drm/i915: Process page flags once rather than per pwrite/pread
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
05394f39
CW
46static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
71acb5eb 48 struct drm_i915_gem_pwrite *args,
05394f39 49 struct drm_file *file);
673a394b 50
61050808
CW
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
7dc19d5a
DC
57static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
58 struct shrink_control *sc);
59static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
60 struct shrink_control *sc);
d9973b43
CW
61static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
62static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 63static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
cb216aa8 64static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
31169714 65
c76ce038
CW
66static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68{
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70}
71
2c22569b
CW
72static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73{
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78}
79
61050808
CW
80static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81{
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
5d82e3e6 88 obj->fence_dirty = false;
61050808
CW
89 obj->fence_reg = I915_FENCE_REG_NONE;
90}
91
73aa808f
CW
92/* some bookkeeping */
93static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
102static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104{
c20e8355 105 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
c20e8355 108 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
109}
110
21dd3734 111static int
33196ded 112i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 113{
30dbf0c0
CW
114 int ret;
115
7abb690a
DV
116#define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
1f83fee0 118 if (EXIT_COND)
30dbf0c0
CW
119 return 0;
120
0a6759c6
DV
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
1f83fee0
DV
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
0a6759c6
DV
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
30dbf0c0 133 return ret;
0a6759c6 134 }
1f83fee0 135#undef EXIT_COND
30dbf0c0 136
21dd3734 137 return 0;
30dbf0c0
CW
138}
139
54cf91dc 140int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 141{
33196ded 142 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
143 int ret;
144
33196ded 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
23bc5982 153 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
154 return 0;
155}
30dbf0c0 156
7d1c4804 157static inline bool
05394f39 158i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 159{
9843877d 160 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
161}
162
79e53945
JB
163int
164i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
79e53945 166{
93d18799 167 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 168 struct drm_i915_gem_init *args = data;
2021746e 169
7bb6fb8d
DV
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
2021746e
CW
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
79e53945 176
f534bc0b
DV
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
79e53945 181 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
93d18799 184 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
185 mutex_unlock(&dev->struct_mutex);
186
2021746e 187 return 0;
673a394b
EA
188}
189
5a125c3c
EA
190int
191i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 192 struct drm_file *file)
5a125c3c 193{
73aa808f 194 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 195 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
5a125c3c 198
6299f992 199 pinned = 0;
73aa808f 200 mutex_lock(&dev->struct_mutex);
35c20a60 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 202 if (i915_gem_obj_is_pinned(obj))
f343c5f6 203 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 204 mutex_unlock(&dev->struct_mutex);
5a125c3c 205
853ba5d2 206 args->aper_size = dev_priv->gtt.base.total;
0206e353 207 args->aper_available_size = args->aper_size - pinned;
6299f992 208
5a125c3c
EA
209 return 0;
210}
211
42dcedd4
CW
212void *i915_gem_object_alloc(struct drm_device *dev)
213{
214 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 215 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
216}
217
218void i915_gem_object_free(struct drm_i915_gem_object *obj)
219{
220 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
221 kmem_cache_free(dev_priv->slab, obj);
222}
223
ff72145b
DA
224static int
225i915_gem_create(struct drm_file *file,
226 struct drm_device *dev,
227 uint64_t size,
228 uint32_t *handle_p)
673a394b 229{
05394f39 230 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
231 int ret;
232 u32 handle;
673a394b 233
ff72145b 234 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
235 if (size == 0)
236 return -EINVAL;
673a394b
EA
237
238 /* Allocate the new object */
ff72145b 239 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
240 if (obj == NULL)
241 return -ENOMEM;
242
05394f39 243 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 244 /* drop reference from allocate - handle holds it now */
d861e338
DV
245 drm_gem_object_unreference_unlocked(&obj->base);
246 if (ret)
247 return ret;
202f2fef 248
ff72145b 249 *handle_p = handle;
673a394b
EA
250 return 0;
251}
252
ff72145b
DA
253int
254i915_gem_dumb_create(struct drm_file *file,
255 struct drm_device *dev,
256 struct drm_mode_create_dumb *args)
257{
258 /* have to work out size/pitch and return them */
de45eaf7 259 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
260 args->size = args->pitch * args->height;
261 return i915_gem_create(file, dev,
262 args->size, &args->handle);
263}
264
ff72145b
DA
265/**
266 * Creates a new mm object and returns a handle to it.
267 */
268int
269i915_gem_create_ioctl(struct drm_device *dev, void *data,
270 struct drm_file *file)
271{
272 struct drm_i915_gem_create *args = data;
63ed2cb2 273
ff72145b
DA
274 return i915_gem_create(file, dev,
275 args->size, &args->handle);
276}
277
8461d226
DV
278static inline int
279__copy_to_user_swizzled(char __user *cpu_vaddr,
280 const char *gpu_vaddr, int gpu_offset,
281 int length)
282{
283 int ret, cpu_offset = 0;
284
285 while (length > 0) {
286 int cacheline_end = ALIGN(gpu_offset + 1, 64);
287 int this_length = min(cacheline_end - gpu_offset, length);
288 int swizzled_gpu_offset = gpu_offset ^ 64;
289
290 ret = __copy_to_user(cpu_vaddr + cpu_offset,
291 gpu_vaddr + swizzled_gpu_offset,
292 this_length);
293 if (ret)
294 return ret + length;
295
296 cpu_offset += this_length;
297 gpu_offset += this_length;
298 length -= this_length;
299 }
300
301 return 0;
302}
303
8c59967c 304static inline int
4f0c7cfb
BW
305__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
306 const char __user *cpu_vaddr,
8c59967c
DV
307 int length)
308{
309 int ret, cpu_offset = 0;
310
311 while (length > 0) {
312 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 int this_length = min(cacheline_end - gpu_offset, length);
314 int swizzled_gpu_offset = gpu_offset ^ 64;
315
316 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
317 cpu_vaddr + cpu_offset,
318 this_length);
319 if (ret)
320 return ret + length;
321
322 cpu_offset += this_length;
323 gpu_offset += this_length;
324 length -= this_length;
325 }
326
327 return 0;
328}
329
4c914c0c
BV
330/*
331 * Pins the specified object's pages and synchronizes the object with
332 * GPU accesses. Sets needs_clflush to non-zero if the caller should
333 * flush the object from the CPU cache.
334 */
335int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
336 int *needs_clflush)
337{
338 int ret;
339
340 *needs_clflush = 0;
341
342 if (!obj->base.filp)
343 return -EINVAL;
344
345 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
346 /* If we're not in the cpu read domain, set ourself into the gtt
347 * read domain and manually flush cachelines (if required). This
348 * optimizes for the case when the gpu will dirty the data
349 * anyway again before the next pread happens. */
350 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
351 obj->cache_level);
352 ret = i915_gem_object_wait_rendering(obj, true);
353 if (ret)
354 return ret;
355 }
356
357 ret = i915_gem_object_get_pages(obj);
358 if (ret)
359 return ret;
360
361 i915_gem_object_pin_pages(obj);
362
363 return ret;
364}
365
d174bd64
DV
366/* Per-page copy function for the shmem pread fastpath.
367 * Flushes invalid cachelines before reading the target if
368 * needs_clflush is set. */
eb01459f 369static int
d174bd64
DV
370shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
371 char __user *user_data,
372 bool page_do_bit17_swizzling, bool needs_clflush)
373{
374 char *vaddr;
375 int ret;
376
e7e58eb5 377 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
378 return -EINVAL;
379
380 vaddr = kmap_atomic(page);
381 if (needs_clflush)
382 drm_clflush_virt_range(vaddr + shmem_page_offset,
383 page_length);
384 ret = __copy_to_user_inatomic(user_data,
385 vaddr + shmem_page_offset,
386 page_length);
387 kunmap_atomic(vaddr);
388
f60d7f0c 389 return ret ? -EFAULT : 0;
d174bd64
DV
390}
391
23c18c71
DV
392static void
393shmem_clflush_swizzled_range(char *addr, unsigned long length,
394 bool swizzled)
395{
e7e58eb5 396 if (unlikely(swizzled)) {
23c18c71
DV
397 unsigned long start = (unsigned long) addr;
398 unsigned long end = (unsigned long) addr + length;
399
400 /* For swizzling simply ensure that we always flush both
401 * channels. Lame, but simple and it works. Swizzled
402 * pwrite/pread is far from a hotpath - current userspace
403 * doesn't use it at all. */
404 start = round_down(start, 128);
405 end = round_up(end, 128);
406
407 drm_clflush_virt_range((void *)start, end - start);
408 } else {
409 drm_clflush_virt_range(addr, length);
410 }
411
412}
413
d174bd64
DV
414/* Only difference to the fast-path function is that this can handle bit17
415 * and uses non-atomic copy and kmap functions. */
416static int
417shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
418 char __user *user_data,
419 bool page_do_bit17_swizzling, bool needs_clflush)
420{
421 char *vaddr;
422 int ret;
423
424 vaddr = kmap(page);
425 if (needs_clflush)
23c18c71
DV
426 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
427 page_length,
428 page_do_bit17_swizzling);
d174bd64
DV
429
430 if (page_do_bit17_swizzling)
431 ret = __copy_to_user_swizzled(user_data,
432 vaddr, shmem_page_offset,
433 page_length);
434 else
435 ret = __copy_to_user(user_data,
436 vaddr + shmem_page_offset,
437 page_length);
438 kunmap(page);
439
f60d7f0c 440 return ret ? - EFAULT : 0;
d174bd64
DV
441}
442
eb01459f 443static int
dbf7bff0
DV
444i915_gem_shmem_pread(struct drm_device *dev,
445 struct drm_i915_gem_object *obj,
446 struct drm_i915_gem_pread *args,
447 struct drm_file *file)
eb01459f 448{
8461d226 449 char __user *user_data;
eb01459f 450 ssize_t remain;
8461d226 451 loff_t offset;
eb2c0c81 452 int shmem_page_offset, page_length, ret = 0;
8461d226 453 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 454 int prefaulted = 0;
8489731c 455 int needs_clflush = 0;
67d5a50c 456 struct sg_page_iter sg_iter;
eb01459f 457
2bb4629a 458 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
459 remain = args->size;
460
8461d226 461 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 462
4c914c0c 463 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
464 if (ret)
465 return ret;
466
8461d226 467 offset = args->offset;
eb01459f 468
67d5a50c
ID
469 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
470 offset >> PAGE_SHIFT) {
2db76d7c 471 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
472
473 if (remain <= 0)
474 break;
475
eb01459f
EA
476 /* Operation in this page
477 *
eb01459f 478 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
479 * page_length = bytes to copy for this page
480 */
c8cbbb8b 481 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
482 page_length = remain;
483 if ((shmem_page_offset + page_length) > PAGE_SIZE)
484 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 485
8461d226
DV
486 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
487 (page_to_phys(page) & (1 << 17)) != 0;
488
d174bd64
DV
489 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492 if (ret == 0)
493 goto next_page;
dbf7bff0 494
dbf7bff0
DV
495 mutex_unlock(&dev->struct_mutex);
496
d330a953 497 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 498 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
499 /* Userspace is tricking us, but we've already clobbered
500 * its pages with the prefault and promised to write the
501 * data up to the first fault. Hence ignore any errors
502 * and just continue. */
503 (void)ret;
504 prefaulted = 1;
505 }
eb01459f 506
d174bd64
DV
507 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
508 user_data, page_do_bit17_swizzling,
509 needs_clflush);
eb01459f 510
dbf7bff0 511 mutex_lock(&dev->struct_mutex);
f60d7f0c 512
f60d7f0c 513 if (ret)
8461d226 514 goto out;
8461d226 515
17793c9a 516next_page:
eb01459f 517 remain -= page_length;
8461d226 518 user_data += page_length;
eb01459f
EA
519 offset += page_length;
520 }
521
4f27b75d 522out:
f60d7f0c
CW
523 i915_gem_object_unpin_pages(obj);
524
eb01459f
EA
525 return ret;
526}
527
673a394b
EA
528/**
529 * Reads data from the object referenced by handle.
530 *
531 * On error, the contents of *data are undefined.
532 */
533int
534i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 535 struct drm_file *file)
673a394b
EA
536{
537 struct drm_i915_gem_pread *args = data;
05394f39 538 struct drm_i915_gem_object *obj;
35b62a89 539 int ret = 0;
673a394b 540
51311d0a
CW
541 if (args->size == 0)
542 return 0;
543
544 if (!access_ok(VERIFY_WRITE,
2bb4629a 545 to_user_ptr(args->data_ptr),
51311d0a
CW
546 args->size))
547 return -EFAULT;
548
4f27b75d 549 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 550 if (ret)
4f27b75d 551 return ret;
673a394b 552
05394f39 553 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 554 if (&obj->base == NULL) {
1d7cfea1
CW
555 ret = -ENOENT;
556 goto unlock;
4f27b75d 557 }
673a394b 558
7dcd2499 559 /* Bounds check source. */
05394f39
CW
560 if (args->offset > obj->base.size ||
561 args->size > obj->base.size - args->offset) {
ce9d419d 562 ret = -EINVAL;
35b62a89 563 goto out;
ce9d419d
CW
564 }
565
1286ff73
DV
566 /* prime objects have no backing filp to GEM pread/pwrite
567 * pages from.
568 */
569 if (!obj->base.filp) {
570 ret = -EINVAL;
571 goto out;
572 }
573
db53a302
CW
574 trace_i915_gem_object_pread(obj, args->offset, args->size);
575
dbf7bff0 576 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 577
35b62a89 578out:
05394f39 579 drm_gem_object_unreference(&obj->base);
1d7cfea1 580unlock:
4f27b75d 581 mutex_unlock(&dev->struct_mutex);
eb01459f 582 return ret;
673a394b
EA
583}
584
0839ccb8
KP
585/* This is the fast write path which cannot handle
586 * page faults in the source data
9b7530cc 587 */
0839ccb8
KP
588
589static inline int
590fast_user_write(struct io_mapping *mapping,
591 loff_t page_base, int page_offset,
592 char __user *user_data,
593 int length)
9b7530cc 594{
4f0c7cfb
BW
595 void __iomem *vaddr_atomic;
596 void *vaddr;
0839ccb8 597 unsigned long unwritten;
9b7530cc 598
3e4d3af5 599 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
600 /* We can use the cpu mem copy function because this is X86. */
601 vaddr = (void __force*)vaddr_atomic + page_offset;
602 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 603 user_data, length);
3e4d3af5 604 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 605 return unwritten;
0839ccb8
KP
606}
607
3de09aa3
EA
608/**
609 * This is the fast pwrite path, where we copy the data directly from the
610 * user into the GTT, uncached.
611 */
673a394b 612static int
05394f39
CW
613i915_gem_gtt_pwrite_fast(struct drm_device *dev,
614 struct drm_i915_gem_object *obj,
3de09aa3 615 struct drm_i915_gem_pwrite *args,
05394f39 616 struct drm_file *file)
673a394b 617{
0839ccb8 618 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 619 ssize_t remain;
0839ccb8 620 loff_t offset, page_base;
673a394b 621 char __user *user_data;
935aaa69
DV
622 int page_offset, page_length, ret;
623
1ec9e26d 624 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
625 if (ret)
626 goto out;
627
628 ret = i915_gem_object_set_to_gtt_domain(obj, true);
629 if (ret)
630 goto out_unpin;
631
632 ret = i915_gem_object_put_fence(obj);
633 if (ret)
634 goto out_unpin;
673a394b 635
2bb4629a 636 user_data = to_user_ptr(args->data_ptr);
673a394b 637 remain = args->size;
673a394b 638
f343c5f6 639 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
640
641 while (remain > 0) {
642 /* Operation in this page
643 *
0839ccb8
KP
644 * page_base = page offset within aperture
645 * page_offset = offset within page
646 * page_length = bytes to copy for this page
673a394b 647 */
c8cbbb8b
CW
648 page_base = offset & PAGE_MASK;
649 page_offset = offset_in_page(offset);
0839ccb8
KP
650 page_length = remain;
651 if ((page_offset + remain) > PAGE_SIZE)
652 page_length = PAGE_SIZE - page_offset;
653
0839ccb8 654 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
655 * source page isn't available. Return the error and we'll
656 * retry in the slow path.
0839ccb8 657 */
5d4545ae 658 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
659 page_offset, user_data, page_length)) {
660 ret = -EFAULT;
661 goto out_unpin;
662 }
673a394b 663
0839ccb8
KP
664 remain -= page_length;
665 user_data += page_length;
666 offset += page_length;
673a394b 667 }
673a394b 668
935aaa69 669out_unpin:
d7f46fc4 670 i915_gem_object_ggtt_unpin(obj);
935aaa69 671out:
3de09aa3 672 return ret;
673a394b
EA
673}
674
d174bd64
DV
675/* Per-page copy function for the shmem pwrite fastpath.
676 * Flushes invalid cachelines before writing to the target if
677 * needs_clflush_before is set and flushes out any written cachelines after
678 * writing if needs_clflush is set. */
3043c60c 679static int
d174bd64
DV
680shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
681 char __user *user_data,
682 bool page_do_bit17_swizzling,
683 bool needs_clflush_before,
684 bool needs_clflush_after)
673a394b 685{
d174bd64 686 char *vaddr;
673a394b 687 int ret;
3de09aa3 688
e7e58eb5 689 if (unlikely(page_do_bit17_swizzling))
d174bd64 690 return -EINVAL;
3de09aa3 691
d174bd64
DV
692 vaddr = kmap_atomic(page);
693 if (needs_clflush_before)
694 drm_clflush_virt_range(vaddr + shmem_page_offset,
695 page_length);
696 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
697 user_data,
698 page_length);
699 if (needs_clflush_after)
700 drm_clflush_virt_range(vaddr + shmem_page_offset,
701 page_length);
702 kunmap_atomic(vaddr);
3de09aa3 703
755d2218 704 return ret ? -EFAULT : 0;
3de09aa3
EA
705}
706
d174bd64
DV
707/* Only difference to the fast-path function is that this can handle bit17
708 * and uses non-atomic copy and kmap functions. */
3043c60c 709static int
d174bd64
DV
710shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
711 char __user *user_data,
712 bool page_do_bit17_swizzling,
713 bool needs_clflush_before,
714 bool needs_clflush_after)
673a394b 715{
d174bd64
DV
716 char *vaddr;
717 int ret;
e5281ccd 718
d174bd64 719 vaddr = kmap(page);
e7e58eb5 720 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
721 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
722 page_length,
723 page_do_bit17_swizzling);
d174bd64
DV
724 if (page_do_bit17_swizzling)
725 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
726 user_data,
727 page_length);
d174bd64
DV
728 else
729 ret = __copy_from_user(vaddr + shmem_page_offset,
730 user_data,
731 page_length);
732 if (needs_clflush_after)
23c18c71
DV
733 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
734 page_length,
735 page_do_bit17_swizzling);
d174bd64 736 kunmap(page);
40123c1f 737
755d2218 738 return ret ? -EFAULT : 0;
40123c1f
EA
739}
740
40123c1f 741static int
e244a443
DV
742i915_gem_shmem_pwrite(struct drm_device *dev,
743 struct drm_i915_gem_object *obj,
744 struct drm_i915_gem_pwrite *args,
745 struct drm_file *file)
40123c1f 746{
40123c1f 747 ssize_t remain;
8c59967c
DV
748 loff_t offset;
749 char __user *user_data;
eb2c0c81 750 int shmem_page_offset, page_length, ret = 0;
8c59967c 751 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 752 int hit_slowpath = 0;
58642885
DV
753 int needs_clflush_after = 0;
754 int needs_clflush_before = 0;
67d5a50c 755 struct sg_page_iter sg_iter;
40123c1f 756
2bb4629a 757 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
758 remain = args->size;
759
8c59967c 760 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 761
58642885
DV
762 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
763 /* If we're not in the cpu write domain, set ourself into the gtt
764 * write domain and manually flush cachelines (if required). This
765 * optimizes for the case when the gpu will use the data
766 * right away and we therefore have to clflush anyway. */
2c22569b 767 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
768 ret = i915_gem_object_wait_rendering(obj, false);
769 if (ret)
770 return ret;
58642885 771 }
c76ce038
CW
772 /* Same trick applies to invalidate partially written cachelines read
773 * before writing. */
774 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
775 needs_clflush_before =
776 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 777
755d2218
CW
778 ret = i915_gem_object_get_pages(obj);
779 if (ret)
780 return ret;
781
782 i915_gem_object_pin_pages(obj);
783
673a394b 784 offset = args->offset;
05394f39 785 obj->dirty = 1;
673a394b 786
67d5a50c
ID
787 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
788 offset >> PAGE_SHIFT) {
2db76d7c 789 struct page *page = sg_page_iter_page(&sg_iter);
58642885 790 int partial_cacheline_write;
e5281ccd 791
9da3da66
CW
792 if (remain <= 0)
793 break;
794
40123c1f
EA
795 /* Operation in this page
796 *
40123c1f 797 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
798 * page_length = bytes to copy for this page
799 */
c8cbbb8b 800 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
801
802 page_length = remain;
803 if ((shmem_page_offset + page_length) > PAGE_SIZE)
804 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 805
58642885
DV
806 /* If we don't overwrite a cacheline completely we need to be
807 * careful to have up-to-date data by first clflushing. Don't
808 * overcomplicate things and flush the entire patch. */
809 partial_cacheline_write = needs_clflush_before &&
810 ((shmem_page_offset | page_length)
811 & (boot_cpu_data.x86_clflush_size - 1));
812
8c59967c
DV
813 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
814 (page_to_phys(page) & (1 << 17)) != 0;
815
d174bd64
DV
816 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
817 user_data, page_do_bit17_swizzling,
818 partial_cacheline_write,
819 needs_clflush_after);
820 if (ret == 0)
821 goto next_page;
e244a443
DV
822
823 hit_slowpath = 1;
e244a443 824 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
825 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
826 user_data, page_do_bit17_swizzling,
827 partial_cacheline_write,
828 needs_clflush_after);
40123c1f 829
e244a443 830 mutex_lock(&dev->struct_mutex);
755d2218 831
755d2218 832 if (ret)
8c59967c 833 goto out;
8c59967c 834
17793c9a 835next_page:
40123c1f 836 remain -= page_length;
8c59967c 837 user_data += page_length;
40123c1f 838 offset += page_length;
673a394b
EA
839 }
840
fbd5a26d 841out:
755d2218
CW
842 i915_gem_object_unpin_pages(obj);
843
e244a443 844 if (hit_slowpath) {
8dcf015e
DV
845 /*
846 * Fixup: Flush cpu caches in case we didn't flush the dirty
847 * cachelines in-line while writing and the object moved
848 * out of the cpu write domain while we've dropped the lock.
849 */
850 if (!needs_clflush_after &&
851 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
852 if (i915_gem_clflush_object(obj, obj->pin_display))
853 i915_gem_chipset_flush(dev);
e244a443 854 }
8c59967c 855 }
673a394b 856
58642885 857 if (needs_clflush_after)
e76e9aeb 858 i915_gem_chipset_flush(dev);
58642885 859
40123c1f 860 return ret;
673a394b
EA
861}
862
863/**
864 * Writes data to the object referenced by handle.
865 *
866 * On error, the contents of the buffer that were to be modified are undefined.
867 */
868int
869i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 870 struct drm_file *file)
673a394b
EA
871{
872 struct drm_i915_gem_pwrite *args = data;
05394f39 873 struct drm_i915_gem_object *obj;
51311d0a
CW
874 int ret;
875
876 if (args->size == 0)
877 return 0;
878
879 if (!access_ok(VERIFY_READ,
2bb4629a 880 to_user_ptr(args->data_ptr),
51311d0a
CW
881 args->size))
882 return -EFAULT;
883
d330a953 884 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
885 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
886 args->size);
887 if (ret)
888 return -EFAULT;
889 }
673a394b 890
fbd5a26d 891 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 892 if (ret)
fbd5a26d 893 return ret;
1d7cfea1 894
05394f39 895 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 896 if (&obj->base == NULL) {
1d7cfea1
CW
897 ret = -ENOENT;
898 goto unlock;
fbd5a26d 899 }
673a394b 900
7dcd2499 901 /* Bounds check destination. */
05394f39
CW
902 if (args->offset > obj->base.size ||
903 args->size > obj->base.size - args->offset) {
ce9d419d 904 ret = -EINVAL;
35b62a89 905 goto out;
ce9d419d
CW
906 }
907
1286ff73
DV
908 /* prime objects have no backing filp to GEM pread/pwrite
909 * pages from.
910 */
911 if (!obj->base.filp) {
912 ret = -EINVAL;
913 goto out;
914 }
915
db53a302
CW
916 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
917
935aaa69 918 ret = -EFAULT;
673a394b
EA
919 /* We can only do the GTT pwrite on untiled buffers, as otherwise
920 * it would end up going through the fenced access, and we'll get
921 * different detiling behavior between reading and writing.
922 * pread/pwrite currently are reading and writing from the CPU
923 * perspective, requiring manual detiling by the client.
924 */
5c0480f2 925 if (obj->phys_obj) {
fbd5a26d 926 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
927 goto out;
928 }
929
2c22569b
CW
930 if (obj->tiling_mode == I915_TILING_NONE &&
931 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
932 cpu_write_needs_clflush(obj)) {
fbd5a26d 933 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
934 /* Note that the gtt paths might fail with non-page-backed user
935 * pointers (e.g. gtt mappings when moving data between
936 * textures). Fallback to the shmem path in that case. */
fbd5a26d 937 }
673a394b 938
86a1ee26 939 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 940 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 941
35b62a89 942out:
05394f39 943 drm_gem_object_unreference(&obj->base);
1d7cfea1 944unlock:
fbd5a26d 945 mutex_unlock(&dev->struct_mutex);
673a394b
EA
946 return ret;
947}
948
b361237b 949int
33196ded 950i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
951 bool interruptible)
952{
1f83fee0 953 if (i915_reset_in_progress(error)) {
b361237b
CW
954 /* Non-interruptible callers can't handle -EAGAIN, hence return
955 * -EIO unconditionally for these. */
956 if (!interruptible)
957 return -EIO;
958
1f83fee0
DV
959 /* Recovery complete, but the reset failed ... */
960 if (i915_terminally_wedged(error))
b361237b
CW
961 return -EIO;
962
963 return -EAGAIN;
964 }
965
966 return 0;
967}
968
969/*
970 * Compare seqno against outstanding lazy request. Emit a request if they are
971 * equal.
972 */
973static int
974i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
975{
976 int ret;
977
978 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
979
980 ret = 0;
1823521d 981 if (seqno == ring->outstanding_lazy_seqno)
0025c077 982 ret = i915_add_request(ring, NULL);
b361237b
CW
983
984 return ret;
985}
986
094f9a54
CW
987static void fake_irq(unsigned long data)
988{
989 wake_up_process((struct task_struct *)data);
990}
991
992static bool missed_irq(struct drm_i915_private *dev_priv,
993 struct intel_ring_buffer *ring)
994{
995 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
996}
997
b29c19b6
CW
998static bool can_wait_boost(struct drm_i915_file_private *file_priv)
999{
1000 if (file_priv == NULL)
1001 return true;
1002
1003 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1004}
1005
b361237b
CW
1006/**
1007 * __wait_seqno - wait until execution of seqno has finished
1008 * @ring: the ring expected to report seqno
1009 * @seqno: duh!
f69061be 1010 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1011 * @interruptible: do an interruptible wait (normally yes)
1012 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1013 *
f69061be
DV
1014 * Note: It is of utmost importance that the passed in seqno and reset_counter
1015 * values have been read by the caller in an smp safe manner. Where read-side
1016 * locks are involved, it is sufficient to read the reset_counter before
1017 * unlocking the lock that protects the seqno. For lockless tricks, the
1018 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1019 * inserted.
1020 *
b361237b
CW
1021 * Returns 0 if the seqno was found within the alloted time. Else returns the
1022 * errno with remaining time filled in timeout argument.
1023 */
1024static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1025 unsigned reset_counter,
b29c19b6
CW
1026 bool interruptible,
1027 struct timespec *timeout,
1028 struct drm_i915_file_private *file_priv)
b361237b 1029{
3d13ef2e
DL
1030 struct drm_device *dev = ring->dev;
1031 drm_i915_private_t *dev_priv = dev->dev_private;
168c3f21
MK
1032 const bool irq_test_in_progress =
1033 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1034 struct timespec before, now;
1035 DEFINE_WAIT(wait);
47e9766d 1036 unsigned long timeout_expire;
b361237b
CW
1037 int ret;
1038
c67a470b
PZ
1039 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1040
b361237b
CW
1041 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1042 return 0;
1043
47e9766d 1044 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1045
3d13ef2e 1046 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
b29c19b6
CW
1047 gen6_rps_boost(dev_priv);
1048 if (file_priv)
1049 mod_delayed_work(dev_priv->wq,
1050 &file_priv->mm.idle_work,
1051 msecs_to_jiffies(100));
1052 }
1053
168c3f21 1054 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1055 return -ENODEV;
1056
094f9a54
CW
1057 /* Record current time in case interrupted by signal, or wedged */
1058 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1059 getrawmonotonic(&before);
094f9a54
CW
1060 for (;;) {
1061 struct timer_list timer;
b361237b 1062
094f9a54
CW
1063 prepare_to_wait(&ring->irq_queue, &wait,
1064 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1065
f69061be
DV
1066 /* We need to check whether any gpu reset happened in between
1067 * the caller grabbing the seqno and now ... */
094f9a54
CW
1068 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1069 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1070 * is truely gone. */
1071 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1072 if (ret == 0)
1073 ret = -EAGAIN;
1074 break;
1075 }
f69061be 1076
094f9a54
CW
1077 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1078 ret = 0;
1079 break;
1080 }
b361237b 1081
094f9a54
CW
1082 if (interruptible && signal_pending(current)) {
1083 ret = -ERESTARTSYS;
1084 break;
1085 }
1086
47e9766d 1087 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1088 ret = -ETIME;
1089 break;
1090 }
1091
1092 timer.function = NULL;
1093 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1094 unsigned long expire;
1095
094f9a54 1096 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1097 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1098 mod_timer(&timer, expire);
1099 }
1100
5035c275 1101 io_schedule();
094f9a54 1102
094f9a54
CW
1103 if (timer.function) {
1104 del_singleshot_timer_sync(&timer);
1105 destroy_timer_on_stack(&timer);
1106 }
1107 }
b361237b 1108 getrawmonotonic(&now);
094f9a54 1109 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1110
168c3f21
MK
1111 if (!irq_test_in_progress)
1112 ring->irq_put(ring);
094f9a54
CW
1113
1114 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1115
1116 if (timeout) {
1117 struct timespec sleep_time = timespec_sub(now, before);
1118 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1119 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1120 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1121 }
1122
094f9a54 1123 return ret;
b361237b
CW
1124}
1125
1126/**
1127 * Waits for a sequence number to be signaled, and cleans up the
1128 * request and object lists appropriately for that event.
1129 */
1130int
1131i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1132{
1133 struct drm_device *dev = ring->dev;
1134 struct drm_i915_private *dev_priv = dev->dev_private;
1135 bool interruptible = dev_priv->mm.interruptible;
1136 int ret;
1137
1138 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1139 BUG_ON(seqno == 0);
1140
33196ded 1141 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1142 if (ret)
1143 return ret;
1144
1145 ret = i915_gem_check_olr(ring, seqno);
1146 if (ret)
1147 return ret;
1148
f69061be
DV
1149 return __wait_seqno(ring, seqno,
1150 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1151 interruptible, NULL, NULL);
b361237b
CW
1152}
1153
d26e3af8
CW
1154static int
1155i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1156 struct intel_ring_buffer *ring)
1157{
1158 i915_gem_retire_requests_ring(ring);
1159
1160 /* Manually manage the write flush as we may have not yet
1161 * retired the buffer.
1162 *
1163 * Note that the last_write_seqno is always the earlier of
1164 * the two (read/write) seqno, so if we haved successfully waited,
1165 * we know we have passed the last write.
1166 */
1167 obj->last_write_seqno = 0;
1168 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1169
1170 return 0;
1171}
1172
b361237b
CW
1173/**
1174 * Ensures that all rendering to the object has completed and the object is
1175 * safe to unbind from the GTT or access from the CPU.
1176 */
1177static __must_check int
1178i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1179 bool readonly)
1180{
1181 struct intel_ring_buffer *ring = obj->ring;
1182 u32 seqno;
1183 int ret;
1184
1185 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1186 if (seqno == 0)
1187 return 0;
1188
1189 ret = i915_wait_seqno(ring, seqno);
1190 if (ret)
1191 return ret;
1192
d26e3af8 1193 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1194}
1195
3236f57a
CW
1196/* A nonblocking variant of the above wait. This is a highly dangerous routine
1197 * as the object state may change during this call.
1198 */
1199static __must_check int
1200i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1201 struct drm_i915_file_private *file_priv,
3236f57a
CW
1202 bool readonly)
1203{
1204 struct drm_device *dev = obj->base.dev;
1205 struct drm_i915_private *dev_priv = dev->dev_private;
1206 struct intel_ring_buffer *ring = obj->ring;
f69061be 1207 unsigned reset_counter;
3236f57a
CW
1208 u32 seqno;
1209 int ret;
1210
1211 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1212 BUG_ON(!dev_priv->mm.interruptible);
1213
1214 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1215 if (seqno == 0)
1216 return 0;
1217
33196ded 1218 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1219 if (ret)
1220 return ret;
1221
1222 ret = i915_gem_check_olr(ring, seqno);
1223 if (ret)
1224 return ret;
1225
f69061be 1226 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1227 mutex_unlock(&dev->struct_mutex);
6e4930f6 1228 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1229 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1230 if (ret)
1231 return ret;
3236f57a 1232
d26e3af8 1233 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1234}
1235
673a394b 1236/**
2ef7eeaa
EA
1237 * Called when user space prepares to use an object with the CPU, either
1238 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1239 */
1240int
1241i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1242 struct drm_file *file)
673a394b
EA
1243{
1244 struct drm_i915_gem_set_domain *args = data;
05394f39 1245 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1246 uint32_t read_domains = args->read_domains;
1247 uint32_t write_domain = args->write_domain;
673a394b
EA
1248 int ret;
1249
2ef7eeaa 1250 /* Only handle setting domains to types used by the CPU. */
21d509e3 1251 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1252 return -EINVAL;
1253
21d509e3 1254 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1255 return -EINVAL;
1256
1257 /* Having something in the write domain implies it's in the read
1258 * domain, and only that read domain. Enforce that in the request.
1259 */
1260 if (write_domain != 0 && read_domains != write_domain)
1261 return -EINVAL;
1262
76c1dec1 1263 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1264 if (ret)
76c1dec1 1265 return ret;
1d7cfea1 1266
05394f39 1267 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1268 if (&obj->base == NULL) {
1d7cfea1
CW
1269 ret = -ENOENT;
1270 goto unlock;
76c1dec1 1271 }
673a394b 1272
3236f57a
CW
1273 /* Try to flush the object off the GPU without holding the lock.
1274 * We will repeat the flush holding the lock in the normal manner
1275 * to catch cases where we are gazumped.
1276 */
6e4930f6
CW
1277 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1278 file->driver_priv,
1279 !write_domain);
3236f57a
CW
1280 if (ret)
1281 goto unref;
1282
2ef7eeaa
EA
1283 if (read_domains & I915_GEM_DOMAIN_GTT) {
1284 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1285
1286 /* Silently promote "you're not bound, there was nothing to do"
1287 * to success, since the client was just asking us to
1288 * make sure everything was done.
1289 */
1290 if (ret == -EINVAL)
1291 ret = 0;
2ef7eeaa 1292 } else {
e47c68e9 1293 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1294 }
1295
3236f57a 1296unref:
05394f39 1297 drm_gem_object_unreference(&obj->base);
1d7cfea1 1298unlock:
673a394b
EA
1299 mutex_unlock(&dev->struct_mutex);
1300 return ret;
1301}
1302
1303/**
1304 * Called when user space has done writes to this buffer
1305 */
1306int
1307i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1308 struct drm_file *file)
673a394b
EA
1309{
1310 struct drm_i915_gem_sw_finish *args = data;
05394f39 1311 struct drm_i915_gem_object *obj;
673a394b
EA
1312 int ret = 0;
1313
76c1dec1 1314 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1315 if (ret)
76c1dec1 1316 return ret;
1d7cfea1 1317
05394f39 1318 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1319 if (&obj->base == NULL) {
1d7cfea1
CW
1320 ret = -ENOENT;
1321 goto unlock;
673a394b
EA
1322 }
1323
673a394b 1324 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1325 if (obj->pin_display)
1326 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1327
05394f39 1328 drm_gem_object_unreference(&obj->base);
1d7cfea1 1329unlock:
673a394b
EA
1330 mutex_unlock(&dev->struct_mutex);
1331 return ret;
1332}
1333
1334/**
1335 * Maps the contents of an object, returning the address it is mapped
1336 * into.
1337 *
1338 * While the mapping holds a reference on the contents of the object, it doesn't
1339 * imply a ref on the object itself.
1340 */
1341int
1342i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1343 struct drm_file *file)
673a394b
EA
1344{
1345 struct drm_i915_gem_mmap *args = data;
1346 struct drm_gem_object *obj;
673a394b
EA
1347 unsigned long addr;
1348
05394f39 1349 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1350 if (obj == NULL)
bf79cb91 1351 return -ENOENT;
673a394b 1352
1286ff73
DV
1353 /* prime objects have no backing filp to GEM mmap
1354 * pages from.
1355 */
1356 if (!obj->filp) {
1357 drm_gem_object_unreference_unlocked(obj);
1358 return -EINVAL;
1359 }
1360
6be5ceb0 1361 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1362 PROT_READ | PROT_WRITE, MAP_SHARED,
1363 args->offset);
bc9025bd 1364 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1365 if (IS_ERR((void *)addr))
1366 return addr;
1367
1368 args->addr_ptr = (uint64_t) addr;
1369
1370 return 0;
1371}
1372
de151cf6
JB
1373/**
1374 * i915_gem_fault - fault a page into the GTT
1375 * vma: VMA in question
1376 * vmf: fault info
1377 *
1378 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1379 * from userspace. The fault handler takes care of binding the object to
1380 * the GTT (if needed), allocating and programming a fence register (again,
1381 * only if needed based on whether the old reg is still valid or the object
1382 * is tiled) and inserting a new PTE into the faulting process.
1383 *
1384 * Note that the faulting process may involve evicting existing objects
1385 * from the GTT and/or fence registers to make room. So performance may
1386 * suffer if the GTT working set is large or there are few fence registers
1387 * left.
1388 */
1389int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1390{
05394f39
CW
1391 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1392 struct drm_device *dev = obj->base.dev;
7d1c4804 1393 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1394 pgoff_t page_offset;
1395 unsigned long pfn;
1396 int ret = 0;
0f973f27 1397 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1398
f65c9168
PZ
1399 intel_runtime_pm_get(dev_priv);
1400
de151cf6
JB
1401 /* We don't use vmf->pgoff since that has the fake offset */
1402 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1403 PAGE_SHIFT;
1404
d9bc7e9f
CW
1405 ret = i915_mutex_lock_interruptible(dev);
1406 if (ret)
1407 goto out;
a00b10c3 1408
db53a302
CW
1409 trace_i915_gem_object_fault(obj, page_offset, true, write);
1410
6e4930f6
CW
1411 /* Try to flush the object off the GPU first without holding the lock.
1412 * Upon reacquiring the lock, we will perform our sanity checks and then
1413 * repeat the flush holding the lock in the normal manner to catch cases
1414 * where we are gazumped.
1415 */
1416 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1417 if (ret)
1418 goto unlock;
1419
eb119bd6
CW
1420 /* Access to snoopable pages through the GTT is incoherent. */
1421 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1422 ret = -EINVAL;
1423 goto unlock;
1424 }
1425
d9bc7e9f 1426 /* Now bind it into the GTT if needed */
1ec9e26d 1427 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1428 if (ret)
1429 goto unlock;
4a684a41 1430
c9839303
CW
1431 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1432 if (ret)
1433 goto unpin;
74898d7e 1434
06d98131 1435 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1436 if (ret)
c9839303 1437 goto unpin;
7d1c4804 1438
6299f992
CW
1439 obj->fault_mappable = true;
1440
f343c5f6
BW
1441 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1442 pfn >>= PAGE_SHIFT;
1443 pfn += page_offset;
de151cf6
JB
1444
1445 /* Finally, remap it using the new GTT offset */
1446 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1447unpin:
d7f46fc4 1448 i915_gem_object_ggtt_unpin(obj);
c715089f 1449unlock:
de151cf6 1450 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1451out:
de151cf6 1452 switch (ret) {
d9bc7e9f 1453 case -EIO:
a9340cca
DV
1454 /* If this -EIO is due to a gpu hang, give the reset code a
1455 * chance to clean up the mess. Otherwise return the proper
1456 * SIGBUS. */
f65c9168
PZ
1457 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1458 ret = VM_FAULT_SIGBUS;
1459 break;
1460 }
045e769a 1461 case -EAGAIN:
571c608d
DV
1462 /*
1463 * EAGAIN means the gpu is hung and we'll wait for the error
1464 * handler to reset everything when re-faulting in
1465 * i915_mutex_lock_interruptible.
d9bc7e9f 1466 */
c715089f
CW
1467 case 0:
1468 case -ERESTARTSYS:
bed636ab 1469 case -EINTR:
e79e0fe3
DR
1470 case -EBUSY:
1471 /*
1472 * EBUSY is ok: this just means that another thread
1473 * already did the job.
1474 */
f65c9168
PZ
1475 ret = VM_FAULT_NOPAGE;
1476 break;
de151cf6 1477 case -ENOMEM:
f65c9168
PZ
1478 ret = VM_FAULT_OOM;
1479 break;
a7c2e1aa 1480 case -ENOSPC:
45d67817 1481 case -EFAULT:
f65c9168
PZ
1482 ret = VM_FAULT_SIGBUS;
1483 break;
de151cf6 1484 default:
a7c2e1aa 1485 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1486 ret = VM_FAULT_SIGBUS;
1487 break;
de151cf6 1488 }
f65c9168
PZ
1489
1490 intel_runtime_pm_put(dev_priv);
1491 return ret;
de151cf6
JB
1492}
1493
48018a57
PZ
1494void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1495{
1496 struct i915_vma *vma;
1497
1498 /*
1499 * Only the global gtt is relevant for gtt memory mappings, so restrict
1500 * list traversal to objects bound into the global address space. Note
1501 * that the active list should be empty, but better safe than sorry.
1502 */
1503 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1504 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1505 i915_gem_release_mmap(vma->obj);
1506 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1507 i915_gem_release_mmap(vma->obj);
1508}
1509
901782b2
CW
1510/**
1511 * i915_gem_release_mmap - remove physical page mappings
1512 * @obj: obj in question
1513 *
af901ca1 1514 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1515 * relinquish ownership of the pages back to the system.
1516 *
1517 * It is vital that we remove the page mapping if we have mapped a tiled
1518 * object through the GTT and then lose the fence register due to
1519 * resource pressure. Similarly if the object has been moved out of the
1520 * aperture, than pages mapped into userspace must be revoked. Removing the
1521 * mapping will then trigger a page fault on the next user access, allowing
1522 * fixup by i915_gem_fault().
1523 */
d05ca301 1524void
05394f39 1525i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1526{
6299f992
CW
1527 if (!obj->fault_mappable)
1528 return;
901782b2 1529
51335df9 1530 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1531 obj->fault_mappable = false;
901782b2
CW
1532}
1533
0fa87796 1534uint32_t
e28f8711 1535i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1536{
e28f8711 1537 uint32_t gtt_size;
92b88aeb
CW
1538
1539 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1540 tiling_mode == I915_TILING_NONE)
1541 return size;
92b88aeb
CW
1542
1543 /* Previous chips need a power-of-two fence region when tiling */
1544 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1545 gtt_size = 1024*1024;
92b88aeb 1546 else
e28f8711 1547 gtt_size = 512*1024;
92b88aeb 1548
e28f8711
CW
1549 while (gtt_size < size)
1550 gtt_size <<= 1;
92b88aeb 1551
e28f8711 1552 return gtt_size;
92b88aeb
CW
1553}
1554
de151cf6
JB
1555/**
1556 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1557 * @obj: object to check
1558 *
1559 * Return the required GTT alignment for an object, taking into account
5e783301 1560 * potential fence register mapping.
de151cf6 1561 */
d865110c
ID
1562uint32_t
1563i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1564 int tiling_mode, bool fenced)
de151cf6 1565{
de151cf6
JB
1566 /*
1567 * Minimum alignment is 4k (GTT page size), but might be greater
1568 * if a fence register is needed for the object.
1569 */
d865110c 1570 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1571 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1572 return 4096;
1573
a00b10c3
CW
1574 /*
1575 * Previous chips need to be aligned to the size of the smallest
1576 * fence register that can contain the object.
1577 */
e28f8711 1578 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1579}
1580
d8cb5086
CW
1581static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1582{
1583 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1584 int ret;
1585
0de23977 1586 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1587 return 0;
1588
da494d7c
DV
1589 dev_priv->mm.shrinker_no_lock_stealing = true;
1590
d8cb5086
CW
1591 ret = drm_gem_create_mmap_offset(&obj->base);
1592 if (ret != -ENOSPC)
da494d7c 1593 goto out;
d8cb5086
CW
1594
1595 /* Badly fragmented mmap space? The only way we can recover
1596 * space is by destroying unwanted objects. We can't randomly release
1597 * mmap_offsets as userspace expects them to be persistent for the
1598 * lifetime of the objects. The closest we can is to release the
1599 * offsets on purgeable objects by truncating it and marking it purged,
1600 * which prevents userspace from ever using that object again.
1601 */
1602 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1603 ret = drm_gem_create_mmap_offset(&obj->base);
1604 if (ret != -ENOSPC)
da494d7c 1605 goto out;
d8cb5086
CW
1606
1607 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1608 ret = drm_gem_create_mmap_offset(&obj->base);
1609out:
1610 dev_priv->mm.shrinker_no_lock_stealing = false;
1611
1612 return ret;
d8cb5086
CW
1613}
1614
1615static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1616{
d8cb5086
CW
1617 drm_gem_free_mmap_offset(&obj->base);
1618}
1619
de151cf6 1620int
ff72145b
DA
1621i915_gem_mmap_gtt(struct drm_file *file,
1622 struct drm_device *dev,
1623 uint32_t handle,
1624 uint64_t *offset)
de151cf6 1625{
da761a6e 1626 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1627 struct drm_i915_gem_object *obj;
de151cf6
JB
1628 int ret;
1629
76c1dec1 1630 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1631 if (ret)
76c1dec1 1632 return ret;
de151cf6 1633
ff72145b 1634 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1635 if (&obj->base == NULL) {
1d7cfea1
CW
1636 ret = -ENOENT;
1637 goto unlock;
1638 }
de151cf6 1639
5d4545ae 1640 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1641 ret = -E2BIG;
ff56b0bc 1642 goto out;
da761a6e
CW
1643 }
1644
05394f39 1645 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1646 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1647 ret = -EFAULT;
1d7cfea1 1648 goto out;
ab18282d
CW
1649 }
1650
d8cb5086
CW
1651 ret = i915_gem_object_create_mmap_offset(obj);
1652 if (ret)
1653 goto out;
de151cf6 1654
0de23977 1655 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1656
1d7cfea1 1657out:
05394f39 1658 drm_gem_object_unreference(&obj->base);
1d7cfea1 1659unlock:
de151cf6 1660 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1661 return ret;
de151cf6
JB
1662}
1663
ff72145b
DA
1664/**
1665 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1666 * @dev: DRM device
1667 * @data: GTT mapping ioctl data
1668 * @file: GEM object info
1669 *
1670 * Simply returns the fake offset to userspace so it can mmap it.
1671 * The mmap call will end up in drm_gem_mmap(), which will set things
1672 * up so we can get faults in the handler above.
1673 *
1674 * The fault handler will take care of binding the object into the GTT
1675 * (since it may have been evicted to make room for something), allocating
1676 * a fence register, and mapping the appropriate aperture address into
1677 * userspace.
1678 */
1679int
1680i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1681 struct drm_file *file)
1682{
1683 struct drm_i915_gem_mmap_gtt *args = data;
1684
ff72145b
DA
1685 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1686}
1687
225067ee
DV
1688/* Immediately discard the backing storage */
1689static void
1690i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1691{
e5281ccd 1692 struct inode *inode;
e5281ccd 1693
4d6294bf 1694 i915_gem_object_free_mmap_offset(obj);
1286ff73 1695
4d6294bf
CW
1696 if (obj->base.filp == NULL)
1697 return;
e5281ccd 1698
225067ee
DV
1699 /* Our goal here is to return as much of the memory as
1700 * is possible back to the system as we are called from OOM.
1701 * To do this we must instruct the shmfs to drop all of its
1702 * backing pages, *now*.
1703 */
496ad9aa 1704 inode = file_inode(obj->base.filp);
225067ee 1705 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1706
225067ee
DV
1707 obj->madv = __I915_MADV_PURGED;
1708}
e5281ccd 1709
225067ee
DV
1710static inline int
1711i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1712{
1713 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1714}
1715
5cdf5881 1716static void
05394f39 1717i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1718{
90797e6d
ID
1719 struct sg_page_iter sg_iter;
1720 int ret;
1286ff73 1721
05394f39 1722 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1723
6c085a72
CW
1724 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1725 if (ret) {
1726 /* In the event of a disaster, abandon all caches and
1727 * hope for the best.
1728 */
1729 WARN_ON(ret != -EIO);
2c22569b 1730 i915_gem_clflush_object(obj, true);
6c085a72
CW
1731 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1732 }
1733
6dacfd2f 1734 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1735 i915_gem_object_save_bit_17_swizzle(obj);
1736
05394f39
CW
1737 if (obj->madv == I915_MADV_DONTNEED)
1738 obj->dirty = 0;
3ef94daa 1739
90797e6d 1740 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1741 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1742
05394f39 1743 if (obj->dirty)
9da3da66 1744 set_page_dirty(page);
3ef94daa 1745
05394f39 1746 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1747 mark_page_accessed(page);
3ef94daa 1748
9da3da66 1749 page_cache_release(page);
3ef94daa 1750 }
05394f39 1751 obj->dirty = 0;
673a394b 1752
9da3da66
CW
1753 sg_free_table(obj->pages);
1754 kfree(obj->pages);
37e680a1 1755}
6c085a72 1756
dd624afd 1757int
37e680a1
CW
1758i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1759{
1760 const struct drm_i915_gem_object_ops *ops = obj->ops;
1761
2f745ad3 1762 if (obj->pages == NULL)
37e680a1
CW
1763 return 0;
1764
a5570178
CW
1765 if (obj->pages_pin_count)
1766 return -EBUSY;
1767
9843877d 1768 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1769
a2165e31
CW
1770 /* ->put_pages might need to allocate memory for the bit17 swizzle
1771 * array, hence protect them from being reaped by removing them from gtt
1772 * lists early. */
35c20a60 1773 list_del(&obj->global_list);
a2165e31 1774
37e680a1 1775 ops->put_pages(obj);
05394f39 1776 obj->pages = NULL;
37e680a1 1777
6c085a72
CW
1778 if (i915_gem_object_is_purgeable(obj))
1779 i915_gem_object_truncate(obj);
1780
1781 return 0;
1782}
1783
d9973b43 1784static unsigned long
93927ca5
DV
1785__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1786 bool purgeable_only)
6c085a72 1787{
57094f82 1788 struct list_head still_bound_list;
6c085a72 1789 struct drm_i915_gem_object *obj, *next;
d9973b43 1790 unsigned long count = 0;
6c085a72
CW
1791
1792 list_for_each_entry_safe(obj, next,
1793 &dev_priv->mm.unbound_list,
35c20a60 1794 global_list) {
93927ca5 1795 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1796 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1797 count += obj->base.size >> PAGE_SHIFT;
1798 if (count >= target)
1799 return count;
1800 }
1801 }
1802
57094f82
CW
1803 /*
1804 * As we may completely rewrite the bound list whilst unbinding
1805 * (due to retiring requests) we have to strictly process only
1806 * one element of the list at the time, and recheck the list
1807 * on every iteration.
1808 */
1809 INIT_LIST_HEAD(&still_bound_list);
1810 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1811 struct i915_vma *vma, *v;
80dcfdbd 1812
57094f82
CW
1813 obj = list_first_entry(&dev_priv->mm.bound_list,
1814 typeof(*obj), global_list);
1815 list_move_tail(&obj->global_list, &still_bound_list);
1816
80dcfdbd
BW
1817 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1818 continue;
1819
57094f82
CW
1820 /*
1821 * Hold a reference whilst we unbind this object, as we may
1822 * end up waiting for and retiring requests. This might
1823 * release the final reference (held by the active list)
1824 * and result in the object being freed from under us.
1825 * in this object being freed.
1826 *
1827 * Note 1: Shrinking the bound list is special since only active
1828 * (and hence bound objects) can contain such limbo objects, so
1829 * we don't need special tricks for shrinking the unbound list.
1830 * The only other place where we have to be careful with active
1831 * objects suddenly disappearing due to retiring requests is the
1832 * eviction code.
1833 *
1834 * Note 2: Even though the bound list doesn't hold a reference
1835 * to the object we can safely grab one here: The final object
1836 * unreferencing and the bound_list are both protected by the
1837 * dev->struct_mutex and so we won't ever be able to observe an
1838 * object on the bound_list with a reference count equals 0.
1839 */
1840 drm_gem_object_reference(&obj->base);
1841
07fe0b12
BW
1842 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1843 if (i915_vma_unbind(vma))
1844 break;
80dcfdbd 1845
57094f82 1846 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1847 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1848
1849 drm_gem_object_unreference(&obj->base);
6c085a72 1850 }
57094f82 1851 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1852
1853 return count;
1854}
1855
d9973b43 1856static unsigned long
93927ca5
DV
1857i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1858{
1859 return __i915_gem_shrink(dev_priv, target, true);
1860}
1861
d9973b43 1862static unsigned long
6c085a72
CW
1863i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1864{
1865 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1866 long freed = 0;
6c085a72
CW
1867
1868 i915_gem_evict_everything(dev_priv->dev);
1869
35c20a60 1870 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a 1871 global_list) {
d9973b43 1872 if (i915_gem_object_put_pages(obj) == 0)
7dc19d5a 1873 freed += obj->base.size >> PAGE_SHIFT;
7dc19d5a
DC
1874 }
1875 return freed;
225067ee
DV
1876}
1877
37e680a1 1878static int
6c085a72 1879i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1880{
6c085a72 1881 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1882 int page_count, i;
1883 struct address_space *mapping;
9da3da66
CW
1884 struct sg_table *st;
1885 struct scatterlist *sg;
90797e6d 1886 struct sg_page_iter sg_iter;
e5281ccd 1887 struct page *page;
90797e6d 1888 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1889 gfp_t gfp;
e5281ccd 1890
6c085a72
CW
1891 /* Assert that the object is not currently in any GPU domain. As it
1892 * wasn't in the GTT, there shouldn't be any way it could have been in
1893 * a GPU cache
1894 */
1895 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1896 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1897
9da3da66
CW
1898 st = kmalloc(sizeof(*st), GFP_KERNEL);
1899 if (st == NULL)
1900 return -ENOMEM;
1901
05394f39 1902 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1903 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1904 kfree(st);
e5281ccd 1905 return -ENOMEM;
9da3da66 1906 }
e5281ccd 1907
9da3da66
CW
1908 /* Get the list of pages out of our struct file. They'll be pinned
1909 * at this point until we release them.
1910 *
1911 * Fail silently without starting the shrinker
1912 */
496ad9aa 1913 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1914 gfp = mapping_gfp_mask(mapping);
caf49191 1915 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1916 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1917 sg = st->sgl;
1918 st->nents = 0;
1919 for (i = 0; i < page_count; i++) {
6c085a72
CW
1920 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1921 if (IS_ERR(page)) {
1922 i915_gem_purge(dev_priv, page_count);
1923 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1924 }
1925 if (IS_ERR(page)) {
1926 /* We've tried hard to allocate the memory by reaping
1927 * our own buffer, now let the real VM do its job and
1928 * go down in flames if truly OOM.
1929 */
caf49191 1930 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1931 gfp |= __GFP_IO | __GFP_WAIT;
1932
1933 i915_gem_shrink_all(dev_priv);
1934 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1935 if (IS_ERR(page))
1936 goto err_pages;
1937
caf49191 1938 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1939 gfp &= ~(__GFP_IO | __GFP_WAIT);
1940 }
426729dc
KRW
1941#ifdef CONFIG_SWIOTLB
1942 if (swiotlb_nr_tbl()) {
1943 st->nents++;
1944 sg_set_page(sg, page, PAGE_SIZE, 0);
1945 sg = sg_next(sg);
1946 continue;
1947 }
1948#endif
90797e6d
ID
1949 if (!i || page_to_pfn(page) != last_pfn + 1) {
1950 if (i)
1951 sg = sg_next(sg);
1952 st->nents++;
1953 sg_set_page(sg, page, PAGE_SIZE, 0);
1954 } else {
1955 sg->length += PAGE_SIZE;
1956 }
1957 last_pfn = page_to_pfn(page);
3bbbe706
DV
1958
1959 /* Check that the i965g/gm workaround works. */
1960 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1961 }
426729dc
KRW
1962#ifdef CONFIG_SWIOTLB
1963 if (!swiotlb_nr_tbl())
1964#endif
1965 sg_mark_end(sg);
74ce6b6c
CW
1966 obj->pages = st;
1967
6dacfd2f 1968 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1969 i915_gem_object_do_bit_17_swizzle(obj);
1970
1971 return 0;
1972
1973err_pages:
90797e6d
ID
1974 sg_mark_end(sg);
1975 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1976 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1977 sg_free_table(st);
1978 kfree(st);
e5281ccd 1979 return PTR_ERR(page);
673a394b
EA
1980}
1981
37e680a1
CW
1982/* Ensure that the associated pages are gathered from the backing storage
1983 * and pinned into our object. i915_gem_object_get_pages() may be called
1984 * multiple times before they are released by a single call to
1985 * i915_gem_object_put_pages() - once the pages are no longer referenced
1986 * either as a result of memory pressure (reaping pages under the shrinker)
1987 * or as the object is itself released.
1988 */
1989int
1990i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1991{
1992 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1993 const struct drm_i915_gem_object_ops *ops = obj->ops;
1994 int ret;
1995
2f745ad3 1996 if (obj->pages)
37e680a1
CW
1997 return 0;
1998
43e28f09 1999 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2000 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2001 return -EFAULT;
43e28f09
CW
2002 }
2003
a5570178
CW
2004 BUG_ON(obj->pages_pin_count);
2005
37e680a1
CW
2006 ret = ops->get_pages(obj);
2007 if (ret)
2008 return ret;
2009
35c20a60 2010 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2011 return 0;
673a394b
EA
2012}
2013
e2d05a8b 2014static void
05394f39 2015i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 2016 struct intel_ring_buffer *ring)
673a394b 2017{
05394f39 2018 struct drm_device *dev = obj->base.dev;
69dc4987 2019 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 2020 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2021
852835f3 2022 BUG_ON(ring == NULL);
02978ff5
CW
2023 if (obj->ring != ring && obj->last_write_seqno) {
2024 /* Keep the seqno relative to the current ring */
2025 obj->last_write_seqno = seqno;
2026 }
05394f39 2027 obj->ring = ring;
673a394b
EA
2028
2029 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2030 if (!obj->active) {
2031 drm_gem_object_reference(&obj->base);
2032 obj->active = 1;
673a394b 2033 }
e35a41de 2034
05394f39 2035 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2036
0201f1ec 2037 obj->last_read_seqno = seqno;
caea7476 2038
7dd49065 2039 if (obj->fenced_gpu_access) {
caea7476 2040 obj->last_fenced_seqno = seqno;
caea7476 2041
7dd49065
CW
2042 /* Bump MRU to take account of the delayed flush */
2043 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2044 struct drm_i915_fence_reg *reg;
2045
2046 reg = &dev_priv->fence_regs[obj->fence_reg];
2047 list_move_tail(&reg->lru_list,
2048 &dev_priv->mm.fence_list);
2049 }
caea7476
CW
2050 }
2051}
2052
e2d05a8b
BW
2053void i915_vma_move_to_active(struct i915_vma *vma,
2054 struct intel_ring_buffer *ring)
2055{
2056 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2057 return i915_gem_object_move_to_active(vma->obj, ring);
2058}
2059
caea7476 2060static void
caea7476 2061i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2062{
ca191b13 2063 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2064 struct i915_address_space *vm;
2065 struct i915_vma *vma;
ce44b0ea 2066
65ce3027 2067 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2068 BUG_ON(!obj->active);
caea7476 2069
feb822cf
BW
2070 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2071 vma = i915_gem_obj_to_vma(obj, vm);
2072 if (vma && !list_empty(&vma->mm_list))
2073 list_move_tail(&vma->mm_list, &vm->inactive_list);
2074 }
caea7476 2075
65ce3027 2076 list_del_init(&obj->ring_list);
caea7476
CW
2077 obj->ring = NULL;
2078
65ce3027
CW
2079 obj->last_read_seqno = 0;
2080 obj->last_write_seqno = 0;
2081 obj->base.write_domain = 0;
2082
2083 obj->last_fenced_seqno = 0;
caea7476 2084 obj->fenced_gpu_access = false;
caea7476
CW
2085
2086 obj->active = 0;
2087 drm_gem_object_unreference(&obj->base);
2088
2089 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2090}
673a394b 2091
9d773091 2092static int
fca26bb4 2093i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2094{
9d773091
CW
2095 struct drm_i915_private *dev_priv = dev->dev_private;
2096 struct intel_ring_buffer *ring;
2097 int ret, i, j;
53d227f2 2098
107f27a5 2099 /* Carefully retire all requests without writing to the rings */
9d773091 2100 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2101 ret = intel_ring_idle(ring);
2102 if (ret)
2103 return ret;
9d773091 2104 }
9d773091 2105 i915_gem_retire_requests(dev);
107f27a5
CW
2106
2107 /* Finally reset hw state */
9d773091 2108 for_each_ring(ring, dev_priv, i) {
fca26bb4 2109 intel_ring_init_seqno(ring, seqno);
498d2ac1 2110
9d773091
CW
2111 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2112 ring->sync_seqno[j] = 0;
2113 }
53d227f2 2114
9d773091 2115 return 0;
53d227f2
DV
2116}
2117
fca26bb4
MK
2118int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2119{
2120 struct drm_i915_private *dev_priv = dev->dev_private;
2121 int ret;
2122
2123 if (seqno == 0)
2124 return -EINVAL;
2125
2126 /* HWS page needs to be set less than what we
2127 * will inject to ring
2128 */
2129 ret = i915_gem_init_seqno(dev, seqno - 1);
2130 if (ret)
2131 return ret;
2132
2133 /* Carefully set the last_seqno value so that wrap
2134 * detection still works
2135 */
2136 dev_priv->next_seqno = seqno;
2137 dev_priv->last_seqno = seqno - 1;
2138 if (dev_priv->last_seqno == 0)
2139 dev_priv->last_seqno--;
2140
2141 return 0;
2142}
2143
9d773091
CW
2144int
2145i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2146{
9d773091
CW
2147 struct drm_i915_private *dev_priv = dev->dev_private;
2148
2149 /* reserve 0 for non-seqno */
2150 if (dev_priv->next_seqno == 0) {
fca26bb4 2151 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2152 if (ret)
2153 return ret;
53d227f2 2154
9d773091
CW
2155 dev_priv->next_seqno = 1;
2156 }
53d227f2 2157
f72b3435 2158 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2159 return 0;
53d227f2
DV
2160}
2161
0025c077
MK
2162int __i915_add_request(struct intel_ring_buffer *ring,
2163 struct drm_file *file,
7d736f4f 2164 struct drm_i915_gem_object *obj,
0025c077 2165 u32 *out_seqno)
673a394b 2166{
db53a302 2167 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2168 struct drm_i915_gem_request *request;
7d736f4f 2169 u32 request_ring_position, request_start;
3cce469c
CW
2170 int ret;
2171
7d736f4f 2172 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2173 /*
2174 * Emit any outstanding flushes - execbuf can fail to emit the flush
2175 * after having emitted the batchbuffer command. Hence we need to fix
2176 * things up similar to emitting the lazy request. The difference here
2177 * is that the flush _must_ happen before the next request, no matter
2178 * what.
2179 */
a7b9761d
CW
2180 ret = intel_ring_flush_all_caches(ring);
2181 if (ret)
2182 return ret;
cc889e0f 2183
3c0e234c
CW
2184 request = ring->preallocated_lazy_request;
2185 if (WARN_ON(request == NULL))
acb868d3 2186 return -ENOMEM;
cc889e0f 2187
a71d8d94
CW
2188 /* Record the position of the start of the request so that
2189 * should we detect the updated seqno part-way through the
2190 * GPU processing the request, we never over-estimate the
2191 * position of the head.
2192 */
2193 request_ring_position = intel_ring_get_tail(ring);
2194
9d773091 2195 ret = ring->add_request(ring);
3c0e234c 2196 if (ret)
3bb73aba 2197 return ret;
673a394b 2198
9d773091 2199 request->seqno = intel_ring_get_seqno(ring);
852835f3 2200 request->ring = ring;
7d736f4f 2201 request->head = request_start;
a71d8d94 2202 request->tail = request_ring_position;
7d736f4f
MK
2203
2204 /* Whilst this request exists, batch_obj will be on the
2205 * active_list, and so will hold the active reference. Only when this
2206 * request is retired will the the batch_obj be moved onto the
2207 * inactive_list and lose its active reference. Hence we do not need
2208 * to explicitly hold another reference here.
2209 */
9a7e0c2a 2210 request->batch_obj = obj;
0e50e96b 2211
9a7e0c2a
CW
2212 /* Hold a reference to the current context so that we can inspect
2213 * it later in case a hangcheck error event fires.
2214 */
2215 request->ctx = ring->last_context;
0e50e96b
MK
2216 if (request->ctx)
2217 i915_gem_context_reference(request->ctx);
2218
673a394b 2219 request->emitted_jiffies = jiffies;
852835f3 2220 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2221 request->file_priv = NULL;
852835f3 2222
db53a302
CW
2223 if (file) {
2224 struct drm_i915_file_private *file_priv = file->driver_priv;
2225
1c25595f 2226 spin_lock(&file_priv->mm.lock);
f787a5f5 2227 request->file_priv = file_priv;
b962442e 2228 list_add_tail(&request->client_list,
f787a5f5 2229 &file_priv->mm.request_list);
1c25595f 2230 spin_unlock(&file_priv->mm.lock);
b962442e 2231 }
673a394b 2232
9d773091 2233 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2234 ring->outstanding_lazy_seqno = 0;
3c0e234c 2235 ring->preallocated_lazy_request = NULL;
db53a302 2236
db1b76ca 2237 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2238 i915_queue_hangcheck(ring->dev);
2239
f62a0076
CW
2240 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2241 queue_delayed_work(dev_priv->wq,
2242 &dev_priv->mm.retire_work,
2243 round_jiffies_up_relative(HZ));
2244 intel_mark_busy(dev_priv->dev);
f65d9421 2245 }
cc889e0f 2246
acb868d3 2247 if (out_seqno)
9d773091 2248 *out_seqno = request->seqno;
3cce469c 2249 return 0;
673a394b
EA
2250}
2251
f787a5f5
CW
2252static inline void
2253i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2254{
1c25595f 2255 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2256
1c25595f
CW
2257 if (!file_priv)
2258 return;
1c5d22f7 2259
1c25595f 2260 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2261 list_del(&request->client_list);
2262 request->file_priv = NULL;
1c25595f 2263 spin_unlock(&file_priv->mm.lock);
673a394b 2264}
673a394b 2265
939fd762 2266static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
44e2c070 2267 const struct i915_hw_context *ctx)
be62acb4 2268{
44e2c070 2269 unsigned long elapsed;
be62acb4 2270
44e2c070
MK
2271 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2272
2273 if (ctx->hang_stats.banned)
be62acb4
MK
2274 return true;
2275
2276 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2277 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2278 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0
VS
2279 return true;
2280 } else if (dev_priv->gpu_error.stop_rings == 0) {
2281 DRM_ERROR("gpu hanging too fast, banning!\n");
2282 return true;
3fac8978 2283 }
be62acb4
MK
2284 }
2285
2286 return false;
2287}
2288
939fd762
MK
2289static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2290 struct i915_hw_context *ctx,
b6b0fac0 2291 const bool guilty)
aa60c664 2292{
44e2c070
MK
2293 struct i915_ctx_hang_stats *hs;
2294
2295 if (WARN_ON(!ctx))
2296 return;
aa60c664 2297
44e2c070
MK
2298 hs = &ctx->hang_stats;
2299
2300 if (guilty) {
939fd762 2301 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2302 hs->batch_active++;
2303 hs->guilty_ts = get_seconds();
2304 } else {
2305 hs->batch_pending++;
aa60c664
MK
2306 }
2307}
2308
0e50e96b
MK
2309static void i915_gem_free_request(struct drm_i915_gem_request *request)
2310{
2311 list_del(&request->list);
2312 i915_gem_request_remove_from_client(request);
2313
2314 if (request->ctx)
2315 i915_gem_context_unreference(request->ctx);
2316
2317 kfree(request);
2318}
2319
8d9fc7fd
CW
2320struct drm_i915_gem_request *
2321i915_gem_find_active_request(struct intel_ring_buffer *ring)
9375e446 2322{
4db080f9 2323 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2324 u32 completed_seqno;
2325
2326 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2327
2328 list_for_each_entry(request, &ring->request_list, list) {
2329 if (i915_seqno_passed(completed_seqno, request->seqno))
2330 continue;
aa60c664 2331
b6b0fac0 2332 return request;
4db080f9 2333 }
b6b0fac0
MK
2334
2335 return NULL;
2336}
2337
2338static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2339 struct intel_ring_buffer *ring)
2340{
2341 struct drm_i915_gem_request *request;
2342 bool ring_hung;
2343
8d9fc7fd 2344 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2345
2346 if (request == NULL)
2347 return;
2348
2349 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2350
939fd762 2351 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2352
2353 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2354 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2355}
aa60c664 2356
4db080f9
CW
2357static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2358 struct intel_ring_buffer *ring)
2359{
dfaae392 2360 while (!list_empty(&ring->active_list)) {
05394f39 2361 struct drm_i915_gem_object *obj;
9375e446 2362
05394f39
CW
2363 obj = list_first_entry(&ring->active_list,
2364 struct drm_i915_gem_object,
2365 ring_list);
9375e446 2366
05394f39 2367 i915_gem_object_move_to_inactive(obj);
673a394b 2368 }
1d62beea
BW
2369
2370 /*
2371 * We must free the requests after all the corresponding objects have
2372 * been moved off active lists. Which is the same order as the normal
2373 * retire_requests function does. This is important if object hold
2374 * implicit references on things like e.g. ppgtt address spaces through
2375 * the request.
2376 */
2377 while (!list_empty(&ring->request_list)) {
2378 struct drm_i915_gem_request *request;
2379
2380 request = list_first_entry(&ring->request_list,
2381 struct drm_i915_gem_request,
2382 list);
2383
2384 i915_gem_free_request(request);
2385 }
673a394b
EA
2386}
2387
19b2dbde 2388void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2389{
2390 struct drm_i915_private *dev_priv = dev->dev_private;
2391 int i;
2392
4b9de737 2393 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2394 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2395
94a335db
DV
2396 /*
2397 * Commit delayed tiling changes if we have an object still
2398 * attached to the fence, otherwise just clear the fence.
2399 */
2400 if (reg->obj) {
2401 i915_gem_object_update_fence(reg->obj, reg,
2402 reg->obj->tiling_mode);
2403 } else {
2404 i915_gem_write_fence(dev, i, NULL);
2405 }
312817a3
CW
2406 }
2407}
2408
069efc1d 2409void i915_gem_reset(struct drm_device *dev)
673a394b 2410{
77f01230 2411 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2412 struct intel_ring_buffer *ring;
1ec14ad3 2413 int i;
673a394b 2414
4db080f9
CW
2415 /*
2416 * Before we free the objects from the requests, we need to inspect
2417 * them for finding the guilty party. As the requests only borrow
2418 * their reference to the objects, the inspection must be done first.
2419 */
2420 for_each_ring(ring, dev_priv, i)
2421 i915_gem_reset_ring_status(dev_priv, ring);
2422
b4519513 2423 for_each_ring(ring, dev_priv, i)
4db080f9 2424 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2425
3d57e5bd
BW
2426 i915_gem_cleanup_ringbuffer(dev);
2427
acce9ffa
BW
2428 i915_gem_context_reset(dev);
2429
19b2dbde 2430 i915_gem_restore_fences(dev);
673a394b
EA
2431}
2432
2433/**
2434 * This function clears the request list as sequence numbers are passed.
2435 */
cb216aa8 2436static void
db53a302 2437i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2438{
673a394b
EA
2439 uint32_t seqno;
2440
db53a302 2441 if (list_empty(&ring->request_list))
6c0594a3
KW
2442 return;
2443
db53a302 2444 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2445
b2eadbc8 2446 seqno = ring->get_seqno(ring, true);
1ec14ad3 2447
e9103038
CW
2448 /* Move any buffers on the active list that are no longer referenced
2449 * by the ringbuffer to the flushing/inactive lists as appropriate,
2450 * before we free the context associated with the requests.
2451 */
2452 while (!list_empty(&ring->active_list)) {
2453 struct drm_i915_gem_object *obj;
2454
2455 obj = list_first_entry(&ring->active_list,
2456 struct drm_i915_gem_object,
2457 ring_list);
2458
2459 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2460 break;
2461
2462 i915_gem_object_move_to_inactive(obj);
2463 }
2464
2465
852835f3 2466 while (!list_empty(&ring->request_list)) {
673a394b 2467 struct drm_i915_gem_request *request;
673a394b 2468
852835f3 2469 request = list_first_entry(&ring->request_list,
673a394b
EA
2470 struct drm_i915_gem_request,
2471 list);
673a394b 2472
dfaae392 2473 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2474 break;
2475
db53a302 2476 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2477 /* We know the GPU must have read the request to have
2478 * sent us the seqno + interrupt, so use the position
2479 * of tail of the request to update the last known position
2480 * of the GPU head.
2481 */
2482 ring->last_retired_head = request->tail;
b84d5f0c 2483
0e50e96b 2484 i915_gem_free_request(request);
b84d5f0c 2485 }
673a394b 2486
db53a302
CW
2487 if (unlikely(ring->trace_irq_seqno &&
2488 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2489 ring->irq_put(ring);
db53a302 2490 ring->trace_irq_seqno = 0;
9d34e5db 2491 }
23bc5982 2492
db53a302 2493 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2494}
2495
b29c19b6 2496bool
b09a1fec
CW
2497i915_gem_retire_requests(struct drm_device *dev)
2498{
2499 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2500 struct intel_ring_buffer *ring;
b29c19b6 2501 bool idle = true;
1ec14ad3 2502 int i;
b09a1fec 2503
b29c19b6 2504 for_each_ring(ring, dev_priv, i) {
b4519513 2505 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2506 idle &= list_empty(&ring->request_list);
2507 }
2508
2509 if (idle)
2510 mod_delayed_work(dev_priv->wq,
2511 &dev_priv->mm.idle_work,
2512 msecs_to_jiffies(100));
2513
2514 return idle;
b09a1fec
CW
2515}
2516
75ef9da2 2517static void
673a394b
EA
2518i915_gem_retire_work_handler(struct work_struct *work)
2519{
b29c19b6
CW
2520 struct drm_i915_private *dev_priv =
2521 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2522 struct drm_device *dev = dev_priv->dev;
0a58705b 2523 bool idle;
673a394b 2524
891b48cf 2525 /* Come back later if the device is busy... */
b29c19b6
CW
2526 idle = false;
2527 if (mutex_trylock(&dev->struct_mutex)) {
2528 idle = i915_gem_retire_requests(dev);
2529 mutex_unlock(&dev->struct_mutex);
673a394b 2530 }
b29c19b6 2531 if (!idle)
bcb45086
CW
2532 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2533 round_jiffies_up_relative(HZ));
b29c19b6 2534}
0a58705b 2535
b29c19b6
CW
2536static void
2537i915_gem_idle_work_handler(struct work_struct *work)
2538{
2539 struct drm_i915_private *dev_priv =
2540 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2541
2542 intel_mark_idle(dev_priv->dev);
673a394b
EA
2543}
2544
30dfebf3
DV
2545/**
2546 * Ensures that an object will eventually get non-busy by flushing any required
2547 * write domains, emitting any outstanding lazy request and retiring and
2548 * completed requests.
2549 */
2550static int
2551i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2552{
2553 int ret;
2554
2555 if (obj->active) {
0201f1ec 2556 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2557 if (ret)
2558 return ret;
2559
30dfebf3
DV
2560 i915_gem_retire_requests_ring(obj->ring);
2561 }
2562
2563 return 0;
2564}
2565
23ba4fd0
BW
2566/**
2567 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2568 * @DRM_IOCTL_ARGS: standard ioctl arguments
2569 *
2570 * Returns 0 if successful, else an error is returned with the remaining time in
2571 * the timeout parameter.
2572 * -ETIME: object is still busy after timeout
2573 * -ERESTARTSYS: signal interrupted the wait
2574 * -ENONENT: object doesn't exist
2575 * Also possible, but rare:
2576 * -EAGAIN: GPU wedged
2577 * -ENOMEM: damn
2578 * -ENODEV: Internal IRQ fail
2579 * -E?: The add request failed
2580 *
2581 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2582 * non-zero timeout parameter the wait ioctl will wait for the given number of
2583 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2584 * without holding struct_mutex the object may become re-busied before this
2585 * function completes. A similar but shorter * race condition exists in the busy
2586 * ioctl
2587 */
2588int
2589i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2590{
f69061be 2591 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2592 struct drm_i915_gem_wait *args = data;
2593 struct drm_i915_gem_object *obj;
2594 struct intel_ring_buffer *ring = NULL;
eac1f14f 2595 struct timespec timeout_stack, *timeout = NULL;
f69061be 2596 unsigned reset_counter;
23ba4fd0
BW
2597 u32 seqno = 0;
2598 int ret = 0;
2599
eac1f14f
BW
2600 if (args->timeout_ns >= 0) {
2601 timeout_stack = ns_to_timespec(args->timeout_ns);
2602 timeout = &timeout_stack;
2603 }
23ba4fd0
BW
2604
2605 ret = i915_mutex_lock_interruptible(dev);
2606 if (ret)
2607 return ret;
2608
2609 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2610 if (&obj->base == NULL) {
2611 mutex_unlock(&dev->struct_mutex);
2612 return -ENOENT;
2613 }
2614
30dfebf3
DV
2615 /* Need to make sure the object gets inactive eventually. */
2616 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2617 if (ret)
2618 goto out;
2619
2620 if (obj->active) {
0201f1ec 2621 seqno = obj->last_read_seqno;
23ba4fd0
BW
2622 ring = obj->ring;
2623 }
2624
2625 if (seqno == 0)
2626 goto out;
2627
23ba4fd0
BW
2628 /* Do this after OLR check to make sure we make forward progress polling
2629 * on this IOCTL with a 0 timeout (like busy ioctl)
2630 */
2631 if (!args->timeout_ns) {
2632 ret = -ETIME;
2633 goto out;
2634 }
2635
2636 drm_gem_object_unreference(&obj->base);
f69061be 2637 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2638 mutex_unlock(&dev->struct_mutex);
2639
b29c19b6 2640 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2641 if (timeout)
eac1f14f 2642 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2643 return ret;
2644
2645out:
2646 drm_gem_object_unreference(&obj->base);
2647 mutex_unlock(&dev->struct_mutex);
2648 return ret;
2649}
2650
5816d648
BW
2651/**
2652 * i915_gem_object_sync - sync an object to a ring.
2653 *
2654 * @obj: object which may be in use on another ring.
2655 * @to: ring we wish to use the object on. May be NULL.
2656 *
2657 * This code is meant to abstract object synchronization with the GPU.
2658 * Calling with NULL implies synchronizing the object with the CPU
2659 * rather than a particular GPU ring.
2660 *
2661 * Returns 0 if successful, else propagates up the lower layer error.
2662 */
2911a35b
BW
2663int
2664i915_gem_object_sync(struct drm_i915_gem_object *obj,
2665 struct intel_ring_buffer *to)
2666{
2667 struct intel_ring_buffer *from = obj->ring;
2668 u32 seqno;
2669 int ret, idx;
2670
2671 if (from == NULL || to == from)
2672 return 0;
2673
5816d648 2674 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2675 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2676
2677 idx = intel_ring_sync_index(from, to);
2678
0201f1ec 2679 seqno = obj->last_read_seqno;
2911a35b
BW
2680 if (seqno <= from->sync_seqno[idx])
2681 return 0;
2682
b4aca010
BW
2683 ret = i915_gem_check_olr(obj->ring, seqno);
2684 if (ret)
2685 return ret;
2911a35b 2686
b52b89da 2687 trace_i915_gem_ring_sync_to(from, to, seqno);
1500f7ea 2688 ret = to->sync_to(to, from, seqno);
e3a5a225 2689 if (!ret)
7b01e260
MK
2690 /* We use last_read_seqno because sync_to()
2691 * might have just caused seqno wrap under
2692 * the radar.
2693 */
2694 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2695
e3a5a225 2696 return ret;
2911a35b
BW
2697}
2698
b5ffc9bc
CW
2699static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2700{
2701 u32 old_write_domain, old_read_domains;
2702
b5ffc9bc
CW
2703 /* Force a pagefault for domain tracking on next user access */
2704 i915_gem_release_mmap(obj);
2705
b97c3d9c
KP
2706 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2707 return;
2708
97c809fd
CW
2709 /* Wait for any direct GTT access to complete */
2710 mb();
2711
b5ffc9bc
CW
2712 old_read_domains = obj->base.read_domains;
2713 old_write_domain = obj->base.write_domain;
2714
2715 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2716 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2717
2718 trace_i915_gem_object_change_domain(obj,
2719 old_read_domains,
2720 old_write_domain);
2721}
2722
07fe0b12 2723int i915_vma_unbind(struct i915_vma *vma)
673a394b 2724{
07fe0b12 2725 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2726 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2727 int ret;
673a394b 2728
07fe0b12 2729 if (list_empty(&vma->vma_link))
673a394b
EA
2730 return 0;
2731
0ff501cb
DV
2732 if (!drm_mm_node_allocated(&vma->node)) {
2733 i915_gem_vma_destroy(vma);
0ff501cb
DV
2734 return 0;
2735 }
433544bd 2736
d7f46fc4 2737 if (vma->pin_count)
31d8d651 2738 return -EBUSY;
673a394b 2739
c4670ad0
CW
2740 BUG_ON(obj->pages == NULL);
2741
a8198eea 2742 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2743 if (ret)
a8198eea
CW
2744 return ret;
2745 /* Continue on if we fail due to EIO, the GPU is hung so we
2746 * should be safe and we need to cleanup or else we might
2747 * cause memory corruption through use-after-free.
2748 */
2749
b5ffc9bc 2750 i915_gem_object_finish_gtt(obj);
5323fd04 2751
96b47b65 2752 /* release the fence reg _after_ flushing */
d9e86c0e 2753 ret = i915_gem_object_put_fence(obj);
1488fc08 2754 if (ret)
d9e86c0e 2755 return ret;
96b47b65 2756
07fe0b12 2757 trace_i915_vma_unbind(vma);
db53a302 2758
6f65e29a
BW
2759 vma->unbind_vma(vma);
2760
74163907 2761 i915_gem_gtt_finish_object(obj);
7bddb01f 2762
64bf9303 2763 list_del_init(&vma->mm_list);
75e9e915 2764 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2765 if (i915_is_ggtt(vma->vm))
2766 obj->map_and_fenceable = true;
673a394b 2767
2f633156
BW
2768 drm_mm_remove_node(&vma->node);
2769 i915_gem_vma_destroy(vma);
2770
2771 /* Since the unbound list is global, only move to that list if
b93dab6e 2772 * no more VMAs exist. */
2f633156
BW
2773 if (list_empty(&obj->vma_list))
2774 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2775
70903c3b
CW
2776 /* And finally now the object is completely decoupled from this vma,
2777 * we can drop its hold on the backing storage and allow it to be
2778 * reaped by the shrinker.
2779 */
2780 i915_gem_object_unpin_pages(obj);
2781
88241785 2782 return 0;
54cf91dc
CW
2783}
2784
b2da9fe5 2785int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2786{
2787 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2788 struct intel_ring_buffer *ring;
1ec14ad3 2789 int ret, i;
4df2faf4 2790
4df2faf4 2791 /* Flush everything onto the inactive list. */
b4519513 2792 for_each_ring(ring, dev_priv, i) {
41bde553 2793 ret = i915_switch_context(ring, NULL, ring->default_context);
b6c7488d
BW
2794 if (ret)
2795 return ret;
2796
3e960501 2797 ret = intel_ring_idle(ring);
1ec14ad3
CW
2798 if (ret)
2799 return ret;
2800 }
4df2faf4 2801
8a1a49f9 2802 return 0;
4df2faf4
DV
2803}
2804
9ce079e4
CW
2805static void i965_write_fence_reg(struct drm_device *dev, int reg,
2806 struct drm_i915_gem_object *obj)
de151cf6 2807{
de151cf6 2808 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2809 int fence_reg;
2810 int fence_pitch_shift;
de151cf6 2811
56c844e5
ID
2812 if (INTEL_INFO(dev)->gen >= 6) {
2813 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2814 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2815 } else {
2816 fence_reg = FENCE_REG_965_0;
2817 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2818 }
2819
d18b9619
CW
2820 fence_reg += reg * 8;
2821
2822 /* To w/a incoherency with non-atomic 64-bit register updates,
2823 * we split the 64-bit update into two 32-bit writes. In order
2824 * for a partial fence not to be evaluated between writes, we
2825 * precede the update with write to turn off the fence register,
2826 * and only enable the fence as the last step.
2827 *
2828 * For extra levels of paranoia, we make sure each step lands
2829 * before applying the next step.
2830 */
2831 I915_WRITE(fence_reg, 0);
2832 POSTING_READ(fence_reg);
2833
9ce079e4 2834 if (obj) {
f343c5f6 2835 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2836 uint64_t val;
de151cf6 2837
f343c5f6 2838 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2839 0xfffff000) << 32;
f343c5f6 2840 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2841 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2842 if (obj->tiling_mode == I915_TILING_Y)
2843 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2844 val |= I965_FENCE_REG_VALID;
c6642782 2845
d18b9619
CW
2846 I915_WRITE(fence_reg + 4, val >> 32);
2847 POSTING_READ(fence_reg + 4);
2848
2849 I915_WRITE(fence_reg + 0, val);
2850 POSTING_READ(fence_reg);
2851 } else {
2852 I915_WRITE(fence_reg + 4, 0);
2853 POSTING_READ(fence_reg + 4);
2854 }
de151cf6
JB
2855}
2856
9ce079e4
CW
2857static void i915_write_fence_reg(struct drm_device *dev, int reg,
2858 struct drm_i915_gem_object *obj)
de151cf6 2859{
de151cf6 2860 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2861 u32 val;
de151cf6 2862
9ce079e4 2863 if (obj) {
f343c5f6 2864 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2865 int pitch_val;
2866 int tile_width;
c6642782 2867
f343c5f6 2868 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2869 (size & -size) != size ||
f343c5f6
BW
2870 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2871 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2872 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2873
9ce079e4
CW
2874 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2875 tile_width = 128;
2876 else
2877 tile_width = 512;
2878
2879 /* Note: pitch better be a power of two tile widths */
2880 pitch_val = obj->stride / tile_width;
2881 pitch_val = ffs(pitch_val) - 1;
2882
f343c5f6 2883 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2884 if (obj->tiling_mode == I915_TILING_Y)
2885 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2886 val |= I915_FENCE_SIZE_BITS(size);
2887 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2888 val |= I830_FENCE_REG_VALID;
2889 } else
2890 val = 0;
2891
2892 if (reg < 8)
2893 reg = FENCE_REG_830_0 + reg * 4;
2894 else
2895 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2896
2897 I915_WRITE(reg, val);
2898 POSTING_READ(reg);
de151cf6
JB
2899}
2900
9ce079e4
CW
2901static void i830_write_fence_reg(struct drm_device *dev, int reg,
2902 struct drm_i915_gem_object *obj)
de151cf6 2903{
de151cf6 2904 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2905 uint32_t val;
de151cf6 2906
9ce079e4 2907 if (obj) {
f343c5f6 2908 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2909 uint32_t pitch_val;
de151cf6 2910
f343c5f6 2911 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2912 (size & -size) != size ||
f343c5f6
BW
2913 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2914 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2915 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2916
9ce079e4
CW
2917 pitch_val = obj->stride / 128;
2918 pitch_val = ffs(pitch_val) - 1;
de151cf6 2919
f343c5f6 2920 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2921 if (obj->tiling_mode == I915_TILING_Y)
2922 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2923 val |= I830_FENCE_SIZE_BITS(size);
2924 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2925 val |= I830_FENCE_REG_VALID;
2926 } else
2927 val = 0;
c6642782 2928
9ce079e4
CW
2929 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2930 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2931}
2932
d0a57789
CW
2933inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2934{
2935 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2936}
2937
9ce079e4
CW
2938static void i915_gem_write_fence(struct drm_device *dev, int reg,
2939 struct drm_i915_gem_object *obj)
2940{
d0a57789
CW
2941 struct drm_i915_private *dev_priv = dev->dev_private;
2942
2943 /* Ensure that all CPU reads are completed before installing a fence
2944 * and all writes before removing the fence.
2945 */
2946 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2947 mb();
2948
94a335db
DV
2949 WARN(obj && (!obj->stride || !obj->tiling_mode),
2950 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2951 obj->stride, obj->tiling_mode);
2952
9ce079e4 2953 switch (INTEL_INFO(dev)->gen) {
5ab31333 2954 case 8:
9ce079e4 2955 case 7:
56c844e5 2956 case 6:
9ce079e4
CW
2957 case 5:
2958 case 4: i965_write_fence_reg(dev, reg, obj); break;
2959 case 3: i915_write_fence_reg(dev, reg, obj); break;
2960 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2961 default: BUG();
9ce079e4 2962 }
d0a57789
CW
2963
2964 /* And similarly be paranoid that no direct access to this region
2965 * is reordered to before the fence is installed.
2966 */
2967 if (i915_gem_object_needs_mb(obj))
2968 mb();
de151cf6
JB
2969}
2970
61050808
CW
2971static inline int fence_number(struct drm_i915_private *dev_priv,
2972 struct drm_i915_fence_reg *fence)
2973{
2974 return fence - dev_priv->fence_regs;
2975}
2976
2977static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2978 struct drm_i915_fence_reg *fence,
2979 bool enable)
2980{
2dc8aae0 2981 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2982 int reg = fence_number(dev_priv, fence);
2983
2984 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2985
2986 if (enable) {
46a0b638 2987 obj->fence_reg = reg;
61050808
CW
2988 fence->obj = obj;
2989 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2990 } else {
2991 obj->fence_reg = I915_FENCE_REG_NONE;
2992 fence->obj = NULL;
2993 list_del_init(&fence->lru_list);
2994 }
94a335db 2995 obj->fence_dirty = false;
61050808
CW
2996}
2997
d9e86c0e 2998static int
d0a57789 2999i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3000{
1c293ea3 3001 if (obj->last_fenced_seqno) {
86d5bc37 3002 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3003 if (ret)
3004 return ret;
d9e86c0e
CW
3005
3006 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3007 }
3008
86d5bc37 3009 obj->fenced_gpu_access = false;
d9e86c0e
CW
3010 return 0;
3011}
3012
3013int
3014i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3015{
61050808 3016 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3017 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3018 int ret;
3019
d0a57789 3020 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3021 if (ret)
3022 return ret;
3023
61050808
CW
3024 if (obj->fence_reg == I915_FENCE_REG_NONE)
3025 return 0;
d9e86c0e 3026
f9c513e9
CW
3027 fence = &dev_priv->fence_regs[obj->fence_reg];
3028
61050808 3029 i915_gem_object_fence_lost(obj);
f9c513e9 3030 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3031
3032 return 0;
3033}
3034
3035static struct drm_i915_fence_reg *
a360bb1a 3036i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3037{
ae3db24a 3038 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3039 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3040 int i;
ae3db24a
DV
3041
3042 /* First try to find a free reg */
d9e86c0e 3043 avail = NULL;
ae3db24a
DV
3044 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3045 reg = &dev_priv->fence_regs[i];
3046 if (!reg->obj)
d9e86c0e 3047 return reg;
ae3db24a 3048
1690e1eb 3049 if (!reg->pin_count)
d9e86c0e 3050 avail = reg;
ae3db24a
DV
3051 }
3052
d9e86c0e 3053 if (avail == NULL)
5dce5b93 3054 goto deadlock;
ae3db24a
DV
3055
3056 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3057 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3058 if (reg->pin_count)
ae3db24a
DV
3059 continue;
3060
8fe301ad 3061 return reg;
ae3db24a
DV
3062 }
3063
5dce5b93
CW
3064deadlock:
3065 /* Wait for completion of pending flips which consume fences */
3066 if (intel_has_pending_fb_unpin(dev))
3067 return ERR_PTR(-EAGAIN);
3068
3069 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3070}
3071
de151cf6 3072/**
9a5a53b3 3073 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3074 * @obj: object to map through a fence reg
3075 *
3076 * When mapping objects through the GTT, userspace wants to be able to write
3077 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3078 * This function walks the fence regs looking for a free one for @obj,
3079 * stealing one if it can't find any.
3080 *
3081 * It then sets up the reg based on the object's properties: address, pitch
3082 * and tiling format.
9a5a53b3
CW
3083 *
3084 * For an untiled surface, this removes any existing fence.
de151cf6 3085 */
8c4b8c3f 3086int
06d98131 3087i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3088{
05394f39 3089 struct drm_device *dev = obj->base.dev;
79e53945 3090 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3091 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3092 struct drm_i915_fence_reg *reg;
ae3db24a 3093 int ret;
de151cf6 3094
14415745
CW
3095 /* Have we updated the tiling parameters upon the object and so
3096 * will need to serialise the write to the associated fence register?
3097 */
5d82e3e6 3098 if (obj->fence_dirty) {
d0a57789 3099 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3100 if (ret)
3101 return ret;
3102 }
9a5a53b3 3103
d9e86c0e 3104 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3105 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3106 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3107 if (!obj->fence_dirty) {
14415745
CW
3108 list_move_tail(&reg->lru_list,
3109 &dev_priv->mm.fence_list);
3110 return 0;
3111 }
3112 } else if (enable) {
3113 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3114 if (IS_ERR(reg))
3115 return PTR_ERR(reg);
d9e86c0e 3116
14415745
CW
3117 if (reg->obj) {
3118 struct drm_i915_gem_object *old = reg->obj;
3119
d0a57789 3120 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3121 if (ret)
3122 return ret;
3123
14415745 3124 i915_gem_object_fence_lost(old);
29c5a587 3125 }
14415745 3126 } else
a09ba7fa 3127 return 0;
a09ba7fa 3128
14415745 3129 i915_gem_object_update_fence(obj, reg, enable);
14415745 3130
9ce079e4 3131 return 0;
de151cf6
JB
3132}
3133
42d6ab48
CW
3134static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3135 struct drm_mm_node *gtt_space,
3136 unsigned long cache_level)
3137{
3138 struct drm_mm_node *other;
3139
3140 /* On non-LLC machines we have to be careful when putting differing
3141 * types of snoopable memory together to avoid the prefetcher
4239ca77 3142 * crossing memory domains and dying.
42d6ab48
CW
3143 */
3144 if (HAS_LLC(dev))
3145 return true;
3146
c6cfb325 3147 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3148 return true;
3149
3150 if (list_empty(&gtt_space->node_list))
3151 return true;
3152
3153 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3154 if (other->allocated && !other->hole_follows && other->color != cache_level)
3155 return false;
3156
3157 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3158 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3159 return false;
3160
3161 return true;
3162}
3163
3164static void i915_gem_verify_gtt(struct drm_device *dev)
3165{
3166#if WATCH_GTT
3167 struct drm_i915_private *dev_priv = dev->dev_private;
3168 struct drm_i915_gem_object *obj;
3169 int err = 0;
3170
35c20a60 3171 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3172 if (obj->gtt_space == NULL) {
3173 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3174 err++;
3175 continue;
3176 }
3177
3178 if (obj->cache_level != obj->gtt_space->color) {
3179 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3180 i915_gem_obj_ggtt_offset(obj),
3181 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3182 obj->cache_level,
3183 obj->gtt_space->color);
3184 err++;
3185 continue;
3186 }
3187
3188 if (!i915_gem_valid_gtt_space(dev,
3189 obj->gtt_space,
3190 obj->cache_level)) {
3191 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3192 i915_gem_obj_ggtt_offset(obj),
3193 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3194 obj->cache_level);
3195 err++;
3196 continue;
3197 }
3198 }
3199
3200 WARN_ON(err);
3201#endif
3202}
3203
673a394b
EA
3204/**
3205 * Finds free space in the GTT aperture and binds the object there.
3206 */
262de145 3207static struct i915_vma *
07fe0b12
BW
3208i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3209 struct i915_address_space *vm,
3210 unsigned alignment,
1ec9e26d 3211 unsigned flags)
673a394b 3212{
05394f39 3213 struct drm_device *dev = obj->base.dev;
673a394b 3214 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3215 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12 3216 size_t gtt_max =
1ec9e26d 3217 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3218 struct i915_vma *vma;
07f73f69 3219 int ret;
673a394b 3220
e28f8711
CW
3221 fence_size = i915_gem_get_gtt_size(dev,
3222 obj->base.size,
3223 obj->tiling_mode);
3224 fence_alignment = i915_gem_get_gtt_alignment(dev,
3225 obj->base.size,
d865110c 3226 obj->tiling_mode, true);
e28f8711 3227 unfenced_alignment =
d865110c 3228 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3229 obj->base.size,
3230 obj->tiling_mode, false);
a00b10c3 3231
673a394b 3232 if (alignment == 0)
1ec9e26d 3233 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3234 unfenced_alignment;
1ec9e26d 3235 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3236 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3237 return ERR_PTR(-EINVAL);
673a394b
EA
3238 }
3239
1ec9e26d 3240 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3241
654fc607
CW
3242 /* If the object is bigger than the entire aperture, reject it early
3243 * before evicting everything in a vain attempt to find space.
3244 */
0a9ae0d7 3245 if (obj->base.size > gtt_max) {
bd9b6a4e 3246 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb 3247 obj->base.size,
1ec9e26d 3248 flags & PIN_MAPPABLE ? "mappable" : "total",
0a9ae0d7 3249 gtt_max);
262de145 3250 return ERR_PTR(-E2BIG);
654fc607
CW
3251 }
3252
37e680a1 3253 ret = i915_gem_object_get_pages(obj);
6c085a72 3254 if (ret)
262de145 3255 return ERR_PTR(ret);
6c085a72 3256
fbdda6fb
CW
3257 i915_gem_object_pin_pages(obj);
3258
accfef2e 3259 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3260 if (IS_ERR(vma))
bc6bc15b 3261 goto err_unpin;
2f633156 3262
0a9ae0d7 3263search_free:
07fe0b12 3264 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3265 size, alignment,
31e5d7c6
DH
3266 obj->cache_level, 0, gtt_max,
3267 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3268 if (ret) {
f6cd1f15 3269 ret = i915_gem_evict_something(dev, vm, size, alignment,
1ec9e26d 3270 obj->cache_level, flags);
dc9dd7a2
CW
3271 if (ret == 0)
3272 goto search_free;
9731129c 3273
bc6bc15b 3274 goto err_free_vma;
673a394b 3275 }
2f633156 3276 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3277 obj->cache_level))) {
2f633156 3278 ret = -EINVAL;
bc6bc15b 3279 goto err_remove_node;
673a394b
EA
3280 }
3281
74163907 3282 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3283 if (ret)
bc6bc15b 3284 goto err_remove_node;
673a394b 3285
35c20a60 3286 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3287 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3288
4bd561b3
BW
3289 if (i915_is_ggtt(vm)) {
3290 bool mappable, fenceable;
a00b10c3 3291
49987099
DV
3292 fenceable = (vma->node.size == fence_size &&
3293 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3294
49987099
DV
3295 mappable = (vma->node.start + obj->base.size <=
3296 dev_priv->gtt.mappable_end);
a00b10c3 3297
5cacaac7 3298 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3299 }
75e9e915 3300
1ec9e26d 3301 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3302
1ec9e26d 3303 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3304 vma->bind_vma(vma, obj->cache_level,
3305 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3306
42d6ab48 3307 i915_gem_verify_gtt(dev);
262de145 3308 return vma;
2f633156 3309
bc6bc15b 3310err_remove_node:
6286ef9b 3311 drm_mm_remove_node(&vma->node);
bc6bc15b 3312err_free_vma:
2f633156 3313 i915_gem_vma_destroy(vma);
262de145 3314 vma = ERR_PTR(ret);
bc6bc15b 3315err_unpin:
2f633156 3316 i915_gem_object_unpin_pages(obj);
262de145 3317 return vma;
673a394b
EA
3318}
3319
000433b6 3320bool
2c22569b
CW
3321i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3322 bool force)
673a394b 3323{
673a394b
EA
3324 /* If we don't have a page list set up, then we're not pinned
3325 * to GPU, and we can ignore the cache flush because it'll happen
3326 * again at bind time.
3327 */
05394f39 3328 if (obj->pages == NULL)
000433b6 3329 return false;
673a394b 3330
769ce464
ID
3331 /*
3332 * Stolen memory is always coherent with the GPU as it is explicitly
3333 * marked as wc by the system, or the system is cache-coherent.
3334 */
3335 if (obj->stolen)
000433b6 3336 return false;
769ce464 3337
9c23f7fc
CW
3338 /* If the GPU is snooping the contents of the CPU cache,
3339 * we do not need to manually clear the CPU cache lines. However,
3340 * the caches are only snooped when the render cache is
3341 * flushed/invalidated. As we always have to emit invalidations
3342 * and flushes when moving into and out of the RENDER domain, correct
3343 * snooping behaviour occurs naturally as the result of our domain
3344 * tracking.
3345 */
2c22569b 3346 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3347 return false;
9c23f7fc 3348
1c5d22f7 3349 trace_i915_gem_object_clflush(obj);
9da3da66 3350 drm_clflush_sg(obj->pages);
000433b6
CW
3351
3352 return true;
e47c68e9
EA
3353}
3354
3355/** Flushes the GTT write domain for the object if it's dirty. */
3356static void
05394f39 3357i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3358{
1c5d22f7
CW
3359 uint32_t old_write_domain;
3360
05394f39 3361 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3362 return;
3363
63256ec5 3364 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3365 * to it immediately go to main memory as far as we know, so there's
3366 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3367 *
3368 * However, we do have to enforce the order so that all writes through
3369 * the GTT land before any writes to the device, such as updates to
3370 * the GATT itself.
e47c68e9 3371 */
63256ec5
CW
3372 wmb();
3373
05394f39
CW
3374 old_write_domain = obj->base.write_domain;
3375 obj->base.write_domain = 0;
1c5d22f7
CW
3376
3377 trace_i915_gem_object_change_domain(obj,
05394f39 3378 obj->base.read_domains,
1c5d22f7 3379 old_write_domain);
e47c68e9
EA
3380}
3381
3382/** Flushes the CPU write domain for the object if it's dirty. */
3383static void
2c22569b
CW
3384i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3385 bool force)
e47c68e9 3386{
1c5d22f7 3387 uint32_t old_write_domain;
e47c68e9 3388
05394f39 3389 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3390 return;
3391
000433b6
CW
3392 if (i915_gem_clflush_object(obj, force))
3393 i915_gem_chipset_flush(obj->base.dev);
3394
05394f39
CW
3395 old_write_domain = obj->base.write_domain;
3396 obj->base.write_domain = 0;
1c5d22f7
CW
3397
3398 trace_i915_gem_object_change_domain(obj,
05394f39 3399 obj->base.read_domains,
1c5d22f7 3400 old_write_domain);
e47c68e9
EA
3401}
3402
2ef7eeaa
EA
3403/**
3404 * Moves a single object to the GTT read, and possibly write domain.
3405 *
3406 * This function returns when the move is complete, including waiting on
3407 * flushes to occur.
3408 */
79e53945 3409int
2021746e 3410i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3411{
8325a09d 3412 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3413 uint32_t old_write_domain, old_read_domains;
e47c68e9 3414 int ret;
2ef7eeaa 3415
02354392 3416 /* Not valid to be called on unbound objects. */
9843877d 3417 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3418 return -EINVAL;
3419
8d7e3de1
CW
3420 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3421 return 0;
3422
0201f1ec 3423 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3424 if (ret)
3425 return ret;
3426
2c22569b 3427 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3428
d0a57789
CW
3429 /* Serialise direct access to this object with the barriers for
3430 * coherent writes from the GPU, by effectively invalidating the
3431 * GTT domain upon first access.
3432 */
3433 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3434 mb();
3435
05394f39
CW
3436 old_write_domain = obj->base.write_domain;
3437 old_read_domains = obj->base.read_domains;
1c5d22f7 3438
e47c68e9
EA
3439 /* It should now be out of any other write domains, and we can update
3440 * the domain values for our changes.
3441 */
05394f39
CW
3442 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3443 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3444 if (write) {
05394f39
CW
3445 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3446 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3447 obj->dirty = 1;
2ef7eeaa
EA
3448 }
3449
1c5d22f7
CW
3450 trace_i915_gem_object_change_domain(obj,
3451 old_read_domains,
3452 old_write_domain);
3453
8325a09d 3454 /* And bump the LRU for this access */
ca191b13 3455 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3456 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3457 if (vma)
3458 list_move_tail(&vma->mm_list,
3459 &dev_priv->gtt.base.inactive_list);
3460
3461 }
8325a09d 3462
e47c68e9
EA
3463 return 0;
3464}
3465
e4ffd173
CW
3466int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3467 enum i915_cache_level cache_level)
3468{
7bddb01f 3469 struct drm_device *dev = obj->base.dev;
3089c6f2 3470 struct i915_vma *vma;
e4ffd173
CW
3471 int ret;
3472
3473 if (obj->cache_level == cache_level)
3474 return 0;
3475
d7f46fc4 3476 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3477 DRM_DEBUG("can not change the cache level of pinned objects\n");
3478 return -EBUSY;
3479 }
3480
3089c6f2
BW
3481 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3482 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3483 ret = i915_vma_unbind(vma);
3089c6f2
BW
3484 if (ret)
3485 return ret;
3486
3487 break;
3488 }
42d6ab48
CW
3489 }
3490
3089c6f2 3491 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3492 ret = i915_gem_object_finish_gpu(obj);
3493 if (ret)
3494 return ret;
3495
3496 i915_gem_object_finish_gtt(obj);
3497
3498 /* Before SandyBridge, you could not use tiling or fence
3499 * registers with snooped memory, so relinquish any fences
3500 * currently pointing to our region in the aperture.
3501 */
42d6ab48 3502 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3503 ret = i915_gem_object_put_fence(obj);
3504 if (ret)
3505 return ret;
3506 }
3507
6f65e29a 3508 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3509 if (drm_mm_node_allocated(&vma->node))
3510 vma->bind_vma(vma, cache_level,
3511 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3512 }
3513
2c22569b
CW
3514 list_for_each_entry(vma, &obj->vma_list, vma_link)
3515 vma->node.color = cache_level;
3516 obj->cache_level = cache_level;
3517
3518 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3519 u32 old_read_domains, old_write_domain;
3520
3521 /* If we're coming from LLC cached, then we haven't
3522 * actually been tracking whether the data is in the
3523 * CPU cache or not, since we only allow one bit set
3524 * in obj->write_domain and have been skipping the clflushes.
3525 * Just set it to the CPU cache for now.
3526 */
3527 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3528
3529 old_read_domains = obj->base.read_domains;
3530 old_write_domain = obj->base.write_domain;
3531
3532 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3533 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3534
3535 trace_i915_gem_object_change_domain(obj,
3536 old_read_domains,
3537 old_write_domain);
3538 }
3539
42d6ab48 3540 i915_gem_verify_gtt(dev);
e4ffd173
CW
3541 return 0;
3542}
3543
199adf40
BW
3544int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3545 struct drm_file *file)
e6994aee 3546{
199adf40 3547 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3548 struct drm_i915_gem_object *obj;
3549 int ret;
3550
3551 ret = i915_mutex_lock_interruptible(dev);
3552 if (ret)
3553 return ret;
3554
3555 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3556 if (&obj->base == NULL) {
3557 ret = -ENOENT;
3558 goto unlock;
3559 }
3560
651d794f
CW
3561 switch (obj->cache_level) {
3562 case I915_CACHE_LLC:
3563 case I915_CACHE_L3_LLC:
3564 args->caching = I915_CACHING_CACHED;
3565 break;
3566
4257d3ba
CW
3567 case I915_CACHE_WT:
3568 args->caching = I915_CACHING_DISPLAY;
3569 break;
3570
651d794f
CW
3571 default:
3572 args->caching = I915_CACHING_NONE;
3573 break;
3574 }
e6994aee
CW
3575
3576 drm_gem_object_unreference(&obj->base);
3577unlock:
3578 mutex_unlock(&dev->struct_mutex);
3579 return ret;
3580}
3581
199adf40
BW
3582int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3583 struct drm_file *file)
e6994aee 3584{
199adf40 3585 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3586 struct drm_i915_gem_object *obj;
3587 enum i915_cache_level level;
3588 int ret;
3589
199adf40
BW
3590 switch (args->caching) {
3591 case I915_CACHING_NONE:
e6994aee
CW
3592 level = I915_CACHE_NONE;
3593 break;
199adf40 3594 case I915_CACHING_CACHED:
e6994aee
CW
3595 level = I915_CACHE_LLC;
3596 break;
4257d3ba
CW
3597 case I915_CACHING_DISPLAY:
3598 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3599 break;
e6994aee
CW
3600 default:
3601 return -EINVAL;
3602 }
3603
3bc2913e
BW
3604 ret = i915_mutex_lock_interruptible(dev);
3605 if (ret)
3606 return ret;
3607
e6994aee
CW
3608 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3609 if (&obj->base == NULL) {
3610 ret = -ENOENT;
3611 goto unlock;
3612 }
3613
3614 ret = i915_gem_object_set_cache_level(obj, level);
3615
3616 drm_gem_object_unreference(&obj->base);
3617unlock:
3618 mutex_unlock(&dev->struct_mutex);
3619 return ret;
3620}
3621
cc98b413
CW
3622static bool is_pin_display(struct drm_i915_gem_object *obj)
3623{
3624 /* There are 3 sources that pin objects:
3625 * 1. The display engine (scanouts, sprites, cursors);
3626 * 2. Reservations for execbuffer;
3627 * 3. The user.
3628 *
3629 * We can ignore reservations as we hold the struct_mutex and
3630 * are only called outside of the reservation path. The user
3631 * can only increment pin_count once, and so if after
3632 * subtracting the potential reference by the user, any pin_count
3633 * remains, it must be due to another use by the display engine.
3634 */
d7f46fc4 3635 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
cc98b413
CW
3636}
3637
b9241ea3 3638/*
2da3b9b9
CW
3639 * Prepare buffer for display plane (scanout, cursors, etc).
3640 * Can be called from an uninterruptible phase (modesetting) and allows
3641 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3642 */
3643int
2da3b9b9
CW
3644i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3645 u32 alignment,
919926ae 3646 struct intel_ring_buffer *pipelined)
b9241ea3 3647{
2da3b9b9 3648 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3649 int ret;
3650
0be73284 3651 if (pipelined != obj->ring) {
2911a35b
BW
3652 ret = i915_gem_object_sync(obj, pipelined);
3653 if (ret)
b9241ea3
ZW
3654 return ret;
3655 }
3656
cc98b413
CW
3657 /* Mark the pin_display early so that we account for the
3658 * display coherency whilst setting up the cache domains.
3659 */
3660 obj->pin_display = true;
3661
a7ef0640
EA
3662 /* The display engine is not coherent with the LLC cache on gen6. As
3663 * a result, we make sure that the pinning that is about to occur is
3664 * done with uncached PTEs. This is lowest common denominator for all
3665 * chipsets.
3666 *
3667 * However for gen6+, we could do better by using the GFDT bit instead
3668 * of uncaching, which would allow us to flush all the LLC-cached data
3669 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3670 */
651d794f
CW
3671 ret = i915_gem_object_set_cache_level(obj,
3672 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3673 if (ret)
cc98b413 3674 goto err_unpin_display;
a7ef0640 3675
2da3b9b9
CW
3676 /* As the user may map the buffer once pinned in the display plane
3677 * (e.g. libkms for the bootup splash), we have to ensure that we
3678 * always use map_and_fenceable for all scanout buffers.
3679 */
1ec9e26d 3680 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3681 if (ret)
cc98b413 3682 goto err_unpin_display;
2da3b9b9 3683
2c22569b 3684 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3685
2da3b9b9 3686 old_write_domain = obj->base.write_domain;
05394f39 3687 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3688
3689 /* It should now be out of any other write domains, and we can update
3690 * the domain values for our changes.
3691 */
e5f1d962 3692 obj->base.write_domain = 0;
05394f39 3693 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3694
3695 trace_i915_gem_object_change_domain(obj,
3696 old_read_domains,
2da3b9b9 3697 old_write_domain);
b9241ea3
ZW
3698
3699 return 0;
cc98b413
CW
3700
3701err_unpin_display:
3702 obj->pin_display = is_pin_display(obj);
3703 return ret;
3704}
3705
3706void
3707i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3708{
d7f46fc4 3709 i915_gem_object_ggtt_unpin(obj);
cc98b413 3710 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3711}
3712
85345517 3713int
a8198eea 3714i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3715{
88241785
CW
3716 int ret;
3717
a8198eea 3718 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3719 return 0;
3720
0201f1ec 3721 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3722 if (ret)
3723 return ret;
3724
a8198eea
CW
3725 /* Ensure that we invalidate the GPU's caches and TLBs. */
3726 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3727 return 0;
85345517
CW
3728}
3729
e47c68e9
EA
3730/**
3731 * Moves a single object to the CPU read, and possibly write domain.
3732 *
3733 * This function returns when the move is complete, including waiting on
3734 * flushes to occur.
3735 */
dabdfe02 3736int
919926ae 3737i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3738{
1c5d22f7 3739 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3740 int ret;
3741
8d7e3de1
CW
3742 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3743 return 0;
3744
0201f1ec 3745 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3746 if (ret)
3747 return ret;
3748
e47c68e9 3749 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3750
05394f39
CW
3751 old_write_domain = obj->base.write_domain;
3752 old_read_domains = obj->base.read_domains;
1c5d22f7 3753
e47c68e9 3754 /* Flush the CPU cache if it's still invalid. */
05394f39 3755 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3756 i915_gem_clflush_object(obj, false);
2ef7eeaa 3757
05394f39 3758 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3759 }
3760
3761 /* It should now be out of any other write domains, and we can update
3762 * the domain values for our changes.
3763 */
05394f39 3764 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3765
3766 /* If we're writing through the CPU, then the GPU read domains will
3767 * need to be invalidated at next use.
3768 */
3769 if (write) {
05394f39
CW
3770 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3771 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3772 }
2ef7eeaa 3773
1c5d22f7
CW
3774 trace_i915_gem_object_change_domain(obj,
3775 old_read_domains,
3776 old_write_domain);
3777
2ef7eeaa
EA
3778 return 0;
3779}
3780
673a394b
EA
3781/* Throttle our rendering by waiting until the ring has completed our requests
3782 * emitted over 20 msec ago.
3783 *
b962442e
EA
3784 * Note that if we were to use the current jiffies each time around the loop,
3785 * we wouldn't escape the function with any frames outstanding if the time to
3786 * render a frame was over 20ms.
3787 *
673a394b
EA
3788 * This should get us reasonable parallelism between CPU and GPU but also
3789 * relatively low latency when blocking on a particular request to finish.
3790 */
40a5f0de 3791static int
f787a5f5 3792i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3793{
f787a5f5
CW
3794 struct drm_i915_private *dev_priv = dev->dev_private;
3795 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3796 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3797 struct drm_i915_gem_request *request;
3798 struct intel_ring_buffer *ring = NULL;
f69061be 3799 unsigned reset_counter;
f787a5f5
CW
3800 u32 seqno = 0;
3801 int ret;
93533c29 3802
308887aa
DV
3803 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3804 if (ret)
3805 return ret;
3806
3807 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3808 if (ret)
3809 return ret;
e110e8d6 3810
1c25595f 3811 spin_lock(&file_priv->mm.lock);
f787a5f5 3812 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3813 if (time_after_eq(request->emitted_jiffies, recent_enough))
3814 break;
40a5f0de 3815
f787a5f5
CW
3816 ring = request->ring;
3817 seqno = request->seqno;
b962442e 3818 }
f69061be 3819 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3820 spin_unlock(&file_priv->mm.lock);
40a5f0de 3821
f787a5f5
CW
3822 if (seqno == 0)
3823 return 0;
2bc43b5c 3824
b29c19b6 3825 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3826 if (ret == 0)
3827 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3828
3829 return ret;
3830}
3831
673a394b 3832int
05394f39 3833i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3834 struct i915_address_space *vm,
05394f39 3835 uint32_t alignment,
1ec9e26d 3836 unsigned flags)
673a394b 3837{
07fe0b12 3838 struct i915_vma *vma;
673a394b
EA
3839 int ret;
3840
bf3d149b 3841 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 3842 return -EINVAL;
07fe0b12
BW
3843
3844 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 3845 if (vma) {
d7f46fc4
BW
3846 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3847 return -EBUSY;
3848
07fe0b12
BW
3849 if ((alignment &&
3850 vma->node.start & (alignment - 1)) ||
1ec9e26d 3851 (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
d7f46fc4 3852 WARN(vma->pin_count,
ae7d49d8 3853 "bo is already pinned with incorrect alignment:"
f343c5f6 3854 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3855 " obj->map_and_fenceable=%d\n",
07fe0b12 3856 i915_gem_obj_offset(obj, vm), alignment,
1ec9e26d 3857 flags & PIN_MAPPABLE,
05394f39 3858 obj->map_and_fenceable);
07fe0b12 3859 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3860 if (ret)
3861 return ret;
8ea99c92
DV
3862
3863 vma = NULL;
ac0c6b5a
CW
3864 }
3865 }
3866
8ea99c92 3867 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
3868 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3869 if (IS_ERR(vma))
3870 return PTR_ERR(vma);
22c344e9 3871 }
76446cac 3872
8ea99c92
DV
3873 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3874 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 3875
8ea99c92 3876 vma->pin_count++;
1ec9e26d
DV
3877 if (flags & PIN_MAPPABLE)
3878 obj->pin_mappable |= true;
673a394b
EA
3879
3880 return 0;
3881}
3882
3883void
d7f46fc4 3884i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 3885{
d7f46fc4 3886 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 3887
d7f46fc4
BW
3888 BUG_ON(!vma);
3889 BUG_ON(vma->pin_count == 0);
3890 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3891
3892 if (--vma->pin_count == 0)
6299f992 3893 obj->pin_mappable = false;
673a394b
EA
3894}
3895
3896int
3897i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3898 struct drm_file *file)
673a394b
EA
3899{
3900 struct drm_i915_gem_pin *args = data;
05394f39 3901 struct drm_i915_gem_object *obj;
673a394b
EA
3902 int ret;
3903
02f6bccc
DV
3904 if (INTEL_INFO(dev)->gen >= 6)
3905 return -ENODEV;
3906
1d7cfea1
CW
3907 ret = i915_mutex_lock_interruptible(dev);
3908 if (ret)
3909 return ret;
673a394b 3910
05394f39 3911 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3912 if (&obj->base == NULL) {
1d7cfea1
CW
3913 ret = -ENOENT;
3914 goto unlock;
673a394b 3915 }
673a394b 3916
05394f39 3917 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 3918 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 3919 ret = -EFAULT;
1d7cfea1 3920 goto out;
3ef94daa
CW
3921 }
3922
05394f39 3923 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 3924 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 3925 args->handle);
1d7cfea1
CW
3926 ret = -EINVAL;
3927 goto out;
79e53945
JB
3928 }
3929
aa5f8021
DV
3930 if (obj->user_pin_count == ULONG_MAX) {
3931 ret = -EBUSY;
3932 goto out;
3933 }
3934
93be8788 3935 if (obj->user_pin_count == 0) {
1ec9e26d 3936 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
3937 if (ret)
3938 goto out;
673a394b
EA
3939 }
3940
93be8788
CW
3941 obj->user_pin_count++;
3942 obj->pin_filp = file;
3943
f343c5f6 3944 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3945out:
05394f39 3946 drm_gem_object_unreference(&obj->base);
1d7cfea1 3947unlock:
673a394b 3948 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3949 return ret;
673a394b
EA
3950}
3951
3952int
3953i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3954 struct drm_file *file)
673a394b
EA
3955{
3956 struct drm_i915_gem_pin *args = data;
05394f39 3957 struct drm_i915_gem_object *obj;
76c1dec1 3958 int ret;
673a394b 3959
1d7cfea1
CW
3960 ret = i915_mutex_lock_interruptible(dev);
3961 if (ret)
3962 return ret;
673a394b 3963
05394f39 3964 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3965 if (&obj->base == NULL) {
1d7cfea1
CW
3966 ret = -ENOENT;
3967 goto unlock;
673a394b 3968 }
76c1dec1 3969
05394f39 3970 if (obj->pin_filp != file) {
bd9b6a4e 3971 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 3972 args->handle);
1d7cfea1
CW
3973 ret = -EINVAL;
3974 goto out;
79e53945 3975 }
05394f39
CW
3976 obj->user_pin_count--;
3977 if (obj->user_pin_count == 0) {
3978 obj->pin_filp = NULL;
d7f46fc4 3979 i915_gem_object_ggtt_unpin(obj);
79e53945 3980 }
673a394b 3981
1d7cfea1 3982out:
05394f39 3983 drm_gem_object_unreference(&obj->base);
1d7cfea1 3984unlock:
673a394b 3985 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3986 return ret;
673a394b
EA
3987}
3988
3989int
3990i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3991 struct drm_file *file)
673a394b
EA
3992{
3993 struct drm_i915_gem_busy *args = data;
05394f39 3994 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3995 int ret;
3996
76c1dec1 3997 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3998 if (ret)
76c1dec1 3999 return ret;
673a394b 4000
05394f39 4001 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4002 if (&obj->base == NULL) {
1d7cfea1
CW
4003 ret = -ENOENT;
4004 goto unlock;
673a394b 4005 }
d1b851fc 4006
0be555b6
CW
4007 /* Count all active objects as busy, even if they are currently not used
4008 * by the gpu. Users of this interface expect objects to eventually
4009 * become non-busy without any further actions, therefore emit any
4010 * necessary flushes here.
c4de0a5d 4011 */
30dfebf3 4012 ret = i915_gem_object_flush_active(obj);
0be555b6 4013
30dfebf3 4014 args->busy = obj->active;
e9808edd
CW
4015 if (obj->ring) {
4016 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4017 args->busy |= intel_ring_flag(obj->ring) << 16;
4018 }
673a394b 4019
05394f39 4020 drm_gem_object_unreference(&obj->base);
1d7cfea1 4021unlock:
673a394b 4022 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4023 return ret;
673a394b
EA
4024}
4025
4026int
4027i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4028 struct drm_file *file_priv)
4029{
0206e353 4030 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4031}
4032
3ef94daa
CW
4033int
4034i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4035 struct drm_file *file_priv)
4036{
4037 struct drm_i915_gem_madvise *args = data;
05394f39 4038 struct drm_i915_gem_object *obj;
76c1dec1 4039 int ret;
3ef94daa
CW
4040
4041 switch (args->madv) {
4042 case I915_MADV_DONTNEED:
4043 case I915_MADV_WILLNEED:
4044 break;
4045 default:
4046 return -EINVAL;
4047 }
4048
1d7cfea1
CW
4049 ret = i915_mutex_lock_interruptible(dev);
4050 if (ret)
4051 return ret;
4052
05394f39 4053 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4054 if (&obj->base == NULL) {
1d7cfea1
CW
4055 ret = -ENOENT;
4056 goto unlock;
3ef94daa 4057 }
3ef94daa 4058
d7f46fc4 4059 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4060 ret = -EINVAL;
4061 goto out;
3ef94daa
CW
4062 }
4063
05394f39
CW
4064 if (obj->madv != __I915_MADV_PURGED)
4065 obj->madv = args->madv;
3ef94daa 4066
6c085a72
CW
4067 /* if the object is no longer attached, discard its backing storage */
4068 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4069 i915_gem_object_truncate(obj);
4070
05394f39 4071 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4072
1d7cfea1 4073out:
05394f39 4074 drm_gem_object_unreference(&obj->base);
1d7cfea1 4075unlock:
3ef94daa 4076 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4077 return ret;
3ef94daa
CW
4078}
4079
37e680a1
CW
4080void i915_gem_object_init(struct drm_i915_gem_object *obj,
4081 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4082{
35c20a60 4083 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4084 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4085 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4086 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4087
37e680a1
CW
4088 obj->ops = ops;
4089
0327d6ba
CW
4090 obj->fence_reg = I915_FENCE_REG_NONE;
4091 obj->madv = I915_MADV_WILLNEED;
4092 /* Avoid an unnecessary call to unbind on the first bind. */
4093 obj->map_and_fenceable = true;
4094
4095 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4096}
4097
37e680a1
CW
4098static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4099 .get_pages = i915_gem_object_get_pages_gtt,
4100 .put_pages = i915_gem_object_put_pages_gtt,
4101};
4102
05394f39
CW
4103struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4104 size_t size)
ac52bc56 4105{
c397b908 4106 struct drm_i915_gem_object *obj;
5949eac4 4107 struct address_space *mapping;
1a240d4d 4108 gfp_t mask;
ac52bc56 4109
42dcedd4 4110 obj = i915_gem_object_alloc(dev);
c397b908
DV
4111 if (obj == NULL)
4112 return NULL;
673a394b 4113
c397b908 4114 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4115 i915_gem_object_free(obj);
c397b908
DV
4116 return NULL;
4117 }
673a394b 4118
bed1ea95
CW
4119 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4120 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4121 /* 965gm cannot relocate objects above 4GiB. */
4122 mask &= ~__GFP_HIGHMEM;
4123 mask |= __GFP_DMA32;
4124 }
4125
496ad9aa 4126 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4127 mapping_set_gfp_mask(mapping, mask);
5949eac4 4128
37e680a1 4129 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4130
c397b908
DV
4131 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4132 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4133
3d29b842
ED
4134 if (HAS_LLC(dev)) {
4135 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4136 * cache) for about a 10% performance improvement
4137 * compared to uncached. Graphics requests other than
4138 * display scanout are coherent with the CPU in
4139 * accessing this cache. This means in this mode we
4140 * don't need to clflush on the CPU side, and on the
4141 * GPU side we only need to flush internal caches to
4142 * get data visible to the CPU.
4143 *
4144 * However, we maintain the display planes as UC, and so
4145 * need to rebind when first used as such.
4146 */
4147 obj->cache_level = I915_CACHE_LLC;
4148 } else
4149 obj->cache_level = I915_CACHE_NONE;
4150
d861e338
DV
4151 trace_i915_gem_object_create(obj);
4152
05394f39 4153 return obj;
c397b908
DV
4154}
4155
1488fc08 4156void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4157{
1488fc08 4158 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4159 struct drm_device *dev = obj->base.dev;
be72615b 4160 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4161 struct i915_vma *vma, *next;
673a394b 4162
f65c9168
PZ
4163 intel_runtime_pm_get(dev_priv);
4164
26e12f89
CW
4165 trace_i915_gem_object_destroy(obj);
4166
1488fc08
CW
4167 if (obj->phys_obj)
4168 i915_gem_detach_phys_object(dev, obj);
4169
07fe0b12 4170 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4171 int ret;
4172
4173 vma->pin_count = 0;
4174 ret = i915_vma_unbind(vma);
07fe0b12
BW
4175 if (WARN_ON(ret == -ERESTARTSYS)) {
4176 bool was_interruptible;
1488fc08 4177
07fe0b12
BW
4178 was_interruptible = dev_priv->mm.interruptible;
4179 dev_priv->mm.interruptible = false;
1488fc08 4180
07fe0b12 4181 WARN_ON(i915_vma_unbind(vma));
1488fc08 4182
07fe0b12
BW
4183 dev_priv->mm.interruptible = was_interruptible;
4184 }
1488fc08
CW
4185 }
4186
1d64ae71
BW
4187 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4188 * before progressing. */
4189 if (obj->stolen)
4190 i915_gem_object_unpin_pages(obj);
4191
401c29f6
BW
4192 if (WARN_ON(obj->pages_pin_count))
4193 obj->pages_pin_count = 0;
37e680a1 4194 i915_gem_object_put_pages(obj);
d8cb5086 4195 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4196 i915_gem_object_release_stolen(obj);
de151cf6 4197
9da3da66
CW
4198 BUG_ON(obj->pages);
4199
2f745ad3
CW
4200 if (obj->base.import_attach)
4201 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4202
05394f39
CW
4203 drm_gem_object_release(&obj->base);
4204 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4205
05394f39 4206 kfree(obj->bit_17);
42dcedd4 4207 i915_gem_object_free(obj);
f65c9168
PZ
4208
4209 intel_runtime_pm_put(dev_priv);
673a394b
EA
4210}
4211
e656a6cb 4212struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4213 struct i915_address_space *vm)
e656a6cb
DV
4214{
4215 struct i915_vma *vma;
4216 list_for_each_entry(vma, &obj->vma_list, vma_link)
4217 if (vma->vm == vm)
4218 return vma;
4219
4220 return NULL;
4221}
4222
2f633156
BW
4223void i915_gem_vma_destroy(struct i915_vma *vma)
4224{
4225 WARN_ON(vma->node.allocated);
aaa05667
CW
4226
4227 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4228 if (!list_empty(&vma->exec_list))
4229 return;
4230
8b9c2b94 4231 list_del(&vma->vma_link);
b93dab6e 4232
2f633156
BW
4233 kfree(vma);
4234}
4235
29105ccc 4236int
45c5f202 4237i915_gem_suspend(struct drm_device *dev)
29105ccc
CW
4238{
4239 drm_i915_private_t *dev_priv = dev->dev_private;
45c5f202 4240 int ret = 0;
28dfe52a 4241
45c5f202 4242 mutex_lock(&dev->struct_mutex);
f7403347 4243 if (dev_priv->ums.mm_suspended)
45c5f202 4244 goto err;
28dfe52a 4245
b2da9fe5 4246 ret = i915_gpu_idle(dev);
f7403347 4247 if (ret)
45c5f202 4248 goto err;
f7403347 4249
b2da9fe5 4250 i915_gem_retire_requests(dev);
673a394b 4251
29105ccc 4252 /* Under UMS, be paranoid and evict. */
a39d7efc 4253 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4254 i915_gem_evict_everything(dev);
29105ccc 4255
29105ccc 4256 i915_kernel_lost_context(dev);
6dbe2772 4257 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4258
45c5f202
CW
4259 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4260 * We need to replace this with a semaphore, or something.
4261 * And not confound ums.mm_suspended!
4262 */
4263 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4264 DRIVER_MODESET);
4265 mutex_unlock(&dev->struct_mutex);
4266
4267 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4268 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4269 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4270
673a394b 4271 return 0;
45c5f202
CW
4272
4273err:
4274 mutex_unlock(&dev->struct_mutex);
4275 return ret;
673a394b
EA
4276}
4277
c3787e2e 4278int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4279{
c3787e2e 4280 struct drm_device *dev = ring->dev;
b9524a1e 4281 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6
BW
4282 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4283 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4284 int i, ret;
b9524a1e 4285
040d2baa 4286 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4287 return 0;
b9524a1e 4288
c3787e2e
BW
4289 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4290 if (ret)
4291 return ret;
b9524a1e 4292
c3787e2e
BW
4293 /*
4294 * Note: We do not worry about the concurrent register cacheline hang
4295 * here because no other code should access these registers other than
4296 * at initialization time.
4297 */
b9524a1e 4298 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4299 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4300 intel_ring_emit(ring, reg_base + i);
4301 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4302 }
4303
c3787e2e 4304 intel_ring_advance(ring);
b9524a1e 4305
c3787e2e 4306 return ret;
b9524a1e
BW
4307}
4308
f691e2f4
DV
4309void i915_gem_init_swizzling(struct drm_device *dev)
4310{
4311 drm_i915_private_t *dev_priv = dev->dev_private;
4312
11782b02 4313 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4314 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4315 return;
4316
4317 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4318 DISP_TILE_SURFACE_SWIZZLING);
4319
11782b02
DV
4320 if (IS_GEN5(dev))
4321 return;
4322
f691e2f4
DV
4323 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4324 if (IS_GEN6(dev))
6b26c86d 4325 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4326 else if (IS_GEN7(dev))
6b26c86d 4327 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4328 else if (IS_GEN8(dev))
4329 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4330 else
4331 BUG();
f691e2f4 4332}
e21af88d 4333
67b1b571
CW
4334static bool
4335intel_enable_blt(struct drm_device *dev)
4336{
4337 if (!HAS_BLT(dev))
4338 return false;
4339
4340 /* The blitter was dysfunctional on early prototypes */
4341 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4342 DRM_INFO("BLT not supported on this pre-production hardware;"
4343 " graphics performance will be degraded.\n");
4344 return false;
4345 }
4346
4347 return true;
4348}
4349
4fc7c971 4350static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4351{
4fc7c971 4352 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4353 int ret;
68f95ba9 4354
5c1143bb 4355 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4356 if (ret)
b6913e4b 4357 return ret;
68f95ba9
CW
4358
4359 if (HAS_BSD(dev)) {
5c1143bb 4360 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4361 if (ret)
4362 goto cleanup_render_ring;
d1b851fc 4363 }
68f95ba9 4364
67b1b571 4365 if (intel_enable_blt(dev)) {
549f7365
CW
4366 ret = intel_init_blt_ring_buffer(dev);
4367 if (ret)
4368 goto cleanup_bsd_ring;
4369 }
4370
9a8a2213
BW
4371 if (HAS_VEBOX(dev)) {
4372 ret = intel_init_vebox_ring_buffer(dev);
4373 if (ret)
4374 goto cleanup_blt_ring;
4375 }
4376
4377
99433931 4378 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4379 if (ret)
9a8a2213 4380 goto cleanup_vebox_ring;
4fc7c971
BW
4381
4382 return 0;
4383
9a8a2213
BW
4384cleanup_vebox_ring:
4385 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4386cleanup_blt_ring:
4387 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4388cleanup_bsd_ring:
4389 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4390cleanup_render_ring:
4391 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4392
4393 return ret;
4394}
4395
4396int
4397i915_gem_init_hw(struct drm_device *dev)
4398{
4399 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6 4400 int ret, i;
4fc7c971
BW
4401
4402 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4403 return -EIO;
4404
59124506 4405 if (dev_priv->ellc_size)
05e21cc4 4406 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4407
0bf21347
VS
4408 if (IS_HASWELL(dev))
4409 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4410 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4411
88a2b2a3 4412 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4413 if (IS_IVYBRIDGE(dev)) {
4414 u32 temp = I915_READ(GEN7_MSG_CTL);
4415 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4416 I915_WRITE(GEN7_MSG_CTL, temp);
4417 } else if (INTEL_INFO(dev)->gen >= 7) {
4418 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4419 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4420 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4421 }
88a2b2a3
BW
4422 }
4423
4fc7c971
BW
4424 i915_gem_init_swizzling(dev);
4425
4426 ret = i915_gem_init_rings(dev);
99433931
MK
4427 if (ret)
4428 return ret;
4429
c3787e2e
BW
4430 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4431 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4432
254f965c 4433 /*
2fa48d8d
BW
4434 * XXX: Contexts should only be initialized once. Doing a switch to the
4435 * default context switch however is something we'd like to do after
4436 * reset or thaw (the latter may not actually be necessary for HW, but
4437 * goes with our code better). Context switching requires rings (for
4438 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4439 */
2fa48d8d 4440 ret = i915_gem_context_enable(dev_priv);
8245be31 4441 if (ret) {
2fa48d8d
BW
4442 DRM_ERROR("Context enable failed %d\n", ret);
4443 goto err_out;
b7c36d25 4444 }
e21af88d 4445
68f95ba9 4446 return 0;
2fa48d8d
BW
4447
4448err_out:
4449 i915_gem_cleanup_ringbuffer(dev);
4450 return ret;
8187a2b7
ZN
4451}
4452
1070a42b
CW
4453int i915_gem_init(struct drm_device *dev)
4454{
4455 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4456 int ret;
4457
1070a42b 4458 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4459
4460 if (IS_VALLEYVIEW(dev)) {
4461 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4462 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4463 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4464 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4465 }
4466
d7e5008f 4467 i915_gem_init_global_gtt(dev);
d62b4892 4468
2fa48d8d 4469 ret = i915_gem_context_init(dev);
e3848694
MK
4470 if (ret) {
4471 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4472 return ret;
e3848694 4473 }
2fa48d8d 4474
1070a42b
CW
4475 ret = i915_gem_init_hw(dev);
4476 mutex_unlock(&dev->struct_mutex);
4477 if (ret) {
bdf4fd7e 4478 WARN_ON(dev_priv->mm.aliasing_ppgtt);
2fa48d8d 4479 i915_gem_context_fini(dev);
c39538a8 4480 drm_mm_takedown(&dev_priv->gtt.base.mm);
1070a42b
CW
4481 return ret;
4482 }
4483
53ca26ca
DV
4484 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4485 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4486 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4487 return 0;
4488}
4489
8187a2b7
ZN
4490void
4491i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4492{
4493 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4494 struct intel_ring_buffer *ring;
1ec14ad3 4495 int i;
8187a2b7 4496
b4519513
CW
4497 for_each_ring(ring, dev_priv, i)
4498 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4499}
4500
673a394b
EA
4501int
4502i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4503 struct drm_file *file_priv)
4504{
db1b76ca 4505 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4506 int ret;
673a394b 4507
79e53945
JB
4508 if (drm_core_check_feature(dev, DRIVER_MODESET))
4509 return 0;
4510
1f83fee0 4511 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4512 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4513 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4514 }
4515
673a394b 4516 mutex_lock(&dev->struct_mutex);
db1b76ca 4517 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4518
f691e2f4 4519 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4520 if (ret != 0) {
4521 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4522 return ret;
d816f6ac 4523 }
9bb2d6f9 4524
5cef07e1 4525 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4526 mutex_unlock(&dev->struct_mutex);
dbb19d30 4527
5f35308b
CW
4528 ret = drm_irq_install(dev);
4529 if (ret)
4530 goto cleanup_ringbuffer;
dbb19d30 4531
673a394b 4532 return 0;
5f35308b
CW
4533
4534cleanup_ringbuffer:
4535 mutex_lock(&dev->struct_mutex);
4536 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4537 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4538 mutex_unlock(&dev->struct_mutex);
4539
4540 return ret;
673a394b
EA
4541}
4542
4543int
4544i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4545 struct drm_file *file_priv)
4546{
79e53945
JB
4547 if (drm_core_check_feature(dev, DRIVER_MODESET))
4548 return 0;
4549
dbb19d30 4550 drm_irq_uninstall(dev);
db1b76ca 4551
45c5f202 4552 return i915_gem_suspend(dev);
673a394b
EA
4553}
4554
4555void
4556i915_gem_lastclose(struct drm_device *dev)
4557{
4558 int ret;
673a394b 4559
e806b495
EA
4560 if (drm_core_check_feature(dev, DRIVER_MODESET))
4561 return;
4562
45c5f202 4563 ret = i915_gem_suspend(dev);
6dbe2772
KP
4564 if (ret)
4565 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4566}
4567
64193406
CW
4568static void
4569init_ring_lists(struct intel_ring_buffer *ring)
4570{
4571 INIT_LIST_HEAD(&ring->active_list);
4572 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4573}
4574
7e0d96bc
BW
4575void i915_init_vm(struct drm_i915_private *dev_priv,
4576 struct i915_address_space *vm)
fc8c067e 4577{
7e0d96bc
BW
4578 if (!i915_is_ggtt(vm))
4579 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4580 vm->dev = dev_priv->dev;
4581 INIT_LIST_HEAD(&vm->active_list);
4582 INIT_LIST_HEAD(&vm->inactive_list);
4583 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4584 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4585}
4586
673a394b
EA
4587void
4588i915_gem_load(struct drm_device *dev)
4589{
4590 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4591 int i;
4592
4593 dev_priv->slab =
4594 kmem_cache_create("i915_gem_object",
4595 sizeof(struct drm_i915_gem_object), 0,
4596 SLAB_HWCACHE_ALIGN,
4597 NULL);
673a394b 4598
fc8c067e
BW
4599 INIT_LIST_HEAD(&dev_priv->vm_list);
4600 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4601
a33afea5 4602 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4603 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4604 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4605 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4606 for (i = 0; i < I915_NUM_RINGS; i++)
4607 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4608 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4609 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4610 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4611 i915_gem_retire_work_handler);
b29c19b6
CW
4612 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4613 i915_gem_idle_work_handler);
1f83fee0 4614 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4615
94400120
DA
4616 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4617 if (IS_GEN3(dev)) {
50743298
DV
4618 I915_WRITE(MI_ARB_STATE,
4619 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4620 }
4621
72bfa19c
CW
4622 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4623
de151cf6 4624 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4625 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4626 dev_priv->fence_reg_start = 3;
de151cf6 4627
42b5aeab
VS
4628 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4629 dev_priv->num_fence_regs = 32;
4630 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4631 dev_priv->num_fence_regs = 16;
4632 else
4633 dev_priv->num_fence_regs = 8;
4634
b5aa8a0f 4635 /* Initialize fence registers to zero */
19b2dbde
CW
4636 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4637 i915_gem_restore_fences(dev);
10ed13e4 4638
673a394b 4639 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4640 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4641
ce453d81
CW
4642 dev_priv->mm.interruptible = true;
4643
7dc19d5a
DC
4644 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4645 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4646 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4647 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4648}
71acb5eb
DA
4649
4650/*
4651 * Create a physically contiguous memory object for this object
4652 * e.g. for cursor + overlay regs
4653 */
995b6762
CW
4654static int i915_gem_init_phys_object(struct drm_device *dev,
4655 int id, int size, int align)
71acb5eb
DA
4656{
4657 drm_i915_private_t *dev_priv = dev->dev_private;
4658 struct drm_i915_gem_phys_object *phys_obj;
4659 int ret;
4660
4661 if (dev_priv->mm.phys_objs[id - 1] || !size)
4662 return 0;
4663
b14c5679 4664 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4665 if (!phys_obj)
4666 return -ENOMEM;
4667
4668 phys_obj->id = id;
4669
6eeefaf3 4670 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4671 if (!phys_obj->handle) {
4672 ret = -ENOMEM;
4673 goto kfree_obj;
4674 }
4675#ifdef CONFIG_X86
4676 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4677#endif
4678
4679 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4680
4681 return 0;
4682kfree_obj:
9a298b2a 4683 kfree(phys_obj);
71acb5eb
DA
4684 return ret;
4685}
4686
995b6762 4687static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4688{
4689 drm_i915_private_t *dev_priv = dev->dev_private;
4690 struct drm_i915_gem_phys_object *phys_obj;
4691
4692 if (!dev_priv->mm.phys_objs[id - 1])
4693 return;
4694
4695 phys_obj = dev_priv->mm.phys_objs[id - 1];
4696 if (phys_obj->cur_obj) {
4697 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4698 }
4699
4700#ifdef CONFIG_X86
4701 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4702#endif
4703 drm_pci_free(dev, phys_obj->handle);
4704 kfree(phys_obj);
4705 dev_priv->mm.phys_objs[id - 1] = NULL;
4706}
4707
4708void i915_gem_free_all_phys_object(struct drm_device *dev)
4709{
4710 int i;
4711
260883c8 4712 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4713 i915_gem_free_phys_object(dev, i);
4714}
4715
4716void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4717 struct drm_i915_gem_object *obj)
71acb5eb 4718{
496ad9aa 4719 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4720 char *vaddr;
71acb5eb 4721 int i;
71acb5eb
DA
4722 int page_count;
4723
05394f39 4724 if (!obj->phys_obj)
71acb5eb 4725 return;
05394f39 4726 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4727
05394f39 4728 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4729 for (i = 0; i < page_count; i++) {
5949eac4 4730 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4731 if (!IS_ERR(page)) {
4732 char *dst = kmap_atomic(page);
4733 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4734 kunmap_atomic(dst);
4735
4736 drm_clflush_pages(&page, 1);
4737
4738 set_page_dirty(page);
4739 mark_page_accessed(page);
4740 page_cache_release(page);
4741 }
71acb5eb 4742 }
e76e9aeb 4743 i915_gem_chipset_flush(dev);
d78b47b9 4744
05394f39
CW
4745 obj->phys_obj->cur_obj = NULL;
4746 obj->phys_obj = NULL;
71acb5eb
DA
4747}
4748
4749int
4750i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4751 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4752 int id,
4753 int align)
71acb5eb 4754{
496ad9aa 4755 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4756 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4757 int ret = 0;
4758 int page_count;
4759 int i;
4760
4761 if (id > I915_MAX_PHYS_OBJECT)
4762 return -EINVAL;
4763
05394f39
CW
4764 if (obj->phys_obj) {
4765 if (obj->phys_obj->id == id)
71acb5eb
DA
4766 return 0;
4767 i915_gem_detach_phys_object(dev, obj);
4768 }
4769
71acb5eb
DA
4770 /* create a new object */
4771 if (!dev_priv->mm.phys_objs[id - 1]) {
4772 ret = i915_gem_init_phys_object(dev, id,
05394f39 4773 obj->base.size, align);
71acb5eb 4774 if (ret) {
05394f39
CW
4775 DRM_ERROR("failed to init phys object %d size: %zu\n",
4776 id, obj->base.size);
e5281ccd 4777 return ret;
71acb5eb
DA
4778 }
4779 }
4780
4781 /* bind to the object */
05394f39
CW
4782 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4783 obj->phys_obj->cur_obj = obj;
71acb5eb 4784
05394f39 4785 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4786
4787 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4788 struct page *page;
4789 char *dst, *src;
4790
5949eac4 4791 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4792 if (IS_ERR(page))
4793 return PTR_ERR(page);
71acb5eb 4794
ff75b9bc 4795 src = kmap_atomic(page);
05394f39 4796 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4797 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4798 kunmap_atomic(src);
71acb5eb 4799
e5281ccd
CW
4800 mark_page_accessed(page);
4801 page_cache_release(page);
4802 }
d78b47b9 4803
71acb5eb 4804 return 0;
71acb5eb
DA
4805}
4806
4807static int
05394f39
CW
4808i915_gem_phys_pwrite(struct drm_device *dev,
4809 struct drm_i915_gem_object *obj,
71acb5eb
DA
4810 struct drm_i915_gem_pwrite *args,
4811 struct drm_file *file_priv)
4812{
05394f39 4813 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4814 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4815
b47b30cc
CW
4816 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4817 unsigned long unwritten;
4818
4819 /* The physical object once assigned is fixed for the lifetime
4820 * of the obj, so we can safely drop the lock and continue
4821 * to access vaddr.
4822 */
4823 mutex_unlock(&dev->struct_mutex);
4824 unwritten = copy_from_user(vaddr, user_data, args->size);
4825 mutex_lock(&dev->struct_mutex);
4826 if (unwritten)
4827 return -EFAULT;
4828 }
71acb5eb 4829
e76e9aeb 4830 i915_gem_chipset_flush(dev);
71acb5eb
DA
4831 return 0;
4832}
b962442e 4833
f787a5f5 4834void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4835{
f787a5f5 4836 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4837
b29c19b6
CW
4838 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4839
b962442e
EA
4840 /* Clean up our request list when the client is going away, so that
4841 * later retire_requests won't dereference our soon-to-be-gone
4842 * file_priv.
4843 */
1c25595f 4844 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4845 while (!list_empty(&file_priv->mm.request_list)) {
4846 struct drm_i915_gem_request *request;
4847
4848 request = list_first_entry(&file_priv->mm.request_list,
4849 struct drm_i915_gem_request,
4850 client_list);
4851 list_del(&request->client_list);
4852 request->file_priv = NULL;
4853 }
1c25595f 4854 spin_unlock(&file_priv->mm.lock);
b962442e 4855}
31169714 4856
b29c19b6
CW
4857static void
4858i915_gem_file_idle_work_handler(struct work_struct *work)
4859{
4860 struct drm_i915_file_private *file_priv =
4861 container_of(work, typeof(*file_priv), mm.idle_work.work);
4862
4863 atomic_set(&file_priv->rps_wait_boost, false);
4864}
4865
4866int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4867{
4868 struct drm_i915_file_private *file_priv;
e422b888 4869 int ret;
b29c19b6
CW
4870
4871 DRM_DEBUG_DRIVER("\n");
4872
4873 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4874 if (!file_priv)
4875 return -ENOMEM;
4876
4877 file->driver_priv = file_priv;
4878 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 4879 file_priv->file = file;
b29c19b6
CW
4880
4881 spin_lock_init(&file_priv->mm.lock);
4882 INIT_LIST_HEAD(&file_priv->mm.request_list);
4883 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4884 i915_gem_file_idle_work_handler);
4885
e422b888
BW
4886 ret = i915_gem_context_open(dev, file);
4887 if (ret)
4888 kfree(file_priv);
b29c19b6 4889
e422b888 4890 return ret;
b29c19b6
CW
4891}
4892
5774506f
CW
4893static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4894{
4895 if (!mutex_is_locked(mutex))
4896 return false;
4897
4898#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4899 return mutex->owner == task;
4900#else
4901 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4902 return false;
4903#endif
4904}
4905
7dc19d5a
DC
4906static unsigned long
4907i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4908{
17250b71
CW
4909 struct drm_i915_private *dev_priv =
4910 container_of(shrinker,
4911 struct drm_i915_private,
4912 mm.inactive_shrinker);
4913 struct drm_device *dev = dev_priv->dev;
6c085a72 4914 struct drm_i915_gem_object *obj;
5774506f 4915 bool unlock = true;
7dc19d5a 4916 unsigned long count;
17250b71 4917
5774506f
CW
4918 if (!mutex_trylock(&dev->struct_mutex)) {
4919 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4920 return 0;
5774506f 4921
677feac2 4922 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4923 return 0;
677feac2 4924
5774506f
CW
4925 unlock = false;
4926 }
31169714 4927
7dc19d5a 4928 count = 0;
35c20a60 4929 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 4930 if (obj->pages_pin_count == 0)
7dc19d5a 4931 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4932
4933 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4934 if (obj->active)
4935 continue;
4936
d7f46fc4 4937 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
7dc19d5a 4938 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 4939 }
17250b71 4940
5774506f
CW
4941 if (unlock)
4942 mutex_unlock(&dev->struct_mutex);
d9973b43 4943
7dc19d5a 4944 return count;
31169714 4945}
a70a3148
BW
4946
4947/* All the new VM stuff */
4948unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4949 struct i915_address_space *vm)
4950{
4951 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4952 struct i915_vma *vma;
4953
6f425321
BW
4954 if (!dev_priv->mm.aliasing_ppgtt ||
4955 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4956 vm = &dev_priv->gtt.base;
4957
4958 BUG_ON(list_empty(&o->vma_list));
4959 list_for_each_entry(vma, &o->vma_list, vma_link) {
4960 if (vma->vm == vm)
4961 return vma->node.start;
4962
4963 }
4964 return -1;
4965}
4966
4967bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4968 struct i915_address_space *vm)
4969{
4970 struct i915_vma *vma;
4971
4972 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4973 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4974 return true;
4975
4976 return false;
4977}
4978
4979bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4980{
5a1d5eb0 4981 struct i915_vma *vma;
a70a3148 4982
5a1d5eb0
CW
4983 list_for_each_entry(vma, &o->vma_list, vma_link)
4984 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
4985 return true;
4986
4987 return false;
4988}
4989
4990unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4991 struct i915_address_space *vm)
4992{
4993 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4994 struct i915_vma *vma;
4995
6f425321
BW
4996 if (!dev_priv->mm.aliasing_ppgtt ||
4997 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4998 vm = &dev_priv->gtt.base;
4999
5000 BUG_ON(list_empty(&o->vma_list));
5001
5002 list_for_each_entry(vma, &o->vma_list, vma_link)
5003 if (vma->vm == vm)
5004 return vma->node.size;
5005
5006 return 0;
5007}
5008
7dc19d5a
DC
5009static unsigned long
5010i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5011{
5012 struct drm_i915_private *dev_priv =
5013 container_of(shrinker,
5014 struct drm_i915_private,
5015 mm.inactive_shrinker);
5016 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
5017 unsigned long freed;
5018 bool unlock = true;
5019
5020 if (!mutex_trylock(&dev->struct_mutex)) {
5021 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5022 return SHRINK_STOP;
7dc19d5a
DC
5023
5024 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5025 return SHRINK_STOP;
7dc19d5a
DC
5026
5027 unlock = false;
5028 }
5029
d9973b43
CW
5030 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5031 if (freed < sc->nr_to_scan)
5032 freed += __i915_gem_shrink(dev_priv,
5033 sc->nr_to_scan - freed,
5034 false);
5035 if (freed < sc->nr_to_scan)
7dc19d5a
DC
5036 freed += i915_gem_shrink_all(dev_priv);
5037
5038 if (unlock)
5039 mutex_unlock(&dev->struct_mutex);
d9973b43 5040
7dc19d5a
DC
5041 return freed;
5042}
5c2abbea
BW
5043
5044struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5045{
5046 struct i915_vma *vma;
5047
5048 if (WARN_ON(list_empty(&obj->vma_list)))
5049 return NULL;
5050
5051 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5052 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5053 return NULL;
5054
5055 return vma;
5056}