a394b 701 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
702
703 while (remain > 0) {
704 /* Operation in this page
705 *
0839ccb8
KP
706 * page_base = page offset within aperture
707 * page_offset = offset within page
708 * page_length = bytes to copy for this page
673a394b 709 */
0839ccb8
KP
710 page_base = (offset & ~(PAGE_SIZE-1));
711 page_offset = offset & (PAGE_SIZE-1);
712 page_length = remain;
713 if ((page_offset + remain) > PAGE_SIZE)
714 page_length = PAGE_SIZE - page_offset;
715
0839ccb8 716 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
717 * source page isn't available. Return the error and we'll
718 * retry in the slow path.
0839ccb8 719 */
fbd5a26d
CW
720 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
721 page_offset, user_data, page_length))
722
723 return -EFAULT;
673a394b 724
0839ccb8
KP
725 remain -= page_length;
726 user_data += page_length;
727 offset += page_length;
673a394b 728 }
673a394b 729
fbd5a26d 730 return 0;
673a394b
EA
731}
732
3de09aa3
EA
733/**
734 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
735 * the memory and maps it using kmap_atomic for copying.
736 *
737 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
738 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
739 */
3043c60c 740static int
3de09aa3
EA
741i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
742 struct drm_i915_gem_pwrite *args,
743 struct drm_file *file_priv)
673a394b 744{
23010e43 745 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
746 drm_i915_private_t *dev_priv = dev->dev_private;
747 ssize_t remain;
748 loff_t gtt_page_base, offset;
749 loff_t first_data_page, last_data_page, num_pages;
750 loff_t pinned_pages, i;
751 struct page **user_pages;
752 struct mm_struct *mm = current->mm;
753 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 754 int ret;
3de09aa3
EA
755 uint64_t data_ptr = args->data_ptr;
756
757 remain = args->size;
758
759 /* Pin the user pages containing the data. We can't fault while
760 * holding the struct mutex, and all of the pwrite implementations
761 * want to hold it while dereferencing the user data.
762 */
763 first_data_page = data_ptr / PAGE_SIZE;
764 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
765 num_pages = last_data_page - first_data_page + 1;
766
fbd5a26d 767 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
768 if (user_pages == NULL)
769 return -ENOMEM;
770
fbd5a26d 771 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
772 down_read(&mm->mmap_sem);
773 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
774 num_pages, 0, 0, user_pages, NULL);
775 up_read(&mm->mmap_sem);
fbd5a26d 776 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
777 if (pinned_pages < num_pages) {
778 ret = -EFAULT;
779 goto out_unpin_pages;
780 }
673a394b 781
3de09aa3
EA
782 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
783 if (ret)
fbd5a26d 784 goto out_unpin_pages;
3de09aa3 785
23010e43 786 obj_priv = to_intel_bo(obj);
3de09aa3
EA
787 offset = obj_priv->gtt_offset + args->offset;
788
789 while (remain > 0) {
790 /* Operation in this page
791 *
792 * gtt_page_base = page offset within aperture
793 * gtt_page_offset = offset within page in aperture
794 * data_page_index = page number in get_user_pages return
795 * data_page_offset = offset with data_page_index page.
796 * page_length = bytes to copy for this page
797 */
798 gtt_page_base = offset & PAGE_MASK;
799 gtt_page_offset = offset & ~PAGE_MASK;
800 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
801 data_page_offset = data_ptr & ~PAGE_MASK;
802
803 page_length = remain;
804 if ((gtt_page_offset + page_length) > PAGE_SIZE)
805 page_length = PAGE_SIZE - gtt_page_offset;
806 if ((data_page_offset + page_length) > PAGE_SIZE)
807 page_length = PAGE_SIZE - data_page_offset;
808
ab34c226
CW
809 slow_kernel_write(dev_priv->mm.gtt_mapping,
810 gtt_page_base, gtt_page_offset,
811 user_pages[data_page_index],
812 data_page_offset,
813 page_length);
3de09aa3
EA
814
815 remain -= page_length;
816 offset += page_length;
817 data_ptr += page_length;
818 }
819
3de09aa3
EA
820out_unpin_pages:
821 for (i = 0; i < pinned_pages; i++)
822 page_cache_release(user_pages[i]);
8e7d2b2c 823 drm_free_large(user_pages);
3de09aa3
EA
824
825 return ret;
826}
827
40123c1f
EA
828/**
829 * This is the fast shmem pwrite path, which attempts to directly
830 * copy_from_user into the kmapped pages backing the object.
831 */
3043c60c 832static int
40123c1f
EA
833i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
834 struct drm_i915_gem_pwrite *args,
835 struct drm_file *file_priv)
673a394b 836{
e5281ccd 837 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 838 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f 839 ssize_t remain;
e5281ccd 840 loff_t offset;
40123c1f
EA
841 char __user *user_data;
842 int page_offset, page_length;
40123c1f
EA
843
844 user_data = (char __user *) (uintptr_t) args->data_ptr;
845 remain = args->size;
673a394b 846
23010e43 847 obj_priv = to_intel_bo(obj);
40123c1f
EA
848 offset = args->offset;
849 obj_priv->dirty = 1;
850
851 while (remain > 0) {
e5281ccd
CW
852 struct page *page;
853 char *vaddr;
854 int ret;
855
40123c1f
EA
856 /* Operation in this page
857 *
40123c1f
EA
858 * page_offset = offset within page
859 * page_length = bytes to copy for this page
860 */
40123c1f
EA
861 page_offset = offset & (PAGE_SIZE-1);
862 page_length = remain;
863 if ((page_offset + remain) > PAGE_SIZE)
864 page_length = PAGE_SIZE - page_offset;
865
e5281ccd
CW
866 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
867 GFP_HIGHUSER | __GFP_RECLAIMABLE);
868 if (IS_ERR(page))
869 return PTR_ERR(page);
870
871 vaddr = kmap_atomic(page, KM_USER0);
872 ret = __copy_from_user_inatomic(vaddr + page_offset,
873 user_data,
874 page_length);
875 kunmap_atomic(vaddr, KM_USER0);
876
877 set_page_dirty(page);
878 mark_page_accessed(page);
879 page_cache_release(page);
880
881 /* If we get a fault while copying data, then (presumably) our
882 * source page isn't available. Return the error and we'll
883 * retry in the slow path.
884 */
885 if (ret)
fbd5a26d 886 return -EFAULT;
40123c1f
EA
887
888 remain -= page_length;
889 user_data += page_length;
890 offset += page_length;
891 }
892
fbd5a26d 893 return 0;
40123c1f
EA
894}
895
896/**
897 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
898 * the memory and maps it using kmap_atomic for copying.
899 *
900 * This avoids taking mmap_sem for faulting on the user's address while the
901 * struct_mutex is held.
902 */
903static int
904i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
905 struct drm_i915_gem_pwrite *args,
906 struct drm_file *file_priv)
907{
e5281ccd 908 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 909 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
910 struct mm_struct *mm = current->mm;
911 struct page **user_pages;
912 ssize_t remain;
913 loff_t offset, pinned_pages, i;
914 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 915 int shmem_page_offset;
40123c1f
EA
916 int data_page_index, data_page_offset;
917 int page_length;
918 int ret;
919 uint64_t data_ptr = args->data_ptr;
280b713b 920 int do_bit17_swizzling;
40123c1f
EA
921
922 remain = args->size;
923
924 /* Pin the user pages containing the data. We can't fault while
925 * holding the struct mutex, and all of the pwrite implementations
926 * want to hold it while dereferencing the user data.
927 */
928 first_data_page = data_ptr / PAGE_SIZE;
929 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
930 num_pages = last_data_page - first_data_page + 1;
931
4f27b75d 932 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
933 if (user_pages == NULL)
934 return -ENOMEM;
935
fbd5a26d 936 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
937 down_read(&mm->mmap_sem);
938 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
939 num_pages, 0, 0, user_pages, NULL);
940 up_read(&mm->mmap_sem);
fbd5a26d 941 mutex_lock(&dev->struct_mutex);
40123c1f
EA
942 if (pinned_pages < num_pages) {
943 ret = -EFAULT;
fbd5a26d 944 goto out;
673a394b
EA
945 }
946
fbd5a26d 947 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 948 if (ret)
fbd5a26d 949 goto out;
40123c1f 950
fbd5a26d 951 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 952
23010e43 953 obj_priv = to_intel_bo(obj);
673a394b 954 offset = args->offset;
40123c1f 955 obj_priv->dirty = 1;
673a394b 956
40123c1f 957 while (remain > 0) {
e5281ccd
CW
958 struct page *page;
959
40123c1f
EA
960 /* Operation in this page
961 *
40123c1f
EA
962 * shmem_page_offset = offset within page in shmem file
963 * data_page_index = page number in get_user_pages return
964 * data_page_offset = offset with data_page_index page.
965 * page_length = bytes to copy for this page
966 */
40123c1f
EA
967 shmem_page_offset = offset & ~PAGE_MASK;
968 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
969 data_page_offset = data_ptr & ~PAGE_MASK;
970
971 page_length = remain;
972 if ((shmem_page_offset + page_length) > PAGE_SIZE)
973 page_length = PAGE_SIZE - shmem_page_offset;
974 if ((data_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - data_page_offset;
976
e5281ccd
CW
977 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
978 GFP_HIGHUSER | __GFP_RECLAIMABLE);
979 if (IS_ERR(page)) {
980 ret = PTR_ERR(page);
981 goto out;
982 }
983
280b713b 984 if (do_bit17_swizzling) {
e5281ccd 985 slow_shmem_bit17_copy(page,
280b713b
EA
986 shmem_page_offset,
987 user_pages[data_page_index],
988 data_page_offset,
99a03df5
CW
989 page_length,
990 0);
991 } else {
e5281ccd 992 slow_shmem_copy(page,
99a03df5
CW
993 shmem_page_offset,
994 user_pages[data_page_index],
995 data_page_offset,
996 page_length);
280b713b 997 }
40123c1f 998
e5281ccd
CW
999 set_page_dirty(page);
1000 mark_page_accessed(page);
1001 page_cache_release(page);
1002
40123c1f
EA
1003 remain -= page_length;
1004 data_ptr += page_length;
1005 offset += page_length;
673a394b
EA
1006 }
1007
fbd5a26d 1008out:
40123c1f
EA
1009 for (i = 0; i < pinned_pages; i++)
1010 page_cache_release(user_pages[i]);
8e7d2b2c 1011 drm_free_large(user_pages);
673a394b 1012
40123c1f 1013 return ret;
673a394b
EA
1014}
1015
1016/**
1017 * Writes data to the object referenced by handle.
1018 *
1019 * On error, the contents of the buffer that were to be modified are undefined.
1020 */
1021int
1022i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1023 struct drm_file *file)
673a394b
EA
1024{
1025 struct drm_i915_gem_pwrite *args = data;
1026 struct drm_gem_object *obj;
1027 struct drm_i915_gem_object *obj_priv;
1028 int ret = 0;
1029
fbd5a26d 1030 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1031 if (ret)
fbd5a26d 1032 return ret;
1d7cfea1
CW
1033
1034 obj = drm_gem_object_lookup(dev, file, args->handle);
1035 if (obj == NULL) {
1036 ret = -ENOENT;
1037 goto unlock;
fbd5a26d 1038 }
23010e43 1039 obj_priv = to_intel_bo(obj);
673a394b 1040
fbd5a26d 1041
7dcd2499
CW
1042 /* Bounds check destination. */
1043 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 1044 ret = -EINVAL;
35b62a89 1045 goto out;
ce9d419d
CW
1046 }
1047
35b62a89
CW
1048 if (args->size == 0)
1049 goto out;
1050
ce9d419d
CW
1051 if (!access_ok(VERIFY_READ,
1052 (char __user *)(uintptr_t)args->data_ptr,
1053 args->size)) {
1054 ret = -EFAULT;
35b62a89 1055 goto out;
673a394b
EA
1056 }
1057
b5e4feb6
CW
1058 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1059 args->size);
1060 if (ret) {
1061 ret = -EFAULT;
1062 goto out;
673a394b
EA
1063 }
1064
1065 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1066 * it would end up going through the fenced access, and we'll get
1067 * different detiling behavior between reading and writing.
1068 * pread/pwrite currently are reading and writing from the CPU
1069 * perspective, requiring manual detiling by the client.
1070 */
71acb5eb 1071 if (obj_priv->phys_obj)
fbd5a26d 1072 ret = i915_gem_phys_pwrite(dev, obj, args, file);
71acb5eb 1073 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1074 obj_priv->gtt_space &&
9b8c4a0b 1075 obj->write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 1076 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1077 if (ret)
1078 goto out;
1079
1080 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1081 if (ret)
1082 goto out_unpin;
1083
1084 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1085 if (ret == -EFAULT)
1086 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1087
1088out_unpin:
1089 i915_gem_object_unpin(obj);
40123c1f 1090 } else {
fbd5a26d
CW
1091 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1092 if (ret)
e5281ccd 1093 goto out;
673a394b 1094
fbd5a26d
CW
1095 ret = -EFAULT;
1096 if (!i915_gem_object_needs_bit17_swizzle(obj))
1097 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1098 if (ret == -EFAULT)
1099 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1100 }
673a394b 1101
35b62a89 1102out:
fbd5a26d 1103 drm_gem_object_unreference(obj);
1d7cfea1 1104unlock:
fbd5a26d 1105 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1106 return ret;
1107}
1108
1109/**
2ef7eeaa
EA
1110 * Called when user space prepares to use an object with the CPU, either
1111 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1112 */
1113int
1114i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1115 struct drm_file *file_priv)
1116{
a09ba7fa 1117 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1118 struct drm_i915_gem_set_domain *args = data;
1119 struct drm_gem_object *obj;
652c393a 1120 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1121 uint32_t read_domains = args->read_domains;
1122 uint32_t write_domain = args->write_domain;
673a394b
EA
1123 int ret;
1124
1125 if (!(dev->driver->driver_features & DRIVER_GEM))
1126 return -ENODEV;
1127
2ef7eeaa 1128 /* Only handle setting domains to types used by the CPU. */
21d509e3 1129 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1130 return -EINVAL;
1131
21d509e3 1132 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1133 return -EINVAL;
1134
1135 /* Having something in the write domain implies it's in the read
1136 * domain, and only that read domain. Enforce that in the request.
1137 */
1138 if (write_domain != 0 && read_domains != write_domain)
1139 return -EINVAL;
1140
76c1dec1 1141 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1142 if (ret)
76c1dec1 1143 return ret;
1d7cfea1 1144
673a394b 1145 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
1146 if (obj == NULL) {
1147 ret = -ENOENT;
1148 goto unlock;
76c1dec1 1149 }
23010e43 1150 obj_priv = to_intel_bo(obj);
673a394b 1151
652c393a
JB
1152 intel_mark_busy(dev, obj);
1153
2ef7eeaa
EA
1154 if (read_domains & I915_GEM_DOMAIN_GTT) {
1155 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1156
a09ba7fa
EA
1157 /* Update the LRU on the fence for the CPU access that's
1158 * about to occur.
1159 */
1160 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1161 struct drm_i915_fence_reg *reg =
1162 &dev_priv->fence_regs[obj_priv->fence_reg];
1163 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1164 &dev_priv->mm.fence_list);
1165 }
1166
02354392
EA
1167 /* Silently promote "you're not bound, there was nothing to do"
1168 * to success, since the client was just asking us to
1169 * make sure everything was done.
1170 */
1171 if (ret == -EINVAL)
1172 ret = 0;
2ef7eeaa 1173 } else {
e47c68e9 1174 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1175 }
1176
7d1c4804
CW
1177 /* Maintain LRU order of "inactive" objects */
1178 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
69dc4987 1179 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1180
673a394b 1181 drm_gem_object_unreference(obj);
1d7cfea1 1182unlock:
673a394b
EA
1183 mutex_unlock(&dev->struct_mutex);
1184 return ret;
1185}
1186
1187/**
1188 * Called when user space has done writes to this buffer
1189 */
1190int
1191i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1192 struct drm_file *file_priv)
1193{
1194 struct drm_i915_gem_sw_finish *args = data;
1195 struct drm_gem_object *obj;
673a394b
EA
1196 int ret = 0;
1197
1198 if (!(dev->driver->driver_features & DRIVER_GEM))
1199 return -ENODEV;
1200
76c1dec1 1201 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1202 if (ret)
76c1dec1 1203 return ret;
1d7cfea1 1204
673a394b
EA
1205 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1206 if (obj == NULL) {
1d7cfea1
CW
1207 ret = -ENOENT;
1208 goto unlock;
673a394b
EA
1209 }
1210
673a394b 1211 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1212 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1213 i915_gem_object_flush_cpu_write_domain(obj);
1214
673a394b 1215 drm_gem_object_unreference(obj);
1d7cfea1 1216unlock:
673a394b
EA
1217 mutex_unlock(&dev->struct_mutex);
1218 return ret;
1219}
1220
1221/**
1222 * Maps the contents of an object, returning the address it is mapped
1223 * into.
1224 *
1225 * While the mapping holds a reference on the contents of the object, it doesn't
1226 * imply a ref on the object itself.
1227 */
1228int
1229i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1230 struct drm_file *file_priv)
1231{
da761a6e 1232 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1233 struct drm_i915_gem_mmap *args = data;
1234 struct drm_gem_object *obj;
1235 loff_t offset;
1236 unsigned long addr;
1237
1238 if (!(dev->driver->driver_features & DRIVER_GEM))
1239 return -ENODEV;
1240
1241 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1242 if (obj == NULL)
bf79cb91 1243 return -ENOENT;
673a394b 1244
da761a6e
CW
1245 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1246 drm_gem_object_unreference_unlocked(obj);
1247 return -E2BIG;
1248 }
1249
673a394b
EA
1250 offset = args->offset;
1251
1252 down_write(&current->mm->mmap_sem);
1253 addr = do_mmap(obj->filp, 0, args->size,
1254 PROT_READ | PROT_WRITE, MAP_SHARED,
1255 args->offset);
1256 up_write(&current->mm->mmap_sem);
bc9025bd 1257 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1258 if (IS_ERR((void *)addr))
1259 return addr;
1260
1261 args->addr_ptr = (uint64_t) addr;
1262
1263 return 0;
1264}
1265
de151cf6
JB
1266/**
1267 * i915_gem_fault - fault a page into the GTT
1268 * vma: VMA in question
1269 * vmf: fault info
1270 *
1271 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1272 * from userspace. The fault handler takes care of binding the object to
1273 * the GTT (if needed), allocating and programming a fence register (again,
1274 * only if needed based on whether the old reg is still valid or the object
1275 * is tiled) and inserting a new PTE into the faulting process.
1276 *
1277 * Note that the faulting process may involve evicting existing objects
1278 * from the GTT and/or fence registers to make room. So performance may
1279 * suffer if the GTT working set is large or there are few fence registers
1280 * left.
1281 */
1282int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1283{
1284 struct drm_gem_object *obj = vma->vm_private_data;
1285 struct drm_device *dev = obj->dev;
7d1c4804 1286 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1287 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1288 pgoff_t page_offset;
1289 unsigned long pfn;
1290 int ret = 0;
0f973f27 1291 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1292
1293 /* We don't use vmf->pgoff since that has the fake offset */
1294 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1295 PAGE_SHIFT;
1296
1297 /* Now bind it into the GTT if needed */
1298 mutex_lock(&dev->struct_mutex);
fb7d516a 1299 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
a00b10c3
CW
1300
1301 if (obj_priv->gtt_space) {
75e9e915 1302 if (!obj_priv->map_and_fenceable) {
a00b10c3
CW
1303 ret = i915_gem_object_unbind(obj);
1304 if (ret)
1305 goto unlock;
1306 }
1307 }
16e809ac 1308
de151cf6 1309 if (!obj_priv->gtt_space) {
75e9e915 1310 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1311 if (ret)
1312 goto unlock;
de151cf6
JB
1313 }
1314
4a684a41
CW
1315 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1316 if (ret)
1317 goto unlock;
1318
fb7d516a
DV
1319 if (!obj_priv->fault_mappable) {
1320 obj_priv->fault_mappable = true;
a00b10c3 1321 i915_gem_info_update_mappable(dev_priv, obj_priv, true);
fb7d516a
DV
1322 }
1323
de151cf6 1324 /* Need a new fence register? */
a09ba7fa 1325 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1326 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1327 if (ret)
1328 goto unlock;
d9ddcb96 1329 }
de151cf6 1330
7d1c4804 1331 if (i915_gem_object_is_inactive(obj_priv))
69dc4987 1332 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1333
de151cf6
JB
1334 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1335 page_offset;
1336
1337 /* Finally, remap it using the new GTT offset */
1338 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1339unlock:
de151cf6
JB
1340 mutex_unlock(&dev->struct_mutex);
1341
1342 switch (ret) {
045e769a
CW
1343 case -EAGAIN:
1344 set_need_resched();
c715089f
CW
1345 case 0:
1346 case -ERESTARTSYS:
1347 return VM_FAULT_NOPAGE;
de151cf6 1348 case -ENOMEM:
de151cf6 1349 return VM_FAULT_OOM;
de151cf6 1350 default:
c715089f 1351 return VM_FAULT_SIGBUS;
de151cf6
JB
1352 }
1353}
1354
1355/**
1356 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1357 * @obj: obj in question
1358 *
1359 * GEM memory mapping works by handing back to userspace a fake mmap offset
1360 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1361 * up the object based on the offset and sets up the various memory mapping
1362 * structures.
1363 *
1364 * This routine allocates and attaches a fake offset for @obj.
1365 */
1366static int
1367i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1368{
1369 struct drm_device *dev = obj->dev;
1370 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1371 struct drm_map_list *list;
f77d390c 1372 struct drm_local_map *map;
de151cf6
JB
1373 int ret = 0;
1374
1375 /* Set the object up for mmap'ing */
1376 list = &obj->map_list;
9a298b2a 1377 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1378 if (!list->map)
1379 return -ENOMEM;
1380
1381 map = list->map;
1382 map->type = _DRM_GEM;
1383 map->size = obj->size;
1384 map->handle = obj;
1385
1386 /* Get a DRM GEM mmap offset allocated... */
1387 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1388 obj->size / PAGE_SIZE, 0, 0);
1389 if (!list->file_offset_node) {
1390 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1391 ret = -ENOSPC;
de151cf6
JB
1392 goto out_free_list;
1393 }
1394
1395 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1396 obj->size / PAGE_SIZE, 0);
1397 if (!list->file_offset_node) {
1398 ret = -ENOMEM;
1399 goto out_free_list;
1400 }
1401
1402 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1403 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1404 if (ret) {
de151cf6
JB
1405 DRM_ERROR("failed to add to map hash\n");
1406 goto out_free_mm;
1407 }
1408
de151cf6
JB
1409 return 0;
1410
1411out_free_mm:
1412 drm_mm_put_block(list->file_offset_node);
1413out_free_list:
9a298b2a 1414 kfree(list->map);
39a01d1f 1415 list->map = NULL;
de151cf6
JB
1416
1417 return ret;
1418}
1419
901782b2
CW
1420/**
1421 * i915_gem_release_mmap - remove physical page mappings
1422 * @obj: obj in question
1423 *
af901ca1 1424 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1425 * relinquish ownership of the pages back to the system.
1426 *
1427 * It is vital that we remove the page mapping if we have mapped a tiled
1428 * object through the GTT and then lose the fence register due to
1429 * resource pressure. Similarly if the object has been moved out of the
1430 * aperture, than pages mapped into userspace must be revoked. Removing the
1431 * mapping will then trigger a page fault on the next user access, allowing
1432 * fixup by i915_gem_fault().
1433 */
d05ca301 1434void
901782b2
CW
1435i915_gem_release_mmap(struct drm_gem_object *obj)
1436{
1437 struct drm_device *dev = obj->dev;
fb7d516a 1438 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1439 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2 1440
39a01d1f 1441 if (unlikely(obj->map_list.map && dev->dev_mapping))
901782b2 1442 unmap_mapping_range(dev->dev_mapping,
39a01d1f
CW
1443 (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
1444 obj->size, 1);
fb7d516a
DV
1445
1446 if (obj_priv->fault_mappable) {
1447 obj_priv->fault_mappable = false;
a00b10c3 1448 i915_gem_info_update_mappable(dev_priv, obj_priv, false);
fb7d516a 1449 }
901782b2
CW
1450}
1451
ab00b3e5
JB
1452static void
1453i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1454{
1455 struct drm_device *dev = obj->dev;
ab00b3e5 1456 struct drm_gem_mm *mm = dev->mm_private;
39a01d1f 1457 struct drm_map_list *list = &obj->map_list;
ab00b3e5 1458
ab00b3e5 1459 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1460 drm_mm_put_block(list->file_offset_node);
1461 kfree(list->map);
1462 list->map = NULL;
ab00b3e5
JB
1463}
1464
de151cf6
JB
1465/**
1466 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467 * @obj: object to check
1468 *
1469 * Return the required GTT alignment for an object, taking into account
1470 * potential fence register mapping if needed.
1471 */
1472static uint32_t
a00b10c3 1473i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
de151cf6 1474{
a00b10c3 1475 struct drm_device *dev = obj_priv->base.dev;
de151cf6
JB
1476
1477 /*
1478 * Minimum alignment is 4k (GTT page size), but might be greater
1479 * if a fence register is needed for the object.
1480 */
a00b10c3
CW
1481 if (INTEL_INFO(dev)->gen >= 4 ||
1482 obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1483 return 4096;
1484
a00b10c3
CW
1485 /*
1486 * Previous chips need to be aligned to the size of the smallest
1487 * fence register that can contain the object.
1488 */
1489 return i915_gem_get_gtt_size(obj_priv);
1490}
1491
1492static uint32_t
1493i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
1494{
1495 struct drm_device *dev = obj_priv->base.dev;
1496 uint32_t size;
1497
1498 /*
1499 * Minimum alignment is 4k (GTT page size), but might be greater
1500 * if a fence register is needed for the object.
1501 */
1502 if (INTEL_INFO(dev)->gen >= 4)
1503 return obj_priv->base.size;
1504
de151cf6
JB
1505 /*
1506 * Previous chips need to be aligned to the size of the smallest
1507 * fence register that can contain the object.
1508 */
a6c45cf0 1509 if (INTEL_INFO(dev)->gen == 3)
a00b10c3 1510 size = 1024*1024;
de151cf6 1511 else
a00b10c3 1512 size = 512*1024;
de151cf6 1513
a00b10c3
CW
1514 while (size < obj_priv->base.size)
1515 size <<= 1;
de151cf6 1516
a00b10c3 1517 return size;
de151cf6
JB
1518}
1519
1520/**
1521 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1522 * @dev: DRM device
1523 * @data: GTT mapping ioctl data
1524 * @file_priv: GEM object info
1525 *
1526 * Simply returns the fake offset to userspace so it can mmap it.
1527 * The mmap call will end up in drm_gem_mmap(), which will set things
1528 * up so we can get faults in the handler above.
1529 *
1530 * The fault handler will take care of binding the object into the GTT
1531 * (since it may have been evicted to make room for something), allocating
1532 * a fence register, and mapping the appropriate aperture address into
1533 * userspace.
1534 */
1535int
1536i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1537 struct drm_file *file_priv)
1538{
da761a6e 1539 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 1540 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1541 struct drm_gem_object *obj;
1542 struct drm_i915_gem_object *obj_priv;
1543 int ret;
1544
1545 if (!(dev->driver->driver_features & DRIVER_GEM))
1546 return -ENODEV;
1547
76c1dec1 1548 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1549 if (ret)
76c1dec1 1550 return ret;
de151cf6 1551
1d7cfea1
CW
1552 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1553 if (obj == NULL) {
1554 ret = -ENOENT;
1555 goto unlock;
1556 }
23010e43 1557 obj_priv = to_intel_bo(obj);
de151cf6 1558
da761a6e
CW
1559 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1560 ret = -E2BIG;
1561 goto unlock;
1562 }
1563
ab18282d
CW
1564 if (obj_priv->madv != I915_MADV_WILLNEED) {
1565 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1566 ret = -EINVAL;
1567 goto out;
ab18282d
CW
1568 }
1569
39a01d1f 1570 if (!obj->map_list.map) {
de151cf6 1571 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1572 if (ret)
1573 goto out;
de151cf6
JB
1574 }
1575
39a01d1f 1576 args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
de151cf6 1577
1d7cfea1 1578out:
de151cf6 1579 drm_gem_object_unreference(obj);
1d7cfea1 1580unlock:
de151cf6 1581 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1582 return ret;
de151cf6
JB
1583}
1584
e5281ccd
CW
1585static int
1586i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
1587 gfp_t gfpmask)
1588{
1589 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1590 int page_count, i;
1591 struct address_space *mapping;
1592 struct inode *inode;
1593 struct page *page;
1594
1595 /* Get the list of pages out of our struct file. They'll be pinned
1596 * at this point until we release them.
1597 */
1598 page_count = obj->size / PAGE_SIZE;
1599 BUG_ON(obj_priv->pages != NULL);
1600 obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1601 if (obj_priv->pages == NULL)
1602 return -ENOMEM;
1603
1604 inode = obj->filp->f_path.dentry->d_inode;
1605 mapping = inode->i_mapping;
1606 for (i = 0; i < page_count; i++) {
1607 page = read_cache_page_gfp(mapping, i,
1608 GFP_HIGHUSER |
1609 __GFP_COLD |
1610 __GFP_RECLAIMABLE |
1611 gfpmask);
1612 if (IS_ERR(page))
1613 goto err_pages;
1614
1615 obj_priv->pages[i] = page;
1616 }
1617
1618 if (obj_priv->tiling_mode != I915_TILING_NONE)
1619 i915_gem_object_do_bit_17_swizzle(obj);
1620
1621 return 0;
1622
1623err_pages:
1624 while (i--)
1625 page_cache_release(obj_priv->pages[i]);
1626
1627 drm_free_large(obj_priv->pages);
1628 obj_priv->pages = NULL;
1629 return PTR_ERR(page);
1630}
1631
5cdf5881 1632static void
e5281ccd 1633i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
673a394b 1634{
23010e43 1635 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1636 int page_count = obj->size / PAGE_SIZE;
1637 int i;
1638
bb6baf76 1639 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1640
280b713b
EA
1641 if (obj_priv->tiling_mode != I915_TILING_NONE)
1642 i915_gem_object_save_bit_17_swizzle(obj);
1643
3ef94daa 1644 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1645 obj_priv->dirty = 0;
3ef94daa
CW
1646
1647 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1648 if (obj_priv->dirty)
1649 set_page_dirty(obj_priv->pages[i]);
1650
1651 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1652 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1653
1654 page_cache_release(obj_priv->pages[i]);
1655 }
673a394b
EA
1656 obj_priv->dirty = 0;
1657
8e7d2b2c 1658 drm_free_large(obj_priv->pages);
856fa198 1659 obj_priv->pages = NULL;
673a394b
EA
1660}
1661
a56ba56c
CW
1662static uint32_t
1663i915_gem_next_request_seqno(struct drm_device *dev,
1664 struct intel_ring_buffer *ring)
1665{
1666 drm_i915_private_t *dev_priv = dev->dev_private;
5d97eb69 1667 return ring->outstanding_lazy_request = dev_priv->next_seqno;
a56ba56c
CW
1668}
1669
673a394b 1670static void
617dbe27 1671i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1672 struct intel_ring_buffer *ring)
673a394b
EA
1673{
1674 struct drm_device *dev = obj->dev;
69dc4987 1675 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1676 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1677 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1678
852835f3
ZN
1679 BUG_ON(ring == NULL);
1680 obj_priv->ring = ring;
673a394b
EA
1681
1682 /* Add a reference if we're newly entering the active list. */
1683 if (!obj_priv->active) {
1684 drm_gem_object_reference(obj);
1685 obj_priv->active = 1;
1686 }
e35a41de 1687
673a394b 1688 /* Move from whatever list we were on to the tail of execution. */
69dc4987
CW
1689 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1690 list_move_tail(&obj_priv->ring_list, &ring->active_list);
ce44b0ea 1691 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1692}
1693
ce44b0ea
EA
1694static void
1695i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1696{
1697 struct drm_device *dev = obj->dev;
1698 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1699 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1700
1701 BUG_ON(!obj_priv->active);
69dc4987
CW
1702 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1703 list_del_init(&obj_priv->ring_list);
ce44b0ea
EA
1704 obj_priv->last_rendering_seqno = 0;
1705}
673a394b 1706
963b4836
CW
1707/* Immediately discard the backing storage */
1708static void
1709i915_gem_object_truncate(struct drm_gem_object *obj)
1710{
23010e43 1711 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1712 struct inode *inode;
963b4836 1713
ae9fed6b
CW
1714 /* Our goal here is to return as much of the memory as
1715 * is possible back to the system as we are called from OOM.
1716 * To do this we must instruct the shmfs to drop all of its
1717 * backing pages, *now*. Here we mirror the actions taken
1718 * when by shmem_delete_inode() to release the backing store.
1719 */
bb6baf76 1720 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1721 truncate_inode_pages(inode->i_mapping, 0);
1722 if (inode->i_op->truncate_range)
1723 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1724
1725 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1726}
1727
1728static inline int
1729i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1730{
1731 return obj_priv->madv == I915_MADV_DONTNEED;
1732}
1733
673a394b
EA
1734static void
1735i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1736{
1737 struct drm_device *dev = obj->dev;
1738 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1739 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1740
673a394b 1741 if (obj_priv->pin_count != 0)
69dc4987 1742 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
673a394b 1743 else
69dc4987
CW
1744 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1745 list_del_init(&obj_priv->ring_list);
673a394b 1746
99fcb766
DV
1747 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1748
ce44b0ea 1749 obj_priv->last_rendering_seqno = 0;
852835f3 1750 obj_priv->ring = NULL;
673a394b
EA
1751 if (obj_priv->active) {
1752 obj_priv->active = 0;
1753 drm_gem_object_unreference(obj);
1754 }
23bc5982 1755 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1756}
1757
63560396
DV
1758static void
1759i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1760 uint32_t flush_domains,
852835f3 1761 struct intel_ring_buffer *ring)
63560396
DV
1762{
1763 drm_i915_private_t *dev_priv = dev->dev_private;
1764 struct drm_i915_gem_object *obj_priv, *next;
1765
1766 list_for_each_entry_safe(obj_priv, next,
64193406 1767 &ring->gpu_write_list,
63560396 1768 gpu_write_list) {
a8089e84 1769 struct drm_gem_object *obj = &obj_priv->base;
63560396 1770
64193406 1771 if (obj->write_domain & flush_domains) {
63560396
DV
1772 uint32_t old_write_domain = obj->write_domain;
1773
1774 obj->write_domain = 0;
1775 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1776 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1777
1778 /* update the fence lru list */
007cc8ac
DV
1779 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1780 struct drm_i915_fence_reg *reg =
1781 &dev_priv->fence_regs[obj_priv->fence_reg];
1782 list_move_tail(&reg->lru_list,
63560396 1783 &dev_priv->mm.fence_list);
007cc8ac 1784 }
63560396
DV
1785
1786 trace_i915_gem_object_change_domain(obj,
1787 obj->read_domains,
1788 old_write_domain);
1789 }
1790 }
1791}
8187a2b7 1792
3cce469c 1793int
8a1a49f9 1794i915_add_request(struct drm_device *dev,
f787a5f5 1795 struct drm_file *file,
8dc5d147 1796 struct drm_i915_gem_request *request,
8a1a49f9 1797 struct intel_ring_buffer *ring)
673a394b
EA
1798{
1799 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1800 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1801 uint32_t seqno;
1802 int was_empty;
3cce469c
CW
1803 int ret;
1804
1805 BUG_ON(request == NULL);
673a394b 1806
f787a5f5
CW
1807 if (file != NULL)
1808 file_priv = file->driver_priv;
b962442e 1809
3cce469c
CW
1810 ret = ring->add_request(ring, &seqno);
1811 if (ret)
1812 return ret;
673a394b 1813
a56ba56c 1814 ring->outstanding_lazy_request = false;
673a394b
EA
1815
1816 request->seqno = seqno;
852835f3 1817 request->ring = ring;
673a394b 1818 request->emitted_jiffies = jiffies;
852835f3
ZN
1819 was_empty = list_empty(&ring->request_list);
1820 list_add_tail(&request->list, &ring->request_list);
1821
f787a5f5 1822 if (file_priv) {
1c25595f 1823 spin_lock(&file_priv->mm.lock);
f787a5f5 1824 request->file_priv = file_priv;
b962442e 1825 list_add_tail(&request->client_list,
f787a5f5 1826 &file_priv->mm.request_list);
1c25595f 1827 spin_unlock(&file_priv->mm.lock);
b962442e 1828 }
673a394b 1829
f65d9421 1830 if (!dev_priv->mm.suspended) {
b3b079db
CW
1831 mod_timer(&dev_priv->hangcheck_timer,
1832 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1833 if (was_empty)
b3b079db
CW
1834 queue_delayed_work(dev_priv->wq,
1835 &dev_priv->mm.retire_work, HZ);
f65d9421 1836 }
3cce469c 1837 return 0;
673a394b
EA
1838}
1839
1840/**
1841 * Command execution barrier
1842 *
1843 * Ensures that all commands in the ring are finished
1844 * before signalling the CPU
1845 */
8a1a49f9 1846static void
852835f3 1847i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1848{
673a394b 1849 uint32_t flush_domains = 0;
673a394b
EA
1850
1851 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1852 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1853 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3 1854
78501eac 1855 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1856}
1857
f787a5f5
CW
1858static inline void
1859i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1860{
1c25595f 1861 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1862
1c25595f
CW
1863 if (!file_priv)
1864 return;
1c5d22f7 1865
1c25595f
CW
1866 spin_lock(&file_priv->mm.lock);
1867 list_del(&request->client_list);
1868 request->file_priv = NULL;
1869 spin_unlock(&file_priv->mm.lock);
673a394b 1870}
673a394b 1871
dfaae392
CW
1872static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1873 struct intel_ring_buffer *ring)
9375e446 1874{
dfaae392
CW
1875 while (!list_empty(&ring->request_list)) {
1876 struct drm_i915_gem_request *request;
673a394b 1877
dfaae392
CW
1878 request = list_first_entry(&ring->request_list,
1879 struct drm_i915_gem_request,
1880 list);
de151cf6 1881
dfaae392 1882 list_del(&request->list);
f787a5f5 1883 i915_gem_request_remove_from_client(request);
dfaae392
CW
1884 kfree(request);
1885 }
673a394b 1886
dfaae392 1887 while (!list_empty(&ring->active_list)) {
9375e446
CW
1888 struct drm_i915_gem_object *obj_priv;
1889
dfaae392 1890 obj_priv = list_first_entry(&ring->active_list,
9375e446 1891 struct drm_i915_gem_object,
69dc4987 1892 ring_list);
9375e446
CW
1893
1894 obj_priv->base.write_domain = 0;
dfaae392 1895 list_del_init(&obj_priv->gpu_write_list);
9375e446 1896 i915_gem_object_move_to_inactive(&obj_priv->base);
673a394b
EA
1897 }
1898}
1899
069efc1d 1900void i915_gem_reset(struct drm_device *dev)
673a394b 1901{
77f01230
CW
1902 struct drm_i915_private *dev_priv = dev->dev_private;
1903 struct drm_i915_gem_object *obj_priv;
069efc1d 1904 int i;
673a394b 1905
dfaae392 1906 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1907 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1908 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1909
1910 /* Remove anything from the flushing lists. The GPU cache is likely
1911 * to be lost on reset along with the data, so simply move the
1912 * lost bo to the inactive list.
1913 */
1914 while (!list_empty(&dev_priv->mm.flushing_list)) {
1915 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1916 struct drm_i915_gem_object,
69dc4987 1917 mm_list);
dfaae392
CW
1918
1919 obj_priv->base.write_domain = 0;
1920 list_del_init(&obj_priv->gpu_write_list);
1921 i915_gem_object_move_to_inactive(&obj_priv->base);
1922 }
1923
1924 /* Move everything out of the GPU domains to ensure we do any
1925 * necessary invalidation upon reuse.
1926 */
77f01230
CW
1927 list_for_each_entry(obj_priv,
1928 &dev_priv->mm.inactive_list,
69dc4987 1929 mm_list)
77f01230
CW
1930 {
1931 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1932 }
069efc1d
CW
1933
1934 /* The fence registers are invalidated so clear them out */
1935 for (i = 0; i < 16; i++) {
1936 struct drm_i915_fence_reg *reg;
1937
1938 reg = &dev_priv->fence_regs[i];
1939 if (!reg->obj)
1940 continue;
1941
1942 i915_gem_clear_fence_reg(reg->obj);
1943 }
673a394b
EA
1944}
1945
1946/**
1947 * This function clears the request list as sequence numbers are passed.
1948 */
b09a1fec
CW
1949static void
1950i915_gem_retire_requests_ring(struct drm_device *dev,
1951 struct intel_ring_buffer *ring)
673a394b
EA
1952{
1953 drm_i915_private_t *dev_priv = dev->dev_private;
1954 uint32_t seqno;
1955
b84d5f0c
CW
1956 if (!ring->status_page.page_addr ||
1957 list_empty(&ring->request_list))
6c0594a3
KW
1958 return;
1959
23bc5982 1960 WARN_ON(i915_verify_lists(dev));
673a394b 1961
78501eac 1962 seqno = ring->get_seqno(ring);
852835f3 1963 while (!list_empty(&ring->request_list)) {
673a394b 1964 struct drm_i915_gem_request *request;
673a394b 1965
852835f3 1966 request = list_first_entry(&ring->request_list,
673a394b
EA
1967 struct drm_i915_gem_request,
1968 list);
673a394b 1969
dfaae392 1970 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1971 break;
1972
1973 trace_i915_gem_request_retire(dev, request->seqno);
1974
1975 list_del(&request->list);
f787a5f5 1976 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1977 kfree(request);
1978 }
673a394b 1979
b84d5f0c
CW
1980 /* Move any buffers on the active list that are no longer referenced
1981 * by the ringbuffer to the flushing/inactive lists as appropriate.
1982 */
1983 while (!list_empty(&ring->active_list)) {
1984 struct drm_gem_object *obj;
1985 struct drm_i915_gem_object *obj_priv;
1986
1987 obj_priv = list_first_entry(&ring->active_list,
1988 struct drm_i915_gem_object,
69dc4987 1989 ring_list);
673a394b 1990
dfaae392 1991 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1992 break;
b84d5f0c
CW
1993
1994 obj = &obj_priv->base;
b84d5f0c
CW
1995 if (obj->write_domain != 0)
1996 i915_gem_object_move_to_flushing(obj);
1997 else
1998 i915_gem_object_move_to_inactive(obj);
673a394b 1999 }
9d34e5db
CW
2000
2001 if (unlikely (dev_priv->trace_irq_seqno &&
2002 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
78501eac 2003 ring->user_irq_put(ring);
9d34e5db
CW
2004 dev_priv->trace_irq_seqno = 0;
2005 }
23bc5982
CW
2006
2007 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2008}
2009
b09a1fec
CW
2010void
2011i915_gem_retire_requests(struct drm_device *dev)
2012{
2013 drm_i915_private_t *dev_priv = dev->dev_private;
2014
be72615b
CW
2015 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
2016 struct drm_i915_gem_object *obj_priv, *tmp;
2017
2018 /* We must be careful that during unbind() we do not
2019 * accidentally infinitely recurse into retire requests.
2020 * Currently:
2021 * retire -> free -> unbind -> wait -> retire_ring
2022 */
2023 list_for_each_entry_safe(obj_priv, tmp,
2024 &dev_priv->mm.deferred_free_list,
69dc4987 2025 mm_list)
be72615b
CW
2026 i915_gem_free_object_tail(&obj_priv->base);
2027 }
2028
b09a1fec 2029 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 2030 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 2031 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
2032}
2033
75ef9da2 2034static void
673a394b
EA
2035i915_gem_retire_work_handler(struct work_struct *work)
2036{
2037 drm_i915_private_t *dev_priv;
2038 struct drm_device *dev;
2039
2040 dev_priv = container_of(work, drm_i915_private_t,
2041 mm.retire_work.work);
2042 dev = dev_priv->dev;
2043
891b48cf
CW
2044 /* Come back later if the device is busy... */
2045 if (!mutex_trylock(&dev->struct_mutex)) {
2046 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2047 return;
2048 }
2049
b09a1fec 2050 i915_gem_retire_requests(dev);
d1b851fc 2051
6dbe2772 2052 if (!dev_priv->mm.suspended &&
d1b851fc 2053 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
2054 !list_empty(&dev_priv->bsd_ring.request_list) ||
2055 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 2056 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
2057 mutex_unlock(&dev->struct_mutex);
2058}
2059
5a5a0c64 2060int
852835f3 2061i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 2062 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
2063{
2064 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 2065 u32 ier;
673a394b
EA
2066 int ret = 0;
2067
2068 BUG_ON(seqno == 0);
2069
ba1234d1 2070 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
2071 return -EAGAIN;
2072
5d97eb69 2073 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
2074 struct drm_i915_gem_request *request;
2075
2076 request = kzalloc(sizeof(*request), GFP_KERNEL);
2077 if (request == NULL)
e35a41de 2078 return -ENOMEM;
3cce469c
CW
2079
2080 ret = i915_add_request(dev, NULL, request, ring);
2081 if (ret) {
2082 kfree(request);
2083 return ret;
2084 }
2085
2086 seqno = request->seqno;
e35a41de 2087 }
ffed1d09 2088
78501eac 2089 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 2090 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
2091 ier = I915_READ(DEIER) | I915_READ(GTIER);
2092 else
2093 ier = I915_READ(IER);
802c7eb6
JB
2094 if (!ier) {
2095 DRM_ERROR("something (likely vbetool) disabled "
2096 "interrupts, re-enabling\n");
2097 i915_driver_irq_preinstall(dev);
2098 i915_driver_irq_postinstall(dev);
2099 }
2100
1c5d22f7
CW
2101 trace_i915_gem_request_wait_begin(dev, seqno);
2102
b2223497 2103 ring->waiting_seqno = seqno;
78501eac 2104 ring->user_irq_get(ring);
48764bf4 2105 if (interruptible)
852835f3 2106 ret = wait_event_interruptible(ring->irq_queue,
78501eac 2107 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2108 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2109 else
852835f3 2110 wait_event(ring->irq_queue,
78501eac 2111 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2112 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2113
78501eac 2114 ring->user_irq_put(ring);
b2223497 2115 ring->waiting_seqno = 0;
1c5d22f7
CW
2116
2117 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2118 }
ba1234d1 2119 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2120 ret = -EAGAIN;
673a394b
EA
2121
2122 if (ret && ret != -ERESTARTSYS)
8bff917c 2123 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2124 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2125 dev_priv->next_seqno);
673a394b
EA
2126
2127 /* Directly dispatch request retiring. While we have the work queue
2128 * to handle this, the waiter on a request often wants an associated
2129 * buffer to have made it to the inactive list, and we would need
2130 * a separate wait queue to handle that.
2131 */
2132 if (ret == 0)
b09a1fec 2133 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2134
2135 return ret;
2136}
2137
48764bf4
DV
2138/**
2139 * Waits for a sequence number to be signaled, and cleans up the
2140 * request and object lists appropriately for that event.
2141 */
2142static int
852835f3 2143i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2144 struct intel_ring_buffer *ring)
48764bf4 2145{
852835f3 2146 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2147}
2148
20f0cd55 2149static void
9220434a 2150i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2151 struct drm_file *file_priv,
9220434a
CW
2152 struct intel_ring_buffer *ring,
2153 uint32_t invalidate_domains,
2154 uint32_t flush_domains)
2155{
78501eac 2156 ring->flush(ring, invalidate_domains, flush_domains);
9220434a
CW
2157 i915_gem_process_flushing_list(dev, flush_domains, ring);
2158}
2159
8187a2b7
ZN
2160static void
2161i915_gem_flush(struct drm_device *dev,
c78ec30b 2162 struct drm_file *file_priv,
8187a2b7 2163 uint32_t invalidate_domains,
9220434a
CW
2164 uint32_t flush_domains,
2165 uint32_t flush_rings)
8187a2b7
ZN
2166{
2167 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2168
8187a2b7
ZN
2169 if (flush_domains & I915_GEM_DOMAIN_CPU)
2170 drm_agp_chipset_flush(dev);
8bff917c 2171
9220434a
CW
2172 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2173 if (flush_rings & RING_RENDER)
c78ec30b 2174 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2175 &dev_priv->render_ring,
2176 invalidate_domains, flush_domains);
2177 if (flush_rings & RING_BSD)
c78ec30b 2178 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2179 &dev_priv->bsd_ring,
2180 invalidate_domains, flush_domains);
549f7365
CW
2181 if (flush_rings & RING_BLT)
2182 i915_gem_flush_ring(dev, file_priv,
2183 &dev_priv->blt_ring,
2184 invalidate_domains, flush_domains);
9220434a 2185 }
8187a2b7
ZN
2186}
2187
673a394b
EA
2188/**
2189 * Ensures that all rendering to the object has completed and the object is
2190 * safe to unbind from the GTT or access from the CPU.
2191 */
2192static int
2cf34d7b
CW
2193i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2194 bool interruptible)
673a394b
EA
2195{
2196 struct drm_device *dev = obj->dev;
23010e43 2197 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2198 int ret;
2199
e47c68e9
EA
2200 /* This function only exists to support waiting for existing rendering,
2201 * not for emitting required flushes.
673a394b 2202 */
e47c68e9 2203 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2204
2205 /* If there is rendering queued on the buffer being evicted, wait for
2206 * it.
2207 */
2208 if (obj_priv->active) {
2cf34d7b
CW
2209 ret = i915_do_wait_request(dev,
2210 obj_priv->last_rendering_seqno,
2211 interruptible,
2212 obj_priv->ring);
2213 if (ret)
673a394b
EA
2214 return ret;
2215 }
2216
2217 return 0;
2218}
2219
2220/**
2221 * Unbinds an object from the GTT aperture.
2222 */
0f973f27 2223int
673a394b
EA
2224i915_gem_object_unbind(struct drm_gem_object *obj)
2225{
2226 struct drm_device *dev = obj->dev;
73aa808f 2227 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2228 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2229 int ret = 0;
2230
673a394b
EA
2231 if (obj_priv->gtt_space == NULL)
2232 return 0;
2233
2234 if (obj_priv->pin_count != 0) {
2235 DRM_ERROR("Attempting to unbind pinned buffer\n");
2236 return -EINVAL;
2237 }
2238
5323fd04
EA
2239 /* blow away mappings if mapped through GTT */
2240 i915_gem_release_mmap(obj);
2241
673a394b
EA
2242 /* Move the object to the CPU domain to ensure that
2243 * any possible CPU writes while it's not in the GTT
2244 * are flushed when we go to remap it. This will
2245 * also ensure that all pending GPU writes are finished
2246 * before we unbind.
2247 */
e47c68e9 2248 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2249 if (ret == -ERESTARTSYS)
673a394b 2250 return ret;
8dc1775d
CW
2251 /* Continue on if we fail due to EIO, the GPU is hung so we
2252 * should be safe and we need to cleanup or else we might
2253 * cause memory corruption through use-after-free.
2254 */
812ed492
CW
2255 if (ret) {
2256 i915_gem_clflush_object(obj);
2257 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2258 }
673a394b 2259
96b47b65
DV
2260 /* release the fence reg _after_ flushing */
2261 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2262 i915_gem_clear_fence_reg(obj);
2263
73aa808f
CW
2264 drm_unbind_agp(obj_priv->agp_mem);
2265 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
673a394b 2266
e5281ccd 2267 i915_gem_object_put_pages_gtt(obj);
673a394b 2268
a00b10c3 2269 i915_gem_info_remove_gtt(dev_priv, obj_priv);
69dc4987 2270 list_del_init(&obj_priv->mm_list);
75e9e915
DV
2271 /* Avoid an unnecessary call to unbind on rebind. */
2272 obj_priv->map_and_fenceable = true;
673a394b 2273
73aa808f
CW
2274 drm_mm_put_block(obj_priv->gtt_space);
2275 obj_priv->gtt_space = NULL;
9af90d19 2276 obj_priv->gtt_offset = 0;
673a394b 2277
963b4836
CW
2278 if (i915_gem_object_is_purgeable(obj_priv))
2279 i915_gem_object_truncate(obj);
2280
1c5d22f7
CW
2281 trace_i915_gem_object_unbind(obj);
2282
8dc1775d 2283 return ret;
673a394b
EA
2284}
2285
a56ba56c
CW
2286static int i915_ring_idle(struct drm_device *dev,
2287 struct intel_ring_buffer *ring)
2288{
395b70be 2289 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2290 return 0;
2291
a56ba56c
CW
2292 i915_gem_flush_ring(dev, NULL, ring,
2293 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2294 return i915_wait_request(dev,
2295 i915_gem_next_request_seqno(dev, ring),
2296 ring);
2297}
2298
b47eb4a2 2299int
4df2faf4
DV
2300i915_gpu_idle(struct drm_device *dev)
2301{
2302 drm_i915_private_t *dev_priv = dev->dev_private;
2303 bool lists_empty;
852835f3 2304 int ret;
4df2faf4 2305
d1b851fc 2306 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2307 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2308 if (lists_empty)
2309 return 0;
2310
2311 /* Flush everything onto the inactive list. */
a56ba56c 2312 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2313 if (ret)
2314 return ret;
d1b851fc 2315
87acb0a5
CW
2316 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2317 if (ret)
2318 return ret;
d1b851fc 2319
549f7365
CW
2320 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2321 if (ret)
2322 return ret;
4df2faf4 2323
8a1a49f9 2324 return 0;
4df2faf4
DV
2325}
2326
a00b10c3 2327static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
4e901fdc 2328{
4e901fdc
EA
2329 struct drm_device *dev = obj->dev;
2330 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2331 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3 2332 u32 size = i915_gem_get_gtt_size(obj_priv);
4e901fdc
EA
2333 int regnum = obj_priv->fence_reg;
2334 uint64_t val;
2335
a00b10c3 2336 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
4e901fdc
EA
2337 0xfffff000) << 32;
2338 val |= obj_priv->gtt_offset & 0xfffff000;
2339 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2340 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2341
2342 if (obj_priv->tiling_mode == I915_TILING_Y)
2343 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2344 val |= I965_FENCE_REG_VALID;
2345
2346 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2347}
2348
a00b10c3 2349static void i965_write_fence_reg(struct drm_gem_object *obj)
de151cf6 2350{
de151cf6
JB
2351 struct drm_device *dev = obj->dev;
2352 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2353 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3 2354 u32 size = i915_gem_get_gtt_size(obj_priv);
de151cf6
JB
2355 int regnum = obj_priv->fence_reg;
2356 uint64_t val;
2357
a00b10c3 2358 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
de151cf6
JB
2359 0xfffff000) << 32;
2360 val |= obj_priv->gtt_offset & 0xfffff000;
2361 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2362 if (obj_priv->tiling_mode == I915_TILING_Y)
2363 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2364 val |= I965_FENCE_REG_VALID;
2365
2366 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2367}
2368
a00b10c3 2369static void i915_write_fence_reg(struct drm_gem_object *obj)
de151cf6 2370{
de151cf6
JB
2371 struct drm_device *dev = obj->dev;
2372 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2373 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3
CW
2374 u32 size = i915_gem_get_gtt_size(obj_priv);
2375 uint32_t fence_reg, val, pitch_val;
0f973f27 2376 int tile_width;
de151cf6
JB
2377
2378 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
a00b10c3
CW
2379 (obj_priv->gtt_offset & (size - 1))) {
2380 WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
75e9e915 2381 __func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
a00b10c3 2382 obj_priv->gtt_space->start, obj_priv->gtt_space->size);
de151cf6
JB
2383 return;
2384 }
2385
0f973f27
JB
2386 if (obj_priv->tiling_mode == I915_TILING_Y &&
2387 HAS_128_BYTE_Y_TILING(dev))
2388 tile_width = 128;
de151cf6 2389 else
0f973f27
JB
2390 tile_width = 512;
2391
2392 /* Note: pitch better be a power of two tile widths */
2393 pitch_val = obj_priv->stride / tile_width;
2394 pitch_val = ffs(pitch_val) - 1;
de151cf6 2395
c36a2a6d
DV
2396 if (obj_priv->tiling_mode == I915_TILING_Y &&
2397 HAS_128_BYTE_Y_TILING(dev))
2398 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2399 else
2400 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2401
de151cf6
JB
2402 val = obj_priv->gtt_offset;
2403 if (obj_priv->tiling_mode == I915_TILING_Y)
2404 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2405 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2406 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2407 val |= I830_FENCE_REG_VALID;
2408
a00b10c3
CW
2409 fence_reg = obj_priv->fence_reg;
2410 if (fence_reg < 8)
2411 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2412 else
a00b10c3 2413 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2414 I915_WRITE(fence_reg, val);
de151cf6
JB
2415}
2416
a00b10c3 2417static void i830_write_fence_reg(struct drm_gem_object *obj)
de151cf6 2418{
de151cf6
JB
2419 struct drm_device *dev = obj->dev;
2420 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2421 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3 2422 u32 size = i915_gem_get_gtt_size(obj_priv);
de151cf6
JB
2423 int regnum = obj_priv->fence_reg;
2424 uint32_t val;
2425 uint32_t pitch_val;
8d7773a3 2426 uint32_t fence_size_bits;
de151cf6 2427
8d7773a3 2428 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2429 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2430 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2431 __func__, obj_priv->gtt_offset);
de151cf6
JB
2432 return;
2433 }
2434
e76a16de
EA
2435 pitch_val = obj_priv->stride / 128;
2436 pitch_val = ffs(pitch_val) - 1;
2437 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2438
de151cf6
JB
2439 val = obj_priv->gtt_offset;
2440 if (obj_priv->tiling_mode == I915_TILING_Y)
2441 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2442 fence_size_bits = I830_FENCE_SIZE_BITS(size);
8d7773a3
DV
2443 WARN_ON(fence_size_bits & ~0x00000f00);
2444 val |= fence_size_bits;
de151cf6
JB
2445 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2446 val |= I830_FENCE_REG_VALID;
2447
2448 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2449}
2450
2cf34d7b
CW
2451static int i915_find_fence_reg(struct drm_device *dev,
2452 bool interruptible)
ae3db24a 2453{
ae3db24a 2454 struct drm_i915_private *dev_priv = dev->dev_private;
a00b10c3
CW
2455 struct drm_i915_fence_reg *reg;
2456 struct drm_i915_gem_object *obj_priv = NULL;
ae3db24a
DV
2457 int i, avail, ret;
2458
2459 /* First try to find a free reg */
2460 avail = 0;
2461 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2462 reg = &dev_priv->fence_regs[i];
2463 if (!reg->obj)
2464 return i;
2465
23010e43 2466 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2467 if (!obj_priv->pin_count)
2468 avail++;
2469 }
2470
2471 if (avail == 0)
2472 return -ENOSPC;
2473
2474 /* None available, try to steal one or wait for a user to finish */
a00b10c3 2475 avail = I915_FENCE_REG_NONE;
007cc8ac
DV
2476 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2477 lru_list) {
a00b10c3 2478 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2479 if (obj_priv->pin_count)
2480 continue;
2481
2482 /* found one! */
a00b10c3 2483 avail = obj_priv->fence_reg;
ae3db24a
DV
2484 break;
2485 }
2486
a00b10c3 2487 BUG_ON(avail == I915_FENCE_REG_NONE);
ae3db24a
DV
2488
2489 /* We only have a reference on obj from the active list. put_fence_reg
2490 * might drop that one, causing a use-after-free in it. So hold a
2491 * private reference to obj like the other callers of put_fence_reg
2492 * (set_tiling ioctl) do. */
a00b10c3
CW
2493 drm_gem_object_reference(&obj_priv->base);
2494 ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
2495 drm_gem_object_unreference(&obj_priv->base);
ae3db24a
DV
2496 if (ret != 0)
2497 return ret;
2498
a00b10c3 2499 return avail;
ae3db24a
DV
2500}
2501
de151cf6
JB
2502/**
2503 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2504 * @obj: object to map through a fence reg
2505 *
2506 * When mapping objects through the GTT, userspace wants to be able to write
2507 * to them without having to worry about swizzling if the object is tiled.
2508 *
2509 * This function walks the fence regs looking for a free one for @obj,
2510 * stealing one if it can't find any.
2511 *
2512 * It then sets up the reg based on the object's properties: address, pitch
2513 * and tiling format.
2514 */
8c4b8c3f 2515int
2cf34d7b
CW
2516i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2517 bool interruptible)
de151cf6
JB
2518{
2519 struct drm_device *dev = obj->dev;
79e53945 2520 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2521 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2522 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2523 int ret;
de151cf6 2524
a09ba7fa
EA
2525 /* Just update our place in the LRU if our fence is getting used. */
2526 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2527 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2528 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2529 return 0;
2530 }
2531
de151cf6
JB
2532 switch (obj_priv->tiling_mode) {
2533 case I915_TILING_NONE:
2534 WARN(1, "allocating a fence for non-tiled object?\n");
2535 break;
2536 case I915_TILING_X:
0f973f27
JB
2537 if (!obj_priv->stride)
2538 return -EINVAL;
2539 WARN((obj_priv->stride & (512 - 1)),
2540 "object 0x%08x is X tiled but has non-512B pitch\n",
2541 obj_priv->gtt_offset);
de151cf6
JB
2542 break;
2543 case I915_TILING_Y:
0f973f27
JB
2544 if (!obj_priv->stride)
2545 return -EINVAL;
2546 WARN((obj_priv->stride & (128 - 1)),
2547 "object 0x%08x is Y tiled but has non-128B pitch\n",
2548 obj_priv->gtt_offset);
de151cf6
JB
2549 break;
2550 }
2551
2cf34d7b 2552 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2553 if (ret < 0)
2554 return ret;
de151cf6 2555
ae3db24a
DV
2556 obj_priv->fence_reg = ret;
2557 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2558 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2559
de151cf6
JB
2560 reg->obj = obj;
2561
e259befd
CW
2562 switch (INTEL_INFO(dev)->gen) {
2563 case 6:
a00b10c3 2564 sandybridge_write_fence_reg(obj);
e259befd
CW
2565 break;
2566 case 5:
2567 case 4:
a00b10c3 2568 i965_write_fence_reg(obj);
e259befd
CW
2569 break;
2570 case 3:
a00b10c3 2571 i915_write_fence_reg(obj);
e259befd
CW
2572 break;
2573 case 2:
a00b10c3 2574 i830_write_fence_reg(obj);
e259befd
CW
2575 break;
2576 }
d9ddcb96 2577
a00b10c3
CW
2578 trace_i915_gem_object_get_fence(obj,
2579 obj_priv->fence_reg,
2580 obj_priv->tiling_mode);
1c5d22f7 2581
d9ddcb96 2582 return 0;
de151cf6
JB
2583}
2584
2585/**
2586 * i915_gem_clear_fence_reg - clear out fence register info
2587 * @obj: object to clear
2588 *
2589 * Zeroes out the fence register itself and clears out the associated
2590 * data structures in dev_priv and obj_priv.
2591 */
2592static void
2593i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2594{
2595 struct drm_device *dev = obj->dev;
79e53945 2596 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2597 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2598 struct drm_i915_fence_reg *reg =
2599 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2600 uint32_t fence_reg;
de151cf6 2601
e259befd
CW
2602 switch (INTEL_INFO(dev)->gen) {
2603 case 6:
4e901fdc
EA
2604 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2605 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2606 break;
2607 case 5:
2608 case 4:
de151cf6 2609 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2610 break;
2611 case 3:
9b74f734 2612 if (obj_priv->fence_reg >= 8)
e259befd 2613 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2614 else
e259befd
CW
2615 case 2:
2616 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2617
2618 I915_WRITE(fence_reg, 0);
e259befd 2619 break;
dc529a4f 2620 }
de151cf6 2621
007cc8ac 2622 reg->obj = NULL;
de151cf6 2623 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2624 list_del_init(&reg->lru_list);
de151cf6
JB
2625}
2626
52dc7d32
CW
2627/**
2628 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2629 * to the buffer to finish, and then resets the fence register.
2630 * @obj: tiled object holding a fence register.
2cf34d7b 2631 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2632 *
2633 * Zeroes out the fence register itself and clears out the associated
2634 * data structures in dev_priv and obj_priv.
2635 */
2636int
2cf34d7b
CW
2637i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2638 bool interruptible)
52dc7d32
CW
2639{
2640 struct drm_device *dev = obj->dev;
53640e1d 2641 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2642 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2643 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2644
2645 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2646 return 0;
2647
10ae9bd2
DV
2648 /* If we've changed tiling, GTT-mappings of the object
2649 * need to re-fault to ensure that the correct fence register
2650 * setup is in place.
2651 */
2652 i915_gem_release_mmap(obj);
2653
52dc7d32
CW
2654 /* On the i915, GPU access to tiled buffers is via a fence,
2655 * therefore we must wait for any outstanding access to complete
2656 * before clearing the fence.
2657 */
53640e1d
CW
2658 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2659 if (reg->gpu) {
52dc7d32
CW
2660 int ret;
2661
2cf34d7b 2662 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad 2663 if (ret)
2dafb1e0
CW
2664 return ret;
2665
2cf34d7b 2666 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2667 if (ret)
52dc7d32 2668 return ret;
53640e1d
CW
2669
2670 reg->gpu = false;
52dc7d32
CW
2671 }
2672
4a726612 2673 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2674 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2675
2676 return 0;
2677}
2678
673a394b
EA
2679/**
2680 * Finds free space in the GTT aperture and binds the object there.
2681 */
2682static int
920afa77
DV
2683i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2684 unsigned alignment,
75e9e915 2685 bool map_and_fenceable)
673a394b
EA
2686{
2687 struct drm_device *dev = obj->dev;
2688 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2689 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2690 struct drm_mm_node *free_space;
a00b10c3
CW
2691 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2692 u32 size, fence_size, fence_alignment;
75e9e915 2693 bool mappable, fenceable;
07f73f69 2694 int ret;
673a394b 2695
bb6baf76 2696 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2697 DRM_ERROR("Attempting to bind a purgeable object\n");
2698 return -EINVAL;
2699 }
2700
a00b10c3
CW
2701 fence_size = i915_gem_get_gtt_size(obj_priv);
2702 fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
2703
673a394b 2704 if (alignment == 0)
75e9e915
DV
2705 alignment = map_and_fenceable ? fence_alignment : 4096;
2706 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2707 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2708 return -EINVAL;
2709 }
2710
75e9e915 2711 size = map_and_fenceable ? fence_size : obj->size;
a00b10c3 2712
654fc607
CW
2713 /* If the object is bigger than the entire aperture, reject it early
2714 * before evicting everything in a vain attempt to find space.
2715 */
920afa77 2716 if (obj->size >
75e9e915 2717 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2718 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2719 return -E2BIG;
2720 }
2721
673a394b 2722 search_free:
75e9e915 2723 if (map_and_fenceable)
920afa77
DV
2724 free_space =
2725 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2726 size, alignment, 0,
920afa77
DV
2727 dev_priv->mm.gtt_mappable_end,
2728 0);
2729 else
2730 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2731 size, alignment, 0);
920afa77
DV
2732
2733 if (free_space != NULL) {
75e9e915 2734 if (map_and_fenceable)
920afa77
DV
2735 obj_priv->gtt_space =
2736 drm_mm_get_block_range_generic(free_space,
a00b10c3 2737 size, alignment, 0,
920afa77
DV
2738 dev_priv->mm.gtt_mappable_end,
2739 0);
2740 else
2741 obj_priv->gtt_space =
a00b10c3 2742 drm_mm_get_block(free_space, size, alignment);
920afa77 2743 }
673a394b
EA
2744 if (obj_priv->gtt_space == NULL) {
2745 /* If the gtt is empty and we're still having trouble
2746 * fitting our object in, we're out of memory.
2747 */
75e9e915
DV
2748 ret = i915_gem_evict_something(dev, size, alignment,
2749 map_and_fenceable);
9731129c 2750 if (ret)
673a394b 2751 return ret;
9731129c 2752
673a394b
EA
2753 goto search_free;
2754 }
2755
e5281ccd 2756 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b
EA
2757 if (ret) {
2758 drm_mm_put_block(obj_priv->gtt_space);
2759 obj_priv->gtt_space = NULL;
07f73f69
CW
2760
2761 if (ret == -ENOMEM) {
2762 /* first try to clear up some space from the GTT */
a00b10c3 2763 ret = i915_gem_evict_something(dev, size,
75e9e915
DV
2764 alignment,
2765 map_and_fenceable);
07f73f69 2766 if (ret) {
07f73f69 2767 /* now try to shrink everyone else */
4bdadb97
CW
2768 if (gfpmask) {
2769 gfpmask = 0;
2770 goto search_free;
07f73f69
CW
2771 }
2772
2773 return ret;
2774 }
2775
2776 goto search_free;
2777 }
2778
673a394b
EA
2779 return ret;
2780 }
2781
673a394b
EA
2782 /* Create an AGP memory structure pointing at our pages, and bind it
2783 * into the GTT.
2784 */
2785 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2786 obj_priv->pages,
07f73f69 2787 obj->size >> PAGE_SHIFT,
9af90d19 2788 obj_priv->gtt_space->start,
ba1eb1d8 2789 obj_priv->agp_type);
673a394b 2790 if (obj_priv->agp_mem == NULL) {
e5281ccd 2791 i915_gem_object_put_pages_gtt(obj);
673a394b
EA
2792 drm_mm_put_block(obj_priv->gtt_space);
2793 obj_priv->gtt_space = NULL;
07f73f69 2794
a00b10c3 2795 ret = i915_gem_evict_something(dev, size,
75e9e915 2796 alignment, map_and_fenceable);
9731129c 2797 if (ret)
07f73f69 2798 return ret;
07f73f69
CW
2799
2800 goto search_free;
673a394b 2801 }
673a394b 2802
fb7d516a
DV
2803 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2804
bf1a1092 2805 /* keep track of bounds object by adding it to the inactive list */
69dc4987 2806 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
a00b10c3 2807 i915_gem_info_add_gtt(dev_priv, obj_priv);
bf1a1092 2808
673a394b
EA
2809 /* Assert that the object is not currently in any GPU domain. As it
2810 * wasn't in the GTT, there shouldn't be any way it could have been in
2811 * a GPU cache
2812 */
21d509e3
CW
2813 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2814 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2815
75e9e915 2816 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
1c5d22f7 2817
75e9e915 2818 fenceable =
a00b10c3
CW
2819 obj_priv->gtt_space->size == fence_size &&
2820 (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
2821
75e9e915 2822 mappable =
a00b10c3
CW
2823 obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
2824
75e9e915
DV
2825 obj_priv->map_and_fenceable = mappable && fenceable;
2826
673a394b
EA
2827 return 0;
2828}
2829
2830void
2831i915_gem_clflush_object(struct drm_gem_object *obj)
2832{
23010e43 2833 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2834
2835 /* If we don't have a page list set up, then we're not pinned
2836 * to GPU, and we can ignore the cache flush because it'll happen
2837 * again at bind time.
2838 */
856fa198 2839 if (obj_priv->pages == NULL)
673a394b
EA
2840 return;
2841
1c5d22f7 2842 trace_i915_gem_object_clflush(obj);
cfa16a0d 2843
856fa198 2844 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2845}
2846
e47c68e9 2847/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2848static int
ba3d8d74
DV
2849i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2850 bool pipelined)
e47c68e9
EA
2851{
2852 struct drm_device *dev = obj->dev;
e47c68e9
EA
2853
2854 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2855 return 0;
e47c68e9
EA
2856
2857 /* Queue the GPU write cache flushing we need. */
c78ec30b 2858 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2859 to_intel_bo(obj)->ring,
2860 0, obj->write_domain);
48b956c5 2861 BUG_ON(obj->write_domain);
1c5d22f7 2862
ba3d8d74
DV
2863 if (pipelined)
2864 return 0;
2865
2cf34d7b 2866 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2867}
2868
2869/** Flushes the GTT write domain for the object if it's dirty. */
2870static void
2871i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2872{
1c5d22f7
CW
2873 uint32_t old_write_domain;
2874
e47c68e9
EA
2875 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2876 return;
2877
2878 /* No actual flushing is required for the GTT write domain. Writes
2879 * to it immediately go to main memory as far as we know, so there's
2880 * no chipset flush. It also doesn't land in render cache.
2881 */
4a684a41
CW
2882 i915_gem_release_mmap(obj);
2883
1c5d22f7 2884 old_write_domain = obj->write_domain;
e47c68e9 2885 obj->write_domain = 0;
1c5d22f7
CW
2886
2887 trace_i915_gem_object_change_domain(obj,
2888 obj->read_domains,
2889 old_write_domain);
e47c68e9
EA
2890}
2891
2892/** Flushes the CPU write domain for the object if it's dirty. */
2893static void
2894i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2895{
2896 struct drm_device *dev = obj->dev;
1c5d22f7 2897 uint32_t old_write_domain;
e47c68e9
EA
2898
2899 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2900 return;
2901
2902 i915_gem_clflush_object(obj);
2903 drm_agp_chipset_flush(dev);
1c5d22f7 2904 old_write_domain = obj->write_domain;
e47c68e9 2905 obj->write_domain = 0;
1c5d22f7
CW
2906
2907 trace_i915_gem_object_change_domain(obj,
2908 obj->read_domains,
2909 old_write_domain);
e47c68e9
EA
2910}
2911
2ef7eeaa
EA
2912/**
2913 * Moves a single object to the GTT read, and possibly write domain.
2914 *
2915 * This function returns when the move is complete, including waiting on
2916 * flushes to occur.
2917 */
79e53945 2918int
2ef7eeaa
EA
2919i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2920{
23010e43 2921 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2922 uint32_t old_write_domain, old_read_domains;
e47c68e9 2923 int ret;
2ef7eeaa 2924
02354392
EA
2925 /* Not valid to be called on unbound objects. */
2926 if (obj_priv->gtt_space == NULL)
2927 return -EINVAL;
2928
ba3d8d74 2929 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2dafb1e0
CW
2930 if (ret != 0)
2931 return ret;
2932
7213342d 2933 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2934
ba3d8d74 2935 if (write) {
2cf34d7b 2936 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2937 if (ret)
2938 return ret;
ba3d8d74 2939 }
e47c68e9 2940
1c5d22f7
CW
2941 old_write_domain = obj->write_domain;
2942 old_read_domains = obj->read_domains;
2943
e47c68e9
EA
2944 /* It should now be out of any other write domains, and we can update
2945 * the domain values for our changes.
2946 */
2947 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2948 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2949 if (write) {
7213342d 2950 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2951 obj->write_domain = I915_GEM_DOMAIN_GTT;
2952 obj_priv->dirty = 1;
2ef7eeaa
EA
2953 }
2954
1c5d22f7
CW
2955 trace_i915_gem_object_change_domain(obj,
2956 old_read_domains,
2957 old_write_domain);
2958
e47c68e9
EA
2959 return 0;
2960}
2961
b9241ea3
ZW
2962/*
2963 * Prepare buffer for display plane. Use uninterruptible for possible flush
2964 * wait, as in modesetting process we're not supposed to be interrupted.
2965 */
2966int
48b956c5
CW
2967i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2968 bool pipelined)
b9241ea3 2969{
23010e43 2970 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2971 uint32_t old_read_domains;
b9241ea3
ZW
2972 int ret;
2973
2974 /* Not valid to be called on unbound objects. */
2975 if (obj_priv->gtt_space == NULL)
2976 return -EINVAL;
2977
ced270fa 2978 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2dafb1e0
CW
2979 if (ret)
2980 return ret;
b9241ea3 2981
ced270fa
CW
2982 /* Currently, we are always called from an non-interruptible context. */
2983 if (!pipelined) {
2984 ret = i915_gem_object_wait_rendering(obj, false);
2985 if (ret)
b9241ea3
ZW
2986 return ret;
2987 }
2988
b118c1e3
CW
2989 i915_gem_object_flush_cpu_write_domain(obj);
2990
b9241ea3 2991 old_read_domains = obj->read_domains;
c78ec30b 2992 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2993
2994 trace_i915_gem_object_change_domain(obj,
2995 old_read_domains,
ba3d8d74 2996 obj->write_domain);
b9241ea3
ZW
2997
2998 return 0;
2999}
3000
e47c68e9
EA
3001/**
3002 * Moves a single object to the CPU read, and possibly write domain.
3003 *
3004 * This function returns when the move is complete, including waiting on
3005 * flushes to occur.
3006 */
3007static int
3008i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
3009{
1c5d22f7 3010 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3011 int ret;
3012
ba3d8d74 3013 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
3014 if (ret != 0)
3015 return ret;
2ef7eeaa 3016
e47c68e9 3017 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3018
e47c68e9
EA
3019 /* If we have a partially-valid cache of the object in the CPU,
3020 * finish invalidating it and free the per-page flags.
2ef7eeaa 3021 */
e47c68e9 3022 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3023
7213342d 3024 if (write) {
2cf34d7b 3025 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
3026 if (ret)
3027 return ret;
3028 }
3029
1c5d22f7
CW
3030 old_write_domain = obj->write_domain;
3031 old_read_domains = obj->read_domains;
3032
e47c68e9
EA
3033 /* Flush the CPU cache if it's still invalid. */
3034 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3035 i915_gem_clflush_object(obj);
2ef7eeaa 3036
e47c68e9 3037 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3038 }
3039
3040 /* It should now be out of any other write domains, and we can update
3041 * the domain values for our changes.
3042 */
e47c68e9
EA
3043 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3044
3045 /* If we're writing through the CPU, then the GPU read domains will
3046 * need to be invalidated at next use.
3047 */
3048 if (write) {
c78ec30b 3049 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
3050 obj->write_domain = I915_GEM_DOMAIN_CPU;
3051 }
2ef7eeaa 3052
1c5d22f7
CW
3053 trace_i915_gem_object_change_domain(obj,
3054 old_read_domains,
3055 old_write_domain);
3056
2ef7eeaa
EA
3057 return 0;
3058}
3059
673a394b
EA
3060/*
3061 * Set the next domain for the specified object. This
3062 * may not actually perform the necessary flushing/invaliding though,
3063 * as that may want to be batched with other set_domain operations
3064 *
3065 * This is (we hope) the only really tricky part of gem. The goal
3066 * is fairly simple -- track which caches hold bits of the object
3067 * and make sure they remain coherent. A few concrete examples may
3068 * help to explain how it works. For shorthand, we use the notation
3069 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3070 * a pair of read and write domain masks.
3071 *
3072 * Case 1: the batch buffer
3073 *
3074 * 1. Allocated
3075 * 2. Written by CPU
3076 * 3. Mapped to GTT
3077 * 4. Read by GPU
3078 * 5. Unmapped from GTT
3079 * 6. Freed
3080 *
3081 * Let's take these a step at a time
3082 *
3083 * 1. Allocated
3084 * Pages allocated from the kernel may still have
3085 * cache contents, so we set them to (CPU, CPU) always.
3086 * 2. Written by CPU (using pwrite)
3087 * The pwrite function calls set_domain (CPU, CPU) and
3088 * this function does nothing (as nothing changes)
3089 * 3. Mapped by GTT
3090 * This function asserts that the object is not
3091 * currently in any GPU-based read or write domains
3092 * 4. Read by GPU
3093 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3094 * As write_domain is zero, this function adds in the
3095 * current read domains (CPU+COMMAND, 0).
3096 * flush_domains is set to CPU.
3097 * invalidate_domains is set to COMMAND
3098 * clflush is run to get data out of the CPU caches
3099 * then i915_dev_set_domain calls i915_gem_flush to
3100 * emit an MI_FLUSH and drm_agp_chipset_flush
3101 * 5. Unmapped from GTT
3102 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3103 * flush_domains and invalidate_domains end up both zero
3104 * so no flushing/invalidating happens
3105 * 6. Freed
3106 * yay, done
3107 *
3108 * Case 2: The shared render buffer
3109 *
3110 * 1. Allocated
3111 * 2. Mapped to GTT
3112 * 3. Read/written by GPU
3113 * 4. set_domain to (CPU,CPU)
3114 * 5. Read/written by CPU
3115 * 6. Read/written by GPU
3116 *
3117 * 1. Allocated
3118 * Same as last example, (CPU, CPU)
3119 * 2. Mapped to GTT
3120 * Nothing changes (assertions find that it is not in the GPU)
3121 * 3. Read/written by GPU
3122 * execbuffer calls set_domain (RENDER, RENDER)
3123 * flush_domains gets CPU
3124 * invalidate_domains gets GPU
3125 * clflush (obj)
3126 * MI_FLUSH and drm_agp_chipset_flush
3127 * 4. set_domain (CPU, CPU)
3128 * flush_domains gets GPU
3129 * invalidate_domains gets CPU
3130 * wait_rendering (obj) to make sure all drawing is complete.
3131 * This will include an MI_FLUSH to get the data from GPU
3132 * to memory
3133 * clflush (obj) to invalidate the CPU cache
3134 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3135 * 5. Read/written by CPU
3136 * cache lines are loaded and dirtied
3137 * 6. Read written by GPU
3138 * Same as last GPU access
3139 *
3140 * Case 3: The constant buffer
3141 *
3142 * 1. Allocated
3143 * 2. Written by CPU
3144 * 3. Read by GPU
3145 * 4. Updated (written) by CPU again
3146 * 5. Read by GPU
3147 *
3148 * 1. Allocated
3149 * (CPU, CPU)
3150 * 2. Written by CPU
3151 * (CPU, CPU)
3152 * 3. Read by GPU
3153 * (CPU+RENDER, 0)
3154 * flush_domains = CPU
3155 * invalidate_domains = RENDER
3156 * clflush (obj)
3157 * MI_FLUSH
3158 * drm_agp_chipset_flush
3159 * 4. Updated (written) by CPU again
3160 * (CPU, CPU)
3161 * flush_domains = 0 (no previous write domain)
3162 * invalidate_domains = 0 (no new read domains)
3163 * 5. Read by GPU
3164 * (CPU+RENDER, 0)
3165 * flush_domains = CPU
3166 * invalidate_domains = RENDER
3167 * clflush (obj)
3168 * MI_FLUSH
3169 * drm_agp_chipset_flush
3170 */
c0d90829 3171static void
b6651458 3172i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
0f8c6d7c
CW
3173 struct intel_ring_buffer *ring,
3174 struct change_domains *cd)
673a394b 3175{
23010e43 3176 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3177 uint32_t invalidate_domains = 0;
3178 uint32_t flush_domains = 0;
652c393a 3179
673a394b
EA
3180 /*
3181 * If the object isn't moving to a new write domain,
3182 * let the object stay in multiple read domains
3183 */
8b0e378a
EA
3184 if (obj->pending_write_domain == 0)
3185 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3186
3187 /*
3188 * Flush the current write domain if
3189 * the new read domains don't match. Invalidate
3190 * any read domains which differ from the old
3191 * write domain
3192 */
8b0e378a 3193 if (obj->write_domain &&
13b29289
CW
3194 (obj->write_domain != obj->pending_read_domains ||
3195 obj_priv->ring != ring)) {
673a394b 3196 flush_domains |= obj->write_domain;
8b0e378a
EA
3197 invalidate_domains |=
3198 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3199 }
3200 /*
3201 * Invalidate any read caches which may have
3202 * stale data. That is, any new read domains.
3203 */
8b0e378a 3204 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3205 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3206 i915_gem_clflush_object(obj);
673a394b 3207
4a684a41
CW
3208 /* blow away mappings if mapped through GTT */
3209 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
3210 i915_gem_release_mmap(obj);
3211
efbeed96
EA
3212 /* The actual obj->write_domain will be updated with
3213 * pending_write_domain after we emit the accumulated flush for all
3214 * of our domain changes in execbuffers (which clears objects'
3215 * write_domains). So if we have a current write domain that we
3216 * aren't changing, set pending_write_domain to that.
3217 */
3218 if (flush_domains == 0 && obj->pending_write_domain == 0)
3219 obj->pending_write_domain = obj->write_domain;
673a394b 3220
0f8c6d7c
CW
3221 cd->invalidate_domains |= invalidate_domains;
3222 cd->flush_domains |= flush_domains;
b6651458 3223 if (flush_domains & I915_GEM_GPU_DOMAINS)
0f8c6d7c 3224 cd->flush_rings |= obj_priv->ring->id;
b6651458 3225 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
0f8c6d7c 3226 cd->flush_rings |= ring->id;
673a394b
EA
3227}
3228
3229/**
e47c68e9 3230 * Moves the object from a partially CPU read to a full one.
673a394b 3231 *
e47c68e9
EA
3232 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3233 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3234 */
e47c68e9
EA
3235static void
3236i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3237{
23010e43 3238 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3239
e47c68e9
EA
3240 if (!obj_priv->page_cpu_valid)
3241 return;
3242
3243 /* If we're partially in the CPU read domain, finish moving it in.
3244 */
3245 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3246 int i;
3247
3248 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3249 if (obj_priv->page_cpu_valid[i])
3250 continue;
856fa198 3251 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3252 }
e47c68e9
EA
3253 }
3254
3255 /* Free the page_cpu_valid mappings which are now stale, whether
3256 * or not we've got I915_GEM_DOMAIN_CPU.
3257 */
9a298b2a 3258 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3259 obj_priv->page_cpu_valid = NULL;
3260}
3261
3262/**
3263 * Set the CPU read domain on a range of the object.
3264 *
3265 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3266 * not entirely valid. The page_cpu_valid member of the object flags which
3267 * pages have been flushed, and will be respected by
3268 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3269 * of the whole object.
3270 *
3271 * This function returns when the move is complete, including waiting on
3272 * flushes to occur.
3273 */
3274static int
3275i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3276 uint64_t offset, uint64_t size)
3277{
23010e43 3278 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3279 uint32_t old_read_domains;
e47c68e9 3280 int i, ret;
673a394b 3281
e47c68e9
EA
3282 if (offset == 0 && size == obj->size)
3283 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3284
ba3d8d74 3285 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3286 if (ret != 0)
6a47baa6 3287 return ret;
e47c68e9
EA
3288 i915_gem_object_flush_gtt_write_domain(obj);
3289
3290 /* If we're already fully in the CPU read domain, we're done. */
3291 if (obj_priv->page_cpu_valid == NULL &&
3292 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3293 return 0;
673a394b 3294
e47c68e9
EA
3295 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3296 * newly adding I915_GEM_DOMAIN_CPU
3297 */
673a394b 3298 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3299 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3300 GFP_KERNEL);
e47c68e9
EA
3301 if (obj_priv->page_cpu_valid == NULL)
3302 return -ENOMEM;
3303 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3304 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3305
3306 /* Flush the cache on any pages that are still invalid from the CPU's
3307 * perspective.
3308 */
e47c68e9
EA
3309 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3310 i++) {
673a394b
EA
3311 if (obj_priv->page_cpu_valid[i])
3312 continue;
3313
856fa198 3314 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3315
3316 obj_priv->page_cpu_valid[i] = 1;
3317 }
3318
e47c68e9
EA
3319 /* It should now be out of any other write domains, and we can update
3320 * the domain values for our changes.
3321 */
3322 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3323
1c5d22f7 3324 old_read_domains = obj->read_domains;
e47c68e9
EA
3325 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3326
1c5d22f7
CW
3327 trace_i915_gem_object_change_domain(obj,
3328 old_read_domains,
3329 obj->write_domain);
3330
673a394b
EA
3331 return 0;
3332}
3333
673a394b
EA
3334/**
3335 * Pin an object to the GTT and evaluate the relocations landing in it.
3336 */
3337static int
9af90d19
CW
3338i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3339 struct drm_file *file_priv,
3340 struct drm_i915_gem_exec_object2 *entry)
673a394b 3341{
9af90d19 3342 struct drm_device *dev = obj->base.dev;
0839ccb8 3343 drm_i915_private_t *dev_priv = dev->dev_private;
2549d6c2 3344 struct drm_i915_gem_relocation_entry __user *user_relocs;
9af90d19
CW
3345 struct drm_gem_object *target_obj = NULL;
3346 uint32_t target_handle = 0;
3347 int i, ret = 0;
673a394b 3348
2549d6c2 3349 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
673a394b 3350 for (i = 0; i < entry->relocation_count; i++) {
2549d6c2 3351 struct drm_i915_gem_relocation_entry reloc;
9af90d19 3352 uint32_t target_offset;
673a394b 3353
9af90d19
CW
3354 if (__copy_from_user_inatomic(&reloc,
3355 user_relocs+i,
3356 sizeof(reloc))) {
3357 ret = -EFAULT;
3358 break;
76446cac 3359 }
76446cac 3360
9af90d19
CW
3361 if (reloc.target_handle != target_handle) {
3362 drm_gem_object_unreference(target_obj);
673a394b 3363
9af90d19
CW
3364 target_obj = drm_gem_object_lookup(dev, file_priv,
3365 reloc.target_handle);
3366 if (target_obj == NULL) {
3367 ret = -ENOENT;
3368 break;
3369 }
3370
3371 target_handle = reloc.target_handle;
673a394b 3372 }
9af90d19 3373 target_offset = to_intel_bo(target_obj)->gtt_offset;
673a394b 3374
8542a0bb
CW
3375#if WATCH_RELOC
3376 DRM_INFO("%s: obj %p offset %08x target %d "
3377 "read %08x write %08x gtt %08x "
3378 "presumed %08x delta %08x\n",
3379 __func__,
3380 obj,
2549d6c2
CW
3381 (int) reloc.offset,
3382 (int) reloc.target_handle,
3383 (int) reloc.read_domains,
3384 (int) reloc.write_domain,
9af90d19 3385 (int) target_offset,
2549d6c2
CW
3386 (int) reloc.presumed_offset,
3387 reloc.delta);
8542a0bb
CW
3388#endif
3389
673a394b
EA
3390 /* The target buffer should have appeared before us in the
3391 * exec_object list, so it should have a GTT space bound by now.
3392 */
9af90d19 3393 if (target_offset == 0) {
673a394b 3394 DRM_ERROR("No GTT space found for object %d\n",
2549d6c2 3395 reloc.target_handle);
9af90d19
CW
3396 ret = -EINVAL;
3397 break;
673a394b
EA
3398 }
3399
8542a0bb 3400 /* Validate that the target is in a valid r/w GPU domain */
2549d6c2 3401 if (reloc.write_domain & (reloc.write_domain - 1)) {
16edd550
DV
3402 DRM_ERROR("reloc with multiple write domains: "
3403 "obj %p target %d offset %d "
3404 "read %08x write %08x",
2549d6c2
CW
3405 obj, reloc.target_handle,
3406 (int) reloc.offset,
3407 reloc.read_domains,
3408 reloc.write_domain);
9af90d19
CW
3409 ret = -EINVAL;
3410 break;
16edd550 3411 }
2549d6c2
CW
3412 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3413 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3414 DRM_ERROR("reloc with read/write CPU domains: "
3415 "obj %p target %d offset %d "
3416 "read %08x write %08x",
2549d6c2
CW
3417 obj, reloc.target_handle,
3418 (int) reloc.offset,
3419 reloc.read_domains,
3420 reloc.write_domain);
9af90d19
CW
3421 ret = -EINVAL;
3422 break;
e47c68e9 3423 }
2549d6c2
CW
3424 if (reloc.write_domain && target_obj->pending_write_domain &&
3425 reloc.write_domain != target_obj->pending_write_domain) {
673a394b
EA
3426 DRM_ERROR("Write domain conflict: "
3427 "obj %p target %d offset %d "
3428 "new %08x old %08x\n",
2549d6c2
CW
3429 obj, reloc.target_handle,
3430 (int) reloc.offset,
3431 reloc.write_domain,
673a394b 3432 target_obj->pending_write_domain);
9af90d19
CW
3433 ret = -EINVAL;
3434 break;
673a394b
EA
3435 }
3436
2549d6c2 3437 target_obj->pending_read_domains |= reloc.read_domains;
878a3c37 3438 target_obj->pending_write_domain |= reloc.write_domain;
673a394b
EA
3439
3440 /* If the relocation already has the right value in it, no
3441 * more work needs to be done.
3442 */
9af90d19 3443 if (target_offset == reloc.presumed_offset)
673a394b 3444 continue;
673a394b 3445
8542a0bb 3446 /* Check that the relocation address is valid... */
9af90d19 3447 if (reloc.offset > obj->base.size - 4) {
8542a0bb
CW
3448 DRM_ERROR("Relocation beyond object bounds: "
3449 "obj %p target %d offset %d size %d.\n",
2549d6c2 3450 obj, reloc.target_handle,
9af90d19
CW
3451 (int) reloc.offset, (int) obj->base.size);
3452 ret = -EINVAL;
3453 break;
8542a0bb 3454 }
2549d6c2 3455 if (reloc.offset & 3) {
8542a0bb
CW
3456 DRM_ERROR("Relocation not 4-byte aligned: "
3457 "obj %p target %d offset %d.\n",
2549d6c2
CW
3458 obj, reloc.target_handle,
3459 (int) reloc.offset);
9af90d19
CW
3460 ret = -EINVAL;
3461 break;
8542a0bb
CW
3462 }
3463
3464 /* and points to somewhere within the target object. */
2549d6c2 3465 if (reloc.delta >= target_obj->size) {
8542a0bb
CW
3466 DRM_ERROR("Relocation beyond target object bounds: "
3467 "obj %p target %d delta %d size %d.\n",
2549d6c2
CW
3468 obj, reloc.target_handle,
3469 (int) reloc.delta, (int) target_obj->size);
9af90d19
CW
3470 ret = -EINVAL;
3471 break;
673a394b
EA
3472 }
3473
9af90d19
CW
3474 reloc.delta += target_offset;
3475 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
f0c43d9b
CW
3476 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3477 char *vaddr;
673a394b 3478
c48c43e4 3479 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
f0c43d9b 3480 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
c48c43e4 3481 kunmap_atomic(vaddr);
f0c43d9b
CW
3482 } else {
3483 uint32_t __iomem *reloc_entry;
3484 void __iomem *reloc_page;
b962442e 3485
9af90d19
CW
3486 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3487 if (ret)
3488 break;
b962442e 3489
f0c43d9b 3490 /* Map the page containing the relocation we're going to perform. */
9af90d19 3491 reloc.offset += obj->gtt_offset;
f0c43d9b 3492 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
c48c43e4 3493 reloc.offset & PAGE_MASK);
f0c43d9b
CW
3494 reloc_entry = (uint32_t __iomem *)
3495 (reloc_page + (reloc.offset & ~PAGE_MASK));
3496 iowrite32(reloc.delta, reloc_entry);
c48c43e4 3497 io_mapping_unmap_atomic(reloc_page);
f0c43d9b 3498 }
b962442e 3499
b5dc608c
CW
3500 /* and update the user's relocation entry */
3501 reloc.presumed_offset = target_offset;
3502 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3503 &reloc.presumed_offset,
3504 sizeof(reloc.presumed_offset))) {
3505 ret = -EFAULT;
3506 break;
3507 }
b962442e 3508 }
b962442e 3509
9af90d19 3510 drm_gem_object_unreference(target_obj);
673a394b
EA
3511 return ret;
3512}
3513
40a5f0de 3514static int
9af90d19
CW
3515i915_gem_execbuffer_pin(struct drm_device *dev,
3516 struct drm_file *file,
3517 struct drm_gem_object **object_list,
3518 struct drm_i915_gem_exec_object2 *exec_list,
3519 int count)
40a5f0de 3520{
9af90d19
CW
3521 struct drm_i915_private *dev_priv = dev->dev_private;
3522 int ret, i, retry;
40a5f0de 3523
9af90d19 3524 /* attempt to pin all of the buffers into the GTT */
5eac3ab4
CW
3525 retry = 0;
3526 do {
9af90d19
CW
3527 ret = 0;
3528 for (i = 0; i < count; i++) {
3529 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
16e809ac 3530 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
9af90d19
CW
3531 bool need_fence =
3532 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3533 obj->tiling_mode != I915_TILING_NONE;
3534
16e809ac
DV
3535 /* g33/pnv can't fence buffers in the unmappable part */
3536 bool need_mappable =
3537 entry->relocation_count ? true : need_fence;
3538
9af90d19 3539 /* Check fence reg constraints and rebind if necessary */
75e9e915 3540 if (need_mappable && !obj->map_and_fenceable) {
9af90d19
CW
3541 ret = i915_gem_object_unbind(&obj->base);
3542 if (ret)
3543 break;
3544 }
40a5f0de 3545
920afa77 3546 ret = i915_gem_object_pin(&obj->base,
16e809ac 3547 entry->alignment,
75e9e915 3548 need_mappable);
9af90d19
CW
3549 if (ret)
3550 break;
40a5f0de 3551
9af90d19
CW
3552 /*
3553 * Pre-965 chips need a fence register set up in order
3554 * to properly handle blits to/from tiled surfaces.
3555 */
3556 if (need_fence) {
3557 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3558 if (ret) {
3559 i915_gem_object_unpin(&obj->base);
3560 break;
3561 }
40a5f0de 3562
9af90d19
CW
3563 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3564 }
40a5f0de 3565
9af90d19 3566 entry->offset = obj->gtt_offset;
40a5f0de
EA
3567 }
3568
9af90d19
CW
3569 while (i--)
3570 i915_gem_object_unpin(object_list[i]);
3571
5eac3ab4 3572 if (ret != -ENOSPC || retry > 1)
9af90d19
CW
3573 return ret;
3574
5eac3ab4
CW
3575 /* First attempt, just clear anything that is purgeable.
3576 * Second attempt, clear the entire GTT.
3577 */
3578 ret = i915_gem_evict_everything(dev, retry == 0);
9af90d19
CW
3579 if (ret)
3580 return ret;
40a5f0de 3581
5eac3ab4
CW
3582 retry++;
3583 } while (1);
40a5f0de
EA
3584}
3585
13b29289
CW
3586static int
3587i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3588 struct drm_file *file,
3589 struct intel_ring_buffer *ring,
3590 struct drm_gem_object **objects,
3591 int count)
3592{
0f8c6d7c 3593 struct change_domains cd;
13b29289
CW
3594 int ret, i;
3595
0f8c6d7c
CW
3596 cd.invalidate_domains = 0;
3597 cd.flush_domains = 0;
3598 cd.flush_rings = 0;
13b29289 3599 for (i = 0; i < count; i++)
0f8c6d7c 3600 i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
13b29289 3601
0f8c6d7c 3602 if (cd.invalidate_domains | cd.flush_domains) {
13b29289
CW
3603#if WATCH_EXEC
3604 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3605 __func__,
0f8c6d7c
CW
3606 cd.invalidate_domains,
3607 cd.flush_domains);
13b29289
CW
3608#endif
3609 i915_gem_flush(dev, file,
0f8c6d7c
CW
3610 cd.invalidate_domains,
3611 cd.flush_domains,
3612 cd.flush_rings);
13b29289
CW
3613 }
3614
3615 for (i = 0; i < count; i++) {
3616 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3617 /* XXX replace with semaphores */
3618 if (obj->ring && ring != obj->ring) {
3619 ret = i915_gem_object_wait_rendering(&obj->base, true);
3620 if (ret)
3621 return ret;
3622 }
3623 }
3624
3625 return 0;
3626}
3627
673a394b
EA
3628/* Throttle our rendering by waiting until the ring has completed our requests
3629 * emitted over 20 msec ago.
3630 *
b962442e
EA
3631 * Note that if we were to use the current jiffies each time around the loop,
3632 * we wouldn't escape the function with any frames outstanding if the time to
3633 * render a frame was over 20ms.
3634 *
673a394b
EA
3635 * This should get us reasonable parallelism between CPU and GPU but also
3636 * relatively low latency when blocking on a particular request to finish.
3637 */
40a5f0de 3638static int
f787a5f5 3639i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3640{
f787a5f5
CW
3641 struct drm_i915_private *dev_priv = dev->dev_private;
3642 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3643 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3644 struct drm_i915_gem_request *request;
3645 struct intel_ring_buffer *ring = NULL;
3646 u32 seqno = 0;
3647 int ret;
93533c29 3648
1c25595f 3649 spin_lock(&file_priv->mm.lock);
f787a5f5 3650 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3651 if (time_after_eq(request->emitted_jiffies, recent_enough))
3652 break;
40a5f0de 3653
f787a5f5
CW
3654 ring = request->ring;
3655 seqno = request->seqno;
b962442e 3656 }
1c25595f 3657 spin_unlock(&file_priv->mm.lock);
40a5f0de 3658
f787a5f5
CW
3659 if (seqno == 0)
3660 return 0;
2bc43b5c 3661
f787a5f5 3662 ret = 0;
78501eac 3663 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3664 /* And wait for the seqno passing without holding any locks and
3665 * causing extra latency for others. This is safe as the irq
3666 * generation is designed to be run atomically and so is
3667 * lockless.
3668 */
78501eac 3669 ring->user_irq_get(ring);
f787a5f5 3670 ret = wait_event_interruptible(ring->irq_queue,
78501eac 3671 i915_seqno_passed(ring->get_seqno(ring), seqno)
f787a5f5 3672 || atomic_read(&dev_priv->mm.wedged));
78501eac 3673 ring->user_irq_put(ring);
40a5f0de 3674
f787a5f5
CW
3675 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3676 ret = -EIO;
40a5f0de
EA
3677 }
3678
f787a5f5
CW
3679 if (ret == 0)
3680 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3681
3682 return ret;
3683}
3684
83d60795 3685static int
2549d6c2
CW
3686i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3687 uint64_t exec_offset)
83d60795
CW
3688{
3689 uint32_t exec_start, exec_len;
3690
3691 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3692 exec_len = (uint32_t) exec->batch_len;
3693
3694 if ((exec_start | exec_len) & 0x7)
3695 return -EINVAL;
3696
3697 if (!exec_start)
3698 return -EINVAL;
3699
3700 return 0;
3701}
3702
6b95a207 3703static int
2549d6c2
CW
3704validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3705 int count)
6b95a207 3706{
2549d6c2 3707 int i;
6b95a207 3708
2549d6c2
CW
3709 for (i = 0; i < count; i++) {
3710 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3711 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
6b95a207 3712
2549d6c2
CW
3713 if (!access_ok(VERIFY_READ, ptr, length))
3714 return -EFAULT;
40a5f0de 3715
b5dc608c
CW
3716 /* we may also need to update the presumed offsets */
3717 if (!access_ok(VERIFY_WRITE, ptr, length))
3718 return -EFAULT;
3719
2549d6c2
CW
3720 if (fault_in_pages_readable(ptr, length))
3721 return -EFAULT;
6b95a207 3722 }
6b95a207 3723
83d60795 3724 return 0;
6b95a207
KH
3725}
3726
8dc5d147 3727static int
76446cac 3728i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3729 struct drm_file *file,
76446cac
JB
3730 struct drm_i915_gem_execbuffer2 *args,
3731 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3732{
3733 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3734 struct drm_gem_object **object_list = NULL;
3735 struct drm_gem_object *batch_obj;
201361a5 3736 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3737 struct drm_i915_gem_request *request = NULL;
9af90d19 3738 int ret, i, flips;
673a394b 3739 uint64_t exec_offset;
673a394b 3740
852835f3
ZN
3741 struct intel_ring_buffer *ring = NULL;
3742
30dbf0c0
CW
3743 ret = i915_gem_check_is_wedged(dev);
3744 if (ret)
3745 return ret;
3746
2549d6c2
CW
3747 ret = validate_exec_list(exec_list, args->buffer_count);
3748 if (ret)
3749 return ret;
3750
673a394b
EA
3751#if WATCH_EXEC
3752 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3753 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3754#endif
549f7365
CW
3755 switch (args->flags & I915_EXEC_RING_MASK) {
3756 case I915_EXEC_DEFAULT:
3757 case I915_EXEC_RENDER:
3758 ring = &dev_priv->render_ring;
3759 break;
3760 case I915_EXEC_BSD:
d1b851fc 3761 if (!HAS_BSD(dev)) {
549f7365 3762 DRM_ERROR("execbuf with invalid ring (BSD)\n");
d1b851fc
ZN
3763 return -EINVAL;
3764 }
3765 ring = &dev_priv->bsd_ring;
549f7365
CW
3766 break;
3767 case I915_EXEC_BLT:
3768 if (!HAS_BLT(dev)) {
3769 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3770 return -EINVAL;
3771 }
3772 ring = &dev_priv->blt_ring;
3773 break;
3774 default:
3775 DRM_ERROR("execbuf with unknown ring: %d\n",
3776 (int)(args->flags & I915_EXEC_RING_MASK));
3777 return -EINVAL;
d1b851fc
ZN
3778 }
3779
4f481ed2
EA
3780 if (args->buffer_count < 1) {
3781 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3782 return -EINVAL;
3783 }
c8e0f93a 3784 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3785 if (object_list == NULL) {
3786 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3787 args->buffer_count);
3788 ret = -ENOMEM;
3789 goto pre_mutex_err;
3790 }
673a394b 3791
201361a5 3792 if (args->num_cliprects != 0) {
9a298b2a
EA
3793 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3794 GFP_KERNEL);
a40e8d31
OA
3795 if (cliprects == NULL) {
3796 ret = -ENOMEM;
201361a5 3797 goto pre_mutex_err;
a40e8d31 3798 }
201361a5
EA
3799
3800 ret = copy_from_user(cliprects,
3801 (struct drm_clip_rect __user *)
3802 (uintptr_t) args->cliprects_ptr,
3803 sizeof(*cliprects) * args->num_cliprects);
3804 if (ret != 0) {
3805 DRM_ERROR("copy %d cliprects failed: %d\n",
3806 args->num_cliprects, ret);
c877cdce 3807 ret = -EFAULT;
201361a5
EA
3808 goto pre_mutex_err;
3809 }
3810 }
3811
8dc5d147
CW
3812 request = kzalloc(sizeof(*request), GFP_KERNEL);
3813 if (request == NULL) {
3814 ret = -ENOMEM;
40a5f0de 3815 goto pre_mutex_err;
8dc5d147 3816 }
40a5f0de 3817
76c1dec1
CW
3818 ret = i915_mutex_lock_interruptible(dev);
3819 if (ret)
a198bc80 3820 goto pre_mutex_err;
673a394b
EA
3821
3822 if (dev_priv->mm.suspended) {
673a394b 3823 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3824 ret = -EBUSY;
3825 goto pre_mutex_err;
673a394b
EA
3826 }
3827
ac94a962 3828 /* Look up object handles */
673a394b 3829 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3830 struct drm_i915_gem_object *obj_priv;
3831
9af90d19 3832 object_list[i] = drm_gem_object_lookup(dev, file,
673a394b
EA
3833 exec_list[i].handle);
3834 if (object_list[i] == NULL) {
3835 DRM_ERROR("Invalid object handle %d at index %d\n",
3836 exec_list[i].handle, i);
0ce907f8
CW
3837 /* prevent error path from reading uninitialized data */
3838 args->buffer_count = i + 1;
bf79cb91 3839 ret = -ENOENT;
673a394b
EA
3840 goto err;
3841 }
b70d11da 3842
23010e43 3843 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3844 if (obj_priv->in_execbuffer) {
3845 DRM_ERROR("Object %p appears more than once in object list\n",
3846 object_list[i]);
0ce907f8
CW
3847 /* prevent error path from reading uninitialized data */
3848 args->buffer_count = i + 1;
bf79cb91 3849 ret = -EINVAL;
b70d11da
KH
3850 goto err;
3851 }
3852 obj_priv->in_execbuffer = true;
ac94a962 3853 }
673a394b 3854
9af90d19
CW
3855 /* Move the objects en-masse into the GTT, evicting if necessary. */
3856 ret = i915_gem_execbuffer_pin(dev, file,
3857 object_list, exec_list,
3858 args->buffer_count);
3859 if (ret)
3860 goto err;
ac94a962 3861
9af90d19
CW
3862 /* The objects are in their final locations, apply the relocations. */
3863 for (i = 0; i < args->buffer_count; i++) {
3864 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3865 obj->base.pending_read_domains = 0;
3866 obj->base.pending_write_domain = 0;
3867 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3868 if (ret)
ac94a962 3869 goto err;
673a394b
EA
3870 }
3871
3872 /* Set the pending read domains for the batch buffer to COMMAND */
3873 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3874 if (batch_obj->pending_write_domain) {
3875 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3876 ret = -EINVAL;
3877 goto err;
3878 }
3879 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3880
9af90d19
CW
3881 /* Sanity check the batch buffer */
3882 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3883 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
3884 if (ret != 0) {
3885 DRM_ERROR("execbuf with invalid offset/length\n");
3886 goto err;
3887 }
3888
13b29289
CW
3889 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
3890 object_list, args->buffer_count);
3891 if (ret)
3892 goto err;
673a394b 3893
673a394b
EA
3894#if WATCH_COHERENCY
3895 for (i = 0; i < args->buffer_count; i++) {
3896 i915_gem_object_check_coherency(object_list[i],
3897 exec_list[i].handle);
3898 }
3899#endif
3900
673a394b 3901#if WATCH_EXEC
6911a9b8 3902 i915_gem_dump_object(batch_obj,
673a394b
EA
3903 args->batch_len,
3904 __func__,
3905 ~0);
3906#endif
3907
e59f2bac
CW
3908 /* Check for any pending flips. As we only maintain a flip queue depth
3909 * of 1, we can simply insert a WAIT for the next display flip prior
3910 * to executing the batch and avoid stalling the CPU.
3911 */
3912 flips = 0;
3913 for (i = 0; i < args->buffer_count; i++) {
3914 if (object_list[i]->write_domain)
3915 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3916 }
3917 if (flips) {
3918 int plane, flip_mask;
3919
3920 for (plane = 0; flips >> plane; plane++) {
3921 if (((flips >> plane) & 1) == 0)
3922 continue;
3923
3924 if (plane)
3925 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3926 else
3927 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3928
e1f99ce6
CW
3929 ret = intel_ring_begin(ring, 2);
3930 if (ret)
3931 goto err;
3932
78501eac
CW
3933 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3934 intel_ring_emit(ring, MI_NOOP);
3935 intel_ring_advance(ring);
e59f2bac
CW
3936 }
3937 }
3938
673a394b 3939 /* Exec the batchbuffer */
78501eac 3940 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
673a394b
EA
3941 if (ret) {
3942 DRM_ERROR("dispatch failed %d\n", ret);
3943 goto err;
3944 }
3945
673a394b
EA
3946 for (i = 0; i < args->buffer_count; i++) {
3947 struct drm_gem_object *obj = object_list[i];
673a394b 3948
7e318e18
CW
3949 obj->read_domains = obj->pending_read_domains;
3950 obj->write_domain = obj->pending_write_domain;
3951
617dbe27 3952 i915_gem_object_move_to_active(obj, ring);
7e318e18
CW
3953 if (obj->write_domain) {
3954 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3955 obj_priv->dirty = 1;
3956 list_move_tail(&obj_priv->gpu_write_list,
64193406 3957 &ring->gpu_write_list);
7e318e18
CW
3958 intel_mark_busy(dev, obj);
3959 }
3960
3961 trace_i915_gem_object_change_domain(obj,
3962 obj->read_domains,
3963 obj->write_domain);
673a394b 3964 }
673a394b 3965
7e318e18
CW
3966 /*
3967 * Ensure that the commands in the batch buffer are
3968 * finished before the interrupt fires
3969 */
3970 i915_retire_commands(dev, ring);
3971
3cce469c 3972 if (i915_add_request(dev, file, request, ring))
5d97eb69 3973 i915_gem_next_request_seqno(dev, ring);
3cce469c
CW
3974 else
3975 request = NULL;
673a394b 3976
673a394b 3977err:
b70d11da 3978 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3979 if (object_list[i] == NULL)
3980 break;
3981
3982 to_intel_bo(object_list[i])->in_execbuffer = false;
aad87dff 3983 drm_gem_object_unreference(object_list[i]);
b70d11da 3984 }
673a394b 3985
673a394b
EA
3986 mutex_unlock(&dev->struct_mutex);
3987
93533c29 3988pre_mutex_err:
8e7d2b2c 3989 drm_free_large(object_list);
9a298b2a 3990 kfree(cliprects);
8dc5d147 3991 kfree(request);
673a394b
EA
3992
3993 return ret;
3994}
3995
76446cac
JB
3996/*
3997 * Legacy execbuffer just creates an exec2 list from the original exec object
3998 * list array and passes it to the real function.
3999 */
4000int
4001i915_gem_execbuffer(struct drm_device *dev, void *data,
4002 struct drm_file *file_priv)
4003{
4004 struct drm_i915_gem_execbuffer *args = data;
4005 struct drm_i915_gem_execbuffer2 exec2;
4006 struct drm_i915_gem_exec_object *exec_list = NULL;
4007 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4008 int ret, i;
4009
4010#if WATCH_EXEC
4011 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4012 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4013#endif
4014
4015 if (args->buffer_count < 1) {
4016 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4017 return -EINVAL;
4018 }
4019
4020 /* Copy in the exec list from userland */
4021 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4022 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4023 if (exec_list == NULL || exec2_list == NULL) {
4024 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4025 args->buffer_count);
4026 drm_free_large(exec_list);
4027 drm_free_large(exec2_list);
4028 return -ENOMEM;
4029 }
4030 ret = copy_from_user(exec_list,
4031 (struct drm_i915_relocation_entry __user *)
4032 (uintptr_t) args->buffers_ptr,
4033 sizeof(*exec_list) * args->buffer_count);
4034 if (ret != 0) {
4035 DRM_ERROR("copy %d exec entries failed %d\n",
4036 args->buffer_count, ret);
4037 drm_free_large(exec_list);
4038 drm_free_large(exec2_list);
4039 return -EFAULT;
4040 }
4041
4042 for (i = 0; i < args->buffer_count; i++) {
4043 exec2_list[i].handle = exec_list[i].handle;
4044 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4045 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4046 exec2_list[i].alignment = exec_list[i].alignment;
4047 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 4048 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
4049 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4050 else
4051 exec2_list[i].flags = 0;
4052 }
4053
4054 exec2.buffers_ptr = args->buffers_ptr;
4055 exec2.buffer_count = args->buffer_count;
4056 exec2.batch_start_offset = args->batch_start_offset;
4057 exec2.batch_len = args->batch_len;
4058 exec2.DR1 = args->DR1;
4059 exec2.DR4 = args->DR4;
4060 exec2.num_cliprects = args->num_cliprects;
4061 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4062 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
4063
4064 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4065 if (!ret) {
4066 /* Copy the new buffer offsets back to the user's exec list. */
4067 for (i = 0; i < args->buffer_count; i++)
4068 exec_list[i].offset = exec2_list[i].offset;
4069 /* ... and back out to userspace */
4070 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4071 (uintptr_t) args->buffers_ptr,
4072 exec_list,
4073 sizeof(*exec_list) * args->buffer_count);
4074 if (ret) {
4075 ret = -EFAULT;
4076 DRM_ERROR("failed to copy %d exec entries "
4077 "back to user (%d)\n",
4078 args->buffer_count, ret);
4079 }
76446cac
JB
4080 }
4081
4082 drm_free_large(exec_list);
4083 drm_free_large(exec2_list);
4084 return ret;
4085}
4086
4087int
4088i915_gem_execbuffer2(struct drm_device *dev, void *data,
4089 struct drm_file *file_priv)
4090{
4091 struct drm_i915_gem_execbuffer2 *args = data;
4092 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4093 int ret;
4094
4095#if WATCH_EXEC
4096 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4097 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4098#endif
4099
4100 if (args->buffer_count < 1) {
4101 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4102 return -EINVAL;
4103 }
4104
4105 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4106 if (exec2_list == NULL) {
4107 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4108 args->buffer_count);
4109 return -ENOMEM;
4110 }
4111 ret = copy_from_user(exec2_list,
4112 (struct drm_i915_relocation_entry __user *)
4113 (uintptr_t) args->buffers_ptr,
4114 sizeof(*exec2_list) * args->buffer_count);
4115 if (ret != 0) {
4116 DRM_ERROR("copy %d exec entries failed %d\n",
4117 args->buffer_count, ret);
4118 drm_free_large(exec2_list);
4119 return -EFAULT;
4120 }
4121
4122 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4123 if (!ret) {
4124 /* Copy the new buffer offsets back to the user's exec list. */
4125 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4126 (uintptr_t) args->buffers_ptr,
4127 exec2_list,
4128 sizeof(*exec2_list) * args->buffer_count);
4129 if (ret) {
4130 ret = -EFAULT;
4131 DRM_ERROR("failed to copy %d exec entries "
4132 "back to user (%d)\n",
4133 args->buffer_count, ret);
4134 }
4135 }
4136
4137 drm_free_large(exec2_list);
4138 return ret;
4139}
4140
673a394b 4141int
920afa77 4142i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
75e9e915 4143 bool map_and_fenceable)
673a394b
EA
4144{
4145 struct drm_device *dev = obj->dev;
f13d3f73 4146 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4147 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4148 int ret;
4149
778c3544 4150 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
75e9e915 4151 BUG_ON(map_and_fenceable && !map_and_fenceable);
23bc5982 4152 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4153
4154 if (obj_priv->gtt_space != NULL) {
a00b10c3 4155 if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
75e9e915 4156 (map_and_fenceable && !obj_priv->map_and_fenceable)) {
ae7d49d8
CW
4157 WARN(obj_priv->pin_count,
4158 "bo is already pinned with incorrect alignment:"
75e9e915
DV
4159 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
4160 " obj->map_and_fenceable=%d\n",
a00b10c3 4161 obj_priv->gtt_offset, alignment,
75e9e915
DV
4162 map_and_fenceable,
4163 obj_priv->map_and_fenceable);
ac0c6b5a
CW
4164 ret = i915_gem_object_unbind(obj);
4165 if (ret)
4166 return ret;
4167 }
4168 }
4169
673a394b 4170 if (obj_priv->gtt_space == NULL) {
a00b10c3 4171 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 4172 map_and_fenceable);
9731129c 4173 if (ret)
673a394b 4174 return ret;
22c344e9 4175 }
76446cac 4176
7465378f 4177 if (obj_priv->pin_count++ == 0) {
75e9e915 4178 i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
f13d3f73 4179 if (!obj_priv->active)
69dc4987 4180 list_move_tail(&obj_priv->mm_list,
f13d3f73 4181 &dev_priv->mm.pinned_list);
673a394b 4182 }
75e9e915 4183 BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
673a394b 4184
23bc5982 4185 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4186 return 0;
4187}
4188
4189void
4190i915_gem_object_unpin(struct drm_gem_object *obj)
4191{
4192 struct drm_device *dev = obj->dev;
4193 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4194 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4195
23bc5982 4196 WARN_ON(i915_verify_lists(dev));
7465378f 4197 BUG_ON(obj_priv->pin_count == 0);
673a394b
EA
4198 BUG_ON(obj_priv->gtt_space == NULL);
4199
7465378f 4200 if (--obj_priv->pin_count == 0) {
f13d3f73 4201 if (!obj_priv->active)
69dc4987 4202 list_move_tail(&obj_priv->mm_list,
673a394b 4203 &dev_priv->mm.inactive_list);
a00b10c3 4204 i915_gem_info_remove_pin(dev_priv, obj_priv);
673a394b 4205 }
23bc5982 4206 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4207}
4208
4209int
4210i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4211 struct drm_file *file_priv)
4212{
4213 struct drm_i915_gem_pin *args = data;
4214 struct drm_gem_object *obj;
4215 struct drm_i915_gem_object *obj_priv;
4216 int ret;
4217
1d7cfea1
CW
4218 ret = i915_mutex_lock_interruptible(dev);
4219 if (ret)
4220 return ret;
673a394b
EA
4221
4222 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4223 if (obj == NULL) {
1d7cfea1
CW
4224 ret = -ENOENT;
4225 goto unlock;
673a394b 4226 }
23010e43 4227 obj_priv = to_intel_bo(obj);
673a394b 4228
bb6baf76
CW
4229 if (obj_priv->madv != I915_MADV_WILLNEED) {
4230 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4231 ret = -EINVAL;
4232 goto out;
3ef94daa
CW
4233 }
4234
79e53945
JB
4235 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4236 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4237 args->handle);
1d7cfea1
CW
4238 ret = -EINVAL;
4239 goto out;
79e53945
JB
4240 }
4241
4242 obj_priv->user_pin_count++;
4243 obj_priv->pin_filp = file_priv;
4244 if (obj_priv->user_pin_count == 1) {
75e9e915 4245 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
4246 if (ret)
4247 goto out;
673a394b
EA
4248 }
4249
4250 /* XXX - flush the CPU caches for pinned objects
4251 * as the X server doesn't manage domains yet
4252 */
e47c68e9 4253 i915_gem_object_flush_cpu_write_domain(obj);
673a394b 4254 args->offset = obj_priv->gtt_offset;
1d7cfea1 4255out:
673a394b 4256 drm_gem_object_unreference(obj);
1d7cfea1 4257unlock:
673a394b 4258 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4259 return ret;
673a394b
EA
4260}
4261
4262int
4263i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4264 struct drm_file *file_priv)
4265{
4266 struct drm_i915_gem_pin *args = data;
4267 struct drm_gem_object *obj;
79e53945 4268 struct drm_i915_gem_object *obj_priv;
76c1dec1 4269 int ret;
673a394b 4270
1d7cfea1
CW
4271 ret = i915_mutex_lock_interruptible(dev);
4272 if (ret)
4273 return ret;
673a394b
EA
4274
4275 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4276 if (obj == NULL) {
1d7cfea1
CW
4277 ret = -ENOENT;
4278 goto unlock;
673a394b 4279 }
23010e43 4280 obj_priv = to_intel_bo(obj);
76c1dec1 4281
79e53945
JB
4282 if (obj_priv->pin_filp != file_priv) {
4283 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4284 args->handle);
1d7cfea1
CW
4285 ret = -EINVAL;
4286 goto out;
79e53945
JB
4287 }
4288 obj_priv->user_pin_count--;
4289 if (obj_priv->user_pin_count == 0) {
4290 obj_priv->pin_filp = NULL;
4291 i915_gem_object_unpin(obj);
4292 }
673a394b 4293
1d7cfea1 4294out:
673a394b 4295 drm_gem_object_unreference(obj);
1d7cfea1 4296unlock:
673a394b 4297 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4298 return ret;
673a394b
EA
4299}
4300
4301int
4302i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4303 struct drm_file *file_priv)
4304{
4305 struct drm_i915_gem_busy *args = data;
4306 struct drm_gem_object *obj;
4307 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4308 int ret;
4309
76c1dec1 4310 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4311 if (ret)
76c1dec1 4312 return ret;
673a394b 4313
673a394b
EA
4314 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4315 if (obj == NULL) {
1d7cfea1
CW
4316 ret = -ENOENT;
4317 goto unlock;
673a394b 4318 }
1d7cfea1 4319 obj_priv = to_intel_bo(obj);
d1b851fc 4320
0be555b6
CW
4321 /* Count all active objects as busy, even if they are currently not used
4322 * by the gpu. Users of this interface expect objects to eventually
4323 * become non-busy without any further actions, therefore emit any
4324 * necessary flushes here.
c4de0a5d 4325 */
0be555b6
CW
4326 args->busy = obj_priv->active;
4327 if (args->busy) {
4328 /* Unconditionally flush objects, even when the gpu still uses this
4329 * object. Userspace calling this function indicates that it wants to
4330 * use this buffer rather sooner than later, so issuing the required
4331 * flush earlier is beneficial.
4332 */
c78ec30b
CW
4333 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4334 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4335 obj_priv->ring,
4336 0, obj->write_domain);
0be555b6
CW
4337
4338 /* Update the active list for the hardware's current position.
4339 * Otherwise this only updates on a delayed timer or when irqs
4340 * are actually unmasked, and our working set ends up being
4341 * larger than required.
4342 */
4343 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4344
4345 args->busy = obj_priv->active;
4346 }
673a394b
EA
4347
4348 drm_gem_object_unreference(obj);
1d7cfea1 4349unlock:
673a394b 4350 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4351 return ret;
673a394b
EA
4352}
4353
4354int
4355i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4356 struct drm_file *file_priv)
4357{
4358 return i915_gem_ring_throttle(dev, file_priv);
4359}
4360
3ef94daa
CW
4361int
4362i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4363 struct drm_file *file_priv)
4364{
4365 struct drm_i915_gem_madvise *args = data;
4366 struct drm_gem_object *obj;
4367 struct drm_i915_gem_object *obj_priv;
76c1dec1 4368 int ret;
3ef94daa
CW
4369
4370 switch (args->madv) {
4371 case I915_MADV_DONTNEED:
4372 case I915_MADV_WILLNEED:
4373 break;
4374 default:
4375 return -EINVAL;
4376 }
4377
1d7cfea1
CW
4378 ret = i915_mutex_lock_interruptible(dev);
4379 if (ret)
4380 return ret;
4381
3ef94daa
CW
4382 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4383 if (obj == NULL) {
1d7cfea1
CW
4384 ret = -ENOENT;
4385 goto unlock;
3ef94daa 4386 }
23010e43 4387 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4388
4389 if (obj_priv->pin_count) {
1d7cfea1
CW
4390 ret = -EINVAL;
4391 goto out;
3ef94daa
CW
4392 }
4393
bb6baf76
CW
4394 if (obj_priv->madv != __I915_MADV_PURGED)
4395 obj_priv->madv = args->madv;
3ef94daa 4396
2d7ef395
CW
4397 /* if the object is no longer bound, discard its backing storage */
4398 if (i915_gem_object_is_purgeable(obj_priv) &&
4399 obj_priv->gtt_space == NULL)
4400 i915_gem_object_truncate(obj);
4401
bb6baf76
CW
4402 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4403
1d7cfea1 4404out:
3ef94daa 4405 drm_gem_object_unreference(obj);
1d7cfea1 4406unlock:
3ef94daa 4407 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4408 return ret;
3ef94daa
CW
4409}
4410
ac52bc56
DV
4411struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4412 size_t size)
4413{
73aa808f 4414 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4415 struct drm_i915_gem_object *obj;
ac52bc56 4416
c397b908
DV
4417 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4418 if (obj == NULL)
4419 return NULL;
673a394b 4420
c397b908
DV
4421 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4422 kfree(obj);
4423 return NULL;
4424 }
673a394b 4425
73aa808f
CW
4426 i915_gem_info_add_obj(dev_priv, size);
4427
c397b908
DV
4428 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4429 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4430
c397b908 4431 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4432 obj->base.driver_private = NULL;
c397b908 4433 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987
CW
4434 INIT_LIST_HEAD(&obj->mm_list);
4435 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4436 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4437 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
4438 /* Avoid an unnecessary call to unbind on the first bind. */
4439 obj->map_and_fenceable = true;
de151cf6 4440
c397b908
DV
4441 return &obj->base;
4442}
4443
4444int i915_gem_init_object(struct drm_gem_object *obj)
4445{
4446 BUG();
de151cf6 4447
673a394b
EA
4448 return 0;
4449}
4450
be72615b 4451static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4452{
de151cf6 4453 struct drm_device *dev = obj->dev;
be72615b 4454 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4455 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4456 int ret;
673a394b 4457
be72615b
CW
4458 ret = i915_gem_object_unbind(obj);
4459 if (ret == -ERESTARTSYS) {
69dc4987 4460 list_move(&obj_priv->mm_list,
be72615b
CW
4461 &dev_priv->mm.deferred_free_list);
4462 return;
4463 }
673a394b 4464
39a01d1f 4465 if (obj->map_list.map)
7e616158 4466 i915_gem_free_mmap_offset(obj);
de151cf6 4467
c397b908 4468 drm_gem_object_release(obj);
73aa808f 4469 i915_gem_info_remove_obj(dev_priv, obj->size);
c397b908 4470
9a298b2a 4471 kfree(obj_priv->page_cpu_valid);
280b713b 4472 kfree(obj_priv->bit_17);
c397b908 4473 kfree(obj_priv);
673a394b
EA
4474}
4475
be72615b
CW
4476void i915_gem_free_object(struct drm_gem_object *obj)
4477{
4478 struct drm_device *dev = obj->dev;
4479 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4480
4481 trace_i915_gem_object_destroy(obj);
4482
4483 while (obj_priv->pin_count > 0)
4484 i915_gem_object_unpin(obj);
4485
4486 if (obj_priv->phys_obj)
4487 i915_gem_detach_phys_object(dev, obj);
4488
4489 i915_gem_free_object_tail(obj);
4490}
4491
29105ccc
CW
4492int
4493i915_gem_idle(struct drm_device *dev)
4494{
4495 drm_i915_private_t *dev_priv = dev->dev_private;
4496 int ret;
28dfe52a 4497
29105ccc 4498 mutex_lock(&dev->struct_mutex);
1c5d22f7 4499
87acb0a5 4500 if (dev_priv->mm.suspended) {
29105ccc
CW
4501 mutex_unlock(&dev->struct_mutex);
4502 return 0;
28dfe52a
EA
4503 }
4504
29105ccc 4505 ret = i915_gpu_idle(dev);
6dbe2772
KP
4506 if (ret) {
4507 mutex_unlock(&dev->struct_mutex);
673a394b 4508 return ret;
6dbe2772 4509 }
673a394b 4510
29105ccc
CW
4511 /* Under UMS, be paranoid and evict. */
4512 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 4513 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
4514 if (ret) {
4515 mutex_unlock(&dev->struct_mutex);
4516 return ret;
4517 }
4518 }
4519
4520 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4521 * We need to replace this with a semaphore, or something.
4522 * And not confound mm.suspended!
4523 */
4524 dev_priv->mm.suspended = 1;
bc0c7f14 4525 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4526
4527 i915_kernel_lost_context(dev);
6dbe2772 4528 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4529
6dbe2772
KP
4530 mutex_unlock(&dev->struct_mutex);
4531
29105ccc
CW
4532 /* Cancel the retire work handler, which should be idle now. */
4533 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4534
673a394b
EA
4535 return 0;
4536}
4537
e552eb70
JB
4538/*
4539 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4540 * over cache flushing.
4541 */
8187a2b7 4542static int
e552eb70
JB
4543i915_gem_init_pipe_control(struct drm_device *dev)
4544{
4545 drm_i915_private_t *dev_priv = dev->dev_private;
4546 struct drm_gem_object *obj;
4547 struct drm_i915_gem_object *obj_priv;
4548 int ret;
4549
34dc4d44 4550 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4551 if (obj == NULL) {
4552 DRM_ERROR("Failed to allocate seqno page\n");
4553 ret = -ENOMEM;
4554 goto err;
4555 }
4556 obj_priv = to_intel_bo(obj);
4557 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4558
75e9e915 4559 ret = i915_gem_object_pin(obj, 4096, true);
e552eb70
JB
4560 if (ret)
4561 goto err_unref;
4562
4563 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4564 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4565 if (dev_priv->seqno_page == NULL)
4566 goto err_unpin;
4567
4568 dev_priv->seqno_obj = obj;
4569 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4570
4571 return 0;
4572
4573err_unpin:
4574 i915_gem_object_unpin(obj);
4575err_unref:
4576 drm_gem_object_unreference(obj);
4577err:
4578 return ret;
4579}
4580
8187a2b7
ZN
4581
4582static void
e552eb70
JB
4583i915_gem_cleanup_pipe_control(struct drm_device *dev)
4584{
4585 drm_i915_private_t *dev_priv = dev->dev_private;
4586 struct drm_gem_object *obj;
4587 struct drm_i915_gem_object *obj_priv;
4588
4589 obj = dev_priv->seqno_obj;
4590 obj_priv = to_intel_bo(obj);
4591 kunmap(obj_priv->pages[0]);
4592 i915_gem_object_unpin(obj);
4593 drm_gem_object_unreference(obj);
4594 dev_priv->seqno_obj = NULL;
4595
4596 dev_priv->seqno_page = NULL;
673a394b
EA
4597}
4598
8187a2b7
ZN
4599int
4600i915_gem_init_ringbuffer(struct drm_device *dev)
4601{
4602 drm_i915_private_t *dev_priv = dev->dev_private;
4603 int ret;
68f95ba9 4604
8187a2b7
ZN
4605 if (HAS_PIPE_CONTROL(dev)) {
4606 ret = i915_gem_init_pipe_control(dev);
4607 if (ret)
4608 return ret;
4609 }
68f95ba9 4610
5c1143bb 4611 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4612 if (ret)
4613 goto cleanup_pipe_control;
4614
4615 if (HAS_BSD(dev)) {
5c1143bb 4616 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4617 if (ret)
4618 goto cleanup_render_ring;
d1b851fc 4619 }
68f95ba9 4620
549f7365
CW
4621 if (HAS_BLT(dev)) {
4622 ret = intel_init_blt_ring_buffer(dev);
4623 if (ret)
4624 goto cleanup_bsd_ring;
4625 }
4626
6f392d54
CW
4627 dev_priv->next_seqno = 1;
4628
68f95ba9
CW
4629 return 0;
4630
549f7365 4631cleanup_bsd_ring:
78501eac 4632 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
68f95ba9 4633cleanup_render_ring:
78501eac 4634 intel_cleanup_ring_buffer(&dev_priv->render_ring);
68f95ba9
CW
4635cleanup_pipe_control:
4636 if (HAS_PIPE_CONTROL(dev))
4637 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4638 return ret;
4639}
4640
4641void
4642i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4643{
4644 drm_i915_private_t *dev_priv = dev->dev_private;
4645
78501eac
CW
4646 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4647 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4648 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
8187a2b7
ZN
4649 if (HAS_PIPE_CONTROL(dev))
4650 i915_gem_cleanup_pipe_control(dev);
4651}
4652
673a394b
EA
4653int
4654i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4655 struct drm_file *file_priv)
4656{
4657 drm_i915_private_t *dev_priv = dev->dev_private;
4658 int ret;
4659
79e53945
JB
4660 if (drm_core_check_feature(dev, DRIVER_MODESET))
4661 return 0;
4662
ba1234d1 4663 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4664 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4665 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4666 }
4667
673a394b 4668 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4669 dev_priv->mm.suspended = 0;
4670
4671 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4672 if (ret != 0) {
4673 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4674 return ret;
d816f6ac 4675 }
9bb2d6f9 4676
69dc4987 4677 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4678 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4679 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 4680 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
4681 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4682 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4683 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4684 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 4685 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 4686 mutex_unlock(&dev->struct_mutex);
dbb19d30 4687
5f35308b
CW
4688 ret = drm_irq_install(dev);
4689 if (ret)
4690 goto cleanup_ringbuffer;
dbb19d30 4691
673a394b 4692 return 0;
5f35308b
CW
4693
4694cleanup_ringbuffer:
4695 mutex_lock(&dev->struct_mutex);
4696 i915_gem_cleanup_ringbuffer(dev);
4697 dev_priv->mm.suspended = 1;
4698 mutex_unlock(&dev->struct_mutex);
4699
4700 return ret;
673a394b
EA
4701}
4702
4703int
4704i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4705 struct drm_file *file_priv)
4706{
79e53945
JB
4707 if (drm_core_check_feature(dev, DRIVER_MODESET))
4708 return 0;
4709
dbb19d30 4710 drm_irq_uninstall(dev);
e6890f6f 4711 return i915_gem_idle(dev);
673a394b
EA
4712}
4713
4714void
4715i915_gem_lastclose(struct drm_device *dev)
4716{
4717 int ret;
673a394b 4718
e806b495
EA
4719 if (drm_core_check_feature(dev, DRIVER_MODESET))
4720 return;
4721
6dbe2772
KP
4722 ret = i915_gem_idle(dev);
4723 if (ret)
4724 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4725}
4726
64193406
CW
4727static void
4728init_ring_lists(struct intel_ring_buffer *ring)
4729{
4730 INIT_LIST_HEAD(&ring->active_list);
4731 INIT_LIST_HEAD(&ring->request_list);
4732 INIT_LIST_HEAD(&ring->gpu_write_list);
4733}
4734
673a394b
EA
4735void
4736i915_gem_load(struct drm_device *dev)
4737{
b5aa8a0f 4738 int i;
673a394b
EA
4739 drm_i915_private_t *dev_priv = dev->dev_private;
4740
69dc4987 4741 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
4742 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4743 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4744 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4745 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4746 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
64193406
CW
4747 init_ring_lists(&dev_priv->render_ring);
4748 init_ring_lists(&dev_priv->bsd_ring);
4749 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
4750 for (i = 0; i < 16; i++)
4751 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4752 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4753 i915_gem_retire_work_handler);
30dbf0c0 4754 init_completion(&dev_priv->error_completion);
31169714 4755
94400120
DA
4756 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4757 if (IS_GEN3(dev)) {
4758 u32 tmp = I915_READ(MI_ARB_STATE);
4759 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4760 /* arb state is a masked write, so set bit + bit in mask */
4761 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4762 I915_WRITE(MI_ARB_STATE, tmp);
4763 }
4764 }
4765
de151cf6 4766 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4767 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4768 dev_priv->fence_reg_start = 3;
de151cf6 4769
a6c45cf0 4770 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4771 dev_priv->num_fence_regs = 16;
4772 else
4773 dev_priv->num_fence_regs = 8;
4774
b5aa8a0f 4775 /* Initialize fence registers to zero */
a6c45cf0
CW
4776 switch (INTEL_INFO(dev)->gen) {
4777 case 6:
4778 for (i = 0; i < 16; i++)
4779 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4780 break;
4781 case 5:
4782 case 4:
b5aa8a0f
GH
4783 for (i = 0; i < 16; i++)
4784 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4785 break;
4786 case 3:
b5aa8a0f
GH
4787 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4788 for (i = 0; i < 8; i++)
4789 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4790 case 2:
4791 for (i = 0; i < 8; i++)
4792 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4793 break;
b5aa8a0f 4794 }
673a394b 4795 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4796 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71
CW
4797
4798 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4799 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4800 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4801}
71acb5eb
DA
4802
4803/*
4804 * Create a physically contiguous memory object for this object
4805 * e.g. for cursor + overlay regs
4806 */
995b6762
CW
4807static int i915_gem_init_phys_object(struct drm_device *dev,
4808 int id, int size, int align)
71acb5eb
DA
4809{
4810 drm_i915_private_t *dev_priv = dev->dev_private;
4811 struct drm_i915_gem_phys_object *phys_obj;
4812 int ret;
4813
4814 if (dev_priv->mm.phys_objs[id - 1] || !size)
4815 return 0;
4816
9a298b2a 4817 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4818 if (!phys_obj)
4819 return -ENOMEM;
4820
4821 phys_obj->id = id;
4822
6eeefaf3 4823 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4824 if (!phys_obj->handle) {
4825 ret = -ENOMEM;
4826 goto kfree_obj;
4827 }
4828#ifdef CONFIG_X86
4829 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4830#endif
4831
4832 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4833
4834 return 0;
4835kfree_obj:
9a298b2a 4836 kfree(phys_obj);
71acb5eb
DA
4837 return ret;
4838}
4839
995b6762 4840static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4841{
4842 drm_i915_private_t *dev_priv = dev->dev_private;
4843 struct drm_i915_gem_phys_object *phys_obj;
4844
4845 if (!dev_priv->mm.phys_objs[id - 1])
4846 return;
4847
4848 phys_obj = dev_priv->mm.phys_objs[id - 1];
4849 if (phys_obj->cur_obj) {
4850 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4851 }
4852
4853#ifdef CONFIG_X86
4854 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4855#endif
4856 drm_pci_free(dev, phys_obj->handle);
4857 kfree(phys_obj);
4858 dev_priv->mm.phys_objs[id - 1] = NULL;
4859}
4860
4861void i915_gem_free_all_phys_object(struct drm_device *dev)
4862{
4863 int i;
4864
260883c8 4865 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4866 i915_gem_free_phys_object(dev, i);
4867}
4868
4869void i915_gem_detach_phys_object(struct drm_device *dev,
4870 struct drm_gem_object *obj)
4871{
e5281ccd
CW
4872 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4873 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4874 char *vaddr;
71acb5eb 4875 int i;
71acb5eb
DA
4876 int page_count;
4877
71acb5eb
DA
4878 if (!obj_priv->phys_obj)
4879 return;
e5281ccd 4880 vaddr = obj_priv->phys_obj->handle->vaddr;
71acb5eb
DA
4881
4882 page_count = obj->size / PAGE_SIZE;
4883
4884 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4885 struct page *page = read_cache_page_gfp(mapping, i,
4886 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4887 if (!IS_ERR(page)) {
4888 char *dst = kmap_atomic(page);
4889 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4890 kunmap_atomic(dst);
4891
4892 drm_clflush_pages(&page, 1);
4893
4894 set_page_dirty(page);
4895 mark_page_accessed(page);
4896 page_cache_release(page);
4897 }
71acb5eb 4898 }
71acb5eb 4899 drm_agp_chipset_flush(dev);
d78b47b9 4900
71acb5eb
DA
4901 obj_priv->phys_obj->cur_obj = NULL;
4902 obj_priv->phys_obj = NULL;
4903}
4904
4905int
4906i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4907 struct drm_gem_object *obj,
4908 int id,
4909 int align)
71acb5eb 4910{
e5281ccd 4911 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
71acb5eb
DA
4912 drm_i915_private_t *dev_priv = dev->dev_private;
4913 struct drm_i915_gem_object *obj_priv;
4914 int ret = 0;
4915 int page_count;
4916 int i;
4917
4918 if (id > I915_MAX_PHYS_OBJECT)
4919 return -EINVAL;
4920
23010e43 4921 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4922
4923 if (obj_priv->phys_obj) {
4924 if (obj_priv->phys_obj->id == id)
4925 return 0;
4926 i915_gem_detach_phys_object(dev, obj);
4927 }
4928
71acb5eb
DA
4929 /* create a new object */
4930 if (!dev_priv->mm.phys_objs[id - 1]) {
4931 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4932 obj->size, align);
71acb5eb 4933 if (ret) {
aeb565df 4934 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
e5281ccd 4935 return ret;
71acb5eb
DA
4936 }
4937 }
4938
4939 /* bind to the object */
4940 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4941 obj_priv->phys_obj->cur_obj = obj;
4942
71acb5eb
DA
4943 page_count = obj->size / PAGE_SIZE;
4944
4945 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4946 struct page *page;
4947 char *dst, *src;
4948
4949 page = read_cache_page_gfp(mapping, i,
4950 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4951 if (IS_ERR(page))
4952 return PTR_ERR(page);
71acb5eb 4953
ff75b9bc 4954 src = kmap_atomic(page);
e5281ccd 4955 dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4956 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4957 kunmap_atomic(src);
71acb5eb 4958
e5281ccd
CW
4959 mark_page_accessed(page);
4960 page_cache_release(page);
4961 }
d78b47b9 4962
71acb5eb 4963 return 0;
71acb5eb
DA
4964}
4965
4966static int
4967i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4968 struct drm_i915_gem_pwrite *args,
4969 struct drm_file *file_priv)
4970{
23010e43 4971 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4972 void *obj_addr;
4973 int ret;
4974 char __user *user_data;
4975
4976 user_data = (char __user *) (uintptr_t) args->data_ptr;
4977 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4978
44d98a61 4979 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4980 ret = copy_from_user(obj_addr, user_data, args->size);
4981 if (ret)
4982 return -EFAULT;
4983
4984 drm_agp_chipset_flush(dev);
4985 return 0;
4986}
b962442e 4987
f787a5f5 4988void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4989{
f787a5f5 4990 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4991
4992 /* Clean up our request list when the client is going away, so that
4993 * later retire_requests won't dereference our soon-to-be-gone
4994 * file_priv.
4995 */
1c25595f 4996 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4997 while (!list_empty(&file_priv->mm.request_list)) {
4998 struct drm_i915_gem_request *request;
4999
5000 request = list_first_entry(&file_priv->mm.request_list,
5001 struct drm_i915_gem_request,
5002 client_list);
5003 list_del(&request->client_list);
5004 request->file_priv = NULL;
5005 }
1c25595f 5006 spin_unlock(&file_priv->mm.lock);
b962442e 5007}
31169714 5008
1637ef41
CW
5009static int
5010i915_gpu_is_active(struct drm_device *dev)
5011{
5012 drm_i915_private_t *dev_priv = dev->dev_private;
5013 int lists_empty;
5014
1637ef41 5015 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 5016 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
5017
5018 return !lists_empty;
5019}
5020
31169714 5021static int
17250b71
CW
5022i915_gem_inactive_shrink(struct shrinker *shrinker,
5023 int nr_to_scan,
5024 gfp_t gfp_mask)
31169714 5025{
17250b71
CW
5026 struct drm_i915_private *dev_priv =
5027 container_of(shrinker,
5028 struct drm_i915_private,
5029 mm.inactive_shrinker);
5030 struct drm_device *dev = dev_priv->dev;
5031 struct drm_i915_gem_object *obj, *next;
5032 int cnt;
5033
5034 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 5035 return 0;
31169714
CW
5036
5037 /* "fast-path" to count number of available objects */
5038 if (nr_to_scan == 0) {
17250b71
CW
5039 cnt = 0;
5040 list_for_each_entry(obj,
5041 &dev_priv->mm.inactive_list,
5042 mm_list)
5043 cnt++;
5044 mutex_unlock(&dev->struct_mutex);
5045 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
5046 }
5047
1637ef41 5048rescan:
31169714 5049 /* first scan for clean buffers */
17250b71 5050 i915_gem_retire_requests(dev);
31169714 5051
17250b71
CW
5052 list_for_each_entry_safe(obj, next,
5053 &dev_priv->mm.inactive_list,
5054 mm_list) {
5055 if (i915_gem_object_is_purgeable(obj)) {
5056 i915_gem_object_unbind(&obj->base);
5057 if (--nr_to_scan == 0)
5058 break;
31169714 5059 }
31169714
CW
5060 }
5061
5062 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
5063 cnt = 0;
5064 list_for_each_entry_safe(obj, next,
5065 &dev_priv->mm.inactive_list,
5066 mm_list) {
5067 if (nr_to_scan) {
5068 i915_gem_object_unbind(&obj->base);
5069 nr_to_scan--;
5070 } else
5071 cnt++;
5072 }
5073
5074 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
5075 /*
5076 * We are desperate for pages, so as a last resort, wait
5077 * for the GPU to finish and discard whatever we can.
5078 * This has a dramatic impact to reduce the number of
5079 * OOM-killer events whilst running the GPU aggressively.
5080 */
17250b71 5081 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
5082 goto rescan;
5083 }
17250b71
CW
5084 mutex_unlock(&dev->struct_mutex);
5085 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 5086}