firewire: Implement topology map and fix a couple of loopback bugs.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / firewire / fw-ohci.c
CommitLineData
ed568912
KH
1/* -*- c-basic-offset: 8 -*-
2 *
3 * fw-ohci.c - Driver for OHCI 1394 boards
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/init.h>
24#include <linux/interrupt.h>
25#include <linux/pci.h>
26#include <linux/delay.h>
27#include <linux/poll.h>
cf3e72fd
AM
28#include <linux/dma-mapping.h>
29
ed568912
KH
30#include <asm/uaccess.h>
31#include <asm/semaphore.h>
32
33#include "fw-transaction.h"
34#include "fw-ohci.h"
35
36#define descriptor_output_more 0
37#define descriptor_output_last (1 << 12)
38#define descriptor_input_more (2 << 12)
39#define descriptor_input_last (3 << 12)
40#define descriptor_status (1 << 11)
41#define descriptor_key_immediate (2 << 8)
42#define descriptor_ping (1 << 7)
43#define descriptor_yy (1 << 6)
44#define descriptor_no_irq (0 << 4)
45#define descriptor_irq_error (1 << 4)
46#define descriptor_irq_always (3 << 4)
47#define descriptor_branch_always (3 << 2)
295e3feb 48#define descriptor_wait (3 << 0)
ed568912
KH
49
50struct descriptor {
51 __le16 req_count;
52 __le16 control;
53 __le32 data_address;
54 __le32 branch_address;
55 __le16 res_count;
56 __le16 transfer_status;
57} __attribute__((aligned(16)));
58
295e3feb
KH
59struct db_descriptor {
60 __le16 first_size;
61 __le16 control;
62 __le16 second_req_count;
63 __le16 first_req_count;
64 __le32 branch_address;
65 __le16 second_res_count;
66 __le16 first_res_count;
67 __le32 reserved0;
68 __le32 first_buffer;
69 __le32 second_buffer;
70 __le32 reserved1;
71} __attribute__((aligned(16)));
72
72e318e0
KH
73#define control_set(regs) (regs)
74#define control_clear(regs) ((regs) + 4)
75#define command_ptr(regs) ((regs) + 12)
76#define context_match(regs) ((regs) + 16)
77
32b46093 78struct ar_buffer {
ed568912 79 struct descriptor descriptor;
32b46093
KH
80 struct ar_buffer *next;
81 __le32 data[0];
82};
ed568912 83
32b46093
KH
84struct ar_context {
85 struct fw_ohci *ohci;
86 struct ar_buffer *current_buffer;
87 struct ar_buffer *last_buffer;
88 void *pointer;
72e318e0 89 u32 regs;
ed568912
KH
90 struct tasklet_struct tasklet;
91};
92
30200739
KH
93struct context;
94
95typedef int (*descriptor_callback_t)(struct context *ctx,
96 struct descriptor *d,
97 struct descriptor *last);
98struct context {
373b2edd 99 struct fw_ohci *ohci;
30200739 100 u32 regs;
373b2edd 101
30200739
KH
102 struct descriptor *buffer;
103 dma_addr_t buffer_bus;
104 size_t buffer_size;
105 struct descriptor *head_descriptor;
106 struct descriptor *tail_descriptor;
107 struct descriptor *tail_descriptor_last;
108 struct descriptor *prev_descriptor;
109
110 descriptor_callback_t callback;
111
373b2edd 112 struct tasklet_struct tasklet;
30200739 113};
30200739 114
ed568912
KH
115#define it_header_sy(v) ((v) << 0)
116#define it_header_tcode(v) ((v) << 4)
117#define it_header_channel(v) ((v) << 8)
118#define it_header_tag(v) ((v) << 14)
119#define it_header_speed(v) ((v) << 16)
120#define it_header_data_length(v) ((v) << 16)
121
122struct iso_context {
123 struct fw_iso_context base;
30200739 124 struct context context;
9b32d5f3
KH
125 void *header;
126 size_t header_length;
ed568912
KH
127};
128
129#define CONFIG_ROM_SIZE 1024
130
131struct fw_ohci {
132 struct fw_card card;
133
e364cf4e 134 u32 version;
ed568912
KH
135 __iomem char *registers;
136 dma_addr_t self_id_bus;
137 __le32 *self_id_cpu;
138 struct tasklet_struct bus_reset_tasklet;
e636fe25 139 int node_id;
ed568912
KH
140 int generation;
141 int request_generation;
142
143 /* Spinlock for accessing fw_ohci data. Never call out of
144 * this driver with this lock held. */
145 spinlock_t lock;
146 u32 self_id_buffer[512];
147
148 /* Config rom buffers */
149 __be32 *config_rom;
150 dma_addr_t config_rom_bus;
151 __be32 *next_config_rom;
152 dma_addr_t next_config_rom_bus;
153 u32 next_header;
154
155 struct ar_context ar_request_ctx;
156 struct ar_context ar_response_ctx;
f319b6a0
KH
157 struct context at_request_ctx;
158 struct context at_response_ctx;
ed568912
KH
159
160 u32 it_context_mask;
161 struct iso_context *it_context_list;
162 u32 ir_context_mask;
163 struct iso_context *ir_context_list;
164};
165
95688e97 166static inline struct fw_ohci *fw_ohci(struct fw_card *card)
ed568912
KH
167{
168 return container_of(card, struct fw_ohci, card);
169}
170
295e3feb
KH
171#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
172#define IR_CONTEXT_BUFFER_FILL 0x80000000
173#define IR_CONTEXT_ISOCH_HEADER 0x40000000
174#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
175#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
176#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
ed568912
KH
177
178#define CONTEXT_RUN 0x8000
179#define CONTEXT_WAKE 0x1000
180#define CONTEXT_DEAD 0x0800
181#define CONTEXT_ACTIVE 0x0400
182
183#define OHCI1394_MAX_AT_REQ_RETRIES 0x2
184#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
185#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
186
187#define FW_OHCI_MAJOR 240
188#define OHCI1394_REGISTER_SIZE 0x800
189#define OHCI_LOOP_COUNT 500
190#define OHCI1394_PCI_HCI_Control 0x40
191#define SELF_ID_BUF_SIZE 0x800
32b46093 192#define OHCI_TCODE_PHY_PACKET 0x0e
e364cf4e 193#define OHCI_VERSION_1_1 0x010010
f319b6a0
KH
194#define ISO_BUFFER_SIZE (64 * 1024)
195#define AT_BUFFER_SIZE 4096
0edeefd9 196
ed568912
KH
197static char ohci_driver_name[] = KBUILD_MODNAME;
198
95688e97 199static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
ed568912
KH
200{
201 writel(data, ohci->registers + offset);
202}
203
95688e97 204static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
ed568912
KH
205{
206 return readl(ohci->registers + offset);
207}
208
95688e97 209static inline void flush_writes(const struct fw_ohci *ohci)
ed568912
KH
210{
211 /* Do a dummy read to flush writes. */
212 reg_read(ohci, OHCI1394_Version);
213}
214
215static int
216ohci_update_phy_reg(struct fw_card *card, int addr,
217 int clear_bits, int set_bits)
218{
219 struct fw_ohci *ohci = fw_ohci(card);
220 u32 val, old;
221
222 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
223 msleep(2);
224 val = reg_read(ohci, OHCI1394_PhyControl);
225 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
226 fw_error("failed to set phy reg bits.\n");
227 return -EBUSY;
228 }
229
230 old = OHCI1394_PhyControl_ReadData(val);
231 old = (old & ~clear_bits) | set_bits;
232 reg_write(ohci, OHCI1394_PhyControl,
233 OHCI1394_PhyControl_Write(addr, old));
234
235 return 0;
236}
237
32b46093 238static int ar_context_add_page(struct ar_context *ctx)
ed568912 239{
32b46093
KH
240 struct device *dev = ctx->ohci->card.device;
241 struct ar_buffer *ab;
242 dma_addr_t ab_bus;
243 size_t offset;
244
245 ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
246 if (ab == NULL)
247 return -ENOMEM;
248
249 ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
250 if (dma_mapping_error(ab_bus)) {
251 free_page((unsigned long) ab);
252 return -ENOMEM;
253 }
254
255 memset(&ab->descriptor, 0, sizeof ab->descriptor);
256 ab->descriptor.control = cpu_to_le16(descriptor_input_more |
257 descriptor_status |
258 descriptor_branch_always);
259 offset = offsetof(struct ar_buffer, data);
260 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
261 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
262 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
263 ab->descriptor.branch_address = 0;
264
265 dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
266
267 ctx->last_buffer->descriptor.branch_address = ab_bus | 1;
268 ctx->last_buffer->next = ab;
269 ctx->last_buffer = ab;
270
72e318e0 271 reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
ed568912 272 flush_writes(ctx->ohci);
32b46093
KH
273
274 return 0;
ed568912
KH
275}
276
32b46093 277static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
ed568912 278{
ed568912 279 struct fw_ohci *ohci = ctx->ohci;
2639a6fb
KH
280 struct fw_packet p;
281 u32 status, length, tcode;
2639a6fb 282
32b46093
KH
283 p.header[0] = le32_to_cpu(buffer[0]);
284 p.header[1] = le32_to_cpu(buffer[1]);
285 p.header[2] = le32_to_cpu(buffer[2]);
2639a6fb
KH
286
287 tcode = (p.header[0] >> 4) & 0x0f;
288 switch (tcode) {
289 case TCODE_WRITE_QUADLET_REQUEST:
290 case TCODE_READ_QUADLET_RESPONSE:
32b46093 291 p.header[3] = (__force __u32) buffer[3];
2639a6fb 292 p.header_length = 16;
32b46093 293 p.payload_length = 0;
2639a6fb
KH
294 break;
295
2639a6fb 296 case TCODE_READ_BLOCK_REQUEST :
32b46093
KH
297 p.header[3] = le32_to_cpu(buffer[3]);
298 p.header_length = 16;
299 p.payload_length = 0;
300 break;
301
302 case TCODE_WRITE_BLOCK_REQUEST:
2639a6fb
KH
303 case TCODE_READ_BLOCK_RESPONSE:
304 case TCODE_LOCK_REQUEST:
305 case TCODE_LOCK_RESPONSE:
32b46093 306 p.header[3] = le32_to_cpu(buffer[3]);
2639a6fb 307 p.header_length = 16;
32b46093 308 p.payload_length = p.header[3] >> 16;
2639a6fb
KH
309 break;
310
311 case TCODE_WRITE_RESPONSE:
312 case TCODE_READ_QUADLET_REQUEST:
32b46093 313 case OHCI_TCODE_PHY_PACKET:
2639a6fb 314 p.header_length = 12;
32b46093 315 p.payload_length = 0;
2639a6fb
KH
316 break;
317 }
ed568912 318
32b46093
KH
319 p.payload = (void *) buffer + p.header_length;
320
321 /* FIXME: What to do about evt_* errors? */
322 length = (p.header_length + p.payload_length + 3) / 4;
323 status = le32_to_cpu(buffer[length]);
324
325 p.ack = ((status >> 16) & 0x1f) - 16;
326 p.speed = (status >> 21) & 0x7;
327 p.timestamp = status & 0xffff;
328 p.generation = ohci->request_generation;
ed568912
KH
329
330 /* The OHCI bus reset handler synthesizes a phy packet with
331 * the new generation number when a bus reset happens (see
332 * section 8.4.2.3). This helps us determine when a request
333 * was received and make sure we send the response in the same
334 * generation. We only need this for requests; for responses
335 * we use the unique tlabel for finding the matching
336 * request. */
337
2639a6fb 338 if (p.ack + 16 == 0x09)
32b46093 339 ohci->request_generation = (buffer[2] >> 16) & 0xff;
ed568912 340 else if (ctx == &ohci->ar_request_ctx)
2639a6fb 341 fw_core_handle_request(&ohci->card, &p);
ed568912 342 else
2639a6fb 343 fw_core_handle_response(&ohci->card, &p);
ed568912 344
32b46093
KH
345 return buffer + length + 1;
346}
ed568912 347
32b46093
KH
348static void ar_context_tasklet(unsigned long data)
349{
350 struct ar_context *ctx = (struct ar_context *)data;
351 struct fw_ohci *ohci = ctx->ohci;
352 struct ar_buffer *ab;
353 struct descriptor *d;
354 void *buffer, *end;
355
356 ab = ctx->current_buffer;
357 d = &ab->descriptor;
358
359 if (d->res_count == 0) {
360 size_t size, rest, offset;
361
362 /* This descriptor is finished and we may have a
363 * packet split across this and the next buffer. We
364 * reuse the page for reassembling the split packet. */
365
366 offset = offsetof(struct ar_buffer, data);
367 dma_unmap_single(ohci->card.device,
368 ab->descriptor.data_address - offset,
369 PAGE_SIZE, DMA_BIDIRECTIONAL);
370
371 buffer = ab;
372 ab = ab->next;
373 d = &ab->descriptor;
374 size = buffer + PAGE_SIZE - ctx->pointer;
375 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
376 memmove(buffer, ctx->pointer, size);
377 memcpy(buffer + size, ab->data, rest);
378 ctx->current_buffer = ab;
379 ctx->pointer = (void *) ab->data + rest;
380 end = buffer + size + rest;
381
382 while (buffer < end)
383 buffer = handle_ar_packet(ctx, buffer);
384
385 free_page((unsigned long)buffer);
386 ar_context_add_page(ctx);
387 } else {
388 buffer = ctx->pointer;
389 ctx->pointer = end =
390 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
391
392 while (buffer < end)
393 buffer = handle_ar_packet(ctx, buffer);
394 }
ed568912
KH
395}
396
397static int
72e318e0 398ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
ed568912 399{
32b46093 400 struct ar_buffer ab;
ed568912 401
72e318e0
KH
402 ctx->regs = regs;
403 ctx->ohci = ohci;
404 ctx->last_buffer = &ab;
ed568912
KH
405 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
406
32b46093
KH
407 ar_context_add_page(ctx);
408 ar_context_add_page(ctx);
409 ctx->current_buffer = ab.next;
410 ctx->pointer = ctx->current_buffer->data;
411
72e318e0
KH
412 reg_write(ctx->ohci, command_ptr(ctx->regs), ab.descriptor.branch_address);
413 reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_RUN);
32b46093 414 flush_writes(ctx->ohci);
ed568912
KH
415
416 return 0;
417}
373b2edd 418
30200739
KH
419static void context_tasklet(unsigned long data)
420{
421 struct context *ctx = (struct context *) data;
422 struct fw_ohci *ohci = ctx->ohci;
423 struct descriptor *d, *last;
424 u32 address;
425 int z;
426
427 dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
428 ctx->buffer_size, DMA_TO_DEVICE);
429
430 d = ctx->tail_descriptor;
431 last = ctx->tail_descriptor_last;
432
433 while (last->branch_address != 0) {
434 address = le32_to_cpu(last->branch_address);
435 z = address & 0xf;
436 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
437 last = (z == 2) ? d : d + z - 1;
438
439 if (!ctx->callback(ctx, d, last))
440 break;
441
442 ctx->tail_descriptor = d;
443 ctx->tail_descriptor_last = last;
444 }
445}
446
447static int
448context_init(struct context *ctx, struct fw_ohci *ohci,
449 size_t buffer_size, u32 regs,
450 descriptor_callback_t callback)
451{
452 ctx->ohci = ohci;
453 ctx->regs = regs;
454 ctx->buffer_size = buffer_size;
455 ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
456 if (ctx->buffer == NULL)
457 return -ENOMEM;
458
459 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
460 ctx->callback = callback;
461
462 ctx->buffer_bus =
463 dma_map_single(ohci->card.device, ctx->buffer,
464 buffer_size, DMA_TO_DEVICE);
465 if (dma_mapping_error(ctx->buffer_bus)) {
466 kfree(ctx->buffer);
467 return -ENOMEM;
468 }
469
470 ctx->head_descriptor = ctx->buffer;
471 ctx->prev_descriptor = ctx->buffer;
472 ctx->tail_descriptor = ctx->buffer;
473 ctx->tail_descriptor_last = ctx->buffer;
474
475 /* We put a dummy descriptor in the buffer that has a NULL
476 * branch address and looks like it's been sent. That way we
477 * have a descriptor to append DMA programs to. Also, the
478 * ring buffer invariant is that it always has at least one
479 * element so that head == tail means buffer full. */
480
481 memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
482 ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
483 ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
484 ctx->head_descriptor++;
485
486 return 0;
487}
488
9b32d5f3 489static void
30200739
KH
490context_release(struct context *ctx)
491{
492 struct fw_card *card = &ctx->ohci->card;
493
494 dma_unmap_single(card->device, ctx->buffer_bus,
495 ctx->buffer_size, DMA_TO_DEVICE);
496 kfree(ctx->buffer);
497}
498
499static struct descriptor *
500context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
501{
502 struct descriptor *d, *tail, *end;
503
504 d = ctx->head_descriptor;
505 tail = ctx->tail_descriptor;
506 end = ctx->buffer + ctx->buffer_size / sizeof(struct descriptor);
507
508 if (d + z <= tail) {
509 goto has_space;
510 } else if (d > tail && d + z <= end) {
511 goto has_space;
512 } else if (d > tail && ctx->buffer + z <= tail) {
513 d = ctx->buffer;
514 goto has_space;
515 }
516
517 return NULL;
518
519 has_space:
520 memset(d, 0, z * sizeof *d);
521 *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
522
523 return d;
524}
525
295e3feb 526static void context_run(struct context *ctx, u32 extra)
30200739
KH
527{
528 struct fw_ohci *ohci = ctx->ohci;
529
530 reg_write(ohci, command_ptr(ctx->regs),
531 le32_to_cpu(ctx->tail_descriptor_last->branch_address));
532 reg_write(ohci, control_clear(ctx->regs), ~0);
295e3feb 533 reg_write(ohci, control_set(ctx->regs), CONTEXT_RUN | extra);
30200739
KH
534 flush_writes(ohci);
535}
536
537static void context_append(struct context *ctx,
538 struct descriptor *d, int z, int extra)
539{
540 dma_addr_t d_bus;
541
542 d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
543
544 ctx->head_descriptor = d + z + extra;
545 ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
546 ctx->prev_descriptor = z == 2 ? d : d + z - 1;
547
548 dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
549 ctx->buffer_size, DMA_TO_DEVICE);
550
551 reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
552 flush_writes(ctx->ohci);
553}
554
555static void context_stop(struct context *ctx)
556{
557 u32 reg;
b8295668 558 int i;
30200739
KH
559
560 reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
b8295668 561 flush_writes(ctx->ohci);
30200739 562
b8295668
KH
563 for (i = 0; i < 10; i++) {
564 reg = reg_read(ctx->ohci, control_set(ctx->regs));
565 if ((reg & CONTEXT_ACTIVE) == 0)
566 break;
567
568 fw_notify("context_stop: still active (0x%08x)\n", reg);
569 msleep(1);
570 }
30200739 571}
ed568912 572
f319b6a0
KH
573struct driver_data {
574 struct fw_packet *packet;
575};
ed568912 576
f319b6a0
KH
577/* This function apppends a packet to the DMA queue for transmission.
578 * Must always be called with the ochi->lock held to ensure proper
579 * generation handling and locking around packet queue manipulation. */
580static int
581at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
ed568912 582{
ed568912 583 struct fw_ohci *ohci = ctx->ohci;
f319b6a0
KH
584 dma_addr_t d_bus, payload_bus;
585 struct driver_data *driver_data;
586 struct descriptor *d, *last;
587 __le32 *header;
ed568912 588 int z, tcode;
f319b6a0 589 u32 reg;
ed568912 590
f319b6a0
KH
591 d = context_get_descriptors(ctx, 4, &d_bus);
592 if (d == NULL) {
593 packet->ack = RCODE_SEND_ERROR;
594 return -1;
ed568912
KH
595 }
596
f319b6a0
KH
597 d[0].control = cpu_to_le16(descriptor_key_immediate);
598 d[0].res_count = cpu_to_le16(packet->timestamp);
599
ed568912
KH
600 /* The DMA format for asyncronous link packets is different
601 * from the IEEE1394 layout, so shift the fields around
602 * accordingly. If header_length is 8, it's a PHY packet, to
603 * which we need to prepend an extra quadlet. */
f319b6a0
KH
604
605 header = (__le32 *) &d[1];
ed568912 606 if (packet->header_length > 8) {
f319b6a0
KH
607 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
608 (packet->speed << 16));
609 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
610 (packet->header[0] & 0xffff0000));
611 header[2] = cpu_to_le32(packet->header[2]);
ed568912
KH
612
613 tcode = (packet->header[0] >> 4) & 0x0f;
614 if (TCODE_IS_BLOCK_PACKET(tcode))
f319b6a0 615 header[3] = cpu_to_le32(packet->header[3]);
ed568912 616 else
f319b6a0
KH
617 header[3] = (__force __le32) packet->header[3];
618
619 d[0].req_count = cpu_to_le16(packet->header_length);
ed568912 620 } else {
f319b6a0
KH
621 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
622 (packet->speed << 16));
623 header[1] = cpu_to_le32(packet->header[0]);
624 header[2] = cpu_to_le32(packet->header[1]);
625 d[0].req_count = cpu_to_le16(12);
ed568912
KH
626 }
627
f319b6a0
KH
628 driver_data = (struct driver_data *) &d[3];
629 driver_data->packet = packet;
630
631 if (packet->payload_length > 0) {
632 payload_bus =
633 dma_map_single(ohci->card.device, packet->payload,
634 packet->payload_length, DMA_TO_DEVICE);
635 if (dma_mapping_error(payload_bus)) {
636 packet->ack = RCODE_SEND_ERROR;
637 return -1;
638 }
639
640 d[2].req_count = cpu_to_le16(packet->payload_length);
641 d[2].data_address = cpu_to_le32(payload_bus);
642 last = &d[2];
643 z = 3;
ed568912 644 } else {
f319b6a0
KH
645 last = &d[0];
646 z = 2;
ed568912 647 }
ed568912 648
f319b6a0
KH
649 last->control |= cpu_to_le16(descriptor_output_last |
650 descriptor_irq_always |
651 descriptor_branch_always);
ed568912 652
f319b6a0
KH
653 /* FIXME: Document how the locking works. */
654 if (ohci->generation != packet->generation) {
655 packet->ack = RCODE_GENERATION;
656 return -1;
657 }
658
659 context_append(ctx, d, z, 4 - z);
ed568912 660
f319b6a0 661 /* If the context isn't already running, start it up. */
72e318e0 662 reg = reg_read(ctx->ohci, control_set(ctx->regs));
f319b6a0
KH
663 if ((reg & CONTEXT_ACTIVE) == 0)
664 context_run(ctx, 0);
665
666 return 0;
ed568912
KH
667}
668
f319b6a0
KH
669static int handle_at_packet(struct context *context,
670 struct descriptor *d,
671 struct descriptor *last)
ed568912 672{
f319b6a0 673 struct driver_data *driver_data;
ed568912 674 struct fw_packet *packet;
f319b6a0
KH
675 struct fw_ohci *ohci = context->ohci;
676 dma_addr_t payload_bus;
ed568912
KH
677 int evt;
678
f319b6a0
KH
679 if (last->transfer_status == 0)
680 /* This descriptor isn't done yet, stop iteration. */
681 return 0;
ed568912 682
f319b6a0
KH
683 driver_data = (struct driver_data *) &d[3];
684 packet = driver_data->packet;
685 if (packet == NULL)
686 /* This packet was cancelled, just continue. */
687 return 1;
730c32f5 688
f319b6a0
KH
689 payload_bus = le32_to_cpu(last->data_address);
690 if (payload_bus != 0)
691 dma_unmap_single(ohci->card.device, payload_bus,
ed568912 692 packet->payload_length, DMA_TO_DEVICE);
ed568912 693
f319b6a0
KH
694 evt = le16_to_cpu(last->transfer_status) & 0x1f;
695 packet->timestamp = le16_to_cpu(last->res_count);
ed568912 696
f319b6a0
KH
697 switch (evt) {
698 case OHCI1394_evt_timeout:
699 /* Async response transmit timed out. */
700 packet->ack = RCODE_CANCELLED;
701 break;
ed568912 702
f319b6a0
KH
703 case OHCI1394_evt_flushed:
704 /* The packet was flushed should give same error as
705 * when we try to use a stale generation count. */
706 packet->ack = RCODE_GENERATION;
707 break;
ed568912 708
f319b6a0
KH
709 case OHCI1394_evt_missing_ack:
710 /* Using a valid (current) generation count, but the
711 * node is not on the bus or not sending acks. */
712 packet->ack = RCODE_NO_ACK;
713 break;
ed568912 714
f319b6a0
KH
715 case ACK_COMPLETE + 0x10:
716 case ACK_PENDING + 0x10:
717 case ACK_BUSY_X + 0x10:
718 case ACK_BUSY_A + 0x10:
719 case ACK_BUSY_B + 0x10:
720 case ACK_DATA_ERROR + 0x10:
721 case ACK_TYPE_ERROR + 0x10:
722 packet->ack = evt - 0x10;
723 break;
ed568912 724
f319b6a0
KH
725 default:
726 packet->ack = RCODE_SEND_ERROR;
727 break;
728 }
ed568912 729
f319b6a0 730 packet->callback(packet, &ohci->card, packet->ack);
ed568912 731
f319b6a0 732 return 1;
ed568912
KH
733}
734
e636fe25 735#define header_get_destination(q) (((q) >> 16) & 0xffff)
93c4cceb
KH
736#define header_get_tcode(q) (((q) >> 4) & 0x0f)
737#define header_get_offset_high(q) (((q) >> 0) & 0xffff)
738#define header_get_data_length(q) (((q) >> 16) & 0xffff)
739#define header_get_extended_tcode(q) (((q) >> 0) & 0xffff)
740
741static void
742handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
743{
744 struct fw_packet response;
745 int tcode, length, i;
746
747 tcode = header_get_tcode(packet->header[0]);
748 if (TCODE_IS_BLOCK_PACKET(tcode))
749 length = header_get_data_length(packet->header[3]);
750 else
751 length = 4;
752
753 i = csr - CSR_CONFIG_ROM;
754 if (i + length > CONFIG_ROM_SIZE) {
755 fw_fill_response(&response, packet->header,
756 RCODE_ADDRESS_ERROR, NULL, 0);
757 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
758 fw_fill_response(&response, packet->header,
759 RCODE_TYPE_ERROR, NULL, 0);
760 } else {
761 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
762 (void *) ohci->config_rom + i, length);
763 }
764
765 fw_core_handle_response(&ohci->card, &response);
766}
767
768static void
769handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
770{
771 struct fw_packet response;
772 int tcode, length, ext_tcode, sel;
773 __be32 *payload, lock_old;
774 u32 lock_arg, lock_data;
775
776 tcode = header_get_tcode(packet->header[0]);
777 length = header_get_data_length(packet->header[3]);
778 payload = packet->payload;
779 ext_tcode = header_get_extended_tcode(packet->header[3]);
780
781 if (tcode == TCODE_LOCK_REQUEST &&
782 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
783 lock_arg = be32_to_cpu(payload[0]);
784 lock_data = be32_to_cpu(payload[1]);
785 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
786 lock_arg = 0;
787 lock_data = 0;
788 } else {
789 fw_fill_response(&response, packet->header,
790 RCODE_TYPE_ERROR, NULL, 0);
791 goto out;
792 }
793
794 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
795 reg_write(ohci, OHCI1394_CSRData, lock_data);
796 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
797 reg_write(ohci, OHCI1394_CSRControl, sel);
798
799 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
800 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
801 else
802 fw_notify("swap not done yet\n");
803
804 fw_fill_response(&response, packet->header,
805 RCODE_COMPLETE, &lock_old, sizeof lock_old);
806 out:
807 fw_core_handle_response(&ohci->card, &response);
808}
809
810static void
f319b6a0 811handle_local_request(struct context *ctx, struct fw_packet *packet)
93c4cceb
KH
812{
813 u64 offset;
814 u32 csr;
815
473d28c7
KH
816 if (ctx == &ctx->ohci->at_request_ctx) {
817 packet->ack = ACK_PENDING;
818 packet->callback(packet, &ctx->ohci->card, packet->ack);
819 }
93c4cceb
KH
820
821 offset =
822 ((unsigned long long)
823 header_get_offset_high(packet->header[1]) << 32) |
824 packet->header[2];
825 csr = offset - CSR_REGISTER_BASE;
826
827 /* Handle config rom reads. */
828 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
829 handle_local_rom(ctx->ohci, packet, csr);
830 else switch (csr) {
831 case CSR_BUS_MANAGER_ID:
832 case CSR_BANDWIDTH_AVAILABLE:
833 case CSR_CHANNELS_AVAILABLE_HI:
834 case CSR_CHANNELS_AVAILABLE_LO:
835 handle_local_lock(ctx->ohci, packet, csr);
836 break;
837 default:
838 if (ctx == &ctx->ohci->at_request_ctx)
839 fw_core_handle_request(&ctx->ohci->card, packet);
840 else
841 fw_core_handle_response(&ctx->ohci->card, packet);
842 break;
843 }
473d28c7
KH
844
845 if (ctx == &ctx->ohci->at_response_ctx) {
846 packet->ack = ACK_COMPLETE;
847 packet->callback(packet, &ctx->ohci->card, packet->ack);
848 }
93c4cceb 849}
e636fe25 850
ed568912 851static void
f319b6a0 852at_context_transmit(struct context *ctx, struct fw_packet *packet)
ed568912 853{
ed568912 854 unsigned long flags;
f319b6a0 855 int retval;
ed568912
KH
856
857 spin_lock_irqsave(&ctx->ohci->lock, flags);
858
e636fe25
KH
859 if (header_get_destination(packet->header[0]) == ctx->ohci->node_id &&
860 ctx->ohci->generation == packet->generation) {
93c4cceb
KH
861 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
862 handle_local_request(ctx, packet);
863 return;
e636fe25 864 }
ed568912 865
f319b6a0 866 retval = at_context_queue_packet(ctx, packet);
ed568912
KH
867 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
868
f319b6a0
KH
869 if (retval < 0)
870 packet->callback(packet, &ctx->ohci->card, packet->ack);
871
ed568912
KH
872}
873
874static void bus_reset_tasklet(unsigned long data)
875{
876 struct fw_ohci *ohci = (struct fw_ohci *)data;
e636fe25 877 int self_id_count, i, j, reg;
ed568912
KH
878 int generation, new_generation;
879 unsigned long flags;
880
881 reg = reg_read(ohci, OHCI1394_NodeID);
882 if (!(reg & OHCI1394_NodeID_idValid)) {
883 fw_error("node ID not valid, new bus reset in progress\n");
884 return;
885 }
e636fe25 886 ohci->node_id = reg & 0xffff;
ed568912
KH
887
888 /* The count in the SelfIDCount register is the number of
889 * bytes in the self ID receive buffer. Since we also receive
890 * the inverted quadlets and a header quadlet, we shift one
891 * bit extra to get the actual number of self IDs. */
892
893 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
894 generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
895
896 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
897 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
898 fw_error("inconsistent self IDs\n");
899 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
900 }
901
902 /* Check the consistency of the self IDs we just read. The
903 * problem we face is that a new bus reset can start while we
904 * read out the self IDs from the DMA buffer. If this happens,
905 * the DMA buffer will be overwritten with new self IDs and we
906 * will read out inconsistent data. The OHCI specification
907 * (section 11.2) recommends a technique similar to
908 * linux/seqlock.h, where we remember the generation of the
909 * self IDs in the buffer before reading them out and compare
910 * it to the current generation after reading them out. If
911 * the two generations match we know we have a consistent set
912 * of self IDs. */
913
914 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
915 if (new_generation != generation) {
916 fw_notify("recursive bus reset detected, "
917 "discarding self ids\n");
918 return;
919 }
920
921 /* FIXME: Document how the locking works. */
922 spin_lock_irqsave(&ohci->lock, flags);
923
924 ohci->generation = generation;
f319b6a0
KH
925 context_stop(&ohci->at_request_ctx);
926 context_stop(&ohci->at_response_ctx);
ed568912
KH
927 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
928
929 /* This next bit is unrelated to the AT context stuff but we
930 * have to do it under the spinlock also. If a new config rom
931 * was set up before this reset, the old one is now no longer
932 * in use and we can free it. Update the config rom pointers
933 * to point to the current config rom and clear the
934 * next_config_rom pointer so a new udpate can take place. */
935
936 if (ohci->next_config_rom != NULL) {
937 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
938 ohci->config_rom, ohci->config_rom_bus);
939 ohci->config_rom = ohci->next_config_rom;
940 ohci->config_rom_bus = ohci->next_config_rom_bus;
941 ohci->next_config_rom = NULL;
942
943 /* Restore config_rom image and manually update
944 * config_rom registers. Writing the header quadlet
945 * will indicate that the config rom is ready, so we
946 * do that last. */
947 reg_write(ohci, OHCI1394_BusOptions,
948 be32_to_cpu(ohci->config_rom[2]));
949 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
950 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
951 }
952
953 spin_unlock_irqrestore(&ohci->lock, flags);
954
e636fe25 955 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
ed568912
KH
956 self_id_count, ohci->self_id_buffer);
957}
958
959static irqreturn_t irq_handler(int irq, void *data)
960{
961 struct fw_ohci *ohci = data;
962 u32 event, iso_event;
963 int i;
964
965 event = reg_read(ohci, OHCI1394_IntEventClear);
966
967 if (!event)
968 return IRQ_NONE;
969
970 reg_write(ohci, OHCI1394_IntEventClear, event);
971
972 if (event & OHCI1394_selfIDComplete)
973 tasklet_schedule(&ohci->bus_reset_tasklet);
974
975 if (event & OHCI1394_RQPkt)
976 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
977
978 if (event & OHCI1394_RSPkt)
979 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
980
981 if (event & OHCI1394_reqTxComplete)
982 tasklet_schedule(&ohci->at_request_ctx.tasklet);
983
984 if (event & OHCI1394_respTxComplete)
985 tasklet_schedule(&ohci->at_response_ctx.tasklet);
986
c889475f 987 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
ed568912
KH
988 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
989
990 while (iso_event) {
991 i = ffs(iso_event) - 1;
30200739 992 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
ed568912
KH
993 iso_event &= ~(1 << i);
994 }
995
c889475f 996 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
ed568912
KH
997 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
998
999 while (iso_event) {
1000 i = ffs(iso_event) - 1;
30200739 1001 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
ed568912
KH
1002 iso_event &= ~(1 << i);
1003 }
1004
1005 return IRQ_HANDLED;
1006}
1007
1008static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1009{
1010 struct fw_ohci *ohci = fw_ohci(card);
1011 struct pci_dev *dev = to_pci_dev(card->device);
1012
1013 /* When the link is not yet enabled, the atomic config rom
1014 * update mechanism described below in ohci_set_config_rom()
1015 * is not active. We have to update ConfigRomHeader and
1016 * BusOptions manually, and the write to ConfigROMmap takes
1017 * effect immediately. We tie this to the enabling of the
1018 * link, so we have a valid config rom before enabling - the
1019 * OHCI requires that ConfigROMhdr and BusOptions have valid
1020 * values before enabling.
1021 *
1022 * However, when the ConfigROMmap is written, some controllers
1023 * always read back quadlets 0 and 2 from the config rom to
1024 * the ConfigRomHeader and BusOptions registers on bus reset.
1025 * They shouldn't do that in this initial case where the link
1026 * isn't enabled. This means we have to use the same
1027 * workaround here, setting the bus header to 0 and then write
1028 * the right values in the bus reset tasklet.
1029 */
1030
1031 ohci->next_config_rom =
1032 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1033 &ohci->next_config_rom_bus, GFP_KERNEL);
1034 if (ohci->next_config_rom == NULL)
1035 return -ENOMEM;
1036
1037 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1038 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1039
1040 ohci->next_header = config_rom[0];
1041 ohci->next_config_rom[0] = 0;
1042 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1043 reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1044 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1045
1046 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1047
1048 if (request_irq(dev->irq, irq_handler,
65efffa8 1049 IRQF_SHARED, ohci_driver_name, ohci)) {
ed568912
KH
1050 fw_error("Failed to allocate shared interrupt %d.\n",
1051 dev->irq);
1052 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1053 ohci->config_rom, ohci->config_rom_bus);
1054 return -EIO;
1055 }
1056
1057 reg_write(ohci, OHCI1394_HCControlSet,
1058 OHCI1394_HCControl_linkEnable |
1059 OHCI1394_HCControl_BIBimageValid);
1060 flush_writes(ohci);
1061
1062 /* We are ready to go, initiate bus reset to finish the
1063 * initialization. */
1064
1065 fw_core_initiate_bus_reset(&ohci->card, 1);
1066
1067 return 0;
1068}
1069
1070static int
1071ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1072{
1073 struct fw_ohci *ohci;
1074 unsigned long flags;
1075 int retval = 0;
1076 __be32 *next_config_rom;
1077 dma_addr_t next_config_rom_bus;
1078
1079 ohci = fw_ohci(card);
1080
1081 /* When the OHCI controller is enabled, the config rom update
1082 * mechanism is a bit tricky, but easy enough to use. See
1083 * section 5.5.6 in the OHCI specification.
1084 *
1085 * The OHCI controller caches the new config rom address in a
1086 * shadow register (ConfigROMmapNext) and needs a bus reset
1087 * for the changes to take place. When the bus reset is
1088 * detected, the controller loads the new values for the
1089 * ConfigRomHeader and BusOptions registers from the specified
1090 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1091 * shadow register. All automatically and atomically.
1092 *
1093 * Now, there's a twist to this story. The automatic load of
1094 * ConfigRomHeader and BusOptions doesn't honor the
1095 * noByteSwapData bit, so with a be32 config rom, the
1096 * controller will load be32 values in to these registers
1097 * during the atomic update, even on litte endian
1098 * architectures. The workaround we use is to put a 0 in the
1099 * header quadlet; 0 is endian agnostic and means that the
1100 * config rom isn't ready yet. In the bus reset tasklet we
1101 * then set up the real values for the two registers.
1102 *
1103 * We use ohci->lock to avoid racing with the code that sets
1104 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1105 */
1106
1107 next_config_rom =
1108 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1109 &next_config_rom_bus, GFP_KERNEL);
1110 if (next_config_rom == NULL)
1111 return -ENOMEM;
1112
1113 spin_lock_irqsave(&ohci->lock, flags);
1114
1115 if (ohci->next_config_rom == NULL) {
1116 ohci->next_config_rom = next_config_rom;
1117 ohci->next_config_rom_bus = next_config_rom_bus;
1118
1119 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1120 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1121 length * 4);
1122
1123 ohci->next_header = config_rom[0];
1124 ohci->next_config_rom[0] = 0;
1125
1126 reg_write(ohci, OHCI1394_ConfigROMmap,
1127 ohci->next_config_rom_bus);
1128 } else {
1129 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1130 next_config_rom, next_config_rom_bus);
1131 retval = -EBUSY;
1132 }
1133
1134 spin_unlock_irqrestore(&ohci->lock, flags);
1135
1136 /* Now initiate a bus reset to have the changes take
1137 * effect. We clean up the old config rom memory and DMA
1138 * mappings in the bus reset tasklet, since the OHCI
1139 * controller could need to access it before the bus reset
1140 * takes effect. */
1141 if (retval == 0)
1142 fw_core_initiate_bus_reset(&ohci->card, 1);
1143
1144 return retval;
1145}
1146
1147static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1148{
1149 struct fw_ohci *ohci = fw_ohci(card);
1150
1151 at_context_transmit(&ohci->at_request_ctx, packet);
1152}
1153
1154static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1155{
1156 struct fw_ohci *ohci = fw_ohci(card);
1157
1158 at_context_transmit(&ohci->at_response_ctx, packet);
1159}
1160
730c32f5
KH
1161static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1162{
1163 struct fw_ohci *ohci = fw_ohci(card);
f319b6a0
KH
1164 struct context *ctx = &ohci->at_request_ctx;
1165 struct driver_data *driver_data = packet->driver_data;
1166 int retval = -ENOENT;
730c32f5 1167
f319b6a0 1168 tasklet_disable(&ctx->tasklet);
730c32f5 1169
f319b6a0
KH
1170 if (packet->ack != 0)
1171 goto out;
730c32f5 1172
f319b6a0
KH
1173 driver_data->packet = NULL;
1174 packet->ack = RCODE_CANCELLED;
1175 packet->callback(packet, &ohci->card, packet->ack);
1176 retval = 0;
730c32f5 1177
f319b6a0
KH
1178 out:
1179 tasklet_enable(&ctx->tasklet);
730c32f5 1180
f319b6a0 1181 return retval;
730c32f5
KH
1182}
1183
ed568912
KH
1184static int
1185ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1186{
1187 struct fw_ohci *ohci = fw_ohci(card);
1188 unsigned long flags;
907293d7 1189 int n, retval = 0;
ed568912 1190
907293d7
SR
1191 /* FIXME: Make sure this bitmask is cleared when we clear the busReset
1192 * interrupt bit. Clear physReqResourceAllBuses on bus reset. */
ed568912
KH
1193
1194 spin_lock_irqsave(&ohci->lock, flags);
1195
1196 if (ohci->generation != generation) {
1197 retval = -ESTALE;
1198 goto out;
1199 }
1200
907293d7
SR
1201 /* NOTE, if the node ID contains a non-local bus ID, physical DMA is
1202 * enabled for _all_ nodes on remote buses. */
1203
1204 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1205 if (n < 32)
1206 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1207 else
1208 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1209
ed568912 1210 flush_writes(ohci);
ed568912 1211 out:
6cad95fe 1212 spin_unlock_irqrestore(&ohci->lock, flags);
ed568912
KH
1213 return retval;
1214}
373b2edd 1215
d2746dc1
KH
1216static int handle_ir_bufferfill_packet(struct context *context,
1217 struct descriptor *d,
1218 struct descriptor *last)
1219{
1220 struct iso_context *ctx =
1221 container_of(context, struct iso_context, context);
ed568912 1222
d2746dc1
KH
1223 if (d->res_count > 0)
1224 return 0;
1225
1226 if (le16_to_cpu(last->control) & descriptor_irq_always)
1227 ctx->base.callback(&ctx->base,
1228 le16_to_cpu(last->res_count),
1229 0, NULL, ctx->base.callback_data);
1230
1231 return 1;
1232}
1233
1234static int handle_ir_dualbuffer_packet(struct context *context,
1235 struct descriptor *d,
1236 struct descriptor *last)
ed568912 1237{
295e3feb
KH
1238 struct iso_context *ctx =
1239 container_of(context, struct iso_context, context);
1240 struct db_descriptor *db = (struct db_descriptor *) d;
9b32d5f3 1241 size_t header_length;
d2746dc1 1242
295e3feb
KH
1243 if (db->first_res_count > 0 && db->second_res_count > 0)
1244 /* This descriptor isn't done yet, stop iteration. */
1245 return 0;
1246
9b32d5f3
KH
1247 header_length = db->first_req_count - db->first_res_count;
1248 if (ctx->header_length + header_length <= PAGE_SIZE)
1249 memcpy(ctx->header + ctx->header_length, db + 1, header_length);
1250 ctx->header_length += header_length;
1251
1252 if (le16_to_cpu(db->control) & descriptor_irq_always) {
1253 ctx->base.callback(&ctx->base, 0,
1254 ctx->header_length, ctx->header,
295e3feb 1255 ctx->base.callback_data);
9b32d5f3
KH
1256 ctx->header_length = 0;
1257 }
ed568912 1258
295e3feb 1259 return 1;
ed568912
KH
1260}
1261
30200739
KH
1262static int handle_it_packet(struct context *context,
1263 struct descriptor *d,
1264 struct descriptor *last)
ed568912 1265{
30200739
KH
1266 struct iso_context *ctx =
1267 container_of(context, struct iso_context, context);
373b2edd 1268
30200739
KH
1269 if (last->transfer_status == 0)
1270 /* This descriptor isn't done yet, stop iteration. */
1271 return 0;
1272
1273 if (le16_to_cpu(last->control) & descriptor_irq_always)
9b32d5f3
KH
1274 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1275 0, NULL, ctx->base.callback_data);
30200739
KH
1276
1277 return 1;
ed568912
KH
1278}
1279
30200739 1280static struct fw_iso_context *
98b6cbe8
KH
1281ohci_allocate_iso_context(struct fw_card *card, int type,
1282 int sync, int tags, size_t header_size)
ed568912
KH
1283{
1284 struct fw_ohci *ohci = fw_ohci(card);
1285 struct iso_context *ctx, *list;
30200739 1286 descriptor_callback_t callback;
295e3feb 1287 u32 *mask, regs;
ed568912 1288 unsigned long flags;
9b32d5f3 1289 int index, retval = -ENOMEM;
ed568912
KH
1290
1291 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1292 mask = &ohci->it_context_mask;
1293 list = ohci->it_context_list;
30200739 1294 callback = handle_it_packet;
ed568912 1295 } else {
373b2edd
SR
1296 mask = &ohci->ir_context_mask;
1297 list = ohci->ir_context_list;
d2746dc1
KH
1298 if (header_size > 0)
1299 callback = handle_ir_dualbuffer_packet;
1300 else
1301 callback = handle_ir_bufferfill_packet;
ed568912
KH
1302 }
1303
e364cf4e
KH
1304 if (callback == handle_ir_dualbuffer_packet &&
1305 ohci->version < OHCI_VERSION_1_1)
1306 return ERR_PTR(-EINVAL);
1307
ed568912
KH
1308 spin_lock_irqsave(&ohci->lock, flags);
1309 index = ffs(*mask) - 1;
1310 if (index >= 0)
1311 *mask &= ~(1 << index);
1312 spin_unlock_irqrestore(&ohci->lock, flags);
1313
1314 if (index < 0)
1315 return ERR_PTR(-EBUSY);
1316
373b2edd
SR
1317 if (type == FW_ISO_CONTEXT_TRANSMIT)
1318 regs = OHCI1394_IsoXmitContextBase(index);
1319 else
1320 regs = OHCI1394_IsoRcvContextBase(index);
1321
ed568912
KH
1322 ctx = &list[index];
1323 memset(ctx, 0, sizeof *ctx);
9b32d5f3
KH
1324 ctx->header_length = 0;
1325 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1326 if (ctx->header == NULL)
1327 goto out;
1328
30200739 1329 retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
295e3feb 1330 regs, callback);
9b32d5f3
KH
1331 if (retval < 0)
1332 goto out_with_header;
ed568912
KH
1333
1334 return &ctx->base;
9b32d5f3
KH
1335
1336 out_with_header:
1337 free_page((unsigned long)ctx->header);
1338 out:
1339 spin_lock_irqsave(&ohci->lock, flags);
1340 *mask |= 1 << index;
1341 spin_unlock_irqrestore(&ohci->lock, flags);
1342
1343 return ERR_PTR(retval);
ed568912
KH
1344}
1345
69cdb726 1346static int ohci_start_iso(struct fw_iso_context *base, s32 cycle)
ed568912 1347{
373b2edd 1348 struct iso_context *ctx = container_of(base, struct iso_context, base);
30200739 1349 struct fw_ohci *ohci = ctx->context.ohci;
d2746dc1 1350 u32 cycle_match = 0, mode;
ed568912
KH
1351 int index;
1352
295e3feb
KH
1353 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1354 index = ctx - ohci->it_context_list;
1355 if (cycle > 0)
1356 cycle_match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1357 (cycle & 0x7fff) << 16;
21efb3cf 1358
295e3feb
KH
1359 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1360 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1361 context_run(&ctx->context, cycle_match);
1362 } else {
1363 index = ctx - ohci->ir_context_list;
ed568912 1364
d2746dc1
KH
1365 if (ctx->base.header_size > 0)
1366 mode = IR_CONTEXT_DUAL_BUFFER_MODE;
1367 else
1368 mode = IR_CONTEXT_BUFFER_FILL;
295e3feb
KH
1369 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1370 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1371 reg_write(ohci, context_match(ctx->context.regs),
98b6cbe8
KH
1372 (ctx->base.tags << 28) |
1373 (ctx->base.sync << 8) | ctx->base.channel);
d2746dc1 1374 context_run(&ctx->context, mode);
295e3feb 1375 }
ed568912
KH
1376
1377 return 0;
1378}
1379
b8295668
KH
1380static int ohci_stop_iso(struct fw_iso_context *base)
1381{
1382 struct fw_ohci *ohci = fw_ohci(base->card);
373b2edd 1383 struct iso_context *ctx = container_of(base, struct iso_context, base);
b8295668
KH
1384 int index;
1385
1386 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1387 index = ctx - ohci->it_context_list;
1388 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1389 } else {
1390 index = ctx - ohci->ir_context_list;
1391 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1392 }
1393 flush_writes(ohci);
1394 context_stop(&ctx->context);
1395
1396 return 0;
1397}
1398
ed568912
KH
1399static void ohci_free_iso_context(struct fw_iso_context *base)
1400{
1401 struct fw_ohci *ohci = fw_ohci(base->card);
373b2edd 1402 struct iso_context *ctx = container_of(base, struct iso_context, base);
ed568912
KH
1403 unsigned long flags;
1404 int index;
1405
b8295668
KH
1406 ohci_stop_iso(base);
1407 context_release(&ctx->context);
9b32d5f3 1408 free_page((unsigned long)ctx->header);
b8295668 1409
ed568912
KH
1410 spin_lock_irqsave(&ohci->lock, flags);
1411
1412 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1413 index = ctx - ohci->it_context_list;
ed568912
KH
1414 ohci->it_context_mask |= 1 << index;
1415 } else {
1416 index = ctx - ohci->ir_context_list;
ed568912
KH
1417 ohci->ir_context_mask |= 1 << index;
1418 }
ed568912
KH
1419
1420 spin_unlock_irqrestore(&ohci->lock, flags);
1421}
1422
1423static int
295e3feb
KH
1424ohci_queue_iso_transmit(struct fw_iso_context *base,
1425 struct fw_iso_packet *packet,
1426 struct fw_iso_buffer *buffer,
1427 unsigned long payload)
ed568912 1428{
373b2edd 1429 struct iso_context *ctx = container_of(base, struct iso_context, base);
30200739 1430 struct descriptor *d, *last, *pd;
ed568912
KH
1431 struct fw_iso_packet *p;
1432 __le32 *header;
9aad8125 1433 dma_addr_t d_bus, page_bus;
ed568912
KH
1434 u32 z, header_z, payload_z, irq;
1435 u32 payload_index, payload_end_index, next_page_index;
30200739 1436 int page, end_page, i, length, offset;
ed568912
KH
1437
1438 /* FIXME: Cycle lost behavior should be configurable: lose
1439 * packet, retransmit or terminate.. */
1440
1441 p = packet;
9aad8125 1442 payload_index = payload;
ed568912
KH
1443
1444 if (p->skip)
1445 z = 1;
1446 else
1447 z = 2;
1448 if (p->header_length > 0)
1449 z++;
1450
1451 /* Determine the first page the payload isn't contained in. */
1452 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1453 if (p->payload_length > 0)
1454 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1455 else
1456 payload_z = 0;
1457
1458 z += payload_z;
1459
1460 /* Get header size in number of descriptors. */
1461 header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1462
30200739
KH
1463 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1464 if (d == NULL)
1465 return -ENOMEM;
ed568912
KH
1466
1467 if (!p->skip) {
1468 d[0].control = cpu_to_le16(descriptor_key_immediate);
1469 d[0].req_count = cpu_to_le16(8);
1470
1471 header = (__le32 *) &d[1];
1472 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1473 it_header_tag(p->tag) |
1474 it_header_tcode(TCODE_STREAM_DATA) |
1475 it_header_channel(ctx->base.channel) |
1476 it_header_speed(ctx->base.speed));
1477 header[1] =
1478 cpu_to_le32(it_header_data_length(p->header_length +
1479 p->payload_length));
1480 }
1481
1482 if (p->header_length > 0) {
1483 d[2].req_count = cpu_to_le16(p->header_length);
1484 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1485 memcpy(&d[z], p->header, p->header_length);
1486 }
1487
1488 pd = d + z - payload_z;
1489 payload_end_index = payload_index + p->payload_length;
1490 for (i = 0; i < payload_z; i++) {
1491 page = payload_index >> PAGE_SHIFT;
1492 offset = payload_index & ~PAGE_MASK;
1493 next_page_index = (page + 1) << PAGE_SHIFT;
1494 length =
1495 min(next_page_index, payload_end_index) - payload_index;
1496 pd[i].req_count = cpu_to_le16(length);
9aad8125
KH
1497
1498 page_bus = page_private(buffer->pages[page]);
1499 pd[i].data_address = cpu_to_le32(page_bus + offset);
ed568912
KH
1500
1501 payload_index += length;
1502 }
1503
ed568912
KH
1504 if (p->interrupt)
1505 irq = descriptor_irq_always;
1506 else
1507 irq = descriptor_no_irq;
1508
30200739 1509 last = z == 2 ? d : d + z - 1;
cbb59da7
KH
1510 last->control |= cpu_to_le16(descriptor_output_last |
1511 descriptor_status |
1512 descriptor_branch_always |
1513 irq);
ed568912 1514
30200739 1515 context_append(&ctx->context, d, z, header_z);
ed568912
KH
1516
1517 return 0;
1518}
373b2edd 1519
98b6cbe8
KH
1520static int
1521setup_wait_descriptor(struct context *ctx)
1522{
1523 struct descriptor *d;
1524 dma_addr_t d_bus;
1525
1526 d = context_get_descriptors(ctx, 1, &d_bus);
1527 if (d == NULL)
1528 return -ENOMEM;
1529
1530 d->control = cpu_to_le16(descriptor_input_more |
1531 descriptor_status |
1532 descriptor_branch_always |
1533 descriptor_wait);
1534
1535 context_append(ctx, d, 1, 0);
1536
1537 return 0;
1538}
ed568912 1539
295e3feb 1540static int
d2746dc1
KH
1541ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1542 struct fw_iso_packet *packet,
1543 struct fw_iso_buffer *buffer,
1544 unsigned long payload)
295e3feb
KH
1545{
1546 struct iso_context *ctx = container_of(base, struct iso_context, base);
1547 struct db_descriptor *db = NULL;
1548 struct descriptor *d;
1549 struct fw_iso_packet *p;
1550 dma_addr_t d_bus, page_bus;
1551 u32 z, header_z, length, rest;
1552 int page, offset;
373b2edd 1553
295e3feb
KH
1554 /* FIXME: Cycle lost behavior should be configurable: lose
1555 * packet, retransmit or terminate.. */
1556
98b6cbe8
KH
1557 if (packet->skip && setup_wait_descriptor(&ctx->context) < 0)
1558 return -ENOMEM;
1559
295e3feb
KH
1560 p = packet;
1561 z = 2;
1562
1563 /* Get header size in number of descriptors. */
1564 header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1565 page = payload >> PAGE_SHIFT;
1566 offset = payload & ~PAGE_MASK;
1567 rest = p->payload_length;
1568
1569 /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1570 /* FIXME: handle descriptor_wait */
1571 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1572 while (rest > 0) {
1573 d = context_get_descriptors(&ctx->context,
1574 z + header_z, &d_bus);
1575 if (d == NULL)
1576 return -ENOMEM;
1577
1578 db = (struct db_descriptor *) d;
1579 db->control = cpu_to_le16(descriptor_status |
1580 descriptor_branch_always);
1581 db->first_size = cpu_to_le16(ctx->base.header_size);
1582 db->first_req_count = cpu_to_le16(p->header_length);
1e1d196b 1583 db->first_res_count = db->first_req_count;
295e3feb 1584 db->first_buffer = cpu_to_le32(d_bus + sizeof *db);
373b2edd 1585
295e3feb
KH
1586 if (offset + rest < PAGE_SIZE)
1587 length = rest;
1588 else
1589 length = PAGE_SIZE - offset;
1590
1e1d196b
KH
1591 db->second_req_count = cpu_to_le16(length);
1592 db->second_res_count = db->second_req_count;
295e3feb
KH
1593 page_bus = page_private(buffer->pages[page]);
1594 db->second_buffer = cpu_to_le32(page_bus + offset);
1595
cb2d2cdb
KH
1596 if (p->interrupt && length == rest)
1597 db->control |= cpu_to_le16(descriptor_irq_always);
1598
295e3feb
KH
1599 context_append(&ctx->context, d, z, header_z);
1600 offset = (offset + length) & ~PAGE_MASK;
1601 rest -= length;
1602 page++;
1603 }
1604
d2746dc1
KH
1605 return 0;
1606}
21efb3cf 1607
d2746dc1
KH
1608static int
1609ohci_queue_iso_receive_bufferfill(struct fw_iso_context *base,
1610 struct fw_iso_packet *packet,
1611 struct fw_iso_buffer *buffer,
1612 unsigned long payload)
1613{
1614 struct iso_context *ctx = container_of(base, struct iso_context, base);
1615 struct descriptor *d = NULL;
1616 dma_addr_t d_bus, page_bus;
1617 u32 length, rest;
1618 int page, offset;
373b2edd 1619
d2746dc1
KH
1620 page = payload >> PAGE_SHIFT;
1621 offset = payload & ~PAGE_MASK;
1622 rest = packet->payload_length;
1623
98b6cbe8
KH
1624 if (packet->skip && setup_wait_descriptor(&ctx->context) < 0)
1625 return -ENOMEM;
1626
d2746dc1
KH
1627 while (rest > 0) {
1628 d = context_get_descriptors(&ctx->context, 1, &d_bus);
1629 if (d == NULL)
1630 return -ENOMEM;
1631
1632 d->control = cpu_to_le16(descriptor_input_more |
1633 descriptor_status |
1634 descriptor_branch_always);
373b2edd 1635
d2746dc1
KH
1636 if (offset + rest < PAGE_SIZE)
1637 length = rest;
1638 else
1639 length = PAGE_SIZE - offset;
1640
1641 page_bus = page_private(buffer->pages[page]);
1642 d->data_address = cpu_to_le32(page_bus + offset);
1643 d->req_count = cpu_to_le16(length);
1644 d->res_count = cpu_to_le16(length);
1645
cb2d2cdb
KH
1646 if (packet->interrupt && length == rest)
1647 d->control |= cpu_to_le16(descriptor_irq_always);
1648
d2746dc1
KH
1649 context_append(&ctx->context, d, 1, 0);
1650
1651 offset = (offset + length) & ~PAGE_MASK;
1652 rest -= length;
1653 page++;
1654 }
1655
d2746dc1
KH
1656 return 0;
1657}
1658
295e3feb
KH
1659static int
1660ohci_queue_iso(struct fw_iso_context *base,
1661 struct fw_iso_packet *packet,
1662 struct fw_iso_buffer *buffer,
1663 unsigned long payload)
1664{
e364cf4e
KH
1665 struct iso_context *ctx = container_of(base, struct iso_context, base);
1666
295e3feb
KH
1667 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1668 return ohci_queue_iso_transmit(base, packet, buffer, payload);
d2746dc1
KH
1669 else if (base->header_size == 0)
1670 return ohci_queue_iso_receive_bufferfill(base, packet,
1671 buffer, payload);
e364cf4e 1672 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
d2746dc1
KH
1673 return ohci_queue_iso_receive_dualbuffer(base, packet,
1674 buffer, payload);
e364cf4e
KH
1675 else
1676 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1677 return -EINVAL;
295e3feb
KH
1678}
1679
21ebcd12 1680static const struct fw_card_driver ohci_driver = {
ed568912
KH
1681 .name = ohci_driver_name,
1682 .enable = ohci_enable,
1683 .update_phy_reg = ohci_update_phy_reg,
1684 .set_config_rom = ohci_set_config_rom,
1685 .send_request = ohci_send_request,
1686 .send_response = ohci_send_response,
730c32f5 1687 .cancel_packet = ohci_cancel_packet,
ed568912
KH
1688 .enable_phys_dma = ohci_enable_phys_dma,
1689
1690 .allocate_iso_context = ohci_allocate_iso_context,
1691 .free_iso_context = ohci_free_iso_context,
1692 .queue_iso = ohci_queue_iso,
69cdb726 1693 .start_iso = ohci_start_iso,
b8295668 1694 .stop_iso = ohci_stop_iso,
ed568912
KH
1695};
1696
1697static int software_reset(struct fw_ohci *ohci)
1698{
1699 int i;
1700
1701 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1702
1703 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1704 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1705 OHCI1394_HCControl_softReset) == 0)
1706 return 0;
1707 msleep(1);
1708 }
1709
1710 return -EBUSY;
1711}
1712
1713/* ---------- pci subsystem interface ---------- */
1714
1715enum {
1716 CLEANUP_SELF_ID,
1717 CLEANUP_REGISTERS,
1718 CLEANUP_IOMEM,
1719 CLEANUP_DISABLE,
1720 CLEANUP_PUT_CARD,
1721};
1722
1723static int cleanup(struct fw_ohci *ohci, int stage, int code)
1724{
1725 struct pci_dev *dev = to_pci_dev(ohci->card.device);
1726
1727 switch (stage) {
1728 case CLEANUP_SELF_ID:
1729 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1730 ohci->self_id_cpu, ohci->self_id_bus);
1731 case CLEANUP_REGISTERS:
1732 kfree(ohci->it_context_list);
1733 kfree(ohci->ir_context_list);
1734 pci_iounmap(dev, ohci->registers);
1735 case CLEANUP_IOMEM:
1736 pci_release_region(dev, 0);
1737 case CLEANUP_DISABLE:
1738 pci_disable_device(dev);
1739 case CLEANUP_PUT_CARD:
1740 fw_card_put(&ohci->card);
1741 }
1742
1743 return code;
1744}
1745
1746static int __devinit
1747pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1748{
1749 struct fw_ohci *ohci;
e364cf4e 1750 u32 bus_options, max_receive, link_speed;
ed568912
KH
1751 u64 guid;
1752 int error_code;
1753 size_t size;
1754
1755 ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1756 if (ohci == NULL) {
1757 fw_error("Could not malloc fw_ohci data.\n");
1758 return -ENOMEM;
1759 }
1760
1761 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1762
1763 if (pci_enable_device(dev)) {
1764 fw_error("Failed to enable OHCI hardware.\n");
1765 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1766 }
1767
1768 pci_set_master(dev);
1769 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1770 pci_set_drvdata(dev, ohci);
1771
1772 spin_lock_init(&ohci->lock);
1773
1774 tasklet_init(&ohci->bus_reset_tasklet,
1775 bus_reset_tasklet, (unsigned long)ohci);
1776
1777 if (pci_request_region(dev, 0, ohci_driver_name)) {
1778 fw_error("MMIO resource unavailable\n");
1779 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1780 }
1781
1782 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1783 if (ohci->registers == NULL) {
1784 fw_error("Failed to remap registers\n");
1785 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1786 }
1787
1788 if (software_reset(ohci)) {
1789 fw_error("Failed to reset ohci card.\n");
1790 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1791 }
1792
1793 /* Now enable LPS, which we need in order to start accessing
1794 * most of the registers. In fact, on some cards (ALI M5251),
1795 * accessing registers in the SClk domain without LPS enabled
1796 * will lock up the machine. Wait 50msec to make sure we have
1797 * full link enabled. */
1798 reg_write(ohci, OHCI1394_HCControlSet,
1799 OHCI1394_HCControl_LPS |
1800 OHCI1394_HCControl_postedWriteEnable);
1801 flush_writes(ohci);
1802 msleep(50);
1803
1804 reg_write(ohci, OHCI1394_HCControlClear,
1805 OHCI1394_HCControl_noByteSwapData);
1806
1807 reg_write(ohci, OHCI1394_LinkControlSet,
1808 OHCI1394_LinkControl_rcvSelfID |
1809 OHCI1394_LinkControl_cycleTimerEnable |
1810 OHCI1394_LinkControl_cycleMaster);
1811
1812 ar_context_init(&ohci->ar_request_ctx, ohci,
1813 OHCI1394_AsReqRcvContextControlSet);
1814
1815 ar_context_init(&ohci->ar_response_ctx, ohci,
1816 OHCI1394_AsRspRcvContextControlSet);
1817
f319b6a0
KH
1818 context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
1819 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
ed568912 1820
f319b6a0
KH
1821 context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
1822 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
ed568912
KH
1823
1824 reg_write(ohci, OHCI1394_ATRetries,
1825 OHCI1394_MAX_AT_REQ_RETRIES |
1826 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1827 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1828
1829 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1830 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1831 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1832 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1833 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1834
1835 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1836 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1837 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1838 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1839 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1840
1841 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1842 fw_error("Out of memory for it/ir contexts.\n");
1843 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1844 }
1845
1846 /* self-id dma buffer allocation */
1847 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1848 SELF_ID_BUF_SIZE,
1849 &ohci->self_id_bus,
1850 GFP_KERNEL);
1851 if (ohci->self_id_cpu == NULL) {
1852 fw_error("Out of memory for self ID buffer.\n");
1853 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1854 }
1855
1856 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1857 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1858 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1859 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1860 reg_write(ohci, OHCI1394_IntMaskSet,
1861 OHCI1394_selfIDComplete |
1862 OHCI1394_RQPkt | OHCI1394_RSPkt |
1863 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1864 OHCI1394_isochRx | OHCI1394_isochTx |
1865 OHCI1394_masterIntEnable);
1866
1867 bus_options = reg_read(ohci, OHCI1394_BusOptions);
1868 max_receive = (bus_options >> 12) & 0xf;
1869 link_speed = bus_options & 0x7;
1870 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1871 reg_read(ohci, OHCI1394_GUIDLo);
1872
1873 error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1874 if (error_code < 0)
1875 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1876
e364cf4e 1877 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
500be725 1878 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
e364cf4e 1879 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
ed568912
KH
1880
1881 return 0;
1882}
1883
1884static void pci_remove(struct pci_dev *dev)
1885{
1886 struct fw_ohci *ohci;
1887
1888 ohci = pci_get_drvdata(dev);
e254a4b4
KH
1889 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1890 flush_writes(ohci);
ed568912
KH
1891 fw_core_remove_card(&ohci->card);
1892
1893 /* FIXME: Fail all pending packets here, now that the upper
1894 * layers can't queue any more. */
1895
1896 software_reset(ohci);
1897 free_irq(dev->irq, ohci);
1898 cleanup(ohci, CLEANUP_SELF_ID, 0);
1899
1900 fw_notify("Removed fw-ohci device.\n");
1901}
1902
1903static struct pci_device_id pci_table[] = {
1904 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1905 { }
1906};
1907
1908MODULE_DEVICE_TABLE(pci, pci_table);
1909
1910static struct pci_driver fw_ohci_pci_driver = {
1911 .name = ohci_driver_name,
1912 .id_table = pci_table,
1913 .probe = pci_probe,
1914 .remove = pci_remove,
1915};
1916
1917MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1918MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1919MODULE_LICENSE("GPL");
1920
1921static int __init fw_ohci_init(void)
1922{
1923 return pci_register_driver(&fw_ohci_pci_driver);
1924}
1925
1926static void __exit fw_ohci_cleanup(void)
1927{
1928 pci_unregister_driver(&fw_ohci_pci_driver);
1929}
1930
1931module_init(fw_ohci_init);
1932module_exit(fw_ohci_cleanup);