drm/i915: fix flags in dma buf exporting
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734
CW
89static int
90i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
91{
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
0a6759c6
DV
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
30dbf0c0 110 return ret;
0a6759c6 111 }
30dbf0c0 112
21dd3734
CW
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
30dbf0c0
CW
124}
125
54cf91dc 126int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 127{
76c1dec1
CW
128 int ret;
129
21dd3734 130 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
23bc5982 138 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
139 return 0;
140}
30dbf0c0 141
7d1c4804 142static inline bool
05394f39 143i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 144{
6c085a72 145 return obj->gtt_space && !obj->active;
7d1c4804
CW
146}
147
79e53945
JB
148int
149i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 150 struct drm_file *file)
79e53945
JB
151{
152 struct drm_i915_gem_init *args = data;
2021746e 153
7bb6fb8d
DV
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
2021746e
CW
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
79e53945 160
f534bc0b
DV
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
79e53945 165 mutex_lock(&dev->struct_mutex);
644ec02b
DV
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
673a394b
EA
168 mutex_unlock(&dev->struct_mutex);
169
2021746e 170 return 0;
673a394b
EA
171}
172
5a125c3c
EA
173int
174i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 175 struct drm_file *file)
5a125c3c 176{
73aa808f 177 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 178 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
5a125c3c 181
6299f992 182 pinned = 0;
73aa808f 183 mutex_lock(&dev->struct_mutex);
6c085a72 184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
73aa808f 187 mutex_unlock(&dev->struct_mutex);
5a125c3c 188
6299f992 189 args->aper_size = dev_priv->mm.gtt_total;
0206e353 190 args->aper_available_size = args->aper_size - pinned;
6299f992 191
5a125c3c
EA
192 return 0;
193}
194
ff72145b
DA
195static int
196i915_gem_create(struct drm_file *file,
197 struct drm_device *dev,
198 uint64_t size,
199 uint32_t *handle_p)
673a394b 200{
05394f39 201 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
202 int ret;
203 u32 handle;
673a394b 204
ff72145b 205 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
206 if (size == 0)
207 return -EINVAL;
673a394b
EA
208
209 /* Allocate the new object */
ff72145b 210 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
211 if (obj == NULL)
212 return -ENOMEM;
213
05394f39 214 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 215 if (ret) {
05394f39
CW
216 drm_gem_object_release(&obj->base);
217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 218 kfree(obj);
673a394b 219 return ret;
1dfd9754 220 }
673a394b 221
202f2fef 222 /* drop reference from allocate - handle holds it now */
05394f39 223 drm_gem_object_unreference(&obj->base);
202f2fef
CW
224 trace_i915_gem_object_create(obj);
225
ff72145b 226 *handle_p = handle;
673a394b
EA
227 return 0;
228}
229
ff72145b
DA
230int
231i915_gem_dumb_create(struct drm_file *file,
232 struct drm_device *dev,
233 struct drm_mode_create_dumb *args)
234{
235 /* have to work out size/pitch and return them */
ed0291fd 236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
237 args->size = args->pitch * args->height;
238 return i915_gem_create(file, dev,
239 args->size, &args->handle);
240}
241
242int i915_gem_dumb_destroy(struct drm_file *file,
243 struct drm_device *dev,
244 uint32_t handle)
245{
246 return drm_gem_handle_delete(file, handle);
247}
248
249/**
250 * Creates a new mm object and returns a handle to it.
251 */
252int
253i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 struct drm_file *file)
255{
256 struct drm_i915_gem_create *args = data;
63ed2cb2 257
ff72145b
DA
258 return i915_gem_create(file, dev,
259 args->size, &args->handle);
260}
261
05394f39 262static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 263{
05394f39 264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
265
266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 267 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
268}
269
8461d226
DV
270static inline int
271__copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274{
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294}
295
8c59967c 296static inline int
4f0c7cfb
BW
297__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
8c59967c
DV
299 int length)
300{
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320}
321
d174bd64
DV
322/* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
eb01459f 325static int
d174bd64
DV
326shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329{
330 char *vaddr;
331 int ret;
332
e7e58eb5 333 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
f60d7f0c 345 return ret ? -EFAULT : 0;
d174bd64
DV
346}
347
23c18c71
DV
348static void
349shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351{
e7e58eb5 352 if (unlikely(swizzled)) {
23c18c71
DV
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368}
369
d174bd64
DV
370/* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372static int
373shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376{
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
23c18c71
DV
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
d174bd64
DV
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
f60d7f0c 396 return ret ? - EFAULT : 0;
d174bd64
DV
397}
398
eb01459f 399static int
dbf7bff0
DV
400i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
eb01459f 404{
8461d226 405 char __user *user_data;
eb01459f 406 ssize_t remain;
8461d226 407 loff_t offset;
eb2c0c81 408 int shmem_page_offset, page_length, ret = 0;
8461d226 409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 410 int hit_slowpath = 0;
96d79b52 411 int prefaulted = 0;
8489731c 412 int needs_clflush = 0;
9da3da66
CW
413 struct scatterlist *sg;
414 int i;
eb01459f 415
8461d226 416 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
417 remain = args->size;
418
8461d226 419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 420
8489731c
DV
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
6c085a72
CW
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
8489731c 433 }
eb01459f 434
f60d7f0c
CW
435 ret = i915_gem_object_get_pages(obj);
436 if (ret)
437 return ret;
438
439 i915_gem_object_pin_pages(obj);
440
8461d226 441 offset = args->offset;
eb01459f 442
9da3da66 443 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd
CW
444 struct page *page;
445
9da3da66
CW
446 if (i < offset >> PAGE_SHIFT)
447 continue;
448
449 if (remain <= 0)
450 break;
451
eb01459f
EA
452 /* Operation in this page
453 *
eb01459f 454 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
455 * page_length = bytes to copy for this page
456 */
c8cbbb8b 457 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
458 page_length = remain;
459 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 461
9da3da66 462 page = sg_page(sg);
8461d226
DV
463 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 (page_to_phys(page) & (1 << 17)) != 0;
465
d174bd64
DV
466 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 user_data, page_do_bit17_swizzling,
468 needs_clflush);
469 if (ret == 0)
470 goto next_page;
dbf7bff0
DV
471
472 hit_slowpath = 1;
dbf7bff0
DV
473 mutex_unlock(&dev->struct_mutex);
474
96d79b52 475 if (!prefaulted) {
f56f821f 476 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
477 /* Userspace is tricking us, but we've already clobbered
478 * its pages with the prefault and promised to write the
479 * data up to the first fault. Hence ignore any errors
480 * and just continue. */
481 (void)ret;
482 prefaulted = 1;
483 }
eb01459f 484
d174bd64
DV
485 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 user_data, page_do_bit17_swizzling,
487 needs_clflush);
eb01459f 488
dbf7bff0 489 mutex_lock(&dev->struct_mutex);
f60d7f0c 490
dbf7bff0 491next_page:
e5281ccd 492 mark_page_accessed(page);
e5281ccd 493
f60d7f0c 494 if (ret)
8461d226 495 goto out;
8461d226 496
eb01459f 497 remain -= page_length;
8461d226 498 user_data += page_length;
eb01459f
EA
499 offset += page_length;
500 }
501
4f27b75d 502out:
f60d7f0c
CW
503 i915_gem_object_unpin_pages(obj);
504
dbf7bff0
DV
505 if (hit_slowpath) {
506 /* Fixup: Kill any reinstated backing storage pages */
507 if (obj->madv == __I915_MADV_PURGED)
508 i915_gem_object_truncate(obj);
509 }
eb01459f
EA
510
511 return ret;
512}
513
673a394b
EA
514/**
515 * Reads data from the object referenced by handle.
516 *
517 * On error, the contents of *data are undefined.
518 */
519int
520i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 521 struct drm_file *file)
673a394b
EA
522{
523 struct drm_i915_gem_pread *args = data;
05394f39 524 struct drm_i915_gem_object *obj;
35b62a89 525 int ret = 0;
673a394b 526
51311d0a
CW
527 if (args->size == 0)
528 return 0;
529
530 if (!access_ok(VERIFY_WRITE,
531 (char __user *)(uintptr_t)args->data_ptr,
532 args->size))
533 return -EFAULT;
534
4f27b75d 535 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 536 if (ret)
4f27b75d 537 return ret;
673a394b 538
05394f39 539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 540 if (&obj->base == NULL) {
1d7cfea1
CW
541 ret = -ENOENT;
542 goto unlock;
4f27b75d 543 }
673a394b 544
7dcd2499 545 /* Bounds check source. */
05394f39
CW
546 if (args->offset > obj->base.size ||
547 args->size > obj->base.size - args->offset) {
ce9d419d 548 ret = -EINVAL;
35b62a89 549 goto out;
ce9d419d
CW
550 }
551
1286ff73
DV
552 /* prime objects have no backing filp to GEM pread/pwrite
553 * pages from.
554 */
555 if (!obj->base.filp) {
556 ret = -EINVAL;
557 goto out;
558 }
559
db53a302
CW
560 trace_i915_gem_object_pread(obj, args->offset, args->size);
561
dbf7bff0 562 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 563
35b62a89 564out:
05394f39 565 drm_gem_object_unreference(&obj->base);
1d7cfea1 566unlock:
4f27b75d 567 mutex_unlock(&dev->struct_mutex);
eb01459f 568 return ret;
673a394b
EA
569}
570
0839ccb8
KP
571/* This is the fast write path which cannot handle
572 * page faults in the source data
9b7530cc 573 */
0839ccb8
KP
574
575static inline int
576fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
9b7530cc 580{
4f0c7cfb
BW
581 void __iomem *vaddr_atomic;
582 void *vaddr;
0839ccb8 583 unsigned long unwritten;
9b7530cc 584
3e4d3af5 585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
586 /* We can use the cpu mem copy function because this is X86. */
587 vaddr = (void __force*)vaddr_atomic + page_offset;
588 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 589 user_data, length);
3e4d3af5 590 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 591 return unwritten;
0839ccb8
KP
592}
593
3de09aa3
EA
594/**
595 * This is the fast pwrite path, where we copy the data directly from the
596 * user into the GTT, uncached.
597 */
673a394b 598static int
05394f39
CW
599i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 struct drm_i915_gem_object *obj,
3de09aa3 601 struct drm_i915_gem_pwrite *args,
05394f39 602 struct drm_file *file)
673a394b 603{
0839ccb8 604 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 605 ssize_t remain;
0839ccb8 606 loff_t offset, page_base;
673a394b 607 char __user *user_data;
935aaa69
DV
608 int page_offset, page_length, ret;
609
86a1ee26 610 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
611 if (ret)
612 goto out;
613
614 ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 if (ret)
616 goto out_unpin;
617
618 ret = i915_gem_object_put_fence(obj);
619 if (ret)
620 goto out_unpin;
673a394b
EA
621
622 user_data = (char __user *) (uintptr_t) args->data_ptr;
623 remain = args->size;
673a394b 624
05394f39 625 offset = obj->gtt_offset + args->offset;
673a394b
EA
626
627 while (remain > 0) {
628 /* Operation in this page
629 *
0839ccb8
KP
630 * page_base = page offset within aperture
631 * page_offset = offset within page
632 * page_length = bytes to copy for this page
673a394b 633 */
c8cbbb8b
CW
634 page_base = offset & PAGE_MASK;
635 page_offset = offset_in_page(offset);
0839ccb8
KP
636 page_length = remain;
637 if ((page_offset + remain) > PAGE_SIZE)
638 page_length = PAGE_SIZE - page_offset;
639
0839ccb8 640 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
641 * source page isn't available. Return the error and we'll
642 * retry in the slow path.
0839ccb8 643 */
fbd5a26d 644 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
645 page_offset, user_data, page_length)) {
646 ret = -EFAULT;
647 goto out_unpin;
648 }
673a394b 649
0839ccb8
KP
650 remain -= page_length;
651 user_data += page_length;
652 offset += page_length;
673a394b 653 }
673a394b 654
935aaa69
DV
655out_unpin:
656 i915_gem_object_unpin(obj);
657out:
3de09aa3 658 return ret;
673a394b
EA
659}
660
d174bd64
DV
661/* Per-page copy function for the shmem pwrite fastpath.
662 * Flushes invalid cachelines before writing to the target if
663 * needs_clflush_before is set and flushes out any written cachelines after
664 * writing if needs_clflush is set. */
3043c60c 665static int
d174bd64
DV
666shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 char __user *user_data,
668 bool page_do_bit17_swizzling,
669 bool needs_clflush_before,
670 bool needs_clflush_after)
673a394b 671{
d174bd64 672 char *vaddr;
673a394b 673 int ret;
3de09aa3 674
e7e58eb5 675 if (unlikely(page_do_bit17_swizzling))
d174bd64 676 return -EINVAL;
3de09aa3 677
d174bd64
DV
678 vaddr = kmap_atomic(page);
679 if (needs_clflush_before)
680 drm_clflush_virt_range(vaddr + shmem_page_offset,
681 page_length);
682 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 user_data,
684 page_length);
685 if (needs_clflush_after)
686 drm_clflush_virt_range(vaddr + shmem_page_offset,
687 page_length);
688 kunmap_atomic(vaddr);
3de09aa3 689
755d2218 690 return ret ? -EFAULT : 0;
3de09aa3
EA
691}
692
d174bd64
DV
693/* Only difference to the fast-path function is that this can handle bit17
694 * and uses non-atomic copy and kmap functions. */
3043c60c 695static int
d174bd64
DV
696shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 char __user *user_data,
698 bool page_do_bit17_swizzling,
699 bool needs_clflush_before,
700 bool needs_clflush_after)
673a394b 701{
d174bd64
DV
702 char *vaddr;
703 int ret;
e5281ccd 704
d174bd64 705 vaddr = kmap(page);
e7e58eb5 706 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 page_length,
709 page_do_bit17_swizzling);
d174bd64
DV
710 if (page_do_bit17_swizzling)
711 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
712 user_data,
713 page_length);
d174bd64
DV
714 else
715 ret = __copy_from_user(vaddr + shmem_page_offset,
716 user_data,
717 page_length);
718 if (needs_clflush_after)
23c18c71
DV
719 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 page_length,
721 page_do_bit17_swizzling);
d174bd64 722 kunmap(page);
40123c1f 723
755d2218 724 return ret ? -EFAULT : 0;
40123c1f
EA
725}
726
40123c1f 727static int
e244a443
DV
728i915_gem_shmem_pwrite(struct drm_device *dev,
729 struct drm_i915_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file)
40123c1f 732{
40123c1f 733 ssize_t remain;
8c59967c
DV
734 loff_t offset;
735 char __user *user_data;
eb2c0c81 736 int shmem_page_offset, page_length, ret = 0;
8c59967c 737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 738 int hit_slowpath = 0;
58642885
DV
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
9da3da66
CW
741 int i;
742 struct scatterlist *sg;
40123c1f 743
8c59967c 744 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
745 remain = args->size;
746
8c59967c 747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 748
58642885
DV
749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 /* If we're not in the cpu write domain, set ourself into the gtt
751 * write domain and manually flush cachelines (if required). This
752 * optimizes for the case when the gpu will use the data
753 * right away and we therefore have to clflush anyway. */
754 if (obj->cache_level == I915_CACHE_NONE)
755 needs_clflush_after = 1;
6c085a72
CW
756 if (obj->gtt_space) {
757 ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 if (ret)
759 return ret;
760 }
58642885
DV
761 }
762 /* Same trick applies for invalidate partially written cachelines before
763 * writing. */
764 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 && obj->cache_level == I915_CACHE_NONE)
766 needs_clflush_before = 1;
767
755d2218
CW
768 ret = i915_gem_object_get_pages(obj);
769 if (ret)
770 return ret;
771
772 i915_gem_object_pin_pages(obj);
773
673a394b 774 offset = args->offset;
05394f39 775 obj->dirty = 1;
673a394b 776
9da3da66 777 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd 778 struct page *page;
58642885 779 int partial_cacheline_write;
e5281ccd 780
9da3da66
CW
781 if (i < offset >> PAGE_SHIFT)
782 continue;
783
784 if (remain <= 0)
785 break;
786
40123c1f
EA
787 /* Operation in this page
788 *
40123c1f 789 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
790 * page_length = bytes to copy for this page
791 */
c8cbbb8b 792 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
793
794 page_length = remain;
795 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 797
58642885
DV
798 /* If we don't overwrite a cacheline completely we need to be
799 * careful to have up-to-date data by first clflushing. Don't
800 * overcomplicate things and flush the entire patch. */
801 partial_cacheline_write = needs_clflush_before &&
802 ((shmem_page_offset | page_length)
803 & (boot_cpu_data.x86_clflush_size - 1));
804
9da3da66 805 page = sg_page(sg);
8c59967c
DV
806 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 (page_to_phys(page) & (1 << 17)) != 0;
808
d174bd64
DV
809 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813 if (ret == 0)
814 goto next_page;
e244a443
DV
815
816 hit_slowpath = 1;
e244a443 817 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
818 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 user_data, page_do_bit17_swizzling,
820 partial_cacheline_write,
821 needs_clflush_after);
40123c1f 822
e244a443 823 mutex_lock(&dev->struct_mutex);
755d2218 824
e244a443 825next_page:
e5281ccd
CW
826 set_page_dirty(page);
827 mark_page_accessed(page);
e5281ccd 828
755d2218 829 if (ret)
8c59967c 830 goto out;
8c59967c 831
40123c1f 832 remain -= page_length;
8c59967c 833 user_data += page_length;
40123c1f 834 offset += page_length;
673a394b
EA
835 }
836
fbd5a26d 837out:
755d2218
CW
838 i915_gem_object_unpin_pages(obj);
839
e244a443
DV
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
e76e9aeb 848 i915_gem_chipset_flush(dev);
e244a443 849 }
8c59967c 850 }
673a394b 851
58642885 852 if (needs_clflush_after)
e76e9aeb 853 i915_gem_chipset_flush(dev);
58642885 854
40123c1f 855 return ret;
673a394b
EA
856}
857
858/**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863int
864i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 865 struct drm_file *file)
673a394b
EA
866{
867 struct drm_i915_gem_pwrite *args = data;
05394f39 868 struct drm_i915_gem_object *obj;
51311d0a
CW
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
f56f821f
DV
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
51311d0a
CW
881 if (ret)
882 return -EFAULT;
673a394b 883
fbd5a26d 884 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 885 if (ret)
fbd5a26d 886 return ret;
1d7cfea1 887
05394f39 888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 889 if (&obj->base == NULL) {
1d7cfea1
CW
890 ret = -ENOENT;
891 goto unlock;
fbd5a26d 892 }
673a394b 893
7dcd2499 894 /* Bounds check destination. */
05394f39
CW
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
ce9d419d 897 ret = -EINVAL;
35b62a89 898 goto out;
ce9d419d
CW
899 }
900
1286ff73
DV
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
db53a302
CW
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
935aaa69 911 ret = -EFAULT;
673a394b
EA
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
5c0480f2 918 if (obj->phys_obj) {
fbd5a26d 919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
920 goto out;
921 }
922
86a1ee26 923 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 924 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 925 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
927 /* Note that the gtt paths might fail with non-page-backed user
928 * pointers (e.g. gtt mappings when moving data between
929 * textures). Fallback to the shmem path in that case. */
fbd5a26d 930 }
673a394b 931
86a1ee26 932 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 933 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 934
35b62a89 935out:
05394f39 936 drm_gem_object_unreference(&obj->base);
1d7cfea1 937unlock:
fbd5a26d 938 mutex_unlock(&dev->struct_mutex);
673a394b
EA
939 return ret;
940}
941
b361237b
CW
942int
943i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 bool interruptible)
945{
946 if (atomic_read(&dev_priv->mm.wedged)) {
947 struct completion *x = &dev_priv->error_completion;
948 bool recovery_complete;
949 unsigned long flags;
950
951 /* Give the error handler a chance to run. */
952 spin_lock_irqsave(&x->wait.lock, flags);
953 recovery_complete = x->done > 0;
954 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956 /* Non-interruptible callers can't handle -EAGAIN, hence return
957 * -EIO unconditionally for these. */
958 if (!interruptible)
959 return -EIO;
960
961 /* Recovery complete, but still wedged means reset failure. */
962 if (recovery_complete)
963 return -EIO;
964
965 return -EAGAIN;
966 }
967
968 return 0;
969}
970
971/*
972 * Compare seqno against outstanding lazy request. Emit a request if they are
973 * equal.
974 */
975static int
976i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977{
978 int ret;
979
980 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982 ret = 0;
983 if (seqno == ring->outstanding_lazy_request)
984 ret = i915_add_request(ring, NULL, NULL);
985
986 return ret;
987}
988
989/**
990 * __wait_seqno - wait until execution of seqno has finished
991 * @ring: the ring expected to report seqno
992 * @seqno: duh!
993 * @interruptible: do an interruptible wait (normally yes)
994 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995 *
996 * Returns 0 if the seqno was found within the alloted time. Else returns the
997 * errno with remaining time filled in timeout argument.
998 */
999static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 bool interruptible, struct timespec *timeout)
1001{
1002 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 struct timespec before, now, wait_time={1,0};
1004 unsigned long timeout_jiffies;
1005 long end;
1006 bool wait_forever = true;
1007 int ret;
1008
1009 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 return 0;
1011
1012 trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014 if (timeout != NULL) {
1015 wait_time = *timeout;
1016 wait_forever = false;
1017 }
1018
1019 timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021 if (WARN_ON(!ring->irq_get(ring)))
1022 return -ENODEV;
1023
1024 /* Record current time in case interrupted by signal, or wedged * */
1025 getrawmonotonic(&before);
1026
1027#define EXIT_COND \
1028 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 atomic_read(&dev_priv->mm.wedged))
1030 do {
1031 if (interruptible)
1032 end = wait_event_interruptible_timeout(ring->irq_queue,
1033 EXIT_COND,
1034 timeout_jiffies);
1035 else
1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 timeout_jiffies);
1038
1039 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 if (ret)
1041 end = ret;
1042 } while (end == 0 && wait_forever);
1043
1044 getrawmonotonic(&now);
1045
1046 ring->irq_put(ring);
1047 trace_i915_gem_request_wait_end(ring, seqno);
1048#undef EXIT_COND
1049
1050 if (timeout) {
1051 struct timespec sleep_time = timespec_sub(now, before);
1052 *timeout = timespec_sub(*timeout, sleep_time);
1053 }
1054
1055 switch (end) {
1056 case -EIO:
1057 case -EAGAIN: /* Wedged */
1058 case -ERESTARTSYS: /* Signal */
1059 return (int)end;
1060 case 0: /* Timeout */
1061 if (timeout)
1062 set_normalized_timespec(timeout, 0, 0);
1063 return -ETIME;
1064 default: /* Completed */
1065 WARN_ON(end < 0); /* We're not aware of other errors */
1066 return 0;
1067 }
1068}
1069
1070/**
1071 * Waits for a sequence number to be signaled, and cleans up the
1072 * request and object lists appropriately for that event.
1073 */
1074int
1075i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076{
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 bool interruptible = dev_priv->mm.interruptible;
1080 int ret;
1081
1082 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 BUG_ON(seqno == 0);
1084
1085 ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 if (ret)
1087 return ret;
1088
1089 ret = i915_gem_check_olr(ring, seqno);
1090 if (ret)
1091 return ret;
1092
1093 return __wait_seqno(ring, seqno, interruptible, NULL);
1094}
1095
1096/**
1097 * Ensures that all rendering to the object has completed and the object is
1098 * safe to unbind from the GTT or access from the CPU.
1099 */
1100static __must_check int
1101i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 bool readonly)
1103{
1104 struct intel_ring_buffer *ring = obj->ring;
1105 u32 seqno;
1106 int ret;
1107
1108 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 if (seqno == 0)
1110 return 0;
1111
1112 ret = i915_wait_seqno(ring, seqno);
1113 if (ret)
1114 return ret;
1115
1116 i915_gem_retire_requests_ring(ring);
1117
1118 /* Manually manage the write flush as we may have not yet
1119 * retired the buffer.
1120 */
1121 if (obj->last_write_seqno &&
1122 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 obj->last_write_seqno = 0;
1124 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 }
1126
1127 return 0;
1128}
1129
3236f57a
CW
1130/* A nonblocking variant of the above wait. This is a highly dangerous routine
1131 * as the object state may change during this call.
1132 */
1133static __must_check int
1134i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 bool readonly)
1136{
1137 struct drm_device *dev = obj->base.dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 struct intel_ring_buffer *ring = obj->ring;
1140 u32 seqno;
1141 int ret;
1142
1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 BUG_ON(!dev_priv->mm.interruptible);
1145
1146 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 if (seqno == 0)
1148 return 0;
1149
1150 ret = i915_gem_check_wedge(dev_priv, true);
1151 if (ret)
1152 return ret;
1153
1154 ret = i915_gem_check_olr(ring, seqno);
1155 if (ret)
1156 return ret;
1157
1158 mutex_unlock(&dev->struct_mutex);
1159 ret = __wait_seqno(ring, seqno, true, NULL);
1160 mutex_lock(&dev->struct_mutex);
1161
1162 i915_gem_retire_requests_ring(ring);
1163
1164 /* Manually manage the write flush as we may have not yet
1165 * retired the buffer.
1166 */
1167 if (obj->last_write_seqno &&
1168 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 obj->last_write_seqno = 0;
1170 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 }
1172
1173 return ret;
1174}
1175
673a394b 1176/**
2ef7eeaa
EA
1177 * Called when user space prepares to use an object with the CPU, either
1178 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1179 */
1180int
1181i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1182 struct drm_file *file)
673a394b
EA
1183{
1184 struct drm_i915_gem_set_domain *args = data;
05394f39 1185 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1186 uint32_t read_domains = args->read_domains;
1187 uint32_t write_domain = args->write_domain;
673a394b
EA
1188 int ret;
1189
2ef7eeaa 1190 /* Only handle setting domains to types used by the CPU. */
21d509e3 1191 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1192 return -EINVAL;
1193
21d509e3 1194 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1195 return -EINVAL;
1196
1197 /* Having something in the write domain implies it's in the read
1198 * domain, and only that read domain. Enforce that in the request.
1199 */
1200 if (write_domain != 0 && read_domains != write_domain)
1201 return -EINVAL;
1202
76c1dec1 1203 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1204 if (ret)
76c1dec1 1205 return ret;
1d7cfea1 1206
05394f39 1207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1208 if (&obj->base == NULL) {
1d7cfea1
CW
1209 ret = -ENOENT;
1210 goto unlock;
76c1dec1 1211 }
673a394b 1212
3236f57a
CW
1213 /* Try to flush the object off the GPU without holding the lock.
1214 * We will repeat the flush holding the lock in the normal manner
1215 * to catch cases where we are gazumped.
1216 */
1217 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 if (ret)
1219 goto unref;
1220
2ef7eeaa
EA
1221 if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1223
1224 /* Silently promote "you're not bound, there was nothing to do"
1225 * to success, since the client was just asking us to
1226 * make sure everything was done.
1227 */
1228 if (ret == -EINVAL)
1229 ret = 0;
2ef7eeaa 1230 } else {
e47c68e9 1231 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1232 }
1233
3236f57a 1234unref:
05394f39 1235 drm_gem_object_unreference(&obj->base);
1d7cfea1 1236unlock:
673a394b
EA
1237 mutex_unlock(&dev->struct_mutex);
1238 return ret;
1239}
1240
1241/**
1242 * Called when user space has done writes to this buffer
1243 */
1244int
1245i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1246 struct drm_file *file)
673a394b
EA
1247{
1248 struct drm_i915_gem_sw_finish *args = data;
05394f39 1249 struct drm_i915_gem_object *obj;
673a394b
EA
1250 int ret = 0;
1251
76c1dec1 1252 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1253 if (ret)
76c1dec1 1254 return ret;
1d7cfea1 1255
05394f39 1256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1257 if (&obj->base == NULL) {
1d7cfea1
CW
1258 ret = -ENOENT;
1259 goto unlock;
673a394b
EA
1260 }
1261
673a394b 1262 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1263 if (obj->pin_count)
e47c68e9
EA
1264 i915_gem_object_flush_cpu_write_domain(obj);
1265
05394f39 1266 drm_gem_object_unreference(&obj->base);
1d7cfea1 1267unlock:
673a394b
EA
1268 mutex_unlock(&dev->struct_mutex);
1269 return ret;
1270}
1271
1272/**
1273 * Maps the contents of an object, returning the address it is mapped
1274 * into.
1275 *
1276 * While the mapping holds a reference on the contents of the object, it doesn't
1277 * imply a ref on the object itself.
1278 */
1279int
1280i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1281 struct drm_file *file)
673a394b
EA
1282{
1283 struct drm_i915_gem_mmap *args = data;
1284 struct drm_gem_object *obj;
673a394b
EA
1285 unsigned long addr;
1286
05394f39 1287 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1288 if (obj == NULL)
bf79cb91 1289 return -ENOENT;
673a394b 1290
1286ff73
DV
1291 /* prime objects have no backing filp to GEM mmap
1292 * pages from.
1293 */
1294 if (!obj->filp) {
1295 drm_gem_object_unreference_unlocked(obj);
1296 return -EINVAL;
1297 }
1298
6be5ceb0 1299 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1300 PROT_READ | PROT_WRITE, MAP_SHARED,
1301 args->offset);
bc9025bd 1302 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1303 if (IS_ERR((void *)addr))
1304 return addr;
1305
1306 args->addr_ptr = (uint64_t) addr;
1307
1308 return 0;
1309}
1310
de151cf6
JB
1311/**
1312 * i915_gem_fault - fault a page into the GTT
1313 * vma: VMA in question
1314 * vmf: fault info
1315 *
1316 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317 * from userspace. The fault handler takes care of binding the object to
1318 * the GTT (if needed), allocating and programming a fence register (again,
1319 * only if needed based on whether the old reg is still valid or the object
1320 * is tiled) and inserting a new PTE into the faulting process.
1321 *
1322 * Note that the faulting process may involve evicting existing objects
1323 * from the GTT and/or fence registers to make room. So performance may
1324 * suffer if the GTT working set is large or there are few fence registers
1325 * left.
1326 */
1327int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328{
05394f39
CW
1329 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 struct drm_device *dev = obj->base.dev;
7d1c4804 1331 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1332 pgoff_t page_offset;
1333 unsigned long pfn;
1334 int ret = 0;
0f973f27 1335 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1336
1337 /* We don't use vmf->pgoff since that has the fake offset */
1338 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 PAGE_SHIFT;
1340
d9bc7e9f
CW
1341 ret = i915_mutex_lock_interruptible(dev);
1342 if (ret)
1343 goto out;
a00b10c3 1344
db53a302
CW
1345 trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
d9bc7e9f 1347 /* Now bind it into the GTT if needed */
c9839303
CW
1348 ret = i915_gem_object_pin(obj, 0, true, false);
1349 if (ret)
1350 goto unlock;
4a684a41 1351
c9839303
CW
1352 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1353 if (ret)
1354 goto unpin;
74898d7e 1355
06d98131 1356 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1357 if (ret)
c9839303 1358 goto unpin;
7d1c4804 1359
6299f992
CW
1360 obj->fault_mappable = true;
1361
dd2757f8 1362 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1363 page_offset;
1364
1365 /* Finally, remap it using the new GTT offset */
1366 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1367unpin:
1368 i915_gem_object_unpin(obj);
c715089f 1369unlock:
de151cf6 1370 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1371out:
de151cf6 1372 switch (ret) {
d9bc7e9f 1373 case -EIO:
a9340cca
DV
1374 /* If this -EIO is due to a gpu hang, give the reset code a
1375 * chance to clean up the mess. Otherwise return the proper
1376 * SIGBUS. */
1377 if (!atomic_read(&dev_priv->mm.wedged))
1378 return VM_FAULT_SIGBUS;
045e769a 1379 case -EAGAIN:
d9bc7e9f
CW
1380 /* Give the error handler a chance to run and move the
1381 * objects off the GPU active list. Next time we service the
1382 * fault, we should be able to transition the page into the
1383 * GTT without touching the GPU (and so avoid further
1384 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1385 * with coherency, just lost writes.
1386 */
045e769a 1387 set_need_resched();
c715089f
CW
1388 case 0:
1389 case -ERESTARTSYS:
bed636ab 1390 case -EINTR:
e79e0fe3
DR
1391 case -EBUSY:
1392 /*
1393 * EBUSY is ok: this just means that another thread
1394 * already did the job.
1395 */
c715089f 1396 return VM_FAULT_NOPAGE;
de151cf6 1397 case -ENOMEM:
de151cf6 1398 return VM_FAULT_OOM;
a7c2e1aa
DV
1399 case -ENOSPC:
1400 return VM_FAULT_SIGBUS;
de151cf6 1401 default:
a7c2e1aa 1402 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1403 return VM_FAULT_SIGBUS;
de151cf6
JB
1404 }
1405}
1406
901782b2
CW
1407/**
1408 * i915_gem_release_mmap - remove physical page mappings
1409 * @obj: obj in question
1410 *
af901ca1 1411 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1412 * relinquish ownership of the pages back to the system.
1413 *
1414 * It is vital that we remove the page mapping if we have mapped a tiled
1415 * object through the GTT and then lose the fence register due to
1416 * resource pressure. Similarly if the object has been moved out of the
1417 * aperture, than pages mapped into userspace must be revoked. Removing the
1418 * mapping will then trigger a page fault on the next user access, allowing
1419 * fixup by i915_gem_fault().
1420 */
d05ca301 1421void
05394f39 1422i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1423{
6299f992
CW
1424 if (!obj->fault_mappable)
1425 return;
901782b2 1426
f6e47884
CW
1427 if (obj->base.dev->dev_mapping)
1428 unmap_mapping_range(obj->base.dev->dev_mapping,
1429 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1430 obj->base.size, 1);
fb7d516a 1431
6299f992 1432 obj->fault_mappable = false;
901782b2
CW
1433}
1434
92b88aeb 1435static uint32_t
e28f8711 1436i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1437{
e28f8711 1438 uint32_t gtt_size;
92b88aeb
CW
1439
1440 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1441 tiling_mode == I915_TILING_NONE)
1442 return size;
92b88aeb
CW
1443
1444 /* Previous chips need a power-of-two fence region when tiling */
1445 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1446 gtt_size = 1024*1024;
92b88aeb 1447 else
e28f8711 1448 gtt_size = 512*1024;
92b88aeb 1449
e28f8711
CW
1450 while (gtt_size < size)
1451 gtt_size <<= 1;
92b88aeb 1452
e28f8711 1453 return gtt_size;
92b88aeb
CW
1454}
1455
de151cf6
JB
1456/**
1457 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1458 * @obj: object to check
1459 *
1460 * Return the required GTT alignment for an object, taking into account
5e783301 1461 * potential fence register mapping.
de151cf6
JB
1462 */
1463static uint32_t
e28f8711
CW
1464i915_gem_get_gtt_alignment(struct drm_device *dev,
1465 uint32_t size,
1466 int tiling_mode)
de151cf6 1467{
de151cf6
JB
1468 /*
1469 * Minimum alignment is 4k (GTT page size), but might be greater
1470 * if a fence register is needed for the object.
1471 */
a00b10c3 1472 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1473 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1474 return 4096;
1475
a00b10c3
CW
1476 /*
1477 * Previous chips need to be aligned to the size of the smallest
1478 * fence register that can contain the object.
1479 */
e28f8711 1480 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1481}
1482
5e783301
DV
1483/**
1484 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1485 * unfenced object
e28f8711
CW
1486 * @dev: the device
1487 * @size: size of the object
1488 * @tiling_mode: tiling mode of the object
5e783301
DV
1489 *
1490 * Return the required GTT alignment for an object, only taking into account
1491 * unfenced tiled surface requirements.
1492 */
467cffba 1493uint32_t
e28f8711
CW
1494i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1495 uint32_t size,
1496 int tiling_mode)
5e783301 1497{
5e783301
DV
1498 /*
1499 * Minimum alignment is 4k (GTT page size) for sane hw.
1500 */
1501 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1502 tiling_mode == I915_TILING_NONE)
5e783301
DV
1503 return 4096;
1504
e28f8711
CW
1505 /* Previous hardware however needs to be aligned to a power-of-two
1506 * tile height. The simplest method for determining this is to reuse
1507 * the power-of-tile object size.
5e783301 1508 */
e28f8711 1509 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1510}
1511
d8cb5086
CW
1512static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1513{
1514 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1515 int ret;
1516
1517 if (obj->base.map_list.map)
1518 return 0;
1519
1520 ret = drm_gem_create_mmap_offset(&obj->base);
1521 if (ret != -ENOSPC)
1522 return ret;
1523
1524 /* Badly fragmented mmap space? The only way we can recover
1525 * space is by destroying unwanted objects. We can't randomly release
1526 * mmap_offsets as userspace expects them to be persistent for the
1527 * lifetime of the objects. The closest we can is to release the
1528 * offsets on purgeable objects by truncating it and marking it purged,
1529 * which prevents userspace from ever using that object again.
1530 */
1531 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1532 ret = drm_gem_create_mmap_offset(&obj->base);
1533 if (ret != -ENOSPC)
1534 return ret;
1535
1536 i915_gem_shrink_all(dev_priv);
1537 return drm_gem_create_mmap_offset(&obj->base);
1538}
1539
1540static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1541{
1542 if (!obj->base.map_list.map)
1543 return;
1544
1545 drm_gem_free_mmap_offset(&obj->base);
1546}
1547
de151cf6 1548int
ff72145b
DA
1549i915_gem_mmap_gtt(struct drm_file *file,
1550 struct drm_device *dev,
1551 uint32_t handle,
1552 uint64_t *offset)
de151cf6 1553{
da761a6e 1554 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1555 struct drm_i915_gem_object *obj;
de151cf6
JB
1556 int ret;
1557
76c1dec1 1558 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1559 if (ret)
76c1dec1 1560 return ret;
de151cf6 1561
ff72145b 1562 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1563 if (&obj->base == NULL) {
1d7cfea1
CW
1564 ret = -ENOENT;
1565 goto unlock;
1566 }
de151cf6 1567
05394f39 1568 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1569 ret = -E2BIG;
ff56b0bc 1570 goto out;
da761a6e
CW
1571 }
1572
05394f39 1573 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1574 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1575 ret = -EINVAL;
1576 goto out;
ab18282d
CW
1577 }
1578
d8cb5086
CW
1579 ret = i915_gem_object_create_mmap_offset(obj);
1580 if (ret)
1581 goto out;
de151cf6 1582
ff72145b 1583 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1584
1d7cfea1 1585out:
05394f39 1586 drm_gem_object_unreference(&obj->base);
1d7cfea1 1587unlock:
de151cf6 1588 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1589 return ret;
de151cf6
JB
1590}
1591
ff72145b
DA
1592/**
1593 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1594 * @dev: DRM device
1595 * @data: GTT mapping ioctl data
1596 * @file: GEM object info
1597 *
1598 * Simply returns the fake offset to userspace so it can mmap it.
1599 * The mmap call will end up in drm_gem_mmap(), which will set things
1600 * up so we can get faults in the handler above.
1601 *
1602 * The fault handler will take care of binding the object into the GTT
1603 * (since it may have been evicted to make room for something), allocating
1604 * a fence register, and mapping the appropriate aperture address into
1605 * userspace.
1606 */
1607int
1608i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1609 struct drm_file *file)
1610{
1611 struct drm_i915_gem_mmap_gtt *args = data;
1612
ff72145b
DA
1613 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1614}
1615
225067ee
DV
1616/* Immediately discard the backing storage */
1617static void
1618i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1619{
e5281ccd 1620 struct inode *inode;
e5281ccd 1621
4d6294bf 1622 i915_gem_object_free_mmap_offset(obj);
1286ff73 1623
4d6294bf
CW
1624 if (obj->base.filp == NULL)
1625 return;
e5281ccd 1626
225067ee
DV
1627 /* Our goal here is to return as much of the memory as
1628 * is possible back to the system as we are called from OOM.
1629 * To do this we must instruct the shmfs to drop all of its
1630 * backing pages, *now*.
1631 */
05394f39 1632 inode = obj->base.filp->f_path.dentry->d_inode;
225067ee 1633 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1634
225067ee
DV
1635 obj->madv = __I915_MADV_PURGED;
1636}
e5281ccd 1637
225067ee
DV
1638static inline int
1639i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1640{
1641 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1642}
1643
5cdf5881 1644static void
05394f39 1645i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1646{
05394f39 1647 int page_count = obj->base.size / PAGE_SIZE;
9da3da66 1648 struct scatterlist *sg;
6c085a72 1649 int ret, i;
1286ff73 1650
05394f39 1651 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1652
6c085a72
CW
1653 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1654 if (ret) {
1655 /* In the event of a disaster, abandon all caches and
1656 * hope for the best.
1657 */
1658 WARN_ON(ret != -EIO);
1659 i915_gem_clflush_object(obj);
1660 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1661 }
1662
6dacfd2f 1663 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1664 i915_gem_object_save_bit_17_swizzle(obj);
1665
05394f39
CW
1666 if (obj->madv == I915_MADV_DONTNEED)
1667 obj->dirty = 0;
3ef94daa 1668
9da3da66
CW
1669 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1670 struct page *page = sg_page(sg);
1671
05394f39 1672 if (obj->dirty)
9da3da66 1673 set_page_dirty(page);
3ef94daa 1674
05394f39 1675 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1676 mark_page_accessed(page);
3ef94daa 1677
9da3da66 1678 page_cache_release(page);
3ef94daa 1679 }
05394f39 1680 obj->dirty = 0;
673a394b 1681
9da3da66
CW
1682 sg_free_table(obj->pages);
1683 kfree(obj->pages);
37e680a1 1684}
6c085a72 1685
37e680a1
CW
1686static int
1687i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1688{
1689 const struct drm_i915_gem_object_ops *ops = obj->ops;
1690
2f745ad3 1691 if (obj->pages == NULL)
37e680a1
CW
1692 return 0;
1693
1694 BUG_ON(obj->gtt_space);
6c085a72 1695
a5570178
CW
1696 if (obj->pages_pin_count)
1697 return -EBUSY;
1698
a2165e31
CW
1699 /* ->put_pages might need to allocate memory for the bit17 swizzle
1700 * array, hence protect them from being reaped by removing them from gtt
1701 * lists early. */
1702 list_del(&obj->gtt_list);
1703
37e680a1 1704 ops->put_pages(obj);
05394f39 1705 obj->pages = NULL;
37e680a1 1706
6c085a72
CW
1707 if (i915_gem_object_is_purgeable(obj))
1708 i915_gem_object_truncate(obj);
1709
1710 return 0;
1711}
1712
1713static long
1714i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1715{
1716 struct drm_i915_gem_object *obj, *next;
1717 long count = 0;
1718
1719 list_for_each_entry_safe(obj, next,
1720 &dev_priv->mm.unbound_list,
1721 gtt_list) {
1722 if (i915_gem_object_is_purgeable(obj) &&
37e680a1 1723 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1724 count += obj->base.size >> PAGE_SHIFT;
1725 if (count >= target)
1726 return count;
1727 }
1728 }
1729
1730 list_for_each_entry_safe(obj, next,
1731 &dev_priv->mm.inactive_list,
1732 mm_list) {
1733 if (i915_gem_object_is_purgeable(obj) &&
1734 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1735 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1736 count += obj->base.size >> PAGE_SHIFT;
1737 if (count >= target)
1738 return count;
1739 }
1740 }
1741
1742 return count;
1743}
1744
1745static void
1746i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1747{
1748 struct drm_i915_gem_object *obj, *next;
1749
1750 i915_gem_evict_everything(dev_priv->dev);
1751
1752 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
37e680a1 1753 i915_gem_object_put_pages(obj);
225067ee
DV
1754}
1755
37e680a1 1756static int
6c085a72 1757i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1758{
6c085a72 1759 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1760 int page_count, i;
1761 struct address_space *mapping;
9da3da66
CW
1762 struct sg_table *st;
1763 struct scatterlist *sg;
e5281ccd 1764 struct page *page;
6c085a72 1765 gfp_t gfp;
e5281ccd 1766
6c085a72
CW
1767 /* Assert that the object is not currently in any GPU domain. As it
1768 * wasn't in the GTT, there shouldn't be any way it could have been in
1769 * a GPU cache
1770 */
1771 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1772 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1773
9da3da66
CW
1774 st = kmalloc(sizeof(*st), GFP_KERNEL);
1775 if (st == NULL)
1776 return -ENOMEM;
1777
05394f39 1778 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1779 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1780 sg_free_table(st);
1781 kfree(st);
e5281ccd 1782 return -ENOMEM;
9da3da66 1783 }
e5281ccd 1784
9da3da66
CW
1785 /* Get the list of pages out of our struct file. They'll be pinned
1786 * at this point until we release them.
1787 *
1788 * Fail silently without starting the shrinker
1789 */
6c085a72
CW
1790 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1791 gfp = mapping_gfp_mask(mapping);
d7c3b937 1792 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72 1793 gfp &= ~(__GFP_IO | __GFP_WAIT);
9da3da66 1794 for_each_sg(st->sgl, sg, page_count, i) {
6c085a72
CW
1795 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1796 if (IS_ERR(page)) {
1797 i915_gem_purge(dev_priv, page_count);
1798 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1799 }
1800 if (IS_ERR(page)) {
1801 /* We've tried hard to allocate the memory by reaping
1802 * our own buffer, now let the real VM do its job and
1803 * go down in flames if truly OOM.
1804 */
d7c3b937 1805 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
6c085a72
CW
1806 gfp |= __GFP_IO | __GFP_WAIT;
1807
1808 i915_gem_shrink_all(dev_priv);
1809 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1810 if (IS_ERR(page))
1811 goto err_pages;
1812
d7c3b937 1813 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72
CW
1814 gfp &= ~(__GFP_IO | __GFP_WAIT);
1815 }
e5281ccd 1816
9da3da66 1817 sg_set_page(sg, page, PAGE_SIZE, 0);
e5281ccd
CW
1818 }
1819
74ce6b6c
CW
1820 obj->pages = st;
1821
6dacfd2f 1822 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1823 i915_gem_object_do_bit_17_swizzle(obj);
1824
1825 return 0;
1826
1827err_pages:
9da3da66
CW
1828 for_each_sg(st->sgl, sg, i, page_count)
1829 page_cache_release(sg_page(sg));
1830 sg_free_table(st);
1831 kfree(st);
e5281ccd 1832 return PTR_ERR(page);
673a394b
EA
1833}
1834
37e680a1
CW
1835/* Ensure that the associated pages are gathered from the backing storage
1836 * and pinned into our object. i915_gem_object_get_pages() may be called
1837 * multiple times before they are released by a single call to
1838 * i915_gem_object_put_pages() - once the pages are no longer referenced
1839 * either as a result of memory pressure (reaping pages under the shrinker)
1840 * or as the object is itself released.
1841 */
1842int
1843i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1844{
1845 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1846 const struct drm_i915_gem_object_ops *ops = obj->ops;
1847 int ret;
1848
2f745ad3 1849 if (obj->pages)
37e680a1
CW
1850 return 0;
1851
a5570178
CW
1852 BUG_ON(obj->pages_pin_count);
1853
37e680a1
CW
1854 ret = ops->get_pages(obj);
1855 if (ret)
1856 return ret;
1857
1858 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1859 return 0;
673a394b
EA
1860}
1861
54cf91dc 1862void
05394f39 1863i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1864 struct intel_ring_buffer *ring)
673a394b 1865{
05394f39 1866 struct drm_device *dev = obj->base.dev;
69dc4987 1867 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1868 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1869
852835f3 1870 BUG_ON(ring == NULL);
05394f39 1871 obj->ring = ring;
673a394b
EA
1872
1873 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1874 if (!obj->active) {
1875 drm_gem_object_reference(&obj->base);
1876 obj->active = 1;
673a394b 1877 }
e35a41de 1878
673a394b 1879 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1880 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1881 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1882
0201f1ec 1883 obj->last_read_seqno = seqno;
caea7476 1884
7dd49065 1885 if (obj->fenced_gpu_access) {
caea7476 1886 obj->last_fenced_seqno = seqno;
caea7476 1887
7dd49065
CW
1888 /* Bump MRU to take account of the delayed flush */
1889 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1890 struct drm_i915_fence_reg *reg;
1891
1892 reg = &dev_priv->fence_regs[obj->fence_reg];
1893 list_move_tail(&reg->lru_list,
1894 &dev_priv->mm.fence_list);
1895 }
caea7476
CW
1896 }
1897}
1898
1899static void
caea7476 1900i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1901{
05394f39 1902 struct drm_device *dev = obj->base.dev;
caea7476 1903 struct drm_i915_private *dev_priv = dev->dev_private;
ce44b0ea 1904
65ce3027 1905 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1906 BUG_ON(!obj->active);
caea7476 1907
f047e395
CW
1908 if (obj->pin_count) /* are we a framebuffer? */
1909 intel_mark_fb_idle(obj);
caea7476 1910
1b50247a 1911 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1912
65ce3027 1913 list_del_init(&obj->ring_list);
caea7476
CW
1914 obj->ring = NULL;
1915
65ce3027
CW
1916 obj->last_read_seqno = 0;
1917 obj->last_write_seqno = 0;
1918 obj->base.write_domain = 0;
1919
1920 obj->last_fenced_seqno = 0;
caea7476 1921 obj->fenced_gpu_access = false;
caea7476
CW
1922
1923 obj->active = 0;
1924 drm_gem_object_unreference(&obj->base);
1925
1926 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1927}
673a394b 1928
9d773091
CW
1929static int
1930i915_gem_handle_seqno_wrap(struct drm_device *dev)
53d227f2 1931{
9d773091
CW
1932 struct drm_i915_private *dev_priv = dev->dev_private;
1933 struct intel_ring_buffer *ring;
1934 int ret, i, j;
53d227f2 1935
9d773091
CW
1936 /* The hardware uses various monotonic 32-bit counters, if we
1937 * detect that they will wraparound we need to idle the GPU
1938 * and reset those counters.
1939 */
1940 ret = 0;
1941 for_each_ring(ring, dev_priv, i) {
1942 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1943 ret |= ring->sync_seqno[j] != 0;
1944 }
1945 if (ret == 0)
1946 return ret;
1947
1948 ret = i915_gpu_idle(dev);
1949 if (ret)
1950 return ret;
1951
1952 i915_gem_retire_requests(dev);
1953 for_each_ring(ring, dev_priv, i) {
1954 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1955 ring->sync_seqno[j] = 0;
1956 }
53d227f2 1957
9d773091 1958 return 0;
53d227f2
DV
1959}
1960
9d773091
CW
1961int
1962i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 1963{
9d773091
CW
1964 struct drm_i915_private *dev_priv = dev->dev_private;
1965
1966 /* reserve 0 for non-seqno */
1967 if (dev_priv->next_seqno == 0) {
1968 int ret = i915_gem_handle_seqno_wrap(dev);
1969 if (ret)
1970 return ret;
1971
1972 dev_priv->next_seqno = 1;
1973 }
53d227f2 1974
9d773091
CW
1975 *seqno = dev_priv->next_seqno++;
1976 return 0;
53d227f2
DV
1977}
1978
3cce469c 1979int
db53a302 1980i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1981 struct drm_file *file,
acb868d3 1982 u32 *out_seqno)
673a394b 1983{
db53a302 1984 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 1985 struct drm_i915_gem_request *request;
a71d8d94 1986 u32 request_ring_position;
673a394b 1987 int was_empty;
3cce469c
CW
1988 int ret;
1989
cc889e0f
DV
1990 /*
1991 * Emit any outstanding flushes - execbuf can fail to emit the flush
1992 * after having emitted the batchbuffer command. Hence we need to fix
1993 * things up similar to emitting the lazy request. The difference here
1994 * is that the flush _must_ happen before the next request, no matter
1995 * what.
1996 */
a7b9761d
CW
1997 ret = intel_ring_flush_all_caches(ring);
1998 if (ret)
1999 return ret;
cc889e0f 2000
acb868d3
CW
2001 request = kmalloc(sizeof(*request), GFP_KERNEL);
2002 if (request == NULL)
2003 return -ENOMEM;
cc889e0f 2004
673a394b 2005
a71d8d94
CW
2006 /* Record the position of the start of the request so that
2007 * should we detect the updated seqno part-way through the
2008 * GPU processing the request, we never over-estimate the
2009 * position of the head.
2010 */
2011 request_ring_position = intel_ring_get_tail(ring);
2012
9d773091 2013 ret = ring->add_request(ring);
3bb73aba
CW
2014 if (ret) {
2015 kfree(request);
2016 return ret;
2017 }
673a394b 2018
9d773091 2019 request->seqno = intel_ring_get_seqno(ring);
852835f3 2020 request->ring = ring;
a71d8d94 2021 request->tail = request_ring_position;
673a394b 2022 request->emitted_jiffies = jiffies;
852835f3
ZN
2023 was_empty = list_empty(&ring->request_list);
2024 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2025 request->file_priv = NULL;
852835f3 2026
db53a302
CW
2027 if (file) {
2028 struct drm_i915_file_private *file_priv = file->driver_priv;
2029
1c25595f 2030 spin_lock(&file_priv->mm.lock);
f787a5f5 2031 request->file_priv = file_priv;
b962442e 2032 list_add_tail(&request->client_list,
f787a5f5 2033 &file_priv->mm.request_list);
1c25595f 2034 spin_unlock(&file_priv->mm.lock);
b962442e 2035 }
673a394b 2036
9d773091 2037 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2038 ring->outstanding_lazy_request = 0;
db53a302 2039
f65d9421 2040 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
2041 if (i915_enable_hangcheck) {
2042 mod_timer(&dev_priv->hangcheck_timer,
cecc21fe 2043 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3e0dc6b0 2044 }
f047e395 2045 if (was_empty) {
b3b079db 2046 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2047 &dev_priv->mm.retire_work,
2048 round_jiffies_up_relative(HZ));
f047e395
CW
2049 intel_mark_busy(dev_priv->dev);
2050 }
f65d9421 2051 }
cc889e0f 2052
acb868d3 2053 if (out_seqno)
9d773091 2054 *out_seqno = request->seqno;
3cce469c 2055 return 0;
673a394b
EA
2056}
2057
f787a5f5
CW
2058static inline void
2059i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2060{
1c25595f 2061 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2062
1c25595f
CW
2063 if (!file_priv)
2064 return;
1c5d22f7 2065
1c25595f 2066 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2067 if (request->file_priv) {
2068 list_del(&request->client_list);
2069 request->file_priv = NULL;
2070 }
1c25595f 2071 spin_unlock(&file_priv->mm.lock);
673a394b 2072}
673a394b 2073
dfaae392
CW
2074static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2075 struct intel_ring_buffer *ring)
9375e446 2076{
dfaae392
CW
2077 while (!list_empty(&ring->request_list)) {
2078 struct drm_i915_gem_request *request;
673a394b 2079
dfaae392
CW
2080 request = list_first_entry(&ring->request_list,
2081 struct drm_i915_gem_request,
2082 list);
de151cf6 2083
dfaae392 2084 list_del(&request->list);
f787a5f5 2085 i915_gem_request_remove_from_client(request);
dfaae392
CW
2086 kfree(request);
2087 }
673a394b 2088
dfaae392 2089 while (!list_empty(&ring->active_list)) {
05394f39 2090 struct drm_i915_gem_object *obj;
9375e446 2091
05394f39
CW
2092 obj = list_first_entry(&ring->active_list,
2093 struct drm_i915_gem_object,
2094 ring_list);
9375e446 2095
05394f39 2096 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2097 }
2098}
2099
312817a3
CW
2100static void i915_gem_reset_fences(struct drm_device *dev)
2101{
2102 struct drm_i915_private *dev_priv = dev->dev_private;
2103 int i;
2104
4b9de737 2105 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2106 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2107
ada726c7 2108 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 2109
ada726c7
CW
2110 if (reg->obj)
2111 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2112
ada726c7
CW
2113 reg->pin_count = 0;
2114 reg->obj = NULL;
2115 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2116 }
ada726c7
CW
2117
2118 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2119}
2120
069efc1d 2121void i915_gem_reset(struct drm_device *dev)
673a394b 2122{
77f01230 2123 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2124 struct drm_i915_gem_object *obj;
b4519513 2125 struct intel_ring_buffer *ring;
1ec14ad3 2126 int i;
673a394b 2127
b4519513
CW
2128 for_each_ring(ring, dev_priv, i)
2129 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2130
dfaae392
CW
2131 /* Move everything out of the GPU domains to ensure we do any
2132 * necessary invalidation upon reuse.
2133 */
05394f39 2134 list_for_each_entry(obj,
77f01230 2135 &dev_priv->mm.inactive_list,
69dc4987 2136 mm_list)
77f01230 2137 {
05394f39 2138 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2139 }
069efc1d
CW
2140
2141 /* The fence registers are invalidated so clear them out */
312817a3 2142 i915_gem_reset_fences(dev);
673a394b
EA
2143}
2144
2145/**
2146 * This function clears the request list as sequence numbers are passed.
2147 */
a71d8d94 2148void
db53a302 2149i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2150{
673a394b
EA
2151 uint32_t seqno;
2152
db53a302 2153 if (list_empty(&ring->request_list))
6c0594a3
KW
2154 return;
2155
db53a302 2156 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2157
b2eadbc8 2158 seqno = ring->get_seqno(ring, true);
1ec14ad3 2159
852835f3 2160 while (!list_empty(&ring->request_list)) {
673a394b 2161 struct drm_i915_gem_request *request;
673a394b 2162
852835f3 2163 request = list_first_entry(&ring->request_list,
673a394b
EA
2164 struct drm_i915_gem_request,
2165 list);
673a394b 2166
dfaae392 2167 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2168 break;
2169
db53a302 2170 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2171 /* We know the GPU must have read the request to have
2172 * sent us the seqno + interrupt, so use the position
2173 * of tail of the request to update the last known position
2174 * of the GPU head.
2175 */
2176 ring->last_retired_head = request->tail;
b84d5f0c
CW
2177
2178 list_del(&request->list);
f787a5f5 2179 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
2180 kfree(request);
2181 }
673a394b 2182
b84d5f0c
CW
2183 /* Move any buffers on the active list that are no longer referenced
2184 * by the ringbuffer to the flushing/inactive lists as appropriate.
2185 */
2186 while (!list_empty(&ring->active_list)) {
05394f39 2187 struct drm_i915_gem_object *obj;
b84d5f0c 2188
0206e353 2189 obj = list_first_entry(&ring->active_list,
05394f39
CW
2190 struct drm_i915_gem_object,
2191 ring_list);
673a394b 2192
0201f1ec 2193 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2194 break;
b84d5f0c 2195
65ce3027 2196 i915_gem_object_move_to_inactive(obj);
673a394b 2197 }
9d34e5db 2198
db53a302
CW
2199 if (unlikely(ring->trace_irq_seqno &&
2200 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2201 ring->irq_put(ring);
db53a302 2202 ring->trace_irq_seqno = 0;
9d34e5db 2203 }
23bc5982 2204
db53a302 2205 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2206}
2207
b09a1fec
CW
2208void
2209i915_gem_retire_requests(struct drm_device *dev)
2210{
2211 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2212 struct intel_ring_buffer *ring;
1ec14ad3 2213 int i;
b09a1fec 2214
b4519513
CW
2215 for_each_ring(ring, dev_priv, i)
2216 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2217}
2218
75ef9da2 2219static void
673a394b
EA
2220i915_gem_retire_work_handler(struct work_struct *work)
2221{
2222 drm_i915_private_t *dev_priv;
2223 struct drm_device *dev;
b4519513 2224 struct intel_ring_buffer *ring;
0a58705b
CW
2225 bool idle;
2226 int i;
673a394b
EA
2227
2228 dev_priv = container_of(work, drm_i915_private_t,
2229 mm.retire_work.work);
2230 dev = dev_priv->dev;
2231
891b48cf
CW
2232 /* Come back later if the device is busy... */
2233 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2234 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2235 round_jiffies_up_relative(HZ));
891b48cf
CW
2236 return;
2237 }
673a394b 2238
b09a1fec 2239 i915_gem_retire_requests(dev);
673a394b 2240
0a58705b
CW
2241 /* Send a periodic flush down the ring so we don't hold onto GEM
2242 * objects indefinitely.
673a394b 2243 */
0a58705b 2244 idle = true;
b4519513 2245 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2246 if (ring->gpu_caches_dirty)
2247 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2248
2249 idle &= list_empty(&ring->request_list);
673a394b
EA
2250 }
2251
0a58705b 2252 if (!dev_priv->mm.suspended && !idle)
bcb45086
CW
2253 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2254 round_jiffies_up_relative(HZ));
f047e395
CW
2255 if (idle)
2256 intel_mark_idle(dev);
0a58705b 2257
673a394b 2258 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2259}
2260
30dfebf3
DV
2261/**
2262 * Ensures that an object will eventually get non-busy by flushing any required
2263 * write domains, emitting any outstanding lazy request and retiring and
2264 * completed requests.
2265 */
2266static int
2267i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2268{
2269 int ret;
2270
2271 if (obj->active) {
0201f1ec 2272 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2273 if (ret)
2274 return ret;
2275
30dfebf3
DV
2276 i915_gem_retire_requests_ring(obj->ring);
2277 }
2278
2279 return 0;
2280}
2281
23ba4fd0
BW
2282/**
2283 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2284 * @DRM_IOCTL_ARGS: standard ioctl arguments
2285 *
2286 * Returns 0 if successful, else an error is returned with the remaining time in
2287 * the timeout parameter.
2288 * -ETIME: object is still busy after timeout
2289 * -ERESTARTSYS: signal interrupted the wait
2290 * -ENONENT: object doesn't exist
2291 * Also possible, but rare:
2292 * -EAGAIN: GPU wedged
2293 * -ENOMEM: damn
2294 * -ENODEV: Internal IRQ fail
2295 * -E?: The add request failed
2296 *
2297 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2298 * non-zero timeout parameter the wait ioctl will wait for the given number of
2299 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2300 * without holding struct_mutex the object may become re-busied before this
2301 * function completes. A similar but shorter * race condition exists in the busy
2302 * ioctl
2303 */
2304int
2305i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2306{
2307 struct drm_i915_gem_wait *args = data;
2308 struct drm_i915_gem_object *obj;
2309 struct intel_ring_buffer *ring = NULL;
eac1f14f 2310 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2311 u32 seqno = 0;
2312 int ret = 0;
2313
eac1f14f
BW
2314 if (args->timeout_ns >= 0) {
2315 timeout_stack = ns_to_timespec(args->timeout_ns);
2316 timeout = &timeout_stack;
2317 }
23ba4fd0
BW
2318
2319 ret = i915_mutex_lock_interruptible(dev);
2320 if (ret)
2321 return ret;
2322
2323 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2324 if (&obj->base == NULL) {
2325 mutex_unlock(&dev->struct_mutex);
2326 return -ENOENT;
2327 }
2328
30dfebf3
DV
2329 /* Need to make sure the object gets inactive eventually. */
2330 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2331 if (ret)
2332 goto out;
2333
2334 if (obj->active) {
0201f1ec 2335 seqno = obj->last_read_seqno;
23ba4fd0
BW
2336 ring = obj->ring;
2337 }
2338
2339 if (seqno == 0)
2340 goto out;
2341
23ba4fd0
BW
2342 /* Do this after OLR check to make sure we make forward progress polling
2343 * on this IOCTL with a 0 timeout (like busy ioctl)
2344 */
2345 if (!args->timeout_ns) {
2346 ret = -ETIME;
2347 goto out;
2348 }
2349
2350 drm_gem_object_unreference(&obj->base);
2351 mutex_unlock(&dev->struct_mutex);
2352
eac1f14f
BW
2353 ret = __wait_seqno(ring, seqno, true, timeout);
2354 if (timeout) {
2355 WARN_ON(!timespec_valid(timeout));
2356 args->timeout_ns = timespec_to_ns(timeout);
2357 }
23ba4fd0
BW
2358 return ret;
2359
2360out:
2361 drm_gem_object_unreference(&obj->base);
2362 mutex_unlock(&dev->struct_mutex);
2363 return ret;
2364}
2365
5816d648
BW
2366/**
2367 * i915_gem_object_sync - sync an object to a ring.
2368 *
2369 * @obj: object which may be in use on another ring.
2370 * @to: ring we wish to use the object on. May be NULL.
2371 *
2372 * This code is meant to abstract object synchronization with the GPU.
2373 * Calling with NULL implies synchronizing the object with the CPU
2374 * rather than a particular GPU ring.
2375 *
2376 * Returns 0 if successful, else propagates up the lower layer error.
2377 */
2911a35b
BW
2378int
2379i915_gem_object_sync(struct drm_i915_gem_object *obj,
2380 struct intel_ring_buffer *to)
2381{
2382 struct intel_ring_buffer *from = obj->ring;
2383 u32 seqno;
2384 int ret, idx;
2385
2386 if (from == NULL || to == from)
2387 return 0;
2388
5816d648 2389 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2390 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2391
2392 idx = intel_ring_sync_index(from, to);
2393
0201f1ec 2394 seqno = obj->last_read_seqno;
2911a35b
BW
2395 if (seqno <= from->sync_seqno[idx])
2396 return 0;
2397
b4aca010
BW
2398 ret = i915_gem_check_olr(obj->ring, seqno);
2399 if (ret)
2400 return ret;
2911a35b 2401
1500f7ea 2402 ret = to->sync_to(to, from, seqno);
e3a5a225 2403 if (!ret)
7b01e260
MK
2404 /* We use last_read_seqno because sync_to()
2405 * might have just caused seqno wrap under
2406 * the radar.
2407 */
2408 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2409
e3a5a225 2410 return ret;
2911a35b
BW
2411}
2412
b5ffc9bc
CW
2413static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2414{
2415 u32 old_write_domain, old_read_domains;
2416
b5ffc9bc
CW
2417 /* Act a barrier for all accesses through the GTT */
2418 mb();
2419
2420 /* Force a pagefault for domain tracking on next user access */
2421 i915_gem_release_mmap(obj);
2422
b97c3d9c
KP
2423 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2424 return;
2425
b5ffc9bc
CW
2426 old_read_domains = obj->base.read_domains;
2427 old_write_domain = obj->base.write_domain;
2428
2429 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2430 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2431
2432 trace_i915_gem_object_change_domain(obj,
2433 old_read_domains,
2434 old_write_domain);
2435}
2436
673a394b
EA
2437/**
2438 * Unbinds an object from the GTT aperture.
2439 */
0f973f27 2440int
05394f39 2441i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2442{
7bddb01f 2443 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2444 int ret = 0;
2445
05394f39 2446 if (obj->gtt_space == NULL)
673a394b
EA
2447 return 0;
2448
31d8d651
CW
2449 if (obj->pin_count)
2450 return -EBUSY;
673a394b 2451
c4670ad0
CW
2452 BUG_ON(obj->pages == NULL);
2453
a8198eea 2454 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2455 if (ret)
a8198eea
CW
2456 return ret;
2457 /* Continue on if we fail due to EIO, the GPU is hung so we
2458 * should be safe and we need to cleanup or else we might
2459 * cause memory corruption through use-after-free.
2460 */
2461
b5ffc9bc 2462 i915_gem_object_finish_gtt(obj);
5323fd04 2463
96b47b65 2464 /* release the fence reg _after_ flushing */
d9e86c0e 2465 ret = i915_gem_object_put_fence(obj);
1488fc08 2466 if (ret)
d9e86c0e 2467 return ret;
96b47b65 2468
db53a302
CW
2469 trace_i915_gem_object_unbind(obj);
2470
74898d7e
DV
2471 if (obj->has_global_gtt_mapping)
2472 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2473 if (obj->has_aliasing_ppgtt_mapping) {
2474 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2475 obj->has_aliasing_ppgtt_mapping = 0;
2476 }
74163907 2477 i915_gem_gtt_finish_object(obj);
7bddb01f 2478
6c085a72
CW
2479 list_del(&obj->mm_list);
2480 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2481 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2482 obj->map_and_fenceable = true;
673a394b 2483
05394f39
CW
2484 drm_mm_put_block(obj->gtt_space);
2485 obj->gtt_space = NULL;
2486 obj->gtt_offset = 0;
673a394b 2487
88241785 2488 return 0;
54cf91dc
CW
2489}
2490
b2da9fe5 2491int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2492{
2493 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2494 struct intel_ring_buffer *ring;
1ec14ad3 2495 int ret, i;
4df2faf4 2496
4df2faf4 2497 /* Flush everything onto the inactive list. */
b4519513 2498 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2499 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2500 if (ret)
2501 return ret;
2502
3e960501 2503 ret = intel_ring_idle(ring);
1ec14ad3
CW
2504 if (ret)
2505 return ret;
2506 }
4df2faf4 2507
8a1a49f9 2508 return 0;
4df2faf4
DV
2509}
2510
9ce079e4
CW
2511static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2512 struct drm_i915_gem_object *obj)
4e901fdc 2513{
4e901fdc 2514 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2515 uint64_t val;
2516
9ce079e4
CW
2517 if (obj) {
2518 u32 size = obj->gtt_space->size;
4e901fdc 2519
9ce079e4
CW
2520 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2521 0xfffff000) << 32;
2522 val |= obj->gtt_offset & 0xfffff000;
2523 val |= (uint64_t)((obj->stride / 128) - 1) <<
2524 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2525
9ce079e4
CW
2526 if (obj->tiling_mode == I915_TILING_Y)
2527 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2528 val |= I965_FENCE_REG_VALID;
2529 } else
2530 val = 0;
c6642782 2531
9ce079e4
CW
2532 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2533 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2534}
2535
9ce079e4
CW
2536static void i965_write_fence_reg(struct drm_device *dev, int reg,
2537 struct drm_i915_gem_object *obj)
de151cf6 2538{
de151cf6 2539 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2540 uint64_t val;
2541
9ce079e4
CW
2542 if (obj) {
2543 u32 size = obj->gtt_space->size;
de151cf6 2544
9ce079e4
CW
2545 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2546 0xfffff000) << 32;
2547 val |= obj->gtt_offset & 0xfffff000;
2548 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2549 if (obj->tiling_mode == I915_TILING_Y)
2550 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2551 val |= I965_FENCE_REG_VALID;
2552 } else
2553 val = 0;
c6642782 2554
9ce079e4
CW
2555 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2556 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2557}
2558
9ce079e4
CW
2559static void i915_write_fence_reg(struct drm_device *dev, int reg,
2560 struct drm_i915_gem_object *obj)
de151cf6 2561{
de151cf6 2562 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2563 u32 val;
de151cf6 2564
9ce079e4
CW
2565 if (obj) {
2566 u32 size = obj->gtt_space->size;
2567 int pitch_val;
2568 int tile_width;
c6642782 2569
9ce079e4
CW
2570 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2571 (size & -size) != size ||
2572 (obj->gtt_offset & (size - 1)),
2573 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2574 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2575
9ce079e4
CW
2576 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2577 tile_width = 128;
2578 else
2579 tile_width = 512;
2580
2581 /* Note: pitch better be a power of two tile widths */
2582 pitch_val = obj->stride / tile_width;
2583 pitch_val = ffs(pitch_val) - 1;
2584
2585 val = obj->gtt_offset;
2586 if (obj->tiling_mode == I915_TILING_Y)
2587 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2588 val |= I915_FENCE_SIZE_BITS(size);
2589 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2590 val |= I830_FENCE_REG_VALID;
2591 } else
2592 val = 0;
2593
2594 if (reg < 8)
2595 reg = FENCE_REG_830_0 + reg * 4;
2596 else
2597 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2598
2599 I915_WRITE(reg, val);
2600 POSTING_READ(reg);
de151cf6
JB
2601}
2602
9ce079e4
CW
2603static void i830_write_fence_reg(struct drm_device *dev, int reg,
2604 struct drm_i915_gem_object *obj)
de151cf6 2605{
de151cf6 2606 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2607 uint32_t val;
de151cf6 2608
9ce079e4
CW
2609 if (obj) {
2610 u32 size = obj->gtt_space->size;
2611 uint32_t pitch_val;
de151cf6 2612
9ce079e4
CW
2613 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2614 (size & -size) != size ||
2615 (obj->gtt_offset & (size - 1)),
2616 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2617 obj->gtt_offset, size);
e76a16de 2618
9ce079e4
CW
2619 pitch_val = obj->stride / 128;
2620 pitch_val = ffs(pitch_val) - 1;
de151cf6 2621
9ce079e4
CW
2622 val = obj->gtt_offset;
2623 if (obj->tiling_mode == I915_TILING_Y)
2624 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2625 val |= I830_FENCE_SIZE_BITS(size);
2626 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2627 val |= I830_FENCE_REG_VALID;
2628 } else
2629 val = 0;
c6642782 2630
9ce079e4
CW
2631 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2632 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2633}
2634
2635static void i915_gem_write_fence(struct drm_device *dev, int reg,
2636 struct drm_i915_gem_object *obj)
2637{
2638 switch (INTEL_INFO(dev)->gen) {
2639 case 7:
2640 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2641 case 5:
2642 case 4: i965_write_fence_reg(dev, reg, obj); break;
2643 case 3: i915_write_fence_reg(dev, reg, obj); break;
2644 case 2: i830_write_fence_reg(dev, reg, obj); break;
2645 default: break;
2646 }
de151cf6
JB
2647}
2648
61050808
CW
2649static inline int fence_number(struct drm_i915_private *dev_priv,
2650 struct drm_i915_fence_reg *fence)
2651{
2652 return fence - dev_priv->fence_regs;
2653}
2654
2655static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2656 struct drm_i915_fence_reg *fence,
2657 bool enable)
2658{
2659 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2660 int reg = fence_number(dev_priv, fence);
2661
2662 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2663
2664 if (enable) {
2665 obj->fence_reg = reg;
2666 fence->obj = obj;
2667 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2668 } else {
2669 obj->fence_reg = I915_FENCE_REG_NONE;
2670 fence->obj = NULL;
2671 list_del_init(&fence->lru_list);
2672 }
2673}
2674
d9e86c0e 2675static int
a360bb1a 2676i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2677{
1c293ea3 2678 if (obj->last_fenced_seqno) {
86d5bc37 2679 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2680 if (ret)
2681 return ret;
d9e86c0e
CW
2682
2683 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2684 }
2685
63256ec5
CW
2686 /* Ensure that all CPU reads are completed before installing a fence
2687 * and all writes before removing the fence.
2688 */
2689 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2690 mb();
2691
86d5bc37 2692 obj->fenced_gpu_access = false;
d9e86c0e
CW
2693 return 0;
2694}
2695
2696int
2697i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2698{
61050808 2699 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2700 int ret;
2701
a360bb1a 2702 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2703 if (ret)
2704 return ret;
2705
61050808
CW
2706 if (obj->fence_reg == I915_FENCE_REG_NONE)
2707 return 0;
d9e86c0e 2708
61050808
CW
2709 i915_gem_object_update_fence(obj,
2710 &dev_priv->fence_regs[obj->fence_reg],
2711 false);
2712 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2713
2714 return 0;
2715}
2716
2717static struct drm_i915_fence_reg *
a360bb1a 2718i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2719{
ae3db24a 2720 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2721 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2722 int i;
ae3db24a
DV
2723
2724 /* First try to find a free reg */
d9e86c0e 2725 avail = NULL;
ae3db24a
DV
2726 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2727 reg = &dev_priv->fence_regs[i];
2728 if (!reg->obj)
d9e86c0e 2729 return reg;
ae3db24a 2730
1690e1eb 2731 if (!reg->pin_count)
d9e86c0e 2732 avail = reg;
ae3db24a
DV
2733 }
2734
d9e86c0e
CW
2735 if (avail == NULL)
2736 return NULL;
ae3db24a
DV
2737
2738 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2739 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2740 if (reg->pin_count)
ae3db24a
DV
2741 continue;
2742
8fe301ad 2743 return reg;
ae3db24a
DV
2744 }
2745
8fe301ad 2746 return NULL;
ae3db24a
DV
2747}
2748
de151cf6 2749/**
9a5a53b3 2750 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2751 * @obj: object to map through a fence reg
2752 *
2753 * When mapping objects through the GTT, userspace wants to be able to write
2754 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2755 * This function walks the fence regs looking for a free one for @obj,
2756 * stealing one if it can't find any.
2757 *
2758 * It then sets up the reg based on the object's properties: address, pitch
2759 * and tiling format.
9a5a53b3
CW
2760 *
2761 * For an untiled surface, this removes any existing fence.
de151cf6 2762 */
8c4b8c3f 2763int
06d98131 2764i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2765{
05394f39 2766 struct drm_device *dev = obj->base.dev;
79e53945 2767 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2768 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2769 struct drm_i915_fence_reg *reg;
ae3db24a 2770 int ret;
de151cf6 2771
14415745
CW
2772 /* Have we updated the tiling parameters upon the object and so
2773 * will need to serialise the write to the associated fence register?
2774 */
5d82e3e6 2775 if (obj->fence_dirty) {
14415745
CW
2776 ret = i915_gem_object_flush_fence(obj);
2777 if (ret)
2778 return ret;
2779 }
9a5a53b3 2780
d9e86c0e 2781 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2782 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2783 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2784 if (!obj->fence_dirty) {
14415745
CW
2785 list_move_tail(&reg->lru_list,
2786 &dev_priv->mm.fence_list);
2787 return 0;
2788 }
2789 } else if (enable) {
2790 reg = i915_find_fence_reg(dev);
2791 if (reg == NULL)
2792 return -EDEADLK;
d9e86c0e 2793
14415745
CW
2794 if (reg->obj) {
2795 struct drm_i915_gem_object *old = reg->obj;
2796
2797 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2798 if (ret)
2799 return ret;
2800
14415745 2801 i915_gem_object_fence_lost(old);
29c5a587 2802 }
14415745 2803 } else
a09ba7fa 2804 return 0;
a09ba7fa 2805
14415745 2806 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2807 obj->fence_dirty = false;
14415745 2808
9ce079e4 2809 return 0;
de151cf6
JB
2810}
2811
42d6ab48
CW
2812static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2813 struct drm_mm_node *gtt_space,
2814 unsigned long cache_level)
2815{
2816 struct drm_mm_node *other;
2817
2818 /* On non-LLC machines we have to be careful when putting differing
2819 * types of snoopable memory together to avoid the prefetcher
2820 * crossing memory domains and dieing.
2821 */
2822 if (HAS_LLC(dev))
2823 return true;
2824
2825 if (gtt_space == NULL)
2826 return true;
2827
2828 if (list_empty(&gtt_space->node_list))
2829 return true;
2830
2831 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2832 if (other->allocated && !other->hole_follows && other->color != cache_level)
2833 return false;
2834
2835 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2836 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2837 return false;
2838
2839 return true;
2840}
2841
2842static void i915_gem_verify_gtt(struct drm_device *dev)
2843{
2844#if WATCH_GTT
2845 struct drm_i915_private *dev_priv = dev->dev_private;
2846 struct drm_i915_gem_object *obj;
2847 int err = 0;
2848
2849 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2850 if (obj->gtt_space == NULL) {
2851 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2852 err++;
2853 continue;
2854 }
2855
2856 if (obj->cache_level != obj->gtt_space->color) {
2857 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2858 obj->gtt_space->start,
2859 obj->gtt_space->start + obj->gtt_space->size,
2860 obj->cache_level,
2861 obj->gtt_space->color);
2862 err++;
2863 continue;
2864 }
2865
2866 if (!i915_gem_valid_gtt_space(dev,
2867 obj->gtt_space,
2868 obj->cache_level)) {
2869 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2870 obj->gtt_space->start,
2871 obj->gtt_space->start + obj->gtt_space->size,
2872 obj->cache_level);
2873 err++;
2874 continue;
2875 }
2876 }
2877
2878 WARN_ON(err);
2879#endif
2880}
2881
673a394b
EA
2882/**
2883 * Finds free space in the GTT aperture and binds the object there.
2884 */
2885static int
05394f39 2886i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2887 unsigned alignment,
86a1ee26
CW
2888 bool map_and_fenceable,
2889 bool nonblocking)
673a394b 2890{
05394f39 2891 struct drm_device *dev = obj->base.dev;
673a394b 2892 drm_i915_private_t *dev_priv = dev->dev_private;
dc9dd7a2 2893 struct drm_mm_node *node;
5e783301 2894 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2895 bool mappable, fenceable;
07f73f69 2896 int ret;
673a394b 2897
05394f39 2898 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2899 DRM_ERROR("Attempting to bind a purgeable object\n");
2900 return -EINVAL;
2901 }
2902
e28f8711
CW
2903 fence_size = i915_gem_get_gtt_size(dev,
2904 obj->base.size,
2905 obj->tiling_mode);
2906 fence_alignment = i915_gem_get_gtt_alignment(dev,
2907 obj->base.size,
2908 obj->tiling_mode);
2909 unfenced_alignment =
2910 i915_gem_get_unfenced_gtt_alignment(dev,
2911 obj->base.size,
2912 obj->tiling_mode);
a00b10c3 2913
673a394b 2914 if (alignment == 0)
5e783301
DV
2915 alignment = map_and_fenceable ? fence_alignment :
2916 unfenced_alignment;
75e9e915 2917 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2918 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2919 return -EINVAL;
2920 }
2921
05394f39 2922 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2923
654fc607
CW
2924 /* If the object is bigger than the entire aperture, reject it early
2925 * before evicting everything in a vain attempt to find space.
2926 */
05394f39 2927 if (obj->base.size >
75e9e915 2928 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2929 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2930 return -E2BIG;
2931 }
2932
37e680a1 2933 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
2934 if (ret)
2935 return ret;
2936
fbdda6fb
CW
2937 i915_gem_object_pin_pages(obj);
2938
dc9dd7a2
CW
2939 node = kzalloc(sizeof(*node), GFP_KERNEL);
2940 if (node == NULL) {
2941 i915_gem_object_unpin_pages(obj);
2942 return -ENOMEM;
2943 }
2944
673a394b 2945 search_free:
75e9e915 2946 if (map_and_fenceable)
dc9dd7a2
CW
2947 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2948 size, alignment, obj->cache_level,
2949 0, dev_priv->mm.gtt_mappable_end);
920afa77 2950 else
dc9dd7a2
CW
2951 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2952 size, alignment, obj->cache_level);
2953 if (ret) {
75e9e915 2954 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2955 obj->cache_level,
86a1ee26
CW
2956 map_and_fenceable,
2957 nonblocking);
dc9dd7a2
CW
2958 if (ret == 0)
2959 goto search_free;
9731129c 2960
dc9dd7a2
CW
2961 i915_gem_object_unpin_pages(obj);
2962 kfree(node);
2963 return ret;
673a394b 2964 }
dc9dd7a2 2965 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
fbdda6fb 2966 i915_gem_object_unpin_pages(obj);
dc9dd7a2 2967 drm_mm_put_block(node);
42d6ab48 2968 return -EINVAL;
673a394b
EA
2969 }
2970
74163907 2971 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2972 if (ret) {
fbdda6fb 2973 i915_gem_object_unpin_pages(obj);
dc9dd7a2 2974 drm_mm_put_block(node);
6c085a72 2975 return ret;
673a394b 2976 }
673a394b 2977
6c085a72 2978 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 2979 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2980
dc9dd7a2
CW
2981 obj->gtt_space = node;
2982 obj->gtt_offset = node->start;
1c5d22f7 2983
75e9e915 2984 fenceable =
dc9dd7a2
CW
2985 node->size == fence_size &&
2986 (node->start & (fence_alignment - 1)) == 0;
a00b10c3 2987
75e9e915 2988 mappable =
05394f39 2989 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2990
05394f39 2991 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2992
fbdda6fb 2993 i915_gem_object_unpin_pages(obj);
db53a302 2994 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 2995 i915_gem_verify_gtt(dev);
673a394b
EA
2996 return 0;
2997}
2998
2999void
05394f39 3000i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3001{
673a394b
EA
3002 /* If we don't have a page list set up, then we're not pinned
3003 * to GPU, and we can ignore the cache flush because it'll happen
3004 * again at bind time.
3005 */
05394f39 3006 if (obj->pages == NULL)
673a394b
EA
3007 return;
3008
9c23f7fc
CW
3009 /* If the GPU is snooping the contents of the CPU cache,
3010 * we do not need to manually clear the CPU cache lines. However,
3011 * the caches are only snooped when the render cache is
3012 * flushed/invalidated. As we always have to emit invalidations
3013 * and flushes when moving into and out of the RENDER domain, correct
3014 * snooping behaviour occurs naturally as the result of our domain
3015 * tracking.
3016 */
3017 if (obj->cache_level != I915_CACHE_NONE)
3018 return;
3019
1c5d22f7 3020 trace_i915_gem_object_clflush(obj);
cfa16a0d 3021
9da3da66 3022 drm_clflush_sg(obj->pages);
e47c68e9
EA
3023}
3024
3025/** Flushes the GTT write domain for the object if it's dirty. */
3026static void
05394f39 3027i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3028{
1c5d22f7
CW
3029 uint32_t old_write_domain;
3030
05394f39 3031 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3032 return;
3033
63256ec5 3034 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3035 * to it immediately go to main memory as far as we know, so there's
3036 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3037 *
3038 * However, we do have to enforce the order so that all writes through
3039 * the GTT land before any writes to the device, such as updates to
3040 * the GATT itself.
e47c68e9 3041 */
63256ec5
CW
3042 wmb();
3043
05394f39
CW
3044 old_write_domain = obj->base.write_domain;
3045 obj->base.write_domain = 0;
1c5d22f7
CW
3046
3047 trace_i915_gem_object_change_domain(obj,
05394f39 3048 obj->base.read_domains,
1c5d22f7 3049 old_write_domain);
e47c68e9
EA
3050}
3051
3052/** Flushes the CPU write domain for the object if it's dirty. */
3053static void
05394f39 3054i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3055{
1c5d22f7 3056 uint32_t old_write_domain;
e47c68e9 3057
05394f39 3058 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3059 return;
3060
3061 i915_gem_clflush_object(obj);
e76e9aeb 3062 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3063 old_write_domain = obj->base.write_domain;
3064 obj->base.write_domain = 0;
1c5d22f7
CW
3065
3066 trace_i915_gem_object_change_domain(obj,
05394f39 3067 obj->base.read_domains,
1c5d22f7 3068 old_write_domain);
e47c68e9
EA
3069}
3070
2ef7eeaa
EA
3071/**
3072 * Moves a single object to the GTT read, and possibly write domain.
3073 *
3074 * This function returns when the move is complete, including waiting on
3075 * flushes to occur.
3076 */
79e53945 3077int
2021746e 3078i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3079{
8325a09d 3080 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3081 uint32_t old_write_domain, old_read_domains;
e47c68e9 3082 int ret;
2ef7eeaa 3083
02354392 3084 /* Not valid to be called on unbound objects. */
05394f39 3085 if (obj->gtt_space == NULL)
02354392
EA
3086 return -EINVAL;
3087
8d7e3de1
CW
3088 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3089 return 0;
3090
0201f1ec 3091 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3092 if (ret)
3093 return ret;
3094
7213342d 3095 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3096
05394f39
CW
3097 old_write_domain = obj->base.write_domain;
3098 old_read_domains = obj->base.read_domains;
1c5d22f7 3099
e47c68e9
EA
3100 /* It should now be out of any other write domains, and we can update
3101 * the domain values for our changes.
3102 */
05394f39
CW
3103 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3104 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3105 if (write) {
05394f39
CW
3106 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3107 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3108 obj->dirty = 1;
2ef7eeaa
EA
3109 }
3110
1c5d22f7
CW
3111 trace_i915_gem_object_change_domain(obj,
3112 old_read_domains,
3113 old_write_domain);
3114
8325a09d
CW
3115 /* And bump the LRU for this access */
3116 if (i915_gem_object_is_inactive(obj))
3117 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3118
e47c68e9
EA
3119 return 0;
3120}
3121
e4ffd173
CW
3122int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3123 enum i915_cache_level cache_level)
3124{
7bddb01f
DV
3125 struct drm_device *dev = obj->base.dev;
3126 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3127 int ret;
3128
3129 if (obj->cache_level == cache_level)
3130 return 0;
3131
3132 if (obj->pin_count) {
3133 DRM_DEBUG("can not change the cache level of pinned objects\n");
3134 return -EBUSY;
3135 }
3136
42d6ab48
CW
3137 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3138 ret = i915_gem_object_unbind(obj);
3139 if (ret)
3140 return ret;
3141 }
3142
e4ffd173
CW
3143 if (obj->gtt_space) {
3144 ret = i915_gem_object_finish_gpu(obj);
3145 if (ret)
3146 return ret;
3147
3148 i915_gem_object_finish_gtt(obj);
3149
3150 /* Before SandyBridge, you could not use tiling or fence
3151 * registers with snooped memory, so relinquish any fences
3152 * currently pointing to our region in the aperture.
3153 */
42d6ab48 3154 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3155 ret = i915_gem_object_put_fence(obj);
3156 if (ret)
3157 return ret;
3158 }
3159
74898d7e
DV
3160 if (obj->has_global_gtt_mapping)
3161 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3162 if (obj->has_aliasing_ppgtt_mapping)
3163 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3164 obj, cache_level);
42d6ab48
CW
3165
3166 obj->gtt_space->color = cache_level;
e4ffd173
CW
3167 }
3168
3169 if (cache_level == I915_CACHE_NONE) {
3170 u32 old_read_domains, old_write_domain;
3171
3172 /* If we're coming from LLC cached, then we haven't
3173 * actually been tracking whether the data is in the
3174 * CPU cache or not, since we only allow one bit set
3175 * in obj->write_domain and have been skipping the clflushes.
3176 * Just set it to the CPU cache for now.
3177 */
3178 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3179 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3180
3181 old_read_domains = obj->base.read_domains;
3182 old_write_domain = obj->base.write_domain;
3183
3184 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3185 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3186
3187 trace_i915_gem_object_change_domain(obj,
3188 old_read_domains,
3189 old_write_domain);
3190 }
3191
3192 obj->cache_level = cache_level;
42d6ab48 3193 i915_gem_verify_gtt(dev);
e4ffd173
CW
3194 return 0;
3195}
3196
199adf40
BW
3197int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3198 struct drm_file *file)
e6994aee 3199{
199adf40 3200 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3201 struct drm_i915_gem_object *obj;
3202 int ret;
3203
3204 ret = i915_mutex_lock_interruptible(dev);
3205 if (ret)
3206 return ret;
3207
3208 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3209 if (&obj->base == NULL) {
3210 ret = -ENOENT;
3211 goto unlock;
3212 }
3213
199adf40 3214 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3215
3216 drm_gem_object_unreference(&obj->base);
3217unlock:
3218 mutex_unlock(&dev->struct_mutex);
3219 return ret;
3220}
3221
199adf40
BW
3222int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3223 struct drm_file *file)
e6994aee 3224{
199adf40 3225 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3226 struct drm_i915_gem_object *obj;
3227 enum i915_cache_level level;
3228 int ret;
3229
199adf40
BW
3230 switch (args->caching) {
3231 case I915_CACHING_NONE:
e6994aee
CW
3232 level = I915_CACHE_NONE;
3233 break;
199adf40 3234 case I915_CACHING_CACHED:
e6994aee
CW
3235 level = I915_CACHE_LLC;
3236 break;
3237 default:
3238 return -EINVAL;
3239 }
3240
3bc2913e
BW
3241 ret = i915_mutex_lock_interruptible(dev);
3242 if (ret)
3243 return ret;
3244
e6994aee
CW
3245 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3246 if (&obj->base == NULL) {
3247 ret = -ENOENT;
3248 goto unlock;
3249 }
3250
3251 ret = i915_gem_object_set_cache_level(obj, level);
3252
3253 drm_gem_object_unreference(&obj->base);
3254unlock:
3255 mutex_unlock(&dev->struct_mutex);
3256 return ret;
3257}
3258
b9241ea3 3259/*
2da3b9b9
CW
3260 * Prepare buffer for display plane (scanout, cursors, etc).
3261 * Can be called from an uninterruptible phase (modesetting) and allows
3262 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3263 */
3264int
2da3b9b9
CW
3265i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3266 u32 alignment,
919926ae 3267 struct intel_ring_buffer *pipelined)
b9241ea3 3268{
2da3b9b9 3269 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3270 int ret;
3271
0be73284 3272 if (pipelined != obj->ring) {
2911a35b
BW
3273 ret = i915_gem_object_sync(obj, pipelined);
3274 if (ret)
b9241ea3
ZW
3275 return ret;
3276 }
3277
a7ef0640
EA
3278 /* The display engine is not coherent with the LLC cache on gen6. As
3279 * a result, we make sure that the pinning that is about to occur is
3280 * done with uncached PTEs. This is lowest common denominator for all
3281 * chipsets.
3282 *
3283 * However for gen6+, we could do better by using the GFDT bit instead
3284 * of uncaching, which would allow us to flush all the LLC-cached data
3285 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3286 */
3287 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3288 if (ret)
3289 return ret;
3290
2da3b9b9
CW
3291 /* As the user may map the buffer once pinned in the display plane
3292 * (e.g. libkms for the bootup splash), we have to ensure that we
3293 * always use map_and_fenceable for all scanout buffers.
3294 */
86a1ee26 3295 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3296 if (ret)
3297 return ret;
3298
b118c1e3
CW
3299 i915_gem_object_flush_cpu_write_domain(obj);
3300
2da3b9b9 3301 old_write_domain = obj->base.write_domain;
05394f39 3302 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3303
3304 /* It should now be out of any other write domains, and we can update
3305 * the domain values for our changes.
3306 */
e5f1d962 3307 obj->base.write_domain = 0;
05394f39 3308 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3309
3310 trace_i915_gem_object_change_domain(obj,
3311 old_read_domains,
2da3b9b9 3312 old_write_domain);
b9241ea3
ZW
3313
3314 return 0;
3315}
3316
85345517 3317int
a8198eea 3318i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3319{
88241785
CW
3320 int ret;
3321
a8198eea 3322 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3323 return 0;
3324
0201f1ec 3325 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3326 if (ret)
3327 return ret;
3328
a8198eea
CW
3329 /* Ensure that we invalidate the GPU's caches and TLBs. */
3330 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3331 return 0;
85345517
CW
3332}
3333
e47c68e9
EA
3334/**
3335 * Moves a single object to the CPU read, and possibly write domain.
3336 *
3337 * This function returns when the move is complete, including waiting on
3338 * flushes to occur.
3339 */
dabdfe02 3340int
919926ae 3341i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3342{
1c5d22f7 3343 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3344 int ret;
3345
8d7e3de1
CW
3346 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3347 return 0;
3348
0201f1ec 3349 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3350 if (ret)
3351 return ret;
3352
e47c68e9 3353 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3354
05394f39
CW
3355 old_write_domain = obj->base.write_domain;
3356 old_read_domains = obj->base.read_domains;
1c5d22f7 3357
e47c68e9 3358 /* Flush the CPU cache if it's still invalid. */
05394f39 3359 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3360 i915_gem_clflush_object(obj);
2ef7eeaa 3361
05394f39 3362 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3363 }
3364
3365 /* It should now be out of any other write domains, and we can update
3366 * the domain values for our changes.
3367 */
05394f39 3368 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3369
3370 /* If we're writing through the CPU, then the GPU read domains will
3371 * need to be invalidated at next use.
3372 */
3373 if (write) {
05394f39
CW
3374 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3375 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3376 }
2ef7eeaa 3377
1c5d22f7
CW
3378 trace_i915_gem_object_change_domain(obj,
3379 old_read_domains,
3380 old_write_domain);
3381
2ef7eeaa
EA
3382 return 0;
3383}
3384
673a394b
EA
3385/* Throttle our rendering by waiting until the ring has completed our requests
3386 * emitted over 20 msec ago.
3387 *
b962442e
EA
3388 * Note that if we were to use the current jiffies each time around the loop,
3389 * we wouldn't escape the function with any frames outstanding if the time to
3390 * render a frame was over 20ms.
3391 *
673a394b
EA
3392 * This should get us reasonable parallelism between CPU and GPU but also
3393 * relatively low latency when blocking on a particular request to finish.
3394 */
40a5f0de 3395static int
f787a5f5 3396i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3397{
f787a5f5
CW
3398 struct drm_i915_private *dev_priv = dev->dev_private;
3399 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3400 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3401 struct drm_i915_gem_request *request;
3402 struct intel_ring_buffer *ring = NULL;
3403 u32 seqno = 0;
3404 int ret;
93533c29 3405
e110e8d6
CW
3406 if (atomic_read(&dev_priv->mm.wedged))
3407 return -EIO;
3408
1c25595f 3409 spin_lock(&file_priv->mm.lock);
f787a5f5 3410 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3411 if (time_after_eq(request->emitted_jiffies, recent_enough))
3412 break;
40a5f0de 3413
f787a5f5
CW
3414 ring = request->ring;
3415 seqno = request->seqno;
b962442e 3416 }
1c25595f 3417 spin_unlock(&file_priv->mm.lock);
40a5f0de 3418
f787a5f5
CW
3419 if (seqno == 0)
3420 return 0;
2bc43b5c 3421
5c81fe85 3422 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3423 if (ret == 0)
3424 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3425
3426 return ret;
3427}
3428
673a394b 3429int
05394f39
CW
3430i915_gem_object_pin(struct drm_i915_gem_object *obj,
3431 uint32_t alignment,
86a1ee26
CW
3432 bool map_and_fenceable,
3433 bool nonblocking)
673a394b 3434{
673a394b
EA
3435 int ret;
3436
7e81a42e
CW
3437 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3438 return -EBUSY;
ac0c6b5a 3439
05394f39
CW
3440 if (obj->gtt_space != NULL) {
3441 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3442 (map_and_fenceable && !obj->map_and_fenceable)) {
3443 WARN(obj->pin_count,
ae7d49d8 3444 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3445 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3446 " obj->map_and_fenceable=%d\n",
05394f39 3447 obj->gtt_offset, alignment,
75e9e915 3448 map_and_fenceable,
05394f39 3449 obj->map_and_fenceable);
ac0c6b5a
CW
3450 ret = i915_gem_object_unbind(obj);
3451 if (ret)
3452 return ret;
3453 }
3454 }
3455
05394f39 3456 if (obj->gtt_space == NULL) {
8742267a
CW
3457 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3458
a00b10c3 3459 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3460 map_and_fenceable,
3461 nonblocking);
9731129c 3462 if (ret)
673a394b 3463 return ret;
8742267a
CW
3464
3465 if (!dev_priv->mm.aliasing_ppgtt)
3466 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3467 }
76446cac 3468
74898d7e
DV
3469 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3470 i915_gem_gtt_bind_object(obj, obj->cache_level);
3471
1b50247a 3472 obj->pin_count++;
6299f992 3473 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3474
3475 return 0;
3476}
3477
3478void
05394f39 3479i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3480{
05394f39
CW
3481 BUG_ON(obj->pin_count == 0);
3482 BUG_ON(obj->gtt_space == NULL);
673a394b 3483
1b50247a 3484 if (--obj->pin_count == 0)
6299f992 3485 obj->pin_mappable = false;
673a394b
EA
3486}
3487
3488int
3489i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3490 struct drm_file *file)
673a394b
EA
3491{
3492 struct drm_i915_gem_pin *args = data;
05394f39 3493 struct drm_i915_gem_object *obj;
673a394b
EA
3494 int ret;
3495
1d7cfea1
CW
3496 ret = i915_mutex_lock_interruptible(dev);
3497 if (ret)
3498 return ret;
673a394b 3499
05394f39 3500 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3501 if (&obj->base == NULL) {
1d7cfea1
CW
3502 ret = -ENOENT;
3503 goto unlock;
673a394b 3504 }
673a394b 3505
05394f39 3506 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3507 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3508 ret = -EINVAL;
3509 goto out;
3ef94daa
CW
3510 }
3511
05394f39 3512 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3513 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3514 args->handle);
1d7cfea1
CW
3515 ret = -EINVAL;
3516 goto out;
79e53945
JB
3517 }
3518
05394f39
CW
3519 obj->user_pin_count++;
3520 obj->pin_filp = file;
3521 if (obj->user_pin_count == 1) {
86a1ee26 3522 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3523 if (ret)
3524 goto out;
673a394b
EA
3525 }
3526
3527 /* XXX - flush the CPU caches for pinned objects
3528 * as the X server doesn't manage domains yet
3529 */
e47c68e9 3530 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3531 args->offset = obj->gtt_offset;
1d7cfea1 3532out:
05394f39 3533 drm_gem_object_unreference(&obj->base);
1d7cfea1 3534unlock:
673a394b 3535 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3536 return ret;
673a394b
EA
3537}
3538
3539int
3540i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3541 struct drm_file *file)
673a394b
EA
3542{
3543 struct drm_i915_gem_pin *args = data;
05394f39 3544 struct drm_i915_gem_object *obj;
76c1dec1 3545 int ret;
673a394b 3546
1d7cfea1
CW
3547 ret = i915_mutex_lock_interruptible(dev);
3548 if (ret)
3549 return ret;
673a394b 3550
05394f39 3551 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3552 if (&obj->base == NULL) {
1d7cfea1
CW
3553 ret = -ENOENT;
3554 goto unlock;
673a394b 3555 }
76c1dec1 3556
05394f39 3557 if (obj->pin_filp != file) {
79e53945
JB
3558 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3559 args->handle);
1d7cfea1
CW
3560 ret = -EINVAL;
3561 goto out;
79e53945 3562 }
05394f39
CW
3563 obj->user_pin_count--;
3564 if (obj->user_pin_count == 0) {
3565 obj->pin_filp = NULL;
79e53945
JB
3566 i915_gem_object_unpin(obj);
3567 }
673a394b 3568
1d7cfea1 3569out:
05394f39 3570 drm_gem_object_unreference(&obj->base);
1d7cfea1 3571unlock:
673a394b 3572 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3573 return ret;
673a394b
EA
3574}
3575
3576int
3577i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3578 struct drm_file *file)
673a394b
EA
3579{
3580 struct drm_i915_gem_busy *args = data;
05394f39 3581 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3582 int ret;
3583
76c1dec1 3584 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3585 if (ret)
76c1dec1 3586 return ret;
673a394b 3587
05394f39 3588 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3589 if (&obj->base == NULL) {
1d7cfea1
CW
3590 ret = -ENOENT;
3591 goto unlock;
673a394b 3592 }
d1b851fc 3593
0be555b6
CW
3594 /* Count all active objects as busy, even if they are currently not used
3595 * by the gpu. Users of this interface expect objects to eventually
3596 * become non-busy without any further actions, therefore emit any
3597 * necessary flushes here.
c4de0a5d 3598 */
30dfebf3 3599 ret = i915_gem_object_flush_active(obj);
0be555b6 3600
30dfebf3 3601 args->busy = obj->active;
e9808edd
CW
3602 if (obj->ring) {
3603 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3604 args->busy |= intel_ring_flag(obj->ring) << 16;
3605 }
673a394b 3606
05394f39 3607 drm_gem_object_unreference(&obj->base);
1d7cfea1 3608unlock:
673a394b 3609 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3610 return ret;
673a394b
EA
3611}
3612
3613int
3614i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3615 struct drm_file *file_priv)
3616{
0206e353 3617 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3618}
3619
3ef94daa
CW
3620int
3621i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3622 struct drm_file *file_priv)
3623{
3624 struct drm_i915_gem_madvise *args = data;
05394f39 3625 struct drm_i915_gem_object *obj;
76c1dec1 3626 int ret;
3ef94daa
CW
3627
3628 switch (args->madv) {
3629 case I915_MADV_DONTNEED:
3630 case I915_MADV_WILLNEED:
3631 break;
3632 default:
3633 return -EINVAL;
3634 }
3635
1d7cfea1
CW
3636 ret = i915_mutex_lock_interruptible(dev);
3637 if (ret)
3638 return ret;
3639
05394f39 3640 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3641 if (&obj->base == NULL) {
1d7cfea1
CW
3642 ret = -ENOENT;
3643 goto unlock;
3ef94daa 3644 }
3ef94daa 3645
05394f39 3646 if (obj->pin_count) {
1d7cfea1
CW
3647 ret = -EINVAL;
3648 goto out;
3ef94daa
CW
3649 }
3650
05394f39
CW
3651 if (obj->madv != __I915_MADV_PURGED)
3652 obj->madv = args->madv;
3ef94daa 3653
6c085a72
CW
3654 /* if the object is no longer attached, discard its backing storage */
3655 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3656 i915_gem_object_truncate(obj);
3657
05394f39 3658 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3659
1d7cfea1 3660out:
05394f39 3661 drm_gem_object_unreference(&obj->base);
1d7cfea1 3662unlock:
3ef94daa 3663 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3664 return ret;
3ef94daa
CW
3665}
3666
37e680a1
CW
3667void i915_gem_object_init(struct drm_i915_gem_object *obj,
3668 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3669{
0327d6ba
CW
3670 INIT_LIST_HEAD(&obj->mm_list);
3671 INIT_LIST_HEAD(&obj->gtt_list);
3672 INIT_LIST_HEAD(&obj->ring_list);
3673 INIT_LIST_HEAD(&obj->exec_list);
3674
37e680a1
CW
3675 obj->ops = ops;
3676
0327d6ba
CW
3677 obj->fence_reg = I915_FENCE_REG_NONE;
3678 obj->madv = I915_MADV_WILLNEED;
3679 /* Avoid an unnecessary call to unbind on the first bind. */
3680 obj->map_and_fenceable = true;
3681
3682 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3683}
3684
37e680a1
CW
3685static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3686 .get_pages = i915_gem_object_get_pages_gtt,
3687 .put_pages = i915_gem_object_put_pages_gtt,
3688};
3689
05394f39
CW
3690struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3691 size_t size)
ac52bc56 3692{
c397b908 3693 struct drm_i915_gem_object *obj;
5949eac4 3694 struct address_space *mapping;
bed1ea95 3695 u32 mask;
ac52bc56 3696
c397b908
DV
3697 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3698 if (obj == NULL)
3699 return NULL;
673a394b 3700
c397b908
DV
3701 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3702 kfree(obj);
3703 return NULL;
3704 }
673a394b 3705
bed1ea95
CW
3706 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3707 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3708 /* 965gm cannot relocate objects above 4GiB. */
3709 mask &= ~__GFP_HIGHMEM;
3710 mask |= __GFP_DMA32;
3711 }
3712
5949eac4 3713 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3714 mapping_set_gfp_mask(mapping, mask);
5949eac4 3715
37e680a1 3716 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3717
c397b908
DV
3718 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3719 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3720
3d29b842
ED
3721 if (HAS_LLC(dev)) {
3722 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3723 * cache) for about a 10% performance improvement
3724 * compared to uncached. Graphics requests other than
3725 * display scanout are coherent with the CPU in
3726 * accessing this cache. This means in this mode we
3727 * don't need to clflush on the CPU side, and on the
3728 * GPU side we only need to flush internal caches to
3729 * get data visible to the CPU.
3730 *
3731 * However, we maintain the display planes as UC, and so
3732 * need to rebind when first used as such.
3733 */
3734 obj->cache_level = I915_CACHE_LLC;
3735 } else
3736 obj->cache_level = I915_CACHE_NONE;
3737
05394f39 3738 return obj;
c397b908
DV
3739}
3740
3741int i915_gem_init_object(struct drm_gem_object *obj)
3742{
3743 BUG();
de151cf6 3744
673a394b
EA
3745 return 0;
3746}
3747
1488fc08 3748void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3749{
1488fc08 3750 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3751 struct drm_device *dev = obj->base.dev;
be72615b 3752 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3753
26e12f89
CW
3754 trace_i915_gem_object_destroy(obj);
3755
1488fc08
CW
3756 if (obj->phys_obj)
3757 i915_gem_detach_phys_object(dev, obj);
3758
3759 obj->pin_count = 0;
3760 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3761 bool was_interruptible;
3762
3763 was_interruptible = dev_priv->mm.interruptible;
3764 dev_priv->mm.interruptible = false;
3765
3766 WARN_ON(i915_gem_object_unbind(obj));
3767
3768 dev_priv->mm.interruptible = was_interruptible;
3769 }
3770
a5570178 3771 obj->pages_pin_count = 0;
37e680a1 3772 i915_gem_object_put_pages(obj);
d8cb5086 3773 i915_gem_object_free_mmap_offset(obj);
de151cf6 3774
9da3da66
CW
3775 BUG_ON(obj->pages);
3776
2f745ad3
CW
3777 if (obj->base.import_attach)
3778 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3779
05394f39
CW
3780 drm_gem_object_release(&obj->base);
3781 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3782
05394f39
CW
3783 kfree(obj->bit_17);
3784 kfree(obj);
673a394b
EA
3785}
3786
29105ccc
CW
3787int
3788i915_gem_idle(struct drm_device *dev)
3789{
3790 drm_i915_private_t *dev_priv = dev->dev_private;
3791 int ret;
28dfe52a 3792
29105ccc 3793 mutex_lock(&dev->struct_mutex);
1c5d22f7 3794
87acb0a5 3795 if (dev_priv->mm.suspended) {
29105ccc
CW
3796 mutex_unlock(&dev->struct_mutex);
3797 return 0;
28dfe52a
EA
3798 }
3799
b2da9fe5 3800 ret = i915_gpu_idle(dev);
6dbe2772
KP
3801 if (ret) {
3802 mutex_unlock(&dev->struct_mutex);
673a394b 3803 return ret;
6dbe2772 3804 }
b2da9fe5 3805 i915_gem_retire_requests(dev);
673a394b 3806
29105ccc 3807 /* Under UMS, be paranoid and evict. */
a39d7efc 3808 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3809 i915_gem_evict_everything(dev);
29105ccc 3810
312817a3
CW
3811 i915_gem_reset_fences(dev);
3812
29105ccc
CW
3813 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3814 * We need to replace this with a semaphore, or something.
3815 * And not confound mm.suspended!
3816 */
3817 dev_priv->mm.suspended = 1;
bc0c7f14 3818 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3819
3820 i915_kernel_lost_context(dev);
6dbe2772 3821 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3822
6dbe2772
KP
3823 mutex_unlock(&dev->struct_mutex);
3824
29105ccc
CW
3825 /* Cancel the retire work handler, which should be idle now. */
3826 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3827
673a394b
EA
3828 return 0;
3829}
3830
b9524a1e
BW
3831void i915_gem_l3_remap(struct drm_device *dev)
3832{
3833 drm_i915_private_t *dev_priv = dev->dev_private;
3834 u32 misccpctl;
3835 int i;
3836
3837 if (!IS_IVYBRIDGE(dev))
3838 return;
3839
a4da4fa4 3840 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
3841 return;
3842
3843 misccpctl = I915_READ(GEN7_MISCCPCTL);
3844 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3845 POSTING_READ(GEN7_MISCCPCTL);
3846
3847 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3848 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 3849 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
3850 DRM_DEBUG("0x%x was already programmed to %x\n",
3851 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 3852 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 3853 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 3854 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
3855 }
3856
3857 /* Make sure all the writes land before disabling dop clock gating */
3858 POSTING_READ(GEN7_L3LOG_BASE);
3859
3860 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3861}
3862
f691e2f4
DV
3863void i915_gem_init_swizzling(struct drm_device *dev)
3864{
3865 drm_i915_private_t *dev_priv = dev->dev_private;
3866
11782b02 3867 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3868 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3869 return;
3870
3871 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3872 DISP_TILE_SURFACE_SWIZZLING);
3873
11782b02
DV
3874 if (IS_GEN5(dev))
3875 return;
3876
f691e2f4
DV
3877 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3878 if (IS_GEN6(dev))
6b26c86d 3879 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3880 else
6b26c86d 3881 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3882}
e21af88d 3883
67b1b571
CW
3884static bool
3885intel_enable_blt(struct drm_device *dev)
3886{
3887 if (!HAS_BLT(dev))
3888 return false;
3889
3890 /* The blitter was dysfunctional on early prototypes */
3891 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3892 DRM_INFO("BLT not supported on this pre-production hardware;"
3893 " graphics performance will be degraded.\n");
3894 return false;
3895 }
3896
3897 return true;
3898}
3899
8187a2b7 3900int
f691e2f4 3901i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3902{
3903 drm_i915_private_t *dev_priv = dev->dev_private;
3904 int ret;
68f95ba9 3905
e76e9aeb 3906 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
8ecd1a66
DV
3907 return -EIO;
3908
eda2d7f5
RV
3909 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3910 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3911
b9524a1e
BW
3912 i915_gem_l3_remap(dev);
3913
f691e2f4
DV
3914 i915_gem_init_swizzling(dev);
3915
5c1143bb 3916 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3917 if (ret)
b6913e4b 3918 return ret;
68f95ba9
CW
3919
3920 if (HAS_BSD(dev)) {
5c1143bb 3921 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3922 if (ret)
3923 goto cleanup_render_ring;
d1b851fc 3924 }
68f95ba9 3925
67b1b571 3926 if (intel_enable_blt(dev)) {
549f7365
CW
3927 ret = intel_init_blt_ring_buffer(dev);
3928 if (ret)
3929 goto cleanup_bsd_ring;
3930 }
3931
6f392d54
CW
3932 dev_priv->next_seqno = 1;
3933
254f965c
BW
3934 /*
3935 * XXX: There was some w/a described somewhere suggesting loading
3936 * contexts before PPGTT.
3937 */
3938 i915_gem_context_init(dev);
e21af88d
DV
3939 i915_gem_init_ppgtt(dev);
3940
68f95ba9
CW
3941 return 0;
3942
549f7365 3943cleanup_bsd_ring:
1ec14ad3 3944 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3945cleanup_render_ring:
1ec14ad3 3946 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3947 return ret;
3948}
3949
1070a42b
CW
3950static bool
3951intel_enable_ppgtt(struct drm_device *dev)
3952{
3953 if (i915_enable_ppgtt >= 0)
3954 return i915_enable_ppgtt;
3955
3956#ifdef CONFIG_INTEL_IOMMU
3957 /* Disable ppgtt on SNB if VT-d is on. */
3958 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3959 return false;
3960#endif
3961
3962 return true;
3963}
3964
3965int i915_gem_init(struct drm_device *dev)
3966{
3967 struct drm_i915_private *dev_priv = dev->dev_private;
3968 unsigned long gtt_size, mappable_size;
3969 int ret;
3970
3971 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3972 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3973
3974 mutex_lock(&dev->struct_mutex);
3975 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3976 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3977 * aperture accordingly when using aliasing ppgtt. */
3978 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3979
3980 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3981
3982 ret = i915_gem_init_aliasing_ppgtt(dev);
3983 if (ret) {
3984 mutex_unlock(&dev->struct_mutex);
3985 return ret;
3986 }
3987 } else {
3988 /* Let GEM Manage all of the aperture.
3989 *
3990 * However, leave one page at the end still bound to the scratch
3991 * page. There are a number of places where the hardware
3992 * apparently prefetches past the end of the object, and we've
3993 * seen multiple hangs with the GPU head pointer stuck in a
3994 * batchbuffer bound at the last page of the aperture. One page
3995 * should be enough to keep any prefetching inside of the
3996 * aperture.
3997 */
3998 i915_gem_init_global_gtt(dev, 0, mappable_size,
3999 gtt_size);
4000 }
4001
4002 ret = i915_gem_init_hw(dev);
4003 mutex_unlock(&dev->struct_mutex);
4004 if (ret) {
4005 i915_gem_cleanup_aliasing_ppgtt(dev);
4006 return ret;
4007 }
4008
53ca26ca
DV
4009 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4010 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4011 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4012 return 0;
4013}
4014
8187a2b7
ZN
4015void
4016i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4017{
4018 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4019 struct intel_ring_buffer *ring;
1ec14ad3 4020 int i;
8187a2b7 4021
b4519513
CW
4022 for_each_ring(ring, dev_priv, i)
4023 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4024}
4025
673a394b
EA
4026int
4027i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4028 struct drm_file *file_priv)
4029{
4030 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4031 int ret;
673a394b 4032
79e53945
JB
4033 if (drm_core_check_feature(dev, DRIVER_MODESET))
4034 return 0;
4035
ba1234d1 4036 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4037 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4038 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4039 }
4040
673a394b 4041 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4042 dev_priv->mm.suspended = 0;
4043
f691e2f4 4044 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4045 if (ret != 0) {
4046 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4047 return ret;
d816f6ac 4048 }
9bb2d6f9 4049
69dc4987 4050 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4051 mutex_unlock(&dev->struct_mutex);
dbb19d30 4052
5f35308b
CW
4053 ret = drm_irq_install(dev);
4054 if (ret)
4055 goto cleanup_ringbuffer;
dbb19d30 4056
673a394b 4057 return 0;
5f35308b
CW
4058
4059cleanup_ringbuffer:
4060 mutex_lock(&dev->struct_mutex);
4061 i915_gem_cleanup_ringbuffer(dev);
4062 dev_priv->mm.suspended = 1;
4063 mutex_unlock(&dev->struct_mutex);
4064
4065 return ret;
673a394b
EA
4066}
4067
4068int
4069i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4070 struct drm_file *file_priv)
4071{
79e53945
JB
4072 if (drm_core_check_feature(dev, DRIVER_MODESET))
4073 return 0;
4074
dbb19d30 4075 drm_irq_uninstall(dev);
e6890f6f 4076 return i915_gem_idle(dev);
673a394b
EA
4077}
4078
4079void
4080i915_gem_lastclose(struct drm_device *dev)
4081{
4082 int ret;
673a394b 4083
e806b495
EA
4084 if (drm_core_check_feature(dev, DRIVER_MODESET))
4085 return;
4086
6dbe2772
KP
4087 ret = i915_gem_idle(dev);
4088 if (ret)
4089 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4090}
4091
64193406
CW
4092static void
4093init_ring_lists(struct intel_ring_buffer *ring)
4094{
4095 INIT_LIST_HEAD(&ring->active_list);
4096 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4097}
4098
673a394b
EA
4099void
4100i915_gem_load(struct drm_device *dev)
4101{
b5aa8a0f 4102 int i;
673a394b
EA
4103 drm_i915_private_t *dev_priv = dev->dev_private;
4104
69dc4987 4105 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4106 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4107 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4108 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4109 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4110 for (i = 0; i < I915_NUM_RINGS; i++)
4111 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4112 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4113 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4114 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4115 i915_gem_retire_work_handler);
30dbf0c0 4116 init_completion(&dev_priv->error_completion);
31169714 4117
94400120
DA
4118 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4119 if (IS_GEN3(dev)) {
50743298
DV
4120 I915_WRITE(MI_ARB_STATE,
4121 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4122 }
4123
72bfa19c
CW
4124 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4125
de151cf6 4126 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4127 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4128 dev_priv->fence_reg_start = 3;
de151cf6 4129
a6c45cf0 4130 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4131 dev_priv->num_fence_regs = 16;
4132 else
4133 dev_priv->num_fence_regs = 8;
4134
b5aa8a0f 4135 /* Initialize fence registers to zero */
ada726c7 4136 i915_gem_reset_fences(dev);
10ed13e4 4137
673a394b 4138 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4139 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4140
ce453d81
CW
4141 dev_priv->mm.interruptible = true;
4142
17250b71
CW
4143 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4144 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4145 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4146}
71acb5eb
DA
4147
4148/*
4149 * Create a physically contiguous memory object for this object
4150 * e.g. for cursor + overlay regs
4151 */
995b6762
CW
4152static int i915_gem_init_phys_object(struct drm_device *dev,
4153 int id, int size, int align)
71acb5eb
DA
4154{
4155 drm_i915_private_t *dev_priv = dev->dev_private;
4156 struct drm_i915_gem_phys_object *phys_obj;
4157 int ret;
4158
4159 if (dev_priv->mm.phys_objs[id - 1] || !size)
4160 return 0;
4161
9a298b2a 4162 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4163 if (!phys_obj)
4164 return -ENOMEM;
4165
4166 phys_obj->id = id;
4167
6eeefaf3 4168 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4169 if (!phys_obj->handle) {
4170 ret = -ENOMEM;
4171 goto kfree_obj;
4172 }
4173#ifdef CONFIG_X86
4174 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4175#endif
4176
4177 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4178
4179 return 0;
4180kfree_obj:
9a298b2a 4181 kfree(phys_obj);
71acb5eb
DA
4182 return ret;
4183}
4184
995b6762 4185static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4186{
4187 drm_i915_private_t *dev_priv = dev->dev_private;
4188 struct drm_i915_gem_phys_object *phys_obj;
4189
4190 if (!dev_priv->mm.phys_objs[id - 1])
4191 return;
4192
4193 phys_obj = dev_priv->mm.phys_objs[id - 1];
4194 if (phys_obj->cur_obj) {
4195 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4196 }
4197
4198#ifdef CONFIG_X86
4199 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4200#endif
4201 drm_pci_free(dev, phys_obj->handle);
4202 kfree(phys_obj);
4203 dev_priv->mm.phys_objs[id - 1] = NULL;
4204}
4205
4206void i915_gem_free_all_phys_object(struct drm_device *dev)
4207{
4208 int i;
4209
260883c8 4210 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4211 i915_gem_free_phys_object(dev, i);
4212}
4213
4214void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4215 struct drm_i915_gem_object *obj)
71acb5eb 4216{
05394f39 4217 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4218 char *vaddr;
71acb5eb 4219 int i;
71acb5eb
DA
4220 int page_count;
4221
05394f39 4222 if (!obj->phys_obj)
71acb5eb 4223 return;
05394f39 4224 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4225
05394f39 4226 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4227 for (i = 0; i < page_count; i++) {
5949eac4 4228 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4229 if (!IS_ERR(page)) {
4230 char *dst = kmap_atomic(page);
4231 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4232 kunmap_atomic(dst);
4233
4234 drm_clflush_pages(&page, 1);
4235
4236 set_page_dirty(page);
4237 mark_page_accessed(page);
4238 page_cache_release(page);
4239 }
71acb5eb 4240 }
e76e9aeb 4241 i915_gem_chipset_flush(dev);
d78b47b9 4242
05394f39
CW
4243 obj->phys_obj->cur_obj = NULL;
4244 obj->phys_obj = NULL;
71acb5eb
DA
4245}
4246
4247int
4248i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4249 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4250 int id,
4251 int align)
71acb5eb 4252{
05394f39 4253 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4254 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4255 int ret = 0;
4256 int page_count;
4257 int i;
4258
4259 if (id > I915_MAX_PHYS_OBJECT)
4260 return -EINVAL;
4261
05394f39
CW
4262 if (obj->phys_obj) {
4263 if (obj->phys_obj->id == id)
71acb5eb
DA
4264 return 0;
4265 i915_gem_detach_phys_object(dev, obj);
4266 }
4267
71acb5eb
DA
4268 /* create a new object */
4269 if (!dev_priv->mm.phys_objs[id - 1]) {
4270 ret = i915_gem_init_phys_object(dev, id,
05394f39 4271 obj->base.size, align);
71acb5eb 4272 if (ret) {
05394f39
CW
4273 DRM_ERROR("failed to init phys object %d size: %zu\n",
4274 id, obj->base.size);
e5281ccd 4275 return ret;
71acb5eb
DA
4276 }
4277 }
4278
4279 /* bind to the object */
05394f39
CW
4280 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4281 obj->phys_obj->cur_obj = obj;
71acb5eb 4282
05394f39 4283 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4284
4285 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4286 struct page *page;
4287 char *dst, *src;
4288
5949eac4 4289 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4290 if (IS_ERR(page))
4291 return PTR_ERR(page);
71acb5eb 4292
ff75b9bc 4293 src = kmap_atomic(page);
05394f39 4294 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4295 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4296 kunmap_atomic(src);
71acb5eb 4297
e5281ccd
CW
4298 mark_page_accessed(page);
4299 page_cache_release(page);
4300 }
d78b47b9 4301
71acb5eb 4302 return 0;
71acb5eb
DA
4303}
4304
4305static int
05394f39
CW
4306i915_gem_phys_pwrite(struct drm_device *dev,
4307 struct drm_i915_gem_object *obj,
71acb5eb
DA
4308 struct drm_i915_gem_pwrite *args,
4309 struct drm_file *file_priv)
4310{
05394f39 4311 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4312 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4313
b47b30cc
CW
4314 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4315 unsigned long unwritten;
4316
4317 /* The physical object once assigned is fixed for the lifetime
4318 * of the obj, so we can safely drop the lock and continue
4319 * to access vaddr.
4320 */
4321 mutex_unlock(&dev->struct_mutex);
4322 unwritten = copy_from_user(vaddr, user_data, args->size);
4323 mutex_lock(&dev->struct_mutex);
4324 if (unwritten)
4325 return -EFAULT;
4326 }
71acb5eb 4327
e76e9aeb 4328 i915_gem_chipset_flush(dev);
71acb5eb
DA
4329 return 0;
4330}
b962442e 4331
f787a5f5 4332void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4333{
f787a5f5 4334 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4335
4336 /* Clean up our request list when the client is going away, so that
4337 * later retire_requests won't dereference our soon-to-be-gone
4338 * file_priv.
4339 */
1c25595f 4340 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4341 while (!list_empty(&file_priv->mm.request_list)) {
4342 struct drm_i915_gem_request *request;
4343
4344 request = list_first_entry(&file_priv->mm.request_list,
4345 struct drm_i915_gem_request,
4346 client_list);
4347 list_del(&request->client_list);
4348 request->file_priv = NULL;
4349 }
1c25595f 4350 spin_unlock(&file_priv->mm.lock);
b962442e 4351}
31169714 4352
5774506f
CW
4353static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4354{
4355 if (!mutex_is_locked(mutex))
4356 return false;
4357
4358#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4359 return mutex->owner == task;
4360#else
4361 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4362 return false;
4363#endif
4364}
4365
31169714 4366static int
1495f230 4367i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4368{
17250b71
CW
4369 struct drm_i915_private *dev_priv =
4370 container_of(shrinker,
4371 struct drm_i915_private,
4372 mm.inactive_shrinker);
4373 struct drm_device *dev = dev_priv->dev;
6c085a72 4374 struct drm_i915_gem_object *obj;
1495f230 4375 int nr_to_scan = sc->nr_to_scan;
5774506f 4376 bool unlock = true;
17250b71
CW
4377 int cnt;
4378
5774506f
CW
4379 if (!mutex_trylock(&dev->struct_mutex)) {
4380 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4381 return 0;
4382
4383 unlock = false;
4384 }
31169714 4385
6c085a72
CW
4386 if (nr_to_scan) {
4387 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4388 if (nr_to_scan > 0)
4389 i915_gem_shrink_all(dev_priv);
31169714
CW
4390 }
4391
17250b71 4392 cnt = 0;
6c085a72 4393 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
a5570178
CW
4394 if (obj->pages_pin_count == 0)
4395 cnt += obj->base.size >> PAGE_SHIFT;
6c085a72 4396 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
a5570178 4397 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4398 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4399
5774506f
CW
4400 if (unlock)
4401 mutex_unlock(&dev->struct_mutex);
6c085a72 4402 return cnt;
31169714 4403}