Merge branch 'timer/cleanup' into late/mvebu2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / cpuidle / governors / menu.c
CommitLineData
4f86d3a8
LB
1/*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
69d25870
AV
5 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
4f86d3a8 8 *
69d25870
AV
9 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
4f86d3a8
LB
11 */
12
13#include <linux/kernel.h>
14#include <linux/cpuidle.h>
e8db0be1 15#include <linux/pm_qos.h>
4f86d3a8
LB
16#include <linux/time.h>
17#include <linux/ktime.h>
18#include <linux/hrtimer.h>
19#include <linux/tick.h>
69d25870 20#include <linux/sched.h>
5787536e 21#include <linux/math64.h>
884b17e1 22#include <linux/module.h>
4f86d3a8 23
69d25870 24#define BUCKETS 12
1f85f87d 25#define INTERVALS 8
69d25870 26#define RESOLUTION 1024
1f85f87d 27#define DECAY 8
69d25870 28#define MAX_INTERESTING 50000
1f85f87d
AV
29#define STDDEV_THRESH 400
30
69a37bea
YS
31/* 60 * 60 > STDDEV_THRESH * INTERVALS = 400 * 8 */
32#define MAX_DEVIATION 60
33
34static DEFINE_PER_CPU(struct hrtimer, menu_hrtimer);
35static DEFINE_PER_CPU(int, hrtimer_status);
36/* menu hrtimer mode */
e11538d1 37enum {MENU_HRTIMER_STOP, MENU_HRTIMER_REPEAT, MENU_HRTIMER_GENERAL};
69d25870
AV
38
39/*
40 * Concepts and ideas behind the menu governor
41 *
42 * For the menu governor, there are 3 decision factors for picking a C
43 * state:
44 * 1) Energy break even point
45 * 2) Performance impact
46 * 3) Latency tolerance (from pmqos infrastructure)
47 * These these three factors are treated independently.
48 *
49 * Energy break even point
50 * -----------------------
51 * C state entry and exit have an energy cost, and a certain amount of time in
52 * the C state is required to actually break even on this cost. CPUIDLE
53 * provides us this duration in the "target_residency" field. So all that we
54 * need is a good prediction of how long we'll be idle. Like the traditional
55 * menu governor, we start with the actual known "next timer event" time.
56 *
57 * Since there are other source of wakeups (interrupts for example) than
58 * the next timer event, this estimation is rather optimistic. To get a
59 * more realistic estimate, a correction factor is applied to the estimate,
60 * that is based on historic behavior. For example, if in the past the actual
61 * duration always was 50% of the next timer tick, the correction factor will
62 * be 0.5.
63 *
64 * menu uses a running average for this correction factor, however it uses a
65 * set of factors, not just a single factor. This stems from the realization
66 * that the ratio is dependent on the order of magnitude of the expected
67 * duration; if we expect 500 milliseconds of idle time the likelihood of
68 * getting an interrupt very early is much higher than if we expect 50 micro
69 * seconds of idle time. A second independent factor that has big impact on
70 * the actual factor is if there is (disk) IO outstanding or not.
71 * (as a special twist, we consider every sleep longer than 50 milliseconds
72 * as perfect; there are no power gains for sleeping longer than this)
73 *
74 * For these two reasons we keep an array of 12 independent factors, that gets
75 * indexed based on the magnitude of the expected duration as well as the
76 * "is IO outstanding" property.
77 *
1f85f87d
AV
78 * Repeatable-interval-detector
79 * ----------------------------
80 * There are some cases where "next timer" is a completely unusable predictor:
81 * Those cases where the interval is fixed, for example due to hardware
82 * interrupt mitigation, but also due to fixed transfer rate devices such as
83 * mice.
84 * For this, we use a different predictor: We track the duration of the last 8
85 * intervals and if the stand deviation of these 8 intervals is below a
86 * threshold value, we use the average of these intervals as prediction.
87 *
69d25870
AV
88 * Limiting Performance Impact
89 * ---------------------------
90 * C states, especially those with large exit latencies, can have a real
20e3341b 91 * noticeable impact on workloads, which is not acceptable for most sysadmins,
69d25870
AV
92 * and in addition, less performance has a power price of its own.
93 *
94 * As a general rule of thumb, menu assumes that the following heuristic
95 * holds:
96 * The busier the system, the less impact of C states is acceptable
97 *
98 * This rule-of-thumb is implemented using a performance-multiplier:
99 * If the exit latency times the performance multiplier is longer than
100 * the predicted duration, the C state is not considered a candidate
101 * for selection due to a too high performance impact. So the higher
102 * this multiplier is, the longer we need to be idle to pick a deep C
103 * state, and thus the less likely a busy CPU will hit such a deep
104 * C state.
105 *
106 * Two factors are used in determing this multiplier:
107 * a value of 10 is added for each point of "per cpu load average" we have.
108 * a value of 5 points is added for each process that is waiting for
109 * IO on this CPU.
110 * (these values are experimentally determined)
111 *
112 * The load average factor gives a longer term (few seconds) input to the
113 * decision, while the iowait value gives a cpu local instantanious input.
114 * The iowait factor may look low, but realize that this is also already
115 * represented in the system load average.
116 *
117 */
4f86d3a8 118
e11538d1
YS
119/*
120 * The C-state residency is so long that is is worthwhile to exit
121 * from the shallow C-state and re-enter into a deeper C-state.
122 */
123static unsigned int perfect_cstate_ms __read_mostly = 30;
124module_param(perfect_cstate_ms, uint, 0000);
125
4f86d3a8
LB
126struct menu_device {
127 int last_state_idx;
672917dc 128 int needs_update;
4f86d3a8
LB
129
130 unsigned int expected_us;
56e6943b 131 u64 predicted_us;
69d25870
AV
132 unsigned int exit_us;
133 unsigned int bucket;
134 u64 correction_factor[BUCKETS];
1f85f87d
AV
135 u32 intervals[INTERVALS];
136 int interval_ptr;
4f86d3a8
LB
137};
138
69d25870
AV
139
140#define LOAD_INT(x) ((x) >> FSHIFT)
141#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
142
143static int get_loadavg(void)
144{
145 unsigned long this = this_cpu_load();
146
147
148 return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
149}
150
151static inline int which_bucket(unsigned int duration)
152{
153 int bucket = 0;
154
155 /*
156 * We keep two groups of stats; one with no
157 * IO pending, one without.
158 * This allows us to calculate
159 * E(duration)|iowait
160 */
8c215bd3 161 if (nr_iowait_cpu(smp_processor_id()))
69d25870
AV
162 bucket = BUCKETS/2;
163
164 if (duration < 10)
165 return bucket;
166 if (duration < 100)
167 return bucket + 1;
168 if (duration < 1000)
169 return bucket + 2;
170 if (duration < 10000)
171 return bucket + 3;
172 if (duration < 100000)
173 return bucket + 4;
174 return bucket + 5;
175}
176
177/*
178 * Return a multiplier for the exit latency that is intended
179 * to take performance requirements into account.
180 * The more performance critical we estimate the system
181 * to be, the higher this multiplier, and thus the higher
182 * the barrier to go to an expensive C state.
183 */
184static inline int performance_multiplier(void)
185{
186 int mult = 1;
187
188 /* for higher loadavg, we are more reluctant */
189
190 mult += 2 * get_loadavg();
191
192 /* for IO wait tasks (per cpu!) we add 5x each */
8c215bd3 193 mult += 10 * nr_iowait_cpu(smp_processor_id());
69d25870
AV
194
195 return mult;
196}
197
4f86d3a8
LB
198static DEFINE_PER_CPU(struct menu_device, menu_devices);
199
46bcfad7 200static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
672917dc 201
5787536e
SH
202/* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
203static u64 div_round64(u64 dividend, u32 divisor)
204{
205 return div_u64(dividend + (divisor / 2), divisor);
206}
207
69a37bea
YS
208/* Cancel the hrtimer if it is not triggered yet */
209void menu_hrtimer_cancel(void)
210{
211 int cpu = smp_processor_id();
212 struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu);
213
214 /* The timer is still not time out*/
215 if (per_cpu(hrtimer_status, cpu)) {
216 hrtimer_cancel(hrtmr);
217 per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP;
218 }
219}
220EXPORT_SYMBOL_GPL(menu_hrtimer_cancel);
221
222/* Call back for hrtimer is triggered */
223static enum hrtimer_restart menu_hrtimer_notify(struct hrtimer *hrtimer)
224{
225 int cpu = smp_processor_id();
e11538d1
YS
226 struct menu_device *data = &per_cpu(menu_devices, cpu);
227
228 /* In general case, the expected residency is much larger than
229 * deepest C-state target residency, but prediction logic still
230 * predicts a small predicted residency, so the prediction
231 * history is totally broken if the timer is triggered.
232 * So reset the correction factor.
233 */
234 if (per_cpu(hrtimer_status, cpu) == MENU_HRTIMER_GENERAL)
235 data->correction_factor[data->bucket] = RESOLUTION * DECAY;
69a37bea
YS
236
237 per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP;
238
239 return HRTIMER_NORESTART;
240}
241
1f85f87d
AV
242/*
243 * Try detecting repeating patterns by keeping track of the last 8
244 * intervals, and checking if the standard deviation of that set
245 * of points is below a threshold. If it is... then use the
246 * average of these 8 points as the estimated value.
247 */
c96ca4fb 248static u32 get_typical_interval(struct menu_device *data)
1f85f87d 249{
c96ca4fb
YS
250 int i = 0, divisor = 0;
251 uint64_t max = 0, avg = 0, stddev = 0;
252 int64_t thresh = LLONG_MAX; /* Discard outliers above this value. */
253 unsigned int ret = 0;
1f85f87d 254
c96ca4fb 255again:
1f85f87d 256
c96ca4fb
YS
257 /* first calculate average and standard deviation of the past */
258 max = avg = divisor = stddev = 0;
259 for (i = 0; i < INTERVALS; i++) {
260 int64_t value = data->intervals[i];
261 if (value <= thresh) {
262 avg += value;
263 divisor++;
264 if (value > max)
265 max = value;
266 }
267 }
268 do_div(avg, divisor);
269
270 for (i = 0; i < INTERVALS; i++) {
271 int64_t value = data->intervals[i];
272 if (value <= thresh) {
273 int64_t diff = value - avg;
274 stddev += diff * diff;
275 }
276 }
277 do_div(stddev, divisor);
278 stddev = int_sqrt(stddev);
1f85f87d 279 /*
c96ca4fb
YS
280 * If we have outliers to the upside in our distribution, discard
281 * those by setting the threshold to exclude these outliers, then
282 * calculate the average and standard deviation again. Once we get
283 * down to the bottom 3/4 of our samples, stop excluding samples.
284 *
285 * This can deal with workloads that have long pauses interspersed
286 * with sporadic activity with a bunch of short pauses.
287 *
288 * The typical interval is obtained when standard deviation is small
289 * or standard deviation is small compared to the average interval.
1f85f87d 290 */
c96ca4fb
YS
291 if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
292 || stddev <= 20) {
1f85f87d 293 data->predicted_us = avg;
69a37bea 294 ret = 1;
c96ca4fb
YS
295 return ret;
296
297 } else if ((divisor * 4) > INTERVALS * 3) {
298 /* Exclude the max interval */
299 thresh = max - 1;
300 goto again;
69a37bea
YS
301 }
302
303 return ret;
1f85f87d
AV
304}
305
4f86d3a8
LB
306/**
307 * menu_select - selects the next idle state to enter
46bcfad7 308 * @drv: cpuidle driver containing state data
4f86d3a8
LB
309 * @dev: the CPU
310 */
46bcfad7 311static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8
LB
312{
313 struct menu_device *data = &__get_cpu_var(menu_devices);
ed77134b 314 int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
4f86d3a8 315 int i;
69d25870 316 int multiplier;
7467571f 317 struct timespec t;
69a37bea
YS
318 int repeat = 0, low_predicted = 0;
319 int cpu = smp_processor_id();
320 struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu);
69d25870 321
672917dc 322 if (data->needs_update) {
46bcfad7 323 menu_update(drv, dev);
672917dc
CZ
324 data->needs_update = 0;
325 }
326
1c6fe036
AV
327 data->last_state_idx = 0;
328 data->exit_us = 0;
329
a2bd9202 330 /* Special case when user has set very strict latency requirement */
69d25870 331 if (unlikely(latency_req == 0))
a2bd9202 332 return 0;
a2bd9202 333
69d25870 334 /* determine the expected residency time, round up */
7467571f 335 t = ktime_to_timespec(tick_nohz_get_sleep_length());
4f86d3a8 336 data->expected_us =
7467571f 337 t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
69d25870
AV
338
339
340 data->bucket = which_bucket(data->expected_us);
341
342 multiplier = performance_multiplier();
343
344 /*
345 * if the correction factor is 0 (eg first time init or cpu hotplug
346 * etc), we actually want to start out with a unity factor.
347 */
348 if (data->correction_factor[data->bucket] == 0)
349 data->correction_factor[data->bucket] = RESOLUTION * DECAY;
350
351 /* Make sure to round up for half microseconds */
5787536e
SH
352 data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket],
353 RESOLUTION * DECAY);
69d25870 354
c96ca4fb 355 repeat = get_typical_interval(data);
1f85f87d 356
69d25870
AV
357 /*
358 * We want to default to C1 (hlt), not to busy polling
359 * unless the timer is happening really really soon.
360 */
3a53396b 361 if (data->expected_us > 5 &&
cbc9ef02 362 !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
dc7fd275 363 dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
69d25870 364 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
4f86d3a8 365
71abbbf8
AL
366 /*
367 * Find the idle state with the lowest power while satisfying
368 * our constraints.
369 */
46bcfad7
DD
370 for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
371 struct cpuidle_state *s = &drv->states[i];
dc7fd275 372 struct cpuidle_state_usage *su = &dev->states_usage[i];
4f86d3a8 373
cbc9ef02 374 if (s->disabled || su->disable)
3a53396b 375 continue;
69a37bea
YS
376 if (s->target_residency > data->predicted_us) {
377 low_predicted = 1;
71abbbf8 378 continue;
69a37bea 379 }
a2bd9202 380 if (s->exit_latency > latency_req)
71abbbf8 381 continue;
69d25870 382 if (s->exit_latency * multiplier > data->predicted_us)
71abbbf8
AL
383 continue;
384
8aef33a7
DL
385 data->last_state_idx = i;
386 data->exit_us = s->exit_latency;
4f86d3a8
LB
387 }
388
69a37bea
YS
389 /* not deepest C-state chosen for low predicted residency */
390 if (low_predicted) {
391 unsigned int timer_us = 0;
e11538d1 392 unsigned int perfect_us = 0;
69a37bea
YS
393
394 /*
395 * Set a timer to detect whether this sleep is much
396 * longer than repeat mode predicted. If the timer
397 * triggers, the code will evaluate whether to put
398 * the CPU into a deeper C-state.
399 * The timer is cancelled on CPU wakeup.
400 */
401 timer_us = 2 * (data->predicted_us + MAX_DEVIATION);
402
e11538d1
YS
403 perfect_us = perfect_cstate_ms * 1000;
404
69a37bea 405 if (repeat && (4 * timer_us < data->expected_us)) {
a093b93e
LZ
406 RCU_NONIDLE(hrtimer_start(hrtmr,
407 ns_to_ktime(1000 * timer_us),
408 HRTIMER_MODE_REL_PINNED));
69a37bea
YS
409 /* In repeat case, menu hrtimer is started */
410 per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_REPEAT;
e11538d1
YS
411 } else if (perfect_us < data->expected_us) {
412 /*
413 * The next timer is long. This could be because
414 * we did not make a useful prediction.
415 * In that case, it makes sense to re-enter
416 * into a deeper C-state after some time.
417 */
a093b93e
LZ
418 RCU_NONIDLE(hrtimer_start(hrtmr,
419 ns_to_ktime(1000 * timer_us),
420 HRTIMER_MODE_REL_PINNED));
e11538d1
YS
421 /* In general case, menu hrtimer is started */
422 per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_GENERAL;
69a37bea 423 }
e11538d1 424
69a37bea
YS
425 }
426
69d25870 427 return data->last_state_idx;
4f86d3a8
LB
428}
429
430/**
672917dc 431 * menu_reflect - records that data structures need update
4f86d3a8 432 * @dev: the CPU
e978aa7d 433 * @index: the index of actual entered state
4f86d3a8
LB
434 *
435 * NOTE: it's important to be fast here because this operation will add to
436 * the overall exit latency.
437 */
e978aa7d 438static void menu_reflect(struct cpuidle_device *dev, int index)
672917dc
CZ
439{
440 struct menu_device *data = &__get_cpu_var(menu_devices);
e978aa7d
DD
441 data->last_state_idx = index;
442 if (index >= 0)
443 data->needs_update = 1;
672917dc
CZ
444}
445
446/**
447 * menu_update - attempts to guess what happened after entry
46bcfad7 448 * @drv: cpuidle driver containing state data
672917dc
CZ
449 * @dev: the CPU
450 */
46bcfad7 451static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8
LB
452{
453 struct menu_device *data = &__get_cpu_var(menu_devices);
454 int last_idx = data->last_state_idx;
320eee77 455 unsigned int last_idle_us = cpuidle_get_last_residency(dev);
46bcfad7 456 struct cpuidle_state *target = &drv->states[last_idx];
320eee77 457 unsigned int measured_us;
69d25870 458 u64 new_factor;
4f86d3a8
LB
459
460 /*
461 * Ugh, this idle state doesn't support residency measurements, so we
462 * are basically lost in the dark. As a compromise, assume we slept
69d25870 463 * for the whole expected time.
4f86d3a8 464 */
320eee77 465 if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
69d25870
AV
466 last_idle_us = data->expected_us;
467
468
469 measured_us = last_idle_us;
4f86d3a8 470
320eee77 471 /*
69d25870
AV
472 * We correct for the exit latency; we are assuming here that the
473 * exit latency happens after the event that we're interested in.
320eee77 474 */
69d25870
AV
475 if (measured_us > data->exit_us)
476 measured_us -= data->exit_us;
477
478
479 /* update our correction ratio */
480
481 new_factor = data->correction_factor[data->bucket]
482 * (DECAY - 1) / DECAY;
483
1c6fe036 484 if (data->expected_us > 0 && measured_us < MAX_INTERESTING)
69d25870 485 new_factor += RESOLUTION * measured_us / data->expected_us;
320eee77 486 else
69d25870
AV
487 /*
488 * we were idle so long that we count it as a perfect
489 * prediction
490 */
491 new_factor += RESOLUTION;
320eee77 492
69d25870
AV
493 /*
494 * We don't want 0 as factor; we always want at least
495 * a tiny bit of estimated time.
496 */
497 if (new_factor == 0)
498 new_factor = 1;
320eee77 499
69d25870 500 data->correction_factor[data->bucket] = new_factor;
1f85f87d
AV
501
502 /* update the repeating-pattern data */
503 data->intervals[data->interval_ptr++] = last_idle_us;
504 if (data->interval_ptr >= INTERVALS)
505 data->interval_ptr = 0;
4f86d3a8
LB
506}
507
508/**
509 * menu_enable_device - scans a CPU's states and does setup
46bcfad7 510 * @drv: cpuidle driver
4f86d3a8
LB
511 * @dev: the CPU
512 */
46bcfad7
DD
513static int menu_enable_device(struct cpuidle_driver *drv,
514 struct cpuidle_device *dev)
4f86d3a8
LB
515{
516 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
69a37bea
YS
517 struct hrtimer *t = &per_cpu(menu_hrtimer, dev->cpu);
518 hrtimer_init(t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
519 t->function = menu_hrtimer_notify;
4f86d3a8
LB
520
521 memset(data, 0, sizeof(struct menu_device));
522
523 return 0;
524}
525
526static struct cpuidle_governor menu_governor = {
527 .name = "menu",
528 .rating = 20,
529 .enable = menu_enable_device,
530 .select = menu_select,
531 .reflect = menu_reflect,
532 .owner = THIS_MODULE,
533};
534
535/**
536 * init_menu - initializes the governor
537 */
538static int __init init_menu(void)
539{
540 return cpuidle_register_governor(&menu_governor);
541}
542
543/**
544 * exit_menu - exits the governor
545 */
546static void __exit exit_menu(void)
547{
548 cpuidle_unregister_governor(&menu_governor);
549}
550
551MODULE_LICENSE("GPL");
552module_init(init_menu);
553module_exit(exit_menu);