Linux 2.6.35-rc3
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / edac / i7core_edac.c
CommitLineData
52707f91
MCC
1/* Intel i7 core/Nehalem Memory Controller kernel module
2 *
3 * This driver supports yhe memory controllers found on the Intel
4 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
5 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
6 * and Westmere-EP.
a0c36a1f
MCC
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License version 2 only.
10 *
52707f91 11 * Copyright (c) 2009-2010 by:
a0c36a1f
MCC
12 * Mauro Carvalho Chehab <mchehab@redhat.com>
13 *
14 * Red Hat Inc. http://www.redhat.com
15 *
16 * Forked and adapted from the i5400_edac driver
17 *
18 * Based on the following public Intel datasheets:
19 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
20 * Datasheet, Volume 2:
21 * http://download.intel.com/design/processor/datashts/320835.pdf
22 * Intel Xeon Processor 5500 Series Datasheet Volume 2
23 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
24 * also available at:
25 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
26 */
27
a0c36a1f
MCC
28#include <linux/module.h>
29#include <linux/init.h>
30#include <linux/pci.h>
31#include <linux/pci_ids.h>
32#include <linux/slab.h>
3b918c12 33#include <linux/delay.h>
a0c36a1f
MCC
34#include <linux/edac.h>
35#include <linux/mmzone.h>
d5381642 36#include <linux/edac_mce.h>
f4742949 37#include <linux/smp.h>
14d2c083 38#include <asm/processor.h>
a0c36a1f
MCC
39
40#include "edac_core.h"
41
f4742949
MCC
42/*
43 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
44 * registers start at bus 255, and are not reported by BIOS.
45 * We currently find devices with only 2 sockets. In order to support more QPI
46 * Quick Path Interconnect, just increment this number.
47 */
48#define MAX_SOCKET_BUSES 2
49
50
a0c36a1f
MCC
51/*
52 * Alter this version for the module when modifications are made
53 */
54#define I7CORE_REVISION " Ver: 1.0.0 " __DATE__
55#define EDAC_MOD_STR "i7core_edac"
56
a0c36a1f
MCC
57/*
58 * Debug macros
59 */
60#define i7core_printk(level, fmt, arg...) \
61 edac_printk(level, "i7core", fmt, ##arg)
62
63#define i7core_mc_printk(mci, level, fmt, arg...) \
64 edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
65
66/*
67 * i7core Memory Controller Registers
68 */
69
e9bd2e73
MCC
70 /* OFFSETS for Device 0 Function 0 */
71
72#define MC_CFG_CONTROL 0x90
73
a0c36a1f
MCC
74 /* OFFSETS for Device 3 Function 0 */
75
76#define MC_CONTROL 0x48
77#define MC_STATUS 0x4c
78#define MC_MAX_DOD 0x64
79
442305b1
MCC
80/*
81 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
82 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
83 */
84
85#define MC_TEST_ERR_RCV1 0x60
86 #define DIMM2_COR_ERR(r) ((r) & 0x7fff)
87
88#define MC_TEST_ERR_RCV0 0x64
89 #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff)
90 #define DIMM0_COR_ERR(r) ((r) & 0x7fff)
91
b4e8f0b6
MCC
92/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
93#define MC_COR_ECC_CNT_0 0x80
94#define MC_COR_ECC_CNT_1 0x84
95#define MC_COR_ECC_CNT_2 0x88
96#define MC_COR_ECC_CNT_3 0x8c
97#define MC_COR_ECC_CNT_4 0x90
98#define MC_COR_ECC_CNT_5 0x94
99
100#define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff)
101#define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff)
102
103
a0c36a1f
MCC
104 /* OFFSETS for Devices 4,5 and 6 Function 0 */
105
0b2b7b7e
MCC
106#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
107 #define THREE_DIMMS_PRESENT (1 << 24)
108 #define SINGLE_QUAD_RANK_PRESENT (1 << 23)
109 #define QUAD_RANK_PRESENT (1 << 22)
110 #define REGISTERED_DIMM (1 << 15)
111
f122a892
MCC
112#define MC_CHANNEL_MAPPER 0x60
113 #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1)
114 #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1)
115
0b2b7b7e
MCC
116#define MC_CHANNEL_RANK_PRESENT 0x7c
117 #define RANK_PRESENT_MASK 0xffff
118
a0c36a1f 119#define MC_CHANNEL_ADDR_MATCH 0xf0
194a40fe
MCC
120#define MC_CHANNEL_ERROR_MASK 0xf8
121#define MC_CHANNEL_ERROR_INJECT 0xfc
122 #define INJECT_ADDR_PARITY 0x10
123 #define INJECT_ECC 0x08
124 #define MASK_CACHELINE 0x06
125 #define MASK_FULL_CACHELINE 0x06
126 #define MASK_MSB32_CACHELINE 0x04
127 #define MASK_LSB32_CACHELINE 0x02
128 #define NO_MASK_CACHELINE 0x00
129 #define REPEAT_EN 0x01
a0c36a1f 130
0b2b7b7e 131 /* OFFSETS for Devices 4,5 and 6 Function 1 */
b990538a 132
0b2b7b7e
MCC
133#define MC_DOD_CH_DIMM0 0x48
134#define MC_DOD_CH_DIMM1 0x4c
135#define MC_DOD_CH_DIMM2 0x50
136 #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10))
137 #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10)
138 #define DIMM_PRESENT_MASK (1 << 9)
139 #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9)
854d3349
MCC
140 #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7))
141 #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7)
142 #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5))
143 #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5)
41fcb7fe 144 #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2))
5566cb7c 145 #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2)
854d3349
MCC
146 #define MC_DOD_NUMCOL_MASK 3
147 #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK)
0b2b7b7e 148
f122a892
MCC
149#define MC_RANK_PRESENT 0x7c
150
0b2b7b7e
MCC
151#define MC_SAG_CH_0 0x80
152#define MC_SAG_CH_1 0x84
153#define MC_SAG_CH_2 0x88
154#define MC_SAG_CH_3 0x8c
155#define MC_SAG_CH_4 0x90
156#define MC_SAG_CH_5 0x94
157#define MC_SAG_CH_6 0x98
158#define MC_SAG_CH_7 0x9c
159
160#define MC_RIR_LIMIT_CH_0 0x40
161#define MC_RIR_LIMIT_CH_1 0x44
162#define MC_RIR_LIMIT_CH_2 0x48
163#define MC_RIR_LIMIT_CH_3 0x4C
164#define MC_RIR_LIMIT_CH_4 0x50
165#define MC_RIR_LIMIT_CH_5 0x54
166#define MC_RIR_LIMIT_CH_6 0x58
167#define MC_RIR_LIMIT_CH_7 0x5C
168#define MC_RIR_LIMIT_MASK ((1 << 10) - 1)
169
170#define MC_RIR_WAY_CH 0x80
171 #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7)
172 #define MC_RIR_WAY_RANK_MASK 0x7
173
a0c36a1f
MCC
174/*
175 * i7core structs
176 */
177
178#define NUM_CHANS 3
442305b1
MCC
179#define MAX_DIMMS 3 /* Max DIMMS per channel */
180#define MAX_MCR_FUNC 4
181#define MAX_CHAN_FUNC 3
a0c36a1f
MCC
182
183struct i7core_info {
184 u32 mc_control;
185 u32 mc_status;
186 u32 max_dod;
f122a892 187 u32 ch_map;
a0c36a1f
MCC
188};
189
194a40fe
MCC
190
191struct i7core_inject {
192 int enable;
193
194 u32 section;
195 u32 type;
196 u32 eccmask;
197
198 /* Error address mask */
199 int channel, dimm, rank, bank, page, col;
200};
201
0b2b7b7e 202struct i7core_channel {
442305b1
MCC
203 u32 ranks;
204 u32 dimms;
0b2b7b7e
MCC
205};
206
8f331907 207struct pci_id_descr {
66607706
MCC
208 int dev;
209 int func;
210 int dev_id;
de06eeef 211 int optional;
8f331907
MCC
212};
213
bd9e19ca
VM
214struct pci_id_table {
215 struct pci_id_descr *descr;
216 int n_devs;
217};
218
f4742949
MCC
219struct i7core_dev {
220 struct list_head list;
221 u8 socket;
222 struct pci_dev **pdev;
de06eeef 223 int n_devs;
f4742949
MCC
224 struct mem_ctl_info *mci;
225};
226
a0c36a1f 227struct i7core_pvt {
f4742949
MCC
228 struct pci_dev *pci_noncore;
229 struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1];
230 struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
231
232 struct i7core_dev *i7core_dev;
67166af4 233
a0c36a1f 234 struct i7core_info info;
194a40fe 235 struct i7core_inject inject;
f4742949 236 struct i7core_channel channel[NUM_CHANS];
67166af4 237
f4742949 238 int channels; /* Number of active channels */
442305b1 239
f4742949
MCC
240 int ce_count_available;
241 int csrow_map[NUM_CHANS][MAX_DIMMS];
b4e8f0b6
MCC
242
243 /* ECC corrected errors counts per udimm */
f4742949
MCC
244 unsigned long udimm_ce_count[MAX_DIMMS];
245 int udimm_last_ce_count[MAX_DIMMS];
b4e8f0b6 246 /* ECC corrected errors counts per rdimm */
f4742949
MCC
247 unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
248 int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
442305b1 249
f4742949 250 unsigned int is_registered;
14d2c083 251
d5381642
MCC
252 /* mcelog glue */
253 struct edac_mce edac_mce;
ca9c90ba
MCC
254
255 /* Fifo double buffers */
d5381642 256 struct mce mce_entry[MCE_LOG_LEN];
ca9c90ba
MCC
257 struct mce mce_outentry[MCE_LOG_LEN];
258
259 /* Fifo in/out counters */
260 unsigned mce_in, mce_out;
261
262 /* Count indicator to show errors not got */
263 unsigned mce_overrun;
a0c36a1f
MCC
264};
265
66607706
MCC
266/* Static vars */
267static LIST_HEAD(i7core_edac_list);
268static DEFINE_MUTEX(i7core_edac_lock);
a0c36a1f 269
8f331907
MCC
270#define PCI_DESCR(device, function, device_id) \
271 .dev = (device), \
272 .func = (function), \
273 .dev_id = (device_id)
274
bd9e19ca 275struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
8f331907
MCC
276 /* Memory controller */
277 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) },
278 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) },
de06eeef
MCC
279 /* Exists only for RDIMM */
280 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 },
8f331907
MCC
281 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
282
283 /* Channel 0 */
284 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
285 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
286 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
287 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) },
288
289 /* Channel 1 */
290 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
291 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
292 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
293 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) },
294
295 /* Channel 2 */
296 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
297 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
298 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
299 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) },
310cbb72
MCC
300
301 /* Generic Non-core registers */
302 /*
303 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
304 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
305 * the probing code needs to test for the other address in case of
306 * failure of this one
307 */
fd382654 308 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) },
310cbb72 309
a0c36a1f 310};
8f331907 311
52a2e4fc
MCC
312struct pci_id_descr pci_dev_descr_lynnfield[] = {
313 { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) },
314 { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) },
315 { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) },
316
317 { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
318 { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
319 { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
320 { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) },
321
508fa179
MCC
322 { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
323 { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
324 { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
325 { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) },
52a2e4fc 326
f05da2f7
MCC
327 /*
328 * This is the PCI device has an alternate address on some
329 * processors like Core i7 860
330 */
52a2e4fc
MCC
331 { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) },
332};
333
bd9e19ca
VM
334struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
335 /* Memory controller */
336 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) },
337 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) },
338 /* Exists only for RDIMM */
339 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 },
340 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
341
342 /* Channel 0 */
343 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
344 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
345 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
346 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) },
347
348 /* Channel 1 */
349 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
350 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
351 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
352 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) },
353
354 /* Channel 2 */
355 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
356 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
357 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
358 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) },
359
360 /* Generic Non-core registers */
361 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) },
362
363};
364
365#define PCI_ID_TABLE_ENTRY(A) { A, ARRAY_SIZE(A) }
366struct pci_id_table pci_dev_table[] = {
367 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
368 PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
369 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
370};
371
8f331907
MCC
372/*
373 * pci_device_id table for which devices we are looking for
8f331907
MCC
374 */
375static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
d1fd4fb6 376 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
f05da2f7 377 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
8f331907
MCC
378 {0,} /* 0 terminated list. */
379};
380
a0c36a1f
MCC
381static struct edac_pci_ctl_info *i7core_pci;
382
383/****************************************************************************
384 Anciliary status routines
385 ****************************************************************************/
386
387 /* MC_CONTROL bits */
ef708b53
MCC
388#define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch)))
389#define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1))
a0c36a1f
MCC
390
391 /* MC_STATUS bits */
61053fde 392#define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4))
ef708b53 393#define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch))
a0c36a1f
MCC
394
395 /* MC_MAX_DOD read functions */
854d3349 396static inline int numdimms(u32 dimms)
a0c36a1f 397{
854d3349 398 return (dimms & 0x3) + 1;
a0c36a1f
MCC
399}
400
854d3349 401static inline int numrank(u32 rank)
a0c36a1f
MCC
402{
403 static int ranks[4] = { 1, 2, 4, -EINVAL };
404
854d3349 405 return ranks[rank & 0x3];
a0c36a1f
MCC
406}
407
854d3349 408static inline int numbank(u32 bank)
a0c36a1f
MCC
409{
410 static int banks[4] = { 4, 8, 16, -EINVAL };
411
854d3349 412 return banks[bank & 0x3];
a0c36a1f
MCC
413}
414
854d3349 415static inline int numrow(u32 row)
a0c36a1f
MCC
416{
417 static int rows[8] = {
418 1 << 12, 1 << 13, 1 << 14, 1 << 15,
419 1 << 16, -EINVAL, -EINVAL, -EINVAL,
420 };
421
854d3349 422 return rows[row & 0x7];
a0c36a1f
MCC
423}
424
854d3349 425static inline int numcol(u32 col)
a0c36a1f
MCC
426{
427 static int cols[8] = {
428 1 << 10, 1 << 11, 1 << 12, -EINVAL,
429 };
854d3349 430 return cols[col & 0x3];
a0c36a1f
MCC
431}
432
f4742949 433static struct i7core_dev *get_i7core_dev(u8 socket)
66607706
MCC
434{
435 struct i7core_dev *i7core_dev;
436
437 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
438 if (i7core_dev->socket == socket)
439 return i7core_dev;
440 }
441
442 return NULL;
443}
444
a0c36a1f
MCC
445/****************************************************************************
446 Memory check routines
447 ****************************************************************************/
67166af4
MCC
448static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
449 unsigned func)
ef708b53 450{
66607706 451 struct i7core_dev *i7core_dev = get_i7core_dev(socket);
ef708b53 452 int i;
ef708b53 453
66607706
MCC
454 if (!i7core_dev)
455 return NULL;
456
de06eeef 457 for (i = 0; i < i7core_dev->n_devs; i++) {
66607706 458 if (!i7core_dev->pdev[i])
ef708b53
MCC
459 continue;
460
66607706
MCC
461 if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
462 PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
463 return i7core_dev->pdev[i];
ef708b53
MCC
464 }
465 }
466
eb94fc40
MCC
467 return NULL;
468}
469
ec6df24c
MCC
470/**
471 * i7core_get_active_channels() - gets the number of channels and csrows
472 * @socket: Quick Path Interconnect socket
473 * @channels: Number of channels that will be returned
474 * @csrows: Number of csrows found
475 *
476 * Since EDAC core needs to know in advance the number of available channels
477 * and csrows, in order to allocate memory for csrows/channels, it is needed
478 * to run two similar steps. At the first step, implemented on this function,
479 * it checks the number of csrows/channels present at one socket.
480 * this is used in order to properly allocate the size of mci components.
481 *
482 * It should be noticed that none of the current available datasheets explain
483 * or even mention how csrows are seen by the memory controller. So, we need
484 * to add a fake description for csrows.
485 * So, this driver is attributing one DIMM memory for one csrow.
486 */
67166af4
MCC
487static int i7core_get_active_channels(u8 socket, unsigned *channels,
488 unsigned *csrows)
eb94fc40
MCC
489{
490 struct pci_dev *pdev = NULL;
491 int i, j;
492 u32 status, control;
493
494 *channels = 0;
495 *csrows = 0;
496
67166af4 497 pdev = get_pdev_slot_func(socket, 3, 0);
b7c76151 498 if (!pdev) {
67166af4
MCC
499 i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
500 socket);
ef708b53 501 return -ENODEV;
b7c76151 502 }
ef708b53
MCC
503
504 /* Device 3 function 0 reads */
505 pci_read_config_dword(pdev, MC_STATUS, &status);
506 pci_read_config_dword(pdev, MC_CONTROL, &control);
507
508 for (i = 0; i < NUM_CHANS; i++) {
eb94fc40 509 u32 dimm_dod[3];
ef708b53
MCC
510 /* Check if the channel is active */
511 if (!(control & (1 << (8 + i))))
512 continue;
513
514 /* Check if the channel is disabled */
41fcb7fe 515 if (status & (1 << i))
ef708b53 516 continue;
ef708b53 517
67166af4 518 pdev = get_pdev_slot_func(socket, i + 4, 1);
eb94fc40 519 if (!pdev) {
67166af4
MCC
520 i7core_printk(KERN_ERR, "Couldn't find socket %d "
521 "fn %d.%d!!!\n",
522 socket, i + 4, 1);
eb94fc40
MCC
523 return -ENODEV;
524 }
525 /* Devices 4-6 function 1 */
526 pci_read_config_dword(pdev,
527 MC_DOD_CH_DIMM0, &dimm_dod[0]);
528 pci_read_config_dword(pdev,
529 MC_DOD_CH_DIMM1, &dimm_dod[1]);
530 pci_read_config_dword(pdev,
531 MC_DOD_CH_DIMM2, &dimm_dod[2]);
532
ef708b53 533 (*channels)++;
eb94fc40
MCC
534
535 for (j = 0; j < 3; j++) {
536 if (!DIMM_PRESENT(dimm_dod[j]))
537 continue;
538 (*csrows)++;
539 }
ef708b53
MCC
540 }
541
c77720b9 542 debugf0("Number of active channels on socket %d: %d\n",
67166af4 543 socket, *channels);
1c6fed80 544
ef708b53
MCC
545 return 0;
546}
547
f4742949 548static int get_dimm_config(struct mem_ctl_info *mci, int *csrow)
a0c36a1f
MCC
549{
550 struct i7core_pvt *pvt = mci->pvt_info;
1c6fed80 551 struct csrow_info *csr;
854d3349 552 struct pci_dev *pdev;
ba6c5c62 553 int i, j;
5566cb7c 554 unsigned long last_page = 0;
1c6fed80 555 enum edac_type mode;
854d3349 556 enum mem_type mtype;
a0c36a1f 557
854d3349 558 /* Get data from the MC register, function 0 */
f4742949 559 pdev = pvt->pci_mcr[0];
7dd6953c 560 if (!pdev)
8f331907
MCC
561 return -ENODEV;
562
f122a892 563 /* Device 3 function 0 reads */
7dd6953c
MCC
564 pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
565 pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
566 pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
567 pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
f122a892 568
17cb7b0c 569 debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
4af91889 570 pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
f122a892 571 pvt->info.max_dod, pvt->info.ch_map);
a0c36a1f 572
1c6fed80 573 if (ECC_ENABLED(pvt)) {
41fcb7fe 574 debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
1c6fed80
MCC
575 if (ECCx8(pvt))
576 mode = EDAC_S8ECD8ED;
577 else
578 mode = EDAC_S4ECD4ED;
579 } else {
a0c36a1f 580 debugf0("ECC disabled\n");
1c6fed80
MCC
581 mode = EDAC_NONE;
582 }
a0c36a1f
MCC
583
584 /* FIXME: need to handle the error codes */
17cb7b0c
MCC
585 debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
586 "x%x x 0x%x\n",
854d3349
MCC
587 numdimms(pvt->info.max_dod),
588 numrank(pvt->info.max_dod >> 2),
276b824c 589 numbank(pvt->info.max_dod >> 4),
854d3349
MCC
590 numrow(pvt->info.max_dod >> 6),
591 numcol(pvt->info.max_dod >> 9));
a0c36a1f 592
0b2b7b7e 593 for (i = 0; i < NUM_CHANS; i++) {
854d3349 594 u32 data, dimm_dod[3], value[8];
0b2b7b7e 595
52a2e4fc
MCC
596 if (!pvt->pci_ch[i][0])
597 continue;
598
0b2b7b7e
MCC
599 if (!CH_ACTIVE(pvt, i)) {
600 debugf0("Channel %i is not active\n", i);
601 continue;
602 }
603 if (CH_DISABLED(pvt, i)) {
604 debugf0("Channel %i is disabled\n", i);
605 continue;
606 }
607
f122a892 608 /* Devices 4-6 function 0 */
f4742949 609 pci_read_config_dword(pvt->pci_ch[i][0],
0b2b7b7e
MCC
610 MC_CHANNEL_DIMM_INIT_PARAMS, &data);
611
f4742949 612 pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
67166af4 613 4 : 2;
0b2b7b7e 614
854d3349
MCC
615 if (data & REGISTERED_DIMM)
616 mtype = MEM_RDDR3;
14d2c083 617 else
854d3349
MCC
618 mtype = MEM_DDR3;
619#if 0
0b2b7b7e
MCC
620 if (data & THREE_DIMMS_PRESENT)
621 pvt->channel[i].dimms = 3;
622 else if (data & SINGLE_QUAD_RANK_PRESENT)
623 pvt->channel[i].dimms = 1;
624 else
625 pvt->channel[i].dimms = 2;
854d3349
MCC
626#endif
627
628 /* Devices 4-6 function 1 */
f4742949 629 pci_read_config_dword(pvt->pci_ch[i][1],
854d3349 630 MC_DOD_CH_DIMM0, &dimm_dod[0]);
f4742949 631 pci_read_config_dword(pvt->pci_ch[i][1],
854d3349 632 MC_DOD_CH_DIMM1, &dimm_dod[1]);
f4742949 633 pci_read_config_dword(pvt->pci_ch[i][1],
854d3349 634 MC_DOD_CH_DIMM2, &dimm_dod[2]);
0b2b7b7e 635
1c6fed80 636 debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
854d3349 637 "%d ranks, %cDIMMs\n",
1c6fed80
MCC
638 i,
639 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
640 data,
f4742949 641 pvt->channel[i].ranks,
41fcb7fe 642 (data & REGISTERED_DIMM) ? 'R' : 'U');
854d3349
MCC
643
644 for (j = 0; j < 3; j++) {
645 u32 banks, ranks, rows, cols;
5566cb7c 646 u32 size, npages;
854d3349
MCC
647
648 if (!DIMM_PRESENT(dimm_dod[j]))
649 continue;
650
651 banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
652 ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
653 rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
654 cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
655
5566cb7c
MCC
656 /* DDR3 has 8 I/O banks */
657 size = (rows * cols * banks * ranks) >> (20 - 3);
658
f4742949 659 pvt->channel[i].dimms++;
854d3349 660
17cb7b0c
MCC
661 debugf0("\tdimm %d %d Mb offset: %x, "
662 "bank: %d, rank: %d, row: %#x, col: %#x\n",
663 j, size,
854d3349
MCC
664 RANKOFFSET(dimm_dod[j]),
665 banks, ranks, rows, cols);
666
eb94fc40
MCC
667#if PAGE_SHIFT > 20
668 npages = size >> (PAGE_SHIFT - 20);
669#else
670 npages = size << (20 - PAGE_SHIFT);
671#endif
5566cb7c 672
ba6c5c62 673 csr = &mci->csrows[*csrow];
5566cb7c
MCC
674 csr->first_page = last_page + 1;
675 last_page += npages;
676 csr->last_page = last_page;
677 csr->nr_pages = npages;
678
854d3349 679 csr->page_mask = 0;
eb94fc40 680 csr->grain = 8;
ba6c5c62 681 csr->csrow_idx = *csrow;
eb94fc40
MCC
682 csr->nr_channels = 1;
683
684 csr->channels[0].chan_idx = i;
685 csr->channels[0].ce_count = 0;
854d3349 686
f4742949 687 pvt->csrow_map[i][j] = *csrow;
b4e8f0b6 688
854d3349
MCC
689 switch (banks) {
690 case 4:
691 csr->dtype = DEV_X4;
692 break;
693 case 8:
694 csr->dtype = DEV_X8;
695 break;
696 case 16:
697 csr->dtype = DEV_X16;
698 break;
699 default:
700 csr->dtype = DEV_UNKNOWN;
701 }
702
703 csr->edac_mode = mode;
704 csr->mtype = mtype;
705
ba6c5c62 706 (*csrow)++;
854d3349 707 }
1c6fed80 708
854d3349
MCC
709 pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
710 pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
711 pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
712 pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
713 pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
714 pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
715 pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
716 pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
17cb7b0c 717 debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
854d3349 718 for (j = 0; j < 8; j++)
17cb7b0c 719 debugf1("\t\t%#x\t%#x\t%#x\n",
854d3349
MCC
720 (value[j] >> 27) & 0x1,
721 (value[j] >> 24) & 0x7,
722 (value[j] && ((1 << 24) - 1)));
0b2b7b7e
MCC
723 }
724
a0c36a1f
MCC
725 return 0;
726}
727
194a40fe
MCC
728/****************************************************************************
729 Error insertion routines
730 ****************************************************************************/
731
732/* The i7core has independent error injection features per channel.
733 However, to have a simpler code, we don't allow enabling error injection
734 on more than one channel.
735 Also, since a change at an inject parameter will be applied only at enable,
736 we're disabling error injection on all write calls to the sysfs nodes that
737 controls the error code injection.
738 */
8f331907 739static int disable_inject(struct mem_ctl_info *mci)
194a40fe
MCC
740{
741 struct i7core_pvt *pvt = mci->pvt_info;
742
743 pvt->inject.enable = 0;
744
f4742949 745 if (!pvt->pci_ch[pvt->inject.channel][0])
8f331907
MCC
746 return -ENODEV;
747
f4742949 748 pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
4157d9f5 749 MC_CHANNEL_ERROR_INJECT, 0);
8f331907
MCC
750
751 return 0;
194a40fe
MCC
752}
753
754/*
755 * i7core inject inject.section
756 *
757 * accept and store error injection inject.section value
758 * bit 0 - refers to the lower 32-byte half cacheline
759 * bit 1 - refers to the upper 32-byte half cacheline
760 */
761static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
762 const char *data, size_t count)
763{
764 struct i7core_pvt *pvt = mci->pvt_info;
765 unsigned long value;
766 int rc;
767
768 if (pvt->inject.enable)
41fcb7fe 769 disable_inject(mci);
194a40fe
MCC
770
771 rc = strict_strtoul(data, 10, &value);
772 if ((rc < 0) || (value > 3))
2068def5 773 return -EIO;
194a40fe
MCC
774
775 pvt->inject.section = (u32) value;
776 return count;
777}
778
779static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
780 char *data)
781{
782 struct i7core_pvt *pvt = mci->pvt_info;
783 return sprintf(data, "0x%08x\n", pvt->inject.section);
784}
785
786/*
787 * i7core inject.type
788 *
789 * accept and store error injection inject.section value
790 * bit 0 - repeat enable - Enable error repetition
791 * bit 1 - inject ECC error
792 * bit 2 - inject parity error
793 */
794static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
795 const char *data, size_t count)
796{
797 struct i7core_pvt *pvt = mci->pvt_info;
798 unsigned long value;
799 int rc;
800
801 if (pvt->inject.enable)
41fcb7fe 802 disable_inject(mci);
194a40fe
MCC
803
804 rc = strict_strtoul(data, 10, &value);
805 if ((rc < 0) || (value > 7))
2068def5 806 return -EIO;
194a40fe
MCC
807
808 pvt->inject.type = (u32) value;
809 return count;
810}
811
812static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
813 char *data)
814{
815 struct i7core_pvt *pvt = mci->pvt_info;
816 return sprintf(data, "0x%08x\n", pvt->inject.type);
817}
818
819/*
820 * i7core_inject_inject.eccmask_store
821 *
822 * The type of error (UE/CE) will depend on the inject.eccmask value:
823 * Any bits set to a 1 will flip the corresponding ECC bit
824 * Correctable errors can be injected by flipping 1 bit or the bits within
825 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
826 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
827 * uncorrectable error to be injected.
828 */
829static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
830 const char *data, size_t count)
831{
832 struct i7core_pvt *pvt = mci->pvt_info;
833 unsigned long value;
834 int rc;
835
836 if (pvt->inject.enable)
41fcb7fe 837 disable_inject(mci);
194a40fe
MCC
838
839 rc = strict_strtoul(data, 10, &value);
840 if (rc < 0)
2068def5 841 return -EIO;
194a40fe
MCC
842
843 pvt->inject.eccmask = (u32) value;
844 return count;
845}
846
847static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
848 char *data)
849{
850 struct i7core_pvt *pvt = mci->pvt_info;
851 return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
852}
853
854/*
855 * i7core_addrmatch
856 *
857 * The type of error (UE/CE) will depend on the inject.eccmask value:
858 * Any bits set to a 1 will flip the corresponding ECC bit
859 * Correctable errors can be injected by flipping 1 bit or the bits within
860 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
861 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
862 * uncorrectable error to be injected.
863 */
194a40fe 864
a5538e53
MCC
865#define DECLARE_ADDR_MATCH(param, limit) \
866static ssize_t i7core_inject_store_##param( \
867 struct mem_ctl_info *mci, \
868 const char *data, size_t count) \
869{ \
cc301b3a 870 struct i7core_pvt *pvt; \
a5538e53
MCC
871 long value; \
872 int rc; \
873 \
cc301b3a
MCC
874 debugf1("%s()\n", __func__); \
875 pvt = mci->pvt_info; \
876 \
a5538e53
MCC
877 if (pvt->inject.enable) \
878 disable_inject(mci); \
879 \
4f87fad1 880 if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
a5538e53
MCC
881 value = -1; \
882 else { \
883 rc = strict_strtoul(data, 10, &value); \
884 if ((rc < 0) || (value >= limit)) \
885 return -EIO; \
886 } \
887 \
888 pvt->inject.param = value; \
889 \
890 return count; \
891} \
892 \
893static ssize_t i7core_inject_show_##param( \
894 struct mem_ctl_info *mci, \
895 char *data) \
896{ \
cc301b3a
MCC
897 struct i7core_pvt *pvt; \
898 \
899 pvt = mci->pvt_info; \
900 debugf1("%s() pvt=%p\n", __func__, pvt); \
a5538e53
MCC
901 if (pvt->inject.param < 0) \
902 return sprintf(data, "any\n"); \
903 else \
904 return sprintf(data, "%d\n", pvt->inject.param);\
194a40fe
MCC
905}
906
a5538e53
MCC
907#define ATTR_ADDR_MATCH(param) \
908 { \
909 .attr = { \
910 .name = #param, \
911 .mode = (S_IRUGO | S_IWUSR) \
912 }, \
913 .show = i7core_inject_show_##param, \
914 .store = i7core_inject_store_##param, \
915 }
194a40fe 916
a5538e53
MCC
917DECLARE_ADDR_MATCH(channel, 3);
918DECLARE_ADDR_MATCH(dimm, 3);
919DECLARE_ADDR_MATCH(rank, 4);
920DECLARE_ADDR_MATCH(bank, 32);
921DECLARE_ADDR_MATCH(page, 0x10000);
922DECLARE_ADDR_MATCH(col, 0x4000);
194a40fe 923
276b824c
MCC
924static int write_and_test(struct pci_dev *dev, int where, u32 val)
925{
926 u32 read;
927 int count;
928
4157d9f5
MCC
929 debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
930 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
931 where, val);
932
276b824c
MCC
933 for (count = 0; count < 10; count++) {
934 if (count)
b990538a 935 msleep(100);
276b824c
MCC
936 pci_write_config_dword(dev, where, val);
937 pci_read_config_dword(dev, where, &read);
938
939 if (read == val)
940 return 0;
941 }
942
4157d9f5
MCC
943 i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
944 "write=%08x. Read=%08x\n",
945 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
946 where, val, read);
276b824c
MCC
947
948 return -EINVAL;
949}
950
194a40fe
MCC
951/*
952 * This routine prepares the Memory Controller for error injection.
953 * The error will be injected when some process tries to write to the
954 * memory that matches the given criteria.
955 * The criteria can be set in terms of a mask where dimm, rank, bank, page
956 * and col can be specified.
957 * A -1 value for any of the mask items will make the MCU to ignore
958 * that matching criteria for error injection.
959 *
960 * It should be noticed that the error will only happen after a write operation
961 * on a memory that matches the condition. if REPEAT_EN is not enabled at
962 * inject mask, then it will produce just one error. Otherwise, it will repeat
963 * until the injectmask would be cleaned.
964 *
965 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
966 * is reliable enough to check if the MC is using the
967 * three channels. However, this is not clear at the datasheet.
968 */
969static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
970 const char *data, size_t count)
971{
972 struct i7core_pvt *pvt = mci->pvt_info;
973 u32 injectmask;
974 u64 mask = 0;
975 int rc;
976 long enable;
977
f4742949 978 if (!pvt->pci_ch[pvt->inject.channel][0])
8f331907
MCC
979 return 0;
980
194a40fe
MCC
981 rc = strict_strtoul(data, 10, &enable);
982 if ((rc < 0))
983 return 0;
984
985 if (enable) {
986 pvt->inject.enable = 1;
987 } else {
988 disable_inject(mci);
989 return count;
990 }
991
992 /* Sets pvt->inject.dimm mask */
993 if (pvt->inject.dimm < 0)
486dd09f 994 mask |= 1LL << 41;
194a40fe 995 else {
f4742949 996 if (pvt->channel[pvt->inject.channel].dimms > 2)
486dd09f 997 mask |= (pvt->inject.dimm & 0x3LL) << 35;
194a40fe 998 else
486dd09f 999 mask |= (pvt->inject.dimm & 0x1LL) << 36;
194a40fe
MCC
1000 }
1001
1002 /* Sets pvt->inject.rank mask */
1003 if (pvt->inject.rank < 0)
486dd09f 1004 mask |= 1LL << 40;
194a40fe 1005 else {
f4742949 1006 if (pvt->channel[pvt->inject.channel].dimms > 2)
486dd09f 1007 mask |= (pvt->inject.rank & 0x1LL) << 34;
194a40fe 1008 else
486dd09f 1009 mask |= (pvt->inject.rank & 0x3LL) << 34;
194a40fe
MCC
1010 }
1011
1012 /* Sets pvt->inject.bank mask */
1013 if (pvt->inject.bank < 0)
486dd09f 1014 mask |= 1LL << 39;
194a40fe 1015 else
486dd09f 1016 mask |= (pvt->inject.bank & 0x15LL) << 30;
194a40fe
MCC
1017
1018 /* Sets pvt->inject.page mask */
1019 if (pvt->inject.page < 0)
486dd09f 1020 mask |= 1LL << 38;
194a40fe 1021 else
486dd09f 1022 mask |= (pvt->inject.page & 0xffff) << 14;
194a40fe
MCC
1023
1024 /* Sets pvt->inject.column mask */
1025 if (pvt->inject.col < 0)
486dd09f 1026 mask |= 1LL << 37;
194a40fe 1027 else
486dd09f 1028 mask |= (pvt->inject.col & 0x3fff);
194a40fe 1029
276b824c
MCC
1030 /*
1031 * bit 0: REPEAT_EN
1032 * bits 1-2: MASK_HALF_CACHELINE
1033 * bit 3: INJECT_ECC
1034 * bit 4: INJECT_ADDR_PARITY
1035 */
1036
1037 injectmask = (pvt->inject.type & 1) |
1038 (pvt->inject.section & 0x3) << 1 |
1039 (pvt->inject.type & 0x6) << (3 - 1);
1040
1041 /* Unlock writes to registers - this register is write only */
f4742949 1042 pci_write_config_dword(pvt->pci_noncore,
67166af4 1043 MC_CFG_CONTROL, 0x2);
e9bd2e73 1044
f4742949 1045 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
194a40fe 1046 MC_CHANNEL_ADDR_MATCH, mask);
f4742949 1047 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
7b029d03 1048 MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
7b029d03 1049
f4742949 1050 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
194a40fe
MCC
1051 MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
1052
f4742949 1053 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
4157d9f5 1054 MC_CHANNEL_ERROR_INJECT, injectmask);
276b824c 1055
194a40fe 1056 /*
276b824c
MCC
1057 * This is something undocumented, based on my tests
1058 * Without writing 8 to this register, errors aren't injected. Not sure
1059 * why.
194a40fe 1060 */
f4742949 1061 pci_write_config_dword(pvt->pci_noncore,
276b824c 1062 MC_CFG_CONTROL, 8);
194a40fe 1063
41fcb7fe
MCC
1064 debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
1065 " inject 0x%08x\n",
194a40fe
MCC
1066 mask, pvt->inject.eccmask, injectmask);
1067
7b029d03 1068
194a40fe
MCC
1069 return count;
1070}
1071
1072static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
1073 char *data)
1074{
1075 struct i7core_pvt *pvt = mci->pvt_info;
7b029d03
MCC
1076 u32 injectmask;
1077
52a2e4fc
MCC
1078 if (!pvt->pci_ch[pvt->inject.channel][0])
1079 return 0;
1080
f4742949 1081 pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
4157d9f5 1082 MC_CHANNEL_ERROR_INJECT, &injectmask);
7b029d03
MCC
1083
1084 debugf0("Inject error read: 0x%018x\n", injectmask);
1085
1086 if (injectmask & 0x0c)
1087 pvt->inject.enable = 1;
1088
194a40fe
MCC
1089 return sprintf(data, "%d\n", pvt->inject.enable);
1090}
1091
f338d736
MCC
1092#define DECLARE_COUNTER(param) \
1093static ssize_t i7core_show_counter_##param( \
1094 struct mem_ctl_info *mci, \
1095 char *data) \
1096{ \
1097 struct i7core_pvt *pvt = mci->pvt_info; \
1098 \
1099 debugf1("%s() \n", __func__); \
1100 if (!pvt->ce_count_available || (pvt->is_registered)) \
1101 return sprintf(data, "data unavailable\n"); \
1102 return sprintf(data, "%lu\n", \
1103 pvt->udimm_ce_count[param]); \
1104}
442305b1 1105
f338d736
MCC
1106#define ATTR_COUNTER(param) \
1107 { \
1108 .attr = { \
1109 .name = __stringify(udimm##param), \
1110 .mode = (S_IRUGO | S_IWUSR) \
1111 }, \
1112 .show = i7core_show_counter_##param \
d88b8507 1113 }
442305b1 1114
f338d736
MCC
1115DECLARE_COUNTER(0);
1116DECLARE_COUNTER(1);
1117DECLARE_COUNTER(2);
442305b1 1118
194a40fe
MCC
1119/*
1120 * Sysfs struct
1121 */
a5538e53
MCC
1122
1123
1124static struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1125 ATTR_ADDR_MATCH(channel),
1126 ATTR_ADDR_MATCH(dimm),
1127 ATTR_ADDR_MATCH(rank),
1128 ATTR_ADDR_MATCH(bank),
1129 ATTR_ADDR_MATCH(page),
1130 ATTR_ADDR_MATCH(col),
1131 { .attr = { .name = NULL } }
1132};
1133
a5538e53
MCC
1134static struct mcidev_sysfs_group i7core_inject_addrmatch = {
1135 .name = "inject_addrmatch",
1136 .mcidev_attr = i7core_addrmatch_attrs,
1137};
1138
f338d736
MCC
1139static struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1140 ATTR_COUNTER(0),
1141 ATTR_COUNTER(1),
1142 ATTR_COUNTER(2),
1143};
1144
1145static struct mcidev_sysfs_group i7core_udimm_counters = {
1146 .name = "all_channel_counts",
1147 .mcidev_attr = i7core_udimm_counters_attrs,
1148};
1149
a5538e53 1150static struct mcidev_sysfs_attribute i7core_sysfs_attrs[] = {
194a40fe
MCC
1151 {
1152 .attr = {
1153 .name = "inject_section",
1154 .mode = (S_IRUGO | S_IWUSR)
1155 },
1156 .show = i7core_inject_section_show,
1157 .store = i7core_inject_section_store,
1158 }, {
1159 .attr = {
1160 .name = "inject_type",
1161 .mode = (S_IRUGO | S_IWUSR)
1162 },
1163 .show = i7core_inject_type_show,
1164 .store = i7core_inject_type_store,
1165 }, {
1166 .attr = {
1167 .name = "inject_eccmask",
1168 .mode = (S_IRUGO | S_IWUSR)
1169 },
1170 .show = i7core_inject_eccmask_show,
1171 .store = i7core_inject_eccmask_store,
1172 }, {
a5538e53 1173 .grp = &i7core_inject_addrmatch,
194a40fe
MCC
1174 }, {
1175 .attr = {
1176 .name = "inject_enable",
1177 .mode = (S_IRUGO | S_IWUSR)
1178 },
1179 .show = i7core_inject_enable_show,
1180 .store = i7core_inject_enable_store,
1181 },
f338d736 1182 { .attr = { .name = NULL } }, /* Reserved for udimm counters */
42538680 1183 { .attr = { .name = NULL } }
194a40fe
MCC
1184};
1185
a0c36a1f
MCC
1186/****************************************************************************
1187 Device initialization routines: put/get, init/exit
1188 ****************************************************************************/
1189
1190/*
1191 * i7core_put_devices 'put' all the devices that we have
1192 * reserved via 'get'
1193 */
13d6e9b6 1194static void i7core_put_devices(struct i7core_dev *i7core_dev)
a0c36a1f 1195{
13d6e9b6 1196 int i;
a0c36a1f 1197
22e6bcbd 1198 debugf0(__FILE__ ": %s()\n", __func__);
de06eeef 1199 for (i = 0; i < i7core_dev->n_devs; i++) {
22e6bcbd
MCC
1200 struct pci_dev *pdev = i7core_dev->pdev[i];
1201 if (!pdev)
1202 continue;
1203 debugf0("Removing dev %02x:%02x.%d\n",
1204 pdev->bus->number,
1205 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1206 pci_dev_put(pdev);
1207 }
13d6e9b6 1208 kfree(i7core_dev->pdev);
22e6bcbd 1209 list_del(&i7core_dev->list);
13d6e9b6
MCC
1210 kfree(i7core_dev);
1211}
66607706 1212
13d6e9b6
MCC
1213static void i7core_put_all_devices(void)
1214{
42538680 1215 struct i7core_dev *i7core_dev, *tmp;
13d6e9b6 1216
42538680 1217 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list)
13d6e9b6 1218 i7core_put_devices(i7core_dev);
a0c36a1f
MCC
1219}
1220
bd9e19ca 1221static void __init i7core_xeon_pci_fixup(struct pci_id_table *table)
bc2d7245
KM
1222{
1223 struct pci_dev *pdev = NULL;
1224 int i;
1225 /*
1226 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
1227 * aren't announced by acpi. So, we need to use a legacy scan probing
1228 * to detect them
1229 */
bd9e19ca
VM
1230 while (table && table->descr) {
1231 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
1232 if (unlikely(!pdev)) {
1233 for (i = 0; i < MAX_SOCKET_BUSES; i++)
1234 pcibios_scan_specific_bus(255-i);
1235 }
1236 table++;
bc2d7245
KM
1237 }
1238}
1239
a0c36a1f
MCC
1240/*
1241 * i7core_get_devices Find and perform 'get' operation on the MCH's
1242 * device/functions we want to reference for this driver
1243 *
1244 * Need to 'get' device 16 func 1 and func 2
1245 */
de06eeef
MCC
1246int i7core_get_onedevice(struct pci_dev **prev, int devno,
1247 struct pci_id_descr *dev_descr, unsigned n_devs)
a0c36a1f 1248{
66607706
MCC
1249 struct i7core_dev *i7core_dev;
1250
8f331907 1251 struct pci_dev *pdev = NULL;
67166af4
MCC
1252 u8 bus = 0;
1253 u8 socket = 0;
a0c36a1f 1254
c77720b9 1255 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
de06eeef 1256 dev_descr->dev_id, *prev);
c77720b9 1257
c77720b9
MCC
1258 /*
1259 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
1260 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
1261 * to probe for the alternate address in case of failure
1262 */
de06eeef 1263 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
c77720b9 1264 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
fd382654 1265 PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
d1fd4fb6 1266
bd9e19ca 1267 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
f05da2f7
MCC
1268 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1269 PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
1270 *prev);
1271
c77720b9
MCC
1272 if (!pdev) {
1273 if (*prev) {
1274 *prev = pdev;
1275 return 0;
d1fd4fb6
MCC
1276 }
1277
de06eeef 1278 if (dev_descr->optional)
c77720b9 1279 return 0;
310cbb72 1280
bd9e19ca
VM
1281 if (devno == 0)
1282 return -ENODEV;
1283
c77720b9
MCC
1284 i7core_printk(KERN_ERR,
1285 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
de06eeef
MCC
1286 dev_descr->dev, dev_descr->func,
1287 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
67166af4 1288
c77720b9
MCC
1289 /* End of list, leave */
1290 return -ENODEV;
1291 }
1292 bus = pdev->bus->number;
67166af4 1293
c77720b9
MCC
1294 if (bus == 0x3f)
1295 socket = 0;
1296 else
1297 socket = 255 - bus;
1298
66607706
MCC
1299 i7core_dev = get_i7core_dev(socket);
1300 if (!i7core_dev) {
1301 i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
1302 if (!i7core_dev)
1303 return -ENOMEM;
de06eeef 1304 i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * n_devs,
66607706 1305 GFP_KERNEL);
2a6fae32
AB
1306 if (!i7core_dev->pdev) {
1307 kfree(i7core_dev);
66607706 1308 return -ENOMEM;
2a6fae32 1309 }
66607706 1310 i7core_dev->socket = socket;
de06eeef 1311 i7core_dev->n_devs = n_devs;
66607706 1312 list_add_tail(&i7core_dev->list, &i7core_edac_list);
c77720b9 1313 }
67166af4 1314
66607706 1315 if (i7core_dev->pdev[devno]) {
c77720b9
MCC
1316 i7core_printk(KERN_ERR,
1317 "Duplicated device for "
1318 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
de06eeef
MCC
1319 bus, dev_descr->dev, dev_descr->func,
1320 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
c77720b9
MCC
1321 pci_dev_put(pdev);
1322 return -ENODEV;
1323 }
67166af4 1324
66607706 1325 i7core_dev->pdev[devno] = pdev;
c77720b9
MCC
1326
1327 /* Sanity check */
de06eeef
MCC
1328 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1329 PCI_FUNC(pdev->devfn) != dev_descr->func)) {
c77720b9
MCC
1330 i7core_printk(KERN_ERR,
1331 "Device PCI ID %04x:%04x "
1332 "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
de06eeef 1333 PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
c77720b9 1334 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
de06eeef 1335 bus, dev_descr->dev, dev_descr->func);
c77720b9
MCC
1336 return -ENODEV;
1337 }
ef708b53 1338
c77720b9
MCC
1339 /* Be sure that the device is enabled */
1340 if (unlikely(pci_enable_device(pdev) < 0)) {
1341 i7core_printk(KERN_ERR,
1342 "Couldn't enable "
1343 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
de06eeef
MCC
1344 bus, dev_descr->dev, dev_descr->func,
1345 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
c77720b9
MCC
1346 return -ENODEV;
1347 }
ef708b53 1348
d4c27795 1349 debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
de06eeef
MCC
1350 socket, bus, dev_descr->dev,
1351 dev_descr->func,
1352 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
8f331907 1353
c77720b9 1354 *prev = pdev;
ef708b53 1355
c77720b9
MCC
1356 return 0;
1357}
a0c36a1f 1358
bd9e19ca 1359static int i7core_get_devices(struct pci_id_table *table)
c77720b9 1360{
de06eeef 1361 int i, rc;
c77720b9 1362 struct pci_dev *pdev = NULL;
bd9e19ca
VM
1363 struct pci_id_descr *dev_descr;
1364
1365 while (table && table->descr) {
1366 dev_descr = table->descr;
1367 for (i = 0; i < table->n_devs; i++) {
1368 pdev = NULL;
1369 do {
1370 rc = i7core_get_onedevice(&pdev, i, &dev_descr[i],
1371 table->n_devs);
1372 if (rc < 0) {
1373 if (i == 0) {
1374 i = table->n_devs;
1375 break;
1376 }
1377 i7core_put_all_devices();
1378 return -ENODEV;
1379 }
1380 } while (pdev);
1381 }
1382 table++;
c77720b9 1383 }
66607706 1384
ef708b53 1385 return 0;
bd9e19ca 1386 return 0;
ef708b53
MCC
1387}
1388
f4742949
MCC
1389static int mci_bind_devs(struct mem_ctl_info *mci,
1390 struct i7core_dev *i7core_dev)
ef708b53
MCC
1391{
1392 struct i7core_pvt *pvt = mci->pvt_info;
1393 struct pci_dev *pdev;
f4742949 1394 int i, func, slot;
ef708b53 1395
f4742949
MCC
1396 /* Associates i7core_dev and mci for future usage */
1397 pvt->i7core_dev = i7core_dev;
1398 i7core_dev->mci = mci;
66607706 1399
f4742949 1400 pvt->is_registered = 0;
de06eeef 1401 for (i = 0; i < i7core_dev->n_devs; i++) {
f4742949
MCC
1402 pdev = i7core_dev->pdev[i];
1403 if (!pdev)
66607706
MCC
1404 continue;
1405
f4742949
MCC
1406 func = PCI_FUNC(pdev->devfn);
1407 slot = PCI_SLOT(pdev->devfn);
1408 if (slot == 3) {
1409 if (unlikely(func > MAX_MCR_FUNC))
1410 goto error;
1411 pvt->pci_mcr[func] = pdev;
1412 } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
1413 if (unlikely(func > MAX_CHAN_FUNC))
ef708b53 1414 goto error;
f4742949
MCC
1415 pvt->pci_ch[slot - 4][func] = pdev;
1416 } else if (!slot && !func)
1417 pvt->pci_noncore = pdev;
1418 else
1419 goto error;
ef708b53 1420
f4742949
MCC
1421 debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
1422 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1423 pdev, i7core_dev->socket);
14d2c083 1424
f4742949
MCC
1425 if (PCI_SLOT(pdev->devfn) == 3 &&
1426 PCI_FUNC(pdev->devfn) == 2)
1427 pvt->is_registered = 1;
a0c36a1f 1428 }
e9bd2e73 1429
f338d736
MCC
1430 /*
1431 * Add extra nodes to count errors on udimm
1432 * For registered memory, this is not needed, since the counters
1433 * are already displayed at the standard locations
1434 */
1435 if (!pvt->is_registered)
1436 i7core_sysfs_attrs[ARRAY_SIZE(i7core_sysfs_attrs)-2].grp =
1437 &i7core_udimm_counters;
1438
a0c36a1f 1439 return 0;
ef708b53
MCC
1440
1441error:
1442 i7core_printk(KERN_ERR, "Device %d, function %d "
1443 "is out of the expected range\n",
1444 slot, func);
1445 return -EINVAL;
a0c36a1f
MCC
1446}
1447
442305b1
MCC
1448/****************************************************************************
1449 Error check routines
1450 ****************************************************************************/
f4742949 1451static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
b4e8f0b6
MCC
1452 int chan, int dimm, int add)
1453{
1454 char *msg;
1455 struct i7core_pvt *pvt = mci->pvt_info;
f4742949 1456 int row = pvt->csrow_map[chan][dimm], i;
b4e8f0b6
MCC
1457
1458 for (i = 0; i < add; i++) {
1459 msg = kasprintf(GFP_KERNEL, "Corrected error "
f4742949
MCC
1460 "(Socket=%d channel=%d dimm=%d)",
1461 pvt->i7core_dev->socket, chan, dimm);
b4e8f0b6
MCC
1462
1463 edac_mc_handle_fbd_ce(mci, row, 0, msg);
1464 kfree (msg);
1465 }
1466}
1467
1468static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
f4742949 1469 int chan, int new0, int new1, int new2)
b4e8f0b6
MCC
1470{
1471 struct i7core_pvt *pvt = mci->pvt_info;
1472 int add0 = 0, add1 = 0, add2 = 0;
1473 /* Updates CE counters if it is not the first time here */
f4742949 1474 if (pvt->ce_count_available) {
b4e8f0b6
MCC
1475 /* Updates CE counters */
1476
f4742949
MCC
1477 add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
1478 add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
1479 add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
b4e8f0b6
MCC
1480
1481 if (add2 < 0)
1482 add2 += 0x7fff;
f4742949 1483 pvt->rdimm_ce_count[chan][2] += add2;
b4e8f0b6
MCC
1484
1485 if (add1 < 0)
1486 add1 += 0x7fff;
f4742949 1487 pvt->rdimm_ce_count[chan][1] += add1;
b4e8f0b6
MCC
1488
1489 if (add0 < 0)
1490 add0 += 0x7fff;
f4742949 1491 pvt->rdimm_ce_count[chan][0] += add0;
b4e8f0b6 1492 } else
f4742949 1493 pvt->ce_count_available = 1;
b4e8f0b6
MCC
1494
1495 /* Store the new values */
f4742949
MCC
1496 pvt->rdimm_last_ce_count[chan][2] = new2;
1497 pvt->rdimm_last_ce_count[chan][1] = new1;
1498 pvt->rdimm_last_ce_count[chan][0] = new0;
b4e8f0b6
MCC
1499
1500 /*updated the edac core */
1501 if (add0 != 0)
f4742949 1502 i7core_rdimm_update_csrow(mci, chan, 0, add0);
b4e8f0b6 1503 if (add1 != 0)
f4742949 1504 i7core_rdimm_update_csrow(mci, chan, 1, add1);
b4e8f0b6 1505 if (add2 != 0)
f4742949 1506 i7core_rdimm_update_csrow(mci, chan, 2, add2);
b4e8f0b6
MCC
1507
1508}
1509
f4742949 1510static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
b4e8f0b6
MCC
1511{
1512 struct i7core_pvt *pvt = mci->pvt_info;
1513 u32 rcv[3][2];
1514 int i, new0, new1, new2;
1515
1516 /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/
f4742949 1517 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
b4e8f0b6 1518 &rcv[0][0]);
f4742949 1519 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
b4e8f0b6 1520 &rcv[0][1]);
f4742949 1521 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
b4e8f0b6 1522 &rcv[1][0]);
f4742949 1523 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
b4e8f0b6 1524 &rcv[1][1]);
f4742949 1525 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
b4e8f0b6 1526 &rcv[2][0]);
f4742949 1527 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
b4e8f0b6
MCC
1528 &rcv[2][1]);
1529 for (i = 0 ; i < 3; i++) {
1530 debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
1531 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
1532 /*if the channel has 3 dimms*/
f4742949 1533 if (pvt->channel[i].dimms > 2) {
b4e8f0b6
MCC
1534 new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
1535 new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
1536 new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
1537 } else {
1538 new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
1539 DIMM_BOT_COR_ERR(rcv[i][0]);
1540 new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
1541 DIMM_BOT_COR_ERR(rcv[i][1]);
1542 new2 = 0;
1543 }
1544
f4742949 1545 i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
b4e8f0b6
MCC
1546 }
1547}
442305b1
MCC
1548
1549/* This function is based on the device 3 function 4 registers as described on:
1550 * Intel Xeon Processor 5500 Series Datasheet Volume 2
1551 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
1552 * also available at:
1553 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
1554 */
f4742949 1555static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
442305b1
MCC
1556{
1557 struct i7core_pvt *pvt = mci->pvt_info;
1558 u32 rcv1, rcv0;
1559 int new0, new1, new2;
1560
f4742949 1561 if (!pvt->pci_mcr[4]) {
b990538a 1562 debugf0("%s MCR registers not found\n", __func__);
442305b1
MCC
1563 return;
1564 }
1565
b4e8f0b6 1566 /* Corrected test errors */
f4742949
MCC
1567 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
1568 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
442305b1
MCC
1569
1570 /* Store the new values */
1571 new2 = DIMM2_COR_ERR(rcv1);
1572 new1 = DIMM1_COR_ERR(rcv0);
1573 new0 = DIMM0_COR_ERR(rcv0);
1574
442305b1 1575 /* Updates CE counters if it is not the first time here */
f4742949 1576 if (pvt->ce_count_available) {
442305b1
MCC
1577 /* Updates CE counters */
1578 int add0, add1, add2;
1579
f4742949
MCC
1580 add2 = new2 - pvt->udimm_last_ce_count[2];
1581 add1 = new1 - pvt->udimm_last_ce_count[1];
1582 add0 = new0 - pvt->udimm_last_ce_count[0];
442305b1
MCC
1583
1584 if (add2 < 0)
1585 add2 += 0x7fff;
f4742949 1586 pvt->udimm_ce_count[2] += add2;
442305b1
MCC
1587
1588 if (add1 < 0)
1589 add1 += 0x7fff;
f4742949 1590 pvt->udimm_ce_count[1] += add1;
442305b1
MCC
1591
1592 if (add0 < 0)
1593 add0 += 0x7fff;
f4742949 1594 pvt->udimm_ce_count[0] += add0;
b4e8f0b6
MCC
1595
1596 if (add0 | add1 | add2)
1597 i7core_printk(KERN_ERR, "New Corrected error(s): "
1598 "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
1599 add0, add1, add2);
442305b1 1600 } else
f4742949 1601 pvt->ce_count_available = 1;
442305b1
MCC
1602
1603 /* Store the new values */
f4742949
MCC
1604 pvt->udimm_last_ce_count[2] = new2;
1605 pvt->udimm_last_ce_count[1] = new1;
1606 pvt->udimm_last_ce_count[0] = new0;
442305b1
MCC
1607}
1608
8a2f118e
MCC
1609/*
1610 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
1611 * Architectures Software Developer’s Manual Volume 3B.
f237fcf2
MCC
1612 * Nehalem are defined as family 0x06, model 0x1a
1613 *
1614 * The MCA registers used here are the following ones:
8a2f118e 1615 * struct mce field MCA Register
f237fcf2
MCC
1616 * m->status MSR_IA32_MC8_STATUS
1617 * m->addr MSR_IA32_MC8_ADDR
1618 * m->misc MSR_IA32_MC8_MISC
8a2f118e
MCC
1619 * In the case of Nehalem, the error information is masked at .status and .misc
1620 * fields
1621 */
d5381642
MCC
1622static void i7core_mce_output_error(struct mem_ctl_info *mci,
1623 struct mce *m)
1624{
b4e8f0b6 1625 struct i7core_pvt *pvt = mci->pvt_info;
a639539f 1626 char *type, *optype, *err, *msg;
8a2f118e 1627 unsigned long error = m->status & 0x1ff0000l;
a639539f 1628 u32 optypenum = (m->status >> 4) & 0x07;
8a2f118e
MCC
1629 u32 core_err_cnt = (m->status >> 38) && 0x7fff;
1630 u32 dimm = (m->misc >> 16) & 0x3;
1631 u32 channel = (m->misc >> 18) & 0x3;
1632 u32 syndrome = m->misc >> 32;
1633 u32 errnum = find_first_bit(&error, 32);
b4e8f0b6 1634 int csrow;
8a2f118e 1635
c5d34528
MCC
1636 if (m->mcgstatus & 1)
1637 type = "FATAL";
1638 else
1639 type = "NON_FATAL";
1640
a639539f 1641 switch (optypenum) {
b990538a
MCC
1642 case 0:
1643 optype = "generic undef request";
1644 break;
1645 case 1:
1646 optype = "read error";
1647 break;
1648 case 2:
1649 optype = "write error";
1650 break;
1651 case 3:
1652 optype = "addr/cmd error";
1653 break;
1654 case 4:
1655 optype = "scrubbing error";
1656 break;
1657 default:
1658 optype = "reserved";
1659 break;
a639539f
MCC
1660 }
1661
8a2f118e
MCC
1662 switch (errnum) {
1663 case 16:
1664 err = "read ECC error";
1665 break;
1666 case 17:
1667 err = "RAS ECC error";
1668 break;
1669 case 18:
1670 err = "write parity error";
1671 break;
1672 case 19:
1673 err = "redundacy loss";
1674 break;
1675 case 20:
1676 err = "reserved";
1677 break;
1678 case 21:
1679 err = "memory range error";
1680 break;
1681 case 22:
1682 err = "RTID out of range";
1683 break;
1684 case 23:
1685 err = "address parity error";
1686 break;
1687 case 24:
1688 err = "byte enable parity error";
1689 break;
1690 default:
1691 err = "unknown";
d5381642 1692 }
d5381642 1693
f237fcf2 1694 /* FIXME: should convert addr into bank and rank information */
8a2f118e 1695 msg = kasprintf(GFP_ATOMIC,
f4742949 1696 "%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
a639539f 1697 "syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
f4742949 1698 type, (long long) m->addr, m->cpu, dimm, channel,
a639539f
MCC
1699 syndrome, core_err_cnt, (long long)m->status,
1700 (long long)m->misc, optype, err);
8a2f118e
MCC
1701
1702 debugf0("%s", msg);
d5381642 1703
f4742949 1704 csrow = pvt->csrow_map[channel][dimm];
b4e8f0b6 1705
d5381642 1706 /* Call the helper to output message */
b4e8f0b6
MCC
1707 if (m->mcgstatus & 1)
1708 edac_mc_handle_fbd_ue(mci, csrow, 0,
1709 0 /* FIXME: should be channel here */, msg);
f4742949 1710 else if (!pvt->is_registered)
b4e8f0b6
MCC
1711 edac_mc_handle_fbd_ce(mci, csrow,
1712 0 /* FIXME: should be channel here */, msg);
8a2f118e
MCC
1713
1714 kfree(msg);
d5381642
MCC
1715}
1716
87d1d272
MCC
1717/*
1718 * i7core_check_error Retrieve and process errors reported by the
1719 * hardware. Called by the Core module.
1720 */
1721static void i7core_check_error(struct mem_ctl_info *mci)
1722{
d5381642
MCC
1723 struct i7core_pvt *pvt = mci->pvt_info;
1724 int i;
1725 unsigned count = 0;
ca9c90ba 1726 struct mce *m;
d5381642 1727
ca9c90ba
MCC
1728 /*
1729 * MCE first step: Copy all mce errors into a temporary buffer
1730 * We use a double buffering here, to reduce the risk of
1731 * loosing an error.
1732 */
1733 smp_rmb();
321ece4d
MCC
1734 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1735 % MCE_LOG_LEN;
ca9c90ba 1736 if (!count)
8a311e17 1737 goto check_ce_error;
f4742949 1738
ca9c90ba 1739 m = pvt->mce_outentry;
321ece4d
MCC
1740 if (pvt->mce_in + count > MCE_LOG_LEN) {
1741 unsigned l = MCE_LOG_LEN - pvt->mce_in;
f4742949 1742
ca9c90ba
MCC
1743 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1744 smp_wmb();
1745 pvt->mce_in = 0;
1746 count -= l;
1747 m += l;
1748 }
1749 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1750 smp_wmb();
1751 pvt->mce_in += count;
1752
1753 smp_rmb();
1754 if (pvt->mce_overrun) {
1755 i7core_printk(KERN_ERR, "Lost %d memory errors\n",
1756 pvt->mce_overrun);
1757 smp_wmb();
1758 pvt->mce_overrun = 0;
1759 }
d5381642 1760
ca9c90ba
MCC
1761 /*
1762 * MCE second step: parse errors and display
1763 */
d5381642 1764 for (i = 0; i < count; i++)
ca9c90ba 1765 i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
d5381642 1766
ca9c90ba
MCC
1767 /*
1768 * Now, let's increment CE error counts
1769 */
8a311e17 1770check_ce_error:
f4742949
MCC
1771 if (!pvt->is_registered)
1772 i7core_udimm_check_mc_ecc_err(mci);
1773 else
1774 i7core_rdimm_check_mc_ecc_err(mci);
87d1d272
MCC
1775}
1776
d5381642
MCC
1777/*
1778 * i7core_mce_check_error Replicates mcelog routine to get errors
1779 * This routine simply queues mcelog errors, and
1780 * return. The error itself should be handled later
1781 * by i7core_check_error.
6e103be1
MCC
1782 * WARNING: As this routine should be called at NMI time, extra care should
1783 * be taken to avoid deadlocks, and to be as fast as possible.
d5381642
MCC
1784 */
1785static int i7core_mce_check_error(void *priv, struct mce *mce)
1786{
c5d34528
MCC
1787 struct mem_ctl_info *mci = priv;
1788 struct i7core_pvt *pvt = mci->pvt_info;
d5381642 1789
8a2f118e
MCC
1790 /*
1791 * Just let mcelog handle it if the error is
1792 * outside the memory controller
1793 */
1794 if (((mce->status & 0xffff) >> 7) != 1)
1795 return 0;
1796
f237fcf2
MCC
1797 /* Bank 8 registers are the only ones that we know how to handle */
1798 if (mce->bank != 8)
1799 return 0;
1800
3b918c12 1801#ifdef CONFIG_SMP
f4742949 1802 /* Only handle if it is the right mc controller */
6e103be1 1803 if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket)
f4742949 1804 return 0;
3b918c12 1805#endif
f4742949 1806
ca9c90ba 1807 smp_rmb();
321ece4d 1808 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
ca9c90ba
MCC
1809 smp_wmb();
1810 pvt->mce_overrun++;
1811 return 0;
d5381642 1812 }
6e103be1
MCC
1813
1814 /* Copy memory error at the ringbuffer */
1815 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
ca9c90ba 1816 smp_wmb();
321ece4d 1817 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
d5381642 1818
c5d34528
MCC
1819 /* Handle fatal errors immediately */
1820 if (mce->mcgstatus & 1)
1821 i7core_check_error(mci);
1822
d5381642 1823 /* Advice mcelog that the error were handled */
8a2f118e 1824 return 1;
d5381642
MCC
1825}
1826
f4742949
MCC
1827static int i7core_register_mci(struct i7core_dev *i7core_dev,
1828 int num_channels, int num_csrows)
a0c36a1f
MCC
1829{
1830 struct mem_ctl_info *mci;
1831 struct i7core_pvt *pvt;
ba6c5c62 1832 int csrow = 0;
f4742949 1833 int rc;
a0c36a1f 1834
a0c36a1f 1835 /* allocate a new MC control structure */
d4c27795
MCC
1836 mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels,
1837 i7core_dev->socket);
f4742949
MCC
1838 if (unlikely(!mci))
1839 return -ENOMEM;
a0c36a1f
MCC
1840
1841 debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
1842
f4742949
MCC
1843 /* record ptr to the generic device */
1844 mci->dev = &i7core_dev->pdev[0]->dev;
1845
a0c36a1f 1846 pvt = mci->pvt_info;
ef708b53 1847 memset(pvt, 0, sizeof(*pvt));
67166af4 1848
41fcb7fe
MCC
1849 /*
1850 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
1851 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
1852 * memory channels
1853 */
1854 mci->mtype_cap = MEM_FLAG_DDR3;
a0c36a1f
MCC
1855 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1856 mci->edac_cap = EDAC_FLAG_NONE;
1857 mci->mod_name = "i7core_edac.c";
1858 mci->mod_ver = I7CORE_REVISION;
f4742949
MCC
1859 mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
1860 i7core_dev->socket);
1861 mci->dev_name = pci_name(i7core_dev->pdev[0]);
a0c36a1f 1862 mci->ctl_page_to_phys = NULL;
a5538e53 1863 mci->mc_driver_sysfs_attributes = i7core_sysfs_attrs;
87d1d272
MCC
1864 /* Set the function pointer to an actual operation function */
1865 mci->edac_check = i7core_check_error;
8f331907 1866
ef708b53 1867 /* Store pci devices at mci for faster access */
f4742949 1868 rc = mci_bind_devs(mci, i7core_dev);
41fcb7fe 1869 if (unlikely(rc < 0))
f4742949 1870 goto fail;
ef708b53
MCC
1871
1872 /* Get dimm basic config */
f4742949 1873 get_dimm_config(mci, &csrow);
ef708b53 1874
a0c36a1f 1875 /* add this new MC control structure to EDAC's list of MCs */
b7c76151 1876 if (unlikely(edac_mc_add_mc(mci))) {
a0c36a1f
MCC
1877 debugf0("MC: " __FILE__
1878 ": %s(): failed edac_mc_add_mc()\n", __func__);
1879 /* FIXME: perhaps some code should go here that disables error
1880 * reporting if we just enabled it
1881 */
b7c76151
MCC
1882
1883 rc = -EINVAL;
f4742949 1884 goto fail;
a0c36a1f
MCC
1885 }
1886
1887 /* allocating generic PCI control info */
f4742949
MCC
1888 i7core_pci = edac_pci_create_generic_ctl(&i7core_dev->pdev[0]->dev,
1889 EDAC_MOD_STR);
41fcb7fe 1890 if (unlikely(!i7core_pci)) {
a0c36a1f
MCC
1891 printk(KERN_WARNING
1892 "%s(): Unable to create PCI control\n",
1893 __func__);
1894 printk(KERN_WARNING
1895 "%s(): PCI error report via EDAC not setup\n",
1896 __func__);
1897 }
1898
194a40fe 1899 /* Default error mask is any memory */
ef708b53 1900 pvt->inject.channel = 0;
194a40fe
MCC
1901 pvt->inject.dimm = -1;
1902 pvt->inject.rank = -1;
1903 pvt->inject.bank = -1;
1904 pvt->inject.page = -1;
1905 pvt->inject.col = -1;
1906
d5381642 1907 /* Registers on edac_mce in order to receive memory errors */
c5d34528 1908 pvt->edac_mce.priv = mci;
d5381642 1909 pvt->edac_mce.check_error = i7core_mce_check_error;
d5381642
MCC
1910
1911 rc = edac_mce_register(&pvt->edac_mce);
b990538a 1912 if (unlikely(rc < 0)) {
d5381642
MCC
1913 debugf0("MC: " __FILE__
1914 ": %s(): failed edac_mce_register()\n", __func__);
f4742949
MCC
1915 }
1916
1917fail:
d4d1ef45
TL
1918 if (rc < 0)
1919 edac_mc_free(mci);
f4742949
MCC
1920 return rc;
1921}
1922
1923/*
1924 * i7core_probe Probe for ONE instance of device to see if it is
1925 * present.
1926 * return:
1927 * 0 for FOUND a device
1928 * < 0 for error code
1929 */
1930static int __devinit i7core_probe(struct pci_dev *pdev,
1931 const struct pci_device_id *id)
1932{
1933 int dev_idx = id->driver_data;
1934 int rc;
1935 struct i7core_dev *i7core_dev;
1936
1937 /*
d4c27795 1938 * All memory controllers are allocated at the first pass.
f4742949
MCC
1939 */
1940 if (unlikely(dev_idx >= 1))
1941 return -EINVAL;
1942
1943 /* get the pci devices we want to reserve for our use */
1944 mutex_lock(&i7core_edac_lock);
de06eeef 1945
bd9e19ca 1946 rc = i7core_get_devices(pci_dev_table);
f4742949
MCC
1947 if (unlikely(rc < 0))
1948 goto fail0;
1949
1950 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
1951 int channels;
1952 int csrows;
1953
1954 /* Check the number of active and not disabled channels */
1955 rc = i7core_get_active_channels(i7core_dev->socket,
1956 &channels, &csrows);
1957 if (unlikely(rc < 0))
1958 goto fail1;
1959
d4c27795
MCC
1960 rc = i7core_register_mci(i7core_dev, channels, csrows);
1961 if (unlikely(rc < 0))
1962 goto fail1;
d5381642
MCC
1963 }
1964
ef708b53 1965 i7core_printk(KERN_INFO, "Driver loaded.\n");
8f331907 1966
66607706 1967 mutex_unlock(&i7core_edac_lock);
a0c36a1f
MCC
1968 return 0;
1969
66607706 1970fail1:
13d6e9b6 1971 i7core_put_all_devices();
66607706
MCC
1972fail0:
1973 mutex_unlock(&i7core_edac_lock);
b7c76151 1974 return rc;
a0c36a1f
MCC
1975}
1976
1977/*
1978 * i7core_remove destructor for one instance of device
1979 *
1980 */
1981static void __devexit i7core_remove(struct pci_dev *pdev)
1982{
1983 struct mem_ctl_info *mci;
22e6bcbd 1984 struct i7core_dev *i7core_dev, *tmp;
a0c36a1f
MCC
1985
1986 debugf0(__FILE__ ": %s()\n", __func__);
1987
1988 if (i7core_pci)
1989 edac_pci_release_generic_ctl(i7core_pci);
1990
22e6bcbd
MCC
1991 /*
1992 * we have a trouble here: pdev value for removal will be wrong, since
1993 * it will point to the X58 register used to detect that the machine
1994 * is a Nehalem or upper design. However, due to the way several PCI
1995 * devices are grouped together to provide MC functionality, we need
1996 * to use a different method for releasing the devices
1997 */
87d1d272 1998
66607706 1999 mutex_lock(&i7core_edac_lock);
22e6bcbd
MCC
2000 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
2001 mci = edac_mc_del_mc(&i7core_dev->pdev[0]->dev);
2002 if (mci) {
2003 struct i7core_pvt *pvt = mci->pvt_info;
2004
2005 i7core_dev = pvt->i7core_dev;
2006 edac_mce_unregister(&pvt->edac_mce);
2007 kfree(mci->ctl_name);
2008 edac_mc_free(mci);
2009 i7core_put_devices(i7core_dev);
2010 } else {
2011 i7core_printk(KERN_ERR,
2012 "Couldn't find mci for socket %d\n",
2013 i7core_dev->socket);
2014 }
2015 }
66607706 2016 mutex_unlock(&i7core_edac_lock);
a0c36a1f
MCC
2017}
2018
a0c36a1f
MCC
2019MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
2020
2021/*
2022 * i7core_driver pci_driver structure for this module
2023 *
2024 */
2025static struct pci_driver i7core_driver = {
2026 .name = "i7core_edac",
2027 .probe = i7core_probe,
2028 .remove = __devexit_p(i7core_remove),
2029 .id_table = i7core_pci_tbl,
2030};
2031
2032/*
2033 * i7core_init Module entry function
2034 * Try to initialize this module for its devices
2035 */
2036static int __init i7core_init(void)
2037{
2038 int pci_rc;
2039
2040 debugf2("MC: " __FILE__ ": %s()\n", __func__);
2041
2042 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2043 opstate_init();
2044
bd9e19ca 2045 i7core_xeon_pci_fixup(pci_dev_table);
bc2d7245 2046
a0c36a1f
MCC
2047 pci_rc = pci_register_driver(&i7core_driver);
2048
3ef288a9
MCC
2049 if (pci_rc >= 0)
2050 return 0;
2051
2052 i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
2053 pci_rc);
2054
2055 return pci_rc;
a0c36a1f
MCC
2056}
2057
2058/*
2059 * i7core_exit() Module exit function
2060 * Unregister the driver
2061 */
2062static void __exit i7core_exit(void)
2063{
2064 debugf2("MC: " __FILE__ ": %s()\n", __func__);
2065 pci_unregister_driver(&i7core_driver);
2066}
2067
2068module_init(i7core_init);
2069module_exit(i7core_exit);
2070
2071MODULE_LICENSE("GPL");
2072MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
2073MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2074MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
2075 I7CORE_REVISION);
2076
2077module_param(edac_op_state, int, 0444);
2078MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");