drm/i915: implement SNB workaround for lazy global gtt
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
43 bool write);
44static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
05394f39 47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
48static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
49 unsigned alignment,
50 bool map_and_fenceable);
d9e86c0e
CW
51static void i915_gem_clear_fence_reg(struct drm_device *dev,
52 struct drm_i915_fence_reg *reg);
05394f39
CW
53static int i915_gem_phys_pwrite(struct drm_device *dev,
54 struct drm_i915_gem_object *obj,
71acb5eb 55 struct drm_i915_gem_pwrite *args,
05394f39
CW
56 struct drm_file *file);
57static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 58
17250b71 59static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 60 struct shrink_control *sc);
8c59967c 61static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69}
70
71static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73{
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76}
77
21dd3734
CW
78static int
79i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
80{
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
21dd3734
CW
93 if (atomic_read(&dev_priv->mm.wedged)) {
94 /* GPU is hung, bump the completion count to account for
95 * the token we just consumed so that we never hit zero and
96 * end up waiting upon a subsequent completion event that
97 * will never happen.
98 */
99 spin_lock_irqsave(&x->wait.lock, flags);
100 x->done++;
101 spin_unlock_irqrestore(&x->wait.lock, flags);
102 }
103 return 0;
30dbf0c0
CW
104}
105
54cf91dc 106int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 107{
76c1dec1
CW
108 int ret;
109
21dd3734 110 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
111 if (ret)
112 return ret;
113
114 ret = mutex_lock_interruptible(&dev->struct_mutex);
115 if (ret)
116 return ret;
117
23bc5982 118 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
119 return 0;
120}
30dbf0c0 121
7d1c4804 122static inline bool
05394f39 123i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 124{
05394f39 125 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
126}
127
2021746e
CW
128void i915_gem_do_init(struct drm_device *dev,
129 unsigned long start,
130 unsigned long mappable_end,
131 unsigned long end)
673a394b
EA
132{
133 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 134
bee4a186 135 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
673a394b 136
bee4a186
CW
137 dev_priv->mm.gtt_start = start;
138 dev_priv->mm.gtt_mappable_end = mappable_end;
139 dev_priv->mm.gtt_end = end;
73aa808f 140 dev_priv->mm.gtt_total = end - start;
fb7d516a 141 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
bee4a186
CW
142
143 /* Take over this portion of the GTT */
144 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
79e53945 145}
673a394b 146
79e53945
JB
147int
148i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 149 struct drm_file *file)
79e53945
JB
150{
151 struct drm_i915_gem_init *args = data;
2021746e
CW
152
153 if (args->gtt_start >= args->gtt_end ||
154 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155 return -EINVAL;
79e53945
JB
156
157 mutex_lock(&dev->struct_mutex);
2021746e 158 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
159 mutex_unlock(&dev->struct_mutex);
160
2021746e 161 return 0;
673a394b
EA
162}
163
5a125c3c
EA
164int
165i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 166 struct drm_file *file)
5a125c3c 167{
73aa808f 168 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 169 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
170 struct drm_i915_gem_object *obj;
171 size_t pinned;
5a125c3c
EA
172
173 if (!(dev->driver->driver_features & DRIVER_GEM))
174 return -ENODEV;
175
6299f992 176 pinned = 0;
73aa808f 177 mutex_lock(&dev->struct_mutex);
6299f992
CW
178 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179 pinned += obj->gtt_space->size;
73aa808f 180 mutex_unlock(&dev->struct_mutex);
5a125c3c 181
6299f992 182 args->aper_size = dev_priv->mm.gtt_total;
0206e353 183 args->aper_available_size = args->aper_size - pinned;
6299f992 184
5a125c3c
EA
185 return 0;
186}
187
ff72145b
DA
188static int
189i915_gem_create(struct drm_file *file,
190 struct drm_device *dev,
191 uint64_t size,
192 uint32_t *handle_p)
673a394b 193{
05394f39 194 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
195 int ret;
196 u32 handle;
673a394b 197
ff72145b 198 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
199 if (size == 0)
200 return -EINVAL;
673a394b
EA
201
202 /* Allocate the new object */
ff72145b 203 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
204 if (obj == NULL)
205 return -ENOMEM;
206
05394f39 207 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 208 if (ret) {
05394f39
CW
209 drm_gem_object_release(&obj->base);
210 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 211 kfree(obj);
673a394b 212 return ret;
1dfd9754 213 }
673a394b 214
202f2fef 215 /* drop reference from allocate - handle holds it now */
05394f39 216 drm_gem_object_unreference(&obj->base);
202f2fef
CW
217 trace_i915_gem_object_create(obj);
218
ff72145b 219 *handle_p = handle;
673a394b
EA
220 return 0;
221}
222
ff72145b
DA
223int
224i915_gem_dumb_create(struct drm_file *file,
225 struct drm_device *dev,
226 struct drm_mode_create_dumb *args)
227{
228 /* have to work out size/pitch and return them */
ed0291fd 229 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
230 args->size = args->pitch * args->height;
231 return i915_gem_create(file, dev,
232 args->size, &args->handle);
233}
234
235int i915_gem_dumb_destroy(struct drm_file *file,
236 struct drm_device *dev,
237 uint32_t handle)
238{
239 return drm_gem_handle_delete(file, handle);
240}
241
242/**
243 * Creates a new mm object and returns a handle to it.
244 */
245int
246i915_gem_create_ioctl(struct drm_device *dev, void *data,
247 struct drm_file *file)
248{
249 struct drm_i915_gem_create *args = data;
250 return i915_gem_create(file, dev,
251 args->size, &args->handle);
252}
253
05394f39 254static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 255{
05394f39 256 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
257
258 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 259 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
260}
261
eb01459f
EA
262/**
263 * This is the fast shmem pread path, which attempts to copy_from_user directly
264 * from the backing pages of the object to the user's address space. On a
265 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
266 */
267static int
05394f39
CW
268i915_gem_shmem_pread_fast(struct drm_device *dev,
269 struct drm_i915_gem_object *obj,
eb01459f 270 struct drm_i915_gem_pread *args,
05394f39 271 struct drm_file *file)
eb01459f 272{
05394f39 273 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 274 ssize_t remain;
e5281ccd 275 loff_t offset;
eb01459f
EA
276 char __user *user_data;
277 int page_offset, page_length;
eb01459f
EA
278
279 user_data = (char __user *) (uintptr_t) args->data_ptr;
280 remain = args->size;
281
eb01459f
EA
282 offset = args->offset;
283
284 while (remain > 0) {
e5281ccd
CW
285 struct page *page;
286 char *vaddr;
287 int ret;
288
eb01459f
EA
289 /* Operation in this page
290 *
eb01459f
EA
291 * page_offset = offset within page
292 * page_length = bytes to copy for this page
293 */
c8cbbb8b 294 page_offset = offset_in_page(offset);
eb01459f
EA
295 page_length = remain;
296 if ((page_offset + remain) > PAGE_SIZE)
297 page_length = PAGE_SIZE - page_offset;
298
5949eac4 299 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
300 if (IS_ERR(page))
301 return PTR_ERR(page);
302
303 vaddr = kmap_atomic(page);
304 ret = __copy_to_user_inatomic(user_data,
305 vaddr + page_offset,
306 page_length);
307 kunmap_atomic(vaddr);
308
309 mark_page_accessed(page);
310 page_cache_release(page);
311 if (ret)
4f27b75d 312 return -EFAULT;
eb01459f
EA
313
314 remain -= page_length;
315 user_data += page_length;
316 offset += page_length;
317 }
318
4f27b75d 319 return 0;
eb01459f
EA
320}
321
8461d226
DV
322static inline int
323__copy_to_user_swizzled(char __user *cpu_vaddr,
324 const char *gpu_vaddr, int gpu_offset,
325 int length)
326{
327 int ret, cpu_offset = 0;
328
329 while (length > 0) {
330 int cacheline_end = ALIGN(gpu_offset + 1, 64);
331 int this_length = min(cacheline_end - gpu_offset, length);
332 int swizzled_gpu_offset = gpu_offset ^ 64;
333
334 ret = __copy_to_user(cpu_vaddr + cpu_offset,
335 gpu_vaddr + swizzled_gpu_offset,
336 this_length);
337 if (ret)
338 return ret + length;
339
340 cpu_offset += this_length;
341 gpu_offset += this_length;
342 length -= this_length;
343 }
344
345 return 0;
346}
347
8c59967c
DV
348static inline int
349__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
350 const char *cpu_vaddr,
351 int length)
352{
353 int ret, cpu_offset = 0;
354
355 while (length > 0) {
356 int cacheline_end = ALIGN(gpu_offset + 1, 64);
357 int this_length = min(cacheline_end - gpu_offset, length);
358 int swizzled_gpu_offset = gpu_offset ^ 64;
359
360 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
361 cpu_vaddr + cpu_offset,
362 this_length);
363 if (ret)
364 return ret + length;
365
366 cpu_offset += this_length;
367 gpu_offset += this_length;
368 length -= this_length;
369 }
370
371 return 0;
372}
373
eb01459f
EA
374/**
375 * This is the fallback shmem pread path, which allocates temporary storage
376 * in kernel space to copy_to_user into outside of the struct_mutex, so we
377 * can copy out of the object's backing pages while holding the struct mutex
378 * and not take page faults.
379 */
380static int
05394f39
CW
381i915_gem_shmem_pread_slow(struct drm_device *dev,
382 struct drm_i915_gem_object *obj,
eb01459f 383 struct drm_i915_gem_pread *args,
05394f39 384 struct drm_file *file)
eb01459f 385{
05394f39 386 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 387 char __user *user_data;
eb01459f 388 ssize_t remain;
8461d226
DV
389 loff_t offset;
390 int shmem_page_offset, page_length, ret;
391 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
eb01459f 392
8461d226 393 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
394 remain = args->size;
395
8461d226 396 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 397
8461d226 398 offset = args->offset;
eb01459f 399
4f27b75d 400 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
401
402 while (remain > 0) {
e5281ccd 403 struct page *page;
8461d226 404 char *vaddr;
e5281ccd 405
eb01459f
EA
406 /* Operation in this page
407 *
eb01459f 408 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
409 * page_length = bytes to copy for this page
410 */
c8cbbb8b 411 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
412 page_length = remain;
413 if ((shmem_page_offset + page_length) > PAGE_SIZE)
414 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 415
5949eac4 416 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
b65552f0
JJ
417 if (IS_ERR(page)) {
418 ret = PTR_ERR(page);
419 goto out;
420 }
e5281ccd 421
8461d226
DV
422 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
423 (page_to_phys(page) & (1 << 17)) != 0;
424
425 vaddr = kmap(page);
426 if (page_do_bit17_swizzling)
427 ret = __copy_to_user_swizzled(user_data,
428 vaddr, shmem_page_offset,
429 page_length);
430 else
431 ret = __copy_to_user(user_data,
432 vaddr + shmem_page_offset,
433 page_length);
434 kunmap(page);
eb01459f 435
e5281ccd
CW
436 mark_page_accessed(page);
437 page_cache_release(page);
438
8461d226
DV
439 if (ret) {
440 ret = -EFAULT;
441 goto out;
442 }
443
eb01459f 444 remain -= page_length;
8461d226 445 user_data += page_length;
eb01459f
EA
446 offset += page_length;
447 }
448
4f27b75d 449out:
8461d226
DV
450 mutex_lock(&dev->struct_mutex);
451 /* Fixup: Kill any reinstated backing storage pages */
452 if (obj->madv == __I915_MADV_PURGED)
453 i915_gem_object_truncate(obj);
eb01459f
EA
454
455 return ret;
456}
457
673a394b
EA
458/**
459 * Reads data from the object referenced by handle.
460 *
461 * On error, the contents of *data are undefined.
462 */
463int
464i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 465 struct drm_file *file)
673a394b
EA
466{
467 struct drm_i915_gem_pread *args = data;
05394f39 468 struct drm_i915_gem_object *obj;
35b62a89 469 int ret = 0;
673a394b 470
51311d0a
CW
471 if (args->size == 0)
472 return 0;
473
474 if (!access_ok(VERIFY_WRITE,
475 (char __user *)(uintptr_t)args->data_ptr,
476 args->size))
477 return -EFAULT;
478
479 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
480 args->size);
481 if (ret)
482 return -EFAULT;
483
4f27b75d 484 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 485 if (ret)
4f27b75d 486 return ret;
673a394b 487
05394f39 488 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 489 if (&obj->base == NULL) {
1d7cfea1
CW
490 ret = -ENOENT;
491 goto unlock;
4f27b75d 492 }
673a394b 493
7dcd2499 494 /* Bounds check source. */
05394f39
CW
495 if (args->offset > obj->base.size ||
496 args->size > obj->base.size - args->offset) {
ce9d419d 497 ret = -EINVAL;
35b62a89 498 goto out;
ce9d419d
CW
499 }
500
db53a302
CW
501 trace_i915_gem_object_pread(obj, args->offset, args->size);
502
4f27b75d
CW
503 ret = i915_gem_object_set_cpu_read_domain_range(obj,
504 args->offset,
505 args->size);
506 if (ret)
e5281ccd 507 goto out;
4f27b75d
CW
508
509 ret = -EFAULT;
510 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 511 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 512 if (ret == -EFAULT)
05394f39 513 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 514
35b62a89 515out:
05394f39 516 drm_gem_object_unreference(&obj->base);
1d7cfea1 517unlock:
4f27b75d 518 mutex_unlock(&dev->struct_mutex);
eb01459f 519 return ret;
673a394b
EA
520}
521
0839ccb8
KP
522/* This is the fast write path which cannot handle
523 * page faults in the source data
9b7530cc 524 */
0839ccb8
KP
525
526static inline int
527fast_user_write(struct io_mapping *mapping,
528 loff_t page_base, int page_offset,
529 char __user *user_data,
530 int length)
9b7530cc 531{
9b7530cc 532 char *vaddr_atomic;
0839ccb8 533 unsigned long unwritten;
9b7530cc 534
3e4d3af5 535 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
536 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
537 user_data, length);
3e4d3af5 538 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 539 return unwritten;
0839ccb8
KP
540}
541
542/* Here's the write path which can sleep for
543 * page faults
544 */
545
ab34c226 546static inline void
3de09aa3
EA
547slow_kernel_write(struct io_mapping *mapping,
548 loff_t gtt_base, int gtt_offset,
549 struct page *user_page, int user_offset,
550 int length)
0839ccb8 551{
ab34c226
CW
552 char __iomem *dst_vaddr;
553 char *src_vaddr;
0839ccb8 554
ab34c226
CW
555 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
556 src_vaddr = kmap(user_page);
557
558 memcpy_toio(dst_vaddr + gtt_offset,
559 src_vaddr + user_offset,
560 length);
561
562 kunmap(user_page);
563 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
564}
565
3de09aa3
EA
566/**
567 * This is the fast pwrite path, where we copy the data directly from the
568 * user into the GTT, uncached.
569 */
673a394b 570static int
05394f39
CW
571i915_gem_gtt_pwrite_fast(struct drm_device *dev,
572 struct drm_i915_gem_object *obj,
3de09aa3 573 struct drm_i915_gem_pwrite *args,
05394f39 574 struct drm_file *file)
673a394b 575{
0839ccb8 576 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 577 ssize_t remain;
0839ccb8 578 loff_t offset, page_base;
673a394b 579 char __user *user_data;
0839ccb8 580 int page_offset, page_length;
673a394b
EA
581
582 user_data = (char __user *) (uintptr_t) args->data_ptr;
583 remain = args->size;
673a394b 584
05394f39 585 offset = obj->gtt_offset + args->offset;
673a394b
EA
586
587 while (remain > 0) {
588 /* Operation in this page
589 *
0839ccb8
KP
590 * page_base = page offset within aperture
591 * page_offset = offset within page
592 * page_length = bytes to copy for this page
673a394b 593 */
c8cbbb8b
CW
594 page_base = offset & PAGE_MASK;
595 page_offset = offset_in_page(offset);
0839ccb8
KP
596 page_length = remain;
597 if ((page_offset + remain) > PAGE_SIZE)
598 page_length = PAGE_SIZE - page_offset;
599
0839ccb8 600 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
601 * source page isn't available. Return the error and we'll
602 * retry in the slow path.
0839ccb8 603 */
fbd5a26d
CW
604 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
605 page_offset, user_data, page_length))
fbd5a26d 606 return -EFAULT;
673a394b 607
0839ccb8
KP
608 remain -= page_length;
609 user_data += page_length;
610 offset += page_length;
673a394b 611 }
673a394b 612
fbd5a26d 613 return 0;
673a394b
EA
614}
615
3de09aa3
EA
616/**
617 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
618 * the memory and maps it using kmap_atomic for copying.
619 *
620 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
621 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
622 */
3043c60c 623static int
05394f39
CW
624i915_gem_gtt_pwrite_slow(struct drm_device *dev,
625 struct drm_i915_gem_object *obj,
3de09aa3 626 struct drm_i915_gem_pwrite *args,
05394f39 627 struct drm_file *file)
673a394b 628{
3de09aa3
EA
629 drm_i915_private_t *dev_priv = dev->dev_private;
630 ssize_t remain;
631 loff_t gtt_page_base, offset;
632 loff_t first_data_page, last_data_page, num_pages;
633 loff_t pinned_pages, i;
634 struct page **user_pages;
635 struct mm_struct *mm = current->mm;
636 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 637 int ret;
3de09aa3
EA
638 uint64_t data_ptr = args->data_ptr;
639
640 remain = args->size;
641
642 /* Pin the user pages containing the data. We can't fault while
643 * holding the struct mutex, and all of the pwrite implementations
644 * want to hold it while dereferencing the user data.
645 */
646 first_data_page = data_ptr / PAGE_SIZE;
647 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
648 num_pages = last_data_page - first_data_page + 1;
649
fbd5a26d 650 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
651 if (user_pages == NULL)
652 return -ENOMEM;
653
fbd5a26d 654 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
655 down_read(&mm->mmap_sem);
656 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
657 num_pages, 0, 0, user_pages, NULL);
658 up_read(&mm->mmap_sem);
fbd5a26d 659 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
660 if (pinned_pages < num_pages) {
661 ret = -EFAULT;
662 goto out_unpin_pages;
663 }
673a394b 664
d9e86c0e
CW
665 ret = i915_gem_object_set_to_gtt_domain(obj, true);
666 if (ret)
667 goto out_unpin_pages;
668
669 ret = i915_gem_object_put_fence(obj);
3de09aa3 670 if (ret)
fbd5a26d 671 goto out_unpin_pages;
3de09aa3 672
05394f39 673 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
674
675 while (remain > 0) {
676 /* Operation in this page
677 *
678 * gtt_page_base = page offset within aperture
679 * gtt_page_offset = offset within page in aperture
680 * data_page_index = page number in get_user_pages return
681 * data_page_offset = offset with data_page_index page.
682 * page_length = bytes to copy for this page
683 */
684 gtt_page_base = offset & PAGE_MASK;
c8cbbb8b 685 gtt_page_offset = offset_in_page(offset);
3de09aa3 686 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 687 data_page_offset = offset_in_page(data_ptr);
3de09aa3
EA
688
689 page_length = remain;
690 if ((gtt_page_offset + page_length) > PAGE_SIZE)
691 page_length = PAGE_SIZE - gtt_page_offset;
692 if ((data_page_offset + page_length) > PAGE_SIZE)
693 page_length = PAGE_SIZE - data_page_offset;
694
ab34c226
CW
695 slow_kernel_write(dev_priv->mm.gtt_mapping,
696 gtt_page_base, gtt_page_offset,
697 user_pages[data_page_index],
698 data_page_offset,
699 page_length);
3de09aa3
EA
700
701 remain -= page_length;
702 offset += page_length;
703 data_ptr += page_length;
704 }
705
3de09aa3
EA
706out_unpin_pages:
707 for (i = 0; i < pinned_pages; i++)
708 page_cache_release(user_pages[i]);
8e7d2b2c 709 drm_free_large(user_pages);
3de09aa3
EA
710
711 return ret;
712}
713
40123c1f
EA
714/**
715 * This is the fast shmem pwrite path, which attempts to directly
716 * copy_from_user into the kmapped pages backing the object.
717 */
3043c60c 718static int
05394f39
CW
719i915_gem_shmem_pwrite_fast(struct drm_device *dev,
720 struct drm_i915_gem_object *obj,
40123c1f 721 struct drm_i915_gem_pwrite *args,
05394f39 722 struct drm_file *file)
673a394b 723{
05394f39 724 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 725 ssize_t remain;
e5281ccd 726 loff_t offset;
40123c1f
EA
727 char __user *user_data;
728 int page_offset, page_length;
40123c1f
EA
729
730 user_data = (char __user *) (uintptr_t) args->data_ptr;
731 remain = args->size;
673a394b 732
40123c1f 733 offset = args->offset;
05394f39 734 obj->dirty = 1;
40123c1f
EA
735
736 while (remain > 0) {
e5281ccd
CW
737 struct page *page;
738 char *vaddr;
739 int ret;
740
40123c1f
EA
741 /* Operation in this page
742 *
40123c1f
EA
743 * page_offset = offset within page
744 * page_length = bytes to copy for this page
745 */
c8cbbb8b 746 page_offset = offset_in_page(offset);
40123c1f
EA
747 page_length = remain;
748 if ((page_offset + remain) > PAGE_SIZE)
749 page_length = PAGE_SIZE - page_offset;
750
5949eac4 751 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
752 if (IS_ERR(page))
753 return PTR_ERR(page);
754
130c2561 755 vaddr = kmap_atomic(page);
e5281ccd
CW
756 ret = __copy_from_user_inatomic(vaddr + page_offset,
757 user_data,
758 page_length);
130c2561 759 kunmap_atomic(vaddr);
e5281ccd
CW
760
761 set_page_dirty(page);
762 mark_page_accessed(page);
763 page_cache_release(page);
764
765 /* If we get a fault while copying data, then (presumably) our
766 * source page isn't available. Return the error and we'll
767 * retry in the slow path.
768 */
769 if (ret)
fbd5a26d 770 return -EFAULT;
40123c1f
EA
771
772 remain -= page_length;
773 user_data += page_length;
774 offset += page_length;
775 }
776
fbd5a26d 777 return 0;
40123c1f
EA
778}
779
780/**
781 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
782 * the memory and maps it using kmap_atomic for copying.
783 *
784 * This avoids taking mmap_sem for faulting on the user's address while the
785 * struct_mutex is held.
786 */
787static int
05394f39
CW
788i915_gem_shmem_pwrite_slow(struct drm_device *dev,
789 struct drm_i915_gem_object *obj,
40123c1f 790 struct drm_i915_gem_pwrite *args,
05394f39 791 struct drm_file *file)
40123c1f 792{
05394f39 793 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 794 ssize_t remain;
8c59967c
DV
795 loff_t offset;
796 char __user *user_data;
797 int shmem_page_offset, page_length, ret;
798 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
40123c1f 799
8c59967c 800 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
801 remain = args->size;
802
8c59967c 803 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 804
673a394b 805 offset = args->offset;
05394f39 806 obj->dirty = 1;
673a394b 807
8c59967c
DV
808 mutex_unlock(&dev->struct_mutex);
809
40123c1f 810 while (remain > 0) {
e5281ccd 811 struct page *page;
8c59967c 812 char *vaddr;
e5281ccd 813
40123c1f
EA
814 /* Operation in this page
815 *
40123c1f 816 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
817 * page_length = bytes to copy for this page
818 */
c8cbbb8b 819 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
820
821 page_length = remain;
822 if ((shmem_page_offset + page_length) > PAGE_SIZE)
823 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 824
5949eac4 825 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
826 if (IS_ERR(page)) {
827 ret = PTR_ERR(page);
828 goto out;
829 }
830
8c59967c
DV
831 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
832 (page_to_phys(page) & (1 << 17)) != 0;
833
834 vaddr = kmap(page);
835 if (page_do_bit17_swizzling)
836 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
837 user_data,
838 page_length);
839 else
840 ret = __copy_from_user(vaddr + shmem_page_offset,
841 user_data,
842 page_length);
843 kunmap(page);
40123c1f 844
e5281ccd
CW
845 set_page_dirty(page);
846 mark_page_accessed(page);
847 page_cache_release(page);
848
8c59967c
DV
849 if (ret) {
850 ret = -EFAULT;
851 goto out;
852 }
853
40123c1f 854 remain -= page_length;
8c59967c 855 user_data += page_length;
40123c1f 856 offset += page_length;
673a394b
EA
857 }
858
fbd5a26d 859out:
8c59967c
DV
860 mutex_lock(&dev->struct_mutex);
861 /* Fixup: Kill any reinstated backing storage pages */
862 if (obj->madv == __I915_MADV_PURGED)
863 i915_gem_object_truncate(obj);
864 /* and flush dirty cachelines in case the object isn't in the cpu write
865 * domain anymore. */
866 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
867 i915_gem_clflush_object(obj);
868 intel_gtt_chipset_flush();
869 }
673a394b 870
40123c1f 871 return ret;
673a394b
EA
872}
873
874/**
875 * Writes data to the object referenced by handle.
876 *
877 * On error, the contents of the buffer that were to be modified are undefined.
878 */
879int
880i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 881 struct drm_file *file)
673a394b
EA
882{
883 struct drm_i915_gem_pwrite *args = data;
05394f39 884 struct drm_i915_gem_object *obj;
51311d0a
CW
885 int ret;
886
887 if (args->size == 0)
888 return 0;
889
890 if (!access_ok(VERIFY_READ,
891 (char __user *)(uintptr_t)args->data_ptr,
892 args->size))
893 return -EFAULT;
894
895 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
896 args->size);
897 if (ret)
898 return -EFAULT;
673a394b 899
fbd5a26d 900 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 901 if (ret)
fbd5a26d 902 return ret;
1d7cfea1 903
05394f39 904 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 905 if (&obj->base == NULL) {
1d7cfea1
CW
906 ret = -ENOENT;
907 goto unlock;
fbd5a26d 908 }
673a394b 909
7dcd2499 910 /* Bounds check destination. */
05394f39
CW
911 if (args->offset > obj->base.size ||
912 args->size > obj->base.size - args->offset) {
ce9d419d 913 ret = -EINVAL;
35b62a89 914 goto out;
ce9d419d
CW
915 }
916
db53a302
CW
917 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
918
673a394b
EA
919 /* We can only do the GTT pwrite on untiled buffers, as otherwise
920 * it would end up going through the fenced access, and we'll get
921 * different detiling behavior between reading and writing.
922 * pread/pwrite currently are reading and writing from the CPU
923 * perspective, requiring manual detiling by the client.
924 */
5c0480f2 925 if (obj->phys_obj) {
fbd5a26d 926 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
927 goto out;
928 }
929
930 if (obj->gtt_space &&
931 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 932 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
933 if (ret)
934 goto out;
935
d9e86c0e
CW
936 ret = i915_gem_object_set_to_gtt_domain(obj, true);
937 if (ret)
938 goto out_unpin;
939
940 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
941 if (ret)
942 goto out_unpin;
943
944 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
945 if (ret == -EFAULT)
946 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
947
948out_unpin:
949 i915_gem_object_unpin(obj);
673a394b 950
5c0480f2
DV
951 if (ret != -EFAULT)
952 goto out;
953 /* Fall through to the shmfs paths because the gtt paths might
954 * fail with non-page-backed user pointers (e.g. gtt mappings
955 * when moving data between textures). */
fbd5a26d 956 }
673a394b 957
5c0480f2
DV
958 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
959 if (ret)
960 goto out;
961
962 ret = -EFAULT;
963 if (!i915_gem_object_needs_bit17_swizzle(obj))
964 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
965 if (ret == -EFAULT)
966 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
967
35b62a89 968out:
05394f39 969 drm_gem_object_unreference(&obj->base);
1d7cfea1 970unlock:
fbd5a26d 971 mutex_unlock(&dev->struct_mutex);
673a394b
EA
972 return ret;
973}
974
975/**
2ef7eeaa
EA
976 * Called when user space prepares to use an object with the CPU, either
977 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
978 */
979int
980i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 981 struct drm_file *file)
673a394b
EA
982{
983 struct drm_i915_gem_set_domain *args = data;
05394f39 984 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
985 uint32_t read_domains = args->read_domains;
986 uint32_t write_domain = args->write_domain;
673a394b
EA
987 int ret;
988
989 if (!(dev->driver->driver_features & DRIVER_GEM))
990 return -ENODEV;
991
2ef7eeaa 992 /* Only handle setting domains to types used by the CPU. */
21d509e3 993 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
994 return -EINVAL;
995
21d509e3 996 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
997 return -EINVAL;
998
999 /* Having something in the write domain implies it's in the read
1000 * domain, and only that read domain. Enforce that in the request.
1001 */
1002 if (write_domain != 0 && read_domains != write_domain)
1003 return -EINVAL;
1004
76c1dec1 1005 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1006 if (ret)
76c1dec1 1007 return ret;
1d7cfea1 1008
05394f39 1009 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1010 if (&obj->base == NULL) {
1d7cfea1
CW
1011 ret = -ENOENT;
1012 goto unlock;
76c1dec1 1013 }
673a394b 1014
2ef7eeaa
EA
1015 if (read_domains & I915_GEM_DOMAIN_GTT) {
1016 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1017
1018 /* Silently promote "you're not bound, there was nothing to do"
1019 * to success, since the client was just asking us to
1020 * make sure everything was done.
1021 */
1022 if (ret == -EINVAL)
1023 ret = 0;
2ef7eeaa 1024 } else {
e47c68e9 1025 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1026 }
1027
05394f39 1028 drm_gem_object_unreference(&obj->base);
1d7cfea1 1029unlock:
673a394b
EA
1030 mutex_unlock(&dev->struct_mutex);
1031 return ret;
1032}
1033
1034/**
1035 * Called when user space has done writes to this buffer
1036 */
1037int
1038i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1039 struct drm_file *file)
673a394b
EA
1040{
1041 struct drm_i915_gem_sw_finish *args = data;
05394f39 1042 struct drm_i915_gem_object *obj;
673a394b
EA
1043 int ret = 0;
1044
1045 if (!(dev->driver->driver_features & DRIVER_GEM))
1046 return -ENODEV;
1047
76c1dec1 1048 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1049 if (ret)
76c1dec1 1050 return ret;
1d7cfea1 1051
05394f39 1052 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1053 if (&obj->base == NULL) {
1d7cfea1
CW
1054 ret = -ENOENT;
1055 goto unlock;
673a394b
EA
1056 }
1057
673a394b 1058 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1059 if (obj->pin_count)
e47c68e9
EA
1060 i915_gem_object_flush_cpu_write_domain(obj);
1061
05394f39 1062 drm_gem_object_unreference(&obj->base);
1d7cfea1 1063unlock:
673a394b
EA
1064 mutex_unlock(&dev->struct_mutex);
1065 return ret;
1066}
1067
1068/**
1069 * Maps the contents of an object, returning the address it is mapped
1070 * into.
1071 *
1072 * While the mapping holds a reference on the contents of the object, it doesn't
1073 * imply a ref on the object itself.
1074 */
1075int
1076i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1077 struct drm_file *file)
673a394b
EA
1078{
1079 struct drm_i915_gem_mmap *args = data;
1080 struct drm_gem_object *obj;
673a394b
EA
1081 unsigned long addr;
1082
1083 if (!(dev->driver->driver_features & DRIVER_GEM))
1084 return -ENODEV;
1085
05394f39 1086 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1087 if (obj == NULL)
bf79cb91 1088 return -ENOENT;
673a394b 1089
673a394b
EA
1090 down_write(&current->mm->mmap_sem);
1091 addr = do_mmap(obj->filp, 0, args->size,
1092 PROT_READ | PROT_WRITE, MAP_SHARED,
1093 args->offset);
1094 up_write(&current->mm->mmap_sem);
bc9025bd 1095 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1096 if (IS_ERR((void *)addr))
1097 return addr;
1098
1099 args->addr_ptr = (uint64_t) addr;
1100
1101 return 0;
1102}
1103
de151cf6
JB
1104/**
1105 * i915_gem_fault - fault a page into the GTT
1106 * vma: VMA in question
1107 * vmf: fault info
1108 *
1109 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1110 * from userspace. The fault handler takes care of binding the object to
1111 * the GTT (if needed), allocating and programming a fence register (again,
1112 * only if needed based on whether the old reg is still valid or the object
1113 * is tiled) and inserting a new PTE into the faulting process.
1114 *
1115 * Note that the faulting process may involve evicting existing objects
1116 * from the GTT and/or fence registers to make room. So performance may
1117 * suffer if the GTT working set is large or there are few fence registers
1118 * left.
1119 */
1120int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1121{
05394f39
CW
1122 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1123 struct drm_device *dev = obj->base.dev;
7d1c4804 1124 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1125 pgoff_t page_offset;
1126 unsigned long pfn;
1127 int ret = 0;
0f973f27 1128 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1129
1130 /* We don't use vmf->pgoff since that has the fake offset */
1131 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1132 PAGE_SHIFT;
1133
d9bc7e9f
CW
1134 ret = i915_mutex_lock_interruptible(dev);
1135 if (ret)
1136 goto out;
a00b10c3 1137
db53a302
CW
1138 trace_i915_gem_object_fault(obj, page_offset, true, write);
1139
d9bc7e9f 1140 /* Now bind it into the GTT if needed */
919926ae
CW
1141 if (!obj->map_and_fenceable) {
1142 ret = i915_gem_object_unbind(obj);
1143 if (ret)
1144 goto unlock;
a00b10c3 1145 }
05394f39 1146 if (!obj->gtt_space) {
75e9e915 1147 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1148 if (ret)
1149 goto unlock;
de151cf6 1150
e92d03bf
EA
1151 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1152 if (ret)
1153 goto unlock;
1154 }
4a684a41 1155
74898d7e
DV
1156 if (!obj->has_global_gtt_mapping)
1157 i915_gem_gtt_bind_object(obj, obj->cache_level);
1158
d9e86c0e
CW
1159 if (obj->tiling_mode == I915_TILING_NONE)
1160 ret = i915_gem_object_put_fence(obj);
1161 else
ce453d81 1162 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1163 if (ret)
1164 goto unlock;
de151cf6 1165
05394f39
CW
1166 if (i915_gem_object_is_inactive(obj))
1167 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1168
6299f992
CW
1169 obj->fault_mappable = true;
1170
05394f39 1171 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1172 page_offset;
1173
1174 /* Finally, remap it using the new GTT offset */
1175 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1176unlock:
de151cf6 1177 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1178out:
de151cf6 1179 switch (ret) {
d9bc7e9f 1180 case -EIO:
045e769a 1181 case -EAGAIN:
d9bc7e9f
CW
1182 /* Give the error handler a chance to run and move the
1183 * objects off the GPU active list. Next time we service the
1184 * fault, we should be able to transition the page into the
1185 * GTT without touching the GPU (and so avoid further
1186 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1187 * with coherency, just lost writes.
1188 */
045e769a 1189 set_need_resched();
c715089f
CW
1190 case 0:
1191 case -ERESTARTSYS:
bed636ab 1192 case -EINTR:
c715089f 1193 return VM_FAULT_NOPAGE;
de151cf6 1194 case -ENOMEM:
de151cf6 1195 return VM_FAULT_OOM;
de151cf6 1196 default:
c715089f 1197 return VM_FAULT_SIGBUS;
de151cf6
JB
1198 }
1199}
1200
901782b2
CW
1201/**
1202 * i915_gem_release_mmap - remove physical page mappings
1203 * @obj: obj in question
1204 *
af901ca1 1205 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1206 * relinquish ownership of the pages back to the system.
1207 *
1208 * It is vital that we remove the page mapping if we have mapped a tiled
1209 * object through the GTT and then lose the fence register due to
1210 * resource pressure. Similarly if the object has been moved out of the
1211 * aperture, than pages mapped into userspace must be revoked. Removing the
1212 * mapping will then trigger a page fault on the next user access, allowing
1213 * fixup by i915_gem_fault().
1214 */
d05ca301 1215void
05394f39 1216i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1217{
6299f992
CW
1218 if (!obj->fault_mappable)
1219 return;
901782b2 1220
f6e47884
CW
1221 if (obj->base.dev->dev_mapping)
1222 unmap_mapping_range(obj->base.dev->dev_mapping,
1223 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1224 obj->base.size, 1);
fb7d516a 1225
6299f992 1226 obj->fault_mappable = false;
901782b2
CW
1227}
1228
92b88aeb 1229static uint32_t
e28f8711 1230i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1231{
e28f8711 1232 uint32_t gtt_size;
92b88aeb
CW
1233
1234 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1235 tiling_mode == I915_TILING_NONE)
1236 return size;
92b88aeb
CW
1237
1238 /* Previous chips need a power-of-two fence region when tiling */
1239 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1240 gtt_size = 1024*1024;
92b88aeb 1241 else
e28f8711 1242 gtt_size = 512*1024;
92b88aeb 1243
e28f8711
CW
1244 while (gtt_size < size)
1245 gtt_size <<= 1;
92b88aeb 1246
e28f8711 1247 return gtt_size;
92b88aeb
CW
1248}
1249
de151cf6
JB
1250/**
1251 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1252 * @obj: object to check
1253 *
1254 * Return the required GTT alignment for an object, taking into account
5e783301 1255 * potential fence register mapping.
de151cf6
JB
1256 */
1257static uint32_t
e28f8711
CW
1258i915_gem_get_gtt_alignment(struct drm_device *dev,
1259 uint32_t size,
1260 int tiling_mode)
de151cf6 1261{
de151cf6
JB
1262 /*
1263 * Minimum alignment is 4k (GTT page size), but might be greater
1264 * if a fence register is needed for the object.
1265 */
a00b10c3 1266 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1267 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1268 return 4096;
1269
a00b10c3
CW
1270 /*
1271 * Previous chips need to be aligned to the size of the smallest
1272 * fence register that can contain the object.
1273 */
e28f8711 1274 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1275}
1276
5e783301
DV
1277/**
1278 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1279 * unfenced object
e28f8711
CW
1280 * @dev: the device
1281 * @size: size of the object
1282 * @tiling_mode: tiling mode of the object
5e783301
DV
1283 *
1284 * Return the required GTT alignment for an object, only taking into account
1285 * unfenced tiled surface requirements.
1286 */
467cffba 1287uint32_t
e28f8711
CW
1288i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1289 uint32_t size,
1290 int tiling_mode)
5e783301 1291{
5e783301
DV
1292 /*
1293 * Minimum alignment is 4k (GTT page size) for sane hw.
1294 */
1295 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1296 tiling_mode == I915_TILING_NONE)
5e783301
DV
1297 return 4096;
1298
e28f8711
CW
1299 /* Previous hardware however needs to be aligned to a power-of-two
1300 * tile height. The simplest method for determining this is to reuse
1301 * the power-of-tile object size.
5e783301 1302 */
e28f8711 1303 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1304}
1305
de151cf6 1306int
ff72145b
DA
1307i915_gem_mmap_gtt(struct drm_file *file,
1308 struct drm_device *dev,
1309 uint32_t handle,
1310 uint64_t *offset)
de151cf6 1311{
da761a6e 1312 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1313 struct drm_i915_gem_object *obj;
de151cf6
JB
1314 int ret;
1315
1316 if (!(dev->driver->driver_features & DRIVER_GEM))
1317 return -ENODEV;
1318
76c1dec1 1319 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1320 if (ret)
76c1dec1 1321 return ret;
de151cf6 1322
ff72145b 1323 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1324 if (&obj->base == NULL) {
1d7cfea1
CW
1325 ret = -ENOENT;
1326 goto unlock;
1327 }
de151cf6 1328
05394f39 1329 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1330 ret = -E2BIG;
ff56b0bc 1331 goto out;
da761a6e
CW
1332 }
1333
05394f39 1334 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1335 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1336 ret = -EINVAL;
1337 goto out;
ab18282d
CW
1338 }
1339
05394f39 1340 if (!obj->base.map_list.map) {
b464e9a2 1341 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1342 if (ret)
1343 goto out;
de151cf6
JB
1344 }
1345
ff72145b 1346 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1347
1d7cfea1 1348out:
05394f39 1349 drm_gem_object_unreference(&obj->base);
1d7cfea1 1350unlock:
de151cf6 1351 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1352 return ret;
de151cf6
JB
1353}
1354
ff72145b
DA
1355/**
1356 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1357 * @dev: DRM device
1358 * @data: GTT mapping ioctl data
1359 * @file: GEM object info
1360 *
1361 * Simply returns the fake offset to userspace so it can mmap it.
1362 * The mmap call will end up in drm_gem_mmap(), which will set things
1363 * up so we can get faults in the handler above.
1364 *
1365 * The fault handler will take care of binding the object into the GTT
1366 * (since it may have been evicted to make room for something), allocating
1367 * a fence register, and mapping the appropriate aperture address into
1368 * userspace.
1369 */
1370int
1371i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1372 struct drm_file *file)
1373{
1374 struct drm_i915_gem_mmap_gtt *args = data;
1375
1376 if (!(dev->driver->driver_features & DRIVER_GEM))
1377 return -ENODEV;
1378
1379 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1380}
1381
1382
e5281ccd 1383static int
05394f39 1384i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1385 gfp_t gfpmask)
1386{
e5281ccd
CW
1387 int page_count, i;
1388 struct address_space *mapping;
1389 struct inode *inode;
1390 struct page *page;
1391
1392 /* Get the list of pages out of our struct file. They'll be pinned
1393 * at this point until we release them.
1394 */
05394f39
CW
1395 page_count = obj->base.size / PAGE_SIZE;
1396 BUG_ON(obj->pages != NULL);
1397 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1398 if (obj->pages == NULL)
e5281ccd
CW
1399 return -ENOMEM;
1400
05394f39 1401 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1402 mapping = inode->i_mapping;
5949eac4
HD
1403 gfpmask |= mapping_gfp_mask(mapping);
1404
e5281ccd 1405 for (i = 0; i < page_count; i++) {
5949eac4 1406 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1407 if (IS_ERR(page))
1408 goto err_pages;
1409
05394f39 1410 obj->pages[i] = page;
e5281ccd
CW
1411 }
1412
6dacfd2f 1413 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1414 i915_gem_object_do_bit_17_swizzle(obj);
1415
1416 return 0;
1417
1418err_pages:
1419 while (i--)
05394f39 1420 page_cache_release(obj->pages[i]);
e5281ccd 1421
05394f39
CW
1422 drm_free_large(obj->pages);
1423 obj->pages = NULL;
e5281ccd
CW
1424 return PTR_ERR(page);
1425}
1426
5cdf5881 1427static void
05394f39 1428i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1429{
05394f39 1430 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1431 int i;
1432
05394f39 1433 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1434
6dacfd2f 1435 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1436 i915_gem_object_save_bit_17_swizzle(obj);
1437
05394f39
CW
1438 if (obj->madv == I915_MADV_DONTNEED)
1439 obj->dirty = 0;
3ef94daa
CW
1440
1441 for (i = 0; i < page_count; i++) {
05394f39
CW
1442 if (obj->dirty)
1443 set_page_dirty(obj->pages[i]);
3ef94daa 1444
05394f39
CW
1445 if (obj->madv == I915_MADV_WILLNEED)
1446 mark_page_accessed(obj->pages[i]);
3ef94daa 1447
05394f39 1448 page_cache_release(obj->pages[i]);
3ef94daa 1449 }
05394f39 1450 obj->dirty = 0;
673a394b 1451
05394f39
CW
1452 drm_free_large(obj->pages);
1453 obj->pages = NULL;
673a394b
EA
1454}
1455
54cf91dc 1456void
05394f39 1457i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1458 struct intel_ring_buffer *ring,
1459 u32 seqno)
673a394b 1460{
05394f39 1461 struct drm_device *dev = obj->base.dev;
69dc4987 1462 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1463
852835f3 1464 BUG_ON(ring == NULL);
05394f39 1465 obj->ring = ring;
673a394b
EA
1466
1467 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1468 if (!obj->active) {
1469 drm_gem_object_reference(&obj->base);
1470 obj->active = 1;
673a394b 1471 }
e35a41de 1472
673a394b 1473 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1474 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1475 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1476
05394f39 1477 obj->last_rendering_seqno = seqno;
caea7476
CW
1478 if (obj->fenced_gpu_access) {
1479 struct drm_i915_fence_reg *reg;
1480
1481 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1482
1483 obj->last_fenced_seqno = seqno;
1484 obj->last_fenced_ring = ring;
1485
1486 reg = &dev_priv->fence_regs[obj->fence_reg];
1487 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1488 }
1489}
1490
1491static void
1492i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1493{
1494 list_del_init(&obj->ring_list);
1495 obj->last_rendering_seqno = 0;
673a394b
EA
1496}
1497
ce44b0ea 1498static void
05394f39 1499i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1500{
05394f39 1501 struct drm_device *dev = obj->base.dev;
ce44b0ea 1502 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1503
05394f39
CW
1504 BUG_ON(!obj->active);
1505 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1506
1507 i915_gem_object_move_off_active(obj);
1508}
1509
1510static void
1511i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1512{
1513 struct drm_device *dev = obj->base.dev;
1514 struct drm_i915_private *dev_priv = dev->dev_private;
1515
1516 if (obj->pin_count != 0)
1517 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1518 else
1519 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1520
1521 BUG_ON(!list_empty(&obj->gpu_write_list));
1522 BUG_ON(!obj->active);
1523 obj->ring = NULL;
1524
1525 i915_gem_object_move_off_active(obj);
1526 obj->fenced_gpu_access = false;
caea7476
CW
1527
1528 obj->active = 0;
87ca9c8a 1529 obj->pending_gpu_write = false;
caea7476
CW
1530 drm_gem_object_unreference(&obj->base);
1531
1532 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1533}
673a394b 1534
963b4836
CW
1535/* Immediately discard the backing storage */
1536static void
05394f39 1537i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1538{
bb6baf76 1539 struct inode *inode;
963b4836 1540
ae9fed6b
CW
1541 /* Our goal here is to return as much of the memory as
1542 * is possible back to the system as we are called from OOM.
1543 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1544 * backing pages, *now*.
ae9fed6b 1545 */
05394f39 1546 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1547 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1548
05394f39 1549 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1550}
1551
1552static inline int
05394f39 1553i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1554{
05394f39 1555 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1556}
1557
63560396 1558static void
db53a302
CW
1559i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1560 uint32_t flush_domains)
63560396 1561{
05394f39 1562 struct drm_i915_gem_object *obj, *next;
63560396 1563
05394f39 1564 list_for_each_entry_safe(obj, next,
64193406 1565 &ring->gpu_write_list,
63560396 1566 gpu_write_list) {
05394f39
CW
1567 if (obj->base.write_domain & flush_domains) {
1568 uint32_t old_write_domain = obj->base.write_domain;
63560396 1569
05394f39
CW
1570 obj->base.write_domain = 0;
1571 list_del_init(&obj->gpu_write_list);
1ec14ad3 1572 i915_gem_object_move_to_active(obj, ring,
db53a302 1573 i915_gem_next_request_seqno(ring));
63560396 1574
63560396 1575 trace_i915_gem_object_change_domain(obj,
05394f39 1576 obj->base.read_domains,
63560396
DV
1577 old_write_domain);
1578 }
1579 }
1580}
8187a2b7 1581
53d227f2
DV
1582static u32
1583i915_gem_get_seqno(struct drm_device *dev)
1584{
1585 drm_i915_private_t *dev_priv = dev->dev_private;
1586 u32 seqno = dev_priv->next_seqno;
1587
1588 /* reserve 0 for non-seqno */
1589 if (++dev_priv->next_seqno == 0)
1590 dev_priv->next_seqno = 1;
1591
1592 return seqno;
1593}
1594
1595u32
1596i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1597{
1598 if (ring->outstanding_lazy_request == 0)
1599 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1600
1601 return ring->outstanding_lazy_request;
1602}
1603
3cce469c 1604int
db53a302 1605i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1606 struct drm_file *file,
db53a302 1607 struct drm_i915_gem_request *request)
673a394b 1608{
db53a302 1609 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1610 uint32_t seqno;
a71d8d94 1611 u32 request_ring_position;
673a394b 1612 int was_empty;
3cce469c
CW
1613 int ret;
1614
1615 BUG_ON(request == NULL);
53d227f2 1616 seqno = i915_gem_next_request_seqno(ring);
673a394b 1617
a71d8d94
CW
1618 /* Record the position of the start of the request so that
1619 * should we detect the updated seqno part-way through the
1620 * GPU processing the request, we never over-estimate the
1621 * position of the head.
1622 */
1623 request_ring_position = intel_ring_get_tail(ring);
1624
3cce469c
CW
1625 ret = ring->add_request(ring, &seqno);
1626 if (ret)
1627 return ret;
673a394b 1628
db53a302 1629 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1630
1631 request->seqno = seqno;
852835f3 1632 request->ring = ring;
a71d8d94 1633 request->tail = request_ring_position;
673a394b 1634 request->emitted_jiffies = jiffies;
852835f3
ZN
1635 was_empty = list_empty(&ring->request_list);
1636 list_add_tail(&request->list, &ring->request_list);
1637
db53a302
CW
1638 if (file) {
1639 struct drm_i915_file_private *file_priv = file->driver_priv;
1640
1c25595f 1641 spin_lock(&file_priv->mm.lock);
f787a5f5 1642 request->file_priv = file_priv;
b962442e 1643 list_add_tail(&request->client_list,
f787a5f5 1644 &file_priv->mm.request_list);
1c25595f 1645 spin_unlock(&file_priv->mm.lock);
b962442e 1646 }
673a394b 1647
5391d0cf 1648 ring->outstanding_lazy_request = 0;
db53a302 1649
f65d9421 1650 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1651 if (i915_enable_hangcheck) {
1652 mod_timer(&dev_priv->hangcheck_timer,
1653 jiffies +
1654 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1655 }
f65d9421 1656 if (was_empty)
b3b079db
CW
1657 queue_delayed_work(dev_priv->wq,
1658 &dev_priv->mm.retire_work, HZ);
f65d9421 1659 }
3cce469c 1660 return 0;
673a394b
EA
1661}
1662
f787a5f5
CW
1663static inline void
1664i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1665{
1c25595f 1666 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1667
1c25595f
CW
1668 if (!file_priv)
1669 return;
1c5d22f7 1670
1c25595f 1671 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1672 if (request->file_priv) {
1673 list_del(&request->client_list);
1674 request->file_priv = NULL;
1675 }
1c25595f 1676 spin_unlock(&file_priv->mm.lock);
673a394b 1677}
673a394b 1678
dfaae392
CW
1679static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1680 struct intel_ring_buffer *ring)
9375e446 1681{
dfaae392
CW
1682 while (!list_empty(&ring->request_list)) {
1683 struct drm_i915_gem_request *request;
673a394b 1684
dfaae392
CW
1685 request = list_first_entry(&ring->request_list,
1686 struct drm_i915_gem_request,
1687 list);
de151cf6 1688
dfaae392 1689 list_del(&request->list);
f787a5f5 1690 i915_gem_request_remove_from_client(request);
dfaae392
CW
1691 kfree(request);
1692 }
673a394b 1693
dfaae392 1694 while (!list_empty(&ring->active_list)) {
05394f39 1695 struct drm_i915_gem_object *obj;
9375e446 1696
05394f39
CW
1697 obj = list_first_entry(&ring->active_list,
1698 struct drm_i915_gem_object,
1699 ring_list);
9375e446 1700
05394f39
CW
1701 obj->base.write_domain = 0;
1702 list_del_init(&obj->gpu_write_list);
1703 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1704 }
1705}
1706
312817a3
CW
1707static void i915_gem_reset_fences(struct drm_device *dev)
1708{
1709 struct drm_i915_private *dev_priv = dev->dev_private;
1710 int i;
1711
4b9de737 1712 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1713 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1714 struct drm_i915_gem_object *obj = reg->obj;
1715
1716 if (!obj)
1717 continue;
1718
1719 if (obj->tiling_mode)
1720 i915_gem_release_mmap(obj);
1721
d9e86c0e
CW
1722 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1723 reg->obj->fenced_gpu_access = false;
1724 reg->obj->last_fenced_seqno = 0;
1725 reg->obj->last_fenced_ring = NULL;
1726 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1727 }
1728}
1729
069efc1d 1730void i915_gem_reset(struct drm_device *dev)
673a394b 1731{
77f01230 1732 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1733 struct drm_i915_gem_object *obj;
1ec14ad3 1734 int i;
673a394b 1735
1ec14ad3
CW
1736 for (i = 0; i < I915_NUM_RINGS; i++)
1737 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1738
1739 /* Remove anything from the flushing lists. The GPU cache is likely
1740 * to be lost on reset along with the data, so simply move the
1741 * lost bo to the inactive list.
1742 */
1743 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1744 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1745 struct drm_i915_gem_object,
1746 mm_list);
dfaae392 1747
05394f39
CW
1748 obj->base.write_domain = 0;
1749 list_del_init(&obj->gpu_write_list);
1750 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1751 }
1752
1753 /* Move everything out of the GPU domains to ensure we do any
1754 * necessary invalidation upon reuse.
1755 */
05394f39 1756 list_for_each_entry(obj,
77f01230 1757 &dev_priv->mm.inactive_list,
69dc4987 1758 mm_list)
77f01230 1759 {
05394f39 1760 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1761 }
069efc1d
CW
1762
1763 /* The fence registers are invalidated so clear them out */
312817a3 1764 i915_gem_reset_fences(dev);
673a394b
EA
1765}
1766
1767/**
1768 * This function clears the request list as sequence numbers are passed.
1769 */
a71d8d94 1770void
db53a302 1771i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1772{
673a394b 1773 uint32_t seqno;
1ec14ad3 1774 int i;
673a394b 1775
db53a302 1776 if (list_empty(&ring->request_list))
6c0594a3
KW
1777 return;
1778
db53a302 1779 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1780
78501eac 1781 seqno = ring->get_seqno(ring);
1ec14ad3 1782
076e2c0e 1783 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1784 if (seqno >= ring->sync_seqno[i])
1785 ring->sync_seqno[i] = 0;
1786
852835f3 1787 while (!list_empty(&ring->request_list)) {
673a394b 1788 struct drm_i915_gem_request *request;
673a394b 1789
852835f3 1790 request = list_first_entry(&ring->request_list,
673a394b
EA
1791 struct drm_i915_gem_request,
1792 list);
673a394b 1793
dfaae392 1794 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1795 break;
1796
db53a302 1797 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1798 /* We know the GPU must have read the request to have
1799 * sent us the seqno + interrupt, so use the position
1800 * of tail of the request to update the last known position
1801 * of the GPU head.
1802 */
1803 ring->last_retired_head = request->tail;
b84d5f0c
CW
1804
1805 list_del(&request->list);
f787a5f5 1806 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1807 kfree(request);
1808 }
673a394b 1809
b84d5f0c
CW
1810 /* Move any buffers on the active list that are no longer referenced
1811 * by the ringbuffer to the flushing/inactive lists as appropriate.
1812 */
1813 while (!list_empty(&ring->active_list)) {
05394f39 1814 struct drm_i915_gem_object *obj;
b84d5f0c 1815
0206e353 1816 obj = list_first_entry(&ring->active_list,
05394f39
CW
1817 struct drm_i915_gem_object,
1818 ring_list);
673a394b 1819
05394f39 1820 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1821 break;
b84d5f0c 1822
05394f39 1823 if (obj->base.write_domain != 0)
b84d5f0c
CW
1824 i915_gem_object_move_to_flushing(obj);
1825 else
1826 i915_gem_object_move_to_inactive(obj);
673a394b 1827 }
9d34e5db 1828
db53a302
CW
1829 if (unlikely(ring->trace_irq_seqno &&
1830 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1831 ring->irq_put(ring);
db53a302 1832 ring->trace_irq_seqno = 0;
9d34e5db 1833 }
23bc5982 1834
db53a302 1835 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1836}
1837
b09a1fec
CW
1838void
1839i915_gem_retire_requests(struct drm_device *dev)
1840{
1841 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1842 int i;
b09a1fec 1843
be72615b 1844 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1845 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1846
1847 /* We must be careful that during unbind() we do not
1848 * accidentally infinitely recurse into retire requests.
1849 * Currently:
1850 * retire -> free -> unbind -> wait -> retire_ring
1851 */
05394f39 1852 list_for_each_entry_safe(obj, next,
be72615b 1853 &dev_priv->mm.deferred_free_list,
69dc4987 1854 mm_list)
05394f39 1855 i915_gem_free_object_tail(obj);
be72615b
CW
1856 }
1857
1ec14ad3 1858 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1859 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1860}
1861
75ef9da2 1862static void
673a394b
EA
1863i915_gem_retire_work_handler(struct work_struct *work)
1864{
1865 drm_i915_private_t *dev_priv;
1866 struct drm_device *dev;
0a58705b
CW
1867 bool idle;
1868 int i;
673a394b
EA
1869
1870 dev_priv = container_of(work, drm_i915_private_t,
1871 mm.retire_work.work);
1872 dev = dev_priv->dev;
1873
891b48cf
CW
1874 /* Come back later if the device is busy... */
1875 if (!mutex_trylock(&dev->struct_mutex)) {
1876 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1877 return;
1878 }
1879
b09a1fec 1880 i915_gem_retire_requests(dev);
d1b851fc 1881
0a58705b
CW
1882 /* Send a periodic flush down the ring so we don't hold onto GEM
1883 * objects indefinitely.
1884 */
1885 idle = true;
1886 for (i = 0; i < I915_NUM_RINGS; i++) {
1887 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1888
1889 if (!list_empty(&ring->gpu_write_list)) {
1890 struct drm_i915_gem_request *request;
1891 int ret;
1892
db53a302
CW
1893 ret = i915_gem_flush_ring(ring,
1894 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1895 request = kzalloc(sizeof(*request), GFP_KERNEL);
1896 if (ret || request == NULL ||
db53a302 1897 i915_add_request(ring, NULL, request))
0a58705b
CW
1898 kfree(request);
1899 }
1900
1901 idle &= list_empty(&ring->request_list);
1902 }
1903
1904 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1905 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1906
673a394b
EA
1907 mutex_unlock(&dev->struct_mutex);
1908}
1909
db53a302
CW
1910/**
1911 * Waits for a sequence number to be signaled, and cleans up the
1912 * request and object lists appropriately for that event.
1913 */
5a5a0c64 1914int
db53a302 1915i915_wait_request(struct intel_ring_buffer *ring,
b93f9cf1
BW
1916 uint32_t seqno,
1917 bool do_retire)
673a394b 1918{
db53a302 1919 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1920 u32 ier;
673a394b
EA
1921 int ret = 0;
1922
1923 BUG_ON(seqno == 0);
1924
d9bc7e9f
CW
1925 if (atomic_read(&dev_priv->mm.wedged)) {
1926 struct completion *x = &dev_priv->error_completion;
1927 bool recovery_complete;
1928 unsigned long flags;
1929
1930 /* Give the error handler a chance to run. */
1931 spin_lock_irqsave(&x->wait.lock, flags);
1932 recovery_complete = x->done > 0;
1933 spin_unlock_irqrestore(&x->wait.lock, flags);
1934
1935 return recovery_complete ? -EIO : -EAGAIN;
1936 }
30dbf0c0 1937
5d97eb69 1938 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1939 struct drm_i915_gem_request *request;
1940
1941 request = kzalloc(sizeof(*request), GFP_KERNEL);
1942 if (request == NULL)
e35a41de 1943 return -ENOMEM;
3cce469c 1944
db53a302 1945 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1946 if (ret) {
1947 kfree(request);
1948 return ret;
1949 }
1950
1951 seqno = request->seqno;
e35a41de 1952 }
ffed1d09 1953
78501eac 1954 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1955 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
1956 ier = I915_READ(DEIER) | I915_READ(GTIER);
1957 else
1958 ier = I915_READ(IER);
802c7eb6
JB
1959 if (!ier) {
1960 DRM_ERROR("something (likely vbetool) disabled "
1961 "interrupts, re-enabling\n");
f01c22fd
CW
1962 ring->dev->driver->irq_preinstall(ring->dev);
1963 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1964 }
1965
db53a302 1966 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1967
b2223497 1968 ring->waiting_seqno = seqno;
b13c2b96 1969 if (ring->irq_get(ring)) {
ce453d81 1970 if (dev_priv->mm.interruptible)
b13c2b96
CW
1971 ret = wait_event_interruptible(ring->irq_queue,
1972 i915_seqno_passed(ring->get_seqno(ring), seqno)
1973 || atomic_read(&dev_priv->mm.wedged));
1974 else
1975 wait_event(ring->irq_queue,
1976 i915_seqno_passed(ring->get_seqno(ring), seqno)
1977 || atomic_read(&dev_priv->mm.wedged));
1978
1979 ring->irq_put(ring);
e959b5db
EA
1980 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1981 seqno) ||
1982 atomic_read(&dev_priv->mm.wedged), 3000))
b5ba177d 1983 ret = -EBUSY;
b2223497 1984 ring->waiting_seqno = 0;
1c5d22f7 1985
db53a302 1986 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 1987 }
ba1234d1 1988 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1989 ret = -EAGAIN;
673a394b 1990
673a394b
EA
1991 /* Directly dispatch request retiring. While we have the work queue
1992 * to handle this, the waiter on a request often wants an associated
1993 * buffer to have made it to the inactive list, and we would need
1994 * a separate wait queue to handle that.
1995 */
b93f9cf1 1996 if (ret == 0 && do_retire)
db53a302 1997 i915_gem_retire_requests_ring(ring);
673a394b
EA
1998
1999 return ret;
2000}
2001
673a394b
EA
2002/**
2003 * Ensures that all rendering to the object has completed and the object is
2004 * safe to unbind from the GTT or access from the CPU.
2005 */
54cf91dc 2006int
ce453d81 2007i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 2008{
673a394b
EA
2009 int ret;
2010
e47c68e9
EA
2011 /* This function only exists to support waiting for existing rendering,
2012 * not for emitting required flushes.
673a394b 2013 */
05394f39 2014 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2015
2016 /* If there is rendering queued on the buffer being evicted, wait for
2017 * it.
2018 */
05394f39 2019 if (obj->active) {
b93f9cf1
BW
2020 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
2021 true);
2cf34d7b 2022 if (ret)
673a394b
EA
2023 return ret;
2024 }
2025
2026 return 0;
2027}
2028
b5ffc9bc
CW
2029static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2030{
2031 u32 old_write_domain, old_read_domains;
2032
b5ffc9bc
CW
2033 /* Act a barrier for all accesses through the GTT */
2034 mb();
2035
2036 /* Force a pagefault for domain tracking on next user access */
2037 i915_gem_release_mmap(obj);
2038
b97c3d9c
KP
2039 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2040 return;
2041
b5ffc9bc
CW
2042 old_read_domains = obj->base.read_domains;
2043 old_write_domain = obj->base.write_domain;
2044
2045 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2046 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2047
2048 trace_i915_gem_object_change_domain(obj,
2049 old_read_domains,
2050 old_write_domain);
2051}
2052
673a394b
EA
2053/**
2054 * Unbinds an object from the GTT aperture.
2055 */
0f973f27 2056int
05394f39 2057i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2058{
7bddb01f 2059 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2060 int ret = 0;
2061
05394f39 2062 if (obj->gtt_space == NULL)
673a394b
EA
2063 return 0;
2064
05394f39 2065 if (obj->pin_count != 0) {
673a394b
EA
2066 DRM_ERROR("Attempting to unbind pinned buffer\n");
2067 return -EINVAL;
2068 }
2069
a8198eea
CW
2070 ret = i915_gem_object_finish_gpu(obj);
2071 if (ret == -ERESTARTSYS)
2072 return ret;
2073 /* Continue on if we fail due to EIO, the GPU is hung so we
2074 * should be safe and we need to cleanup or else we might
2075 * cause memory corruption through use-after-free.
2076 */
2077
b5ffc9bc 2078 i915_gem_object_finish_gtt(obj);
5323fd04 2079
673a394b
EA
2080 /* Move the object to the CPU domain to ensure that
2081 * any possible CPU writes while it's not in the GTT
a8198eea 2082 * are flushed when we go to remap it.
673a394b 2083 */
a8198eea
CW
2084 if (ret == 0)
2085 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2086 if (ret == -ERESTARTSYS)
673a394b 2087 return ret;
812ed492 2088 if (ret) {
a8198eea
CW
2089 /* In the event of a disaster, abandon all caches and
2090 * hope for the best.
2091 */
812ed492 2092 i915_gem_clflush_object(obj);
05394f39 2093 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2094 }
673a394b 2095
96b47b65 2096 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2097 ret = i915_gem_object_put_fence(obj);
2098 if (ret == -ERESTARTSYS)
2099 return ret;
96b47b65 2100
db53a302
CW
2101 trace_i915_gem_object_unbind(obj);
2102
74898d7e
DV
2103 if (obj->has_global_gtt_mapping)
2104 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2105 if (obj->has_aliasing_ppgtt_mapping) {
2106 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2107 obj->has_aliasing_ppgtt_mapping = 0;
2108 }
74163907 2109 i915_gem_gtt_finish_object(obj);
7bddb01f 2110
e5281ccd 2111 i915_gem_object_put_pages_gtt(obj);
673a394b 2112
6299f992 2113 list_del_init(&obj->gtt_list);
05394f39 2114 list_del_init(&obj->mm_list);
75e9e915 2115 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2116 obj->map_and_fenceable = true;
673a394b 2117
05394f39
CW
2118 drm_mm_put_block(obj->gtt_space);
2119 obj->gtt_space = NULL;
2120 obj->gtt_offset = 0;
673a394b 2121
05394f39 2122 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2123 i915_gem_object_truncate(obj);
2124
8dc1775d 2125 return ret;
673a394b
EA
2126}
2127
88241785 2128int
db53a302 2129i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2130 uint32_t invalidate_domains,
2131 uint32_t flush_domains)
2132{
88241785
CW
2133 int ret;
2134
36d527de
CW
2135 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2136 return 0;
2137
db53a302
CW
2138 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2139
88241785
CW
2140 ret = ring->flush(ring, invalidate_domains, flush_domains);
2141 if (ret)
2142 return ret;
2143
36d527de
CW
2144 if (flush_domains & I915_GEM_GPU_DOMAINS)
2145 i915_gem_process_flushing_list(ring, flush_domains);
2146
88241785 2147 return 0;
54cf91dc
CW
2148}
2149
b93f9cf1 2150static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
a56ba56c 2151{
88241785
CW
2152 int ret;
2153
395b70be 2154 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2155 return 0;
2156
88241785 2157 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2158 ret = i915_gem_flush_ring(ring,
0ac74c6b 2159 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2160 if (ret)
2161 return ret;
2162 }
2163
b93f9cf1
BW
2164 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2165 do_retire);
a56ba56c
CW
2166}
2167
b93f9cf1 2168int i915_gpu_idle(struct drm_device *dev, bool do_retire)
4df2faf4
DV
2169{
2170 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2171 int ret, i;
4df2faf4 2172
4df2faf4 2173 /* Flush everything onto the inactive list. */
1ec14ad3 2174 for (i = 0; i < I915_NUM_RINGS; i++) {
b93f9cf1 2175 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
1ec14ad3
CW
2176 if (ret)
2177 return ret;
2178 }
4df2faf4 2179
8a1a49f9 2180 return 0;
4df2faf4
DV
2181}
2182
c6642782
DV
2183static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2184 struct intel_ring_buffer *pipelined)
4e901fdc 2185{
05394f39 2186 struct drm_device *dev = obj->base.dev;
4e901fdc 2187 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2188 u32 size = obj->gtt_space->size;
2189 int regnum = obj->fence_reg;
4e901fdc
EA
2190 uint64_t val;
2191
05394f39 2192 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2193 0xfffff000) << 32;
05394f39
CW
2194 val |= obj->gtt_offset & 0xfffff000;
2195 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2196 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2197
05394f39 2198 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2199 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2200 val |= I965_FENCE_REG_VALID;
2201
c6642782
DV
2202 if (pipelined) {
2203 int ret = intel_ring_begin(pipelined, 6);
2204 if (ret)
2205 return ret;
2206
2207 intel_ring_emit(pipelined, MI_NOOP);
2208 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2209 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2210 intel_ring_emit(pipelined, (u32)val);
2211 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2212 intel_ring_emit(pipelined, (u32)(val >> 32));
2213 intel_ring_advance(pipelined);
2214 } else
2215 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2216
2217 return 0;
4e901fdc
EA
2218}
2219
c6642782
DV
2220static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2221 struct intel_ring_buffer *pipelined)
de151cf6 2222{
05394f39 2223 struct drm_device *dev = obj->base.dev;
de151cf6 2224 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2225 u32 size = obj->gtt_space->size;
2226 int regnum = obj->fence_reg;
de151cf6
JB
2227 uint64_t val;
2228
05394f39 2229 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2230 0xfffff000) << 32;
05394f39
CW
2231 val |= obj->gtt_offset & 0xfffff000;
2232 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2233 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2234 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2235 val |= I965_FENCE_REG_VALID;
2236
c6642782
DV
2237 if (pipelined) {
2238 int ret = intel_ring_begin(pipelined, 6);
2239 if (ret)
2240 return ret;
2241
2242 intel_ring_emit(pipelined, MI_NOOP);
2243 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2244 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2245 intel_ring_emit(pipelined, (u32)val);
2246 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2247 intel_ring_emit(pipelined, (u32)(val >> 32));
2248 intel_ring_advance(pipelined);
2249 } else
2250 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2251
2252 return 0;
de151cf6
JB
2253}
2254
c6642782
DV
2255static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2256 struct intel_ring_buffer *pipelined)
de151cf6 2257{
05394f39 2258 struct drm_device *dev = obj->base.dev;
de151cf6 2259 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2260 u32 size = obj->gtt_space->size;
c6642782 2261 u32 fence_reg, val, pitch_val;
0f973f27 2262 int tile_width;
de151cf6 2263
c6642782
DV
2264 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2265 (size & -size) != size ||
2266 (obj->gtt_offset & (size - 1)),
2267 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2268 obj->gtt_offset, obj->map_and_fenceable, size))
2269 return -EINVAL;
de151cf6 2270
c6642782 2271 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2272 tile_width = 128;
de151cf6 2273 else
0f973f27
JB
2274 tile_width = 512;
2275
2276 /* Note: pitch better be a power of two tile widths */
05394f39 2277 pitch_val = obj->stride / tile_width;
0f973f27 2278 pitch_val = ffs(pitch_val) - 1;
de151cf6 2279
05394f39
CW
2280 val = obj->gtt_offset;
2281 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2282 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2283 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2284 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2285 val |= I830_FENCE_REG_VALID;
2286
05394f39 2287 fence_reg = obj->fence_reg;
a00b10c3
CW
2288 if (fence_reg < 8)
2289 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2290 else
a00b10c3 2291 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2292
2293 if (pipelined) {
2294 int ret = intel_ring_begin(pipelined, 4);
2295 if (ret)
2296 return ret;
2297
2298 intel_ring_emit(pipelined, MI_NOOP);
2299 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2300 intel_ring_emit(pipelined, fence_reg);
2301 intel_ring_emit(pipelined, val);
2302 intel_ring_advance(pipelined);
2303 } else
2304 I915_WRITE(fence_reg, val);
2305
2306 return 0;
de151cf6
JB
2307}
2308
c6642782
DV
2309static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2310 struct intel_ring_buffer *pipelined)
de151cf6 2311{
05394f39 2312 struct drm_device *dev = obj->base.dev;
de151cf6 2313 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2314 u32 size = obj->gtt_space->size;
2315 int regnum = obj->fence_reg;
de151cf6
JB
2316 uint32_t val;
2317 uint32_t pitch_val;
2318
c6642782
DV
2319 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2320 (size & -size) != size ||
2321 (obj->gtt_offset & (size - 1)),
2322 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2323 obj->gtt_offset, size))
2324 return -EINVAL;
de151cf6 2325
05394f39 2326 pitch_val = obj->stride / 128;
e76a16de 2327 pitch_val = ffs(pitch_val) - 1;
e76a16de 2328
05394f39
CW
2329 val = obj->gtt_offset;
2330 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2331 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2332 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2333 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2334 val |= I830_FENCE_REG_VALID;
2335
c6642782
DV
2336 if (pipelined) {
2337 int ret = intel_ring_begin(pipelined, 4);
2338 if (ret)
2339 return ret;
2340
2341 intel_ring_emit(pipelined, MI_NOOP);
2342 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2343 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2344 intel_ring_emit(pipelined, val);
2345 intel_ring_advance(pipelined);
2346 } else
2347 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2348
2349 return 0;
de151cf6
JB
2350}
2351
d9e86c0e
CW
2352static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2353{
2354 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2355}
2356
2357static int
2358i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2359 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2360{
2361 int ret;
2362
2363 if (obj->fenced_gpu_access) {
88241785 2364 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2365 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2366 0, obj->base.write_domain);
2367 if (ret)
2368 return ret;
2369 }
d9e86c0e
CW
2370
2371 obj->fenced_gpu_access = false;
2372 }
2373
2374 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2375 if (!ring_passed_seqno(obj->last_fenced_ring,
2376 obj->last_fenced_seqno)) {
db53a302 2377 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2378 obj->last_fenced_seqno,
2379 true);
d9e86c0e
CW
2380 if (ret)
2381 return ret;
2382 }
2383
2384 obj->last_fenced_seqno = 0;
2385 obj->last_fenced_ring = NULL;
2386 }
2387
63256ec5
CW
2388 /* Ensure that all CPU reads are completed before installing a fence
2389 * and all writes before removing the fence.
2390 */
2391 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2392 mb();
2393
d9e86c0e
CW
2394 return 0;
2395}
2396
2397int
2398i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2399{
2400 int ret;
2401
2402 if (obj->tiling_mode)
2403 i915_gem_release_mmap(obj);
2404
ce453d81 2405 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2406 if (ret)
2407 return ret;
2408
2409 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2410 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1690e1eb
CW
2411
2412 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
d9e86c0e
CW
2413 i915_gem_clear_fence_reg(obj->base.dev,
2414 &dev_priv->fence_regs[obj->fence_reg]);
2415
2416 obj->fence_reg = I915_FENCE_REG_NONE;
2417 }
2418
2419 return 0;
2420}
2421
2422static struct drm_i915_fence_reg *
2423i915_find_fence_reg(struct drm_device *dev,
2424 struct intel_ring_buffer *pipelined)
ae3db24a 2425{
ae3db24a 2426 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2427 struct drm_i915_fence_reg *reg, *first, *avail;
2428 int i;
ae3db24a
DV
2429
2430 /* First try to find a free reg */
d9e86c0e 2431 avail = NULL;
ae3db24a
DV
2432 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2433 reg = &dev_priv->fence_regs[i];
2434 if (!reg->obj)
d9e86c0e 2435 return reg;
ae3db24a 2436
1690e1eb 2437 if (!reg->pin_count)
d9e86c0e 2438 avail = reg;
ae3db24a
DV
2439 }
2440
d9e86c0e
CW
2441 if (avail == NULL)
2442 return NULL;
ae3db24a
DV
2443
2444 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2445 avail = first = NULL;
2446 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2447 if (reg->pin_count)
ae3db24a
DV
2448 continue;
2449
d9e86c0e
CW
2450 if (first == NULL)
2451 first = reg;
2452
2453 if (!pipelined ||
2454 !reg->obj->last_fenced_ring ||
2455 reg->obj->last_fenced_ring == pipelined) {
2456 avail = reg;
2457 break;
2458 }
ae3db24a
DV
2459 }
2460
d9e86c0e
CW
2461 if (avail == NULL)
2462 avail = first;
ae3db24a 2463
a00b10c3 2464 return avail;
ae3db24a
DV
2465}
2466
de151cf6 2467/**
d9e86c0e 2468 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2469 * @obj: object to map through a fence reg
d9e86c0e
CW
2470 * @pipelined: ring on which to queue the change, or NULL for CPU access
2471 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2472 *
2473 * When mapping objects through the GTT, userspace wants to be able to write
2474 * to them without having to worry about swizzling if the object is tiled.
2475 *
2476 * This function walks the fence regs looking for a free one for @obj,
2477 * stealing one if it can't find any.
2478 *
2479 * It then sets up the reg based on the object's properties: address, pitch
2480 * and tiling format.
2481 */
8c4b8c3f 2482int
d9e86c0e 2483i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2484 struct intel_ring_buffer *pipelined)
de151cf6 2485{
05394f39 2486 struct drm_device *dev = obj->base.dev;
79e53945 2487 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2488 struct drm_i915_fence_reg *reg;
ae3db24a 2489 int ret;
de151cf6 2490
6bda10d1
CW
2491 /* XXX disable pipelining. There are bugs. Shocking. */
2492 pipelined = NULL;
2493
d9e86c0e 2494 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2495 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2496 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2497 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2498
29c5a587
CW
2499 if (obj->tiling_changed) {
2500 ret = i915_gem_object_flush_fence(obj, pipelined);
2501 if (ret)
2502 return ret;
2503
2504 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2505 pipelined = NULL;
2506
2507 if (pipelined) {
2508 reg->setup_seqno =
2509 i915_gem_next_request_seqno(pipelined);
2510 obj->last_fenced_seqno = reg->setup_seqno;
2511 obj->last_fenced_ring = pipelined;
2512 }
2513
2514 goto update;
2515 }
d9e86c0e
CW
2516
2517 if (!pipelined) {
2518 if (reg->setup_seqno) {
2519 if (!ring_passed_seqno(obj->last_fenced_ring,
2520 reg->setup_seqno)) {
db53a302 2521 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2522 reg->setup_seqno,
2523 true);
d9e86c0e
CW
2524 if (ret)
2525 return ret;
2526 }
2527
2528 reg->setup_seqno = 0;
2529 }
2530 } else if (obj->last_fenced_ring &&
2531 obj->last_fenced_ring != pipelined) {
ce453d81 2532 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2533 if (ret)
2534 return ret;
d9e86c0e
CW
2535 }
2536
a09ba7fa
EA
2537 return 0;
2538 }
2539
d9e86c0e
CW
2540 reg = i915_find_fence_reg(dev, pipelined);
2541 if (reg == NULL)
39965b37 2542 return -EDEADLK;
de151cf6 2543
ce453d81 2544 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2545 if (ret)
ae3db24a 2546 return ret;
de151cf6 2547
d9e86c0e
CW
2548 if (reg->obj) {
2549 struct drm_i915_gem_object *old = reg->obj;
2550
2551 drm_gem_object_reference(&old->base);
2552
2553 if (old->tiling_mode)
2554 i915_gem_release_mmap(old);
2555
ce453d81 2556 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2557 if (ret) {
2558 drm_gem_object_unreference(&old->base);
2559 return ret;
2560 }
2561
2562 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2563 pipelined = NULL;
2564
2565 old->fence_reg = I915_FENCE_REG_NONE;
2566 old->last_fenced_ring = pipelined;
2567 old->last_fenced_seqno =
db53a302 2568 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2569
2570 drm_gem_object_unreference(&old->base);
2571 } else if (obj->last_fenced_seqno == 0)
2572 pipelined = NULL;
a09ba7fa 2573
de151cf6 2574 reg->obj = obj;
d9e86c0e
CW
2575 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2576 obj->fence_reg = reg - dev_priv->fence_regs;
2577 obj->last_fenced_ring = pipelined;
de151cf6 2578
d9e86c0e 2579 reg->setup_seqno =
db53a302 2580 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2581 obj->last_fenced_seqno = reg->setup_seqno;
2582
2583update:
2584 obj->tiling_changed = false;
e259befd 2585 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2586 case 7:
e259befd 2587 case 6:
c6642782 2588 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2589 break;
2590 case 5:
2591 case 4:
c6642782 2592 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2593 break;
2594 case 3:
c6642782 2595 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2596 break;
2597 case 2:
c6642782 2598 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2599 break;
2600 }
d9ddcb96 2601
c6642782 2602 return ret;
de151cf6
JB
2603}
2604
2605/**
2606 * i915_gem_clear_fence_reg - clear out fence register info
2607 * @obj: object to clear
2608 *
2609 * Zeroes out the fence register itself and clears out the associated
05394f39 2610 * data structures in dev_priv and obj.
de151cf6
JB
2611 */
2612static void
d9e86c0e
CW
2613i915_gem_clear_fence_reg(struct drm_device *dev,
2614 struct drm_i915_fence_reg *reg)
de151cf6 2615{
79e53945 2616 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2617 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2618
e259befd 2619 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2620 case 7:
e259befd 2621 case 6:
d9e86c0e 2622 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2623 break;
2624 case 5:
2625 case 4:
d9e86c0e 2626 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2627 break;
2628 case 3:
d9e86c0e
CW
2629 if (fence_reg >= 8)
2630 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2631 else
e259befd 2632 case 2:
d9e86c0e 2633 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2634
2635 I915_WRITE(fence_reg, 0);
e259befd 2636 break;
dc529a4f 2637 }
de151cf6 2638
007cc8ac 2639 list_del_init(&reg->lru_list);
d9e86c0e
CW
2640 reg->obj = NULL;
2641 reg->setup_seqno = 0;
1690e1eb 2642 reg->pin_count = 0;
52dc7d32
CW
2643}
2644
673a394b
EA
2645/**
2646 * Finds free space in the GTT aperture and binds the object there.
2647 */
2648static int
05394f39 2649i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2650 unsigned alignment,
75e9e915 2651 bool map_and_fenceable)
673a394b 2652{
05394f39 2653 struct drm_device *dev = obj->base.dev;
673a394b 2654 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2655 struct drm_mm_node *free_space;
a00b10c3 2656 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2657 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2658 bool mappable, fenceable;
07f73f69 2659 int ret;
673a394b 2660
05394f39 2661 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2662 DRM_ERROR("Attempting to bind a purgeable object\n");
2663 return -EINVAL;
2664 }
2665
e28f8711
CW
2666 fence_size = i915_gem_get_gtt_size(dev,
2667 obj->base.size,
2668 obj->tiling_mode);
2669 fence_alignment = i915_gem_get_gtt_alignment(dev,
2670 obj->base.size,
2671 obj->tiling_mode);
2672 unfenced_alignment =
2673 i915_gem_get_unfenced_gtt_alignment(dev,
2674 obj->base.size,
2675 obj->tiling_mode);
a00b10c3 2676
673a394b 2677 if (alignment == 0)
5e783301
DV
2678 alignment = map_and_fenceable ? fence_alignment :
2679 unfenced_alignment;
75e9e915 2680 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2681 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2682 return -EINVAL;
2683 }
2684
05394f39 2685 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2686
654fc607
CW
2687 /* If the object is bigger than the entire aperture, reject it early
2688 * before evicting everything in a vain attempt to find space.
2689 */
05394f39 2690 if (obj->base.size >
75e9e915 2691 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2692 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2693 return -E2BIG;
2694 }
2695
673a394b 2696 search_free:
75e9e915 2697 if (map_and_fenceable)
920afa77
DV
2698 free_space =
2699 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2700 size, alignment, 0,
920afa77
DV
2701 dev_priv->mm.gtt_mappable_end,
2702 0);
2703 else
2704 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2705 size, alignment, 0);
920afa77
DV
2706
2707 if (free_space != NULL) {
75e9e915 2708 if (map_and_fenceable)
05394f39 2709 obj->gtt_space =
920afa77 2710 drm_mm_get_block_range_generic(free_space,
a00b10c3 2711 size, alignment, 0,
920afa77
DV
2712 dev_priv->mm.gtt_mappable_end,
2713 0);
2714 else
05394f39 2715 obj->gtt_space =
a00b10c3 2716 drm_mm_get_block(free_space, size, alignment);
920afa77 2717 }
05394f39 2718 if (obj->gtt_space == NULL) {
673a394b
EA
2719 /* If the gtt is empty and we're still having trouble
2720 * fitting our object in, we're out of memory.
2721 */
75e9e915
DV
2722 ret = i915_gem_evict_something(dev, size, alignment,
2723 map_and_fenceable);
9731129c 2724 if (ret)
673a394b 2725 return ret;
9731129c 2726
673a394b
EA
2727 goto search_free;
2728 }
2729
e5281ccd 2730 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2731 if (ret) {
05394f39
CW
2732 drm_mm_put_block(obj->gtt_space);
2733 obj->gtt_space = NULL;
07f73f69
CW
2734
2735 if (ret == -ENOMEM) {
809b6334
CW
2736 /* first try to reclaim some memory by clearing the GTT */
2737 ret = i915_gem_evict_everything(dev, false);
07f73f69 2738 if (ret) {
07f73f69 2739 /* now try to shrink everyone else */
4bdadb97
CW
2740 if (gfpmask) {
2741 gfpmask = 0;
2742 goto search_free;
07f73f69
CW
2743 }
2744
809b6334 2745 return -ENOMEM;
07f73f69
CW
2746 }
2747
2748 goto search_free;
2749 }
2750
673a394b
EA
2751 return ret;
2752 }
2753
74163907 2754 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2755 if (ret) {
e5281ccd 2756 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2757 drm_mm_put_block(obj->gtt_space);
2758 obj->gtt_space = NULL;
07f73f69 2759
809b6334 2760 if (i915_gem_evict_everything(dev, false))
07f73f69 2761 return ret;
07f73f69
CW
2762
2763 goto search_free;
673a394b 2764 }
74163907 2765 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2766
6299f992 2767 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2768 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2769
673a394b
EA
2770 /* Assert that the object is not currently in any GPU domain. As it
2771 * wasn't in the GTT, there shouldn't be any way it could have been in
2772 * a GPU cache
2773 */
05394f39
CW
2774 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2775 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2776
6299f992 2777 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2778
75e9e915 2779 fenceable =
05394f39 2780 obj->gtt_space->size == fence_size &&
0206e353 2781 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2782
75e9e915 2783 mappable =
05394f39 2784 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2785
05394f39 2786 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2787
db53a302 2788 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2789 return 0;
2790}
2791
2792void
05394f39 2793i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2794{
673a394b
EA
2795 /* If we don't have a page list set up, then we're not pinned
2796 * to GPU, and we can ignore the cache flush because it'll happen
2797 * again at bind time.
2798 */
05394f39 2799 if (obj->pages == NULL)
673a394b
EA
2800 return;
2801
9c23f7fc
CW
2802 /* If the GPU is snooping the contents of the CPU cache,
2803 * we do not need to manually clear the CPU cache lines. However,
2804 * the caches are only snooped when the render cache is
2805 * flushed/invalidated. As we always have to emit invalidations
2806 * and flushes when moving into and out of the RENDER domain, correct
2807 * snooping behaviour occurs naturally as the result of our domain
2808 * tracking.
2809 */
2810 if (obj->cache_level != I915_CACHE_NONE)
2811 return;
2812
1c5d22f7 2813 trace_i915_gem_object_clflush(obj);
cfa16a0d 2814
05394f39 2815 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2816}
2817
e47c68e9 2818/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2819static int
3619df03 2820i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2821{
05394f39 2822 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2823 return 0;
e47c68e9
EA
2824
2825 /* Queue the GPU write cache flushing we need. */
db53a302 2826 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2827}
2828
2829/** Flushes the GTT write domain for the object if it's dirty. */
2830static void
05394f39 2831i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2832{
1c5d22f7
CW
2833 uint32_t old_write_domain;
2834
05394f39 2835 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2836 return;
2837
63256ec5 2838 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2839 * to it immediately go to main memory as far as we know, so there's
2840 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2841 *
2842 * However, we do have to enforce the order so that all writes through
2843 * the GTT land before any writes to the device, such as updates to
2844 * the GATT itself.
e47c68e9 2845 */
63256ec5
CW
2846 wmb();
2847
05394f39
CW
2848 old_write_domain = obj->base.write_domain;
2849 obj->base.write_domain = 0;
1c5d22f7
CW
2850
2851 trace_i915_gem_object_change_domain(obj,
05394f39 2852 obj->base.read_domains,
1c5d22f7 2853 old_write_domain);
e47c68e9
EA
2854}
2855
2856/** Flushes the CPU write domain for the object if it's dirty. */
2857static void
05394f39 2858i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2859{
1c5d22f7 2860 uint32_t old_write_domain;
e47c68e9 2861
05394f39 2862 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2863 return;
2864
2865 i915_gem_clflush_object(obj);
40ce6575 2866 intel_gtt_chipset_flush();
05394f39
CW
2867 old_write_domain = obj->base.write_domain;
2868 obj->base.write_domain = 0;
1c5d22f7
CW
2869
2870 trace_i915_gem_object_change_domain(obj,
05394f39 2871 obj->base.read_domains,
1c5d22f7 2872 old_write_domain);
e47c68e9
EA
2873}
2874
2ef7eeaa
EA
2875/**
2876 * Moves a single object to the GTT read, and possibly write domain.
2877 *
2878 * This function returns when the move is complete, including waiting on
2879 * flushes to occur.
2880 */
79e53945 2881int
2021746e 2882i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2883{
1c5d22f7 2884 uint32_t old_write_domain, old_read_domains;
e47c68e9 2885 int ret;
2ef7eeaa 2886
02354392 2887 /* Not valid to be called on unbound objects. */
05394f39 2888 if (obj->gtt_space == NULL)
02354392
EA
2889 return -EINVAL;
2890
8d7e3de1
CW
2891 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2892 return 0;
2893
88241785
CW
2894 ret = i915_gem_object_flush_gpu_write_domain(obj);
2895 if (ret)
2896 return ret;
2897
87ca9c8a 2898 if (obj->pending_gpu_write || write) {
ce453d81 2899 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2900 if (ret)
2901 return ret;
2902 }
2dafb1e0 2903
7213342d 2904 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2905
05394f39
CW
2906 old_write_domain = obj->base.write_domain;
2907 old_read_domains = obj->base.read_domains;
1c5d22f7 2908
e47c68e9
EA
2909 /* It should now be out of any other write domains, and we can update
2910 * the domain values for our changes.
2911 */
05394f39
CW
2912 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2913 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2914 if (write) {
05394f39
CW
2915 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2916 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2917 obj->dirty = 1;
2ef7eeaa
EA
2918 }
2919
1c5d22f7
CW
2920 trace_i915_gem_object_change_domain(obj,
2921 old_read_domains,
2922 old_write_domain);
2923
e47c68e9
EA
2924 return 0;
2925}
2926
e4ffd173
CW
2927int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2928 enum i915_cache_level cache_level)
2929{
7bddb01f
DV
2930 struct drm_device *dev = obj->base.dev;
2931 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2932 int ret;
2933
2934 if (obj->cache_level == cache_level)
2935 return 0;
2936
2937 if (obj->pin_count) {
2938 DRM_DEBUG("can not change the cache level of pinned objects\n");
2939 return -EBUSY;
2940 }
2941
2942 if (obj->gtt_space) {
2943 ret = i915_gem_object_finish_gpu(obj);
2944 if (ret)
2945 return ret;
2946
2947 i915_gem_object_finish_gtt(obj);
2948
2949 /* Before SandyBridge, you could not use tiling or fence
2950 * registers with snooped memory, so relinquish any fences
2951 * currently pointing to our region in the aperture.
2952 */
2953 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2954 ret = i915_gem_object_put_fence(obj);
2955 if (ret)
2956 return ret;
2957 }
2958
74898d7e
DV
2959 if (obj->has_global_gtt_mapping)
2960 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2961 if (obj->has_aliasing_ppgtt_mapping)
2962 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2963 obj, cache_level);
e4ffd173
CW
2964 }
2965
2966 if (cache_level == I915_CACHE_NONE) {
2967 u32 old_read_domains, old_write_domain;
2968
2969 /* If we're coming from LLC cached, then we haven't
2970 * actually been tracking whether the data is in the
2971 * CPU cache or not, since we only allow one bit set
2972 * in obj->write_domain and have been skipping the clflushes.
2973 * Just set it to the CPU cache for now.
2974 */
2975 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2976 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2977
2978 old_read_domains = obj->base.read_domains;
2979 old_write_domain = obj->base.write_domain;
2980
2981 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2982 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2983
2984 trace_i915_gem_object_change_domain(obj,
2985 old_read_domains,
2986 old_write_domain);
2987 }
2988
2989 obj->cache_level = cache_level;
2990 return 0;
2991}
2992
b9241ea3 2993/*
2da3b9b9
CW
2994 * Prepare buffer for display plane (scanout, cursors, etc).
2995 * Can be called from an uninterruptible phase (modesetting) and allows
2996 * any flushes to be pipelined (for pageflips).
2997 *
2998 * For the display plane, we want to be in the GTT but out of any write
2999 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
3000 * ability to pipeline the waits, pinning and any additional subtleties
3001 * that may differentiate the display plane from ordinary buffers.
b9241ea3
ZW
3002 */
3003int
2da3b9b9
CW
3004i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3005 u32 alignment,
919926ae 3006 struct intel_ring_buffer *pipelined)
b9241ea3 3007{
2da3b9b9 3008 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3009 int ret;
3010
88241785
CW
3011 ret = i915_gem_object_flush_gpu_write_domain(obj);
3012 if (ret)
3013 return ret;
3014
0be73284 3015 if (pipelined != obj->ring) {
ce453d81 3016 ret = i915_gem_object_wait_rendering(obj);
f0b69efc 3017 if (ret == -ERESTARTSYS)
b9241ea3
ZW
3018 return ret;
3019 }
3020
a7ef0640
EA
3021 /* The display engine is not coherent with the LLC cache on gen6. As
3022 * a result, we make sure that the pinning that is about to occur is
3023 * done with uncached PTEs. This is lowest common denominator for all
3024 * chipsets.
3025 *
3026 * However for gen6+, we could do better by using the GFDT bit instead
3027 * of uncaching, which would allow us to flush all the LLC-cached data
3028 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3029 */
3030 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3031 if (ret)
3032 return ret;
3033
2da3b9b9
CW
3034 /* As the user may map the buffer once pinned in the display plane
3035 * (e.g. libkms for the bootup splash), we have to ensure that we
3036 * always use map_and_fenceable for all scanout buffers.
3037 */
3038 ret = i915_gem_object_pin(obj, alignment, true);
3039 if (ret)
3040 return ret;
3041
b118c1e3
CW
3042 i915_gem_object_flush_cpu_write_domain(obj);
3043
2da3b9b9 3044 old_write_domain = obj->base.write_domain;
05394f39 3045 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3046
3047 /* It should now be out of any other write domains, and we can update
3048 * the domain values for our changes.
3049 */
3050 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3051 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3052
3053 trace_i915_gem_object_change_domain(obj,
3054 old_read_domains,
2da3b9b9 3055 old_write_domain);
b9241ea3
ZW
3056
3057 return 0;
3058}
3059
85345517 3060int
a8198eea 3061i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3062{
88241785
CW
3063 int ret;
3064
a8198eea 3065 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3066 return 0;
3067
88241785 3068 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3069 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3070 if (ret)
3071 return ret;
3072 }
85345517 3073
c501ae7f
CW
3074 ret = i915_gem_object_wait_rendering(obj);
3075 if (ret)
3076 return ret;
3077
a8198eea
CW
3078 /* Ensure that we invalidate the GPU's caches and TLBs. */
3079 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3080 return 0;
85345517
CW
3081}
3082
e47c68e9
EA
3083/**
3084 * Moves a single object to the CPU read, and possibly write domain.
3085 *
3086 * This function returns when the move is complete, including waiting on
3087 * flushes to occur.
3088 */
3089static int
919926ae 3090i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3091{
1c5d22f7 3092 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3093 int ret;
3094
8d7e3de1
CW
3095 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3096 return 0;
3097
88241785
CW
3098 ret = i915_gem_object_flush_gpu_write_domain(obj);
3099 if (ret)
3100 return ret;
3101
ce453d81 3102 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3103 if (ret)
e47c68e9 3104 return ret;
2ef7eeaa 3105
e47c68e9 3106 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3107
e47c68e9
EA
3108 /* If we have a partially-valid cache of the object in the CPU,
3109 * finish invalidating it and free the per-page flags.
2ef7eeaa 3110 */
e47c68e9 3111 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3112
05394f39
CW
3113 old_write_domain = obj->base.write_domain;
3114 old_read_domains = obj->base.read_domains;
1c5d22f7 3115
e47c68e9 3116 /* Flush the CPU cache if it's still invalid. */
05394f39 3117 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3118 i915_gem_clflush_object(obj);
2ef7eeaa 3119
05394f39 3120 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3121 }
3122
3123 /* It should now be out of any other write domains, and we can update
3124 * the domain values for our changes.
3125 */
05394f39 3126 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3127
3128 /* If we're writing through the CPU, then the GPU read domains will
3129 * need to be invalidated at next use.
3130 */
3131 if (write) {
05394f39
CW
3132 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3133 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3134 }
2ef7eeaa 3135
1c5d22f7
CW
3136 trace_i915_gem_object_change_domain(obj,
3137 old_read_domains,
3138 old_write_domain);
3139
2ef7eeaa
EA
3140 return 0;
3141}
3142
673a394b 3143/**
e47c68e9 3144 * Moves the object from a partially CPU read to a full one.
673a394b 3145 *
e47c68e9
EA
3146 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3147 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3148 */
e47c68e9 3149static void
05394f39 3150i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3151{
05394f39 3152 if (!obj->page_cpu_valid)
e47c68e9
EA
3153 return;
3154
3155 /* If we're partially in the CPU read domain, finish moving it in.
3156 */
05394f39 3157 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3158 int i;
3159
05394f39
CW
3160 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3161 if (obj->page_cpu_valid[i])
e47c68e9 3162 continue;
05394f39 3163 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3164 }
e47c68e9
EA
3165 }
3166
3167 /* Free the page_cpu_valid mappings which are now stale, whether
3168 * or not we've got I915_GEM_DOMAIN_CPU.
3169 */
05394f39
CW
3170 kfree(obj->page_cpu_valid);
3171 obj->page_cpu_valid = NULL;
e47c68e9
EA
3172}
3173
3174/**
3175 * Set the CPU read domain on a range of the object.
3176 *
3177 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3178 * not entirely valid. The page_cpu_valid member of the object flags which
3179 * pages have been flushed, and will be respected by
3180 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3181 * of the whole object.
3182 *
3183 * This function returns when the move is complete, including waiting on
3184 * flushes to occur.
3185 */
3186static int
05394f39 3187i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3188 uint64_t offset, uint64_t size)
3189{
1c5d22f7 3190 uint32_t old_read_domains;
e47c68e9 3191 int i, ret;
673a394b 3192
05394f39 3193 if (offset == 0 && size == obj->base.size)
e47c68e9 3194 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3195
88241785
CW
3196 ret = i915_gem_object_flush_gpu_write_domain(obj);
3197 if (ret)
3198 return ret;
3199
ce453d81 3200 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3201 if (ret)
6a47baa6 3202 return ret;
de18a29e 3203
e47c68e9
EA
3204 i915_gem_object_flush_gtt_write_domain(obj);
3205
3206 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3207 if (obj->page_cpu_valid == NULL &&
3208 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3209 return 0;
673a394b 3210
e47c68e9
EA
3211 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3212 * newly adding I915_GEM_DOMAIN_CPU
3213 */
05394f39
CW
3214 if (obj->page_cpu_valid == NULL) {
3215 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3216 GFP_KERNEL);
3217 if (obj->page_cpu_valid == NULL)
e47c68e9 3218 return -ENOMEM;
05394f39
CW
3219 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3220 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3221
3222 /* Flush the cache on any pages that are still invalid from the CPU's
3223 * perspective.
3224 */
e47c68e9
EA
3225 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3226 i++) {
05394f39 3227 if (obj->page_cpu_valid[i])
673a394b
EA
3228 continue;
3229
05394f39 3230 drm_clflush_pages(obj->pages + i, 1);
673a394b 3231
05394f39 3232 obj->page_cpu_valid[i] = 1;
673a394b
EA
3233 }
3234
e47c68e9
EA
3235 /* It should now be out of any other write domains, and we can update
3236 * the domain values for our changes.
3237 */
05394f39 3238 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3239
05394f39
CW
3240 old_read_domains = obj->base.read_domains;
3241 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3242
1c5d22f7
CW
3243 trace_i915_gem_object_change_domain(obj,
3244 old_read_domains,
05394f39 3245 obj->base.write_domain);
1c5d22f7 3246
673a394b
EA
3247 return 0;
3248}
3249
673a394b
EA
3250/* Throttle our rendering by waiting until the ring has completed our requests
3251 * emitted over 20 msec ago.
3252 *
b962442e
EA
3253 * Note that if we were to use the current jiffies each time around the loop,
3254 * we wouldn't escape the function with any frames outstanding if the time to
3255 * render a frame was over 20ms.
3256 *
673a394b
EA
3257 * This should get us reasonable parallelism between CPU and GPU but also
3258 * relatively low latency when blocking on a particular request to finish.
3259 */
40a5f0de 3260static int
f787a5f5 3261i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3262{
f787a5f5
CW
3263 struct drm_i915_private *dev_priv = dev->dev_private;
3264 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3265 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3266 struct drm_i915_gem_request *request;
3267 struct intel_ring_buffer *ring = NULL;
3268 u32 seqno = 0;
3269 int ret;
93533c29 3270
e110e8d6
CW
3271 if (atomic_read(&dev_priv->mm.wedged))
3272 return -EIO;
3273
1c25595f 3274 spin_lock(&file_priv->mm.lock);
f787a5f5 3275 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3276 if (time_after_eq(request->emitted_jiffies, recent_enough))
3277 break;
40a5f0de 3278
f787a5f5
CW
3279 ring = request->ring;
3280 seqno = request->seqno;
b962442e 3281 }
1c25595f 3282 spin_unlock(&file_priv->mm.lock);
40a5f0de 3283
f787a5f5
CW
3284 if (seqno == 0)
3285 return 0;
2bc43b5c 3286
f787a5f5 3287 ret = 0;
78501eac 3288 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3289 /* And wait for the seqno passing without holding any locks and
3290 * causing extra latency for others. This is safe as the irq
3291 * generation is designed to be run atomically and so is
3292 * lockless.
3293 */
b13c2b96
CW
3294 if (ring->irq_get(ring)) {
3295 ret = wait_event_interruptible(ring->irq_queue,
3296 i915_seqno_passed(ring->get_seqno(ring), seqno)
3297 || atomic_read(&dev_priv->mm.wedged));
3298 ring->irq_put(ring);
40a5f0de 3299
b13c2b96
CW
3300 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3301 ret = -EIO;
e959b5db
EA
3302 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3303 seqno) ||
7ea29b13
EA
3304 atomic_read(&dev_priv->mm.wedged), 3000)) {
3305 ret = -EBUSY;
b13c2b96 3306 }
40a5f0de
EA
3307 }
3308
f787a5f5
CW
3309 if (ret == 0)
3310 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3311
3312 return ret;
3313}
3314
673a394b 3315int
05394f39
CW
3316i915_gem_object_pin(struct drm_i915_gem_object *obj,
3317 uint32_t alignment,
75e9e915 3318 bool map_and_fenceable)
673a394b 3319{
05394f39 3320 struct drm_device *dev = obj->base.dev;
f13d3f73 3321 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3322 int ret;
3323
05394f39 3324 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3325 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3326
05394f39
CW
3327 if (obj->gtt_space != NULL) {
3328 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3329 (map_and_fenceable && !obj->map_and_fenceable)) {
3330 WARN(obj->pin_count,
ae7d49d8 3331 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3332 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3333 " obj->map_and_fenceable=%d\n",
05394f39 3334 obj->gtt_offset, alignment,
75e9e915 3335 map_and_fenceable,
05394f39 3336 obj->map_and_fenceable);
ac0c6b5a
CW
3337 ret = i915_gem_object_unbind(obj);
3338 if (ret)
3339 return ret;
3340 }
3341 }
3342
05394f39 3343 if (obj->gtt_space == NULL) {
a00b10c3 3344 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3345 map_and_fenceable);
9731129c 3346 if (ret)
673a394b 3347 return ret;
22c344e9 3348 }
76446cac 3349
74898d7e
DV
3350 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3351 i915_gem_gtt_bind_object(obj, obj->cache_level);
3352
05394f39 3353 if (obj->pin_count++ == 0) {
05394f39
CW
3354 if (!obj->active)
3355 list_move_tail(&obj->mm_list,
f13d3f73 3356 &dev_priv->mm.pinned_list);
673a394b 3357 }
6299f992 3358 obj->pin_mappable |= map_and_fenceable;
673a394b 3359
23bc5982 3360 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3361 return 0;
3362}
3363
3364void
05394f39 3365i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3366{
05394f39 3367 struct drm_device *dev = obj->base.dev;
673a394b 3368 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3369
23bc5982 3370 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3371 BUG_ON(obj->pin_count == 0);
3372 BUG_ON(obj->gtt_space == NULL);
673a394b 3373
05394f39
CW
3374 if (--obj->pin_count == 0) {
3375 if (!obj->active)
3376 list_move_tail(&obj->mm_list,
673a394b 3377 &dev_priv->mm.inactive_list);
6299f992 3378 obj->pin_mappable = false;
673a394b 3379 }
23bc5982 3380 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3381}
3382
3383int
3384i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3385 struct drm_file *file)
673a394b
EA
3386{
3387 struct drm_i915_gem_pin *args = data;
05394f39 3388 struct drm_i915_gem_object *obj;
673a394b
EA
3389 int ret;
3390
1d7cfea1
CW
3391 ret = i915_mutex_lock_interruptible(dev);
3392 if (ret)
3393 return ret;
673a394b 3394
05394f39 3395 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3396 if (&obj->base == NULL) {
1d7cfea1
CW
3397 ret = -ENOENT;
3398 goto unlock;
673a394b 3399 }
673a394b 3400
05394f39 3401 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3402 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3403 ret = -EINVAL;
3404 goto out;
3ef94daa
CW
3405 }
3406
05394f39 3407 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3408 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3409 args->handle);
1d7cfea1
CW
3410 ret = -EINVAL;
3411 goto out;
79e53945
JB
3412 }
3413
05394f39
CW
3414 obj->user_pin_count++;
3415 obj->pin_filp = file;
3416 if (obj->user_pin_count == 1) {
75e9e915 3417 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3418 if (ret)
3419 goto out;
673a394b
EA
3420 }
3421
3422 /* XXX - flush the CPU caches for pinned objects
3423 * as the X server doesn't manage domains yet
3424 */
e47c68e9 3425 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3426 args->offset = obj->gtt_offset;
1d7cfea1 3427out:
05394f39 3428 drm_gem_object_unreference(&obj->base);
1d7cfea1 3429unlock:
673a394b 3430 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3431 return ret;
673a394b
EA
3432}
3433
3434int
3435i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3436 struct drm_file *file)
673a394b
EA
3437{
3438 struct drm_i915_gem_pin *args = data;
05394f39 3439 struct drm_i915_gem_object *obj;
76c1dec1 3440 int ret;
673a394b 3441
1d7cfea1
CW
3442 ret = i915_mutex_lock_interruptible(dev);
3443 if (ret)
3444 return ret;
673a394b 3445
05394f39 3446 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3447 if (&obj->base == NULL) {
1d7cfea1
CW
3448 ret = -ENOENT;
3449 goto unlock;
673a394b 3450 }
76c1dec1 3451
05394f39 3452 if (obj->pin_filp != file) {
79e53945
JB
3453 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3454 args->handle);
1d7cfea1
CW
3455 ret = -EINVAL;
3456 goto out;
79e53945 3457 }
05394f39
CW
3458 obj->user_pin_count--;
3459 if (obj->user_pin_count == 0) {
3460 obj->pin_filp = NULL;
79e53945
JB
3461 i915_gem_object_unpin(obj);
3462 }
673a394b 3463
1d7cfea1 3464out:
05394f39 3465 drm_gem_object_unreference(&obj->base);
1d7cfea1 3466unlock:
673a394b 3467 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3468 return ret;
673a394b
EA
3469}
3470
3471int
3472i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3473 struct drm_file *file)
673a394b
EA
3474{
3475 struct drm_i915_gem_busy *args = data;
05394f39 3476 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3477 int ret;
3478
76c1dec1 3479 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3480 if (ret)
76c1dec1 3481 return ret;
673a394b 3482
05394f39 3483 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3484 if (&obj->base == NULL) {
1d7cfea1
CW
3485 ret = -ENOENT;
3486 goto unlock;
673a394b 3487 }
d1b851fc 3488
0be555b6
CW
3489 /* Count all active objects as busy, even if they are currently not used
3490 * by the gpu. Users of this interface expect objects to eventually
3491 * become non-busy without any further actions, therefore emit any
3492 * necessary flushes here.
c4de0a5d 3493 */
05394f39 3494 args->busy = obj->active;
0be555b6
CW
3495 if (args->busy) {
3496 /* Unconditionally flush objects, even when the gpu still uses this
3497 * object. Userspace calling this function indicates that it wants to
3498 * use this buffer rather sooner than later, so issuing the required
3499 * flush earlier is beneficial.
3500 */
1a1c6976 3501 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3502 ret = i915_gem_flush_ring(obj->ring,
88241785 3503 0, obj->base.write_domain);
1a1c6976
CW
3504 } else if (obj->ring->outstanding_lazy_request ==
3505 obj->last_rendering_seqno) {
3506 struct drm_i915_gem_request *request;
3507
7a194876
CW
3508 /* This ring is not being cleared by active usage,
3509 * so emit a request to do so.
3510 */
1a1c6976 3511 request = kzalloc(sizeof(*request), GFP_KERNEL);
457eafce 3512 if (request) {
0206e353 3513 ret = i915_add_request(obj->ring, NULL, request);
457eafce
RM
3514 if (ret)
3515 kfree(request);
3516 } else
7a194876
CW
3517 ret = -ENOMEM;
3518 }
0be555b6
CW
3519
3520 /* Update the active list for the hardware's current position.
3521 * Otherwise this only updates on a delayed timer or when irqs
3522 * are actually unmasked, and our working set ends up being
3523 * larger than required.
3524 */
db53a302 3525 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3526
05394f39 3527 args->busy = obj->active;
0be555b6 3528 }
673a394b 3529
05394f39 3530 drm_gem_object_unreference(&obj->base);
1d7cfea1 3531unlock:
673a394b 3532 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3533 return ret;
673a394b
EA
3534}
3535
3536int
3537i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3538 struct drm_file *file_priv)
3539{
0206e353 3540 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3541}
3542
3ef94daa
CW
3543int
3544i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3545 struct drm_file *file_priv)
3546{
3547 struct drm_i915_gem_madvise *args = data;
05394f39 3548 struct drm_i915_gem_object *obj;
76c1dec1 3549 int ret;
3ef94daa
CW
3550
3551 switch (args->madv) {
3552 case I915_MADV_DONTNEED:
3553 case I915_MADV_WILLNEED:
3554 break;
3555 default:
3556 return -EINVAL;
3557 }
3558
1d7cfea1
CW
3559 ret = i915_mutex_lock_interruptible(dev);
3560 if (ret)
3561 return ret;
3562
05394f39 3563 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3564 if (&obj->base == NULL) {
1d7cfea1
CW
3565 ret = -ENOENT;
3566 goto unlock;
3ef94daa 3567 }
3ef94daa 3568
05394f39 3569 if (obj->pin_count) {
1d7cfea1
CW
3570 ret = -EINVAL;
3571 goto out;
3ef94daa
CW
3572 }
3573
05394f39
CW
3574 if (obj->madv != __I915_MADV_PURGED)
3575 obj->madv = args->madv;
3ef94daa 3576
2d7ef395 3577 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3578 if (i915_gem_object_is_purgeable(obj) &&
3579 obj->gtt_space == NULL)
2d7ef395
CW
3580 i915_gem_object_truncate(obj);
3581
05394f39 3582 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3583
1d7cfea1 3584out:
05394f39 3585 drm_gem_object_unreference(&obj->base);
1d7cfea1 3586unlock:
3ef94daa 3587 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3588 return ret;
3ef94daa
CW
3589}
3590
05394f39
CW
3591struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3592 size_t size)
ac52bc56 3593{
73aa808f 3594 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3595 struct drm_i915_gem_object *obj;
5949eac4 3596 struct address_space *mapping;
ac52bc56 3597
c397b908
DV
3598 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3599 if (obj == NULL)
3600 return NULL;
673a394b 3601
c397b908
DV
3602 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3603 kfree(obj);
3604 return NULL;
3605 }
673a394b 3606
5949eac4
HD
3607 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3608 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3609
73aa808f
CW
3610 i915_gem_info_add_obj(dev_priv, size);
3611
c397b908
DV
3612 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3613 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3614
3d29b842
ED
3615 if (HAS_LLC(dev)) {
3616 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3617 * cache) for about a 10% performance improvement
3618 * compared to uncached. Graphics requests other than
3619 * display scanout are coherent with the CPU in
3620 * accessing this cache. This means in this mode we
3621 * don't need to clflush on the CPU side, and on the
3622 * GPU side we only need to flush internal caches to
3623 * get data visible to the CPU.
3624 *
3625 * However, we maintain the display planes as UC, and so
3626 * need to rebind when first used as such.
3627 */
3628 obj->cache_level = I915_CACHE_LLC;
3629 } else
3630 obj->cache_level = I915_CACHE_NONE;
3631
62b8b215 3632 obj->base.driver_private = NULL;
c397b908 3633 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3634 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3635 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3636 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3637 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3638 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3639 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3640 /* Avoid an unnecessary call to unbind on the first bind. */
3641 obj->map_and_fenceable = true;
de151cf6 3642
05394f39 3643 return obj;
c397b908
DV
3644}
3645
3646int i915_gem_init_object(struct drm_gem_object *obj)
3647{
3648 BUG();
de151cf6 3649
673a394b
EA
3650 return 0;
3651}
3652
05394f39 3653static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3654{
05394f39 3655 struct drm_device *dev = obj->base.dev;
be72615b 3656 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3657 int ret;
673a394b 3658
be72615b
CW
3659 ret = i915_gem_object_unbind(obj);
3660 if (ret == -ERESTARTSYS) {
05394f39 3661 list_move(&obj->mm_list,
be72615b
CW
3662 &dev_priv->mm.deferred_free_list);
3663 return;
3664 }
673a394b 3665
26e12f89
CW
3666 trace_i915_gem_object_destroy(obj);
3667
05394f39 3668 if (obj->base.map_list.map)
b464e9a2 3669 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3670
05394f39
CW
3671 drm_gem_object_release(&obj->base);
3672 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3673
05394f39
CW
3674 kfree(obj->page_cpu_valid);
3675 kfree(obj->bit_17);
3676 kfree(obj);
673a394b
EA
3677}
3678
05394f39 3679void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3680{
05394f39
CW
3681 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3682 struct drm_device *dev = obj->base.dev;
be72615b 3683
05394f39 3684 while (obj->pin_count > 0)
be72615b
CW
3685 i915_gem_object_unpin(obj);
3686
05394f39 3687 if (obj->phys_obj)
be72615b
CW
3688 i915_gem_detach_phys_object(dev, obj);
3689
3690 i915_gem_free_object_tail(obj);
3691}
3692
29105ccc
CW
3693int
3694i915_gem_idle(struct drm_device *dev)
3695{
3696 drm_i915_private_t *dev_priv = dev->dev_private;
3697 int ret;
28dfe52a 3698
29105ccc 3699 mutex_lock(&dev->struct_mutex);
1c5d22f7 3700
87acb0a5 3701 if (dev_priv->mm.suspended) {
29105ccc
CW
3702 mutex_unlock(&dev->struct_mutex);
3703 return 0;
28dfe52a
EA
3704 }
3705
b93f9cf1 3706 ret = i915_gpu_idle(dev, true);
6dbe2772
KP
3707 if (ret) {
3708 mutex_unlock(&dev->struct_mutex);
673a394b 3709 return ret;
6dbe2772 3710 }
673a394b 3711
29105ccc
CW
3712 /* Under UMS, be paranoid and evict. */
3713 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3714 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3715 if (ret) {
3716 mutex_unlock(&dev->struct_mutex);
3717 return ret;
3718 }
3719 }
3720
312817a3
CW
3721 i915_gem_reset_fences(dev);
3722
29105ccc
CW
3723 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3724 * We need to replace this with a semaphore, or something.
3725 * And not confound mm.suspended!
3726 */
3727 dev_priv->mm.suspended = 1;
bc0c7f14 3728 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3729
3730 i915_kernel_lost_context(dev);
6dbe2772 3731 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3732
6dbe2772
KP
3733 mutex_unlock(&dev->struct_mutex);
3734
29105ccc
CW
3735 /* Cancel the retire work handler, which should be idle now. */
3736 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3737
673a394b
EA
3738 return 0;
3739}
3740
f691e2f4
DV
3741void i915_gem_init_swizzling(struct drm_device *dev)
3742{
3743 drm_i915_private_t *dev_priv = dev->dev_private;
3744
11782b02 3745 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3746 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3747 return;
3748
3749 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3750 DISP_TILE_SURFACE_SWIZZLING);
3751
11782b02
DV
3752 if (IS_GEN5(dev))
3753 return;
3754
f691e2f4
DV
3755 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3756 if (IS_GEN6(dev))
3757 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3758 else
3759 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3760}
e21af88d
DV
3761
3762void i915_gem_init_ppgtt(struct drm_device *dev)
3763{
3764 drm_i915_private_t *dev_priv = dev->dev_private;
3765 uint32_t pd_offset;
3766 struct intel_ring_buffer *ring;
3767 int i;
3768
3769 if (!dev_priv->mm.aliasing_ppgtt)
3770 return;
3771
3772 pd_offset = dev_priv->mm.aliasing_ppgtt->pd_offset;
3773 pd_offset /= 64; /* in cachelines, */
3774 pd_offset <<= 16;
3775
3776 if (INTEL_INFO(dev)->gen == 6) {
3777 uint32_t ecochk = I915_READ(GAM_ECOCHK);
3778 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3779 ECOCHK_PPGTT_CACHE64B);
3780 I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3781 } else if (INTEL_INFO(dev)->gen >= 7) {
3782 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3783 /* GFX_MODE is per-ring on gen7+ */
3784 }
3785
3786 for (i = 0; i < I915_NUM_RINGS; i++) {
3787 ring = &dev_priv->ring[i];
3788
3789 if (INTEL_INFO(dev)->gen >= 7)
3790 I915_WRITE(RING_MODE_GEN7(ring),
3791 GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3792
3793 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3794 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3795 }
3796}
3797
8187a2b7 3798int
f691e2f4 3799i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3800{
3801 drm_i915_private_t *dev_priv = dev->dev_private;
3802 int ret;
68f95ba9 3803
f691e2f4
DV
3804 i915_gem_init_swizzling(dev);
3805
5c1143bb 3806 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3807 if (ret)
b6913e4b 3808 return ret;
68f95ba9
CW
3809
3810 if (HAS_BSD(dev)) {
5c1143bb 3811 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3812 if (ret)
3813 goto cleanup_render_ring;
d1b851fc 3814 }
68f95ba9 3815
549f7365
CW
3816 if (HAS_BLT(dev)) {
3817 ret = intel_init_blt_ring_buffer(dev);
3818 if (ret)
3819 goto cleanup_bsd_ring;
3820 }
3821
6f392d54
CW
3822 dev_priv->next_seqno = 1;
3823
e21af88d
DV
3824 i915_gem_init_ppgtt(dev);
3825
68f95ba9
CW
3826 return 0;
3827
549f7365 3828cleanup_bsd_ring:
1ec14ad3 3829 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3830cleanup_render_ring:
1ec14ad3 3831 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3832 return ret;
3833}
3834
3835void
3836i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3837{
3838 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3839 int i;
8187a2b7 3840
1ec14ad3
CW
3841 for (i = 0; i < I915_NUM_RINGS; i++)
3842 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3843}
3844
673a394b
EA
3845int
3846i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3847 struct drm_file *file_priv)
3848{
3849 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3850 int ret, i;
673a394b 3851
79e53945
JB
3852 if (drm_core_check_feature(dev, DRIVER_MODESET))
3853 return 0;
3854
ba1234d1 3855 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3856 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3857 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3858 }
3859
673a394b 3860 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3861 dev_priv->mm.suspended = 0;
3862
f691e2f4 3863 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3864 if (ret != 0) {
3865 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3866 return ret;
d816f6ac 3867 }
9bb2d6f9 3868
69dc4987 3869 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3870 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3871 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3872 for (i = 0; i < I915_NUM_RINGS; i++) {
3873 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3874 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3875 }
673a394b 3876 mutex_unlock(&dev->struct_mutex);
dbb19d30 3877
5f35308b
CW
3878 ret = drm_irq_install(dev);
3879 if (ret)
3880 goto cleanup_ringbuffer;
dbb19d30 3881
673a394b 3882 return 0;
5f35308b
CW
3883
3884cleanup_ringbuffer:
3885 mutex_lock(&dev->struct_mutex);
3886 i915_gem_cleanup_ringbuffer(dev);
3887 dev_priv->mm.suspended = 1;
3888 mutex_unlock(&dev->struct_mutex);
3889
3890 return ret;
673a394b
EA
3891}
3892
3893int
3894i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3895 struct drm_file *file_priv)
3896{
79e53945
JB
3897 if (drm_core_check_feature(dev, DRIVER_MODESET))
3898 return 0;
3899
dbb19d30 3900 drm_irq_uninstall(dev);
e6890f6f 3901 return i915_gem_idle(dev);
673a394b
EA
3902}
3903
3904void
3905i915_gem_lastclose(struct drm_device *dev)
3906{
3907 int ret;
673a394b 3908
e806b495
EA
3909 if (drm_core_check_feature(dev, DRIVER_MODESET))
3910 return;
3911
6dbe2772
KP
3912 ret = i915_gem_idle(dev);
3913 if (ret)
3914 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3915}
3916
64193406
CW
3917static void
3918init_ring_lists(struct intel_ring_buffer *ring)
3919{
3920 INIT_LIST_HEAD(&ring->active_list);
3921 INIT_LIST_HEAD(&ring->request_list);
3922 INIT_LIST_HEAD(&ring->gpu_write_list);
3923}
3924
673a394b
EA
3925void
3926i915_gem_load(struct drm_device *dev)
3927{
b5aa8a0f 3928 int i;
673a394b
EA
3929 drm_i915_private_t *dev_priv = dev->dev_private;
3930
69dc4987 3931 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3932 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3933 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3934 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3935 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3936 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3937 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3938 for (i = 0; i < I915_NUM_RINGS; i++)
3939 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3940 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3941 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3942 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3943 i915_gem_retire_work_handler);
30dbf0c0 3944 init_completion(&dev_priv->error_completion);
31169714 3945
94400120
DA
3946 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3947 if (IS_GEN3(dev)) {
3948 u32 tmp = I915_READ(MI_ARB_STATE);
3949 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3950 /* arb state is a masked write, so set bit + bit in mask */
3951 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3952 I915_WRITE(MI_ARB_STATE, tmp);
3953 }
3954 }
3955
72bfa19c
CW
3956 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3957
de151cf6 3958 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3959 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3960 dev_priv->fence_reg_start = 3;
de151cf6 3961
a6c45cf0 3962 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3963 dev_priv->num_fence_regs = 16;
3964 else
3965 dev_priv->num_fence_regs = 8;
3966
b5aa8a0f 3967 /* Initialize fence registers to zero */
10ed13e4
EA
3968 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3969 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3970 }
10ed13e4 3971
673a394b 3972 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3973 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3974
ce453d81
CW
3975 dev_priv->mm.interruptible = true;
3976
17250b71
CW
3977 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3978 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3979 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3980}
71acb5eb
DA
3981
3982/*
3983 * Create a physically contiguous memory object for this object
3984 * e.g. for cursor + overlay regs
3985 */
995b6762
CW
3986static int i915_gem_init_phys_object(struct drm_device *dev,
3987 int id, int size, int align)
71acb5eb
DA
3988{
3989 drm_i915_private_t *dev_priv = dev->dev_private;
3990 struct drm_i915_gem_phys_object *phys_obj;
3991 int ret;
3992
3993 if (dev_priv->mm.phys_objs[id - 1] || !size)
3994 return 0;
3995
9a298b2a 3996 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3997 if (!phys_obj)
3998 return -ENOMEM;
3999
4000 phys_obj->id = id;
4001
6eeefaf3 4002 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4003 if (!phys_obj->handle) {
4004 ret = -ENOMEM;
4005 goto kfree_obj;
4006 }
4007#ifdef CONFIG_X86
4008 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4009#endif
4010
4011 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4012
4013 return 0;
4014kfree_obj:
9a298b2a 4015 kfree(phys_obj);
71acb5eb
DA
4016 return ret;
4017}
4018
995b6762 4019static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4020{
4021 drm_i915_private_t *dev_priv = dev->dev_private;
4022 struct drm_i915_gem_phys_object *phys_obj;
4023
4024 if (!dev_priv->mm.phys_objs[id - 1])
4025 return;
4026
4027 phys_obj = dev_priv->mm.phys_objs[id - 1];
4028 if (phys_obj->cur_obj) {
4029 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4030 }
4031
4032#ifdef CONFIG_X86
4033 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4034#endif
4035 drm_pci_free(dev, phys_obj->handle);
4036 kfree(phys_obj);
4037 dev_priv->mm.phys_objs[id - 1] = NULL;
4038}
4039
4040void i915_gem_free_all_phys_object(struct drm_device *dev)
4041{
4042 int i;
4043
260883c8 4044 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4045 i915_gem_free_phys_object(dev, i);
4046}
4047
4048void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4049 struct drm_i915_gem_object *obj)
71acb5eb 4050{
05394f39 4051 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4052 char *vaddr;
71acb5eb 4053 int i;
71acb5eb
DA
4054 int page_count;
4055
05394f39 4056 if (!obj->phys_obj)
71acb5eb 4057 return;
05394f39 4058 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4059
05394f39 4060 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4061 for (i = 0; i < page_count; i++) {
5949eac4 4062 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4063 if (!IS_ERR(page)) {
4064 char *dst = kmap_atomic(page);
4065 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4066 kunmap_atomic(dst);
4067
4068 drm_clflush_pages(&page, 1);
4069
4070 set_page_dirty(page);
4071 mark_page_accessed(page);
4072 page_cache_release(page);
4073 }
71acb5eb 4074 }
40ce6575 4075 intel_gtt_chipset_flush();
d78b47b9 4076
05394f39
CW
4077 obj->phys_obj->cur_obj = NULL;
4078 obj->phys_obj = NULL;
71acb5eb
DA
4079}
4080
4081int
4082i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4083 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4084 int id,
4085 int align)
71acb5eb 4086{
05394f39 4087 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4088 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4089 int ret = 0;
4090 int page_count;
4091 int i;
4092
4093 if (id > I915_MAX_PHYS_OBJECT)
4094 return -EINVAL;
4095
05394f39
CW
4096 if (obj->phys_obj) {
4097 if (obj->phys_obj->id == id)
71acb5eb
DA
4098 return 0;
4099 i915_gem_detach_phys_object(dev, obj);
4100 }
4101
71acb5eb
DA
4102 /* create a new object */
4103 if (!dev_priv->mm.phys_objs[id - 1]) {
4104 ret = i915_gem_init_phys_object(dev, id,
05394f39 4105 obj->base.size, align);
71acb5eb 4106 if (ret) {
05394f39
CW
4107 DRM_ERROR("failed to init phys object %d size: %zu\n",
4108 id, obj->base.size);
e5281ccd 4109 return ret;
71acb5eb
DA
4110 }
4111 }
4112
4113 /* bind to the object */
05394f39
CW
4114 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4115 obj->phys_obj->cur_obj = obj;
71acb5eb 4116
05394f39 4117 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4118
4119 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4120 struct page *page;
4121 char *dst, *src;
4122
5949eac4 4123 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4124 if (IS_ERR(page))
4125 return PTR_ERR(page);
71acb5eb 4126
ff75b9bc 4127 src = kmap_atomic(page);
05394f39 4128 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4129 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4130 kunmap_atomic(src);
71acb5eb 4131
e5281ccd
CW
4132 mark_page_accessed(page);
4133 page_cache_release(page);
4134 }
d78b47b9 4135
71acb5eb 4136 return 0;
71acb5eb
DA
4137}
4138
4139static int
05394f39
CW
4140i915_gem_phys_pwrite(struct drm_device *dev,
4141 struct drm_i915_gem_object *obj,
71acb5eb
DA
4142 struct drm_i915_gem_pwrite *args,
4143 struct drm_file *file_priv)
4144{
05394f39 4145 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4146 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4147
b47b30cc
CW
4148 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4149 unsigned long unwritten;
4150
4151 /* The physical object once assigned is fixed for the lifetime
4152 * of the obj, so we can safely drop the lock and continue
4153 * to access vaddr.
4154 */
4155 mutex_unlock(&dev->struct_mutex);
4156 unwritten = copy_from_user(vaddr, user_data, args->size);
4157 mutex_lock(&dev->struct_mutex);
4158 if (unwritten)
4159 return -EFAULT;
4160 }
71acb5eb 4161
40ce6575 4162 intel_gtt_chipset_flush();
71acb5eb
DA
4163 return 0;
4164}
b962442e 4165
f787a5f5 4166void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4167{
f787a5f5 4168 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4169
4170 /* Clean up our request list when the client is going away, so that
4171 * later retire_requests won't dereference our soon-to-be-gone
4172 * file_priv.
4173 */
1c25595f 4174 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4175 while (!list_empty(&file_priv->mm.request_list)) {
4176 struct drm_i915_gem_request *request;
4177
4178 request = list_first_entry(&file_priv->mm.request_list,
4179 struct drm_i915_gem_request,
4180 client_list);
4181 list_del(&request->client_list);
4182 request->file_priv = NULL;
4183 }
1c25595f 4184 spin_unlock(&file_priv->mm.lock);
b962442e 4185}
31169714 4186
1637ef41
CW
4187static int
4188i915_gpu_is_active(struct drm_device *dev)
4189{
4190 drm_i915_private_t *dev_priv = dev->dev_private;
4191 int lists_empty;
4192
1637ef41 4193 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4194 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4195
4196 return !lists_empty;
4197}
4198
31169714 4199static int
1495f230 4200i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4201{
17250b71
CW
4202 struct drm_i915_private *dev_priv =
4203 container_of(shrinker,
4204 struct drm_i915_private,
4205 mm.inactive_shrinker);
4206 struct drm_device *dev = dev_priv->dev;
4207 struct drm_i915_gem_object *obj, *next;
1495f230 4208 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4209 int cnt;
4210
4211 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4212 return 0;
31169714
CW
4213
4214 /* "fast-path" to count number of available objects */
4215 if (nr_to_scan == 0) {
17250b71
CW
4216 cnt = 0;
4217 list_for_each_entry(obj,
4218 &dev_priv->mm.inactive_list,
4219 mm_list)
4220 cnt++;
4221 mutex_unlock(&dev->struct_mutex);
4222 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4223 }
4224
1637ef41 4225rescan:
31169714 4226 /* first scan for clean buffers */
17250b71 4227 i915_gem_retire_requests(dev);
31169714 4228
17250b71
CW
4229 list_for_each_entry_safe(obj, next,
4230 &dev_priv->mm.inactive_list,
4231 mm_list) {
4232 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4233 if (i915_gem_object_unbind(obj) == 0 &&
4234 --nr_to_scan == 0)
17250b71 4235 break;
31169714 4236 }
31169714
CW
4237 }
4238
4239 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4240 cnt = 0;
4241 list_for_each_entry_safe(obj, next,
4242 &dev_priv->mm.inactive_list,
4243 mm_list) {
2021746e
CW
4244 if (nr_to_scan &&
4245 i915_gem_object_unbind(obj) == 0)
17250b71 4246 nr_to_scan--;
2021746e 4247 else
17250b71
CW
4248 cnt++;
4249 }
4250
4251 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4252 /*
4253 * We are desperate for pages, so as a last resort, wait
4254 * for the GPU to finish and discard whatever we can.
4255 * This has a dramatic impact to reduce the number of
4256 * OOM-killer events whilst running the GPU aggressively.
4257 */
b93f9cf1 4258 if (i915_gpu_idle(dev, true) == 0)
1637ef41
CW
4259 goto rescan;
4260 }
17250b71
CW
4261 mutex_unlock(&dev->struct_mutex);
4262 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4263}