i82975x_edac: Fix dimm label initialization
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / edac / edac_mc.c
CommitLineData
da9bb1d2
AC
1/*
2 * edac_mc kernel module
49c0dab7 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
da9bb1d2
AC
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
da9bb1d2
AC
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
da9bb1d2 28#include <linux/ctype.h>
c0d12172 29#include <linux/edac.h>
53f2d028 30#include <linux/bitops.h>
da9bb1d2
AC
31#include <asm/uaccess.h>
32#include <asm/page.h>
33#include <asm/edac.h>
20bcb7a8 34#include "edac_core.h"
7c9281d7 35#include "edac_module.h"
da9bb1d2 36
53f2d028
MCC
37#define CREATE_TRACE_POINTS
38#define TRACE_INCLUDE_PATH ../../include/ras
39#include <ras/ras_event.h>
40
da9bb1d2 41/* lock to memory controller's control array */
63b7df91 42static DEFINE_MUTEX(mem_ctls_mutex);
ff6ac2a6 43static LIST_HEAD(mc_devices);
da9bb1d2 44
6e84d359
MCC
45unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
46 unsigned len)
47{
48 struct mem_ctl_info *mci = dimm->mci;
49 int i, n, count = 0;
50 char *p = buf;
51
52 for (i = 0; i < mci->n_layers; i++) {
53 n = snprintf(p, len, "%s %d ",
54 edac_layer_name[mci->layers[i].type],
55 dimm->location[i]);
56 p += n;
57 len -= n;
58 count += n;
59 if (!len)
60 break;
61 }
62
63 return count;
64}
65
da9bb1d2
AC
66#ifdef CONFIG_EDAC_DEBUG
67
a4b4be3f 68static void edac_mc_dump_channel(struct rank_info *chan)
da9bb1d2 69{
6e84d359
MCC
70 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
71 edac_dbg(4, " channel = %p\n", chan);
72 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
73 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
4275be63
MCC
74}
75
6e84d359 76static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
4275be63 77{
6e84d359
MCC
78 char location[80];
79
80 edac_dimm_info_location(dimm, location, sizeof(location));
81
82 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
83 dimm->mci->mem_is_per_rank ? "rank" : "dimm",
84 number, location, dimm->csrow, dimm->cschannel);
85 edac_dbg(4, " dimm = %p\n", dimm);
86 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
87 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
88 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
89 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
da9bb1d2
AC
90}
91
2da1c119 92static void edac_mc_dump_csrow(struct csrow_info *csrow)
da9bb1d2 93{
6e84d359
MCC
94 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
95 edac_dbg(4, " csrow = %p\n", csrow);
96 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
97 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
98 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
99 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
100 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
101 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
da9bb1d2
AC
102}
103
2da1c119 104static void edac_mc_dump_mci(struct mem_ctl_info *mci)
da9bb1d2 105{
956b9ba1
JP
106 edac_dbg(3, "\tmci = %p\n", mci);
107 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
108 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
109 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
110 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
111 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
112 mci->nr_csrows, mci->csrows);
113 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
114 mci->tot_dimms, mci->dimms);
115 edac_dbg(3, "\tdev = %p\n", mci->pdev);
116 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
117 mci->mod_name, mci->ctl_name);
118 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
da9bb1d2
AC
119}
120
24f9a7fe
BP
121#endif /* CONFIG_EDAC_DEBUG */
122
239642fe
BP
123/*
124 * keep those in sync with the enum mem_type
125 */
126const char *edac_mem_types[] = {
127 "Empty csrow",
128 "Reserved csrow type",
129 "Unknown csrow type",
130 "Fast page mode RAM",
131 "Extended data out RAM",
132 "Burst Extended data out RAM",
133 "Single data rate SDRAM",
134 "Registered single data rate SDRAM",
135 "Double data rate SDRAM",
136 "Registered Double data rate SDRAM",
137 "Rambus DRAM",
138 "Unbuffered DDR2 RAM",
139 "Fully buffered DDR2",
140 "Registered DDR2 RAM",
141 "Rambus XDR",
142 "Unbuffered DDR3 RAM",
143 "Registered DDR3 RAM",
144};
145EXPORT_SYMBOL_GPL(edac_mem_types);
146
93e4fe64
MCC
147/**
148 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
149 * @p: pointer to a pointer with the memory offset to be used. At
150 * return, this will be incremented to point to the next offset
151 * @size: Size of the data structure to be reserved
152 * @n_elems: Number of elements that should be reserved
da9bb1d2
AC
153 *
154 * If 'size' is a constant, the compiler will optimize this whole function
93e4fe64
MCC
155 * down to either a no-op or the addition of a constant to the value of '*p'.
156 *
157 * The 'p' pointer is absolutely needed to keep the proper advancing
158 * further in memory to the proper offsets when allocating the struct along
159 * with its embedded structs, as edac_device_alloc_ctl_info() does it
160 * above, for example.
161 *
162 * At return, the pointer 'p' will be incremented to be used on a next call
163 * to this function.
da9bb1d2 164 */
93e4fe64 165void *edac_align_ptr(void **p, unsigned size, int n_elems)
da9bb1d2
AC
166{
167 unsigned align, r;
93e4fe64 168 void *ptr = *p;
da9bb1d2 169
93e4fe64
MCC
170 *p += size * n_elems;
171
172 /*
173 * 'p' can possibly be an unaligned item X such that sizeof(X) is
174 * 'size'. Adjust 'p' so that its alignment is at least as
175 * stringent as what the compiler would provide for X and return
176 * the aligned result.
177 * Here we assume that the alignment of a "long long" is the most
da9bb1d2
AC
178 * stringent alignment that the compiler will ever provide by default.
179 * As far as I know, this is a reasonable assumption.
180 */
181 if (size > sizeof(long))
182 align = sizeof(long long);
183 else if (size > sizeof(int))
184 align = sizeof(long);
185 else if (size > sizeof(short))
186 align = sizeof(int);
187 else if (size > sizeof(char))
188 align = sizeof(short);
189 else
079708b9 190 return (char *)ptr;
da9bb1d2 191
8447c4d1 192 r = (unsigned long)p % align;
da9bb1d2
AC
193
194 if (r == 0)
079708b9 195 return (char *)ptr;
da9bb1d2 196
93e4fe64
MCC
197 *p += align - r;
198
7391c6dc 199 return (void *)(((unsigned long)ptr) + align - r);
da9bb1d2
AC
200}
201
faa2ad09
SR
202static void _edac_mc_free(struct mem_ctl_info *mci)
203{
204 int i, chn, row;
205 struct csrow_info *csr;
206 const unsigned int tot_dimms = mci->tot_dimms;
207 const unsigned int tot_channels = mci->num_cschannel;
208 const unsigned int tot_csrows = mci->nr_csrows;
209
210 if (mci->dimms) {
211 for (i = 0; i < tot_dimms; i++)
212 kfree(mci->dimms[i]);
213 kfree(mci->dimms);
214 }
215 if (mci->csrows) {
216 for (row = 0; row < tot_csrows; row++) {
217 csr = mci->csrows[row];
218 if (csr) {
219 if (csr->channels) {
220 for (chn = 0; chn < tot_channels; chn++)
221 kfree(csr->channels[chn]);
222 kfree(csr->channels);
223 }
224 kfree(csr);
225 }
226 }
227 kfree(mci->csrows);
228 }
229 kfree(mci);
230}
231
da9bb1d2 232/**
4275be63
MCC
233 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
234 * @mc_num: Memory controller number
235 * @n_layers: Number of MC hierarchy layers
236 * layers: Describes each layer as seen by the Memory Controller
237 * @size_pvt: size of private storage needed
238 *
da9bb1d2
AC
239 *
240 * Everything is kmalloc'ed as one big chunk - more efficient.
241 * Only can be used if all structures have the same lifetime - otherwise
242 * you have to allocate and initialize your own structures.
243 *
244 * Use edac_mc_free() to free mc structures allocated by this function.
245 *
4275be63
MCC
246 * NOTE: drivers handle multi-rank memories in different ways: in some
247 * drivers, one multi-rank memory stick is mapped as one entry, while, in
248 * others, a single multi-rank memory stick would be mapped into several
249 * entries. Currently, this function will allocate multiple struct dimm_info
250 * on such scenarios, as grouping the multiple ranks require drivers change.
251 *
da9bb1d2 252 * Returns:
ca0907b9
MCC
253 * On failure: NULL
254 * On success: struct mem_ctl_info pointer
da9bb1d2 255 */
ca0907b9
MCC
256struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
257 unsigned n_layers,
258 struct edac_mc_layer *layers,
259 unsigned sz_pvt)
da9bb1d2
AC
260{
261 struct mem_ctl_info *mci;
4275be63 262 struct edac_mc_layer *layer;
de3910eb
MCC
263 struct csrow_info *csr;
264 struct rank_info *chan;
a7d7d2e1 265 struct dimm_info *dimm;
4275be63
MCC
266 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
267 unsigned pos[EDAC_MAX_LAYERS];
4275be63
MCC
268 unsigned size, tot_dimms = 1, count = 1;
269 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
5926ff50 270 void *pvt, *p, *ptr = NULL;
de3910eb 271 int i, j, row, chn, n, len, off;
4275be63
MCC
272 bool per_rank = false;
273
274 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
275 /*
276 * Calculate the total amount of dimms and csrows/cschannels while
277 * in the old API emulation mode
278 */
279 for (i = 0; i < n_layers; i++) {
280 tot_dimms *= layers[i].size;
281 if (layers[i].is_virt_csrow)
282 tot_csrows *= layers[i].size;
283 else
284 tot_channels *= layers[i].size;
285
286 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
287 per_rank = true;
288 }
da9bb1d2
AC
289
290 /* Figure out the offsets of the various items from the start of an mc
291 * structure. We want the alignment of each item to be at least as
292 * stringent as what the compiler would provide if we could simply
293 * hardcode everything into a single struct.
294 */
93e4fe64 295 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
4275be63 296 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
4275be63
MCC
297 for (i = 0; i < n_layers; i++) {
298 count *= layers[i].size;
956b9ba1 299 edac_dbg(4, "errcount layer %d size %d\n", i, count);
4275be63
MCC
300 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
301 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
302 tot_errcount += 2 * count;
303 }
304
956b9ba1 305 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
93e4fe64 306 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
079708b9 307 size = ((unsigned long)pvt) + sz_pvt;
da9bb1d2 308
956b9ba1
JP
309 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
310 size,
311 tot_dimms,
312 per_rank ? "ranks" : "dimms",
313 tot_csrows * tot_channels);
de3910eb 314
8096cfaf
DT
315 mci = kzalloc(size, GFP_KERNEL);
316 if (mci == NULL)
da9bb1d2
AC
317 return NULL;
318
319 /* Adjust pointers so they point within the memory we just allocated
320 * rather than an imaginary chunk of memory located at address 0.
321 */
4275be63 322 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
4275be63
MCC
323 for (i = 0; i < n_layers; i++) {
324 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
325 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
326 }
079708b9 327 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
da9bb1d2 328
b8f6f975 329 /* setup index and various internal pointers */
4275be63 330 mci->mc_idx = mc_num;
4275be63 331 mci->tot_dimms = tot_dimms;
da9bb1d2 332 mci->pvt_info = pvt;
4275be63
MCC
333 mci->n_layers = n_layers;
334 mci->layers = layer;
335 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
336 mci->nr_csrows = tot_csrows;
337 mci->num_cschannel = tot_channels;
338 mci->mem_is_per_rank = per_rank;
da9bb1d2 339
a7d7d2e1 340 /*
de3910eb 341 * Alocate and fill the csrow/channels structs
a7d7d2e1 342 */
de3910eb
MCC
343 mci->csrows = kcalloc(sizeof(*mci->csrows), tot_csrows, GFP_KERNEL);
344 if (!mci->csrows)
345 goto error;
4275be63 346 for (row = 0; row < tot_csrows; row++) {
de3910eb
MCC
347 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
348 if (!csr)
349 goto error;
350 mci->csrows[row] = csr;
4275be63
MCC
351 csr->csrow_idx = row;
352 csr->mci = mci;
353 csr->nr_channels = tot_channels;
de3910eb
MCC
354 csr->channels = kcalloc(sizeof(*csr->channels), tot_channels,
355 GFP_KERNEL);
356 if (!csr->channels)
357 goto error;
4275be63
MCC
358
359 for (chn = 0; chn < tot_channels; chn++) {
de3910eb
MCC
360 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
361 if (!chan)
362 goto error;
363 csr->channels[chn] = chan;
da9bb1d2 364 chan->chan_idx = chn;
4275be63
MCC
365 chan->csrow = csr;
366 }
367 }
368
369 /*
de3910eb 370 * Allocate and fill the dimm structs
4275be63 371 */
de3910eb
MCC
372 mci->dimms = kcalloc(sizeof(*mci->dimms), tot_dimms, GFP_KERNEL);
373 if (!mci->dimms)
374 goto error;
375
4275be63
MCC
376 memset(&pos, 0, sizeof(pos));
377 row = 0;
378 chn = 0;
4275be63 379 for (i = 0; i < tot_dimms; i++) {
de3910eb
MCC
380 chan = mci->csrows[row]->channels[chn];
381 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
382 if (off < 0 || off >= tot_dimms) {
383 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
384 goto error;
385 }
4275be63 386
de3910eb 387 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
08a4a136
DC
388 if (!dimm)
389 goto error;
de3910eb 390 mci->dimms[off] = dimm;
4275be63 391 dimm->mci = mci;
4275be63 392
5926ff50
MCC
393 /*
394 * Copy DIMM location and initialize it.
395 */
396 len = sizeof(dimm->label);
397 p = dimm->label;
398 n = snprintf(p, len, "mc#%u", mc_num);
399 p += n;
400 len -= n;
401 for (j = 0; j < n_layers; j++) {
402 n = snprintf(p, len, "%s#%u",
403 edac_layer_name[layers[j].type],
404 pos[j]);
405 p += n;
406 len -= n;
4275be63
MCC
407 dimm->location[j] = pos[j];
408
5926ff50
MCC
409 if (len <= 0)
410 break;
411 }
412
4275be63
MCC
413 /* Link it to the csrows old API data */
414 chan->dimm = dimm;
415 dimm->csrow = row;
416 dimm->cschannel = chn;
417
418 /* Increment csrow location */
419 row++;
420 if (row == tot_csrows) {
421 row = 0;
422 chn++;
423 }
a7d7d2e1 424
4275be63
MCC
425 /* Increment dimm location */
426 for (j = n_layers - 1; j >= 0; j--) {
427 pos[j]++;
428 if (pos[j] < layers[j].size)
429 break;
430 pos[j] = 0;
da9bb1d2
AC
431 }
432 }
433
81d87cb1 434 mci->op_state = OP_ALLOC;
8096cfaf
DT
435
436 /* at this point, the root kobj is valid, and in order to
437 * 'free' the object, then the function:
438 * edac_mc_unregister_sysfs_main_kobj() must be called
439 * which will perform kobj unregistration and the actual free
440 * will occur during the kobject callback operation
441 */
53f2d028 442
da9bb1d2 443 return mci;
de3910eb
MCC
444
445error:
faa2ad09 446 _edac_mc_free(mci);
de3910eb
MCC
447
448 return NULL;
4275be63 449}
9110540f 450EXPORT_SYMBOL_GPL(edac_mc_alloc);
da9bb1d2 451
da9bb1d2 452/**
8096cfaf
DT
453 * edac_mc_free
454 * 'Free' a previously allocated 'mci' structure
da9bb1d2 455 * @mci: pointer to a struct mem_ctl_info structure
da9bb1d2
AC
456 */
457void edac_mc_free(struct mem_ctl_info *mci)
458{
956b9ba1 459 edac_dbg(1, "\n");
bbc560ae 460
faa2ad09
SR
461 /* If we're not yet registered with sysfs free only what was allocated
462 * in edac_mc_alloc().
463 */
464 if (!device_is_registered(&mci->dev)) {
465 _edac_mc_free(mci);
466 return;
467 }
468
de3910eb 469 /* the mci instance is freed here, when the sysfs object is dropped */
7a623c03 470 edac_unregister_sysfs(mci);
da9bb1d2 471}
9110540f 472EXPORT_SYMBOL_GPL(edac_mc_free);
da9bb1d2 473
bce19683 474
939747bd 475/**
bce19683
DT
476 * find_mci_by_dev
477 *
478 * scan list of controllers looking for the one that manages
479 * the 'dev' device
939747bd 480 * @dev: pointer to a struct device related with the MCI
bce19683 481 */
939747bd 482struct mem_ctl_info *find_mci_by_dev(struct device *dev)
da9bb1d2
AC
483{
484 struct mem_ctl_info *mci;
485 struct list_head *item;
486
956b9ba1 487 edac_dbg(3, "\n");
da9bb1d2
AC
488
489 list_for_each(item, &mc_devices) {
490 mci = list_entry(item, struct mem_ctl_info, link);
491
fd687502 492 if (mci->pdev == dev)
da9bb1d2
AC
493 return mci;
494 }
495
496 return NULL;
497}
939747bd 498EXPORT_SYMBOL_GPL(find_mci_by_dev);
da9bb1d2 499
81d87cb1
DJ
500/*
501 * handler for EDAC to check if NMI type handler has asserted interrupt
502 */
503static int edac_mc_assert_error_check_and_clear(void)
504{
66ee2f94 505 int old_state;
81d87cb1 506
079708b9 507 if (edac_op_state == EDAC_OPSTATE_POLL)
81d87cb1
DJ
508 return 1;
509
66ee2f94
DJ
510 old_state = edac_err_assert;
511 edac_err_assert = 0;
81d87cb1 512
66ee2f94 513 return old_state;
81d87cb1
DJ
514}
515
516/*
517 * edac_mc_workq_function
518 * performs the operation scheduled by a workq request
519 */
81d87cb1
DJ
520static void edac_mc_workq_function(struct work_struct *work_req)
521{
fbeb4384 522 struct delayed_work *d_work = to_delayed_work(work_req);
81d87cb1 523 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
81d87cb1
DJ
524
525 mutex_lock(&mem_ctls_mutex);
526
bf52fa4a
DT
527 /* if this control struct has movd to offline state, we are done */
528 if (mci->op_state == OP_OFFLINE) {
529 mutex_unlock(&mem_ctls_mutex);
530 return;
531 }
532
81d87cb1
DJ
533 /* Only poll controllers that are running polled and have a check */
534 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
535 mci->edac_check(mci);
536
81d87cb1
DJ
537 mutex_unlock(&mem_ctls_mutex);
538
539 /* Reschedule */
4de78c68 540 queue_delayed_work(edac_workqueue, &mci->work,
052dfb45 541 msecs_to_jiffies(edac_mc_get_poll_msec()));
81d87cb1
DJ
542}
543
544/*
545 * edac_mc_workq_setup
546 * initialize a workq item for this mci
547 * passing in the new delay period in msec
bf52fa4a
DT
548 *
549 * locking model:
550 *
551 * called with the mem_ctls_mutex held
81d87cb1 552 */
bf52fa4a 553static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
81d87cb1 554{
956b9ba1 555 edac_dbg(0, "\n");
81d87cb1 556
bf52fa4a
DT
557 /* if this instance is not in the POLL state, then simply return */
558 if (mci->op_state != OP_RUNNING_POLL)
559 return;
560
81d87cb1 561 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
81d87cb1
DJ
562 queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
563}
564
565/*
566 * edac_mc_workq_teardown
567 * stop the workq processing on this mci
bf52fa4a
DT
568 *
569 * locking model:
570 *
571 * called WITHOUT lock held
81d87cb1 572 */
bf52fa4a 573static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
81d87cb1
DJ
574{
575 int status;
576
00740c58
BP
577 if (mci->op_state != OP_RUNNING_POLL)
578 return;
579
bce19683
DT
580 status = cancel_delayed_work(&mci->work);
581 if (status == 0) {
956b9ba1 582 edac_dbg(0, "not canceled, flush the queue\n");
bf52fa4a 583
bce19683
DT
584 /* workq instance might be running, wait for it */
585 flush_workqueue(edac_workqueue);
81d87cb1
DJ
586 }
587}
588
589/*
bce19683
DT
590 * edac_mc_reset_delay_period(unsigned long value)
591 *
592 * user space has updated our poll period value, need to
593 * reset our workq delays
81d87cb1 594 */
bce19683 595void edac_mc_reset_delay_period(int value)
81d87cb1 596{
bce19683
DT
597 struct mem_ctl_info *mci;
598 struct list_head *item;
599
600 mutex_lock(&mem_ctls_mutex);
601
602 /* scan the list and turn off all workq timers, doing so under lock
603 */
604 list_for_each(item, &mc_devices) {
605 mci = list_entry(item, struct mem_ctl_info, link);
606
607 if (mci->op_state == OP_RUNNING_POLL)
608 cancel_delayed_work(&mci->work);
609 }
610
611 mutex_unlock(&mem_ctls_mutex);
81d87cb1 612
bce19683
DT
613
614 /* re-walk the list, and reset the poll delay */
bf52fa4a
DT
615 mutex_lock(&mem_ctls_mutex);
616
bce19683
DT
617 list_for_each(item, &mc_devices) {
618 mci = list_entry(item, struct mem_ctl_info, link);
619
620 edac_mc_workq_setup(mci, (unsigned long) value);
621 }
81d87cb1
DJ
622
623 mutex_unlock(&mem_ctls_mutex);
624}
625
bce19683
DT
626
627
2d7bbb91
DT
628/* Return 0 on success, 1 on failure.
629 * Before calling this function, caller must
630 * assign a unique value to mci->mc_idx.
bf52fa4a
DT
631 *
632 * locking model:
633 *
634 * called with the mem_ctls_mutex lock held
2d7bbb91 635 */
079708b9 636static int add_mc_to_global_list(struct mem_ctl_info *mci)
da9bb1d2
AC
637{
638 struct list_head *item, *insert_before;
639 struct mem_ctl_info *p;
da9bb1d2 640
2d7bbb91 641 insert_before = &mc_devices;
da9bb1d2 642
fd687502 643 p = find_mci_by_dev(mci->pdev);
bf52fa4a 644 if (unlikely(p != NULL))
2d7bbb91 645 goto fail0;
da9bb1d2 646
2d7bbb91
DT
647 list_for_each(item, &mc_devices) {
648 p = list_entry(item, struct mem_ctl_info, link);
da9bb1d2 649
2d7bbb91
DT
650 if (p->mc_idx >= mci->mc_idx) {
651 if (unlikely(p->mc_idx == mci->mc_idx))
652 goto fail1;
da9bb1d2 653
2d7bbb91
DT
654 insert_before = item;
655 break;
da9bb1d2 656 }
da9bb1d2
AC
657 }
658
659 list_add_tail_rcu(&mci->link, insert_before);
c0d12172 660 atomic_inc(&edac_handlers);
da9bb1d2 661 return 0;
2d7bbb91 662
052dfb45 663fail0:
2d7bbb91 664 edac_printk(KERN_WARNING, EDAC_MC,
fd687502 665 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
17aa7e03 666 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
2d7bbb91
DT
667 return 1;
668
052dfb45 669fail1:
2d7bbb91 670 edac_printk(KERN_WARNING, EDAC_MC,
052dfb45
DT
671 "bug in low-level driver: attempt to assign\n"
672 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
2d7bbb91 673 return 1;
da9bb1d2
AC
674}
675
e7ecd891 676static void del_mc_from_global_list(struct mem_ctl_info *mci)
a1d03fcc 677{
c0d12172 678 atomic_dec(&edac_handlers);
a1d03fcc 679 list_del_rcu(&mci->link);
e2e77098
LJ
680
681 /* these are for safe removal of devices from global list while
682 * NMI handlers may be traversing list
683 */
684 synchronize_rcu();
685 INIT_LIST_HEAD(&mci->link);
a1d03fcc
DP
686}
687
5da0831c
DT
688/**
689 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
690 *
691 * If found, return a pointer to the structure.
692 * Else return NULL.
693 *
694 * Caller must hold mem_ctls_mutex.
695 */
079708b9 696struct mem_ctl_info *edac_mc_find(int idx)
5da0831c
DT
697{
698 struct list_head *item;
699 struct mem_ctl_info *mci;
700
701 list_for_each(item, &mc_devices) {
702 mci = list_entry(item, struct mem_ctl_info, link);
703
704 if (mci->mc_idx >= idx) {
705 if (mci->mc_idx == idx)
706 return mci;
707
708 break;
709 }
710 }
711
712 return NULL;
713}
714EXPORT_SYMBOL(edac_mc_find);
715
da9bb1d2 716/**
472678eb
DP
717 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
718 * create sysfs entries associated with mci structure
da9bb1d2
AC
719 * @mci: pointer to the mci structure to be added to the list
720 *
721 * Return:
722 * 0 Success
723 * !0 Failure
724 */
725
726/* FIXME - should a warning be printed if no error detection? correction? */
b8f6f975 727int edac_mc_add_mc(struct mem_ctl_info *mci)
da9bb1d2 728{
956b9ba1 729 edac_dbg(0, "\n");
b8f6f975 730
da9bb1d2
AC
731#ifdef CONFIG_EDAC_DEBUG
732 if (edac_debug_level >= 3)
733 edac_mc_dump_mci(mci);
e7ecd891 734
da9bb1d2
AC
735 if (edac_debug_level >= 4) {
736 int i;
737
738 for (i = 0; i < mci->nr_csrows; i++) {
6e84d359
MCC
739 struct csrow_info *csrow = mci->csrows[i];
740 u32 nr_pages = 0;
da9bb1d2 741 int j;
e7ecd891 742
6e84d359
MCC
743 for (j = 0; j < csrow->nr_channels; j++)
744 nr_pages += csrow->channels[j]->dimm->nr_pages;
745 if (!nr_pages)
746 continue;
747 edac_mc_dump_csrow(csrow);
748 for (j = 0; j < csrow->nr_channels; j++)
749 if (csrow->channels[j]->dimm->nr_pages)
750 edac_mc_dump_channel(csrow->channels[j]);
da9bb1d2 751 }
4275be63 752 for (i = 0; i < mci->tot_dimms; i++)
6e84d359
MCC
753 if (mci->dimms[i]->nr_pages)
754 edac_mc_dump_dimm(mci->dimms[i], i);
da9bb1d2
AC
755 }
756#endif
63b7df91 757 mutex_lock(&mem_ctls_mutex);
da9bb1d2
AC
758
759 if (add_mc_to_global_list(mci))
028a7b6d 760 goto fail0;
da9bb1d2
AC
761
762 /* set load time so that error rate can be tracked */
763 mci->start_time = jiffies;
764
9794f33d 765 if (edac_create_sysfs_mci_device(mci)) {
766 edac_mc_printk(mci, KERN_WARNING,
052dfb45 767 "failed to create sysfs device\n");
9794f33d 768 goto fail1;
769 }
da9bb1d2 770
81d87cb1
DJ
771 /* If there IS a check routine, then we are running POLLED */
772 if (mci->edac_check != NULL) {
773 /* This instance is NOW RUNNING */
774 mci->op_state = OP_RUNNING_POLL;
775
776 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
777 } else {
778 mci->op_state = OP_RUNNING_INTERRUPT;
779 }
780
da9bb1d2 781 /* Report action taken */
bf52fa4a 782 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
17aa7e03 783 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
da9bb1d2 784
63b7df91 785 mutex_unlock(&mem_ctls_mutex);
028a7b6d 786 return 0;
da9bb1d2 787
052dfb45 788fail1:
028a7b6d
DP
789 del_mc_from_global_list(mci);
790
052dfb45 791fail0:
63b7df91 792 mutex_unlock(&mem_ctls_mutex);
028a7b6d 793 return 1;
da9bb1d2 794}
9110540f 795EXPORT_SYMBOL_GPL(edac_mc_add_mc);
da9bb1d2 796
da9bb1d2 797/**
472678eb
DP
798 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
799 * remove mci structure from global list
37f04581 800 * @pdev: Pointer to 'struct device' representing mci structure to remove.
da9bb1d2 801 *
18dbc337 802 * Return pointer to removed mci structure, or NULL if device not found.
da9bb1d2 803 */
079708b9 804struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
da9bb1d2 805{
18dbc337 806 struct mem_ctl_info *mci;
da9bb1d2 807
956b9ba1 808 edac_dbg(0, "\n");
bf52fa4a 809
63b7df91 810 mutex_lock(&mem_ctls_mutex);
18dbc337 811
bf52fa4a
DT
812 /* find the requested mci struct in the global list */
813 mci = find_mci_by_dev(dev);
814 if (mci == NULL) {
63b7df91 815 mutex_unlock(&mem_ctls_mutex);
18dbc337
DP
816 return NULL;
817 }
818
da9bb1d2 819 del_mc_from_global_list(mci);
63b7df91 820 mutex_unlock(&mem_ctls_mutex);
bf52fa4a 821
bb31b312 822 /* flush workq processes */
bf52fa4a 823 edac_mc_workq_teardown(mci);
bb31b312
BP
824
825 /* marking MCI offline */
826 mci->op_state = OP_OFFLINE;
827
828 /* remove from sysfs */
bf52fa4a
DT
829 edac_remove_sysfs_mci_device(mci);
830
537fba28 831 edac_printk(KERN_INFO, EDAC_MC,
052dfb45 832 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
17aa7e03 833 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
bf52fa4a 834
18dbc337 835 return mci;
da9bb1d2 836}
9110540f 837EXPORT_SYMBOL_GPL(edac_mc_del_mc);
da9bb1d2 838
2da1c119
AB
839static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
840 u32 size)
da9bb1d2
AC
841{
842 struct page *pg;
843 void *virt_addr;
844 unsigned long flags = 0;
845
956b9ba1 846 edac_dbg(3, "\n");
da9bb1d2
AC
847
848 /* ECC error page was not in our memory. Ignore it. */
079708b9 849 if (!pfn_valid(page))
da9bb1d2
AC
850 return;
851
852 /* Find the actual page structure then map it and fix */
853 pg = pfn_to_page(page);
854
855 if (PageHighMem(pg))
856 local_irq_save(flags);
857
4e5df7ca 858 virt_addr = kmap_atomic(pg);
da9bb1d2
AC
859
860 /* Perform architecture specific atomic scrub operation */
861 atomic_scrub(virt_addr + offset, size);
862
863 /* Unmap and complete */
4e5df7ca 864 kunmap_atomic(virt_addr);
da9bb1d2
AC
865
866 if (PageHighMem(pg))
867 local_irq_restore(flags);
868}
869
da9bb1d2 870/* FIXME - should return -1 */
e7ecd891 871int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
da9bb1d2 872{
de3910eb 873 struct csrow_info **csrows = mci->csrows;
a895bf8b 874 int row, i, j, n;
da9bb1d2 875
956b9ba1 876 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
da9bb1d2
AC
877 row = -1;
878
879 for (i = 0; i < mci->nr_csrows; i++) {
de3910eb 880 struct csrow_info *csrow = csrows[i];
a895bf8b
MCC
881 n = 0;
882 for (j = 0; j < csrow->nr_channels; j++) {
de3910eb 883 struct dimm_info *dimm = csrow->channels[j]->dimm;
a895bf8b
MCC
884 n += dimm->nr_pages;
885 }
886 if (n == 0)
da9bb1d2
AC
887 continue;
888
956b9ba1
JP
889 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
890 mci->mc_idx,
891 csrow->first_page, page, csrow->last_page,
892 csrow->page_mask);
da9bb1d2
AC
893
894 if ((page >= csrow->first_page) &&
895 (page <= csrow->last_page) &&
896 ((page & csrow->page_mask) ==
897 (csrow->first_page & csrow->page_mask))) {
898 row = i;
899 break;
900 }
901 }
902
903 if (row == -1)
537fba28 904 edac_mc_printk(mci, KERN_ERR,
052dfb45
DT
905 "could not look up page error address %lx\n",
906 (unsigned long)page);
da9bb1d2
AC
907
908 return row;
909}
9110540f 910EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
da9bb1d2 911
4275be63
MCC
912const char *edac_layer_name[] = {
913 [EDAC_MC_LAYER_BRANCH] = "branch",
914 [EDAC_MC_LAYER_CHANNEL] = "channel",
915 [EDAC_MC_LAYER_SLOT] = "slot",
916 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
917};
918EXPORT_SYMBOL_GPL(edac_layer_name);
919
920static void edac_inc_ce_error(struct mem_ctl_info *mci,
9eb07a7f
MCC
921 bool enable_per_layer_report,
922 const int pos[EDAC_MAX_LAYERS],
923 const u16 count)
da9bb1d2 924{
4275be63 925 int i, index = 0;
da9bb1d2 926
9eb07a7f 927 mci->ce_mc += count;
da9bb1d2 928
4275be63 929 if (!enable_per_layer_report) {
9eb07a7f 930 mci->ce_noinfo_count += count;
da9bb1d2
AC
931 return;
932 }
e7ecd891 933
4275be63
MCC
934 for (i = 0; i < mci->n_layers; i++) {
935 if (pos[i] < 0)
936 break;
937 index += pos[i];
9eb07a7f 938 mci->ce_per_layer[i][index] += count;
4275be63
MCC
939
940 if (i < mci->n_layers - 1)
941 index *= mci->layers[i + 1].size;
942 }
943}
944
945static void edac_inc_ue_error(struct mem_ctl_info *mci,
946 bool enable_per_layer_report,
9eb07a7f
MCC
947 const int pos[EDAC_MAX_LAYERS],
948 const u16 count)
4275be63
MCC
949{
950 int i, index = 0;
951
9eb07a7f 952 mci->ue_mc += count;
4275be63
MCC
953
954 if (!enable_per_layer_report) {
9eb07a7f 955 mci->ce_noinfo_count += count;
da9bb1d2
AC
956 return;
957 }
958
4275be63
MCC
959 for (i = 0; i < mci->n_layers; i++) {
960 if (pos[i] < 0)
961 break;
962 index += pos[i];
9eb07a7f 963 mci->ue_per_layer[i][index] += count;
a7d7d2e1 964
4275be63
MCC
965 if (i < mci->n_layers - 1)
966 index *= mci->layers[i + 1].size;
967 }
968}
da9bb1d2 969
4275be63 970static void edac_ce_error(struct mem_ctl_info *mci,
9eb07a7f 971 const u16 error_count,
4275be63
MCC
972 const int pos[EDAC_MAX_LAYERS],
973 const char *msg,
974 const char *location,
975 const char *label,
976 const char *detail,
977 const char *other_detail,
978 const bool enable_per_layer_report,
979 const unsigned long page_frame_number,
980 const unsigned long offset_in_page,
53f2d028 981 long grain)
4275be63
MCC
982{
983 unsigned long remapped_page;
984
985 if (edac_mc_get_log_ce()) {
986 if (other_detail && *other_detail)
987 edac_mc_printk(mci, KERN_WARNING,
9eb07a7f
MCC
988 "%d CE %s on %s (%s %s - %s)\n",
989 error_count,
4275be63
MCC
990 msg, label, location,
991 detail, other_detail);
992 else
993 edac_mc_printk(mci, KERN_WARNING,
9eb07a7f
MCC
994 "%d CE %s on %s (%s %s)\n",
995 error_count,
4275be63
MCC
996 msg, label, location,
997 detail);
998 }
9eb07a7f 999 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
1000
1001 if (mci->scrub_mode & SCRUB_SW_SRC) {
1002 /*
4275be63
MCC
1003 * Some memory controllers (called MCs below) can remap
1004 * memory so that it is still available at a different
1005 * address when PCI devices map into memory.
1006 * MC's that can't do this, lose the memory where PCI
1007 * devices are mapped. This mapping is MC-dependent
1008 * and so we call back into the MC driver for it to
1009 * map the MC page to a physical (CPU) page which can
1010 * then be mapped to a virtual page - which can then
1011 * be scrubbed.
1012 */
da9bb1d2 1013 remapped_page = mci->ctl_page_to_phys ?
052dfb45
DT
1014 mci->ctl_page_to_phys(mci, page_frame_number) :
1015 page_frame_number;
da9bb1d2 1016
4275be63
MCC
1017 edac_mc_scrub_block(remapped_page,
1018 offset_in_page, grain);
da9bb1d2
AC
1019 }
1020}
1021
4275be63 1022static void edac_ue_error(struct mem_ctl_info *mci,
9eb07a7f 1023 const u16 error_count,
4275be63
MCC
1024 const int pos[EDAC_MAX_LAYERS],
1025 const char *msg,
1026 const char *location,
1027 const char *label,
1028 const char *detail,
1029 const char *other_detail,
1030 const bool enable_per_layer_report)
da9bb1d2 1031{
4275be63
MCC
1032 if (edac_mc_get_log_ue()) {
1033 if (other_detail && *other_detail)
1034 edac_mc_printk(mci, KERN_WARNING,
9eb07a7f
MCC
1035 "%d UE %s on %s (%s %s - %s)\n",
1036 error_count,
4275be63
MCC
1037 msg, label, location, detail,
1038 other_detail);
1039 else
1040 edac_mc_printk(mci, KERN_WARNING,
9eb07a7f
MCC
1041 "%d UE %s on %s (%s %s)\n",
1042 error_count,
4275be63
MCC
1043 msg, label, location, detail);
1044 }
e7ecd891 1045
4275be63
MCC
1046 if (edac_mc_get_panic_on_ue()) {
1047 if (other_detail && *other_detail)
1048 panic("UE %s on %s (%s%s - %s)\n",
1049 msg, label, location, detail, other_detail);
1050 else
1051 panic("UE %s on %s (%s%s)\n",
1052 msg, label, location, detail);
1053 }
1054
9eb07a7f 1055 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
da9bb1d2
AC
1056}
1057
4275be63 1058#define OTHER_LABEL " or "
53f2d028
MCC
1059
1060/**
1061 * edac_mc_handle_error - reports a memory event to userspace
1062 *
1063 * @type: severity of the error (CE/UE/Fatal)
1064 * @mci: a struct mem_ctl_info pointer
9eb07a7f 1065 * @error_count: Number of errors of the same type
53f2d028
MCC
1066 * @page_frame_number: mem page where the error occurred
1067 * @offset_in_page: offset of the error inside the page
1068 * @syndrome: ECC syndrome
1069 * @top_layer: Memory layer[0] position
1070 * @mid_layer: Memory layer[1] position
1071 * @low_layer: Memory layer[2] position
1072 * @msg: Message meaningful to the end users that
1073 * explains the event
1074 * @other_detail: Technical details about the event that
1075 * may help hardware manufacturers and
1076 * EDAC developers to analyse the event
53f2d028 1077 */
4275be63
MCC
1078void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1079 struct mem_ctl_info *mci,
9eb07a7f 1080 const u16 error_count,
4275be63
MCC
1081 const unsigned long page_frame_number,
1082 const unsigned long offset_in_page,
1083 const unsigned long syndrome,
53f2d028
MCC
1084 const int top_layer,
1085 const int mid_layer,
1086 const int low_layer,
4275be63 1087 const char *msg,
03f7eae8 1088 const char *other_detail)
da9bb1d2 1089{
4275be63
MCC
1090 /* FIXME: too much for stack: move it to some pre-alocated area */
1091 char detail[80], location[80];
1092 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms];
1093 char *p;
1094 int row = -1, chan = -1;
53f2d028 1095 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
4275be63 1096 int i;
53f2d028 1097 long grain;
4275be63 1098 bool enable_per_layer_report = false;
53f2d028 1099 u8 grain_bits;
da9bb1d2 1100
956b9ba1 1101 edac_dbg(3, "MC%d\n", mci->mc_idx);
da9bb1d2 1102
4275be63
MCC
1103 /*
1104 * Check if the event report is consistent and if the memory
1105 * location is known. If it is known, enable_per_layer_report will be
1106 * true, the DIMM(s) label info will be filled and the per-layer
1107 * error counters will be incremented.
1108 */
1109 for (i = 0; i < mci->n_layers; i++) {
1110 if (pos[i] >= (int)mci->layers[i].size) {
1111 if (type == HW_EVENT_ERR_CORRECTED)
1112 p = "CE";
1113 else
1114 p = "UE";
1115
1116 edac_mc_printk(mci, KERN_ERR,
1117 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1118 edac_layer_name[mci->layers[i].type],
1119 pos[i], mci->layers[i].size);
1120 /*
1121 * Instead of just returning it, let's use what's
1122 * known about the error. The increment routines and
1123 * the DIMM filter logic will do the right thing by
1124 * pointing the likely damaged DIMMs.
1125 */
1126 pos[i] = -1;
1127 }
1128 if (pos[i] >= 0)
1129 enable_per_layer_report = true;
da9bb1d2
AC
1130 }
1131
4275be63
MCC
1132 /*
1133 * Get the dimm label/grain that applies to the match criteria.
1134 * As the error algorithm may not be able to point to just one memory
1135 * stick, the logic here will get all possible labels that could
1136 * pottentially be affected by the error.
1137 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1138 * to have only the MC channel and the MC dimm (also called "branch")
1139 * but the channel is not known, as the memory is arranged in pairs,
1140 * where each memory belongs to a separate channel within the same
1141 * branch.
1142 */
1143 grain = 0;
1144 p = label;
1145 *p = '\0';
1146 for (i = 0; i < mci->tot_dimms; i++) {
de3910eb 1147 struct dimm_info *dimm = mci->dimms[i];
da9bb1d2 1148
53f2d028 1149 if (top_layer >= 0 && top_layer != dimm->location[0])
4275be63 1150 continue;
53f2d028 1151 if (mid_layer >= 0 && mid_layer != dimm->location[1])
4275be63 1152 continue;
53f2d028 1153 if (low_layer >= 0 && low_layer != dimm->location[2])
4275be63 1154 continue;
da9bb1d2 1155
4275be63
MCC
1156 /* get the max grain, over the error match range */
1157 if (dimm->grain > grain)
1158 grain = dimm->grain;
9794f33d 1159
4275be63
MCC
1160 /*
1161 * If the error is memory-controller wide, there's no need to
1162 * seek for the affected DIMMs because the whole
1163 * channel/memory controller/... may be affected.
1164 * Also, don't show errors for empty DIMM slots.
1165 */
1166 if (enable_per_layer_report && dimm->nr_pages) {
1167 if (p != label) {
1168 strcpy(p, OTHER_LABEL);
1169 p += strlen(OTHER_LABEL);
1170 }
1171 strcpy(p, dimm->label);
1172 p += strlen(p);
1173 *p = '\0';
1174
1175 /*
1176 * get csrow/channel of the DIMM, in order to allow
1177 * incrementing the compat API counters
1178 */
956b9ba1
JP
1179 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1180 mci->mem_is_per_rank ? "rank" : "dimm",
1181 dimm->csrow, dimm->cschannel);
4275be63
MCC
1182 if (row == -1)
1183 row = dimm->csrow;
1184 else if (row >= 0 && row != dimm->csrow)
1185 row = -2;
1186
1187 if (chan == -1)
1188 chan = dimm->cschannel;
1189 else if (chan >= 0 && chan != dimm->cschannel)
1190 chan = -2;
1191 }
9794f33d 1192 }
1193
4275be63
MCC
1194 if (!enable_per_layer_report) {
1195 strcpy(label, "any memory");
1196 } else {
956b9ba1 1197 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
4275be63
MCC
1198 if (p == label)
1199 strcpy(label, "unknown memory");
1200 if (type == HW_EVENT_ERR_CORRECTED) {
1201 if (row >= 0) {
9eb07a7f 1202 mci->csrows[row]->ce_count += error_count;
4275be63 1203 if (chan >= 0)
9eb07a7f 1204 mci->csrows[row]->channels[chan]->ce_count += error_count;
4275be63
MCC
1205 }
1206 } else
1207 if (row >= 0)
9eb07a7f 1208 mci->csrows[row]->ue_count += error_count;
9794f33d 1209 }
1210
4275be63
MCC
1211 /* Fill the RAM location data */
1212 p = location;
1213 for (i = 0; i < mci->n_layers; i++) {
1214 if (pos[i] < 0)
1215 continue;
9794f33d 1216
4275be63
MCC
1217 p += sprintf(p, "%s:%d ",
1218 edac_layer_name[mci->layers[i].type],
1219 pos[i]);
9794f33d 1220 }
53f2d028
MCC
1221 if (p > location)
1222 *(p - 1) = '\0';
1223
1224 /* Report the error via the trace interface */
1225
53f2d028
MCC
1226 grain_bits = fls_long(grain) + 1;
1227 trace_mc_event(type, msg, label, error_count,
1228 mci->mc_idx, top_layer, mid_layer, low_layer,
1229 PAGES_TO_MiB(page_frame_number) | offset_in_page,
1230 grain_bits, syndrome, other_detail);
a7d7d2e1 1231
4275be63
MCC
1232 /* Memory type dependent details about the error */
1233 if (type == HW_EVENT_ERR_CORRECTED) {
1234 snprintf(detail, sizeof(detail),
53f2d028 1235 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
4275be63
MCC
1236 page_frame_number, offset_in_page,
1237 grain, syndrome);
9eb07a7f
MCC
1238 edac_ce_error(mci, error_count, pos, msg, location, label,
1239 detail, other_detail, enable_per_layer_report,
4275be63
MCC
1240 page_frame_number, offset_in_page, grain);
1241 } else {
1242 snprintf(detail, sizeof(detail),
53f2d028 1243 "page:0x%lx offset:0x%lx grain:%ld",
4275be63 1244 page_frame_number, offset_in_page, grain);
9794f33d 1245
9eb07a7f
MCC
1246 edac_ue_error(mci, error_count, pos, msg, location, label,
1247 detail, other_detail, enable_per_layer_report);
4275be63 1248 }
9794f33d 1249}
4275be63 1250EXPORT_SYMBOL_GPL(edac_mc_handle_error);