crypto: padlock-aes - Make module loading even quieter when hardware is missing
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / crypto / picoxcell_crypto.c
CommitLineData
ce921368
JI
1/*
2 * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18#include <crypto/aead.h>
19#include <crypto/aes.h>
20#include <crypto/algapi.h>
21#include <crypto/authenc.h>
22#include <crypto/des.h>
23#include <crypto/md5.h>
24#include <crypto/sha.h>
25#include <crypto/internal/skcipher.h>
26#include <linux/clk.h>
27#include <linux/crypto.h>
28#include <linux/delay.h>
29#include <linux/dma-mapping.h>
30#include <linux/dmapool.h>
31#include <linux/err.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/io.h>
35#include <linux/list.h>
36#include <linux/module.h>
37#include <linux/platform_device.h>
38#include <linux/pm.h>
39#include <linux/rtnetlink.h>
40#include <linux/scatterlist.h>
41#include <linux/sched.h>
42#include <linux/slab.h>
43#include <linux/timer.h>
44
45#include "picoxcell_crypto_regs.h"
46
47/*
48 * The threshold for the number of entries in the CMD FIFO available before
49 * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
50 * number of interrupts raised to the CPU.
51 */
52#define CMD0_IRQ_THRESHOLD 1
53
54/*
55 * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
56 * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
57 * When there are packets in flight but lower than the threshold, we enable
58 * the timer and at expiry, attempt to remove any processed packets from the
59 * queue and if there are still packets left, schedule the timer again.
60 */
61#define PACKET_TIMEOUT 1
62
63/* The priority to register each algorithm with. */
64#define SPACC_CRYPTO_ALG_PRIORITY 10000
65
66#define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16
67#define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
68#define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64
69#define SPACC_CRYPTO_IPSEC_MAX_CTXS 32
70#define SPACC_CRYPTO_IPSEC_FIFO_SZ 32
71#define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64
72#define SPACC_CRYPTO_L2_HASH_PG_SZ 64
73#define SPACC_CRYPTO_L2_MAX_CTXS 128
74#define SPACC_CRYPTO_L2_FIFO_SZ 128
75
76#define MAX_DDT_LEN 16
77
78/* DDT format. This must match the hardware DDT format exactly. */
79struct spacc_ddt {
80 dma_addr_t p;
81 u32 len;
82};
83
84/*
85 * Asynchronous crypto request structure.
86 *
87 * This structure defines a request that is either queued for processing or
88 * being processed.
89 */
90struct spacc_req {
91 struct list_head list;
92 struct spacc_engine *engine;
93 struct crypto_async_request *req;
94 int result;
95 bool is_encrypt;
96 unsigned ctx_id;
97 dma_addr_t src_addr, dst_addr;
98 struct spacc_ddt *src_ddt, *dst_ddt;
99 void (*complete)(struct spacc_req *req);
100
101 /* AEAD specific bits. */
102 u8 *giv;
103 size_t giv_len;
104 dma_addr_t giv_pa;
105};
106
107struct spacc_engine {
108 void __iomem *regs;
109 struct list_head pending;
110 int next_ctx;
111 spinlock_t hw_lock;
112 int in_flight;
113 struct list_head completed;
114 struct list_head in_progress;
115 struct tasklet_struct complete;
116 unsigned long fifo_sz;
117 void __iomem *cipher_ctx_base;
118 void __iomem *hash_key_base;
119 struct spacc_alg *algs;
120 unsigned num_algs;
121 struct list_head registered_algs;
122 size_t cipher_pg_sz;
123 size_t hash_pg_sz;
124 const char *name;
125 struct clk *clk;
126 struct device *dev;
127 unsigned max_ctxs;
128 struct timer_list packet_timeout;
129 unsigned stat_irq_thresh;
130 struct dma_pool *req_pool;
131};
132
133/* Algorithm type mask. */
134#define SPACC_CRYPTO_ALG_MASK 0x7
135
136/* SPACC definition of a crypto algorithm. */
137struct spacc_alg {
138 unsigned long ctrl_default;
139 unsigned long type;
140 struct crypto_alg alg;
141 struct spacc_engine *engine;
142 struct list_head entry;
143 int key_offs;
144 int iv_offs;
145};
146
147/* Generic context structure for any algorithm type. */
148struct spacc_generic_ctx {
149 struct spacc_engine *engine;
150 int flags;
151 int key_offs;
152 int iv_offs;
153};
154
155/* Block cipher context. */
156struct spacc_ablk_ctx {
157 struct spacc_generic_ctx generic;
158 u8 key[AES_MAX_KEY_SIZE];
159 u8 key_len;
160 /*
161 * The fallback cipher. If the operation can't be done in hardware,
162 * fallback to a software version.
163 */
164 struct crypto_ablkcipher *sw_cipher;
165};
166
167/* AEAD cipher context. */
168struct spacc_aead_ctx {
169 struct spacc_generic_ctx generic;
170 u8 cipher_key[AES_MAX_KEY_SIZE];
171 u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
172 u8 cipher_key_len;
173 u8 hash_key_len;
174 struct crypto_aead *sw_cipher;
175 size_t auth_size;
176 u8 salt[AES_BLOCK_SIZE];
177};
178
40bfc14f
JI
179static int spacc_ablk_submit(struct spacc_req *req);
180
ce921368
JI
181static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
182{
183 return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
184}
185
186static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
187{
188 u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
189
190 return fifo_stat & SPA_FIFO_CMD_FULL;
191}
192
193/*
194 * Given a cipher context, and a context number, get the base address of the
195 * context page.
196 *
197 * Returns the address of the context page where the key/context may
198 * be written.
199 */
200static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
201 unsigned indx,
202 bool is_cipher_ctx)
203{
204 return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
205 (indx * ctx->engine->cipher_pg_sz) :
206 ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
207}
208
209/* The context pages can only be written with 32-bit accesses. */
210static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
211 unsigned count)
212{
213 const u32 *src32 = (const u32 *) src;
214
215 while (count--)
216 writel(*src32++, dst++);
217}
218
219static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
220 void __iomem *page_addr, const u8 *key,
221 size_t key_len, const u8 *iv, size_t iv_len)
222{
223 void __iomem *key_ptr = page_addr + ctx->key_offs;
224 void __iomem *iv_ptr = page_addr + ctx->iv_offs;
225
226 memcpy_toio32(key_ptr, key, key_len / 4);
227 memcpy_toio32(iv_ptr, iv, iv_len / 4);
228}
229
230/*
231 * Load a context into the engines context memory.
232 *
233 * Returns the index of the context page where the context was loaded.
234 */
235static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
236 const u8 *ciph_key, size_t ciph_len,
237 const u8 *iv, size_t ivlen, const u8 *hash_key,
238 size_t hash_len)
239{
240 unsigned indx = ctx->engine->next_ctx++;
241 void __iomem *ciph_page_addr, *hash_page_addr;
242
243 ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
244 hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
245
246 ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
247 spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
248 ivlen);
249 writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
250 (1 << SPA_KEY_SZ_CIPHER_OFFSET),
251 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
252
253 if (hash_key) {
254 memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
255 writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
256 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
257 }
258
259 return indx;
260}
261
262/* Count the number of scatterlist entries in a scatterlist. */
263static int sg_count(struct scatterlist *sg_list, int nbytes)
264{
265 struct scatterlist *sg = sg_list;
266 int sg_nents = 0;
267
268 while (nbytes > 0) {
269 ++sg_nents;
270 nbytes -= sg->length;
271 sg = sg_next(sg);
272 }
273
274 return sg_nents;
275}
276
277static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
278{
279 ddt->p = phys;
280 ddt->len = len;
281}
282
283/*
284 * Take a crypto request and scatterlists for the data and turn them into DDTs
285 * for passing to the crypto engines. This also DMA maps the data so that the
286 * crypto engines can DMA to/from them.
287 */
288static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
289 struct scatterlist *payload,
290 unsigned nbytes,
291 enum dma_data_direction dir,
292 dma_addr_t *ddt_phys)
293{
294 unsigned nents, mapped_ents;
295 struct scatterlist *cur;
296 struct spacc_ddt *ddt;
297 int i;
298
299 nents = sg_count(payload, nbytes);
300 mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
301
302 if (mapped_ents + 1 > MAX_DDT_LEN)
303 goto out;
304
305 ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
306 if (!ddt)
307 goto out;
308
309 for_each_sg(payload, cur, mapped_ents, i)
310 ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
311 ddt_set(&ddt[mapped_ents], 0, 0);
312
313 return ddt;
314
315out:
316 dma_unmap_sg(engine->dev, payload, nents, dir);
317 return NULL;
318}
319
320static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv)
321{
322 struct aead_request *areq = container_of(req->req, struct aead_request,
323 base);
324 struct spacc_engine *engine = req->engine;
325 struct spacc_ddt *src_ddt, *dst_ddt;
326 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq));
327 unsigned nents = sg_count(areq->src, areq->cryptlen);
328 dma_addr_t iv_addr;
329 struct scatterlist *cur;
330 int i, dst_ents, src_ents, assoc_ents;
331 u8 *iv = giv ? giv : areq->iv;
332
333 src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
334 if (!src_ddt)
335 return -ENOMEM;
336
337 dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
338 if (!dst_ddt) {
339 dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
340 return -ENOMEM;
341 }
342
343 req->src_ddt = src_ddt;
344 req->dst_ddt = dst_ddt;
345
346 assoc_ents = dma_map_sg(engine->dev, areq->assoc,
347 sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
348 if (areq->src != areq->dst) {
349 src_ents = dma_map_sg(engine->dev, areq->src, nents,
350 DMA_TO_DEVICE);
351 dst_ents = dma_map_sg(engine->dev, areq->dst, nents,
352 DMA_FROM_DEVICE);
353 } else {
354 src_ents = dma_map_sg(engine->dev, areq->src, nents,
355 DMA_BIDIRECTIONAL);
356 dst_ents = 0;
357 }
358
359 /*
360 * Map the IV/GIV. For the GIV it needs to be bidirectional as it is
361 * formed by the crypto block and sent as the ESP IV for IPSEC.
362 */
363 iv_addr = dma_map_single(engine->dev, iv, ivsize,
364 giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
365 req->giv_pa = iv_addr;
366
367 /*
368 * Map the associated data. For decryption we don't copy the
369 * associated data.
370 */
371 for_each_sg(areq->assoc, cur, assoc_ents, i) {
372 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
373 if (req->is_encrypt)
374 ddt_set(dst_ddt++, sg_dma_address(cur),
375 sg_dma_len(cur));
376 }
377 ddt_set(src_ddt++, iv_addr, ivsize);
378
379 if (giv || req->is_encrypt)
380 ddt_set(dst_ddt++, iv_addr, ivsize);
381
382 /*
383 * Now map in the payload for the source and destination and terminate
384 * with the NULL pointers.
385 */
386 for_each_sg(areq->src, cur, src_ents, i) {
387 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
388 if (areq->src == areq->dst)
389 ddt_set(dst_ddt++, sg_dma_address(cur),
390 sg_dma_len(cur));
391 }
392
393 for_each_sg(areq->dst, cur, dst_ents, i)
394 ddt_set(dst_ddt++, sg_dma_address(cur),
395 sg_dma_len(cur));
396
397 ddt_set(src_ddt, 0, 0);
398 ddt_set(dst_ddt, 0, 0);
399
400 return 0;
401}
402
403static void spacc_aead_free_ddts(struct spacc_req *req)
404{
405 struct aead_request *areq = container_of(req->req, struct aead_request,
406 base);
407 struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg);
408 struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm);
409 struct spacc_engine *engine = aead_ctx->generic.engine;
410 unsigned ivsize = alg->alg.cra_aead.ivsize;
411 unsigned nents = sg_count(areq->src, areq->cryptlen);
412
413 if (areq->src != areq->dst) {
414 dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
415 dma_unmap_sg(engine->dev, areq->dst,
416 sg_count(areq->dst, areq->cryptlen),
417 DMA_FROM_DEVICE);
418 } else
419 dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
420
421 dma_unmap_sg(engine->dev, areq->assoc,
422 sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
423
424 dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL);
425
426 dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
427 dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
428}
429
430static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
431 dma_addr_t ddt_addr, struct scatterlist *payload,
432 unsigned nbytes, enum dma_data_direction dir)
433{
434 unsigned nents = sg_count(payload, nbytes);
435
436 dma_unmap_sg(req->engine->dev, payload, nents, dir);
437 dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
438}
439
440/*
441 * Set key for a DES operation in an AEAD cipher. This also performs weak key
442 * checking if required.
443 */
444static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key,
445 unsigned int len)
446{
447 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
448 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
449 u32 tmp[DES_EXPKEY_WORDS];
450
451 if (unlikely(!des_ekey(tmp, key)) &&
452 (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) {
453 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
454 return -EINVAL;
455 }
456
457 memcpy(ctx->cipher_key, key, len);
458 ctx->cipher_key_len = len;
459
460 return 0;
461}
462
463/* Set the key for the AES block cipher component of the AEAD transform. */
464static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key,
465 unsigned int len)
466{
467 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
468 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
469
470 /*
471 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
472 * request for any other size (192 bits) then we need to do a software
473 * fallback.
474 */
475 if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
476 /*
477 * Set the fallback transform to use the same request flags as
478 * the hardware transform.
479 */
480 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
481 ctx->sw_cipher->base.crt_flags |=
482 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
483 return crypto_aead_setkey(ctx->sw_cipher, key, len);
484 }
485
486 memcpy(ctx->cipher_key, key, len);
487 ctx->cipher_key_len = len;
488
489 return 0;
490}
491
492static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
493 unsigned int keylen)
494{
495 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
496 struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
497 struct rtattr *rta = (void *)key;
498 struct crypto_authenc_key_param *param;
499 unsigned int authkeylen, enckeylen;
500 int err = -EINVAL;
501
502 if (!RTA_OK(rta, keylen))
503 goto badkey;
504
505 if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
506 goto badkey;
507
508 if (RTA_PAYLOAD(rta) < sizeof(*param))
509 goto badkey;
510
511 param = RTA_DATA(rta);
512 enckeylen = be32_to_cpu(param->enckeylen);
513
514 key += RTA_ALIGN(rta->rta_len);
515 keylen -= RTA_ALIGN(rta->rta_len);
516
517 if (keylen < enckeylen)
518 goto badkey;
519
520 authkeylen = keylen - enckeylen;
521
522 if (enckeylen > AES_MAX_KEY_SIZE)
523 goto badkey;
524
525 if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
526 SPA_CTRL_CIPH_ALG_AES)
527 err = spacc_aead_aes_setkey(tfm, key + authkeylen, enckeylen);
528 else
529 err = spacc_aead_des_setkey(tfm, key + authkeylen, enckeylen);
530
531 if (err)
532 goto badkey;
533
534 memcpy(ctx->hash_ctx, key, authkeylen);
535 ctx->hash_key_len = authkeylen;
536
537 return 0;
538
539badkey:
540 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
541 return -EINVAL;
542}
543
544static int spacc_aead_setauthsize(struct crypto_aead *tfm,
545 unsigned int authsize)
546{
547 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
548
549 ctx->auth_size = authsize;
550
551 return 0;
552}
553
554/*
555 * Check if an AEAD request requires a fallback operation. Some requests can't
556 * be completed in hardware because the hardware may not support certain key
557 * sizes. In these cases we need to complete the request in software.
558 */
559static int spacc_aead_need_fallback(struct spacc_req *req)
560{
561 struct aead_request *aead_req;
562 struct crypto_tfm *tfm = req->req->tfm;
563 struct crypto_alg *alg = req->req->tfm->__crt_alg;
564 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
565 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
566
567 aead_req = container_of(req->req, struct aead_request, base);
568 /*
569 * If we have a non-supported key-length, then we need to do a
570 * software fallback.
571 */
572 if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
573 SPA_CTRL_CIPH_ALG_AES &&
574 ctx->cipher_key_len != AES_KEYSIZE_128 &&
575 ctx->cipher_key_len != AES_KEYSIZE_256)
576 return 1;
577
578 return 0;
579}
580
581static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
582 bool is_encrypt)
583{
584 struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
585 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
586 int err;
587
588 if (ctx->sw_cipher) {
589 /*
590 * Change the request to use the software fallback transform,
591 * and once the ciphering has completed, put the old transform
592 * back into the request.
593 */
594 aead_request_set_tfm(req, ctx->sw_cipher);
595 err = is_encrypt ? crypto_aead_encrypt(req) :
596 crypto_aead_decrypt(req);
597 aead_request_set_tfm(req, __crypto_aead_cast(old_tfm));
598 } else
599 err = -EINVAL;
600
601 return err;
602}
603
604static void spacc_aead_complete(struct spacc_req *req)
605{
606 spacc_aead_free_ddts(req);
607 req->req->complete(req->req, req->result);
608}
609
610static int spacc_aead_submit(struct spacc_req *req)
611{
612 struct crypto_tfm *tfm = req->req->tfm;
613 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
614 struct crypto_alg *alg = req->req->tfm->__crt_alg;
615 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
616 struct spacc_engine *engine = ctx->generic.engine;
617 u32 ctrl, proc_len, assoc_len;
618 struct aead_request *aead_req =
619 container_of(req->req, struct aead_request, base);
620
621 req->result = -EINPROGRESS;
622 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
623 ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize,
624 ctx->hash_ctx, ctx->hash_key_len);
625
626 /* Set the source and destination DDT pointers. */
627 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
628 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
629 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
630
631 assoc_len = aead_req->assoclen;
632 proc_len = aead_req->cryptlen + assoc_len;
633
634 /*
635 * If we aren't generating an IV, then we need to include the IV in the
636 * associated data so that it is included in the hash.
637 */
638 if (!req->giv) {
639 assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
640 proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
641 } else
642 proc_len += req->giv_len;
643
644 /*
645 * If we are decrypting, we need to take the length of the ICV out of
646 * the processing length.
647 */
648 if (!req->is_encrypt)
649 proc_len -= ctx->auth_size;
650
651 writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
652 writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
653 writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET);
654 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
655 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
656
657 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
658 (1 << SPA_CTRL_ICV_APPEND);
659 if (req->is_encrypt)
660 ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
661 else
662 ctrl |= (1 << SPA_CTRL_KEY_EXP);
663
664 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
665
666 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
667
668 return -EINPROGRESS;
669}
670
40bfc14f
JI
671static int spacc_req_submit(struct spacc_req *req);
672
673static void spacc_push(struct spacc_engine *engine)
674{
675 struct spacc_req *req;
676
677 while (!list_empty(&engine->pending) &&
678 engine->in_flight + 1 <= engine->fifo_sz) {
679
680 ++engine->in_flight;
681 req = list_first_entry(&engine->pending, struct spacc_req,
682 list);
683 list_move_tail(&req->list, &engine->in_progress);
684
685 req->result = spacc_req_submit(req);
686 }
687}
688
ce921368
JI
689/*
690 * Setup an AEAD request for processing. This will configure the engine, load
691 * the context and then start the packet processing.
692 *
693 * @giv Pointer to destination address for a generated IV. If the
694 * request does not need to generate an IV then this should be set to NULL.
695 */
696static int spacc_aead_setup(struct aead_request *req, u8 *giv,
697 unsigned alg_type, bool is_encrypt)
698{
699 struct crypto_alg *alg = req->base.tfm->__crt_alg;
700 struct spacc_engine *engine = to_spacc_alg(alg)->engine;
701 struct spacc_req *dev_req = aead_request_ctx(req);
702 int err = -EINPROGRESS;
703 unsigned long flags;
704 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
705
706 dev_req->giv = giv;
707 dev_req->giv_len = ivsize;
708 dev_req->req = &req->base;
709 dev_req->is_encrypt = is_encrypt;
710 dev_req->result = -EBUSY;
711 dev_req->engine = engine;
712 dev_req->complete = spacc_aead_complete;
713
714 if (unlikely(spacc_aead_need_fallback(dev_req)))
715 return spacc_aead_do_fallback(req, alg_type, is_encrypt);
716
717 spacc_aead_make_ddts(dev_req, dev_req->giv);
718
719 err = -EINPROGRESS;
720 spin_lock_irqsave(&engine->hw_lock, flags);
40bfc14f
JI
721 if (unlikely(spacc_fifo_cmd_full(engine)) ||
722 engine->in_flight + 1 > engine->fifo_sz) {
ce921368
JI
723 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
724 err = -EBUSY;
725 spin_unlock_irqrestore(&engine->hw_lock, flags);
726 goto out_free_ddts;
727 }
728 list_add_tail(&dev_req->list, &engine->pending);
729 } else {
40bfc14f
JI
730 list_add_tail(&dev_req->list, &engine->pending);
731 spacc_push(engine);
ce921368
JI
732 }
733 spin_unlock_irqrestore(&engine->hw_lock, flags);
734
735 goto out;
736
737out_free_ddts:
738 spacc_aead_free_ddts(dev_req);
739out:
740 return err;
741}
742
743static int spacc_aead_encrypt(struct aead_request *req)
744{
745 struct crypto_aead *aead = crypto_aead_reqtfm(req);
746 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
747 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
748
749 return spacc_aead_setup(req, NULL, alg->type, 1);
750}
751
752static int spacc_aead_givencrypt(struct aead_givcrypt_request *req)
753{
754 struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
755 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
756 size_t ivsize = crypto_aead_ivsize(tfm);
757 struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
758 unsigned len;
759 __be64 seq;
760
761 memcpy(req->areq.iv, ctx->salt, ivsize);
762 len = ivsize;
763 if (ivsize > sizeof(u64)) {
764 memset(req->giv, 0, ivsize - sizeof(u64));
765 len = sizeof(u64);
766 }
767 seq = cpu_to_be64(req->seq);
768 memcpy(req->giv + ivsize - len, &seq, len);
769
770 return spacc_aead_setup(&req->areq, req->giv, alg->type, 1);
771}
772
773static int spacc_aead_decrypt(struct aead_request *req)
774{
775 struct crypto_aead *aead = crypto_aead_reqtfm(req);
776 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
777 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
778
779 return spacc_aead_setup(req, NULL, alg->type, 0);
780}
781
782/*
783 * Initialise a new AEAD context. This is responsible for allocating the
784 * fallback cipher and initialising the context.
785 */
786static int spacc_aead_cra_init(struct crypto_tfm *tfm)
787{
788 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
789 struct crypto_alg *alg = tfm->__crt_alg;
790 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
791 struct spacc_engine *engine = spacc_alg->engine;
792
793 ctx->generic.flags = spacc_alg->type;
794 ctx->generic.engine = engine;
795 ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0,
796 CRYPTO_ALG_ASYNC |
797 CRYPTO_ALG_NEED_FALLBACK);
798 if (IS_ERR(ctx->sw_cipher)) {
799 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
800 alg->cra_name);
801 ctx->sw_cipher = NULL;
802 }
803 ctx->generic.key_offs = spacc_alg->key_offs;
804 ctx->generic.iv_offs = spacc_alg->iv_offs;
805
806 get_random_bytes(ctx->salt, sizeof(ctx->salt));
807
808 tfm->crt_aead.reqsize = sizeof(struct spacc_req);
809
810 return 0;
811}
812
813/*
814 * Destructor for an AEAD context. This is called when the transform is freed
815 * and must free the fallback cipher.
816 */
817static void spacc_aead_cra_exit(struct crypto_tfm *tfm)
818{
819 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
820
821 if (ctx->sw_cipher)
822 crypto_free_aead(ctx->sw_cipher);
823 ctx->sw_cipher = NULL;
824}
825
826/*
827 * Set the DES key for a block cipher transform. This also performs weak key
828 * checking if the transform has requested it.
829 */
830static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
831 unsigned int len)
832{
833 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
834 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
835 u32 tmp[DES_EXPKEY_WORDS];
836
837 if (len > DES3_EDE_KEY_SIZE) {
838 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
839 return -EINVAL;
840 }
841
842 if (unlikely(!des_ekey(tmp, key)) &&
843 (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
844 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
845 return -EINVAL;
846 }
847
848 memcpy(ctx->key, key, len);
849 ctx->key_len = len;
850
851 return 0;
852}
853
854/*
855 * Set the key for an AES block cipher. Some key lengths are not supported in
856 * hardware so this must also check whether a fallback is needed.
857 */
858static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
859 unsigned int len)
860{
861 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
862 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
863 int err = 0;
864
865 if (len > AES_MAX_KEY_SIZE) {
866 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
867 return -EINVAL;
868 }
869
870 /*
871 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
872 * request for any other size (192 bits) then we need to do a software
873 * fallback.
874 */
875 if ((len != AES_KEYSIZE_128 || len != AES_KEYSIZE_256) &&
876 ctx->sw_cipher) {
877 /*
878 * Set the fallback transform to use the same request flags as
879 * the hardware transform.
880 */
881 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
882 ctx->sw_cipher->base.crt_flags |=
883 cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
884
885 err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
886 if (err)
887 goto sw_setkey_failed;
888 } else if ((len != AES_KEYSIZE_128 || len != AES_KEYSIZE_256) &&
889 !ctx->sw_cipher)
890 err = -EINVAL;
891
892 memcpy(ctx->key, key, len);
893 ctx->key_len = len;
894
895sw_setkey_failed:
896 if (err && ctx->sw_cipher) {
897 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
898 tfm->crt_flags |=
899 ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
900 }
901
902 return err;
903}
904
905static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
906 const u8 *key, unsigned int len)
907{
908 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
909 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
910 int err = 0;
911
912 if (len > AES_MAX_KEY_SIZE) {
913 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
914 err = -EINVAL;
915 goto out;
916 }
917
918 memcpy(ctx->key, key, len);
919 ctx->key_len = len;
920
921out:
922 return err;
923}
924
925static int spacc_ablk_need_fallback(struct spacc_req *req)
926{
927 struct spacc_ablk_ctx *ctx;
928 struct crypto_tfm *tfm = req->req->tfm;
929 struct crypto_alg *alg = req->req->tfm->__crt_alg;
930 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
931
932 ctx = crypto_tfm_ctx(tfm);
933
934 return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
935 SPA_CTRL_CIPH_ALG_AES &&
936 ctx->key_len != AES_KEYSIZE_128 &&
937 ctx->key_len != AES_KEYSIZE_256;
938}
939
940static void spacc_ablk_complete(struct spacc_req *req)
941{
942 struct ablkcipher_request *ablk_req =
943 container_of(req->req, struct ablkcipher_request, base);
944
945 if (ablk_req->src != ablk_req->dst) {
946 spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
947 ablk_req->nbytes, DMA_TO_DEVICE);
948 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
949 ablk_req->nbytes, DMA_FROM_DEVICE);
950 } else
951 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
952 ablk_req->nbytes, DMA_BIDIRECTIONAL);
953
954 req->req->complete(req->req, req->result);
955}
956
957static int spacc_ablk_submit(struct spacc_req *req)
958{
959 struct crypto_tfm *tfm = req->req->tfm;
960 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
961 struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
962 struct crypto_alg *alg = req->req->tfm->__crt_alg;
963 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
964 struct spacc_engine *engine = ctx->generic.engine;
965 u32 ctrl;
966
967 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
968 ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
969 NULL, 0);
970
971 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
972 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
973 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
974
975 writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
976 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
977 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
978 writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
979
980 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
981 (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
982 (1 << SPA_CTRL_KEY_EXP));
983
984 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
985
986 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
987
988 return -EINPROGRESS;
989}
990
991static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
992 unsigned alg_type, bool is_encrypt)
993{
994 struct crypto_tfm *old_tfm =
995 crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
996 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
997 int err;
998
999 if (!ctx->sw_cipher)
1000 return -EINVAL;
1001
1002 /*
1003 * Change the request to use the software fallback transform, and once
1004 * the ciphering has completed, put the old transform back into the
1005 * request.
1006 */
1007 ablkcipher_request_set_tfm(req, ctx->sw_cipher);
1008 err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
1009 crypto_ablkcipher_decrypt(req);
1010 ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
1011
1012 return err;
1013}
1014
1015static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
1016 bool is_encrypt)
1017{
1018 struct crypto_alg *alg = req->base.tfm->__crt_alg;
1019 struct spacc_engine *engine = to_spacc_alg(alg)->engine;
1020 struct spacc_req *dev_req = ablkcipher_request_ctx(req);
1021 unsigned long flags;
1022 int err = -ENOMEM;
1023
1024 dev_req->req = &req->base;
1025 dev_req->is_encrypt = is_encrypt;
1026 dev_req->engine = engine;
1027 dev_req->complete = spacc_ablk_complete;
1028 dev_req->result = -EINPROGRESS;
1029
1030 if (unlikely(spacc_ablk_need_fallback(dev_req)))
1031 return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
1032
1033 /*
1034 * Create the DDT's for the engine. If we share the same source and
1035 * destination then we can optimize by reusing the DDT's.
1036 */
1037 if (req->src != req->dst) {
1038 dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
1039 req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
1040 if (!dev_req->src_ddt)
1041 goto out;
1042
1043 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1044 req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
1045 if (!dev_req->dst_ddt)
1046 goto out_free_src;
1047 } else {
1048 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1049 req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
1050 if (!dev_req->dst_ddt)
1051 goto out;
1052
1053 dev_req->src_ddt = NULL;
1054 dev_req->src_addr = dev_req->dst_addr;
1055 }
1056
1057 err = -EINPROGRESS;
1058 spin_lock_irqsave(&engine->hw_lock, flags);
1059 /*
1060 * Check if the engine will accept the operation now. If it won't then
1061 * we either stick it on the end of a pending list if we can backlog,
1062 * or bailout with an error if not.
1063 */
40bfc14f
JI
1064 if (unlikely(spacc_fifo_cmd_full(engine)) ||
1065 engine->in_flight + 1 > engine->fifo_sz) {
ce921368
JI
1066 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1067 err = -EBUSY;
1068 spin_unlock_irqrestore(&engine->hw_lock, flags);
1069 goto out_free_ddts;
1070 }
1071 list_add_tail(&dev_req->list, &engine->pending);
1072 } else {
40bfc14f
JI
1073 list_add_tail(&dev_req->list, &engine->pending);
1074 spacc_push(engine);
ce921368
JI
1075 }
1076 spin_unlock_irqrestore(&engine->hw_lock, flags);
1077
1078 goto out;
1079
1080out_free_ddts:
1081 spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
1082 req->nbytes, req->src == req->dst ?
1083 DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1084out_free_src:
1085 if (req->src != req->dst)
1086 spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1087 req->src, req->nbytes, DMA_TO_DEVICE);
1088out:
1089 return err;
1090}
1091
1092static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1093{
1094 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1095 struct crypto_alg *alg = tfm->__crt_alg;
1096 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1097 struct spacc_engine *engine = spacc_alg->engine;
1098
1099 ctx->generic.flags = spacc_alg->type;
1100 ctx->generic.engine = engine;
1101 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1102 ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
1103 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
1104 if (IS_ERR(ctx->sw_cipher)) {
1105 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1106 alg->cra_name);
1107 ctx->sw_cipher = NULL;
1108 }
1109 }
1110 ctx->generic.key_offs = spacc_alg->key_offs;
1111 ctx->generic.iv_offs = spacc_alg->iv_offs;
1112
1113 tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1114
1115 return 0;
1116}
1117
1118static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1119{
1120 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1121
1122 if (ctx->sw_cipher)
1123 crypto_free_ablkcipher(ctx->sw_cipher);
1124 ctx->sw_cipher = NULL;
1125}
1126
1127static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1128{
1129 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1130 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1131 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1132
1133 return spacc_ablk_setup(req, alg->type, 1);
1134}
1135
1136static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1137{
1138 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1139 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1140 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1141
1142 return spacc_ablk_setup(req, alg->type, 0);
1143}
1144
1145static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1146{
1147 return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1148 SPA_FIFO_STAT_EMPTY;
1149}
1150
1151static void spacc_process_done(struct spacc_engine *engine)
1152{
1153 struct spacc_req *req;
1154 unsigned long flags;
1155
1156 spin_lock_irqsave(&engine->hw_lock, flags);
1157
1158 while (!spacc_fifo_stat_empty(engine)) {
1159 req = list_first_entry(&engine->in_progress, struct spacc_req,
1160 list);
1161 list_move_tail(&req->list, &engine->completed);
40bfc14f 1162 --engine->in_flight;
ce921368
JI
1163
1164 /* POP the status register. */
1165 writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1166 req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1167 SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1168
1169 /*
1170 * Convert the SPAcc error status into the standard POSIX error
1171 * codes.
1172 */
1173 if (unlikely(req->result)) {
1174 switch (req->result) {
1175 case SPA_STATUS_ICV_FAIL:
1176 req->result = -EBADMSG;
1177 break;
1178
1179 case SPA_STATUS_MEMORY_ERROR:
1180 dev_warn(engine->dev,
1181 "memory error triggered\n");
1182 req->result = -EFAULT;
1183 break;
1184
1185 case SPA_STATUS_BLOCK_ERROR:
1186 dev_warn(engine->dev,
1187 "block error triggered\n");
1188 req->result = -EIO;
1189 break;
1190 }
1191 }
1192 }
1193
1194 tasklet_schedule(&engine->complete);
1195
1196 spin_unlock_irqrestore(&engine->hw_lock, flags);
1197}
1198
1199static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1200{
1201 struct spacc_engine *engine = (struct spacc_engine *)dev;
1202 u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1203
1204 writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1205 spacc_process_done(engine);
1206
1207 return IRQ_HANDLED;
1208}
1209
1210static void spacc_packet_timeout(unsigned long data)
1211{
1212 struct spacc_engine *engine = (struct spacc_engine *)data;
1213
1214 spacc_process_done(engine);
1215}
1216
1217static int spacc_req_submit(struct spacc_req *req)
1218{
1219 struct crypto_alg *alg = req->req->tfm->__crt_alg;
1220
1221 if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1222 return spacc_aead_submit(req);
1223 else
1224 return spacc_ablk_submit(req);
1225}
1226
1227static void spacc_spacc_complete(unsigned long data)
1228{
1229 struct spacc_engine *engine = (struct spacc_engine *)data;
1230 struct spacc_req *req, *tmp;
1231 unsigned long flags;
ce921368
JI
1232 LIST_HEAD(completed);
1233
1234 spin_lock_irqsave(&engine->hw_lock, flags);
40bfc14f 1235
ce921368 1236 list_splice_init(&engine->completed, &completed);
40bfc14f
JI
1237 spacc_push(engine);
1238 if (engine->in_flight)
1239 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1240
ce921368
JI
1241 spin_unlock_irqrestore(&engine->hw_lock, flags);
1242
1243 list_for_each_entry_safe(req, tmp, &completed, list) {
ce921368 1244 req->complete(req);
40bfc14f 1245 list_del(&req->list);
ce921368 1246 }
ce921368
JI
1247}
1248
1249#ifdef CONFIG_PM
1250static int spacc_suspend(struct device *dev)
1251{
1252 struct platform_device *pdev = to_platform_device(dev);
1253 struct spacc_engine *engine = platform_get_drvdata(pdev);
1254
1255 /*
1256 * We only support standby mode. All we have to do is gate the clock to
1257 * the spacc. The hardware will preserve state until we turn it back
1258 * on again.
1259 */
1260 clk_disable(engine->clk);
1261
1262 return 0;
1263}
1264
1265static int spacc_resume(struct device *dev)
1266{
1267 struct platform_device *pdev = to_platform_device(dev);
1268 struct spacc_engine *engine = platform_get_drvdata(pdev);
1269
1270 return clk_enable(engine->clk);
1271}
1272
1273static const struct dev_pm_ops spacc_pm_ops = {
1274 .suspend = spacc_suspend,
1275 .resume = spacc_resume,
1276};
1277#endif /* CONFIG_PM */
1278
1279static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1280{
1281 return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
1282}
1283
1284static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1285 struct device_attribute *attr,
1286 char *buf)
1287{
1288 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1289
1290 return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1291}
1292
1293static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1294 struct device_attribute *attr,
1295 const char *buf, size_t len)
1296{
1297 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1298 unsigned long thresh;
1299
1300 if (strict_strtoul(buf, 0, &thresh))
1301 return -EINVAL;
1302
1303 thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1304
1305 engine->stat_irq_thresh = thresh;
1306 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1307 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1308
1309 return len;
1310}
1311static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1312 spacc_stat_irq_thresh_store);
1313
1314static struct spacc_alg ipsec_engine_algs[] = {
1315 {
1316 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1317 .key_offs = 0,
1318 .iv_offs = AES_MAX_KEY_SIZE,
1319 .alg = {
1320 .cra_name = "cbc(aes)",
1321 .cra_driver_name = "cbc-aes-picoxcell",
1322 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1323 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1324 CRYPTO_ALG_ASYNC |
1325 CRYPTO_ALG_NEED_FALLBACK,
1326 .cra_blocksize = AES_BLOCK_SIZE,
1327 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1328 .cra_type = &crypto_ablkcipher_type,
1329 .cra_module = THIS_MODULE,
1330 .cra_ablkcipher = {
1331 .setkey = spacc_aes_setkey,
1332 .encrypt = spacc_ablk_encrypt,
1333 .decrypt = spacc_ablk_decrypt,
1334 .min_keysize = AES_MIN_KEY_SIZE,
1335 .max_keysize = AES_MAX_KEY_SIZE,
1336 .ivsize = AES_BLOCK_SIZE,
1337 },
1338 .cra_init = spacc_ablk_cra_init,
1339 .cra_exit = spacc_ablk_cra_exit,
1340 },
1341 },
1342 {
1343 .key_offs = 0,
1344 .iv_offs = AES_MAX_KEY_SIZE,
1345 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1346 .alg = {
1347 .cra_name = "ecb(aes)",
1348 .cra_driver_name = "ecb-aes-picoxcell",
1349 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1350 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1351 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1352 .cra_blocksize = AES_BLOCK_SIZE,
1353 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1354 .cra_type = &crypto_ablkcipher_type,
1355 .cra_module = THIS_MODULE,
1356 .cra_ablkcipher = {
1357 .setkey = spacc_aes_setkey,
1358 .encrypt = spacc_ablk_encrypt,
1359 .decrypt = spacc_ablk_decrypt,
1360 .min_keysize = AES_MIN_KEY_SIZE,
1361 .max_keysize = AES_MAX_KEY_SIZE,
1362 },
1363 .cra_init = spacc_ablk_cra_init,
1364 .cra_exit = spacc_ablk_cra_exit,
1365 },
1366 },
1367 {
1368 .key_offs = DES_BLOCK_SIZE,
1369 .iv_offs = 0,
1370 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1371 .alg = {
1372 .cra_name = "cbc(des)",
1373 .cra_driver_name = "cbc-des-picoxcell",
1374 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1375 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1376 .cra_blocksize = DES_BLOCK_SIZE,
1377 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1378 .cra_type = &crypto_ablkcipher_type,
1379 .cra_module = THIS_MODULE,
1380 .cra_ablkcipher = {
1381 .setkey = spacc_des_setkey,
1382 .encrypt = spacc_ablk_encrypt,
1383 .decrypt = spacc_ablk_decrypt,
1384 .min_keysize = DES_KEY_SIZE,
1385 .max_keysize = DES_KEY_SIZE,
1386 .ivsize = DES_BLOCK_SIZE,
1387 },
1388 .cra_init = spacc_ablk_cra_init,
1389 .cra_exit = spacc_ablk_cra_exit,
1390 },
1391 },
1392 {
1393 .key_offs = DES_BLOCK_SIZE,
1394 .iv_offs = 0,
1395 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1396 .alg = {
1397 .cra_name = "ecb(des)",
1398 .cra_driver_name = "ecb-des-picoxcell",
1399 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1400 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1401 .cra_blocksize = DES_BLOCK_SIZE,
1402 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1403 .cra_type = &crypto_ablkcipher_type,
1404 .cra_module = THIS_MODULE,
1405 .cra_ablkcipher = {
1406 .setkey = spacc_des_setkey,
1407 .encrypt = spacc_ablk_encrypt,
1408 .decrypt = spacc_ablk_decrypt,
1409 .min_keysize = DES_KEY_SIZE,
1410 .max_keysize = DES_KEY_SIZE,
1411 },
1412 .cra_init = spacc_ablk_cra_init,
1413 .cra_exit = spacc_ablk_cra_exit,
1414 },
1415 },
1416 {
1417 .key_offs = DES_BLOCK_SIZE,
1418 .iv_offs = 0,
1419 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1420 .alg = {
1421 .cra_name = "cbc(des3_ede)",
1422 .cra_driver_name = "cbc-des3-ede-picoxcell",
1423 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1424 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1425 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1426 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1427 .cra_type = &crypto_ablkcipher_type,
1428 .cra_module = THIS_MODULE,
1429 .cra_ablkcipher = {
1430 .setkey = spacc_des_setkey,
1431 .encrypt = spacc_ablk_encrypt,
1432 .decrypt = spacc_ablk_decrypt,
1433 .min_keysize = DES3_EDE_KEY_SIZE,
1434 .max_keysize = DES3_EDE_KEY_SIZE,
1435 .ivsize = DES3_EDE_BLOCK_SIZE,
1436 },
1437 .cra_init = spacc_ablk_cra_init,
1438 .cra_exit = spacc_ablk_cra_exit,
1439 },
1440 },
1441 {
1442 .key_offs = DES_BLOCK_SIZE,
1443 .iv_offs = 0,
1444 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1445 .alg = {
1446 .cra_name = "ecb(des3_ede)",
1447 .cra_driver_name = "ecb-des3-ede-picoxcell",
1448 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1449 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1450 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1451 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1452 .cra_type = &crypto_ablkcipher_type,
1453 .cra_module = THIS_MODULE,
1454 .cra_ablkcipher = {
1455 .setkey = spacc_des_setkey,
1456 .encrypt = spacc_ablk_encrypt,
1457 .decrypt = spacc_ablk_decrypt,
1458 .min_keysize = DES3_EDE_KEY_SIZE,
1459 .max_keysize = DES3_EDE_KEY_SIZE,
1460 },
1461 .cra_init = spacc_ablk_cra_init,
1462 .cra_exit = spacc_ablk_cra_exit,
1463 },
1464 },
1465 {
1466 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1467 SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1468 .key_offs = 0,
1469 .iv_offs = AES_MAX_KEY_SIZE,
1470 .alg = {
1471 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1472 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell",
1473 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1474 .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1475 .cra_blocksize = AES_BLOCK_SIZE,
1476 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1477 .cra_type = &crypto_aead_type,
1478 .cra_module = THIS_MODULE,
1479 .cra_aead = {
1480 .setkey = spacc_aead_setkey,
1481 .setauthsize = spacc_aead_setauthsize,
1482 .encrypt = spacc_aead_encrypt,
1483 .decrypt = spacc_aead_decrypt,
1484 .givencrypt = spacc_aead_givencrypt,
1485 .ivsize = AES_BLOCK_SIZE,
1486 .maxauthsize = SHA1_DIGEST_SIZE,
1487 },
1488 .cra_init = spacc_aead_cra_init,
1489 .cra_exit = spacc_aead_cra_exit,
1490 },
1491 },
1492 {
1493 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1494 SPA_CTRL_HASH_ALG_SHA256 |
1495 SPA_CTRL_HASH_MODE_HMAC,
1496 .key_offs = 0,
1497 .iv_offs = AES_MAX_KEY_SIZE,
1498 .alg = {
1499 .cra_name = "authenc(hmac(sha256),cbc(aes))",
1500 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell",
1501 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1502 .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1503 .cra_blocksize = AES_BLOCK_SIZE,
1504 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1505 .cra_type = &crypto_aead_type,
1506 .cra_module = THIS_MODULE,
1507 .cra_aead = {
1508 .setkey = spacc_aead_setkey,
1509 .setauthsize = spacc_aead_setauthsize,
1510 .encrypt = spacc_aead_encrypt,
1511 .decrypt = spacc_aead_decrypt,
1512 .givencrypt = spacc_aead_givencrypt,
1513 .ivsize = AES_BLOCK_SIZE,
1514 .maxauthsize = SHA256_DIGEST_SIZE,
1515 },
1516 .cra_init = spacc_aead_cra_init,
1517 .cra_exit = spacc_aead_cra_exit,
1518 },
1519 },
1520 {
1521 .key_offs = 0,
1522 .iv_offs = AES_MAX_KEY_SIZE,
1523 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1524 SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1525 .alg = {
1526 .cra_name = "authenc(hmac(md5),cbc(aes))",
1527 .cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell",
1528 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1529 .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1530 .cra_blocksize = AES_BLOCK_SIZE,
1531 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1532 .cra_type = &crypto_aead_type,
1533 .cra_module = THIS_MODULE,
1534 .cra_aead = {
1535 .setkey = spacc_aead_setkey,
1536 .setauthsize = spacc_aead_setauthsize,
1537 .encrypt = spacc_aead_encrypt,
1538 .decrypt = spacc_aead_decrypt,
1539 .givencrypt = spacc_aead_givencrypt,
1540 .ivsize = AES_BLOCK_SIZE,
1541 .maxauthsize = MD5_DIGEST_SIZE,
1542 },
1543 .cra_init = spacc_aead_cra_init,
1544 .cra_exit = spacc_aead_cra_exit,
1545 },
1546 },
1547 {
1548 .key_offs = DES_BLOCK_SIZE,
1549 .iv_offs = 0,
1550 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1551 SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1552 .alg = {
1553 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1554 .cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell",
1555 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1556 .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1557 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1558 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1559 .cra_type = &crypto_aead_type,
1560 .cra_module = THIS_MODULE,
1561 .cra_aead = {
1562 .setkey = spacc_aead_setkey,
1563 .setauthsize = spacc_aead_setauthsize,
1564 .encrypt = spacc_aead_encrypt,
1565 .decrypt = spacc_aead_decrypt,
1566 .givencrypt = spacc_aead_givencrypt,
1567 .ivsize = DES3_EDE_BLOCK_SIZE,
1568 .maxauthsize = SHA1_DIGEST_SIZE,
1569 },
1570 .cra_init = spacc_aead_cra_init,
1571 .cra_exit = spacc_aead_cra_exit,
1572 },
1573 },
1574 {
1575 .key_offs = DES_BLOCK_SIZE,
1576 .iv_offs = 0,
1577 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1578 SPA_CTRL_HASH_ALG_SHA256 |
1579 SPA_CTRL_HASH_MODE_HMAC,
1580 .alg = {
1581 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
1582 .cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell",
1583 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1584 .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1585 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1586 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1587 .cra_type = &crypto_aead_type,
1588 .cra_module = THIS_MODULE,
1589 .cra_aead = {
1590 .setkey = spacc_aead_setkey,
1591 .setauthsize = spacc_aead_setauthsize,
1592 .encrypt = spacc_aead_encrypt,
1593 .decrypt = spacc_aead_decrypt,
1594 .givencrypt = spacc_aead_givencrypt,
1595 .ivsize = DES3_EDE_BLOCK_SIZE,
1596 .maxauthsize = SHA256_DIGEST_SIZE,
1597 },
1598 .cra_init = spacc_aead_cra_init,
1599 .cra_exit = spacc_aead_cra_exit,
1600 },
1601 },
1602 {
1603 .key_offs = DES_BLOCK_SIZE,
1604 .iv_offs = 0,
1605 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1606 SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1607 .alg = {
1608 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1609 .cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell",
1610 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1611 .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1612 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1613 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1614 .cra_type = &crypto_aead_type,
1615 .cra_module = THIS_MODULE,
1616 .cra_aead = {
1617 .setkey = spacc_aead_setkey,
1618 .setauthsize = spacc_aead_setauthsize,
1619 .encrypt = spacc_aead_encrypt,
1620 .decrypt = spacc_aead_decrypt,
1621 .givencrypt = spacc_aead_givencrypt,
1622 .ivsize = DES3_EDE_BLOCK_SIZE,
1623 .maxauthsize = MD5_DIGEST_SIZE,
1624 },
1625 .cra_init = spacc_aead_cra_init,
1626 .cra_exit = spacc_aead_cra_exit,
1627 },
1628 },
1629};
1630
1631static struct spacc_alg l2_engine_algs[] = {
1632 {
1633 .key_offs = 0,
1634 .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1635 .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1636 SPA_CTRL_CIPH_MODE_F8,
1637 .alg = {
1638 .cra_name = "f8(kasumi)",
1639 .cra_driver_name = "f8-kasumi-picoxcell",
1640 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1641 .cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER | CRYPTO_ALG_ASYNC,
1642 .cra_blocksize = 8,
1643 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1644 .cra_type = &crypto_ablkcipher_type,
1645 .cra_module = THIS_MODULE,
1646 .cra_ablkcipher = {
1647 .setkey = spacc_kasumi_f8_setkey,
1648 .encrypt = spacc_ablk_encrypt,
1649 .decrypt = spacc_ablk_decrypt,
1650 .min_keysize = 16,
1651 .max_keysize = 16,
1652 .ivsize = 8,
1653 },
1654 .cra_init = spacc_ablk_cra_init,
1655 .cra_exit = spacc_ablk_cra_exit,
1656 },
1657 },
1658};
1659
1660static int __devinit spacc_probe(struct platform_device *pdev,
1661 unsigned max_ctxs, size_t cipher_pg_sz,
1662 size_t hash_pg_sz, size_t fifo_sz,
1663 struct spacc_alg *algs, size_t num_algs)
1664{
1665 int i, err, ret = -EINVAL;
1666 struct resource *mem, *irq;
1667 struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1668 GFP_KERNEL);
1669 if (!engine)
1670 return -ENOMEM;
1671
1672 engine->max_ctxs = max_ctxs;
1673 engine->cipher_pg_sz = cipher_pg_sz;
1674 engine->hash_pg_sz = hash_pg_sz;
1675 engine->fifo_sz = fifo_sz;
1676 engine->algs = algs;
1677 engine->num_algs = num_algs;
1678 engine->name = dev_name(&pdev->dev);
1679
1680 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1681 irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1682 if (!mem || !irq) {
1683 dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1684 return -ENXIO;
1685 }
1686
1687 if (!devm_request_mem_region(&pdev->dev, mem->start, resource_size(mem),
1688 engine->name))
1689 return -ENOMEM;
1690
1691 engine->regs = devm_ioremap(&pdev->dev, mem->start, resource_size(mem));
1692 if (!engine->regs) {
1693 dev_err(&pdev->dev, "memory map failed\n");
1694 return -ENOMEM;
1695 }
1696
1697 if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1698 engine->name, engine)) {
1699 dev_err(engine->dev, "failed to request IRQ\n");
1700 return -EBUSY;
1701 }
1702
1703 engine->dev = &pdev->dev;
1704 engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1705 engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1706
1707 engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1708 MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1709 if (!engine->req_pool)
1710 return -ENOMEM;
1711
1712 spin_lock_init(&engine->hw_lock);
1713
1714 engine->clk = clk_get(&pdev->dev, NULL);
1715 if (IS_ERR(engine->clk)) {
1716 dev_info(&pdev->dev, "clk unavailable\n");
1717 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1718 return PTR_ERR(engine->clk);
1719 }
1720
1721 if (clk_enable(engine->clk)) {
1722 dev_info(&pdev->dev, "unable to enable clk\n");
1723 clk_put(engine->clk);
1724 return -EIO;
1725 }
1726
1727 err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1728 if (err) {
1729 clk_disable(engine->clk);
1730 clk_put(engine->clk);
1731 return err;
1732 }
1733
1734
1735 /*
1736 * Use an IRQ threshold of 50% as a default. This seems to be a
1737 * reasonable trade off of latency against throughput but can be
1738 * changed at runtime.
1739 */
1740 engine->stat_irq_thresh = (engine->fifo_sz / 2);
1741
1742 /*
1743 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1744 * only submit a new packet for processing when we complete another in
1745 * the queue. This minimizes time spent in the interrupt handler.
1746 */
1747 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1748 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1749 writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1750 engine->regs + SPA_IRQ_EN_REG_OFFSET);
1751
1752 setup_timer(&engine->packet_timeout, spacc_packet_timeout,
1753 (unsigned long)engine);
1754
1755 INIT_LIST_HEAD(&engine->pending);
1756 INIT_LIST_HEAD(&engine->completed);
1757 INIT_LIST_HEAD(&engine->in_progress);
1758 engine->in_flight = 0;
1759 tasklet_init(&engine->complete, spacc_spacc_complete,
1760 (unsigned long)engine);
1761
1762 platform_set_drvdata(pdev, engine);
1763
1764 INIT_LIST_HEAD(&engine->registered_algs);
1765 for (i = 0; i < engine->num_algs; ++i) {
1766 engine->algs[i].engine = engine;
1767 err = crypto_register_alg(&engine->algs[i].alg);
1768 if (!err) {
1769 list_add_tail(&engine->algs[i].entry,
1770 &engine->registered_algs);
1771 ret = 0;
1772 }
1773 if (err)
1774 dev_err(engine->dev, "failed to register alg \"%s\"\n",
1775 engine->algs[i].alg.cra_name);
1776 else
1777 dev_dbg(engine->dev, "registered alg \"%s\"\n",
1778 engine->algs[i].alg.cra_name);
1779 }
1780
1781 return ret;
1782}
1783
1784static int __devexit spacc_remove(struct platform_device *pdev)
1785{
1786 struct spacc_alg *alg, *next;
1787 struct spacc_engine *engine = platform_get_drvdata(pdev);
1788
1789 del_timer_sync(&engine->packet_timeout);
1790 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1791
1792 list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1793 list_del(&alg->entry);
1794 crypto_unregister_alg(&alg->alg);
1795 }
1796
1797 clk_disable(engine->clk);
1798 clk_put(engine->clk);
1799
1800 return 0;
1801}
1802
1803static int __devinit ipsec_probe(struct platform_device *pdev)
1804{
1805 return spacc_probe(pdev, SPACC_CRYPTO_IPSEC_MAX_CTXS,
1806 SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ,
1807 SPACC_CRYPTO_IPSEC_HASH_PG_SZ,
1808 SPACC_CRYPTO_IPSEC_FIFO_SZ, ipsec_engine_algs,
1809 ARRAY_SIZE(ipsec_engine_algs));
1810}
1811
1812static struct platform_driver ipsec_driver = {
1813 .probe = ipsec_probe,
1814 .remove = __devexit_p(spacc_remove),
1815 .driver = {
1816 .name = "picoxcell-ipsec",
1817#ifdef CONFIG_PM
1818 .pm = &spacc_pm_ops,
1819#endif /* CONFIG_PM */
1820 },
1821};
1822
1823static int __devinit l2_probe(struct platform_device *pdev)
1824{
1825 return spacc_probe(pdev, SPACC_CRYPTO_L2_MAX_CTXS,
1826 SPACC_CRYPTO_L2_CIPHER_PG_SZ,
1827 SPACC_CRYPTO_L2_HASH_PG_SZ, SPACC_CRYPTO_L2_FIFO_SZ,
1828 l2_engine_algs, ARRAY_SIZE(l2_engine_algs));
1829}
1830
1831static struct platform_driver l2_driver = {
1832 .probe = l2_probe,
1833 .remove = __devexit_p(spacc_remove),
1834 .driver = {
1835 .name = "picoxcell-l2",
1836#ifdef CONFIG_PM
1837 .pm = &spacc_pm_ops,
1838#endif /* CONFIG_PM */
1839 },
1840};
1841
1842static int __init spacc_init(void)
1843{
1844 int ret = platform_driver_register(&ipsec_driver);
1845 if (ret) {
1846 pr_err("failed to register ipsec spacc driver");
1847 goto out;
1848 }
1849
1850 ret = platform_driver_register(&l2_driver);
1851 if (ret) {
1852 pr_err("failed to register l2 spacc driver");
1853 goto l2_failed;
1854 }
1855
1856 return 0;
1857
1858l2_failed:
1859 platform_driver_unregister(&ipsec_driver);
1860out:
1861 return ret;
1862}
1863module_init(spacc_init);
1864
1865static void __exit spacc_exit(void)
1866{
1867 platform_driver_unregister(&ipsec_driver);
1868 platform_driver_unregister(&l2_driver);
1869}
1870module_exit(spacc_exit);
1871
1872MODULE_LICENSE("GPL");
1873MODULE_AUTHOR("Jamie Iles");