Merge tag 'irqdomain-for-linus' of git://git.secretlab.ca/git/linux-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
b2b0c605
BP
63static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
73ba8593
BP
117/*
118 * Select DCT to which PCI cfg accesses are routed
119 */
120static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121{
122 u32 reg = 0;
123
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128}
129
b2b0c605
BP
130static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
132{
b2b0c605
BP
133 u8 dct = 0;
134
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
138 }
139
73ba8593 140 f15h_select_dct(pvt, dct);
b2b0c605
BP
141
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143}
144
2bc65418
DT
145/*
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
150 *
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
154 *
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
157 */
158
159/*
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
162 */
395ae783 163static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
164{
165 u32 scrubval;
166 int i;
167
168 /*
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
173 */
174 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
175 /*
176 * skip scrub rates which aren't recommended
177 * (see F10 BKDG, F3x58)
178 */
395ae783 179 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
180 continue;
181
182 if (scrubrates[i].bandwidth <= new_bw)
183 break;
184
185 /*
186 * if no suitable bandwidth found, turn off DRAM scrubbing
187 * entirely by falling back to the last element in the
188 * scrubrates array.
189 */
190 }
191
192 scrubval = scrubrates[i].scrubval;
2bc65418 193
5980bb9c 194 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 195
39094443
BP
196 if (scrubval)
197 return scrubrates[i].bandwidth;
198
2bc65418
DT
199 return 0;
200}
201
395ae783 202static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
203{
204 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 205 u32 min_scrubrate = 0x5;
2bc65418 206
87b3e0e6
BP
207 if (boot_cpu_data.x86 == 0xf)
208 min_scrubrate = 0x0;
209
73ba8593
BP
210 /* F15h Erratum #505 */
211 if (boot_cpu_data.x86 == 0x15)
212 f15h_select_dct(pvt, 0);
213
87b3e0e6 214 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
215}
216
39094443 217static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
218{
219 struct amd64_pvt *pvt = mci->pvt_info;
220 u32 scrubval = 0;
39094443 221 int i, retval = -EINVAL;
2bc65418 222
73ba8593
BP
223 /* F15h Erratum #505 */
224 if (boot_cpu_data.x86 == 0x15)
225 f15h_select_dct(pvt, 0);
226
5980bb9c 227 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
228
229 scrubval = scrubval & 0x001F;
230
926311fd 231 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 232 if (scrubrates[i].scrubval == scrubval) {
39094443 233 retval = scrubrates[i].bandwidth;
2bc65418
DT
234 break;
235 }
236 }
39094443 237 return retval;
2bc65418
DT
238}
239
6775763a 240/*
7f19bf75
BP
241 * returns true if the SysAddr given by sys_addr matches the
242 * DRAM base/limit associated with node_id
6775763a 243 */
b487c33e
BP
244static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
245 unsigned nid)
6775763a 246{
7f19bf75 247 u64 addr;
6775763a
DT
248
249 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
250 * all ones if the most significant implemented address bit is 1.
251 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
252 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 * Application Programming.
254 */
255 addr = sys_addr & 0x000000ffffffffffull;
256
7f19bf75
BP
257 return ((addr >= get_dram_base(pvt, nid)) &&
258 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
259}
260
261/*
262 * Attempt to map a SysAddr to a node. On success, return a pointer to the
263 * mem_ctl_info structure for the node that the SysAddr maps to.
264 *
265 * On failure, return NULL.
266 */
267static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
268 u64 sys_addr)
269{
270 struct amd64_pvt *pvt;
b487c33e 271 unsigned node_id;
6775763a
DT
272 u32 intlv_en, bits;
273
274 /*
275 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
276 * 3.4.4.2) registers to map the SysAddr to a node ID.
277 */
278 pvt = mci->pvt_info;
279
280 /*
281 * The value of this field should be the same for all DRAM Base
282 * registers. Therefore we arbitrarily choose to read it from the
283 * register for node 0.
284 */
7f19bf75 285 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
286
287 if (intlv_en == 0) {
7f19bf75 288 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 289 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 290 goto found;
6775763a 291 }
8edc5445 292 goto err_no_match;
6775763a
DT
293 }
294
72f158fe
BP
295 if (unlikely((intlv_en != 0x01) &&
296 (intlv_en != 0x03) &&
297 (intlv_en != 0x07))) {
24f9a7fe 298 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
299 return NULL;
300 }
301
302 bits = (((u32) sys_addr) >> 12) & intlv_en;
303
304 for (node_id = 0; ; ) {
7f19bf75 305 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
306 break; /* intlv_sel field matches */
307
7f19bf75 308 if (++node_id >= DRAM_RANGES)
6775763a
DT
309 goto err_no_match;
310 }
311
312 /* sanity test for sys_addr */
313 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
314 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
315 "range for node %d with node interleaving enabled.\n",
316 __func__, sys_addr, node_id);
6775763a
DT
317 return NULL;
318 }
319
320found:
b487c33e 321 return edac_mc_find((int)node_id);
6775763a
DT
322
323err_no_match:
324 debugf2("sys_addr 0x%lx doesn't match any node\n",
325 (unsigned long)sys_addr);
326
327 return NULL;
328}
e2ce7255
DT
329
330/*
11c75ead
BP
331 * compute the CS base address of the @csrow on the DRAM controller @dct.
332 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 333 */
11c75ead
BP
334static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
335 u64 *base, u64 *mask)
e2ce7255 336{
11c75ead
BP
337 u64 csbase, csmask, base_bits, mask_bits;
338 u8 addr_shift;
e2ce7255 339
11c75ead
BP
340 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
341 csbase = pvt->csels[dct].csbases[csrow];
342 csmask = pvt->csels[dct].csmasks[csrow];
343 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
344 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
345 addr_shift = 4;
346 } else {
347 csbase = pvt->csels[dct].csbases[csrow];
348 csmask = pvt->csels[dct].csmasks[csrow >> 1];
349 addr_shift = 8;
e2ce7255 350
11c75ead
BP
351 if (boot_cpu_data.x86 == 0x15)
352 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
353 else
354 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
355 }
e2ce7255 356
11c75ead 357 *base = (csbase & base_bits) << addr_shift;
e2ce7255 358
11c75ead
BP
359 *mask = ~0ULL;
360 /* poke holes for the csmask */
361 *mask &= ~(mask_bits << addr_shift);
362 /* OR them in */
363 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
364}
365
11c75ead
BP
366#define for_each_chip_select(i, dct, pvt) \
367 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
368
614ec9d8
BP
369#define chip_select_base(i, dct, pvt) \
370 pvt->csels[dct].csbases[i]
371
11c75ead
BP
372#define for_each_chip_select_mask(i, dct, pvt) \
373 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
374
e2ce7255
DT
375/*
376 * @input_addr is an InputAddr associated with the node given by mci. Return the
377 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
378 */
379static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
380{
381 struct amd64_pvt *pvt;
382 int csrow;
383 u64 base, mask;
384
385 pvt = mci->pvt_info;
386
11c75ead
BP
387 for_each_chip_select(csrow, 0, pvt) {
388 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
389 continue;
390
11c75ead
BP
391 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
392
393 mask = ~mask;
e2ce7255
DT
394
395 if ((input_addr & mask) == (base & mask)) {
396 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
397 (unsigned long)input_addr, csrow,
398 pvt->mc_node_id);
399
400 return csrow;
401 }
402 }
e2ce7255
DT
403 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
404 (unsigned long)input_addr, pvt->mc_node_id);
405
406 return -1;
407}
408
e2ce7255
DT
409/*
410 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
411 * for the node represented by mci. Info is passed back in *hole_base,
412 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
413 * info is invalid. Info may be invalid for either of the following reasons:
414 *
415 * - The revision of the node is not E or greater. In this case, the DRAM Hole
416 * Address Register does not exist.
417 *
418 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
419 * indicating that its contents are not valid.
420 *
421 * The values passed back in *hole_base, *hole_offset, and *hole_size are
422 * complete 32-bit values despite the fact that the bitfields in the DHAR
423 * only represent bits 31-24 of the base and offset values.
424 */
425int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
426 u64 *hole_offset, u64 *hole_size)
427{
428 struct amd64_pvt *pvt = mci->pvt_info;
429 u64 base;
430
431 /* only revE and later have the DRAM Hole Address Register */
1433eb99 432 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
433 debugf1(" revision %d for node %d does not support DHAR\n",
434 pvt->ext_model, pvt->mc_node_id);
435 return 1;
436 }
437
bc21fa57 438 /* valid for Fam10h and above */
c8e518d5 439 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
440 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
441 return 1;
442 }
443
c8e518d5 444 if (!dhar_valid(pvt)) {
e2ce7255
DT
445 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
446 pvt->mc_node_id);
447 return 1;
448 }
449
450 /* This node has Memory Hoisting */
451
452 /* +------------------+--------------------+--------------------+-----
453 * | memory | DRAM hole | relocated |
454 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
455 * | | | DRAM hole |
456 * | | | [0x100000000, |
457 * | | | (0x100000000+ |
458 * | | | (0xffffffff-x))] |
459 * +------------------+--------------------+--------------------+-----
460 *
461 * Above is a diagram of physical memory showing the DRAM hole and the
462 * relocated addresses from the DRAM hole. As shown, the DRAM hole
463 * starts at address x (the base address) and extends through address
464 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
465 * addresses in the hole so that they start at 0x100000000.
466 */
467
bc21fa57 468 base = dhar_base(pvt);
e2ce7255
DT
469
470 *hole_base = base;
471 *hole_size = (0x1ull << 32) - base;
472
473 if (boot_cpu_data.x86 > 0xf)
bc21fa57 474 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 475 else
bc21fa57 476 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
477
478 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
479 pvt->mc_node_id, (unsigned long)*hole_base,
480 (unsigned long)*hole_offset, (unsigned long)*hole_size);
481
482 return 0;
483}
484EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
485
93c2df58
DT
486/*
487 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
488 * assumed that sys_addr maps to the node given by mci.
489 *
490 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
491 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
492 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
493 * then it is also involved in translating a SysAddr to a DramAddr. Sections
494 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
495 * These parts of the documentation are unclear. I interpret them as follows:
496 *
497 * When node n receives a SysAddr, it processes the SysAddr as follows:
498 *
499 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
500 * Limit registers for node n. If the SysAddr is not within the range
501 * specified by the base and limit values, then node n ignores the Sysaddr
502 * (since it does not map to node n). Otherwise continue to step 2 below.
503 *
504 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
505 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
506 * the range of relocated addresses (starting at 0x100000000) from the DRAM
507 * hole. If not, skip to step 3 below. Else get the value of the
508 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
509 * offset defined by this value from the SysAddr.
510 *
511 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
512 * Base register for node n. To obtain the DramAddr, subtract the base
513 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
514 */
515static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
516{
7f19bf75 517 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
518 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
519 int ret = 0;
520
7f19bf75 521 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
522
523 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
524 &hole_size);
525 if (!ret) {
526 if ((sys_addr >= (1ull << 32)) &&
527 (sys_addr < ((1ull << 32) + hole_size))) {
528 /* use DHAR to translate SysAddr to DramAddr */
529 dram_addr = sys_addr - hole_offset;
530
531 debugf2("using DHAR to translate SysAddr 0x%lx to "
532 "DramAddr 0x%lx\n",
533 (unsigned long)sys_addr,
534 (unsigned long)dram_addr);
535
536 return dram_addr;
537 }
538 }
539
540 /*
541 * Translate the SysAddr to a DramAddr as shown near the start of
542 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
543 * only deals with 40-bit values. Therefore we discard bits 63-40 of
544 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
545 * discard are all 1s. Otherwise the bits we discard are all 0s. See
546 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
547 * Programmer's Manual Volume 1 Application Programming.
548 */
f678b8cc 549 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
550
551 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
552 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
553 (unsigned long)dram_addr);
554 return dram_addr;
555}
556
557/*
558 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
559 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
560 * for node interleaving.
561 */
562static int num_node_interleave_bits(unsigned intlv_en)
563{
564 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
565 int n;
566
567 BUG_ON(intlv_en > 7);
568 n = intlv_shift_table[intlv_en];
569 return n;
570}
571
572/* Translate the DramAddr given by @dram_addr to an InputAddr. */
573static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
574{
575 struct amd64_pvt *pvt;
576 int intlv_shift;
577 u64 input_addr;
578
579 pvt = mci->pvt_info;
580
581 /*
582 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
583 * concerning translating a DramAddr to an InputAddr.
584 */
7f19bf75 585 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
586 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
587 (dram_addr & 0xfff);
93c2df58
DT
588
589 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
590 intlv_shift, (unsigned long)dram_addr,
591 (unsigned long)input_addr);
592
593 return input_addr;
594}
595
596/*
597 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
598 * assumed that @sys_addr maps to the node given by mci.
599 */
600static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
601{
602 u64 input_addr;
603
604 input_addr =
605 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
606
607 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
608 (unsigned long)sys_addr, (unsigned long)input_addr);
609
610 return input_addr;
611}
612
613
614/*
615 * @input_addr is an InputAddr associated with the node represented by mci.
616 * Translate @input_addr to a DramAddr and return the result.
617 */
618static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
619{
620 struct amd64_pvt *pvt;
b487c33e 621 unsigned node_id, intlv_shift;
93c2df58
DT
622 u64 bits, dram_addr;
623 u32 intlv_sel;
624
625 /*
626 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
627 * shows how to translate a DramAddr to an InputAddr. Here we reverse
628 * this procedure. When translating from a DramAddr to an InputAddr, the
629 * bits used for node interleaving are discarded. Here we recover these
630 * bits from the IntlvSel field of the DRAM Limit register (section
631 * 3.4.4.2) for the node that input_addr is associated with.
632 */
633 pvt = mci->pvt_info;
634 node_id = pvt->mc_node_id;
b487c33e
BP
635
636 BUG_ON(node_id > 7);
93c2df58 637
7f19bf75 638 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
639 if (intlv_shift == 0) {
640 debugf1(" InputAddr 0x%lx translates to DramAddr of "
641 "same value\n", (unsigned long)input_addr);
642
643 return input_addr;
644 }
645
f678b8cc
BP
646 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
647 (input_addr & 0xfff);
93c2df58 648
7f19bf75 649 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
650 dram_addr = bits + (intlv_sel << 12);
651
652 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
653 "(%d node interleave bits)\n", (unsigned long)input_addr,
654 (unsigned long)dram_addr, intlv_shift);
655
656 return dram_addr;
657}
658
659/*
660 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
661 * @dram_addr to a SysAddr.
662 */
663static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
664{
665 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 666 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
667 int ret = 0;
668
669 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
670 &hole_size);
671 if (!ret) {
672 if ((dram_addr >= hole_base) &&
673 (dram_addr < (hole_base + hole_size))) {
674 sys_addr = dram_addr + hole_offset;
675
676 debugf1("using DHAR to translate DramAddr 0x%lx to "
677 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
678 (unsigned long)sys_addr);
679
680 return sys_addr;
681 }
682 }
683
7f19bf75 684 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
685 sys_addr = dram_addr + base;
686
687 /*
688 * The sys_addr we have computed up to this point is a 40-bit value
689 * because the k8 deals with 40-bit values. However, the value we are
690 * supposed to return is a full 64-bit physical address. The AMD
691 * x86-64 architecture specifies that the most significant implemented
692 * address bit through bit 63 of a physical address must be either all
693 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
694 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
695 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
696 * Programming.
697 */
698 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
699
700 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
701 pvt->mc_node_id, (unsigned long)dram_addr,
702 (unsigned long)sys_addr);
703
704 return sys_addr;
705}
706
707/*
708 * @input_addr is an InputAddr associated with the node given by mci. Translate
709 * @input_addr to a SysAddr.
710 */
711static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
712 u64 input_addr)
713{
714 return dram_addr_to_sys_addr(mci,
715 input_addr_to_dram_addr(mci, input_addr));
716}
717
718/*
719 * Find the minimum and maximum InputAddr values that map to the given @csrow.
720 * Pass back these values in *input_addr_min and *input_addr_max.
721 */
722static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
723 u64 *input_addr_min, u64 *input_addr_max)
724{
725 struct amd64_pvt *pvt;
726 u64 base, mask;
727
728 pvt = mci->pvt_info;
11c75ead 729 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 730
11c75ead 731 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
732
733 *input_addr_min = base & ~mask;
11c75ead 734 *input_addr_max = base | mask;
93c2df58
DT
735}
736
93c2df58
DT
737/* Map the Error address to a PAGE and PAGE OFFSET. */
738static inline void error_address_to_page_and_offset(u64 error_address,
739 u32 *page, u32 *offset)
740{
741 *page = (u32) (error_address >> PAGE_SHIFT);
742 *offset = ((u32) error_address) & ~PAGE_MASK;
743}
744
745/*
746 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
747 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
748 * of a node that detected an ECC memory error. mci represents the node that
749 * the error address maps to (possibly different from the node that detected
750 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
751 * error.
752 */
753static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
754{
755 int csrow;
756
757 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
758
759 if (csrow == -1)
24f9a7fe
BP
760 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
761 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
762 return csrow;
763}
e2ce7255 764
bfc04aec 765static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 766
2da11654
DT
767/*
768 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
769 * are ECC capable.
770 */
1f6189ed 771static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
2da11654 772{
cb328507 773 u8 bit;
1f6189ed 774 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 775
1433eb99 776 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
777 ? 19
778 : 17;
779
584fcff4 780 if (pvt->dclr0 & BIT(bit))
2da11654
DT
781 edac_cap = EDAC_FLAG_SECDED;
782
783 return edac_cap;
784}
785
8c671751 786static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 787
68798e17
BP
788static void amd64_dump_dramcfg_low(u32 dclr, int chan)
789{
790 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
791
792 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
793 (dclr & BIT(16)) ? "un" : "",
794 (dclr & BIT(19)) ? "yes" : "no");
795
796 debugf1(" PAR/ERR parity: %s\n",
797 (dclr & BIT(8)) ? "enabled" : "disabled");
798
cb328507
BP
799 if (boot_cpu_data.x86 == 0x10)
800 debugf1(" DCT 128bit mode width: %s\n",
801 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
802
803 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
804 (dclr & BIT(12)) ? "yes" : "no",
805 (dclr & BIT(13)) ? "yes" : "no",
806 (dclr & BIT(14)) ? "yes" : "no",
807 (dclr & BIT(15)) ? "yes" : "no");
808}
809
2da11654 810/* Display and decode various NB registers for debug purposes. */
b2b0c605 811static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 812{
68798e17
BP
813 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
814
815 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 816 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 817
68798e17 818 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
819 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
820 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
821
822 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 823
8de1d91e 824 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 825
8de1d91e
BP
826 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
827 "offset: 0x%08x\n",
bc21fa57
BP
828 pvt->dhar, dhar_base(pvt),
829 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
830 : f10_dhar_offset(pvt));
2da11654 831
c8e518d5 832 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 833
8c671751 834 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 835
8de1d91e 836 /* everything below this point is Fam10h and above */
4d796364 837 if (boot_cpu_data.x86 == 0xf)
2da11654 838 return;
4d796364 839
8c671751 840 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 841
a3b7db09 842 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 843
8de1d91e 844 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
845 if (!dct_ganging_enabled(pvt))
846 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
847}
848
94be4bff 849/*
11c75ead 850 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 851 */
11c75ead 852static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 853{
1433eb99 854 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
855 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
856 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 857 } else {
11c75ead
BP
858 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
859 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
860 }
861}
862
863/*
11c75ead 864 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 865 */
b2b0c605 866static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 867{
11c75ead 868 int cs;
94be4bff 869
11c75ead 870 prep_chip_selects(pvt);
94be4bff 871
11c75ead 872 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
873 int reg0 = DCSB0 + (cs * 4);
874 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
875 u32 *base0 = &pvt->csels[0].csbases[cs];
876 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 877
11c75ead 878 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 879 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 880 cs, *base0, reg0);
94be4bff 881
11c75ead
BP
882 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
883 continue;
b2b0c605 884
11c75ead
BP
885 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
886 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
887 cs, *base1, reg1);
94be4bff
DT
888 }
889
11c75ead 890 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
891 int reg0 = DCSM0 + (cs * 4);
892 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
893 u32 *mask0 = &pvt->csels[0].csmasks[cs];
894 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 895
11c75ead 896 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 897 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 898 cs, *mask0, reg0);
94be4bff 899
11c75ead
BP
900 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
901 continue;
b2b0c605 902
11c75ead
BP
903 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
904 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
905 cs, *mask1, reg1);
94be4bff
DT
906 }
907}
908
24f9a7fe 909static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
910{
911 enum mem_type type;
912
cb328507
BP
913 /* F15h supports only DDR3 */
914 if (boot_cpu_data.x86 >= 0x15)
915 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
916 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
917 if (pvt->dchr0 & DDR3_MODE)
918 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
919 else
920 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 921 } else {
94be4bff
DT
922 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
923 }
924
24f9a7fe 925 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
926
927 return type;
928}
929
cb328507 930/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
931static int k8_early_channel_count(struct amd64_pvt *pvt)
932{
cb328507 933 int flag;
ddff876d 934
9f56da0e 935 if (pvt->ext_model >= K8_REV_F)
ddff876d 936 /* RevF (NPT) and later */
41d8bfab 937 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 938 else
ddff876d
DT
939 /* RevE and earlier */
940 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
941
942 /* not used */
943 pvt->dclr1 = 0;
944
945 return (flag) ? 2 : 1;
946}
947
70046624
BP
948/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
949static u64 get_error_address(struct mce *m)
ddff876d 950{
c1ae6830
BP
951 struct cpuinfo_x86 *c = &boot_cpu_data;
952 u64 addr;
70046624
BP
953 u8 start_bit = 1;
954 u8 end_bit = 47;
955
c1ae6830 956 if (c->x86 == 0xf) {
70046624
BP
957 start_bit = 3;
958 end_bit = 39;
959 }
960
c1ae6830
BP
961 addr = m->addr & GENMASK(start_bit, end_bit);
962
963 /*
964 * Erratum 637 workaround
965 */
966 if (c->x86 == 0x15) {
967 struct amd64_pvt *pvt;
968 u64 cc6_base, tmp_addr;
969 u32 tmp;
970 u8 mce_nid, intlv_en;
971
972 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
973 return addr;
974
975 mce_nid = amd_get_nb_id(m->extcpu);
976 pvt = mcis[mce_nid]->pvt_info;
977
978 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
979 intlv_en = tmp >> 21 & 0x7;
980
981 /* add [47:27] + 3 trailing bits */
982 cc6_base = (tmp & GENMASK(0, 20)) << 3;
983
984 /* reverse and add DramIntlvEn */
985 cc6_base |= intlv_en ^ 0x7;
986
987 /* pin at [47:24] */
988 cc6_base <<= 24;
989
990 if (!intlv_en)
991 return cc6_base | (addr & GENMASK(0, 23));
992
993 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
994
995 /* faster log2 */
996 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
997
998 /* OR DramIntlvSel into bits [14:12] */
999 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
1000
1001 /* add remaining [11:0] bits from original MC4_ADDR */
1002 tmp_addr |= addr & GENMASK(0, 11);
1003
1004 return cc6_base | tmp_addr;
1005 }
1006
1007 return addr;
ddff876d
DT
1008}
1009
7f19bf75 1010static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 1011{
f08e457c 1012 struct cpuinfo_x86 *c = &boot_cpu_data;
71d2a32e 1013 int off = range << 3;
ddff876d 1014
7f19bf75
BP
1015 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
1016 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 1017
f08e457c 1018 if (c->x86 == 0xf)
7f19bf75 1019 return;
ddff876d 1020
7f19bf75
BP
1021 if (!dram_rw(pvt, range))
1022 return;
ddff876d 1023
7f19bf75
BP
1024 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1025 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c
BP
1026
1027 /* Factor in CC6 save area by reading dst node's limit reg */
1028 if (c->x86 == 0x15) {
1029 struct pci_dev *f1 = NULL;
1030 u8 nid = dram_dst_node(pvt, range);
1031 u32 llim;
1032
1033 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1034 if (WARN_ON(!f1))
1035 return;
1036
1037 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1038
1039 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1040
1041 /* {[39:27],111b} */
1042 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1043
1044 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1045
1046 /* [47:40] */
1047 pvt->ranges[range].lim.hi |= llim >> 13;
1048
1049 pci_dev_put(f1);
1050 }
ddff876d
DT
1051}
1052
f192c7b1
BP
1053static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1054 u16 syndrome)
ddff876d
DT
1055{
1056 struct mem_ctl_info *src_mci;
f192c7b1 1057 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
1058 int channel, csrow;
1059 u32 page, offset;
ddff876d
DT
1060
1061 /* CHIPKILL enabled */
f192c7b1 1062 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 1063 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1064 if (channel < 0) {
1065 /*
1066 * Syndrome didn't map, so we don't know which of the
1067 * 2 DIMMs is in error. So we need to ID 'both' of them
1068 * as suspect.
1069 */
24f9a7fe
BP
1070 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1071 "error reporting race\n", syndrome);
ddff876d
DT
1072 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1073 return;
1074 }
1075 } else {
1076 /*
1077 * non-chipkill ecc mode
1078 *
1079 * The k8 documentation is unclear about how to determine the
1080 * channel number when using non-chipkill memory. This method
1081 * was obtained from email communication with someone at AMD.
1082 * (Wish the email was placed in this comment - norsk)
1083 */
44e9e2ee 1084 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1085 }
1086
1087 /*
1088 * Find out which node the error address belongs to. This may be
1089 * different from the node that detected the error.
1090 */
44e9e2ee 1091 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1092 if (!src_mci) {
24f9a7fe 1093 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1094 (unsigned long)sys_addr);
ddff876d
DT
1095 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1096 return;
1097 }
1098
44e9e2ee
BP
1099 /* Now map the sys_addr to a CSROW */
1100 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1101 if (csrow < 0) {
1102 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1103 } else {
44e9e2ee 1104 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1105
1106 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1107 channel, EDAC_MOD_STR);
1108 }
1109}
1110
41d8bfab 1111static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1112{
41d8bfab 1113 unsigned shift = 0;
ddff876d 1114
41d8bfab
BP
1115 if (i <= 2)
1116 shift = i;
1117 else if (!(i & 0x1))
1118 shift = i >> 1;
1433eb99 1119 else
41d8bfab 1120 shift = (i + 1) >> 1;
ddff876d 1121
41d8bfab
BP
1122 return 128 << (shift + !!dct_width);
1123}
1124
1125static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1126 unsigned cs_mode)
1127{
1128 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1129
1130 if (pvt->ext_model >= K8_REV_F) {
1131 WARN_ON(cs_mode > 11);
1132 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1133 }
1134 else if (pvt->ext_model >= K8_REV_D) {
1135 WARN_ON(cs_mode > 10);
1136
1137 if (cs_mode == 3 || cs_mode == 8)
1138 return 32 << (cs_mode - 1);
1139 else
1140 return 32 << cs_mode;
1141 }
1142 else {
1143 WARN_ON(cs_mode > 6);
1144 return 32 << cs_mode;
1145 }
ddff876d
DT
1146}
1147
1afd3c98
DT
1148/*
1149 * Get the number of DCT channels in use.
1150 *
1151 * Return:
1152 * number of Memory Channels in operation
1153 * Pass back:
1154 * contents of the DCL0_LOW register
1155 */
7d20d14d 1156static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1157{
6ba5dcdc 1158 int i, j, channels = 0;
1afd3c98 1159
7d20d14d 1160 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1161 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1162 return 2;
1afd3c98
DT
1163
1164 /*
d16149e8
BP
1165 * Need to check if in unganged mode: In such, there are 2 channels,
1166 * but they are not in 128 bit mode and thus the above 'dclr0' status
1167 * bit will be OFF.
1afd3c98
DT
1168 *
1169 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1170 * their CSEnable bit on. If so, then SINGLE DIMM case.
1171 */
d16149e8 1172 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1173
1afd3c98
DT
1174 /*
1175 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1176 * is more than just one DIMM present in unganged mode. Need to check
1177 * both controllers since DIMMs can be placed in either one.
1178 */
525a1b20
BP
1179 for (i = 0; i < 2; i++) {
1180 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1181
57a30854
WW
1182 for (j = 0; j < 4; j++) {
1183 if (DBAM_DIMM(j, dbam) > 0) {
1184 channels++;
1185 break;
1186 }
1187 }
1afd3c98
DT
1188 }
1189
d16149e8
BP
1190 if (channels > 2)
1191 channels = 2;
1192
24f9a7fe 1193 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1194
1195 return channels;
1afd3c98
DT
1196}
1197
41d8bfab 1198static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1199{
41d8bfab
BP
1200 unsigned shift = 0;
1201 int cs_size = 0;
1202
1203 if (i == 0 || i == 3 || i == 4)
1204 cs_size = -1;
1205 else if (i <= 2)
1206 shift = i;
1207 else if (i == 12)
1208 shift = 7;
1209 else if (!(i & 0x1))
1210 shift = i >> 1;
1211 else
1212 shift = (i + 1) >> 1;
1213
1214 if (cs_size != -1)
1215 cs_size = (128 * (1 << !!dct_width)) << shift;
1216
1217 return cs_size;
1218}
1219
1220static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1221 unsigned cs_mode)
1222{
1223 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1224
1225 WARN_ON(cs_mode > 11);
1433eb99
BP
1226
1227 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1228 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1229 else
41d8bfab
BP
1230 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1231}
1232
1233/*
1234 * F15h supports only 64bit DCT interfaces
1235 */
1236static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1237 unsigned cs_mode)
1238{
1239 WARN_ON(cs_mode > 12);
1433eb99 1240
41d8bfab 1241 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1242}
1243
5a5d2371 1244static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1245{
6163b5d4 1246
5a5d2371
BP
1247 if (boot_cpu_data.x86 == 0xf)
1248 return;
1249
78da121e
BP
1250 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1251 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1252 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1253
5a5d2371
BP
1254 debugf0(" DCTs operate in %s mode.\n",
1255 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1256
1257 if (!dct_ganging_enabled(pvt))
1258 debugf0(" Address range split per DCT: %s\n",
1259 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1260
78da121e 1261 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1262 "DRAM cleared since last warm reset: %s\n",
1263 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1264 (dct_memory_cleared(pvt) ? "yes" : "no"));
1265
78da121e
BP
1266 debugf0(" channel interleave: %s, "
1267 "interleave bits selector: 0x%x\n",
72381bd5 1268 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1269 dct_sel_interleave_addr(pvt));
1270 }
1271
78da121e 1272 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1273}
1274
f71d0a05 1275/*
229a7a11 1276 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1277 * Interleaving Modes.
1278 */
b15f0fca 1279static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1280 bool hi_range_sel, u8 intlv_en)
6163b5d4 1281{
151fa71c 1282 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1283
1284 if (dct_ganging_enabled(pvt))
229a7a11 1285 return 0;
6163b5d4 1286
229a7a11
BP
1287 if (hi_range_sel)
1288 return dct_sel_high;
6163b5d4 1289
229a7a11
BP
1290 /*
1291 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1292 */
1293 if (dct_interleave_enabled(pvt)) {
1294 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1295
1296 /* return DCT select function: 0=DCT0, 1=DCT1 */
1297 if (!intlv_addr)
1298 return sys_addr >> 6 & 1;
1299
1300 if (intlv_addr & 0x2) {
1301 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1302 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1303
1304 return ((sys_addr >> shift) & 1) ^ temp;
1305 }
1306
1307 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1308 }
1309
1310 if (dct_high_range_enabled(pvt))
1311 return ~dct_sel_high & 1;
6163b5d4
DT
1312
1313 return 0;
1314}
1315
c8e518d5 1316/* Convert the sys_addr to the normalized DCT address */
e761359a 1317static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
c8e518d5
BP
1318 u64 sys_addr, bool hi_rng,
1319 u32 dct_sel_base_addr)
6163b5d4
DT
1320{
1321 u64 chan_off;
c8e518d5
BP
1322 u64 dram_base = get_dram_base(pvt, range);
1323 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1324 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1325
c8e518d5
BP
1326 if (hi_rng) {
1327 /*
1328 * if
1329 * base address of high range is below 4Gb
1330 * (bits [47:27] at [31:11])
1331 * DRAM address space on this DCT is hoisted above 4Gb &&
1332 * sys_addr > 4Gb
1333 *
1334 * remove hole offset from sys_addr
1335 * else
1336 * remove high range offset from sys_addr
1337 */
1338 if ((!(dct_sel_base_addr >> 16) ||
1339 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1340 dhar_valid(pvt) &&
c8e518d5 1341 (sys_addr >= BIT_64(32)))
bc21fa57 1342 chan_off = hole_off;
6163b5d4
DT
1343 else
1344 chan_off = dct_sel_base_off;
1345 } else {
c8e518d5
BP
1346 /*
1347 * if
1348 * we have a valid hole &&
1349 * sys_addr > 4Gb
1350 *
1351 * remove hole
1352 * else
1353 * remove dram base to normalize to DCT address
1354 */
972ea17a 1355 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1356 chan_off = hole_off;
6163b5d4 1357 else
c8e518d5 1358 chan_off = dram_base;
6163b5d4
DT
1359 }
1360
c8e518d5 1361 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1362}
1363
6163b5d4
DT
1364/*
1365 * checks if the csrow passed in is marked as SPARED, if so returns the new
1366 * spare row
1367 */
11c75ead 1368static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1369{
614ec9d8
BP
1370 int tmp_cs;
1371
1372 if (online_spare_swap_done(pvt, dct) &&
1373 csrow == online_spare_bad_dramcs(pvt, dct)) {
1374
1375 for_each_chip_select(tmp_cs, dct, pvt) {
1376 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1377 csrow = tmp_cs;
1378 break;
1379 }
1380 }
6163b5d4
DT
1381 }
1382 return csrow;
1383}
1384
1385/*
1386 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1387 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1388 *
1389 * Return:
1390 * -EINVAL: NOT FOUND
1391 * 0..csrow = Chip-Select Row
1392 */
b15f0fca 1393static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1394{
1395 struct mem_ctl_info *mci;
1396 struct amd64_pvt *pvt;
11c75ead 1397 u64 cs_base, cs_mask;
6163b5d4
DT
1398 int cs_found = -EINVAL;
1399 int csrow;
1400
cc4d8860 1401 mci = mcis[nid];
6163b5d4
DT
1402 if (!mci)
1403 return cs_found;
1404
1405 pvt = mci->pvt_info;
1406
11c75ead 1407 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1408
11c75ead
BP
1409 for_each_chip_select(csrow, dct, pvt) {
1410 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1411 continue;
1412
11c75ead 1413 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1414
11c75ead
BP
1415 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1416 csrow, cs_base, cs_mask);
6163b5d4 1417
11c75ead 1418 cs_mask = ~cs_mask;
6163b5d4 1419
11c75ead
BP
1420 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1421 "(CSBase & ~CSMask)=0x%llx\n",
1422 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1423
11c75ead
BP
1424 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1425 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1426
1427 debugf1(" MATCH csrow=%d\n", cs_found);
1428 break;
1429 }
1430 }
1431 return cs_found;
1432}
1433
95b0ef55
BP
1434/*
1435 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1436 * swapped with a region located at the bottom of memory so that the GPU can use
1437 * the interleaved region and thus two channels.
1438 */
b15f0fca 1439static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1440{
1441 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1442
1443 if (boot_cpu_data.x86 == 0x10) {
1444 /* only revC3 and revE have that feature */
1445 if (boot_cpu_data.x86_model < 4 ||
1446 (boot_cpu_data.x86_model < 0xa &&
1447 boot_cpu_data.x86_mask < 3))
1448 return sys_addr;
1449 }
1450
1451 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1452
1453 if (!(swap_reg & 0x1))
1454 return sys_addr;
1455
1456 swap_base = (swap_reg >> 3) & 0x7f;
1457 swap_limit = (swap_reg >> 11) & 0x7f;
1458 rgn_size = (swap_reg >> 20) & 0x7f;
1459 tmp_addr = sys_addr >> 27;
1460
1461 if (!(sys_addr >> 34) &&
1462 (((tmp_addr >= swap_base) &&
1463 (tmp_addr <= swap_limit)) ||
1464 (tmp_addr < rgn_size)))
1465 return sys_addr ^ (u64)swap_base << 27;
1466
1467 return sys_addr;
1468}
1469
f71d0a05 1470/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1471static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
f71d0a05
DT
1472 u64 sys_addr, int *nid, int *chan_sel)
1473{
229a7a11 1474 int cs_found = -EINVAL;
c8e518d5 1475 u64 chan_addr;
5d4b58e8 1476 u32 dct_sel_base;
11c75ead 1477 u8 channel;
229a7a11 1478 bool high_range = false;
f71d0a05 1479
7f19bf75 1480 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1481 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1482 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1483
c8e518d5
BP
1484 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1485 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1486
355fba60
BP
1487 if (dhar_valid(pvt) &&
1488 dhar_base(pvt) <= sys_addr &&
1489 sys_addr < BIT_64(32)) {
1490 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1491 sys_addr);
1492 return -EINVAL;
1493 }
1494
f030ddfb 1495 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1496 return -EINVAL;
1497
b15f0fca 1498 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1499
f71d0a05
DT
1500 dct_sel_base = dct_sel_baseaddr(pvt);
1501
1502 /*
1503 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1504 * select between DCT0 and DCT1.
1505 */
1506 if (dct_high_range_enabled(pvt) &&
1507 !dct_ganging_enabled(pvt) &&
1508 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1509 high_range = true;
f71d0a05 1510
b15f0fca 1511 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1512
b15f0fca 1513 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1514 high_range, dct_sel_base);
f71d0a05 1515
e2f79dbd
BP
1516 /* Remove node interleaving, see F1x120 */
1517 if (intlv_en)
1518 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1519 (chan_addr & 0xfff);
f71d0a05 1520
5d4b58e8 1521 /* remove channel interleave */
f71d0a05
DT
1522 if (dct_interleave_enabled(pvt) &&
1523 !dct_high_range_enabled(pvt) &&
1524 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1525
1526 if (dct_sel_interleave_addr(pvt) != 1) {
1527 if (dct_sel_interleave_addr(pvt) == 0x3)
1528 /* hash 9 */
1529 chan_addr = ((chan_addr >> 10) << 9) |
1530 (chan_addr & 0x1ff);
1531 else
1532 /* A[6] or hash 6 */
1533 chan_addr = ((chan_addr >> 7) << 6) |
1534 (chan_addr & 0x3f);
1535 } else
1536 /* A[12] */
1537 chan_addr = ((chan_addr >> 13) << 12) |
1538 (chan_addr & 0xfff);
f71d0a05
DT
1539 }
1540
5d4b58e8 1541 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1542
b15f0fca 1543 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1544
1545 if (cs_found >= 0) {
1546 *nid = node_id;
1547 *chan_sel = channel;
1548 }
1549 return cs_found;
1550}
1551
b15f0fca 1552static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
f71d0a05
DT
1553 int *node, int *chan_sel)
1554{
e761359a
BP
1555 int cs_found = -EINVAL;
1556 unsigned range;
f71d0a05 1557
7f19bf75 1558 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1559
7f19bf75 1560 if (!dram_rw(pvt, range))
f71d0a05
DT
1561 continue;
1562
7f19bf75
BP
1563 if ((get_dram_base(pvt, range) <= sys_addr) &&
1564 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1565
b15f0fca 1566 cs_found = f1x_match_to_this_node(pvt, range,
f71d0a05
DT
1567 sys_addr, node,
1568 chan_sel);
1569 if (cs_found >= 0)
1570 break;
1571 }
1572 }
1573 return cs_found;
1574}
1575
1576/*
bdc30a0c
BP
1577 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1578 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1579 *
bdc30a0c
BP
1580 * The @sys_addr is usually an error address received from the hardware
1581 * (MCX_ADDR).
f71d0a05 1582 */
b15f0fca 1583static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
f192c7b1 1584 u16 syndrome)
f71d0a05
DT
1585{
1586 struct amd64_pvt *pvt = mci->pvt_info;
1587 u32 page, offset;
f71d0a05
DT
1588 int nid, csrow, chan = 0;
1589
b15f0fca 1590 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
f71d0a05 1591
bdc30a0c
BP
1592 if (csrow < 0) {
1593 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1594 return;
1595 }
1596
1597 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1598
bdc30a0c
BP
1599 /*
1600 * We need the syndromes for channel detection only when we're
1601 * ganged. Otherwise @chan should already contain the channel at
1602 * this point.
1603 */
a97fa68e 1604 if (dct_ganging_enabled(pvt))
bdc30a0c 1605 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1606
bdc30a0c
BP
1607 if (chan >= 0)
1608 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1609 EDAC_MOD_STR);
1610 else
f71d0a05 1611 /*
bdc30a0c 1612 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1613 */
bdc30a0c 1614 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1615 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1616 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1617}
1618
f71d0a05 1619/*
8566c4df 1620 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1621 * CSROWs
f71d0a05 1622 */
8c671751 1623static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1624{
603adaf6 1625 int dimm, size0, size1, factor = 0;
525a1b20
BP
1626 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1627 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1628
8566c4df 1629 if (boot_cpu_data.x86 == 0xf) {
41d8bfab 1630 if (pvt->dclr0 & WIDTH_128)
603adaf6
BP
1631 factor = 1;
1632
8566c4df 1633 /* K8 families < revF not supported yet */
1433eb99 1634 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1635 return;
1636 else
1637 WARN_ON(ctrl != 0);
1638 }
1639
4d796364 1640 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1641 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1642 : pvt->csels[0].csbases;
f71d0a05 1643
4d796364 1644 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1645
8566c4df
BP
1646 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1647
f71d0a05
DT
1648 /* Dump memory sizes for DIMM and its CSROWs */
1649 for (dimm = 0; dimm < 4; dimm++) {
1650
1651 size0 = 0;
11c75ead 1652 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1653 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1654 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1655
1656 size1 = 0;
11c75ead 1657 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1658 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1659 DBAM_DIMM(dimm, dbam));
f71d0a05 1660
24f9a7fe
BP
1661 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1662 dimm * 2, size0 << factor,
1663 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1664 }
1665}
1666
4d37607a
DT
1667static struct amd64_family_type amd64_family_types[] = {
1668 [K8_CPUS] = {
0092b20d 1669 .ctl_name = "K8",
8d5b5d9c
BP
1670 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1671 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1672 .ops = {
1433eb99 1673 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1674 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1675 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1676 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1677 }
1678 },
1679 [F10_CPUS] = {
0092b20d 1680 .ctl_name = "F10h",
8d5b5d9c
BP
1681 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1682 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1683 .ops = {
7d20d14d 1684 .early_channel_count = f1x_early_channel_count,
b15f0fca 1685 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1686 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1687 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1688 }
1689 },
1690 [F15_CPUS] = {
1691 .ctl_name = "F15h",
df71a053
BP
1692 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1693 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1694 .ops = {
7d20d14d 1695 .early_channel_count = f1x_early_channel_count,
b15f0fca 1696 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1697 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1698 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1699 }
1700 },
4d37607a
DT
1701};
1702
1703static struct pci_dev *pci_get_related_function(unsigned int vendor,
1704 unsigned int device,
1705 struct pci_dev *related)
1706{
1707 struct pci_dev *dev = NULL;
1708
1709 dev = pci_get_device(vendor, device, dev);
1710 while (dev) {
1711 if ((dev->bus->number == related->bus->number) &&
1712 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1713 break;
1714 dev = pci_get_device(vendor, device, dev);
1715 }
1716
1717 return dev;
1718}
1719
b1289d6f 1720/*
bfc04aec
BP
1721 * These are tables of eigenvectors (one per line) which can be used for the
1722 * construction of the syndrome tables. The modified syndrome search algorithm
1723 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1724 *
bfc04aec 1725 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1726 */
bfc04aec
BP
1727static u16 x4_vectors[] = {
1728 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1729 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1730 0x0001, 0x0002, 0x0004, 0x0008,
1731 0x1013, 0x3032, 0x4044, 0x8088,
1732 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1733 0x4857, 0xc4fe, 0x13cc, 0x3288,
1734 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1735 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1736 0x15c1, 0x2a42, 0x89ac, 0x4758,
1737 0x2b03, 0x1602, 0x4f0c, 0xca08,
1738 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1739 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1740 0x2b87, 0x164e, 0x642c, 0xdc18,
1741 0x40b9, 0x80de, 0x1094, 0x20e8,
1742 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1743 0x11c1, 0x2242, 0x84ac, 0x4c58,
1744 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1745 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1746 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1747 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1748 0x16b3, 0x3d62, 0x4f34, 0x8518,
1749 0x1e2f, 0x391a, 0x5cac, 0xf858,
1750 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1751 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1752 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1753 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1754 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1755 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1756 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1757 0x185d, 0x2ca6, 0x7914, 0x9e28,
1758 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1759 0x4199, 0x82ee, 0x19f4, 0x2e58,
1760 0x4807, 0xc40e, 0x130c, 0x3208,
1761 0x1905, 0x2e0a, 0x5804, 0xac08,
1762 0x213f, 0x132a, 0xadfc, 0x5ba8,
1763 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1764};
1765
bfc04aec
BP
1766static u16 x8_vectors[] = {
1767 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1768 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1769 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1770 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1771 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1772 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1773 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1774 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1775 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1776 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1777 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1778 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1779 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1780 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1781 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1782 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1783 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1784 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1785 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1786};
1787
d34a6ecd
BP
1788static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1789 unsigned v_dim)
b1289d6f 1790{
bfc04aec
BP
1791 unsigned int i, err_sym;
1792
1793 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1794 u16 s = syndrome;
d34a6ecd
BP
1795 unsigned v_idx = err_sym * v_dim;
1796 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1797
1798 /* walk over all 16 bits of the syndrome */
1799 for (i = 1; i < (1U << 16); i <<= 1) {
1800
1801 /* if bit is set in that eigenvector... */
1802 if (v_idx < v_end && vectors[v_idx] & i) {
1803 u16 ev_comp = vectors[v_idx++];
1804
1805 /* ... and bit set in the modified syndrome, */
1806 if (s & i) {
1807 /* remove it. */
1808 s ^= ev_comp;
4d37607a 1809
bfc04aec
BP
1810 if (!s)
1811 return err_sym;
1812 }
b1289d6f 1813
bfc04aec
BP
1814 } else if (s & i)
1815 /* can't get to zero, move to next symbol */
1816 break;
1817 }
b1289d6f
DT
1818 }
1819
1820 debugf0("syndrome(%x) not found\n", syndrome);
1821 return -1;
1822}
d27bf6fa 1823
bfc04aec
BP
1824static int map_err_sym_to_channel(int err_sym, int sym_size)
1825{
1826 if (sym_size == 4)
1827 switch (err_sym) {
1828 case 0x20:
1829 case 0x21:
1830 return 0;
1831 break;
1832 case 0x22:
1833 case 0x23:
1834 return 1;
1835 break;
1836 default:
1837 return err_sym >> 4;
1838 break;
1839 }
1840 /* x8 symbols */
1841 else
1842 switch (err_sym) {
1843 /* imaginary bits not in a DIMM */
1844 case 0x10:
1845 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1846 err_sym);
1847 return -1;
1848 break;
1849
1850 case 0x11:
1851 return 0;
1852 break;
1853 case 0x12:
1854 return 1;
1855 break;
1856 default:
1857 return err_sym >> 3;
1858 break;
1859 }
1860 return -1;
1861}
1862
1863static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1864{
1865 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1866 int err_sym = -1;
1867
a3b7db09 1868 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1869 err_sym = decode_syndrome(syndrome, x8_vectors,
1870 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1871 pvt->ecc_sym_sz);
1872 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1873 err_sym = decode_syndrome(syndrome, x4_vectors,
1874 ARRAY_SIZE(x4_vectors),
a3b7db09 1875 pvt->ecc_sym_sz);
ad6a32e9 1876 else {
a3b7db09 1877 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1878 return err_sym;
bfc04aec 1879 }
ad6a32e9 1880
a3b7db09 1881 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1882}
1883
d27bf6fa
DT
1884/*
1885 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1886 * ADDRESS and process.
1887 */
f192c7b1 1888static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1889{
1890 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1891 u64 sys_addr;
f192c7b1 1892 u16 syndrome;
d27bf6fa
DT
1893
1894 /* Ensure that the Error Address is VALID */
f192c7b1 1895 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1896 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1897 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1898 return;
1899 }
1900
70046624 1901 sys_addr = get_error_address(m);
f192c7b1 1902 syndrome = extract_syndrome(m->status);
d27bf6fa 1903
24f9a7fe 1904 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1905
f192c7b1 1906 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1907}
1908
1909/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1910static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1911{
1f6bcee7 1912 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1913 int csrow;
44e9e2ee 1914 u64 sys_addr;
d27bf6fa 1915 u32 page, offset;
d27bf6fa
DT
1916
1917 log_mci = mci;
1918
f192c7b1 1919 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1920 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1921 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1922 return;
1923 }
1924
70046624 1925 sys_addr = get_error_address(m);
d27bf6fa
DT
1926
1927 /*
1928 * Find out which node the error address belongs to. This may be
1929 * different from the node that detected the error.
1930 */
44e9e2ee 1931 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1932 if (!src_mci) {
24f9a7fe
BP
1933 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1934 (unsigned long)sys_addr);
d27bf6fa
DT
1935 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1936 return;
1937 }
1938
1939 log_mci = src_mci;
1940
44e9e2ee 1941 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1942 if (csrow < 0) {
24f9a7fe
BP
1943 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1944 (unsigned long)sys_addr);
d27bf6fa
DT
1945 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1946 } else {
44e9e2ee 1947 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1948 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1949 }
1950}
1951
549d042d 1952static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1953 struct mce *m)
d27bf6fa 1954{
f192c7b1
BP
1955 u16 ec = EC(m->status);
1956 u8 xec = XEC(m->status, 0x1f);
1957 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1958
b70ef010 1959 /* Bail early out if this was an 'observed' error */
5980bb9c 1960 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1961 return;
d27bf6fa 1962
ecaf5606
BP
1963 /* Do only ECC errors */
1964 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1965 return;
d27bf6fa 1966
ecaf5606 1967 if (ecc_type == 2)
f192c7b1 1968 amd64_handle_ce(mci, m);
ecaf5606 1969 else if (ecc_type == 1)
f192c7b1 1970 amd64_handle_ue(mci, m);
d27bf6fa
DT
1971}
1972
b0b07a2b 1973void amd64_decode_bus_error(int node_id, struct mce *m)
d27bf6fa 1974{
b0b07a2b 1975 __amd64_decode_bus_error(mcis[node_id], m);
d27bf6fa 1976}
d27bf6fa 1977
0ec449ee 1978/*
8d5b5d9c 1979 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1980 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1981 */
360b7f3c 1982static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1983{
0ec449ee 1984 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1985 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1986 if (!pvt->F1) {
24f9a7fe
BP
1987 amd64_err("error address map device not found: "
1988 "vendor %x device 0x%x (broken BIOS?)\n",
1989 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1990 return -ENODEV;
0ec449ee
DT
1991 }
1992
1993 /* Reserve the MISC Device */
8d5b5d9c
BP
1994 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1995 if (!pvt->F3) {
1996 pci_dev_put(pvt->F1);
1997 pvt->F1 = NULL;
0ec449ee 1998
24f9a7fe
BP
1999 amd64_err("error F3 device not found: "
2000 "vendor %x device 0x%x (broken BIOS?)\n",
2001 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 2002
bbd0c1f6 2003 return -ENODEV;
0ec449ee 2004 }
8d5b5d9c
BP
2005 debugf1("F1: %s\n", pci_name(pvt->F1));
2006 debugf1("F2: %s\n", pci_name(pvt->F2));
2007 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2008
2009 return 0;
2010}
2011
360b7f3c 2012static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2013{
8d5b5d9c
BP
2014 pci_dev_put(pvt->F1);
2015 pci_dev_put(pvt->F3);
0ec449ee
DT
2016}
2017
2018/*
2019 * Retrieve the hardware registers of the memory controller (this includes the
2020 * 'Address Map' and 'Misc' device regs)
2021 */
360b7f3c 2022static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 2023{
a3b7db09 2024 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 2025 u64 msr_val;
ad6a32e9 2026 u32 tmp;
e761359a 2027 unsigned range;
0ec449ee
DT
2028
2029 /*
2030 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2031 * those are Read-As-Zero
2032 */
e97f8bb8
BP
2033 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2034 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2035
2036 /* check first whether TOP_MEM2 is enabled */
2037 rdmsrl(MSR_K8_SYSCFG, msr_val);
2038 if (msr_val & (1U << 21)) {
e97f8bb8
BP
2039 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2040 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
2041 } else
2042 debugf0(" TOP_MEM2 disabled.\n");
2043
5980bb9c 2044 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2045
5a5d2371 2046 read_dram_ctl_register(pvt);
0ec449ee 2047
7f19bf75
BP
2048 for (range = 0; range < DRAM_RANGES; range++) {
2049 u8 rw;
0ec449ee 2050
7f19bf75
BP
2051 /* read settings for this DRAM range */
2052 read_dram_base_limit_regs(pvt, range);
2053
2054 rw = dram_rw(pvt, range);
2055 if (!rw)
2056 continue;
2057
2058 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2059 range,
2060 get_dram_base(pvt, range),
2061 get_dram_limit(pvt, range));
2062
2063 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2064 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2065 (rw & 0x1) ? "R" : "-",
2066 (rw & 0x2) ? "W" : "-",
2067 dram_intlv_sel(pvt, range),
2068 dram_dst_node(pvt, range));
0ec449ee
DT
2069 }
2070
b2b0c605 2071 read_dct_base_mask(pvt);
0ec449ee 2072
bc21fa57 2073 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 2074 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 2075
8d5b5d9c 2076 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2077
cb328507
BP
2078 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2079 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 2080
78da121e 2081 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2082 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2083 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2084 }
ad6a32e9 2085
a3b7db09
BP
2086 pvt->ecc_sym_sz = 4;
2087
2088 if (c->x86 >= 0x10) {
b2b0c605 2089 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 2090 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2091
a3b7db09
BP
2092 /* F10h, revD and later can do x8 ECC too */
2093 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2094 pvt->ecc_sym_sz = 8;
2095 }
b2b0c605 2096 dump_misc_regs(pvt);
0ec449ee
DT
2097}
2098
2099/*
2100 * NOTE: CPU Revision Dependent code
2101 *
2102 * Input:
11c75ead 2103 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2104 * k8 private pointer to -->
2105 * DRAM Bank Address mapping register
2106 * node_id
2107 * DCL register where dual_channel_active is
2108 *
2109 * The DBAM register consists of 4 sets of 4 bits each definitions:
2110 *
2111 * Bits: CSROWs
2112 * 0-3 CSROWs 0 and 1
2113 * 4-7 CSROWs 2 and 3
2114 * 8-11 CSROWs 4 and 5
2115 * 12-15 CSROWs 6 and 7
2116 *
2117 * Values range from: 0 to 15
2118 * The meaning of the values depends on CPU revision and dual-channel state,
2119 * see relevant BKDG more info.
2120 *
2121 * The memory controller provides for total of only 8 CSROWs in its current
2122 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2123 * single channel or two (2) DIMMs in dual channel mode.
2124 *
2125 * The following code logic collapses the various tables for CSROW based on CPU
2126 * revision.
2127 *
2128 * Returns:
2129 * The number of PAGE_SIZE pages on the specified CSROW number it
2130 * encompasses
2131 *
2132 */
41d8bfab 2133static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2134{
1433eb99 2135 u32 cs_mode, nr_pages;
0ec449ee
DT
2136
2137 /*
2138 * The math on this doesn't look right on the surface because x/2*4 can
2139 * be simplified to x*2 but this expression makes use of the fact that
2140 * it is integral math where 1/2=0. This intermediate value becomes the
2141 * number of bits to shift the DBAM register to extract the proper CSROW
2142 * field.
2143 */
1433eb99 2144 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2145
41d8bfab 2146 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2147
2148 /*
2149 * If dual channel then double the memory size of single channel.
2150 * Channel count is 1 or 2
2151 */
2152 nr_pages <<= (pvt->channel_count - 1);
2153
1433eb99 2154 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2155 debugf0(" nr_pages= %u channel-count = %d\n",
2156 nr_pages, pvt->channel_count);
2157
2158 return nr_pages;
2159}
2160
2161/*
2162 * Initialize the array of csrow attribute instances, based on the values
2163 * from pci config hardware registers.
2164 */
360b7f3c 2165static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2166{
2167 struct csrow_info *csrow;
2299ef71 2168 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2169 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2170 u32 val;
6ba5dcdc 2171 int i, empty = 1;
0ec449ee 2172
a97fa68e 2173 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2174
2299ef71 2175 pvt->nbcfg = val;
0ec449ee 2176
2299ef71
BP
2177 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2178 pvt->mc_node_id, val,
a97fa68e 2179 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2180
11c75ead 2181 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2182 csrow = &mci->csrows[i];
2183
11c75ead 2184 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2185 debugf1("----CSROW %d EMPTY for node %d\n", i,
2186 pvt->mc_node_id);
2187 continue;
2188 }
2189
2190 debugf1("----CSROW %d VALID for MC node %d\n",
2191 i, pvt->mc_node_id);
2192
2193 empty = 0;
41d8bfab 2194 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
0ec449ee
DT
2195 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2196 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2197 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2198 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2199 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2200
2201 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2202 csrow->page_mask = ~mask;
0ec449ee
DT
2203 /* 8 bytes of resolution */
2204
24f9a7fe 2205 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2206
2207 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2208 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2209 (unsigned long)input_addr_min,
2210 (unsigned long)input_addr_max);
2211 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2212 (unsigned long)sys_addr, csrow->page_mask);
2213 debugf1(" nr_pages: %u first_page: 0x%lx "
2214 "last_page: 0x%lx\n",
2215 (unsigned)csrow->nr_pages,
2216 csrow->first_page, csrow->last_page);
2217
2218 /*
2219 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2220 */
a97fa68e 2221 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
0ec449ee 2222 csrow->edac_mode =
a97fa68e 2223 (pvt->nbcfg & NBCFG_CHIPKILL) ?
0ec449ee
DT
2224 EDAC_S4ECD4ED : EDAC_SECDED;
2225 else
2226 csrow->edac_mode = EDAC_NONE;
2227 }
2228
2229 return empty;
2230}
d27bf6fa 2231
f6d6ae96 2232/* get all cores on this DCT */
b487c33e 2233static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
f6d6ae96
BP
2234{
2235 int cpu;
2236
2237 for_each_online_cpu(cpu)
2238 if (amd_get_nb_id(cpu) == nid)
2239 cpumask_set_cpu(cpu, mask);
2240}
2241
2242/* check MCG_CTL on all the cpus on this node */
b487c33e 2243static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
f6d6ae96
BP
2244{
2245 cpumask_var_t mask;
50542251 2246 int cpu, nbe;
f6d6ae96
BP
2247 bool ret = false;
2248
2249 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2250 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2251 return false;
2252 }
2253
2254 get_cpus_on_this_dct_cpumask(mask, nid);
2255
f6d6ae96
BP
2256 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2257
2258 for_each_cpu(cpu, mask) {
50542251 2259 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2260 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2261
2262 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2263 cpu, reg->q,
f6d6ae96
BP
2264 (nbe ? "enabled" : "disabled"));
2265
2266 if (!nbe)
2267 goto out;
f6d6ae96
BP
2268 }
2269 ret = true;
2270
2271out:
f6d6ae96
BP
2272 free_cpumask_var(mask);
2273 return ret;
2274}
2275
2299ef71 2276static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2277{
2278 cpumask_var_t cmask;
50542251 2279 int cpu;
f6d6ae96
BP
2280
2281 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2282 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2283 return false;
2284 }
2285
ae7bb7c6 2286 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2287
f6d6ae96
BP
2288 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2289
2290 for_each_cpu(cpu, cmask) {
2291
50542251
BP
2292 struct msr *reg = per_cpu_ptr(msrs, cpu);
2293
f6d6ae96 2294 if (on) {
5980bb9c 2295 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2296 s->flags.nb_mce_enable = 1;
f6d6ae96 2297
5980bb9c 2298 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2299 } else {
2300 /*
d95cf4de 2301 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2302 */
ae7bb7c6 2303 if (!s->flags.nb_mce_enable)
5980bb9c 2304 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2305 }
f6d6ae96
BP
2306 }
2307 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2308
f6d6ae96
BP
2309 free_cpumask_var(cmask);
2310
2311 return 0;
2312}
2313
2299ef71
BP
2314static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2315 struct pci_dev *F3)
f9431992 2316{
2299ef71 2317 bool ret = true;
c9f4f26e 2318 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2319
2299ef71
BP
2320 if (toggle_ecc_err_reporting(s, nid, ON)) {
2321 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2322 return false;
2323 }
2324
c9f4f26e 2325 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2326
ae7bb7c6
BP
2327 s->old_nbctl = value & mask;
2328 s->nbctl_valid = true;
f9431992
DT
2329
2330 value |= mask;
c9f4f26e 2331 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2332
a97fa68e 2333 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2334
a97fa68e
BP
2335 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2336 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2337
a97fa68e 2338 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2339 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2340
ae7bb7c6 2341 s->flags.nb_ecc_prev = 0;
d95cf4de 2342
f9431992 2343 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2344 value |= NBCFG_ECC_ENABLE;
2345 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2346
a97fa68e 2347 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2348
a97fa68e 2349 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2350 amd64_warn("Hardware rejected DRAM ECC enable,"
2351 "check memory DIMM configuration.\n");
2299ef71 2352 ret = false;
f9431992 2353 } else {
24f9a7fe 2354 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2355 }
d95cf4de 2356 } else {
ae7bb7c6 2357 s->flags.nb_ecc_prev = 1;
f9431992 2358 }
d95cf4de 2359
a97fa68e
BP
2360 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2361 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2362
2299ef71 2363 return ret;
f9431992
DT
2364}
2365
360b7f3c
BP
2366static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2367 struct pci_dev *F3)
f9431992 2368{
c9f4f26e
BP
2369 u32 value, mask = 0x3; /* UECC/CECC enable */
2370
f9431992 2371
ae7bb7c6 2372 if (!s->nbctl_valid)
f9431992
DT
2373 return;
2374
c9f4f26e 2375 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2376 value &= ~mask;
ae7bb7c6 2377 value |= s->old_nbctl;
f9431992 2378
c9f4f26e 2379 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2380
ae7bb7c6
BP
2381 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2382 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2383 amd64_read_pci_cfg(F3, NBCFG, &value);
2384 value &= ~NBCFG_ECC_ENABLE;
2385 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2386 }
2387
2388 /* restore the NB Enable MCGCTL bit */
2299ef71 2389 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2390 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2391}
2392
2393/*
2299ef71
BP
2394 * EDAC requires that the BIOS have ECC enabled before
2395 * taking over the processing of ECC errors. A command line
2396 * option allows to force-enable hardware ECC later in
2397 * enable_ecc_error_reporting().
f9431992 2398 */
cab4d277
BP
2399static const char *ecc_msg =
2400 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2401 " Either enable ECC checking or force module loading by setting "
2402 "'ecc_enable_override'.\n"
2403 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2404
2299ef71 2405static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2406{
2407 u32 value;
2299ef71 2408 u8 ecc_en = 0;
06724535 2409 bool nb_mce_en = false;
f9431992 2410
a97fa68e 2411 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2412
a97fa68e 2413 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2414 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2415
2299ef71 2416 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2417 if (!nb_mce_en)
2299ef71
BP
2418 amd64_notice("NB MCE bank disabled, set MSR "
2419 "0x%08x[4] on node %d to enable.\n",
2420 MSR_IA32_MCG_CTL, nid);
f9431992 2421
2299ef71
BP
2422 if (!ecc_en || !nb_mce_en) {
2423 amd64_notice("%s", ecc_msg);
2424 return false;
2425 }
2426 return true;
f9431992
DT
2427}
2428
7d6034d3
DT
2429struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2430 ARRAY_SIZE(amd64_inj_attrs) +
2431 1];
2432
2433struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2434
360b7f3c 2435static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2436{
2437 unsigned int i = 0, j = 0;
2438
2439 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2440 sysfs_attrs[i] = amd64_dbg_attrs[i];
2441
a135cef7
BP
2442 if (boot_cpu_data.x86 >= 0x10)
2443 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2444 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2445
2446 sysfs_attrs[i] = terminator;
2447
2448 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2449}
2450
df71a053
BP
2451static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2452 struct amd64_family_type *fam)
7d6034d3
DT
2453{
2454 struct amd64_pvt *pvt = mci->pvt_info;
2455
2456 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2457 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2458
5980bb9c 2459 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2460 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2461
5980bb9c 2462 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2463 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2464
2465 mci->edac_cap = amd64_determine_edac_cap(pvt);
2466 mci->mod_name = EDAC_MOD_STR;
2467 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2468 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2469 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2470 mci->ctl_page_to_phys = NULL;
2471
7d6034d3
DT
2472 /* memory scrubber interface */
2473 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2474 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2475}
2476
0092b20d
BP
2477/*
2478 * returns a pointer to the family descriptor on success, NULL otherwise.
2479 */
2480static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2481{
0092b20d
BP
2482 u8 fam = boot_cpu_data.x86;
2483 struct amd64_family_type *fam_type = NULL;
2484
2485 switch (fam) {
395ae783 2486 case 0xf:
0092b20d 2487 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2488 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2489 break;
df71a053 2490
395ae783 2491 case 0x10:
0092b20d 2492 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2493 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2494 break;
2495
2496 case 0x15:
2497 fam_type = &amd64_family_types[F15_CPUS];
2498 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2499 break;
2500
2501 default:
24f9a7fe 2502 amd64_err("Unsupported family!\n");
0092b20d 2503 return NULL;
395ae783 2504 }
0092b20d 2505
b8cfa02f
BP
2506 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2507
df71a053 2508 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2509 (fam == 0xf ?
24f9a7fe
BP
2510 (pvt->ext_model >= K8_REV_F ? "revF or later "
2511 : "revE or earlier ")
2512 : ""), pvt->mc_node_id);
0092b20d 2513 return fam_type;
395ae783
BP
2514}
2515
2299ef71 2516static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2517{
2518 struct amd64_pvt *pvt = NULL;
0092b20d 2519 struct amd64_family_type *fam_type = NULL;
360b7f3c 2520 struct mem_ctl_info *mci = NULL;
7d6034d3 2521 int err = 0, ret;
360b7f3c 2522 u8 nid = get_node_id(F2);
7d6034d3
DT
2523
2524 ret = -ENOMEM;
2525 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2526 if (!pvt)
360b7f3c 2527 goto err_ret;
7d6034d3 2528
360b7f3c 2529 pvt->mc_node_id = nid;
8d5b5d9c 2530 pvt->F2 = F2;
7d6034d3 2531
395ae783 2532 ret = -EINVAL;
0092b20d
BP
2533 fam_type = amd64_per_family_init(pvt);
2534 if (!fam_type)
395ae783
BP
2535 goto err_free;
2536
7d6034d3 2537 ret = -ENODEV;
360b7f3c 2538 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2539 if (err)
2540 goto err_free;
2541
360b7f3c 2542 read_mc_regs(pvt);
7d6034d3 2543
7d6034d3
DT
2544 /*
2545 * We need to determine how many memory channels there are. Then use
2546 * that information for calculating the size of the dynamic instance
360b7f3c 2547 * tables in the 'mci' structure.
7d6034d3 2548 */
360b7f3c 2549 ret = -EINVAL;
7d6034d3
DT
2550 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2551 if (pvt->channel_count < 0)
360b7f3c 2552 goto err_siblings;
7d6034d3
DT
2553
2554 ret = -ENOMEM;
11c75ead 2555 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2556 if (!mci)
360b7f3c 2557 goto err_siblings;
7d6034d3
DT
2558
2559 mci->pvt_info = pvt;
8d5b5d9c 2560 mci->dev = &pvt->F2->dev;
7d6034d3 2561
df71a053 2562 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2563
2564 if (init_csrows(mci))
7d6034d3
DT
2565 mci->edac_cap = EDAC_FLAG_NONE;
2566
360b7f3c 2567 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2568
2569 ret = -ENODEV;
2570 if (edac_mc_add_mc(mci)) {
2571 debugf1("failed edac_mc_add_mc()\n");
2572 goto err_add_mc;
2573 }
2574
549d042d
BP
2575 /* register stuff with EDAC MCE */
2576 if (report_gart_errors)
2577 amd_report_gart_errors(true);
2578
2579 amd_register_ecc_decoder(amd64_decode_bus_error);
2580
360b7f3c
BP
2581 mcis[nid] = mci;
2582
2583 atomic_inc(&drv_instances);
2584
7d6034d3
DT
2585 return 0;
2586
2587err_add_mc:
2588 edac_mc_free(mci);
2589
360b7f3c
BP
2590err_siblings:
2591 free_mc_sibling_devs(pvt);
7d6034d3 2592
360b7f3c
BP
2593err_free:
2594 kfree(pvt);
7d6034d3 2595
360b7f3c 2596err_ret:
7d6034d3
DT
2597 return ret;
2598}
2599
2299ef71 2600static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2601 const struct pci_device_id *mc_type)
7d6034d3 2602{
ae7bb7c6 2603 u8 nid = get_node_id(pdev);
2299ef71 2604 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2605 struct ecc_settings *s;
2299ef71 2606 int ret = 0;
7d6034d3 2607
7d6034d3 2608 ret = pci_enable_device(pdev);
b8cfa02f
BP
2609 if (ret < 0) {
2610 debugf0("ret=%d\n", ret);
2611 return -EIO;
2612 }
7d6034d3 2613
ae7bb7c6
BP
2614 ret = -ENOMEM;
2615 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2616 if (!s)
2299ef71 2617 goto err_out;
ae7bb7c6
BP
2618
2619 ecc_stngs[nid] = s;
2620
2299ef71
BP
2621 if (!ecc_enabled(F3, nid)) {
2622 ret = -ENODEV;
2623
2624 if (!ecc_enable_override)
2625 goto err_enable;
2626
2627 amd64_warn("Forcing ECC on!\n");
2628
2629 if (!enable_ecc_error_reporting(s, nid, F3))
2630 goto err_enable;
2631 }
2632
2633 ret = amd64_init_one_instance(pdev);
360b7f3c 2634 if (ret < 0) {
ae7bb7c6 2635 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2636 restore_ecc_error_reporting(s, nid, F3);
2637 }
7d6034d3
DT
2638
2639 return ret;
2299ef71
BP
2640
2641err_enable:
2642 kfree(s);
2643 ecc_stngs[nid] = NULL;
2644
2645err_out:
2646 return ret;
7d6034d3
DT
2647}
2648
2649static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2650{
2651 struct mem_ctl_info *mci;
2652 struct amd64_pvt *pvt;
360b7f3c
BP
2653 u8 nid = get_node_id(pdev);
2654 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2655 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2656
2657 /* Remove from EDAC CORE tracking list */
2658 mci = edac_mc_del_mc(&pdev->dev);
2659 if (!mci)
2660 return;
2661
2662 pvt = mci->pvt_info;
2663
360b7f3c 2664 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2665
360b7f3c 2666 free_mc_sibling_devs(pvt);
7d6034d3 2667
549d042d
BP
2668 /* unregister from EDAC MCE */
2669 amd_report_gart_errors(false);
2670 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2671
360b7f3c
BP
2672 kfree(ecc_stngs[nid]);
2673 ecc_stngs[nid] = NULL;
ae7bb7c6 2674
7d6034d3 2675 /* Free the EDAC CORE resources */
8f68ed97 2676 mci->pvt_info = NULL;
360b7f3c 2677 mcis[nid] = NULL;
8f68ed97
BP
2678
2679 kfree(pvt);
7d6034d3
DT
2680 edac_mc_free(mci);
2681}
2682
2683/*
2684 * This table is part of the interface for loading drivers for PCI devices. The
2685 * PCI core identifies what devices are on a system during boot, and then
2686 * inquiry this table to see if this driver is for a given device found.
2687 */
2688static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2689 {
2690 .vendor = PCI_VENDOR_ID_AMD,
2691 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2692 .subvendor = PCI_ANY_ID,
2693 .subdevice = PCI_ANY_ID,
2694 .class = 0,
2695 .class_mask = 0,
7d6034d3
DT
2696 },
2697 {
2698 .vendor = PCI_VENDOR_ID_AMD,
2699 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2700 .subvendor = PCI_ANY_ID,
2701 .subdevice = PCI_ANY_ID,
2702 .class = 0,
2703 .class_mask = 0,
7d6034d3 2704 },
df71a053
BP
2705 {
2706 .vendor = PCI_VENDOR_ID_AMD,
2707 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2708 .subvendor = PCI_ANY_ID,
2709 .subdevice = PCI_ANY_ID,
2710 .class = 0,
2711 .class_mask = 0,
2712 },
2713
7d6034d3
DT
2714 {0, }
2715};
2716MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2717
2718static struct pci_driver amd64_pci_driver = {
2719 .name = EDAC_MOD_STR,
2299ef71 2720 .probe = amd64_probe_one_instance,
7d6034d3
DT
2721 .remove = __devexit_p(amd64_remove_one_instance),
2722 .id_table = amd64_pci_table,
2723};
2724
360b7f3c 2725static void setup_pci_device(void)
7d6034d3
DT
2726{
2727 struct mem_ctl_info *mci;
2728 struct amd64_pvt *pvt;
2729
2730 if (amd64_ctl_pci)
2731 return;
2732
cc4d8860 2733 mci = mcis[0];
7d6034d3
DT
2734 if (mci) {
2735
2736 pvt = mci->pvt_info;
2737 amd64_ctl_pci =
8d5b5d9c 2738 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2739
2740 if (!amd64_ctl_pci) {
2741 pr_warning("%s(): Unable to create PCI control\n",
2742 __func__);
2743
2744 pr_warning("%s(): PCI error report via EDAC not set\n",
2745 __func__);
2746 }
2747 }
2748}
2749
2750static int __init amd64_edac_init(void)
2751{
360b7f3c 2752 int err = -ENODEV;
7d6034d3 2753
df71a053 2754 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2755
2756 opstate_init();
2757
9653a5c7 2758 if (amd_cache_northbridges() < 0)
56b34b91 2759 goto err_ret;
7d6034d3 2760
cc4d8860 2761 err = -ENOMEM;
ae7bb7c6
BP
2762 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2763 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2764 if (!(mcis && ecc_stngs))
a9f0fbe2 2765 goto err_free;
cc4d8860 2766
50542251 2767 msrs = msrs_alloc();
56b34b91 2768 if (!msrs)
360b7f3c 2769 goto err_free;
50542251 2770
7d6034d3
DT
2771 err = pci_register_driver(&amd64_pci_driver);
2772 if (err)
56b34b91 2773 goto err_pci;
7d6034d3 2774
56b34b91 2775 err = -ENODEV;
360b7f3c
BP
2776 if (!atomic_read(&drv_instances))
2777 goto err_no_instances;
7d6034d3 2778
360b7f3c
BP
2779 setup_pci_device();
2780 return 0;
7d6034d3 2781
360b7f3c 2782err_no_instances:
7d6034d3 2783 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2784
56b34b91
BP
2785err_pci:
2786 msrs_free(msrs);
2787 msrs = NULL;
cc4d8860 2788
360b7f3c
BP
2789err_free:
2790 kfree(mcis);
2791 mcis = NULL;
2792
2793 kfree(ecc_stngs);
2794 ecc_stngs = NULL;
2795
56b34b91 2796err_ret:
7d6034d3
DT
2797 return err;
2798}
2799
2800static void __exit amd64_edac_exit(void)
2801{
2802 if (amd64_ctl_pci)
2803 edac_pci_release_generic_ctl(amd64_ctl_pci);
2804
2805 pci_unregister_driver(&amd64_pci_driver);
50542251 2806
ae7bb7c6
BP
2807 kfree(ecc_stngs);
2808 ecc_stngs = NULL;
2809
cc4d8860
BP
2810 kfree(mcis);
2811 mcis = NULL;
2812
50542251
BP
2813 msrs_free(msrs);
2814 msrs = NULL;
7d6034d3
DT
2815}
2816
2817module_init(amd64_edac_init);
2818module_exit(amd64_edac_exit);
2819
2820MODULE_LICENSE("GPL");
2821MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2822 "Dave Peterson, Thayne Harbaugh");
2823MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2824 EDAC_AMD64_VERSION);
2825
2826module_param(edac_op_state, int, 0444);
2827MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");