Merge tag 'media/v4.10-3' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5d723d7a 35#include "intel_frontbuffer.h"
0ccdacf6 36#include "intel_mocs.h"
6b5e90f5 37#include <linux/dma-fence-array.h>
c13d87ea 38#include <linux/reservation.h>
5949eac4 39#include <linux/shmem_fs.h>
5a0e3ad6 40#include <linux/slab.h>
673a394b 41#include <linux/swap.h>
79e53945 42#include <linux/pci.h>
1286ff73 43#include <linux/dma-buf.h>
673a394b 44
fbbd37b3 45static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
05394f39 46static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 47static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 48
c76ce038
CW
49static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51{
0031fb96 52 return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
c76ce038
CW
53}
54
2c22569b
CW
55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56{
b50a5371
AS
57 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 return false;
59
2c22569b
CW
60 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 return true;
62
63 return obj->pin_display;
64}
65
4f1959ee 66static int
bb6dc8d9 67insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
68 struct drm_mm_node *node, u32 size)
69{
70 memset(node, 0, sizeof(*node));
bb6dc8d9
CW
71 return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
72 size, 0, -1,
73 0, ggtt->mappable_end,
4f1959ee
AS
74 DRM_MM_SEARCH_DEFAULT,
75 DRM_MM_CREATE_DEFAULT);
76}
77
78static void
79remove_mappable_node(struct drm_mm_node *node)
80{
81 drm_mm_remove_node(node);
82}
83
73aa808f
CW
84/* some bookkeeping */
85static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 86 u64 size)
73aa808f 87{
c20e8355 88 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
c20e8355 91 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
92}
93
94static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 95 u64 size)
73aa808f 96{
c20e8355 97 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
c20e8355 100 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
101}
102
21dd3734 103static int
33196ded 104i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 105{
30dbf0c0
CW
106 int ret;
107
4c7d62c6
CW
108 might_sleep();
109
d98c52cf 110 if (!i915_reset_in_progress(error))
30dbf0c0
CW
111 return 0;
112
0a6759c6
DV
113 /*
114 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115 * userspace. If it takes that long something really bad is going on and
116 * we should simply try to bail out and fail as gracefully as possible.
117 */
1f83fee0 118 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 119 !i915_reset_in_progress(error),
b52992c0 120 I915_RESET_TIMEOUT);
0a6759c6
DV
121 if (ret == 0) {
122 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123 return -EIO;
124 } else if (ret < 0) {
30dbf0c0 125 return ret;
d98c52cf
CW
126 } else {
127 return 0;
0a6759c6 128 }
30dbf0c0
CW
129}
130
54cf91dc 131int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 132{
fac5e23e 133 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
134 int ret;
135
33196ded 136 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
137 if (ret)
138 return ret;
139
140 ret = mutex_lock_interruptible(&dev->struct_mutex);
141 if (ret)
142 return ret;
143
76c1dec1
CW
144 return 0;
145}
30dbf0c0 146
5a125c3c
EA
147int
148i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 149 struct drm_file *file)
5a125c3c 150{
72e96d64 151 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 152 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 153 struct drm_i915_gem_get_aperture *args = data;
ca1543be 154 struct i915_vma *vma;
6299f992 155 size_t pinned;
5a125c3c 156
6299f992 157 pinned = 0;
73aa808f 158 mutex_lock(&dev->struct_mutex);
1c7f4bca 159 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 160 if (i915_vma_is_pinned(vma))
ca1543be 161 pinned += vma->node.size;
1c7f4bca 162 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 163 if (i915_vma_is_pinned(vma))
ca1543be 164 pinned += vma->node.size;
73aa808f 165 mutex_unlock(&dev->struct_mutex);
5a125c3c 166
72e96d64 167 args->aper_size = ggtt->base.total;
0206e353 168 args->aper_available_size = args->aper_size - pinned;
6299f992 169
5a125c3c
EA
170 return 0;
171}
172
03ac84f1 173static struct sg_table *
6a2c4232 174i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 175{
93c76a3d 176 struct address_space *mapping = obj->base.filp->f_mapping;
057f803f 177 drm_dma_handle_t *phys;
6a2c4232
CW
178 struct sg_table *st;
179 struct scatterlist *sg;
057f803f 180 char *vaddr;
6a2c4232 181 int i;
00731155 182
6a2c4232 183 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
03ac84f1 184 return ERR_PTR(-EINVAL);
6a2c4232 185
057f803f
CW
186 /* Always aligning to the object size, allows a single allocation
187 * to handle all possible callers, and given typical object sizes,
188 * the alignment of the buddy allocation will naturally match.
189 */
190 phys = drm_pci_alloc(obj->base.dev,
191 obj->base.size,
192 roundup_pow_of_two(obj->base.size));
193 if (!phys)
194 return ERR_PTR(-ENOMEM);
195
196 vaddr = phys->vaddr;
6a2c4232
CW
197 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
198 struct page *page;
199 char *src;
200
201 page = shmem_read_mapping_page(mapping, i);
057f803f
CW
202 if (IS_ERR(page)) {
203 st = ERR_CAST(page);
204 goto err_phys;
205 }
6a2c4232
CW
206
207 src = kmap_atomic(page);
208 memcpy(vaddr, src, PAGE_SIZE);
209 drm_clflush_virt_range(vaddr, PAGE_SIZE);
210 kunmap_atomic(src);
211
09cbfeaf 212 put_page(page);
6a2c4232
CW
213 vaddr += PAGE_SIZE;
214 }
215
c033666a 216 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
217
218 st = kmalloc(sizeof(*st), GFP_KERNEL);
057f803f
CW
219 if (!st) {
220 st = ERR_PTR(-ENOMEM);
221 goto err_phys;
222 }
6a2c4232
CW
223
224 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
225 kfree(st);
057f803f
CW
226 st = ERR_PTR(-ENOMEM);
227 goto err_phys;
6a2c4232
CW
228 }
229
230 sg = st->sgl;
231 sg->offset = 0;
232 sg->length = obj->base.size;
00731155 233
057f803f 234 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
235 sg_dma_len(sg) = obj->base.size;
236
057f803f
CW
237 obj->phys_handle = phys;
238 return st;
239
240err_phys:
241 drm_pci_free(obj->base.dev, phys);
03ac84f1 242 return st;
6a2c4232
CW
243}
244
245static void
2b3c8317 246__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
c3f923b5
CW
247 struct sg_table *pages,
248 bool needs_clflush)
6a2c4232 249{
a4f5ea64 250 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 251
a4f5ea64
CW
252 if (obj->mm.madv == I915_MADV_DONTNEED)
253 obj->mm.dirty = false;
6a2c4232 254
c3f923b5
CW
255 if (needs_clflush &&
256 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
05c34837 257 !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
2b3c8317 258 drm_clflush_sg(pages);
03ac84f1
CW
259
260 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
261 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
262}
263
264static void
265i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
266 struct sg_table *pages)
267{
c3f923b5 268 __i915_gem_object_release_shmem(obj, pages, false);
03ac84f1 269
a4f5ea64 270 if (obj->mm.dirty) {
93c76a3d 271 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 272 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
273 int i;
274
275 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
276 struct page *page;
277 char *dst;
278
279 page = shmem_read_mapping_page(mapping, i);
280 if (IS_ERR(page))
281 continue;
282
283 dst = kmap_atomic(page);
284 drm_clflush_virt_range(vaddr, PAGE_SIZE);
285 memcpy(dst, vaddr, PAGE_SIZE);
286 kunmap_atomic(dst);
287
288 set_page_dirty(page);
a4f5ea64 289 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 290 mark_page_accessed(page);
09cbfeaf 291 put_page(page);
00731155
CW
292 vaddr += PAGE_SIZE;
293 }
a4f5ea64 294 obj->mm.dirty = false;
00731155
CW
295 }
296
03ac84f1
CW
297 sg_free_table(pages);
298 kfree(pages);
057f803f
CW
299
300 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
301}
302
303static void
304i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
305{
a4f5ea64 306 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
307}
308
309static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
310 .get_pages = i915_gem_object_get_pages_phys,
311 .put_pages = i915_gem_object_put_pages_phys,
312 .release = i915_gem_object_release_phys,
313};
314
35a9611c 315int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
316{
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
02bef8f9
CW
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 322
02bef8f9
CW
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
aa653a68 327 */
e95433c7
CW
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
330 I915_WAIT_LOCKED |
331 I915_WAIT_ALL,
332 MAX_SCHEDULE_TIMEOUT,
333 NULL);
02bef8f9
CW
334 if (ret)
335 return ret;
336
337 i915_gem_retire_requests(to_i915(obj->base.dev));
338
aa653a68
CW
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 struct i915_vma,
341 obj_link))) {
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
344 if (ret)
345 break;
346 }
347 list_splice(&still_in_list, &obj->vma_list);
348
349 return ret;
350}
351
e95433c7
CW
352static long
353i915_gem_object_wait_fence(struct dma_fence *fence,
354 unsigned int flags,
355 long timeout,
356 struct intel_rps_client *rps)
00e60f26 357{
e95433c7 358 struct drm_i915_gem_request *rq;
00e60f26 359
e95433c7 360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 361
e95433c7
CW
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 return timeout;
364
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
368 timeout);
369
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
372 goto out;
373
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
388 */
389 if (rps) {
390 if (INTEL_GEN(rq->i915) >= 6)
391 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392 else
393 rps = NULL;
00e60f26
CW
394 }
395
e95433c7
CW
396 timeout = i915_wait_request(rq, flags, timeout);
397
398out:
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
401
cb399eab 402 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
e95433c7
CW
403 /* The GPU is now idle and this client has stalled.
404 * Since no other client has submitted a request in the
405 * meantime, assume that this client is the only one
406 * supplying work to the GPU but is unable to keep that
407 * work supplied because it is waiting. Since the GPU is
408 * then never kept fully busy, RPS autoclocking will
409 * keep the clocks relatively low, causing further delays.
410 * Compensate by giving the synchronous client credit for
411 * a waitboost next time.
412 */
413 spin_lock(&rq->i915->rps.client_lock);
414 list_del_init(&rps->link);
415 spin_unlock(&rq->i915->rps.client_lock);
416 }
417
418 return timeout;
419}
420
421static long
422i915_gem_object_wait_reservation(struct reservation_object *resv,
423 unsigned int flags,
424 long timeout,
425 struct intel_rps_client *rps)
426{
427 struct dma_fence *excl;
428
429 if (flags & I915_WAIT_ALL) {
430 struct dma_fence **shared;
431 unsigned int count, i;
00e60f26
CW
432 int ret;
433
e95433c7
CW
434 ret = reservation_object_get_fences_rcu(resv,
435 &excl, &count, &shared);
00e60f26
CW
436 if (ret)
437 return ret;
00e60f26 438
e95433c7
CW
439 for (i = 0; i < count; i++) {
440 timeout = i915_gem_object_wait_fence(shared[i],
441 flags, timeout,
442 rps);
443 if (timeout <= 0)
444 break;
00e60f26 445
e95433c7
CW
446 dma_fence_put(shared[i]);
447 }
448
449 for (; i < count; i++)
450 dma_fence_put(shared[i]);
451 kfree(shared);
452 } else {
453 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
454 }
455
e95433c7
CW
456 if (excl && timeout > 0)
457 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
458
459 dma_fence_put(excl);
460
461 return timeout;
00e60f26
CW
462}
463
6b5e90f5
CW
464static void __fence_set_priority(struct dma_fence *fence, int prio)
465{
466 struct drm_i915_gem_request *rq;
467 struct intel_engine_cs *engine;
468
469 if (!dma_fence_is_i915(fence))
470 return;
471
472 rq = to_request(fence);
473 engine = rq->engine;
474 if (!engine->schedule)
475 return;
476
477 engine->schedule(rq, prio);
478}
479
480static void fence_set_priority(struct dma_fence *fence, int prio)
481{
482 /* Recurse once into a fence-array */
483 if (dma_fence_is_array(fence)) {
484 struct dma_fence_array *array = to_dma_fence_array(fence);
485 int i;
486
487 for (i = 0; i < array->num_fences; i++)
488 __fence_set_priority(array->fences[i], prio);
489 } else {
490 __fence_set_priority(fence, prio);
491 }
492}
493
494int
495i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
496 unsigned int flags,
497 int prio)
498{
499 struct dma_fence *excl;
500
501 if (flags & I915_WAIT_ALL) {
502 struct dma_fence **shared;
503 unsigned int count, i;
504 int ret;
505
506 ret = reservation_object_get_fences_rcu(obj->resv,
507 &excl, &count, &shared);
508 if (ret)
509 return ret;
510
511 for (i = 0; i < count; i++) {
512 fence_set_priority(shared[i], prio);
513 dma_fence_put(shared[i]);
514 }
515
516 kfree(shared);
517 } else {
518 excl = reservation_object_get_excl_rcu(obj->resv);
519 }
520
521 if (excl) {
522 fence_set_priority(excl, prio);
523 dma_fence_put(excl);
524 }
525 return 0;
526}
527
e95433c7
CW
528/**
529 * Waits for rendering to the object to be completed
530 * @obj: i915 gem object
531 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
532 * @timeout: how long to wait
533 * @rps: client (user process) to charge for any waitboosting
00e60f26 534 */
e95433c7
CW
535int
536i915_gem_object_wait(struct drm_i915_gem_object *obj,
537 unsigned int flags,
538 long timeout,
539 struct intel_rps_client *rps)
00e60f26 540{
e95433c7
CW
541 might_sleep();
542#if IS_ENABLED(CONFIG_LOCKDEP)
543 GEM_BUG_ON(debug_locks &&
544 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
545 !!(flags & I915_WAIT_LOCKED));
546#endif
547 GEM_BUG_ON(timeout < 0);
00e60f26 548
d07f0e59
CW
549 timeout = i915_gem_object_wait_reservation(obj->resv,
550 flags, timeout,
551 rps);
e95433c7 552 return timeout < 0 ? timeout : 0;
00e60f26
CW
553}
554
555static struct intel_rps_client *to_rps_client(struct drm_file *file)
556{
557 struct drm_i915_file_private *fpriv = file->driver_priv;
558
559 return &fpriv->rps;
560}
561
00731155
CW
562int
563i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
564 int align)
565{
6a2c4232 566 int ret;
00731155 567
057f803f
CW
568 if (align > obj->base.size)
569 return -EINVAL;
00731155 570
057f803f 571 if (obj->ops == &i915_gem_phys_ops)
00731155 572 return 0;
00731155 573
a4f5ea64 574 if (obj->mm.madv != I915_MADV_WILLNEED)
00731155
CW
575 return -EFAULT;
576
577 if (obj->base.filp == NULL)
578 return -EINVAL;
579
4717ca9e
CW
580 ret = i915_gem_object_unbind(obj);
581 if (ret)
582 return ret;
583
548625ee 584 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
03ac84f1
CW
585 if (obj->mm.pages)
586 return -EBUSY;
6a2c4232 587
6a2c4232
CW
588 obj->ops = &i915_gem_phys_ops;
589
a4f5ea64 590 return i915_gem_object_pin_pages(obj);
00731155
CW
591}
592
593static int
594i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
595 struct drm_i915_gem_pwrite *args,
03ac84f1 596 struct drm_file *file)
00731155 597{
00731155 598 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 599 char __user *user_data = u64_to_user_ptr(args->data_ptr);
6a2c4232
CW
600
601 /* We manually control the domain here and pretend that it
602 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
603 */
77a0d1ca 604 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
e4621b73
CW
605 if (copy_from_user(vaddr, user_data, args->size))
606 return -EFAULT;
00731155 607
6a2c4232 608 drm_clflush_virt_range(vaddr, args->size);
e4621b73 609 i915_gem_chipset_flush(to_i915(obj->base.dev));
063e4e6b 610
de152b62 611 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
e4621b73 612 return 0;
00731155
CW
613}
614
42dcedd4
CW
615void *i915_gem_object_alloc(struct drm_device *dev)
616{
fac5e23e 617 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 618 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
619}
620
621void i915_gem_object_free(struct drm_i915_gem_object *obj)
622{
fac5e23e 623 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 624 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
625}
626
ff72145b
DA
627static int
628i915_gem_create(struct drm_file *file,
629 struct drm_device *dev,
630 uint64_t size,
631 uint32_t *handle_p)
673a394b 632{
05394f39 633 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
634 int ret;
635 u32 handle;
673a394b 636
ff72145b 637 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
638 if (size == 0)
639 return -EINVAL;
673a394b
EA
640
641 /* Allocate the new object */
d37cd8a8 642 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
643 if (IS_ERR(obj))
644 return PTR_ERR(obj);
673a394b 645
05394f39 646 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 647 /* drop reference from allocate - handle holds it now */
f0cd5182 648 i915_gem_object_put(obj);
d861e338
DV
649 if (ret)
650 return ret;
202f2fef 651
ff72145b 652 *handle_p = handle;
673a394b
EA
653 return 0;
654}
655
ff72145b
DA
656int
657i915_gem_dumb_create(struct drm_file *file,
658 struct drm_device *dev,
659 struct drm_mode_create_dumb *args)
660{
661 /* have to work out size/pitch and return them */
de45eaf7 662 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
663 args->size = args->pitch * args->height;
664 return i915_gem_create(file, dev,
da6b51d0 665 args->size, &args->handle);
ff72145b
DA
666}
667
ff72145b
DA
668/**
669 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
670 * @dev: drm device pointer
671 * @data: ioctl data blob
672 * @file: drm file pointer
ff72145b
DA
673 */
674int
675i915_gem_create_ioctl(struct drm_device *dev, void *data,
676 struct drm_file *file)
677{
678 struct drm_i915_gem_create *args = data;
63ed2cb2 679
fbbd37b3
CW
680 i915_gem_flush_free_objects(to_i915(dev));
681
ff72145b 682 return i915_gem_create(file, dev,
da6b51d0 683 args->size, &args->handle);
ff72145b
DA
684}
685
8461d226
DV
686static inline int
687__copy_to_user_swizzled(char __user *cpu_vaddr,
688 const char *gpu_vaddr, int gpu_offset,
689 int length)
690{
691 int ret, cpu_offset = 0;
692
693 while (length > 0) {
694 int cacheline_end = ALIGN(gpu_offset + 1, 64);
695 int this_length = min(cacheline_end - gpu_offset, length);
696 int swizzled_gpu_offset = gpu_offset ^ 64;
697
698 ret = __copy_to_user(cpu_vaddr + cpu_offset,
699 gpu_vaddr + swizzled_gpu_offset,
700 this_length);
701 if (ret)
702 return ret + length;
703
704 cpu_offset += this_length;
705 gpu_offset += this_length;
706 length -= this_length;
707 }
708
709 return 0;
710}
711
8c59967c 712static inline int
4f0c7cfb
BW
713__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
714 const char __user *cpu_vaddr,
8c59967c
DV
715 int length)
716{
717 int ret, cpu_offset = 0;
718
719 while (length > 0) {
720 int cacheline_end = ALIGN(gpu_offset + 1, 64);
721 int this_length = min(cacheline_end - gpu_offset, length);
722 int swizzled_gpu_offset = gpu_offset ^ 64;
723
724 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
725 cpu_vaddr + cpu_offset,
726 this_length);
727 if (ret)
728 return ret + length;
729
730 cpu_offset += this_length;
731 gpu_offset += this_length;
732 length -= this_length;
733 }
734
735 return 0;
736}
737
4c914c0c
BV
738/*
739 * Pins the specified object's pages and synchronizes the object with
740 * GPU accesses. Sets needs_clflush to non-zero if the caller should
741 * flush the object from the CPU cache.
742 */
743int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 744 unsigned int *needs_clflush)
4c914c0c
BV
745{
746 int ret;
747
e95433c7 748 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 749
e95433c7 750 *needs_clflush = 0;
43394c7d
CW
751 if (!i915_gem_object_has_struct_page(obj))
752 return -ENODEV;
4c914c0c 753
e95433c7
CW
754 ret = i915_gem_object_wait(obj,
755 I915_WAIT_INTERRUPTIBLE |
756 I915_WAIT_LOCKED,
757 MAX_SCHEDULE_TIMEOUT,
758 NULL);
c13d87ea
CW
759 if (ret)
760 return ret;
761
a4f5ea64 762 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
763 if (ret)
764 return ret;
765
a314d5cb
CW
766 i915_gem_object_flush_gtt_write_domain(obj);
767
43394c7d
CW
768 /* If we're not in the cpu read domain, set ourself into the gtt
769 * read domain and manually flush cachelines (if required). This
770 * optimizes for the case when the gpu will dirty the data
771 * anyway again before the next pread happens.
772 */
773 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
774 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
775 obj->cache_level);
43394c7d 776
43394c7d
CW
777 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
778 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
779 if (ret)
780 goto err_unpin;
781
43394c7d 782 *needs_clflush = 0;
4c914c0c
BV
783 }
784
9764951e 785 /* return with the pages pinned */
43394c7d 786 return 0;
9764951e
CW
787
788err_unpin:
789 i915_gem_object_unpin_pages(obj);
790 return ret;
43394c7d
CW
791}
792
793int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
794 unsigned int *needs_clflush)
795{
796 int ret;
797
e95433c7
CW
798 lockdep_assert_held(&obj->base.dev->struct_mutex);
799
43394c7d
CW
800 *needs_clflush = 0;
801 if (!i915_gem_object_has_struct_page(obj))
802 return -ENODEV;
803
e95433c7
CW
804 ret = i915_gem_object_wait(obj,
805 I915_WAIT_INTERRUPTIBLE |
806 I915_WAIT_LOCKED |
807 I915_WAIT_ALL,
808 MAX_SCHEDULE_TIMEOUT,
809 NULL);
43394c7d
CW
810 if (ret)
811 return ret;
812
a4f5ea64 813 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
814 if (ret)
815 return ret;
816
a314d5cb
CW
817 i915_gem_object_flush_gtt_write_domain(obj);
818
43394c7d
CW
819 /* If we're not in the cpu write domain, set ourself into the
820 * gtt write domain and manually flush cachelines (as required).
821 * This optimizes for the case when the gpu will use the data
822 * right away and we therefore have to clflush anyway.
823 */
824 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
825 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
826
827 /* Same trick applies to invalidate partially written cachelines read
828 * before writing.
829 */
830 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
831 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
832 obj->cache_level);
833
43394c7d
CW
834 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
835 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
836 if (ret)
837 goto err_unpin;
838
43394c7d
CW
839 *needs_clflush = 0;
840 }
841
842 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
843 obj->cache_dirty = true;
844
845 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 846 obj->mm.dirty = true;
9764951e 847 /* return with the pages pinned */
43394c7d 848 return 0;
9764951e
CW
849
850err_unpin:
851 i915_gem_object_unpin_pages(obj);
852 return ret;
4c914c0c
BV
853}
854
23c18c71
DV
855static void
856shmem_clflush_swizzled_range(char *addr, unsigned long length,
857 bool swizzled)
858{
e7e58eb5 859 if (unlikely(swizzled)) {
23c18c71
DV
860 unsigned long start = (unsigned long) addr;
861 unsigned long end = (unsigned long) addr + length;
862
863 /* For swizzling simply ensure that we always flush both
864 * channels. Lame, but simple and it works. Swizzled
865 * pwrite/pread is far from a hotpath - current userspace
866 * doesn't use it at all. */
867 start = round_down(start, 128);
868 end = round_up(end, 128);
869
870 drm_clflush_virt_range((void *)start, end - start);
871 } else {
872 drm_clflush_virt_range(addr, length);
873 }
874
875}
876
d174bd64
DV
877/* Only difference to the fast-path function is that this can handle bit17
878 * and uses non-atomic copy and kmap functions. */
879static int
bb6dc8d9 880shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
881 char __user *user_data,
882 bool page_do_bit17_swizzling, bool needs_clflush)
883{
884 char *vaddr;
885 int ret;
886
887 vaddr = kmap(page);
888 if (needs_clflush)
bb6dc8d9 889 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 890 page_do_bit17_swizzling);
d174bd64
DV
891
892 if (page_do_bit17_swizzling)
bb6dc8d9 893 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 894 else
bb6dc8d9 895 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
896 kunmap(page);
897
f60d7f0c 898 return ret ? - EFAULT : 0;
d174bd64
DV
899}
900
bb6dc8d9
CW
901static int
902shmem_pread(struct page *page, int offset, int length, char __user *user_data,
903 bool page_do_bit17_swizzling, bool needs_clflush)
904{
905 int ret;
906
907 ret = -ENODEV;
908 if (!page_do_bit17_swizzling) {
909 char *vaddr = kmap_atomic(page);
910
911 if (needs_clflush)
912 drm_clflush_virt_range(vaddr + offset, length);
913 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
914 kunmap_atomic(vaddr);
915 }
916 if (ret == 0)
917 return 0;
918
919 return shmem_pread_slow(page, offset, length, user_data,
920 page_do_bit17_swizzling, needs_clflush);
921}
922
923static int
924i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
925 struct drm_i915_gem_pread *args)
926{
927 char __user *user_data;
928 u64 remain;
929 unsigned int obj_do_bit17_swizzling;
930 unsigned int needs_clflush;
931 unsigned int idx, offset;
932 int ret;
933
934 obj_do_bit17_swizzling = 0;
935 if (i915_gem_object_needs_bit17_swizzle(obj))
936 obj_do_bit17_swizzling = BIT(17);
937
938 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
939 if (ret)
940 return ret;
941
942 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
943 mutex_unlock(&obj->base.dev->struct_mutex);
944 if (ret)
945 return ret;
946
947 remain = args->size;
948 user_data = u64_to_user_ptr(args->data_ptr);
949 offset = offset_in_page(args->offset);
950 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
951 struct page *page = i915_gem_object_get_page(obj, idx);
952 int length;
953
954 length = remain;
955 if (offset + length > PAGE_SIZE)
956 length = PAGE_SIZE - offset;
957
958 ret = shmem_pread(page, offset, length, user_data,
959 page_to_phys(page) & obj_do_bit17_swizzling,
960 needs_clflush);
961 if (ret)
962 break;
963
964 remain -= length;
965 user_data += length;
966 offset = 0;
967 }
968
969 i915_gem_obj_finish_shmem_access(obj);
970 return ret;
971}
972
973static inline bool
974gtt_user_read(struct io_mapping *mapping,
975 loff_t base, int offset,
976 char __user *user_data, int length)
b50a5371 977{
b50a5371 978 void *vaddr;
bb6dc8d9 979 unsigned long unwritten;
b50a5371 980
b50a5371 981 /* We can use the cpu mem copy function because this is X86. */
bb6dc8d9
CW
982 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
983 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
984 io_mapping_unmap_atomic(vaddr);
985 if (unwritten) {
986 vaddr = (void __force *)
987 io_mapping_map_wc(mapping, base, PAGE_SIZE);
988 unwritten = copy_to_user(user_data, vaddr + offset, length);
989 io_mapping_unmap(vaddr);
990 }
b50a5371
AS
991 return unwritten;
992}
993
994static int
bb6dc8d9
CW
995i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
996 const struct drm_i915_gem_pread *args)
b50a5371 997{
bb6dc8d9
CW
998 struct drm_i915_private *i915 = to_i915(obj->base.dev);
999 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1000 struct drm_mm_node node;
bb6dc8d9
CW
1001 struct i915_vma *vma;
1002 void __user *user_data;
1003 u64 remain, offset;
b50a5371
AS
1004 int ret;
1005
bb6dc8d9
CW
1006 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1007 if (ret)
1008 return ret;
1009
1010 intel_runtime_pm_get(i915);
1011 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1012 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1013 if (!IS_ERR(vma)) {
1014 node.start = i915_ggtt_offset(vma);
1015 node.allocated = false;
49ef5294 1016 ret = i915_vma_put_fence(vma);
18034584
CW
1017 if (ret) {
1018 i915_vma_unpin(vma);
1019 vma = ERR_PTR(ret);
1020 }
1021 }
058d88c4 1022 if (IS_ERR(vma)) {
bb6dc8d9 1023 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1024 if (ret)
bb6dc8d9
CW
1025 goto out_unlock;
1026 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1027 }
1028
1029 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030 if (ret)
1031 goto out_unpin;
1032
bb6dc8d9 1033 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1034
bb6dc8d9
CW
1035 user_data = u64_to_user_ptr(args->data_ptr);
1036 remain = args->size;
1037 offset = args->offset;
b50a5371
AS
1038
1039 while (remain > 0) {
1040 /* Operation in this page
1041 *
1042 * page_base = page offset within aperture
1043 * page_offset = offset within page
1044 * page_length = bytes to copy for this page
1045 */
1046 u32 page_base = node.start;
1047 unsigned page_offset = offset_in_page(offset);
1048 unsigned page_length = PAGE_SIZE - page_offset;
1049 page_length = remain < page_length ? remain : page_length;
1050 if (node.allocated) {
1051 wmb();
1052 ggtt->base.insert_page(&ggtt->base,
1053 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1054 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1055 wmb();
1056 } else {
1057 page_base += offset & PAGE_MASK;
1058 }
bb6dc8d9
CW
1059
1060 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1061 user_data, page_length)) {
b50a5371
AS
1062 ret = -EFAULT;
1063 break;
1064 }
1065
1066 remain -= page_length;
1067 user_data += page_length;
1068 offset += page_length;
1069 }
1070
bb6dc8d9 1071 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1072out_unpin:
1073 if (node.allocated) {
1074 wmb();
1075 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1076 node.start, node.size);
b50a5371
AS
1077 remove_mappable_node(&node);
1078 } else {
058d88c4 1079 i915_vma_unpin(vma);
b50a5371 1080 }
bb6dc8d9
CW
1081out_unlock:
1082 intel_runtime_pm_put(i915);
1083 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1084
eb01459f
EA
1085 return ret;
1086}
1087
673a394b
EA
1088/**
1089 * Reads data from the object referenced by handle.
14bb2c11
TU
1090 * @dev: drm device pointer
1091 * @data: ioctl data blob
1092 * @file: drm file pointer
673a394b
EA
1093 *
1094 * On error, the contents of *data are undefined.
1095 */
1096int
1097i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1098 struct drm_file *file)
673a394b
EA
1099{
1100 struct drm_i915_gem_pread *args = data;
05394f39 1101 struct drm_i915_gem_object *obj;
bb6dc8d9 1102 int ret;
673a394b 1103
51311d0a
CW
1104 if (args->size == 0)
1105 return 0;
1106
1107 if (!access_ok(VERIFY_WRITE,
3ed605bc 1108 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1109 args->size))
1110 return -EFAULT;
1111
03ac0642 1112 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1113 if (!obj)
1114 return -ENOENT;
673a394b 1115
7dcd2499 1116 /* Bounds check source. */
05394f39
CW
1117 if (args->offset > obj->base.size ||
1118 args->size > obj->base.size - args->offset) {
ce9d419d 1119 ret = -EINVAL;
bb6dc8d9 1120 goto out;
ce9d419d
CW
1121 }
1122
db53a302
CW
1123 trace_i915_gem_object_pread(obj, args->offset, args->size);
1124
e95433c7
CW
1125 ret = i915_gem_object_wait(obj,
1126 I915_WAIT_INTERRUPTIBLE,
1127 MAX_SCHEDULE_TIMEOUT,
1128 to_rps_client(file));
258a5ede 1129 if (ret)
bb6dc8d9 1130 goto out;
258a5ede 1131
bb6dc8d9 1132 ret = i915_gem_object_pin_pages(obj);
258a5ede 1133 if (ret)
bb6dc8d9 1134 goto out;
673a394b 1135
bb6dc8d9 1136 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1137 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1138 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1139
bb6dc8d9
CW
1140 i915_gem_object_unpin_pages(obj);
1141out:
f0cd5182 1142 i915_gem_object_put(obj);
eb01459f 1143 return ret;
673a394b
EA
1144}
1145
0839ccb8
KP
1146/* This is the fast write path which cannot handle
1147 * page faults in the source data
9b7530cc 1148 */
0839ccb8 1149
fe115628
CW
1150static inline bool
1151ggtt_write(struct io_mapping *mapping,
1152 loff_t base, int offset,
1153 char __user *user_data, int length)
9b7530cc 1154{
4f0c7cfb 1155 void *vaddr;
0839ccb8 1156 unsigned long unwritten;
9b7530cc 1157
4f0c7cfb 1158 /* We can use the cpu mem copy function because this is X86. */
fe115628
CW
1159 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1160 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
0839ccb8 1161 user_data, length);
fe115628
CW
1162 io_mapping_unmap_atomic(vaddr);
1163 if (unwritten) {
1164 vaddr = (void __force *)
1165 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1166 unwritten = copy_from_user(vaddr + offset, user_data, length);
1167 io_mapping_unmap(vaddr);
1168 }
bb6dc8d9 1169
bb6dc8d9
CW
1170 return unwritten;
1171}
1172
3de09aa3
EA
1173/**
1174 * This is the fast pwrite path, where we copy the data directly from the
1175 * user into the GTT, uncached.
fe115628 1176 * @obj: i915 GEM object
14bb2c11 1177 * @args: pwrite arguments structure
3de09aa3 1178 */
673a394b 1179static int
fe115628
CW
1180i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1181 const struct drm_i915_gem_pwrite *args)
673a394b 1182{
fe115628 1183 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1184 struct i915_ggtt *ggtt = &i915->ggtt;
1185 struct drm_mm_node node;
fe115628
CW
1186 struct i915_vma *vma;
1187 u64 remain, offset;
1188 void __user *user_data;
4f1959ee 1189 int ret;
b50a5371 1190
fe115628
CW
1191 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1192 if (ret)
1193 return ret;
935aaa69 1194
9c870d03 1195 intel_runtime_pm_get(i915);
058d88c4 1196 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1197 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1198 if (!IS_ERR(vma)) {
1199 node.start = i915_ggtt_offset(vma);
1200 node.allocated = false;
49ef5294 1201 ret = i915_vma_put_fence(vma);
18034584
CW
1202 if (ret) {
1203 i915_vma_unpin(vma);
1204 vma = ERR_PTR(ret);
1205 }
1206 }
058d88c4 1207 if (IS_ERR(vma)) {
bb6dc8d9 1208 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1209 if (ret)
fe115628
CW
1210 goto out_unlock;
1211 GEM_BUG_ON(!node.allocated);
4f1959ee 1212 }
935aaa69
DV
1213
1214 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1215 if (ret)
1216 goto out_unpin;
1217
fe115628
CW
1218 mutex_unlock(&i915->drm.struct_mutex);
1219
b19482d7 1220 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1221
4f1959ee
AS
1222 user_data = u64_to_user_ptr(args->data_ptr);
1223 offset = args->offset;
1224 remain = args->size;
1225 while (remain) {
673a394b
EA
1226 /* Operation in this page
1227 *
0839ccb8
KP
1228 * page_base = page offset within aperture
1229 * page_offset = offset within page
1230 * page_length = bytes to copy for this page
673a394b 1231 */
4f1959ee 1232 u32 page_base = node.start;
bb6dc8d9
CW
1233 unsigned int page_offset = offset_in_page(offset);
1234 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1235 page_length = remain < page_length ? remain : page_length;
1236 if (node.allocated) {
1237 wmb(); /* flush the write before we modify the GGTT */
1238 ggtt->base.insert_page(&ggtt->base,
1239 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1240 node.start, I915_CACHE_NONE, 0);
1241 wmb(); /* flush modifications to the GGTT (insert_page) */
1242 } else {
1243 page_base += offset & PAGE_MASK;
1244 }
0839ccb8 1245 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1246 * source page isn't available. Return the error and we'll
1247 * retry in the slow path.
b50a5371
AS
1248 * If the object is non-shmem backed, we retry again with the
1249 * path that handles page fault.
0839ccb8 1250 */
fe115628
CW
1251 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1252 user_data, page_length)) {
1253 ret = -EFAULT;
1254 break;
935aaa69 1255 }
673a394b 1256
0839ccb8
KP
1257 remain -= page_length;
1258 user_data += page_length;
1259 offset += page_length;
673a394b 1260 }
b19482d7 1261 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628
CW
1262
1263 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1264out_unpin:
4f1959ee
AS
1265 if (node.allocated) {
1266 wmb();
1267 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1268 node.start, node.size);
4f1959ee
AS
1269 remove_mappable_node(&node);
1270 } else {
058d88c4 1271 i915_vma_unpin(vma);
4f1959ee 1272 }
fe115628 1273out_unlock:
9c870d03 1274 intel_runtime_pm_put(i915);
fe115628 1275 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1276 return ret;
673a394b
EA
1277}
1278
3043c60c 1279static int
fe115628 1280shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1281 char __user *user_data,
1282 bool page_do_bit17_swizzling,
1283 bool needs_clflush_before,
1284 bool needs_clflush_after)
673a394b 1285{
d174bd64
DV
1286 char *vaddr;
1287 int ret;
e5281ccd 1288
d174bd64 1289 vaddr = kmap(page);
e7e58eb5 1290 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1291 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1292 page_do_bit17_swizzling);
d174bd64 1293 if (page_do_bit17_swizzling)
fe115628
CW
1294 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1295 length);
d174bd64 1296 else
fe115628 1297 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1298 if (needs_clflush_after)
fe115628 1299 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1300 page_do_bit17_swizzling);
d174bd64 1301 kunmap(page);
40123c1f 1302
755d2218 1303 return ret ? -EFAULT : 0;
40123c1f
EA
1304}
1305
fe115628
CW
1306/* Per-page copy function for the shmem pwrite fastpath.
1307 * Flushes invalid cachelines before writing to the target if
1308 * needs_clflush_before is set and flushes out any written cachelines after
1309 * writing if needs_clflush is set.
1310 */
40123c1f 1311static int
fe115628
CW
1312shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1313 bool page_do_bit17_swizzling,
1314 bool needs_clflush_before,
1315 bool needs_clflush_after)
40123c1f 1316{
fe115628
CW
1317 int ret;
1318
1319 ret = -ENODEV;
1320 if (!page_do_bit17_swizzling) {
1321 char *vaddr = kmap_atomic(page);
1322
1323 if (needs_clflush_before)
1324 drm_clflush_virt_range(vaddr + offset, len);
1325 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1326 if (needs_clflush_after)
1327 drm_clflush_virt_range(vaddr + offset, len);
1328
1329 kunmap_atomic(vaddr);
1330 }
1331 if (ret == 0)
1332 return ret;
1333
1334 return shmem_pwrite_slow(page, offset, len, user_data,
1335 page_do_bit17_swizzling,
1336 needs_clflush_before,
1337 needs_clflush_after);
1338}
1339
1340static int
1341i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1342 const struct drm_i915_gem_pwrite *args)
1343{
1344 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1345 void __user *user_data;
1346 u64 remain;
1347 unsigned int obj_do_bit17_swizzling;
1348 unsigned int partial_cacheline_write;
43394c7d 1349 unsigned int needs_clflush;
fe115628
CW
1350 unsigned int offset, idx;
1351 int ret;
40123c1f 1352
fe115628 1353 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1354 if (ret)
1355 return ret;
1356
fe115628
CW
1357 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1358 mutex_unlock(&i915->drm.struct_mutex);
1359 if (ret)
1360 return ret;
673a394b 1361
fe115628
CW
1362 obj_do_bit17_swizzling = 0;
1363 if (i915_gem_object_needs_bit17_swizzle(obj))
1364 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1365
fe115628
CW
1366 /* If we don't overwrite a cacheline completely we need to be
1367 * careful to have up-to-date data by first clflushing. Don't
1368 * overcomplicate things and flush the entire patch.
1369 */
1370 partial_cacheline_write = 0;
1371 if (needs_clflush & CLFLUSH_BEFORE)
1372 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1373
fe115628
CW
1374 user_data = u64_to_user_ptr(args->data_ptr);
1375 remain = args->size;
1376 offset = offset_in_page(args->offset);
1377 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1378 struct page *page = i915_gem_object_get_page(obj, idx);
1379 int length;
40123c1f 1380
fe115628
CW
1381 length = remain;
1382 if (offset + length > PAGE_SIZE)
1383 length = PAGE_SIZE - offset;
755d2218 1384
fe115628
CW
1385 ret = shmem_pwrite(page, offset, length, user_data,
1386 page_to_phys(page) & obj_do_bit17_swizzling,
1387 (offset | length) & partial_cacheline_write,
1388 needs_clflush & CLFLUSH_AFTER);
755d2218 1389 if (ret)
fe115628 1390 break;
755d2218 1391
fe115628
CW
1392 remain -= length;
1393 user_data += length;
1394 offset = 0;
8c59967c 1395 }
673a394b 1396
de152b62 1397 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628 1398 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1399 return ret;
673a394b
EA
1400}
1401
1402/**
1403 * Writes data to the object referenced by handle.
14bb2c11
TU
1404 * @dev: drm device
1405 * @data: ioctl data blob
1406 * @file: drm file
673a394b
EA
1407 *
1408 * On error, the contents of the buffer that were to be modified are undefined.
1409 */
1410int
1411i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1412 struct drm_file *file)
673a394b
EA
1413{
1414 struct drm_i915_gem_pwrite *args = data;
05394f39 1415 struct drm_i915_gem_object *obj;
51311d0a
CW
1416 int ret;
1417
1418 if (args->size == 0)
1419 return 0;
1420
1421 if (!access_ok(VERIFY_READ,
3ed605bc 1422 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1423 args->size))
1424 return -EFAULT;
1425
03ac0642 1426 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1427 if (!obj)
1428 return -ENOENT;
673a394b 1429
7dcd2499 1430 /* Bounds check destination. */
05394f39
CW
1431 if (args->offset > obj->base.size ||
1432 args->size > obj->base.size - args->offset) {
ce9d419d 1433 ret = -EINVAL;
258a5ede 1434 goto err;
ce9d419d
CW
1435 }
1436
db53a302
CW
1437 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1438
e95433c7
CW
1439 ret = i915_gem_object_wait(obj,
1440 I915_WAIT_INTERRUPTIBLE |
1441 I915_WAIT_ALL,
1442 MAX_SCHEDULE_TIMEOUT,
1443 to_rps_client(file));
258a5ede
CW
1444 if (ret)
1445 goto err;
1446
fe115628 1447 ret = i915_gem_object_pin_pages(obj);
258a5ede 1448 if (ret)
fe115628 1449 goto err;
258a5ede 1450
935aaa69 1451 ret = -EFAULT;
673a394b
EA
1452 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1453 * it would end up going through the fenced access, and we'll get
1454 * different detiling behavior between reading and writing.
1455 * pread/pwrite currently are reading and writing from the CPU
1456 * perspective, requiring manual detiling by the client.
1457 */
6eae0059 1458 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1459 cpu_write_needs_clflush(obj))
935aaa69
DV
1460 /* Note that the gtt paths might fail with non-page-backed user
1461 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1462 * textures). Fallback to the shmem path in that case.
1463 */
fe115628 1464 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1465
d1054ee4 1466 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1467 if (obj->phys_handle)
1468 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1469 else
fe115628 1470 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1471 }
5c0480f2 1472
fe115628 1473 i915_gem_object_unpin_pages(obj);
258a5ede 1474err:
f0cd5182 1475 i915_gem_object_put(obj);
258a5ede 1476 return ret;
673a394b
EA
1477}
1478
d243ad82 1479static inline enum fb_op_origin
aeecc969
CW
1480write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1481{
50349247
CW
1482 return (domain == I915_GEM_DOMAIN_GTT ?
1483 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1484}
1485
40e62d5d
CW
1486static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1487{
1488 struct drm_i915_private *i915;
1489 struct list_head *list;
1490 struct i915_vma *vma;
1491
1492 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1493 if (!i915_vma_is_ggtt(vma))
1494 continue;
1495
1496 if (i915_vma_is_active(vma))
1497 continue;
1498
1499 if (!drm_mm_node_allocated(&vma->node))
1500 continue;
1501
1502 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1503 }
1504
1505 i915 = to_i915(obj->base.dev);
1506 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1507 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1508}
1509
673a394b 1510/**
2ef7eeaa
EA
1511 * Called when user space prepares to use an object with the CPU, either
1512 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1513 * @dev: drm device
1514 * @data: ioctl data blob
1515 * @file: drm file
673a394b
EA
1516 */
1517int
1518i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1519 struct drm_file *file)
673a394b
EA
1520{
1521 struct drm_i915_gem_set_domain *args = data;
05394f39 1522 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1523 uint32_t read_domains = args->read_domains;
1524 uint32_t write_domain = args->write_domain;
40e62d5d 1525 int err;
673a394b 1526
2ef7eeaa 1527 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1528 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1529 return -EINVAL;
1530
1531 /* Having something in the write domain implies it's in the read
1532 * domain, and only that read domain. Enforce that in the request.
1533 */
1534 if (write_domain != 0 && read_domains != write_domain)
1535 return -EINVAL;
1536
03ac0642 1537 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1538 if (!obj)
1539 return -ENOENT;
673a394b 1540
3236f57a
CW
1541 /* Try to flush the object off the GPU without holding the lock.
1542 * We will repeat the flush holding the lock in the normal manner
1543 * to catch cases where we are gazumped.
1544 */
40e62d5d 1545 err = i915_gem_object_wait(obj,
e95433c7
CW
1546 I915_WAIT_INTERRUPTIBLE |
1547 (write_domain ? I915_WAIT_ALL : 0),
1548 MAX_SCHEDULE_TIMEOUT,
1549 to_rps_client(file));
40e62d5d 1550 if (err)
f0cd5182 1551 goto out;
b8f9096d 1552
40e62d5d
CW
1553 /* Flush and acquire obj->pages so that we are coherent through
1554 * direct access in memory with previous cached writes through
1555 * shmemfs and that our cache domain tracking remains valid.
1556 * For example, if the obj->filp was moved to swap without us
1557 * being notified and releasing the pages, we would mistakenly
1558 * continue to assume that the obj remained out of the CPU cached
1559 * domain.
1560 */
1561 err = i915_gem_object_pin_pages(obj);
1562 if (err)
f0cd5182 1563 goto out;
40e62d5d
CW
1564
1565 err = i915_mutex_lock_interruptible(dev);
1566 if (err)
f0cd5182 1567 goto out_unpin;
3236f57a 1568
43566ded 1569 if (read_domains & I915_GEM_DOMAIN_GTT)
40e62d5d 1570 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1571 else
40e62d5d 1572 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1573
40e62d5d
CW
1574 /* And bump the LRU for this access */
1575 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1576
673a394b 1577 mutex_unlock(&dev->struct_mutex);
b8f9096d 1578
40e62d5d
CW
1579 if (write_domain != 0)
1580 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1581
f0cd5182 1582out_unpin:
40e62d5d 1583 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1584out:
1585 i915_gem_object_put(obj);
40e62d5d 1586 return err;
673a394b
EA
1587}
1588
1589/**
1590 * Called when user space has done writes to this buffer
14bb2c11
TU
1591 * @dev: drm device
1592 * @data: ioctl data blob
1593 * @file: drm file
673a394b
EA
1594 */
1595int
1596i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1597 struct drm_file *file)
673a394b
EA
1598{
1599 struct drm_i915_gem_sw_finish *args = data;
05394f39 1600 struct drm_i915_gem_object *obj;
c21724cc 1601 int err = 0;
1d7cfea1 1602
03ac0642 1603 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1604 if (!obj)
1605 return -ENOENT;
673a394b 1606
673a394b 1607 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1608 if (READ_ONCE(obj->pin_display)) {
1609 err = i915_mutex_lock_interruptible(dev);
1610 if (!err) {
1611 i915_gem_object_flush_cpu_write_domain(obj);
1612 mutex_unlock(&dev->struct_mutex);
1613 }
1614 }
e47c68e9 1615
f0cd5182 1616 i915_gem_object_put(obj);
c21724cc 1617 return err;
673a394b
EA
1618}
1619
1620/**
14bb2c11
TU
1621 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1622 * it is mapped to.
1623 * @dev: drm device
1624 * @data: ioctl data blob
1625 * @file: drm file
673a394b
EA
1626 *
1627 * While the mapping holds a reference on the contents of the object, it doesn't
1628 * imply a ref on the object itself.
34367381
DV
1629 *
1630 * IMPORTANT:
1631 *
1632 * DRM driver writers who look a this function as an example for how to do GEM
1633 * mmap support, please don't implement mmap support like here. The modern way
1634 * to implement DRM mmap support is with an mmap offset ioctl (like
1635 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1636 * That way debug tooling like valgrind will understand what's going on, hiding
1637 * the mmap call in a driver private ioctl will break that. The i915 driver only
1638 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1639 */
1640int
1641i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1642 struct drm_file *file)
673a394b
EA
1643{
1644 struct drm_i915_gem_mmap *args = data;
03ac0642 1645 struct drm_i915_gem_object *obj;
673a394b
EA
1646 unsigned long addr;
1647
1816f923
AG
1648 if (args->flags & ~(I915_MMAP_WC))
1649 return -EINVAL;
1650
568a58e5 1651 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1652 return -ENODEV;
1653
03ac0642
CW
1654 obj = i915_gem_object_lookup(file, args->handle);
1655 if (!obj)
bf79cb91 1656 return -ENOENT;
673a394b 1657
1286ff73
DV
1658 /* prime objects have no backing filp to GEM mmap
1659 * pages from.
1660 */
03ac0642 1661 if (!obj->base.filp) {
f0cd5182 1662 i915_gem_object_put(obj);
1286ff73
DV
1663 return -EINVAL;
1664 }
1665
03ac0642 1666 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1667 PROT_READ | PROT_WRITE, MAP_SHARED,
1668 args->offset);
1816f923
AG
1669 if (args->flags & I915_MMAP_WC) {
1670 struct mm_struct *mm = current->mm;
1671 struct vm_area_struct *vma;
1672
80a89a5e 1673 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1674 i915_gem_object_put(obj);
80a89a5e
MH
1675 return -EINTR;
1676 }
1816f923
AG
1677 vma = find_vma(mm, addr);
1678 if (vma)
1679 vma->vm_page_prot =
1680 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1681 else
1682 addr = -ENOMEM;
1683 up_write(&mm->mmap_sem);
aeecc969
CW
1684
1685 /* This may race, but that's ok, it only gets set */
50349247 1686 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1687 }
f0cd5182 1688 i915_gem_object_put(obj);
673a394b
EA
1689 if (IS_ERR((void *)addr))
1690 return addr;
1691
1692 args->addr_ptr = (uint64_t) addr;
1693
1694 return 0;
1695}
1696
03af84fe
CW
1697static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1698{
1699 u64 size;
1700
1701 size = i915_gem_object_get_stride(obj);
1702 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1703
1704 return size >> PAGE_SHIFT;
1705}
1706
4cc69075
CW
1707/**
1708 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1709 *
1710 * A history of the GTT mmap interface:
1711 *
1712 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1713 * aligned and suitable for fencing, and still fit into the available
1714 * mappable space left by the pinned display objects. A classic problem
1715 * we called the page-fault-of-doom where we would ping-pong between
1716 * two objects that could not fit inside the GTT and so the memcpy
1717 * would page one object in at the expense of the other between every
1718 * single byte.
1719 *
1720 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1721 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1722 * object is too large for the available space (or simply too large
1723 * for the mappable aperture!), a view is created instead and faulted
1724 * into userspace. (This view is aligned and sized appropriately for
1725 * fenced access.)
1726 *
1727 * Restrictions:
1728 *
1729 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1730 * hangs on some architectures, corruption on others. An attempt to service
1731 * a GTT page fault from a snoopable object will generate a SIGBUS.
1732 *
1733 * * the object must be able to fit into RAM (physical memory, though no
1734 * limited to the mappable aperture).
1735 *
1736 *
1737 * Caveats:
1738 *
1739 * * a new GTT page fault will synchronize rendering from the GPU and flush
1740 * all data to system memory. Subsequent access will not be synchronized.
1741 *
1742 * * all mappings are revoked on runtime device suspend.
1743 *
1744 * * there are only 8, 16 or 32 fence registers to share between all users
1745 * (older machines require fence register for display and blitter access
1746 * as well). Contention of the fence registers will cause the previous users
1747 * to be unmapped and any new access will generate new page faults.
1748 *
1749 * * running out of memory while servicing a fault may generate a SIGBUS,
1750 * rather than the expected SIGSEGV.
1751 */
1752int i915_gem_mmap_gtt_version(void)
1753{
1754 return 1;
1755}
1756
de151cf6
JB
1757/**
1758 * i915_gem_fault - fault a page into the GTT
058d88c4 1759 * @area: CPU VMA in question
d9072a3e 1760 * @vmf: fault info
de151cf6
JB
1761 *
1762 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1763 * from userspace. The fault handler takes care of binding the object to
1764 * the GTT (if needed), allocating and programming a fence register (again,
1765 * only if needed based on whether the old reg is still valid or the object
1766 * is tiled) and inserting a new PTE into the faulting process.
1767 *
1768 * Note that the faulting process may involve evicting existing objects
1769 * from the GTT and/or fence registers to make room. So performance may
1770 * suffer if the GTT working set is large or there are few fence registers
1771 * left.
4cc69075
CW
1772 *
1773 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1774 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1775 */
058d88c4 1776int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1777{
03af84fe 1778#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
058d88c4 1779 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1780 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1781 struct drm_i915_private *dev_priv = to_i915(dev);
1782 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1783 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1784 struct i915_vma *vma;
de151cf6 1785 pgoff_t page_offset;
82118877 1786 unsigned int flags;
b8f9096d 1787 int ret;
f65c9168 1788
de151cf6 1789 /* We don't use vmf->pgoff since that has the fake offset */
1a29d85e 1790 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
de151cf6 1791
db53a302
CW
1792 trace_i915_gem_object_fault(obj, page_offset, true, write);
1793
6e4930f6 1794 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1795 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1796 * repeat the flush holding the lock in the normal manner to catch cases
1797 * where we are gazumped.
1798 */
e95433c7
CW
1799 ret = i915_gem_object_wait(obj,
1800 I915_WAIT_INTERRUPTIBLE,
1801 MAX_SCHEDULE_TIMEOUT,
1802 NULL);
6e4930f6 1803 if (ret)
b8f9096d
CW
1804 goto err;
1805
40e62d5d
CW
1806 ret = i915_gem_object_pin_pages(obj);
1807 if (ret)
1808 goto err;
1809
b8f9096d
CW
1810 intel_runtime_pm_get(dev_priv);
1811
1812 ret = i915_mutex_lock_interruptible(dev);
1813 if (ret)
1814 goto err_rpm;
6e4930f6 1815
eb119bd6 1816 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1817 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1818 ret = -EFAULT;
b8f9096d 1819 goto err_unlock;
eb119bd6
CW
1820 }
1821
82118877
CW
1822 /* If the object is smaller than a couple of partial vma, it is
1823 * not worth only creating a single partial vma - we may as well
1824 * clear enough space for the full object.
1825 */
1826 flags = PIN_MAPPABLE;
1827 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1828 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1829
a61007a8 1830 /* Now pin it into the GTT as needed */
82118877 1831 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8
CW
1832 if (IS_ERR(vma)) {
1833 struct i915_ggtt_view view;
03af84fe
CW
1834 unsigned int chunk_size;
1835
a61007a8 1836 /* Use a partial view if it is bigger than available space */
03af84fe
CW
1837 chunk_size = MIN_CHUNK_PAGES;
1838 if (i915_gem_object_is_tiled(obj))
0ef723cb 1839 chunk_size = roundup(chunk_size, tile_row_pages(obj));
e7ded2d7 1840
c5ad54cf
JL
1841 memset(&view, 0, sizeof(view));
1842 view.type = I915_GGTT_VIEW_PARTIAL;
1843 view.params.partial.offset = rounddown(page_offset, chunk_size);
1844 view.params.partial.size =
a61007a8 1845 min_t(unsigned int, chunk_size,
908b1232 1846 vma_pages(area) - view.params.partial.offset);
c5ad54cf 1847
aa136d9d
CW
1848 /* If the partial covers the entire object, just create a
1849 * normal VMA.
1850 */
1851 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1852 view.type = I915_GGTT_VIEW_NORMAL;
1853
50349247
CW
1854 /* Userspace is now writing through an untracked VMA, abandon
1855 * all hope that the hardware is able to track future writes.
1856 */
1857 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1858
a61007a8
CW
1859 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1860 }
058d88c4
CW
1861 if (IS_ERR(vma)) {
1862 ret = PTR_ERR(vma);
b8f9096d 1863 goto err_unlock;
058d88c4 1864 }
4a684a41 1865
c9839303
CW
1866 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1867 if (ret)
b8f9096d 1868 goto err_unpin;
74898d7e 1869
49ef5294 1870 ret = i915_vma_get_fence(vma);
d9e86c0e 1871 if (ret)
b8f9096d 1872 goto err_unpin;
7d1c4804 1873
275f039d 1874 /* Mark as being mmapped into userspace for later revocation */
9c870d03 1875 assert_rpm_wakelock_held(dev_priv);
275f039d
CW
1876 if (list_empty(&obj->userfault_link))
1877 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
275f039d 1878
b90b91d8 1879 /* Finally, remap it using the new GTT offset */
c58305af
CW
1880 ret = remap_io_mapping(area,
1881 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1882 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1883 min_t(u64, vma->size, area->vm_end - area->vm_start),
1884 &ggtt->mappable);
a61007a8 1885
b8f9096d 1886err_unpin:
058d88c4 1887 __i915_vma_unpin(vma);
b8f9096d 1888err_unlock:
de151cf6 1889 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1890err_rpm:
1891 intel_runtime_pm_put(dev_priv);
40e62d5d 1892 i915_gem_object_unpin_pages(obj);
b8f9096d 1893err:
de151cf6 1894 switch (ret) {
d9bc7e9f 1895 case -EIO:
2232f031
DV
1896 /*
1897 * We eat errors when the gpu is terminally wedged to avoid
1898 * userspace unduly crashing (gl has no provisions for mmaps to
1899 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1900 * and so needs to be reported.
1901 */
1902 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1903 ret = VM_FAULT_SIGBUS;
1904 break;
1905 }
045e769a 1906 case -EAGAIN:
571c608d
DV
1907 /*
1908 * EAGAIN means the gpu is hung and we'll wait for the error
1909 * handler to reset everything when re-faulting in
1910 * i915_mutex_lock_interruptible.
d9bc7e9f 1911 */
c715089f
CW
1912 case 0:
1913 case -ERESTARTSYS:
bed636ab 1914 case -EINTR:
e79e0fe3
DR
1915 case -EBUSY:
1916 /*
1917 * EBUSY is ok: this just means that another thread
1918 * already did the job.
1919 */
f65c9168
PZ
1920 ret = VM_FAULT_NOPAGE;
1921 break;
de151cf6 1922 case -ENOMEM:
f65c9168
PZ
1923 ret = VM_FAULT_OOM;
1924 break;
a7c2e1aa 1925 case -ENOSPC:
45d67817 1926 case -EFAULT:
f65c9168
PZ
1927 ret = VM_FAULT_SIGBUS;
1928 break;
de151cf6 1929 default:
a7c2e1aa 1930 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1931 ret = VM_FAULT_SIGBUS;
1932 break;
de151cf6 1933 }
f65c9168 1934 return ret;
de151cf6
JB
1935}
1936
901782b2
CW
1937/**
1938 * i915_gem_release_mmap - remove physical page mappings
1939 * @obj: obj in question
1940 *
af901ca1 1941 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1942 * relinquish ownership of the pages back to the system.
1943 *
1944 * It is vital that we remove the page mapping if we have mapped a tiled
1945 * object through the GTT and then lose the fence register due to
1946 * resource pressure. Similarly if the object has been moved out of the
1947 * aperture, than pages mapped into userspace must be revoked. Removing the
1948 * mapping will then trigger a page fault on the next user access, allowing
1949 * fixup by i915_gem_fault().
1950 */
d05ca301 1951void
05394f39 1952i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1953{
275f039d 1954 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 1955
349f2ccf
CW
1956 /* Serialisation between user GTT access and our code depends upon
1957 * revoking the CPU's PTE whilst the mutex is held. The next user
1958 * pagefault then has to wait until we release the mutex.
9c870d03
CW
1959 *
1960 * Note that RPM complicates somewhat by adding an additional
1961 * requirement that operations to the GGTT be made holding the RPM
1962 * wakeref.
349f2ccf 1963 */
275f039d 1964 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 1965 intel_runtime_pm_get(i915);
349f2ccf 1966
3594a3e2 1967 if (list_empty(&obj->userfault_link))
9c870d03 1968 goto out;
901782b2 1969
3594a3e2 1970 list_del_init(&obj->userfault_link);
6796cb16
DH
1971 drm_vma_node_unmap(&obj->base.vma_node,
1972 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1973
1974 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1975 * memory transactions from userspace before we return. The TLB
1976 * flushing implied above by changing the PTE above *should* be
1977 * sufficient, an extra barrier here just provides us with a bit
1978 * of paranoid documentation about our requirement to serialise
1979 * memory writes before touching registers / GSM.
1980 */
1981 wmb();
9c870d03
CW
1982
1983out:
1984 intel_runtime_pm_put(i915);
901782b2
CW
1985}
1986
7c108fd8 1987void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 1988{
3594a3e2 1989 struct drm_i915_gem_object *obj, *on;
7c108fd8 1990 int i;
eedd10f4 1991
3594a3e2
CW
1992 /*
1993 * Only called during RPM suspend. All users of the userfault_list
1994 * must be holding an RPM wakeref to ensure that this can not
1995 * run concurrently with themselves (and use the struct_mutex for
1996 * protection between themselves).
1997 */
275f039d 1998
3594a3e2
CW
1999 list_for_each_entry_safe(obj, on,
2000 &dev_priv->mm.userfault_list, userfault_link) {
2001 list_del_init(&obj->userfault_link);
275f039d
CW
2002 drm_vma_node_unmap(&obj->base.vma_node,
2003 obj->base.dev->anon_inode->i_mapping);
275f039d 2004 }
7c108fd8
CW
2005
2006 /* The fence will be lost when the device powers down. If any were
2007 * in use by hardware (i.e. they are pinned), we should not be powering
2008 * down! All other fences will be reacquired by the user upon waking.
2009 */
2010 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2011 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2012
2013 if (WARN_ON(reg->pin_count))
2014 continue;
2015
2016 if (!reg->vma)
2017 continue;
2018
2019 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2020 reg->dirty = true;
2021 }
eedd10f4
CW
2022}
2023
ad1a7d20
CW
2024/**
2025 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 2026 * @dev_priv: i915 device
ad1a7d20
CW
2027 * @size: object size
2028 * @tiling_mode: tiling mode
2029 *
2030 * Return the required global GTT size for an object, taking into account
2031 * potential fence register mapping.
2032 */
a9f1481f
CW
2033u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2034 u64 size, int tiling_mode)
92b88aeb 2035{
ad1a7d20 2036 u64 ggtt_size;
92b88aeb 2037
ad1a7d20
CW
2038 GEM_BUG_ON(size == 0);
2039
a9f1481f 2040 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
2041 tiling_mode == I915_TILING_NONE)
2042 return size;
92b88aeb
CW
2043
2044 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 2045 if (IS_GEN3(dev_priv))
ad1a7d20 2046 ggtt_size = 1024*1024;
92b88aeb 2047 else
ad1a7d20 2048 ggtt_size = 512*1024;
92b88aeb 2049
ad1a7d20
CW
2050 while (ggtt_size < size)
2051 ggtt_size <<= 1;
92b88aeb 2052
ad1a7d20 2053 return ggtt_size;
92b88aeb
CW
2054}
2055
de151cf6 2056/**
ad1a7d20 2057 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 2058 * @dev_priv: i915 device
14bb2c11
TU
2059 * @size: object size
2060 * @tiling_mode: tiling mode
ad1a7d20 2061 * @fenced: is fenced alignment required or not
de151cf6 2062 *
ad1a7d20 2063 * Return the required global GTT alignment for an object, taking into account
5e783301 2064 * potential fence register mapping.
de151cf6 2065 */
a9f1481f 2066u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 2067 int tiling_mode, bool fenced)
de151cf6 2068{
ad1a7d20
CW
2069 GEM_BUG_ON(size == 0);
2070
de151cf6
JB
2071 /*
2072 * Minimum alignment is 4k (GTT page size), but might be greater
2073 * if a fence register is needed for the object.
2074 */
a9f1481f 2075 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 2076 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2077 return 4096;
2078
a00b10c3
CW
2079 /*
2080 * Previous chips need to be aligned to the size of the smallest
2081 * fence register that can contain the object.
2082 */
a9f1481f 2083 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
2084}
2085
d8cb5086
CW
2086static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2087{
fac5e23e 2088 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2089 int err;
da494d7c 2090
f3f6184c
CW
2091 err = drm_gem_create_mmap_offset(&obj->base);
2092 if (!err)
2093 return 0;
d8cb5086 2094
f3f6184c
CW
2095 /* We can idle the GPU locklessly to flush stale objects, but in order
2096 * to claim that space for ourselves, we need to take the big
2097 * struct_mutex to free the requests+objects and allocate our slot.
d8cb5086 2098 */
ea746f36 2099 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
f3f6184c
CW
2100 if (err)
2101 return err;
2102
2103 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2104 if (!err) {
2105 i915_gem_retire_requests(dev_priv);
2106 err = drm_gem_create_mmap_offset(&obj->base);
2107 mutex_unlock(&dev_priv->drm.struct_mutex);
2108 }
da494d7c 2109
f3f6184c 2110 return err;
d8cb5086
CW
2111}
2112
2113static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2114{
d8cb5086
CW
2115 drm_gem_free_mmap_offset(&obj->base);
2116}
2117
da6b51d0 2118int
ff72145b
DA
2119i915_gem_mmap_gtt(struct drm_file *file,
2120 struct drm_device *dev,
da6b51d0 2121 uint32_t handle,
ff72145b 2122 uint64_t *offset)
de151cf6 2123{
05394f39 2124 struct drm_i915_gem_object *obj;
de151cf6
JB
2125 int ret;
2126
03ac0642 2127 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2128 if (!obj)
2129 return -ENOENT;
ab18282d 2130
d8cb5086 2131 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2132 if (ret == 0)
2133 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2134
f0cd5182 2135 i915_gem_object_put(obj);
1d7cfea1 2136 return ret;
de151cf6
JB
2137}
2138
ff72145b
DA
2139/**
2140 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2141 * @dev: DRM device
2142 * @data: GTT mapping ioctl data
2143 * @file: GEM object info
2144 *
2145 * Simply returns the fake offset to userspace so it can mmap it.
2146 * The mmap call will end up in drm_gem_mmap(), which will set things
2147 * up so we can get faults in the handler above.
2148 *
2149 * The fault handler will take care of binding the object into the GTT
2150 * (since it may have been evicted to make room for something), allocating
2151 * a fence register, and mapping the appropriate aperture address into
2152 * userspace.
2153 */
2154int
2155i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2156 struct drm_file *file)
2157{
2158 struct drm_i915_gem_mmap_gtt *args = data;
2159
da6b51d0 2160 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2161}
2162
225067ee
DV
2163/* Immediately discard the backing storage */
2164static void
2165i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2166{
4d6294bf 2167 i915_gem_object_free_mmap_offset(obj);
1286ff73 2168
4d6294bf
CW
2169 if (obj->base.filp == NULL)
2170 return;
e5281ccd 2171
225067ee
DV
2172 /* Our goal here is to return as much of the memory as
2173 * is possible back to the system as we are called from OOM.
2174 * To do this we must instruct the shmfs to drop all of its
2175 * backing pages, *now*.
2176 */
5537252b 2177 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2178 obj->mm.madv = __I915_MADV_PURGED;
225067ee 2179}
e5281ccd 2180
5537252b 2181/* Try to discard unwanted pages */
03ac84f1 2182void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2183{
5537252b
CW
2184 struct address_space *mapping;
2185
1233e2db
CW
2186 lockdep_assert_held(&obj->mm.lock);
2187 GEM_BUG_ON(obj->mm.pages);
2188
a4f5ea64 2189 switch (obj->mm.madv) {
5537252b
CW
2190 case I915_MADV_DONTNEED:
2191 i915_gem_object_truncate(obj);
2192 case __I915_MADV_PURGED:
2193 return;
2194 }
2195
2196 if (obj->base.filp == NULL)
2197 return;
2198
93c76a3d 2199 mapping = obj->base.filp->f_mapping,
5537252b 2200 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2201}
2202
5cdf5881 2203static void
03ac84f1
CW
2204i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2205 struct sg_table *pages)
673a394b 2206{
85d1225e
DG
2207 struct sgt_iter sgt_iter;
2208 struct page *page;
1286ff73 2209
c3f923b5 2210 __i915_gem_object_release_shmem(obj, pages, true);
673a394b 2211
03ac84f1 2212 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2213
6dacfd2f 2214 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2215 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2216
03ac84f1 2217 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2218 if (obj->mm.dirty)
9da3da66 2219 set_page_dirty(page);
3ef94daa 2220
a4f5ea64 2221 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2222 mark_page_accessed(page);
3ef94daa 2223
09cbfeaf 2224 put_page(page);
3ef94daa 2225 }
a4f5ea64 2226 obj->mm.dirty = false;
673a394b 2227
03ac84f1
CW
2228 sg_free_table(pages);
2229 kfree(pages);
37e680a1 2230}
6c085a72 2231
96d77634
CW
2232static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2233{
2234 struct radix_tree_iter iter;
2235 void **slot;
2236
a4f5ea64
CW
2237 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2238 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2239}
2240
548625ee
CW
2241void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2242 enum i915_mm_subclass subclass)
37e680a1 2243{
03ac84f1 2244 struct sg_table *pages;
37e680a1 2245
a4f5ea64 2246 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2247 return;
a5570178 2248
15717de2 2249 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2250 if (!READ_ONCE(obj->mm.pages))
2251 return;
2252
2253 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2254 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2255 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2256 goto unlock;
3e123027 2257
a2165e31
CW
2258 /* ->put_pages might need to allocate memory for the bit17 swizzle
2259 * array, hence protect them from being reaped by removing them from gtt
2260 * lists early. */
03ac84f1
CW
2261 pages = fetch_and_zero(&obj->mm.pages);
2262 GEM_BUG_ON(!pages);
a2165e31 2263
a4f5ea64 2264 if (obj->mm.mapping) {
4b30cb23
CW
2265 void *ptr;
2266
a4f5ea64 2267 ptr = ptr_mask_bits(obj->mm.mapping);
4b30cb23
CW
2268 if (is_vmalloc_addr(ptr))
2269 vunmap(ptr);
fb8621d3 2270 else
4b30cb23
CW
2271 kunmap(kmap_to_page(ptr));
2272
a4f5ea64 2273 obj->mm.mapping = NULL;
0a798eb9
CW
2274 }
2275
96d77634
CW
2276 __i915_gem_object_reset_page_iter(obj);
2277
03ac84f1 2278 obj->ops->put_pages(obj, pages);
1233e2db
CW
2279unlock:
2280 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2281}
2282
0c40ce13
TU
2283static void i915_sg_trim(struct sg_table *orig_st)
2284{
2285 struct sg_table new_st;
2286 struct scatterlist *sg, *new_sg;
2287 unsigned int i;
2288
2289 if (orig_st->nents == orig_st->orig_nents)
2290 return;
2291
64d1461c 2292 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
0c40ce13
TU
2293 return;
2294
2295 new_sg = new_st.sgl;
2296 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2297 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2298 /* called before being DMA mapped, no need to copy sg->dma_* */
2299 new_sg = sg_next(new_sg);
2300 }
2301
2302 sg_free_table(orig_st);
2303
2304 *orig_st = new_st;
2305}
2306
03ac84f1 2307static struct sg_table *
6c085a72 2308i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2309{
fac5e23e 2310 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
abb0deac
CW
2311 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2312 unsigned long i;
e5281ccd 2313 struct address_space *mapping;
9da3da66
CW
2314 struct sg_table *st;
2315 struct scatterlist *sg;
85d1225e 2316 struct sgt_iter sgt_iter;
e5281ccd 2317 struct page *page;
90797e6d 2318 unsigned long last_pfn = 0; /* suppress gcc warning */
4ff340f0 2319 unsigned int max_segment;
e2273302 2320 int ret;
6c085a72 2321 gfp_t gfp;
e5281ccd 2322
6c085a72
CW
2323 /* Assert that the object is not currently in any GPU domain. As it
2324 * wasn't in the GTT, there shouldn't be any way it could have been in
2325 * a GPU cache
2326 */
03ac84f1
CW
2327 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2328 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2329
7453c549 2330 max_segment = swiotlb_max_segment();
871dfbd6 2331 if (!max_segment)
4ff340f0 2332 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
871dfbd6 2333
9da3da66
CW
2334 st = kmalloc(sizeof(*st), GFP_KERNEL);
2335 if (st == NULL)
03ac84f1 2336 return ERR_PTR(-ENOMEM);
9da3da66 2337
abb0deac 2338rebuild_st:
9da3da66 2339 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2340 kfree(st);
03ac84f1 2341 return ERR_PTR(-ENOMEM);
9da3da66 2342 }
e5281ccd 2343
9da3da66
CW
2344 /* Get the list of pages out of our struct file. They'll be pinned
2345 * at this point until we release them.
2346 *
2347 * Fail silently without starting the shrinker
2348 */
93c76a3d 2349 mapping = obj->base.filp->f_mapping;
c62d2555 2350 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2351 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2352 sg = st->sgl;
2353 st->nents = 0;
2354 for (i = 0; i < page_count; i++) {
6c085a72
CW
2355 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2356 if (IS_ERR(page)) {
21ab4e74
CW
2357 i915_gem_shrink(dev_priv,
2358 page_count,
2359 I915_SHRINK_BOUND |
2360 I915_SHRINK_UNBOUND |
2361 I915_SHRINK_PURGEABLE);
6c085a72
CW
2362 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2363 }
2364 if (IS_ERR(page)) {
2365 /* We've tried hard to allocate the memory by reaping
2366 * our own buffer, now let the real VM do its job and
2367 * go down in flames if truly OOM.
2368 */
f461d1be 2369 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2370 if (IS_ERR(page)) {
2371 ret = PTR_ERR(page);
b17993b7 2372 goto err_sg;
e2273302 2373 }
6c085a72 2374 }
871dfbd6
CW
2375 if (!i ||
2376 sg->length >= max_segment ||
2377 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2378 if (i)
2379 sg = sg_next(sg);
2380 st->nents++;
2381 sg_set_page(sg, page, PAGE_SIZE, 0);
2382 } else {
2383 sg->length += PAGE_SIZE;
2384 }
2385 last_pfn = page_to_pfn(page);
3bbbe706
DV
2386
2387 /* Check that the i965g/gm workaround works. */
2388 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2389 }
871dfbd6 2390 if (sg) /* loop terminated early; short sg table */
426729dc 2391 sg_mark_end(sg);
74ce6b6c 2392
0c40ce13
TU
2393 /* Trim unused sg entries to avoid wasting memory. */
2394 i915_sg_trim(st);
2395
03ac84f1 2396 ret = i915_gem_gtt_prepare_pages(obj, st);
abb0deac
CW
2397 if (ret) {
2398 /* DMA remapping failed? One possible cause is that
2399 * it could not reserve enough large entries, asking
2400 * for PAGE_SIZE chunks instead may be helpful.
2401 */
2402 if (max_segment > PAGE_SIZE) {
2403 for_each_sgt_page(page, sgt_iter, st)
2404 put_page(page);
2405 sg_free_table(st);
2406
2407 max_segment = PAGE_SIZE;
2408 goto rebuild_st;
2409 } else {
2410 dev_warn(&dev_priv->drm.pdev->dev,
2411 "Failed to DMA remap %lu pages\n",
2412 page_count);
2413 goto err_pages;
2414 }
2415 }
e2273302 2416
6dacfd2f 2417 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2418 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2419
03ac84f1 2420 return st;
e5281ccd 2421
b17993b7 2422err_sg:
90797e6d 2423 sg_mark_end(sg);
b17993b7 2424err_pages:
85d1225e
DG
2425 for_each_sgt_page(page, sgt_iter, st)
2426 put_page(page);
9da3da66
CW
2427 sg_free_table(st);
2428 kfree(st);
0820baf3
CW
2429
2430 /* shmemfs first checks if there is enough memory to allocate the page
2431 * and reports ENOSPC should there be insufficient, along with the usual
2432 * ENOMEM for a genuine allocation failure.
2433 *
2434 * We use ENOSPC in our driver to mean that we have run out of aperture
2435 * space and so want to translate the error from shmemfs back to our
2436 * usual understanding of ENOMEM.
2437 */
e2273302
ID
2438 if (ret == -ENOSPC)
2439 ret = -ENOMEM;
2440
03ac84f1
CW
2441 return ERR_PTR(ret);
2442}
2443
2444void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2445 struct sg_table *pages)
2446{
1233e2db 2447 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2448
2449 obj->mm.get_page.sg_pos = pages->sgl;
2450 obj->mm.get_page.sg_idx = 0;
2451
2452 obj->mm.pages = pages;
2c3a3f44
CW
2453
2454 if (i915_gem_object_is_tiled(obj) &&
2455 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2456 GEM_BUG_ON(obj->mm.quirked);
2457 __i915_gem_object_pin_pages(obj);
2458 obj->mm.quirked = true;
2459 }
03ac84f1
CW
2460}
2461
2462static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2463{
2464 struct sg_table *pages;
2465
2c3a3f44
CW
2466 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2467
03ac84f1
CW
2468 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2469 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2470 return -EFAULT;
2471 }
2472
2473 pages = obj->ops->get_pages(obj);
2474 if (unlikely(IS_ERR(pages)))
2475 return PTR_ERR(pages);
2476
2477 __i915_gem_object_set_pages(obj, pages);
2478 return 0;
673a394b
EA
2479}
2480
37e680a1 2481/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2482 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2483 * multiple times before they are released by a single call to
1233e2db 2484 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2485 * either as a result of memory pressure (reaping pages under the shrinker)
2486 * or as the object is itself released.
2487 */
a4f5ea64 2488int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2489{
03ac84f1 2490 int err;
37e680a1 2491
1233e2db
CW
2492 err = mutex_lock_interruptible(&obj->mm.lock);
2493 if (err)
2494 return err;
4c7d62c6 2495
2c3a3f44
CW
2496 if (unlikely(!obj->mm.pages)) {
2497 err = ____i915_gem_object_get_pages(obj);
2498 if (err)
2499 goto unlock;
37e680a1 2500
2c3a3f44
CW
2501 smp_mb__before_atomic();
2502 }
2503 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2504
1233e2db
CW
2505unlock:
2506 mutex_unlock(&obj->mm.lock);
03ac84f1 2507 return err;
673a394b
EA
2508}
2509
dd6034c6 2510/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2511static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2512 enum i915_map_type type)
dd6034c6
DG
2513{
2514 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2515 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2516 struct sgt_iter sgt_iter;
2517 struct page *page;
b338fa47
DG
2518 struct page *stack_pages[32];
2519 struct page **pages = stack_pages;
dd6034c6 2520 unsigned long i = 0;
d31d7cb1 2521 pgprot_t pgprot;
dd6034c6
DG
2522 void *addr;
2523
2524 /* A single page can always be kmapped */
d31d7cb1 2525 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2526 return kmap(sg_page(sgt->sgl));
2527
b338fa47
DG
2528 if (n_pages > ARRAY_SIZE(stack_pages)) {
2529 /* Too big for stack -- allocate temporary array instead */
2530 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2531 if (!pages)
2532 return NULL;
2533 }
dd6034c6 2534
85d1225e
DG
2535 for_each_sgt_page(page, sgt_iter, sgt)
2536 pages[i++] = page;
dd6034c6
DG
2537
2538 /* Check that we have the expected number of pages */
2539 GEM_BUG_ON(i != n_pages);
2540
d31d7cb1
CW
2541 switch (type) {
2542 case I915_MAP_WB:
2543 pgprot = PAGE_KERNEL;
2544 break;
2545 case I915_MAP_WC:
2546 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2547 break;
2548 }
2549 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2550
b338fa47
DG
2551 if (pages != stack_pages)
2552 drm_free_large(pages);
dd6034c6
DG
2553
2554 return addr;
2555}
2556
2557/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2558void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2559 enum i915_map_type type)
0a798eb9 2560{
d31d7cb1
CW
2561 enum i915_map_type has_type;
2562 bool pinned;
2563 void *ptr;
0a798eb9
CW
2564 int ret;
2565
d31d7cb1 2566 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2567
1233e2db 2568 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2569 if (ret)
2570 return ERR_PTR(ret);
2571
1233e2db
CW
2572 pinned = true;
2573 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2c3a3f44
CW
2574 if (unlikely(!obj->mm.pages)) {
2575 ret = ____i915_gem_object_get_pages(obj);
2576 if (ret)
2577 goto err_unlock;
1233e2db 2578
2c3a3f44
CW
2579 smp_mb__before_atomic();
2580 }
2581 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2582 pinned = false;
2583 }
2584 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2585
a4f5ea64 2586 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
d31d7cb1
CW
2587 if (ptr && has_type != type) {
2588 if (pinned) {
2589 ret = -EBUSY;
1233e2db 2590 goto err_unpin;
0a798eb9 2591 }
d31d7cb1
CW
2592
2593 if (is_vmalloc_addr(ptr))
2594 vunmap(ptr);
2595 else
2596 kunmap(kmap_to_page(ptr));
2597
a4f5ea64 2598 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2599 }
2600
d31d7cb1
CW
2601 if (!ptr) {
2602 ptr = i915_gem_object_map(obj, type);
2603 if (!ptr) {
2604 ret = -ENOMEM;
1233e2db 2605 goto err_unpin;
d31d7cb1
CW
2606 }
2607
a4f5ea64 2608 obj->mm.mapping = ptr_pack_bits(ptr, type);
d31d7cb1
CW
2609 }
2610
1233e2db
CW
2611out_unlock:
2612 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2613 return ptr;
2614
1233e2db
CW
2615err_unpin:
2616 atomic_dec(&obj->mm.pages_pin_count);
2617err_unlock:
2618 ptr = ERR_PTR(ret);
2619 goto out_unlock;
0a798eb9
CW
2620}
2621
7b4d3a16 2622static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2623{
44e2c070 2624 unsigned long elapsed;
be62acb4 2625
44e2c070 2626 if (ctx->hang_stats.banned)
be62acb4
MK
2627 return true;
2628
7b4d3a16 2629 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2630 if (ctx->hang_stats.ban_period_seconds &&
2631 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2632 DRM_DEBUG("context hanging too fast, banning!\n");
2633 return true;
be62acb4
MK
2634 }
2635
2636 return false;
2637}
2638
7b4d3a16 2639static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2640 const bool guilty)
aa60c664 2641{
7b4d3a16 2642 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2643
2644 if (guilty) {
7b4d3a16 2645 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2646 hs->batch_active++;
2647 hs->guilty_ts = get_seconds();
2648 } else {
2649 hs->batch_pending++;
aa60c664
MK
2650 }
2651}
2652
8d9fc7fd 2653struct drm_i915_gem_request *
0bc40be8 2654i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2655{
4db080f9
CW
2656 struct drm_i915_gem_request *request;
2657
f69a02c9
CW
2658 /* We are called by the error capture and reset at a random
2659 * point in time. In particular, note that neither is crucially
2660 * ordered with an interrupt. After a hang, the GPU is dead and we
2661 * assume that no more writes can happen (we waited long enough for
2662 * all writes that were in transaction to be flushed) - adding an
2663 * extra delay for a recent interrupt is pointless. Hence, we do
2664 * not need an engine->irq_seqno_barrier() before the seqno reads.
2665 */
73cb9701 2666 list_for_each_entry(request, &engine->timeline->requests, link) {
80b204bc 2667 if (__i915_gem_request_completed(request))
4db080f9 2668 continue;
aa60c664 2669
b6b0fac0 2670 return request;
4db080f9 2671 }
b6b0fac0
MK
2672
2673 return NULL;
2674}
2675
821ed7df
CW
2676static void reset_request(struct drm_i915_gem_request *request)
2677{
2678 void *vaddr = request->ring->vaddr;
2679 u32 head;
2680
2681 /* As this request likely depends on state from the lost
2682 * context, clear out all the user operations leaving the
2683 * breadcrumb at the end (so we get the fence notifications).
2684 */
2685 head = request->head;
2686 if (request->postfix < head) {
2687 memset(vaddr + head, 0, request->ring->size - head);
2688 head = 0;
2689 }
2690 memset(vaddr + head, 0, request->postfix - head);
2691}
2692
2693static void i915_gem_reset_engine(struct intel_engine_cs *engine)
b6b0fac0
MK
2694{
2695 struct drm_i915_gem_request *request;
821ed7df 2696 struct i915_gem_context *incomplete_ctx;
80b204bc 2697 struct intel_timeline *timeline;
2471eb5f 2698 unsigned long flags;
b6b0fac0
MK
2699 bool ring_hung;
2700
821ed7df
CW
2701 if (engine->irq_seqno_barrier)
2702 engine->irq_seqno_barrier(engine);
2703
0bc40be8 2704 request = i915_gem_find_active_request(engine);
821ed7df 2705 if (!request)
b6b0fac0
MK
2706 return;
2707
0bc40be8 2708 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
77c60701
CW
2709 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2710 ring_hung = false;
2711
7b4d3a16 2712 i915_set_reset_status(request->ctx, ring_hung);
821ed7df
CW
2713 if (!ring_hung)
2714 return;
2715
2716 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
65e4760e 2717 engine->name, request->global_seqno);
821ed7df
CW
2718
2719 /* Setup the CS to resume from the breadcrumb of the hung request */
2720 engine->reset_hw(engine, request);
2721
2722 /* Users of the default context do not rely on logical state
2723 * preserved between batches. They have to emit full state on
2724 * every batch and so it is safe to execute queued requests following
2725 * the hang.
2726 *
2727 * Other contexts preserve state, now corrupt. We want to skip all
2728 * queued requests that reference the corrupt context.
2729 */
2730 incomplete_ctx = request->ctx;
2731 if (i915_gem_context_is_default(incomplete_ctx))
2732 return;
2733
2471eb5f
CW
2734 timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2735
2736 spin_lock_irqsave(&engine->timeline->lock, flags);
2737 spin_lock(&timeline->lock);
2738
73cb9701 2739 list_for_each_entry_continue(request, &engine->timeline->requests, link)
821ed7df
CW
2740 if (request->ctx == incomplete_ctx)
2741 reset_request(request);
80b204bc 2742
80b204bc
CW
2743 list_for_each_entry(request, &timeline->requests, link)
2744 reset_request(request);
2471eb5f
CW
2745
2746 spin_unlock(&timeline->lock);
2747 spin_unlock_irqrestore(&engine->timeline->lock, flags);
4db080f9 2748}
aa60c664 2749
821ed7df 2750void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2751{
821ed7df 2752 struct intel_engine_cs *engine;
3b3f1650 2753 enum intel_engine_id id;
608c1a52 2754
4c7d62c6
CW
2755 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2756
821ed7df
CW
2757 i915_gem_retire_requests(dev_priv);
2758
3b3f1650 2759 for_each_engine(engine, dev_priv, id)
821ed7df
CW
2760 i915_gem_reset_engine(engine);
2761
4362f4f6 2762 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
2763
2764 if (dev_priv->gt.awake) {
2765 intel_sanitize_gt_powersave(dev_priv);
2766 intel_enable_gt_powersave(dev_priv);
2767 if (INTEL_GEN(dev_priv) >= 6)
2768 gen6_rps_busy(dev_priv);
2769 }
821ed7df
CW
2770}
2771
2772static void nop_submit_request(struct drm_i915_gem_request *request)
2773{
ce1135c7
CW
2774 i915_gem_request_submit(request);
2775 intel_engine_init_global_seqno(request->engine, request->global_seqno);
821ed7df
CW
2776}
2777
2778static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2779{
2780 engine->submit_request = nop_submit_request;
70c2a24d 2781
c4b0930b
CW
2782 /* Mark all pending requests as complete so that any concurrent
2783 * (lockless) lookup doesn't try and wait upon the request as we
2784 * reset it.
2785 */
73cb9701 2786 intel_engine_init_global_seqno(engine,
cb399eab 2787 intel_engine_last_submit(engine));
c4b0930b 2788
dcb4c12a
OM
2789 /*
2790 * Clear the execlists queue up before freeing the requests, as those
2791 * are the ones that keep the context and ringbuffer backing objects
2792 * pinned in place.
2793 */
dcb4c12a 2794
7de1691a 2795 if (i915.enable_execlists) {
663f71e7
CW
2796 unsigned long flags;
2797
2798 spin_lock_irqsave(&engine->timeline->lock, flags);
2799
70c2a24d
CW
2800 i915_gem_request_put(engine->execlist_port[0].request);
2801 i915_gem_request_put(engine->execlist_port[1].request);
2802 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
20311bd3
CW
2803 engine->execlist_queue = RB_ROOT;
2804 engine->execlist_first = NULL;
663f71e7
CW
2805
2806 spin_unlock_irqrestore(&engine->timeline->lock, flags);
dcb4c12a 2807 }
673a394b
EA
2808}
2809
821ed7df 2810void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
673a394b 2811{
e2f80391 2812 struct intel_engine_cs *engine;
3b3f1650 2813 enum intel_engine_id id;
673a394b 2814
821ed7df
CW
2815 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2816 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
4db080f9 2817
821ed7df 2818 i915_gem_context_lost(dev_priv);
3b3f1650 2819 for_each_engine(engine, dev_priv, id)
821ed7df 2820 i915_gem_cleanup_engine(engine);
b913b33c 2821 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2822
821ed7df 2823 i915_gem_retire_requests(dev_priv);
673a394b
EA
2824}
2825
75ef9da2 2826static void
673a394b
EA
2827i915_gem_retire_work_handler(struct work_struct *work)
2828{
b29c19b6 2829 struct drm_i915_private *dev_priv =
67d97da3 2830 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2831 struct drm_device *dev = &dev_priv->drm;
673a394b 2832
891b48cf 2833 /* Come back later if the device is busy... */
b29c19b6 2834 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2835 i915_gem_retire_requests(dev_priv);
b29c19b6 2836 mutex_unlock(&dev->struct_mutex);
673a394b 2837 }
67d97da3
CW
2838
2839 /* Keep the retire handler running until we are finally idle.
2840 * We do not need to do this test under locking as in the worst-case
2841 * we queue the retire worker once too often.
2842 */
c9615613
CW
2843 if (READ_ONCE(dev_priv->gt.awake)) {
2844 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2845 queue_delayed_work(dev_priv->wq,
2846 &dev_priv->gt.retire_work,
bcb45086 2847 round_jiffies_up_relative(HZ));
c9615613 2848 }
b29c19b6 2849}
0a58705b 2850
b29c19b6
CW
2851static void
2852i915_gem_idle_work_handler(struct work_struct *work)
2853{
2854 struct drm_i915_private *dev_priv =
67d97da3 2855 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2856 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2857 struct intel_engine_cs *engine;
3b3f1650 2858 enum intel_engine_id id;
67d97da3
CW
2859 bool rearm_hangcheck;
2860
2861 if (!READ_ONCE(dev_priv->gt.awake))
2862 return;
2863
0cb5670b
ID
2864 /*
2865 * Wait for last execlists context complete, but bail out in case a
2866 * new request is submitted.
2867 */
2868 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2869 intel_execlists_idle(dev_priv), 10);
2870
28176ef4 2871 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
2872 return;
2873
2874 rearm_hangcheck =
2875 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2876
2877 if (!mutex_trylock(&dev->struct_mutex)) {
2878 /* Currently busy, come back later */
2879 mod_delayed_work(dev_priv->wq,
2880 &dev_priv->gt.idle_work,
2881 msecs_to_jiffies(50));
2882 goto out_rearm;
2883 }
2884
93c97dc1
ID
2885 /*
2886 * New request retired after this work handler started, extend active
2887 * period until next instance of the work.
2888 */
2889 if (work_pending(work))
2890 goto out_unlock;
2891
28176ef4 2892 if (dev_priv->gt.active_requests)
67d97da3 2893 goto out_unlock;
b29c19b6 2894
0cb5670b
ID
2895 if (wait_for(intel_execlists_idle(dev_priv), 10))
2896 DRM_ERROR("Timeout waiting for engines to idle\n");
2897
3b3f1650 2898 for_each_engine(engine, dev_priv, id)
67d97da3 2899 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2900
67d97da3
CW
2901 GEM_BUG_ON(!dev_priv->gt.awake);
2902 dev_priv->gt.awake = false;
2903 rearm_hangcheck = false;
30ecad77 2904
67d97da3
CW
2905 if (INTEL_GEN(dev_priv) >= 6)
2906 gen6_rps_idle(dev_priv);
2907 intel_runtime_pm_put(dev_priv);
2908out_unlock:
2909 mutex_unlock(&dev->struct_mutex);
b29c19b6 2910
67d97da3
CW
2911out_rearm:
2912 if (rearm_hangcheck) {
2913 GEM_BUG_ON(!dev_priv->gt.awake);
2914 i915_queue_hangcheck(dev_priv);
35c94185 2915 }
673a394b
EA
2916}
2917
b1f788c6
CW
2918void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2919{
2920 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2921 struct drm_i915_file_private *fpriv = file->driver_priv;
2922 struct i915_vma *vma, *vn;
2923
2924 mutex_lock(&obj->base.dev->struct_mutex);
2925 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2926 if (vma->vm->file == fpriv)
2927 i915_vma_close(vma);
f8a7fde4
CW
2928
2929 if (i915_gem_object_is_active(obj) &&
2930 !i915_gem_object_has_active_reference(obj)) {
2931 i915_gem_object_set_active_reference(obj);
2932 i915_gem_object_get(obj);
2933 }
b1f788c6
CW
2934 mutex_unlock(&obj->base.dev->struct_mutex);
2935}
2936
e95433c7
CW
2937static unsigned long to_wait_timeout(s64 timeout_ns)
2938{
2939 if (timeout_ns < 0)
2940 return MAX_SCHEDULE_TIMEOUT;
2941
2942 if (timeout_ns == 0)
2943 return 0;
2944
2945 return nsecs_to_jiffies_timeout(timeout_ns);
2946}
2947
23ba4fd0
BW
2948/**
2949 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2950 * @dev: drm device pointer
2951 * @data: ioctl data blob
2952 * @file: drm file pointer
23ba4fd0
BW
2953 *
2954 * Returns 0 if successful, else an error is returned with the remaining time in
2955 * the timeout parameter.
2956 * -ETIME: object is still busy after timeout
2957 * -ERESTARTSYS: signal interrupted the wait
2958 * -ENONENT: object doesn't exist
2959 * Also possible, but rare:
2960 * -EAGAIN: GPU wedged
2961 * -ENOMEM: damn
2962 * -ENODEV: Internal IRQ fail
2963 * -E?: The add request failed
2964 *
2965 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2966 * non-zero timeout parameter the wait ioctl will wait for the given number of
2967 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2968 * without holding struct_mutex the object may become re-busied before this
2969 * function completes. A similar but shorter * race condition exists in the busy
2970 * ioctl
2971 */
2972int
2973i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2974{
2975 struct drm_i915_gem_wait *args = data;
2976 struct drm_i915_gem_object *obj;
e95433c7
CW
2977 ktime_t start;
2978 long ret;
23ba4fd0 2979
11b5d511
DV
2980 if (args->flags != 0)
2981 return -EINVAL;
2982
03ac0642 2983 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 2984 if (!obj)
23ba4fd0 2985 return -ENOENT;
23ba4fd0 2986
e95433c7
CW
2987 start = ktime_get();
2988
2989 ret = i915_gem_object_wait(obj,
2990 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
2991 to_wait_timeout(args->timeout_ns),
2992 to_rps_client(file));
2993
2994 if (args->timeout_ns > 0) {
2995 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
2996 if (args->timeout_ns < 0)
2997 args->timeout_ns = 0;
b4716185
CW
2998 }
2999
f0cd5182 3000 i915_gem_object_put(obj);
ff865885 3001 return ret;
23ba4fd0
BW
3002}
3003
73cb9701 3004static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 3005{
73cb9701 3006 int ret, i;
4df2faf4 3007
73cb9701
CW
3008 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3009 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3010 if (ret)
3011 return ret;
3012 }
62e63007 3013
73cb9701
CW
3014 return 0;
3015}
3016
3017int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3018{
73cb9701
CW
3019 int ret;
3020
9caa34aa
CW
3021 if (flags & I915_WAIT_LOCKED) {
3022 struct i915_gem_timeline *tl;
3023
3024 lockdep_assert_held(&i915->drm.struct_mutex);
3025
3026 list_for_each_entry(tl, &i915->gt.timelines, link) {
3027 ret = wait_for_timeline(tl, flags);
3028 if (ret)
3029 return ret;
3030 }
3031 } else {
3032 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3
CW
3033 if (ret)
3034 return ret;
3035 }
4df2faf4 3036
8a1a49f9 3037 return 0;
4df2faf4
DV
3038}
3039
d0da48cf
CW
3040void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3041 bool force)
673a394b 3042{
673a394b
EA
3043 /* If we don't have a page list set up, then we're not pinned
3044 * to GPU, and we can ignore the cache flush because it'll happen
3045 * again at bind time.
3046 */
a4f5ea64 3047 if (!obj->mm.pages)
d0da48cf 3048 return;
673a394b 3049
769ce464
ID
3050 /*
3051 * Stolen memory is always coherent with the GPU as it is explicitly
3052 * marked as wc by the system, or the system is cache-coherent.
3053 */
6a2c4232 3054 if (obj->stolen || obj->phys_handle)
d0da48cf 3055 return;
769ce464 3056
9c23f7fc
CW
3057 /* If the GPU is snooping the contents of the CPU cache,
3058 * we do not need to manually clear the CPU cache lines. However,
3059 * the caches are only snooped when the render cache is
3060 * flushed/invalidated. As we always have to emit invalidations
3061 * and flushes when moving into and out of the RENDER domain, correct
3062 * snooping behaviour occurs naturally as the result of our domain
3063 * tracking.
3064 */
0f71979a
CW
3065 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3066 obj->cache_dirty = true;
d0da48cf 3067 return;
0f71979a 3068 }
9c23f7fc 3069
1c5d22f7 3070 trace_i915_gem_object_clflush(obj);
a4f5ea64 3071 drm_clflush_sg(obj->mm.pages);
0f71979a 3072 obj->cache_dirty = false;
e47c68e9
EA
3073}
3074
3075/** Flushes the GTT write domain for the object if it's dirty. */
3076static void
05394f39 3077i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3078{
3b5724d7 3079 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3080
05394f39 3081 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3082 return;
3083
63256ec5 3084 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3085 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3086 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3087 *
3088 * However, we do have to enforce the order so that all writes through
3089 * the GTT land before any writes to the device, such as updates to
3090 * the GATT itself.
3b5724d7
CW
3091 *
3092 * We also have to wait a bit for the writes to land from the GTT.
3093 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3094 * timing. This issue has only been observed when switching quickly
3095 * between GTT writes and CPU reads from inside the kernel on recent hw,
3096 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3097 * system agents we cannot reproduce this behaviour).
e47c68e9 3098 */
63256ec5 3099 wmb();
3b5724d7 3100 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3b3f1650 3101 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
63256ec5 3102
d243ad82 3103 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3104
b0dc465f 3105 obj->base.write_domain = 0;
1c5d22f7 3106 trace_i915_gem_object_change_domain(obj,
05394f39 3107 obj->base.read_domains,
b0dc465f 3108 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3109}
3110
3111/** Flushes the CPU write domain for the object if it's dirty. */
3112static void
e62b59e4 3113i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3114{
05394f39 3115 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3116 return;
3117
d0da48cf 3118 i915_gem_clflush_object(obj, obj->pin_display);
de152b62 3119 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3120
b0dc465f 3121 obj->base.write_domain = 0;
1c5d22f7 3122 trace_i915_gem_object_change_domain(obj,
05394f39 3123 obj->base.read_domains,
b0dc465f 3124 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3125}
3126
2ef7eeaa
EA
3127/**
3128 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3129 * @obj: object to act on
3130 * @write: ask for write access or read only
2ef7eeaa
EA
3131 *
3132 * This function returns when the move is complete, including waiting on
3133 * flushes to occur.
3134 */
79e53945 3135int
2021746e 3136i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3137{
1c5d22f7 3138 uint32_t old_write_domain, old_read_domains;
e47c68e9 3139 int ret;
2ef7eeaa 3140
e95433c7 3141 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3142
e95433c7
CW
3143 ret = i915_gem_object_wait(obj,
3144 I915_WAIT_INTERRUPTIBLE |
3145 I915_WAIT_LOCKED |
3146 (write ? I915_WAIT_ALL : 0),
3147 MAX_SCHEDULE_TIMEOUT,
3148 NULL);
88241785
CW
3149 if (ret)
3150 return ret;
3151
c13d87ea
CW
3152 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3153 return 0;
3154
43566ded
CW
3155 /* Flush and acquire obj->pages so that we are coherent through
3156 * direct access in memory with previous cached writes through
3157 * shmemfs and that our cache domain tracking remains valid.
3158 * For example, if the obj->filp was moved to swap without us
3159 * being notified and releasing the pages, we would mistakenly
3160 * continue to assume that the obj remained out of the CPU cached
3161 * domain.
3162 */
a4f5ea64 3163 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3164 if (ret)
3165 return ret;
3166
e62b59e4 3167 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3168
d0a57789
CW
3169 /* Serialise direct access to this object with the barriers for
3170 * coherent writes from the GPU, by effectively invalidating the
3171 * GTT domain upon first access.
3172 */
3173 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3174 mb();
3175
05394f39
CW
3176 old_write_domain = obj->base.write_domain;
3177 old_read_domains = obj->base.read_domains;
1c5d22f7 3178
e47c68e9
EA
3179 /* It should now be out of any other write domains, and we can update
3180 * the domain values for our changes.
3181 */
40e62d5d 3182 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3183 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3184 if (write) {
05394f39
CW
3185 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3186 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3187 obj->mm.dirty = true;
2ef7eeaa
EA
3188 }
3189
1c5d22f7
CW
3190 trace_i915_gem_object_change_domain(obj,
3191 old_read_domains,
3192 old_write_domain);
3193
a4f5ea64 3194 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3195 return 0;
3196}
3197
ef55f92a
CW
3198/**
3199 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3200 * @obj: object to act on
3201 * @cache_level: new cache level to set for the object
ef55f92a
CW
3202 *
3203 * After this function returns, the object will be in the new cache-level
3204 * across all GTT and the contents of the backing storage will be coherent,
3205 * with respect to the new cache-level. In order to keep the backing storage
3206 * coherent for all users, we only allow a single cache level to be set
3207 * globally on the object and prevent it from being changed whilst the
3208 * hardware is reading from the object. That is if the object is currently
3209 * on the scanout it will be set to uncached (or equivalent display
3210 * cache coherency) and all non-MOCS GPU access will also be uncached so
3211 * that all direct access to the scanout remains coherent.
3212 */
e4ffd173
CW
3213int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3214 enum i915_cache_level cache_level)
3215{
aa653a68 3216 struct i915_vma *vma;
a6a7cc4b 3217 int ret;
e4ffd173 3218
4c7d62c6
CW
3219 lockdep_assert_held(&obj->base.dev->struct_mutex);
3220
e4ffd173 3221 if (obj->cache_level == cache_level)
a6a7cc4b 3222 return 0;
e4ffd173 3223
ef55f92a
CW
3224 /* Inspect the list of currently bound VMA and unbind any that would
3225 * be invalid given the new cache-level. This is principally to
3226 * catch the issue of the CS prefetch crossing page boundaries and
3227 * reading an invalid PTE on older architectures.
3228 */
aa653a68
CW
3229restart:
3230 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3231 if (!drm_mm_node_allocated(&vma->node))
3232 continue;
3233
20dfbde4 3234 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3235 DRM_DEBUG("can not change the cache level of pinned objects\n");
3236 return -EBUSY;
3237 }
3238
aa653a68
CW
3239 if (i915_gem_valid_gtt_space(vma, cache_level))
3240 continue;
3241
3242 ret = i915_vma_unbind(vma);
3243 if (ret)
3244 return ret;
3245
3246 /* As unbinding may affect other elements in the
3247 * obj->vma_list (due to side-effects from retiring
3248 * an active vma), play safe and restart the iterator.
3249 */
3250 goto restart;
42d6ab48
CW
3251 }
3252
ef55f92a
CW
3253 /* We can reuse the existing drm_mm nodes but need to change the
3254 * cache-level on the PTE. We could simply unbind them all and
3255 * rebind with the correct cache-level on next use. However since
3256 * we already have a valid slot, dma mapping, pages etc, we may as
3257 * rewrite the PTE in the belief that doing so tramples upon less
3258 * state and so involves less work.
3259 */
15717de2 3260 if (obj->bind_count) {
ef55f92a
CW
3261 /* Before we change the PTE, the GPU must not be accessing it.
3262 * If we wait upon the object, we know that all the bound
3263 * VMA are no longer active.
3264 */
e95433c7
CW
3265 ret = i915_gem_object_wait(obj,
3266 I915_WAIT_INTERRUPTIBLE |
3267 I915_WAIT_LOCKED |
3268 I915_WAIT_ALL,
3269 MAX_SCHEDULE_TIMEOUT,
3270 NULL);
e4ffd173
CW
3271 if (ret)
3272 return ret;
3273
0031fb96
TU
3274 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3275 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3276 /* Access to snoopable pages through the GTT is
3277 * incoherent and on some machines causes a hard
3278 * lockup. Relinquish the CPU mmaping to force
3279 * userspace to refault in the pages and we can
3280 * then double check if the GTT mapping is still
3281 * valid for that pointer access.
3282 */
3283 i915_gem_release_mmap(obj);
3284
3285 /* As we no longer need a fence for GTT access,
3286 * we can relinquish it now (and so prevent having
3287 * to steal a fence from someone else on the next
3288 * fence request). Note GPU activity would have
3289 * dropped the fence as all snoopable access is
3290 * supposed to be linear.
3291 */
49ef5294
CW
3292 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3293 ret = i915_vma_put_fence(vma);
3294 if (ret)
3295 return ret;
3296 }
ef55f92a
CW
3297 } else {
3298 /* We either have incoherent backing store and
3299 * so no GTT access or the architecture is fully
3300 * coherent. In such cases, existing GTT mmaps
3301 * ignore the cache bit in the PTE and we can
3302 * rewrite it without confusing the GPU or having
3303 * to force userspace to fault back in its mmaps.
3304 */
e4ffd173
CW
3305 }
3306
1c7f4bca 3307 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3308 if (!drm_mm_node_allocated(&vma->node))
3309 continue;
3310
3311 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3312 if (ret)
3313 return ret;
3314 }
e4ffd173
CW
3315 }
3316
a6a7cc4b
CW
3317 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3318 cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3319 obj->cache_dirty = true;
3320
1c7f4bca 3321 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3322 vma->node.color = cache_level;
3323 obj->cache_level = cache_level;
3324
e4ffd173
CW
3325 return 0;
3326}
3327
199adf40
BW
3328int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3329 struct drm_file *file)
e6994aee 3330{
199adf40 3331 struct drm_i915_gem_caching *args = data;
e6994aee 3332 struct drm_i915_gem_object *obj;
fbbd37b3 3333 int err = 0;
e6994aee 3334
fbbd37b3
CW
3335 rcu_read_lock();
3336 obj = i915_gem_object_lookup_rcu(file, args->handle);
3337 if (!obj) {
3338 err = -ENOENT;
3339 goto out;
3340 }
e6994aee 3341
651d794f
CW
3342 switch (obj->cache_level) {
3343 case I915_CACHE_LLC:
3344 case I915_CACHE_L3_LLC:
3345 args->caching = I915_CACHING_CACHED;
3346 break;
3347
4257d3ba
CW
3348 case I915_CACHE_WT:
3349 args->caching = I915_CACHING_DISPLAY;
3350 break;
3351
651d794f
CW
3352 default:
3353 args->caching = I915_CACHING_NONE;
3354 break;
3355 }
fbbd37b3
CW
3356out:
3357 rcu_read_unlock();
3358 return err;
e6994aee
CW
3359}
3360
199adf40
BW
3361int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3362 struct drm_file *file)
e6994aee 3363{
9c870d03 3364 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3365 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3366 struct drm_i915_gem_object *obj;
3367 enum i915_cache_level level;
3368 int ret;
3369
199adf40
BW
3370 switch (args->caching) {
3371 case I915_CACHING_NONE:
e6994aee
CW
3372 level = I915_CACHE_NONE;
3373 break;
199adf40 3374 case I915_CACHING_CACHED:
e5756c10
ID
3375 /*
3376 * Due to a HW issue on BXT A stepping, GPU stores via a
3377 * snooped mapping may leave stale data in a corresponding CPU
3378 * cacheline, whereas normally such cachelines would get
3379 * invalidated.
3380 */
9c870d03 3381 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3382 return -ENODEV;
3383
e6994aee
CW
3384 level = I915_CACHE_LLC;
3385 break;
4257d3ba 3386 case I915_CACHING_DISPLAY:
9c870d03 3387 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3388 break;
e6994aee
CW
3389 default:
3390 return -EINVAL;
3391 }
3392
3bc2913e
BW
3393 ret = i915_mutex_lock_interruptible(dev);
3394 if (ret)
9c870d03 3395 return ret;
3bc2913e 3396
03ac0642
CW
3397 obj = i915_gem_object_lookup(file, args->handle);
3398 if (!obj) {
e6994aee
CW
3399 ret = -ENOENT;
3400 goto unlock;
3401 }
3402
3403 ret = i915_gem_object_set_cache_level(obj, level);
f8c417cd 3404 i915_gem_object_put(obj);
e6994aee
CW
3405unlock:
3406 mutex_unlock(&dev->struct_mutex);
3407 return ret;
3408}
3409
b9241ea3 3410/*
2da3b9b9
CW
3411 * Prepare buffer for display plane (scanout, cursors, etc).
3412 * Can be called from an uninterruptible phase (modesetting) and allows
3413 * any flushes to be pipelined (for pageflips).
b9241ea3 3414 */
058d88c4 3415struct i915_vma *
2da3b9b9
CW
3416i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3417 u32 alignment,
e6617330 3418 const struct i915_ggtt_view *view)
b9241ea3 3419{
058d88c4 3420 struct i915_vma *vma;
2da3b9b9 3421 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3422 int ret;
3423
4c7d62c6
CW
3424 lockdep_assert_held(&obj->base.dev->struct_mutex);
3425
cc98b413
CW
3426 /* Mark the pin_display early so that we account for the
3427 * display coherency whilst setting up the cache domains.
3428 */
8a0c39b1 3429 obj->pin_display++;
cc98b413 3430
a7ef0640
EA
3431 /* The display engine is not coherent with the LLC cache on gen6. As
3432 * a result, we make sure that the pinning that is about to occur is
3433 * done with uncached PTEs. This is lowest common denominator for all
3434 * chipsets.
3435 *
3436 * However for gen6+, we could do better by using the GFDT bit instead
3437 * of uncaching, which would allow us to flush all the LLC-cached data
3438 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3439 */
651d794f 3440 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3441 HAS_WT(to_i915(obj->base.dev)) ?
3442 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3443 if (ret) {
3444 vma = ERR_PTR(ret);
cc98b413 3445 goto err_unpin_display;
058d88c4 3446 }
a7ef0640 3447
2da3b9b9
CW
3448 /* As the user may map the buffer once pinned in the display plane
3449 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3450 * always use map_and_fenceable for all scanout buffers. However,
3451 * it may simply be too big to fit into mappable, in which case
3452 * put it anyway and hope that userspace can cope (but always first
3453 * try to preserve the existing ABI).
2da3b9b9 3454 */
2efb813d
CW
3455 vma = ERR_PTR(-ENOSPC);
3456 if (view->type == I915_GGTT_VIEW_NORMAL)
3457 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3458 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3459 if (IS_ERR(vma)) {
3460 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3461 unsigned int flags;
3462
3463 /* Valleyview is definitely limited to scanning out the first
3464 * 512MiB. Lets presume this behaviour was inherited from the
3465 * g4x display engine and that all earlier gen are similarly
3466 * limited. Testing suggests that it is a little more
3467 * complicated than this. For example, Cherryview appears quite
3468 * happy to scanout from anywhere within its global aperture.
3469 */
3470 flags = 0;
3471 if (HAS_GMCH_DISPLAY(i915))
3472 flags = PIN_MAPPABLE;
3473 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3474 }
058d88c4 3475 if (IS_ERR(vma))
cc98b413 3476 goto err_unpin_display;
2da3b9b9 3477
d8923dcf
CW
3478 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3479
a6a7cc4b
CW
3480 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3481 if (obj->cache_dirty) {
3482 i915_gem_clflush_object(obj, true);
3483 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3484 }
b118c1e3 3485
2da3b9b9 3486 old_write_domain = obj->base.write_domain;
05394f39 3487 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3488
3489 /* It should now be out of any other write domains, and we can update
3490 * the domain values for our changes.
3491 */
e5f1d962 3492 obj->base.write_domain = 0;
05394f39 3493 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3494
3495 trace_i915_gem_object_change_domain(obj,
3496 old_read_domains,
2da3b9b9 3497 old_write_domain);
b9241ea3 3498
058d88c4 3499 return vma;
cc98b413
CW
3500
3501err_unpin_display:
8a0c39b1 3502 obj->pin_display--;
058d88c4 3503 return vma;
cc98b413
CW
3504}
3505
3506void
058d88c4 3507i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3508{
4c7d62c6
CW
3509 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3510
058d88c4 3511 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3512 return;
3513
d8923dcf
CW
3514 if (--vma->obj->pin_display == 0)
3515 vma->display_alignment = 0;
e6617330 3516
383d5823
CW
3517 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3518 if (!i915_vma_is_active(vma))
3519 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3520
058d88c4 3521 i915_vma_unpin(vma);
b9241ea3
ZW
3522}
3523
e47c68e9
EA
3524/**
3525 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3526 * @obj: object to act on
3527 * @write: requesting write or read-only access
e47c68e9
EA
3528 *
3529 * This function returns when the move is complete, including waiting on
3530 * flushes to occur.
3531 */
dabdfe02 3532int
919926ae 3533i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3534{
1c5d22f7 3535 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3536 int ret;
3537
e95433c7 3538 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3539
e95433c7
CW
3540 ret = i915_gem_object_wait(obj,
3541 I915_WAIT_INTERRUPTIBLE |
3542 I915_WAIT_LOCKED |
3543 (write ? I915_WAIT_ALL : 0),
3544 MAX_SCHEDULE_TIMEOUT,
3545 NULL);
88241785
CW
3546 if (ret)
3547 return ret;
3548
c13d87ea
CW
3549 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3550 return 0;
3551
e47c68e9 3552 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3553
05394f39
CW
3554 old_write_domain = obj->base.write_domain;
3555 old_read_domains = obj->base.read_domains;
1c5d22f7 3556
e47c68e9 3557 /* Flush the CPU cache if it's still invalid. */
05394f39 3558 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3559 i915_gem_clflush_object(obj, false);
2ef7eeaa 3560
05394f39 3561 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3562 }
3563
3564 /* It should now be out of any other write domains, and we can update
3565 * the domain values for our changes.
3566 */
40e62d5d 3567 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3568
3569 /* If we're writing through the CPU, then the GPU read domains will
3570 * need to be invalidated at next use.
3571 */
3572 if (write) {
05394f39
CW
3573 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3574 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3575 }
2ef7eeaa 3576
1c5d22f7
CW
3577 trace_i915_gem_object_change_domain(obj,
3578 old_read_domains,
3579 old_write_domain);
3580
2ef7eeaa
EA
3581 return 0;
3582}
3583
673a394b
EA
3584/* Throttle our rendering by waiting until the ring has completed our requests
3585 * emitted over 20 msec ago.
3586 *
b962442e
EA
3587 * Note that if we were to use the current jiffies each time around the loop,
3588 * we wouldn't escape the function with any frames outstanding if the time to
3589 * render a frame was over 20ms.
3590 *
673a394b
EA
3591 * This should get us reasonable parallelism between CPU and GPU but also
3592 * relatively low latency when blocking on a particular request to finish.
3593 */
40a5f0de 3594static int
f787a5f5 3595i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3596{
fac5e23e 3597 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3598 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3599 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3600 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 3601 long ret;
93533c29 3602
f4457ae7
CW
3603 /* ABI: return -EIO if already wedged */
3604 if (i915_terminally_wedged(&dev_priv->gpu_error))
3605 return -EIO;
e110e8d6 3606
1c25595f 3607 spin_lock(&file_priv->mm.lock);
f787a5f5 3608 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3609 if (time_after_eq(request->emitted_jiffies, recent_enough))
3610 break;
40a5f0de 3611
fcfa423c
JH
3612 /*
3613 * Note that the request might not have been submitted yet.
3614 * In which case emitted_jiffies will be zero.
3615 */
3616 if (!request->emitted_jiffies)
3617 continue;
3618
54fb2411 3619 target = request;
b962442e 3620 }
ff865885 3621 if (target)
e8a261ea 3622 i915_gem_request_get(target);
1c25595f 3623 spin_unlock(&file_priv->mm.lock);
40a5f0de 3624
54fb2411 3625 if (target == NULL)
f787a5f5 3626 return 0;
2bc43b5c 3627
e95433c7
CW
3628 ret = i915_wait_request(target,
3629 I915_WAIT_INTERRUPTIBLE,
3630 MAX_SCHEDULE_TIMEOUT);
e8a261ea 3631 i915_gem_request_put(target);
ff865885 3632
e95433c7 3633 return ret < 0 ? ret : 0;
40a5f0de
EA
3634}
3635
058d88c4 3636struct i915_vma *
ec7adb6e
JL
3637i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3638 const struct i915_ggtt_view *view,
91b2db6f 3639 u64 size,
2ffffd0f
CW
3640 u64 alignment,
3641 u64 flags)
ec7adb6e 3642{
ad16d2ed
CW
3643 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3644 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
3645 struct i915_vma *vma;
3646 int ret;
72e96d64 3647
4c7d62c6
CW
3648 lockdep_assert_held(&obj->base.dev->struct_mutex);
3649
058d88c4 3650 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
59bfa124 3651 if (IS_ERR(vma))
058d88c4 3652 return vma;
59bfa124
CW
3653
3654 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3655 if (flags & PIN_NONBLOCK &&
3656 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3657 return ERR_PTR(-ENOSPC);
59bfa124 3658
ad16d2ed
CW
3659 if (flags & PIN_MAPPABLE) {
3660 u32 fence_size;
3661
3662 fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3663 i915_gem_object_get_tiling(obj));
3664 /* If the required space is larger than the available
3665 * aperture, we will not able to find a slot for the
3666 * object and unbinding the object now will be in
3667 * vain. Worse, doing so may cause us to ping-pong
3668 * the object in and out of the Global GTT and
3669 * waste a lot of cycles under the mutex.
3670 */
3671 if (fence_size > dev_priv->ggtt.mappable_end)
3672 return ERR_PTR(-E2BIG);
3673
3674 /* If NONBLOCK is set the caller is optimistically
3675 * trying to cache the full object within the mappable
3676 * aperture, and *must* have a fallback in place for
3677 * situations where we cannot bind the object. We
3678 * can be a little more lax here and use the fallback
3679 * more often to avoid costly migrations of ourselves
3680 * and other objects within the aperture.
3681 *
3682 * Half-the-aperture is used as a simple heuristic.
3683 * More interesting would to do search for a free
3684 * block prior to making the commitment to unbind.
3685 * That caters for the self-harm case, and with a
3686 * little more heuristics (e.g. NOFAULT, NOEVICT)
3687 * we could try to minimise harm to others.
3688 */
3689 if (flags & PIN_NONBLOCK &&
3690 fence_size > dev_priv->ggtt.mappable_end / 2)
3691 return ERR_PTR(-ENOSPC);
3692 }
3693
59bfa124
CW
3694 WARN(i915_vma_is_pinned(vma),
3695 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3696 " offset=%08x, req.alignment=%llx,"
3697 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3698 i915_ggtt_offset(vma), alignment,
59bfa124 3699 !!(flags & PIN_MAPPABLE),
05a20d09 3700 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3701 ret = i915_vma_unbind(vma);
3702 if (ret)
058d88c4 3703 return ERR_PTR(ret);
59bfa124
CW
3704 }
3705
058d88c4
CW
3706 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3707 if (ret)
3708 return ERR_PTR(ret);
ec7adb6e 3709
058d88c4 3710 return vma;
673a394b
EA
3711}
3712
edf6b76f 3713static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3714{
3715 /* Note that we could alias engines in the execbuf API, but
3716 * that would be very unwise as it prevents userspace from
3717 * fine control over engine selection. Ahem.
3718 *
3719 * This should be something like EXEC_MAX_ENGINE instead of
3720 * I915_NUM_ENGINES.
3721 */
3722 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3723 return 0x10000 << id;
3724}
3725
3726static __always_inline unsigned int __busy_write_id(unsigned int id)
3727{
70cb472c
CW
3728 /* The uABI guarantees an active writer is also amongst the read
3729 * engines. This would be true if we accessed the activity tracking
3730 * under the lock, but as we perform the lookup of the object and
3731 * its activity locklessly we can not guarantee that the last_write
3732 * being active implies that we have set the same engine flag from
3733 * last_read - hence we always set both read and write busy for
3734 * last_write.
3735 */
3736 return id | __busy_read_flag(id);
3fdc13c7
CW
3737}
3738
edf6b76f 3739static __always_inline unsigned int
d07f0e59 3740__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
3741 unsigned int (*flag)(unsigned int id))
3742{
d07f0e59 3743 struct drm_i915_gem_request *rq;
3fdc13c7 3744
d07f0e59
CW
3745 /* We have to check the current hw status of the fence as the uABI
3746 * guarantees forward progress. We could rely on the idle worker
3747 * to eventually flush us, but to minimise latency just ask the
3748 * hardware.
1255501d 3749 *
d07f0e59 3750 * Note we only report on the status of native fences.
1255501d 3751 */
d07f0e59
CW
3752 if (!dma_fence_is_i915(fence))
3753 return 0;
3754
3755 /* opencode to_request() in order to avoid const warnings */
3756 rq = container_of(fence, struct drm_i915_gem_request, fence);
3757 if (i915_gem_request_completed(rq))
3758 return 0;
3759
3760 return flag(rq->engine->exec_id);
3fdc13c7
CW
3761}
3762
edf6b76f 3763static __always_inline unsigned int
d07f0e59 3764busy_check_reader(const struct dma_fence *fence)
3fdc13c7 3765{
d07f0e59 3766 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
3767}
3768
edf6b76f 3769static __always_inline unsigned int
d07f0e59 3770busy_check_writer(const struct dma_fence *fence)
3fdc13c7 3771{
d07f0e59
CW
3772 if (!fence)
3773 return 0;
3774
3775 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
3776}
3777
673a394b
EA
3778int
3779i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3780 struct drm_file *file)
673a394b
EA
3781{
3782 struct drm_i915_gem_busy *args = data;
05394f39 3783 struct drm_i915_gem_object *obj;
d07f0e59
CW
3784 struct reservation_object_list *list;
3785 unsigned int seq;
fbbd37b3 3786 int err;
673a394b 3787
d07f0e59 3788 err = -ENOENT;
fbbd37b3
CW
3789 rcu_read_lock();
3790 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 3791 if (!obj)
fbbd37b3 3792 goto out;
d1b851fc 3793
d07f0e59
CW
3794 /* A discrepancy here is that we do not report the status of
3795 * non-i915 fences, i.e. even though we may report the object as idle,
3796 * a call to set-domain may still stall waiting for foreign rendering.
3797 * This also means that wait-ioctl may report an object as busy,
3798 * where busy-ioctl considers it idle.
3799 *
3800 * We trade the ability to warn of foreign fences to report on which
3801 * i915 engines are active for the object.
3802 *
3803 * Alternatively, we can trade that extra information on read/write
3804 * activity with
3805 * args->busy =
3806 * !reservation_object_test_signaled_rcu(obj->resv, true);
3807 * to report the overall busyness. This is what the wait-ioctl does.
3808 *
3809 */
3810retry:
3811 seq = raw_read_seqcount(&obj->resv->seq);
426960be 3812
d07f0e59
CW
3813 /* Translate the exclusive fence to the READ *and* WRITE engine */
3814 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 3815
d07f0e59
CW
3816 /* Translate shared fences to READ set of engines */
3817 list = rcu_dereference(obj->resv->fence);
3818 if (list) {
3819 unsigned int shared_count = list->shared_count, i;
3fdc13c7 3820
d07f0e59
CW
3821 for (i = 0; i < shared_count; ++i) {
3822 struct dma_fence *fence =
3823 rcu_dereference(list->shared[i]);
3824
3825 args->busy |= busy_check_reader(fence);
3826 }
426960be 3827 }
673a394b 3828
d07f0e59
CW
3829 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3830 goto retry;
3831
3832 err = 0;
fbbd37b3
CW
3833out:
3834 rcu_read_unlock();
3835 return err;
673a394b
EA
3836}
3837
3838int
3839i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3840 struct drm_file *file_priv)
3841{
0206e353 3842 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3843}
3844
3ef94daa
CW
3845int
3846i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3847 struct drm_file *file_priv)
3848{
fac5e23e 3849 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 3850 struct drm_i915_gem_madvise *args = data;
05394f39 3851 struct drm_i915_gem_object *obj;
1233e2db 3852 int err;
3ef94daa
CW
3853
3854 switch (args->madv) {
3855 case I915_MADV_DONTNEED:
3856 case I915_MADV_WILLNEED:
3857 break;
3858 default:
3859 return -EINVAL;
3860 }
3861
03ac0642 3862 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
3863 if (!obj)
3864 return -ENOENT;
3865
3866 err = mutex_lock_interruptible(&obj->mm.lock);
3867 if (err)
3868 goto out;
3ef94daa 3869
a4f5ea64 3870 if (obj->mm.pages &&
3e510a8e 3871 i915_gem_object_is_tiled(obj) &&
656bfa3a 3872 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
3873 if (obj->mm.madv == I915_MADV_WILLNEED) {
3874 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 3875 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
3876 obj->mm.quirked = false;
3877 }
3878 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 3879 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 3880 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
3881 obj->mm.quirked = true;
3882 }
656bfa3a
DV
3883 }
3884
a4f5ea64
CW
3885 if (obj->mm.madv != __I915_MADV_PURGED)
3886 obj->mm.madv = args->madv;
3ef94daa 3887
6c085a72 3888 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 3889 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
3890 i915_gem_object_truncate(obj);
3891
a4f5ea64 3892 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 3893 mutex_unlock(&obj->mm.lock);
bb6baf76 3894
1233e2db 3895out:
f8c417cd 3896 i915_gem_object_put(obj);
1233e2db 3897 return err;
3ef94daa
CW
3898}
3899
5b8c8aec
CW
3900static void
3901frontbuffer_retire(struct i915_gem_active *active,
3902 struct drm_i915_gem_request *request)
3903{
3904 struct drm_i915_gem_object *obj =
3905 container_of(active, typeof(*obj), frontbuffer_write);
3906
3907 intel_fb_obj_flush(obj, true, ORIGIN_CS);
3908}
3909
37e680a1
CW
3910void i915_gem_object_init(struct drm_i915_gem_object *obj,
3911 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3912{
1233e2db
CW
3913 mutex_init(&obj->mm.lock);
3914
56cea323 3915 INIT_LIST_HEAD(&obj->global_link);
275f039d 3916 INIT_LIST_HEAD(&obj->userfault_link);
b25cb2f8 3917 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 3918 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 3919 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 3920
37e680a1
CW
3921 obj->ops = ops;
3922
d07f0e59
CW
3923 reservation_object_init(&obj->__builtin_resv);
3924 obj->resv = &obj->__builtin_resv;
3925
50349247 3926 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 3927 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
3928
3929 obj->mm.madv = I915_MADV_WILLNEED;
3930 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3931 mutex_init(&obj->mm.get_page.lock);
0327d6ba 3932
f19ec8cb 3933 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
3934}
3935
37e680a1 3936static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
3937 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3938 I915_GEM_OBJECT_IS_SHRINKABLE,
37e680a1
CW
3939 .get_pages = i915_gem_object_get_pages_gtt,
3940 .put_pages = i915_gem_object_put_pages_gtt,
3941};
3942
b4bcbe2a
CW
3943/* Note we don't consider signbits :| */
3944#define overflows_type(x, T) \
3945 (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3946
3947struct drm_i915_gem_object *
3948i915_gem_object_create(struct drm_device *dev, u64 size)
ac52bc56 3949{
a26e5239 3950 struct drm_i915_private *dev_priv = to_i915(dev);
c397b908 3951 struct drm_i915_gem_object *obj;
5949eac4 3952 struct address_space *mapping;
1a240d4d 3953 gfp_t mask;
fe3db79b 3954 int ret;
ac52bc56 3955
b4bcbe2a
CW
3956 /* There is a prevalence of the assumption that we fit the object's
3957 * page count inside a 32bit _signed_ variable. Let's document this and
3958 * catch if we ever need to fix it. In the meantime, if you do spot
3959 * such a local variable, please consider fixing!
3960 */
3961 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3962 return ERR_PTR(-E2BIG);
3963
3964 if (overflows_type(size, obj->base.size))
3965 return ERR_PTR(-E2BIG);
3966
42dcedd4 3967 obj = i915_gem_object_alloc(dev);
c397b908 3968 if (obj == NULL)
fe3db79b 3969 return ERR_PTR(-ENOMEM);
673a394b 3970
fe3db79b
CW
3971 ret = drm_gem_object_init(dev, &obj->base, size);
3972 if (ret)
3973 goto fail;
673a394b 3974
bed1ea95 3975 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
a26e5239 3976 if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
bed1ea95
CW
3977 /* 965gm cannot relocate objects above 4GiB. */
3978 mask &= ~__GFP_HIGHMEM;
3979 mask |= __GFP_DMA32;
3980 }
3981
93c76a3d 3982 mapping = obj->base.filp->f_mapping;
bed1ea95 3983 mapping_set_gfp_mask(mapping, mask);
5949eac4 3984
37e680a1 3985 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3986
c397b908
DV
3987 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3988 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3989
0031fb96 3990 if (HAS_LLC(dev_priv)) {
3d29b842 3991 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3992 * cache) for about a 10% performance improvement
3993 * compared to uncached. Graphics requests other than
3994 * display scanout are coherent with the CPU in
3995 * accessing this cache. This means in this mode we
3996 * don't need to clflush on the CPU side, and on the
3997 * GPU side we only need to flush internal caches to
3998 * get data visible to the CPU.
3999 *
4000 * However, we maintain the display planes as UC, and so
4001 * need to rebind when first used as such.
4002 */
4003 obj->cache_level = I915_CACHE_LLC;
4004 } else
4005 obj->cache_level = I915_CACHE_NONE;
4006
d861e338
DV
4007 trace_i915_gem_object_create(obj);
4008
05394f39 4009 return obj;
fe3db79b
CW
4010
4011fail:
4012 i915_gem_object_free(obj);
fe3db79b 4013 return ERR_PTR(ret);
c397b908
DV
4014}
4015
340fbd8c
CW
4016static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4017{
4018 /* If we are the last user of the backing storage (be it shmemfs
4019 * pages or stolen etc), we know that the pages are going to be
4020 * immediately released. In this case, we can then skip copying
4021 * back the contents from the GPU.
4022 */
4023
a4f5ea64 4024 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4025 return false;
4026
4027 if (obj->base.filp == NULL)
4028 return true;
4029
4030 /* At first glance, this looks racy, but then again so would be
4031 * userspace racing mmap against close. However, the first external
4032 * reference to the filp can only be obtained through the
4033 * i915_gem_mmap_ioctl() which safeguards us against the user
4034 * acquiring such a reference whilst we are in the middle of
4035 * freeing the object.
4036 */
4037 return atomic_long_read(&obj->base.filp->f_count) == 1;
4038}
4039
fbbd37b3
CW
4040static void __i915_gem_free_objects(struct drm_i915_private *i915,
4041 struct llist_node *freed)
673a394b 4042{
fbbd37b3 4043 struct drm_i915_gem_object *obj, *on;
673a394b 4044
fbbd37b3
CW
4045 mutex_lock(&i915->drm.struct_mutex);
4046 intel_runtime_pm_get(i915);
4047 llist_for_each_entry(obj, freed, freed) {
4048 struct i915_vma *vma, *vn;
4049
4050 trace_i915_gem_object_destroy(obj);
4051
4052 GEM_BUG_ON(i915_gem_object_is_active(obj));
4053 list_for_each_entry_safe(vma, vn,
4054 &obj->vma_list, obj_link) {
4055 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4056 GEM_BUG_ON(i915_vma_is_active(vma));
4057 vma->flags &= ~I915_VMA_PIN_MASK;
4058 i915_vma_close(vma);
4059 }
db6c2b41
CW
4060 GEM_BUG_ON(!list_empty(&obj->vma_list));
4061 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4062
56cea323 4063 list_del(&obj->global_link);
fbbd37b3
CW
4064 }
4065 intel_runtime_pm_put(i915);
4066 mutex_unlock(&i915->drm.struct_mutex);
4067
4068 llist_for_each_entry_safe(obj, on, freed, freed) {
4069 GEM_BUG_ON(obj->bind_count);
4070 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4071
4072 if (obj->ops->release)
4073 obj->ops->release(obj);
f65c9168 4074
fbbd37b3
CW
4075 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4076 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4077 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
fbbd37b3
CW
4078 GEM_BUG_ON(obj->mm.pages);
4079
4080 if (obj->base.import_attach)
4081 drm_prime_gem_destroy(&obj->base, NULL);
4082
d07f0e59 4083 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4084 drm_gem_object_release(&obj->base);
4085 i915_gem_info_remove_obj(i915, obj->base.size);
4086
4087 kfree(obj->bit_17);
4088 i915_gem_object_free(obj);
4089 }
4090}
4091
4092static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4093{
4094 struct llist_node *freed;
4095
4096 freed = llist_del_all(&i915->mm.free_list);
4097 if (unlikely(freed))
4098 __i915_gem_free_objects(i915, freed);
4099}
4100
4101static void __i915_gem_free_work(struct work_struct *work)
4102{
4103 struct drm_i915_private *i915 =
4104 container_of(work, struct drm_i915_private, mm.free_work);
4105 struct llist_node *freed;
26e12f89 4106
b1f788c6
CW
4107 /* All file-owned VMA should have been released by this point through
4108 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4109 * However, the object may also be bound into the global GTT (e.g.
4110 * older GPUs without per-process support, or for direct access through
4111 * the GTT either for the user or for scanout). Those VMA still need to
4112 * unbound now.
4113 */
1488fc08 4114
fbbd37b3
CW
4115 while ((freed = llist_del_all(&i915->mm.free_list)))
4116 __i915_gem_free_objects(i915, freed);
4117}
a071fa00 4118
fbbd37b3
CW
4119static void __i915_gem_free_object_rcu(struct rcu_head *head)
4120{
4121 struct drm_i915_gem_object *obj =
4122 container_of(head, typeof(*obj), rcu);
4123 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4124
4125 /* We can't simply use call_rcu() from i915_gem_free_object()
4126 * as we need to block whilst unbinding, and the call_rcu
4127 * task may be called from softirq context. So we take a
4128 * detour through a worker.
4129 */
4130 if (llist_add(&obj->freed, &i915->mm.free_list))
4131 schedule_work(&i915->mm.free_work);
4132}
656bfa3a 4133
fbbd37b3
CW
4134void i915_gem_free_object(struct drm_gem_object *gem_obj)
4135{
4136 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4137
bc0629a7
CW
4138 if (obj->mm.quirked)
4139 __i915_gem_object_unpin_pages(obj);
4140
340fbd8c 4141 if (discard_backing_storage(obj))
a4f5ea64 4142 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4143
fbbd37b3
CW
4144 /* Before we free the object, make sure any pure RCU-only
4145 * read-side critical sections are complete, e.g.
4146 * i915_gem_busy_ioctl(). For the corresponding synchronized
4147 * lookup see i915_gem_object_lookup_rcu().
4148 */
4149 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4150}
4151
f8a7fde4
CW
4152void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4153{
4154 lockdep_assert_held(&obj->base.dev->struct_mutex);
4155
4156 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4157 if (i915_gem_object_is_active(obj))
4158 i915_gem_object_set_active_reference(obj);
4159 else
4160 i915_gem_object_put(obj);
4161}
4162
3033acab
CW
4163static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4164{
4165 struct intel_engine_cs *engine;
4166 enum intel_engine_id id;
4167
4168 for_each_engine(engine, dev_priv, id)
4169 GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4170}
4171
dcff85c8 4172int i915_gem_suspend(struct drm_device *dev)
29105ccc 4173{
fac5e23e 4174 struct drm_i915_private *dev_priv = to_i915(dev);
dcff85c8 4175 int ret;
28dfe52a 4176
54b4f68f
CW
4177 intel_suspend_gt_powersave(dev_priv);
4178
45c5f202 4179 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4180
4181 /* We have to flush all the executing contexts to main memory so
4182 * that they can saved in the hibernation image. To ensure the last
4183 * context image is coherent, we have to switch away from it. That
4184 * leaves the dev_priv->kernel_context still active when
4185 * we actually suspend, and its image in memory may not match the GPU
4186 * state. Fortunately, the kernel_context is disposable and we do
4187 * not rely on its state.
4188 */
4189 ret = i915_gem_switch_to_kernel_context(dev_priv);
4190 if (ret)
4191 goto err;
4192
22dd3bb9
CW
4193 ret = i915_gem_wait_for_idle(dev_priv,
4194 I915_WAIT_INTERRUPTIBLE |
4195 I915_WAIT_LOCKED);
f7403347 4196 if (ret)
45c5f202 4197 goto err;
f7403347 4198
c033666a 4199 i915_gem_retire_requests(dev_priv);
28176ef4 4200 GEM_BUG_ON(dev_priv->gt.active_requests);
673a394b 4201
3033acab 4202 assert_kernel_context_is_current(dev_priv);
b2e862d0 4203 i915_gem_context_lost(dev_priv);
45c5f202
CW
4204 mutex_unlock(&dev->struct_mutex);
4205
737b1506 4206 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4207 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4208 flush_delayed_work(&dev_priv->gt.idle_work);
fbbd37b3 4209 flush_work(&dev_priv->mm.free_work);
29105ccc 4210
bdcf120b
CW
4211 /* Assert that we sucessfully flushed all the work and
4212 * reset the GPU back to its idle, low power state.
4213 */
67d97da3 4214 WARN_ON(dev_priv->gt.awake);
31ab49ab 4215 WARN_ON(!intel_execlists_idle(dev_priv));
bdcf120b 4216
1c777c5d
ID
4217 /*
4218 * Neither the BIOS, ourselves or any other kernel
4219 * expects the system to be in execlists mode on startup,
4220 * so we need to reset the GPU back to legacy mode. And the only
4221 * known way to disable logical contexts is through a GPU reset.
4222 *
4223 * So in order to leave the system in a known default configuration,
4224 * always reset the GPU upon unload and suspend. Afterwards we then
4225 * clean up the GEM state tracking, flushing off the requests and
4226 * leaving the system in a known idle state.
4227 *
4228 * Note that is of the upmost importance that the GPU is idle and
4229 * all stray writes are flushed *before* we dismantle the backing
4230 * storage for the pinned objects.
4231 *
4232 * However, since we are uncertain that resetting the GPU on older
4233 * machines is a good idea, we don't - just in case it leaves the
4234 * machine in an unusable condition.
4235 */
0031fb96 4236 if (HAS_HW_CONTEXTS(dev_priv)) {
1c777c5d
ID
4237 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4238 WARN_ON(reset && reset != -ENODEV);
4239 }
4240
673a394b 4241 return 0;
45c5f202
CW
4242
4243err:
4244 mutex_unlock(&dev->struct_mutex);
4245 return ret;
673a394b
EA
4246}
4247
5ab57c70
CW
4248void i915_gem_resume(struct drm_device *dev)
4249{
4250 struct drm_i915_private *dev_priv = to_i915(dev);
4251
31ab49ab
ID
4252 WARN_ON(dev_priv->gt.awake);
4253
5ab57c70 4254 mutex_lock(&dev->struct_mutex);
275a991c 4255 i915_gem_restore_gtt_mappings(dev_priv);
5ab57c70
CW
4256
4257 /* As we didn't flush the kernel context before suspend, we cannot
4258 * guarantee that the context image is complete. So let's just reset
4259 * it and start again.
4260 */
821ed7df 4261 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4262
4263 mutex_unlock(&dev->struct_mutex);
4264}
4265
c6be607a 4266void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4267{
c6be607a 4268 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4269 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4270 return;
4271
4272 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4273 DISP_TILE_SURFACE_SWIZZLING);
4274
5db94019 4275 if (IS_GEN5(dev_priv))
11782b02
DV
4276 return;
4277
f691e2f4 4278 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4279 if (IS_GEN6(dev_priv))
6b26c86d 4280 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4281 else if (IS_GEN7(dev_priv))
6b26c86d 4282 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4283 else if (IS_GEN8(dev_priv))
31a5336e 4284 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4285 else
4286 BUG();
f691e2f4 4287}
e21af88d 4288
50a0bc90 4289static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4290{
81e7f200
VS
4291 I915_WRITE(RING_CTL(base), 0);
4292 I915_WRITE(RING_HEAD(base), 0);
4293 I915_WRITE(RING_TAIL(base), 0);
4294 I915_WRITE(RING_START(base), 0);
4295}
4296
50a0bc90 4297static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4298{
50a0bc90
TU
4299 if (IS_I830(dev_priv)) {
4300 init_unused_ring(dev_priv, PRB1_BASE);
4301 init_unused_ring(dev_priv, SRB0_BASE);
4302 init_unused_ring(dev_priv, SRB1_BASE);
4303 init_unused_ring(dev_priv, SRB2_BASE);
4304 init_unused_ring(dev_priv, SRB3_BASE);
4305 } else if (IS_GEN2(dev_priv)) {
4306 init_unused_ring(dev_priv, SRB0_BASE);
4307 init_unused_ring(dev_priv, SRB1_BASE);
4308 } else if (IS_GEN3(dev_priv)) {
4309 init_unused_ring(dev_priv, PRB1_BASE);
4310 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4311 }
4312}
4313
4fc7c971
BW
4314int
4315i915_gem_init_hw(struct drm_device *dev)
4316{
fac5e23e 4317 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4318 struct intel_engine_cs *engine;
3b3f1650 4319 enum intel_engine_id id;
d200cda6 4320 int ret;
4fc7c971 4321
de867c20
CW
4322 dev_priv->gt.last_init_time = ktime_get();
4323
5e4f5189
CW
4324 /* Double layer security blanket, see i915_gem_init() */
4325 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4326
0031fb96 4327 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4328 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4329
772c2a51 4330 if (IS_HASWELL(dev_priv))
50a0bc90 4331 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4332 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4333
6e266956 4334 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4335 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4336 u32 temp = I915_READ(GEN7_MSG_CTL);
4337 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4338 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4339 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4340 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4341 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4342 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4343 }
88a2b2a3
BW
4344 }
4345
c6be607a 4346 i915_gem_init_swizzling(dev_priv);
4fc7c971 4347
d5abdfda
DV
4348 /*
4349 * At least 830 can leave some of the unused rings
4350 * "active" (ie. head != tail) after resume which
4351 * will prevent c3 entry. Makes sure all unused rings
4352 * are totally idle.
4353 */
50a0bc90 4354 init_unused_rings(dev_priv);
d5abdfda 4355
ed54c1a1 4356 BUG_ON(!dev_priv->kernel_context);
90638cc1 4357
c6be607a 4358 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4359 if (ret) {
4360 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4361 goto out;
4362 }
4363
4364 /* Need to do basic initialisation of all rings first: */
3b3f1650 4365 for_each_engine(engine, dev_priv, id) {
e2f80391 4366 ret = engine->init_hw(engine);
35a57ffb 4367 if (ret)
5e4f5189 4368 goto out;
35a57ffb 4369 }
99433931 4370
0ccdacf6
PA
4371 intel_mocs_init_l3cc_table(dev);
4372
33a732f4 4373 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4374 ret = intel_guc_setup(dev);
4375 if (ret)
4376 goto out;
33a732f4 4377
5e4f5189
CW
4378out:
4379 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4380 return ret;
8187a2b7
ZN
4381}
4382
39df9190
CW
4383bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4384{
4385 if (INTEL_INFO(dev_priv)->gen < 6)
4386 return false;
4387
4388 /* TODO: make semaphores and Execlists play nicely together */
4389 if (i915.enable_execlists)
4390 return false;
4391
4392 if (value >= 0)
4393 return value;
4394
4395#ifdef CONFIG_INTEL_IOMMU
4396 /* Enable semaphores on SNB when IO remapping is off */
4397 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4398 return false;
4399#endif
4400
4401 return true;
4402}
4403
1070a42b
CW
4404int i915_gem_init(struct drm_device *dev)
4405{
fac5e23e 4406 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4407 int ret;
4408
1070a42b 4409 mutex_lock(&dev->struct_mutex);
d62b4892 4410
a83014d3 4411 if (!i915.enable_execlists) {
821ed7df 4412 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4413 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4414 } else {
821ed7df 4415 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4416 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4417 }
4418
5e4f5189
CW
4419 /* This is just a security blanket to placate dragons.
4420 * On some systems, we very sporadically observe that the first TLBs
4421 * used by the CS may be stale, despite us poking the TLB reset. If
4422 * we hold the forcewake during initialisation these problems
4423 * just magically go away.
4424 */
4425 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4426
72778cb2 4427 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4428
4429 ret = i915_gem_init_ggtt(dev_priv);
4430 if (ret)
4431 goto out_unlock;
d62b4892 4432
2fa48d8d 4433 ret = i915_gem_context_init(dev);
7bcc3777
JN
4434 if (ret)
4435 goto out_unlock;
2fa48d8d 4436
8b3e2d36 4437 ret = intel_engines_init(dev);
35a57ffb 4438 if (ret)
7bcc3777 4439 goto out_unlock;
2fa48d8d 4440
1070a42b 4441 ret = i915_gem_init_hw(dev);
60990320 4442 if (ret == -EIO) {
7e21d648 4443 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4444 * wedged. But we only want to do this where the GPU is angry,
4445 * for all other failure, such as an allocation failure, bail.
4446 */
4447 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4448 i915_gem_set_wedged(dev_priv);
60990320 4449 ret = 0;
1070a42b 4450 }
7bcc3777
JN
4451
4452out_unlock:
5e4f5189 4453 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4454 mutex_unlock(&dev->struct_mutex);
1070a42b 4455
60990320 4456 return ret;
1070a42b
CW
4457}
4458
8187a2b7 4459void
117897f4 4460i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4461{
fac5e23e 4462 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4463 struct intel_engine_cs *engine;
3b3f1650 4464 enum intel_engine_id id;
8187a2b7 4465
3b3f1650 4466 for_each_engine(engine, dev_priv, id)
117897f4 4467 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4468}
4469
40ae4e16
ID
4470void
4471i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4472{
49ef5294 4473 int i;
40ae4e16
ID
4474
4475 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4476 !IS_CHERRYVIEW(dev_priv))
4477 dev_priv->num_fence_regs = 32;
4478 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4479 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4480 dev_priv->num_fence_regs = 16;
4481 else
4482 dev_priv->num_fence_regs = 8;
4483
c033666a 4484 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4485 dev_priv->num_fence_regs =
4486 I915_READ(vgtif_reg(avail_rs.fence_num));
4487
4488 /* Initialize fence registers to zero */
49ef5294
CW
4489 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4490 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4491
4492 fence->i915 = dev_priv;
4493 fence->id = i;
4494 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4495 }
4362f4f6 4496 i915_gem_restore_fences(dev_priv);
40ae4e16 4497
4362f4f6 4498 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
4499}
4500
73cb9701 4501int
d64aa096 4502i915_gem_load_init(struct drm_device *dev)
673a394b 4503{
fac5e23e 4504 struct drm_i915_private *dev_priv = to_i915(dev);
a933568e 4505 int err = -ENOMEM;
42dcedd4 4506
a933568e
TU
4507 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4508 if (!dev_priv->objects)
73cb9701 4509 goto err_out;
73cb9701 4510
a933568e
TU
4511 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4512 if (!dev_priv->vmas)
73cb9701 4513 goto err_objects;
73cb9701 4514
a933568e
TU
4515 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4516 SLAB_HWCACHE_ALIGN |
4517 SLAB_RECLAIM_ACCOUNT |
4518 SLAB_DESTROY_BY_RCU);
4519 if (!dev_priv->requests)
73cb9701 4520 goto err_vmas;
73cb9701 4521
52e54209
CW
4522 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4523 SLAB_HWCACHE_ALIGN |
4524 SLAB_RECLAIM_ACCOUNT);
4525 if (!dev_priv->dependencies)
4526 goto err_requests;
4527
73cb9701
CW
4528 mutex_lock(&dev_priv->drm.struct_mutex);
4529 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 4530 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
4531 mutex_unlock(&dev_priv->drm.struct_mutex);
4532 if (err)
52e54209 4533 goto err_dependencies;
673a394b 4534
a33afea5 4535 INIT_LIST_HEAD(&dev_priv->context_list);
fbbd37b3
CW
4536 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4537 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
4538 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4539 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4540 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 4541 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 4542 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4543 i915_gem_retire_work_handler);
67d97da3 4544 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4545 i915_gem_idle_work_handler);
1f15b76f 4546 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4547 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4548
72bfa19c
CW
4549 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4550
6b95a207 4551 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4552
ce453d81
CW
4553 dev_priv->mm.interruptible = true;
4554
6f633402
JL
4555 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4556
b5add959 4557 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701
CW
4558
4559 return 0;
4560
52e54209
CW
4561err_dependencies:
4562 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
4563err_requests:
4564 kmem_cache_destroy(dev_priv->requests);
4565err_vmas:
4566 kmem_cache_destroy(dev_priv->vmas);
4567err_objects:
4568 kmem_cache_destroy(dev_priv->objects);
4569err_out:
4570 return err;
673a394b 4571}
71acb5eb 4572
d64aa096
ID
4573void i915_gem_load_cleanup(struct drm_device *dev)
4574{
4575 struct drm_i915_private *dev_priv = to_i915(dev);
4576
7d5d59e5
CW
4577 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4578
ea84aa77
MA
4579 mutex_lock(&dev_priv->drm.struct_mutex);
4580 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4581 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4582 mutex_unlock(&dev_priv->drm.struct_mutex);
4583
52e54209 4584 kmem_cache_destroy(dev_priv->dependencies);
d64aa096
ID
4585 kmem_cache_destroy(dev_priv->requests);
4586 kmem_cache_destroy(dev_priv->vmas);
4587 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4588
4589 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4590 rcu_barrier();
d64aa096
ID
4591}
4592
6a800eab
CW
4593int i915_gem_freeze(struct drm_i915_private *dev_priv)
4594{
4595 intel_runtime_pm_get(dev_priv);
4596
4597 mutex_lock(&dev_priv->drm.struct_mutex);
4598 i915_gem_shrink_all(dev_priv);
4599 mutex_unlock(&dev_priv->drm.struct_mutex);
4600
4601 intel_runtime_pm_put(dev_priv);
4602
4603 return 0;
4604}
4605
461fb99c
CW
4606int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4607{
4608 struct drm_i915_gem_object *obj;
7aab2d53
CW
4609 struct list_head *phases[] = {
4610 &dev_priv->mm.unbound_list,
4611 &dev_priv->mm.bound_list,
4612 NULL
4613 }, **p;
461fb99c
CW
4614
4615 /* Called just before we write the hibernation image.
4616 *
4617 * We need to update the domain tracking to reflect that the CPU
4618 * will be accessing all the pages to create and restore from the
4619 * hibernation, and so upon restoration those pages will be in the
4620 * CPU domain.
4621 *
4622 * To make sure the hibernation image contains the latest state,
4623 * we update that state just before writing out the image.
7aab2d53
CW
4624 *
4625 * To try and reduce the hibernation image, we manually shrink
4626 * the objects as well.
461fb99c
CW
4627 */
4628
6a800eab
CW
4629 mutex_lock(&dev_priv->drm.struct_mutex);
4630 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
461fb99c 4631
7aab2d53 4632 for (p = phases; *p; p++) {
56cea323 4633 list_for_each_entry(obj, *p, global_link) {
7aab2d53
CW
4634 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4635 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4636 }
461fb99c 4637 }
6a800eab 4638 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
4639
4640 return 0;
4641}
4642
f787a5f5 4643void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4644{
f787a5f5 4645 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4646 struct drm_i915_gem_request *request;
b962442e
EA
4647
4648 /* Clean up our request list when the client is going away, so that
4649 * later retire_requests won't dereference our soon-to-be-gone
4650 * file_priv.
4651 */
1c25595f 4652 spin_lock(&file_priv->mm.lock);
15f7bbc7 4653 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4654 request->file_priv = NULL;
1c25595f 4655 spin_unlock(&file_priv->mm.lock);
b29c19b6 4656
2e1b8730 4657 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4658 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4659 list_del(&file_priv->rps.link);
8d3afd7d 4660 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4661 }
b29c19b6
CW
4662}
4663
4664int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4665{
4666 struct drm_i915_file_private *file_priv;
e422b888 4667 int ret;
b29c19b6 4668
c4c29d7b 4669 DRM_DEBUG("\n");
b29c19b6
CW
4670
4671 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4672 if (!file_priv)
4673 return -ENOMEM;
4674
4675 file->driver_priv = file_priv;
f19ec8cb 4676 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4677 file_priv->file = file;
2e1b8730 4678 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4679
4680 spin_lock_init(&file_priv->mm.lock);
4681 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4682
c80ff16e 4683 file_priv->bsd_engine = -1;
de1add36 4684
e422b888
BW
4685 ret = i915_gem_context_open(dev, file);
4686 if (ret)
4687 kfree(file_priv);
b29c19b6 4688
e422b888 4689 return ret;
b29c19b6
CW
4690}
4691
b680c37a
DV
4692/**
4693 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4694 * @old: current GEM buffer for the frontbuffer slots
4695 * @new: new GEM buffer for the frontbuffer slots
4696 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4697 *
4698 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4699 * from @old and setting them in @new. Both @old and @new can be NULL.
4700 */
a071fa00
DV
4701void i915_gem_track_fb(struct drm_i915_gem_object *old,
4702 struct drm_i915_gem_object *new,
4703 unsigned frontbuffer_bits)
4704{
faf5bf0a
CW
4705 /* Control of individual bits within the mask are guarded by
4706 * the owning plane->mutex, i.e. we can never see concurrent
4707 * manipulation of individual bits. But since the bitfield as a whole
4708 * is updated using RMW, we need to use atomics in order to update
4709 * the bits.
4710 */
4711 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4712 sizeof(atomic_t) * BITS_PER_BYTE);
4713
a071fa00 4714 if (old) {
faf5bf0a
CW
4715 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4716 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4717 }
4718
4719 if (new) {
faf5bf0a
CW
4720 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4721 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4722 }
4723}
4724
ea70299d
DG
4725/* Allocate a new GEM object and fill it with the supplied data */
4726struct drm_i915_gem_object *
4727i915_gem_object_create_from_data(struct drm_device *dev,
4728 const void *data, size_t size)
4729{
4730 struct drm_i915_gem_object *obj;
4731 struct sg_table *sg;
4732 size_t bytes;
4733 int ret;
4734
d37cd8a8 4735 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4736 if (IS_ERR(obj))
ea70299d
DG
4737 return obj;
4738
4739 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4740 if (ret)
4741 goto fail;
4742
a4f5ea64 4743 ret = i915_gem_object_pin_pages(obj);
ea70299d
DG
4744 if (ret)
4745 goto fail;
4746
a4f5ea64 4747 sg = obj->mm.pages;
ea70299d 4748 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
a4f5ea64 4749 obj->mm.dirty = true; /* Backing store is now out of date */
ea70299d
DG
4750 i915_gem_object_unpin_pages(obj);
4751
4752 if (WARN_ON(bytes != size)) {
4753 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4754 ret = -EFAULT;
4755 goto fail;
4756 }
4757
4758 return obj;
4759
4760fail:
f8c417cd 4761 i915_gem_object_put(obj);
ea70299d
DG
4762 return ERR_PTR(ret);
4763}
96d77634
CW
4764
4765struct scatterlist *
4766i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4767 unsigned int n,
4768 unsigned int *offset)
4769{
a4f5ea64 4770 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
4771 struct scatterlist *sg;
4772 unsigned int idx, count;
4773
4774 might_sleep();
4775 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 4776 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
4777
4778 /* As we iterate forward through the sg, we record each entry in a
4779 * radixtree for quick repeated (backwards) lookups. If we have seen
4780 * this index previously, we will have an entry for it.
4781 *
4782 * Initial lookup is O(N), but this is amortized to O(1) for
4783 * sequential page access (where each new request is consecutive
4784 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4785 * i.e. O(1) with a large constant!
4786 */
4787 if (n < READ_ONCE(iter->sg_idx))
4788 goto lookup;
4789
4790 mutex_lock(&iter->lock);
4791
4792 /* We prefer to reuse the last sg so that repeated lookup of this
4793 * (or the subsequent) sg are fast - comparing against the last
4794 * sg is faster than going through the radixtree.
4795 */
4796
4797 sg = iter->sg_pos;
4798 idx = iter->sg_idx;
4799 count = __sg_page_count(sg);
4800
4801 while (idx + count <= n) {
4802 unsigned long exception, i;
4803 int ret;
4804
4805 /* If we cannot allocate and insert this entry, or the
4806 * individual pages from this range, cancel updating the
4807 * sg_idx so that on this lookup we are forced to linearly
4808 * scan onwards, but on future lookups we will try the
4809 * insertion again (in which case we need to be careful of
4810 * the error return reporting that we have already inserted
4811 * this index).
4812 */
4813 ret = radix_tree_insert(&iter->radix, idx, sg);
4814 if (ret && ret != -EEXIST)
4815 goto scan;
4816
4817 exception =
4818 RADIX_TREE_EXCEPTIONAL_ENTRY |
4819 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4820 for (i = 1; i < count; i++) {
4821 ret = radix_tree_insert(&iter->radix, idx + i,
4822 (void *)exception);
4823 if (ret && ret != -EEXIST)
4824 goto scan;
4825 }
4826
4827 idx += count;
4828 sg = ____sg_next(sg);
4829 count = __sg_page_count(sg);
4830 }
4831
4832scan:
4833 iter->sg_pos = sg;
4834 iter->sg_idx = idx;
4835
4836 mutex_unlock(&iter->lock);
4837
4838 if (unlikely(n < idx)) /* insertion completed by another thread */
4839 goto lookup;
4840
4841 /* In case we failed to insert the entry into the radixtree, we need
4842 * to look beyond the current sg.
4843 */
4844 while (idx + count <= n) {
4845 idx += count;
4846 sg = ____sg_next(sg);
4847 count = __sg_page_count(sg);
4848 }
4849
4850 *offset = n - idx;
4851 return sg;
4852
4853lookup:
4854 rcu_read_lock();
4855
4856 sg = radix_tree_lookup(&iter->radix, n);
4857 GEM_BUG_ON(!sg);
4858
4859 /* If this index is in the middle of multi-page sg entry,
4860 * the radixtree will contain an exceptional entry that points
4861 * to the start of that range. We will return the pointer to
4862 * the base page and the offset of this page within the
4863 * sg entry's range.
4864 */
4865 *offset = 0;
4866 if (unlikely(radix_tree_exception(sg))) {
4867 unsigned long base =
4868 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4869
4870 sg = radix_tree_lookup(&iter->radix, base);
4871 GEM_BUG_ON(!sg);
4872
4873 *offset = n - base;
4874 }
4875
4876 rcu_read_unlock();
4877
4878 return sg;
4879}
4880
4881struct page *
4882i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4883{
4884 struct scatterlist *sg;
4885 unsigned int offset;
4886
4887 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4888
4889 sg = i915_gem_object_get_sg(obj, n, &offset);
4890 return nth_page(sg_page(sg), offset);
4891}
4892
4893/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4894struct page *
4895i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4896 unsigned int n)
4897{
4898 struct page *page;
4899
4900 page = i915_gem_object_get_page(obj, n);
a4f5ea64 4901 if (!obj->mm.dirty)
96d77634
CW
4902 set_page_dirty(page);
4903
4904 return page;
4905}
4906
4907dma_addr_t
4908i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4909 unsigned long n)
4910{
4911 struct scatterlist *sg;
4912 unsigned int offset;
4913
4914 sg = i915_gem_object_get_sg(obj, n, &offset);
4915 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4916}