Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / cpufreq / cpufreq_conservative.c
CommitLineData
b9170836
DJ
1/*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
11a80a9c 7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
b9170836
DJ
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
b9170836 16#include <linux/init.h>
b9170836 17#include <linux/cpufreq.h>
138a0128 18#include <linux/cpu.h>
b9170836
DJ
19#include <linux/jiffies.h>
20#include <linux/kernel_stat.h>
3fc54d37 21#include <linux/mutex.h>
8e677ce8
AC
22#include <linux/hrtimer.h>
23#include <linux/tick.h>
24#include <linux/ktime.h>
25#include <linux/sched.h>
26
b9170836
DJ
27/*
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
30 */
31
32#define DEF_FREQUENCY_UP_THRESHOLD (80)
b9170836 33#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
b9170836 34
18a7247d
DJ
35/*
36 * The polling frequency of this governor depends on the capability of
b9170836 37 * the processor. Default polling frequency is 1000 times the transition
18a7247d
DJ
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
b9170836 40 * rate.
8e677ce8
AC
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
b9170836
DJ
43 * All times here are in uS.
44 */
18a7247d 45static unsigned int def_sampling_rate;
2c906b31
AC
46#define MIN_SAMPLING_RATE_RATIO (2)
47/* for correct statistics, we need at least 10 ticks between each measure */
8e677ce8 48#define MIN_STAT_SAMPLING_RATE \
e08f5f5b
GS
49 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
50#define MIN_SAMPLING_RATE \
51 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
112124ab
TR
52/* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
53 * Define the minimal settable sampling rate to the greater of:
54 * - "HW transition latency" * 100 (same as default sampling / 10)
55 * - MIN_STAT_SAMPLING_RATE
56 * To avoid that userspace shoots itself.
57*/
58static unsigned int minimum_sampling_rate(void)
59{
60 return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
61}
62
63/* This will also vanish soon with removing sampling_rate_max */
b9170836 64#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
112124ab 65#define LATENCY_MULTIPLIER (1000)
2c906b31
AC
66#define DEF_SAMPLING_DOWN_FACTOR (1)
67#define MAX_SAMPLING_DOWN_FACTOR (10)
1c256245 68#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
b9170836 69
c4028958 70static void do_dbs_timer(struct work_struct *work);
b9170836
DJ
71
72struct cpu_dbs_info_s {
8e677ce8
AC
73 cputime64_t prev_cpu_idle;
74 cputime64_t prev_cpu_wall;
75 cputime64_t prev_cpu_nice;
18a7247d 76 struct cpufreq_policy *cur_policy;
8e677ce8 77 struct delayed_work work;
18a7247d
DJ
78 unsigned int down_skip;
79 unsigned int requested_freq;
8e677ce8
AC
80 int cpu;
81 unsigned int enable:1;
b9170836
DJ
82};
83static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
84
85static unsigned int dbs_enable; /* number of CPUs using this policy */
86
4ec223d0
VP
87/*
88 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
89 * lock and dbs_mutex. cpu_hotplug lock should always be held before
90 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
91 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
92 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
93 * is recursive for the same process. -Venki
94 */
9acef487 95static DEFINE_MUTEX(dbs_mutex);
b9170836 96
8e677ce8
AC
97static struct workqueue_struct *kconservative_wq;
98
99static struct dbs_tuners {
18a7247d
DJ
100 unsigned int sampling_rate;
101 unsigned int sampling_down_factor;
102 unsigned int up_threshold;
103 unsigned int down_threshold;
104 unsigned int ignore_nice;
105 unsigned int freq_step;
8e677ce8 106} dbs_tuners_ins = {
18a7247d
DJ
107 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
108 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
109 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
110 .ignore_nice = 0,
111 .freq_step = 5,
b9170836
DJ
112};
113
8e677ce8
AC
114static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
115 cputime64_t *wall)
dac1c1a5 116{
8e677ce8
AC
117 cputime64_t idle_time;
118 cputime64_t cur_wall_time;
119 cputime64_t busy_time;
120
121 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
122 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
123 kstat_cpu(cpu).cpustat.system);
e08f5f5b 124
8e677ce8
AC
125 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
126 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
127 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
128 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
e08f5f5b 129
8e677ce8
AC
130 idle_time = cputime64_sub(cur_wall_time, busy_time);
131 if (wall)
132 *wall = cur_wall_time;
e08f5f5b 133
8e677ce8
AC
134 return idle_time;
135}
136
137static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
138{
139 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
140
141 if (idle_time == -1ULL)
142 return get_cpu_idle_time_jiffy(cpu, wall);
143
144 return idle_time;
dac1c1a5
DJ
145}
146
a8d7c3bc
EO
147/* keep track of frequency transitions */
148static int
149dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
150 void *data)
151{
152 struct cpufreq_freqs *freq = data;
153 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
154 freq->cpu);
155
f407a08b
AC
156 struct cpufreq_policy *policy;
157
a8d7c3bc
EO
158 if (!this_dbs_info->enable)
159 return 0;
160
f407a08b
AC
161 policy = this_dbs_info->cur_policy;
162
163 /*
164 * we only care if our internally tracked freq moves outside
165 * the 'valid' ranges of freqency available to us otherwise
166 * we do not change it
167 */
168 if (this_dbs_info->requested_freq > policy->max
169 || this_dbs_info->requested_freq < policy->min)
170 this_dbs_info->requested_freq = freq->new;
a8d7c3bc
EO
171
172 return 0;
173}
174
175static struct notifier_block dbs_cpufreq_notifier_block = {
176 .notifier_call = dbs_cpufreq_notifier
177};
178
b9170836
DJ
179/************************** sysfs interface ************************/
180static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
181{
9411b4ef
TR
182 static int print_once;
183
184 if (!print_once) {
185 printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
186 "sysfs file is deprecated - used by: %s\n",
187 current->comm);
188 print_once = 1;
189 }
9acef487 190 return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
b9170836
DJ
191}
192
193static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
194{
9411b4ef
TR
195 static int print_once;
196
197 if (!print_once) {
198 printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
199 "sysfs file is deprecated - used by: %s\n", current->comm);
200 print_once = 1;
201 }
9acef487 202 return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
b9170836
DJ
203}
204
8e677ce8
AC
205#define define_one_ro(_name) \
206static struct freq_attr _name = \
b9170836
DJ
207__ATTR(_name, 0444, show_##_name, NULL)
208
209define_one_ro(sampling_rate_max);
210define_one_ro(sampling_rate_min);
211
212/* cpufreq_conservative Governor Tunables */
213#define show_one(file_name, object) \
214static ssize_t show_##file_name \
215(struct cpufreq_policy *unused, char *buf) \
216{ \
217 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
218}
219show_one(sampling_rate, sampling_rate);
220show_one(sampling_down_factor, sampling_down_factor);
221show_one(up_threshold, up_threshold);
222show_one(down_threshold, down_threshold);
001893cd 223show_one(ignore_nice_load, ignore_nice);
b9170836
DJ
224show_one(freq_step, freq_step);
225
18a7247d 226static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
b9170836
DJ
227 const char *buf, size_t count)
228{
229 unsigned int input;
230 int ret;
9acef487 231 ret = sscanf(buf, "%u", &input);
8e677ce8 232
2c906b31 233 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
b9170836
DJ
234 return -EINVAL;
235
3fc54d37 236 mutex_lock(&dbs_mutex);
b9170836 237 dbs_tuners_ins.sampling_down_factor = input;
3fc54d37 238 mutex_unlock(&dbs_mutex);
b9170836
DJ
239
240 return count;
241}
242
18a7247d 243static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
b9170836
DJ
244 const char *buf, size_t count)
245{
246 unsigned int input;
247 int ret;
9acef487 248 ret = sscanf(buf, "%u", &input);
b9170836 249
8e677ce8 250 if (ret != 1)
b9170836 251 return -EINVAL;
8e677ce8
AC
252
253 mutex_lock(&dbs_mutex);
112124ab 254 dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
3fc54d37 255 mutex_unlock(&dbs_mutex);
b9170836
DJ
256
257 return count;
258}
259
18a7247d 260static ssize_t store_up_threshold(struct cpufreq_policy *unused,
b9170836
DJ
261 const char *buf, size_t count)
262{
263 unsigned int input;
264 int ret;
9acef487 265 ret = sscanf(buf, "%u", &input);
b9170836 266
3fc54d37 267 mutex_lock(&dbs_mutex);
9acef487 268 if (ret != 1 || input > 100 ||
8e677ce8 269 input <= dbs_tuners_ins.down_threshold) {
3fc54d37 270 mutex_unlock(&dbs_mutex);
b9170836
DJ
271 return -EINVAL;
272 }
273
274 dbs_tuners_ins.up_threshold = input;
3fc54d37 275 mutex_unlock(&dbs_mutex);
b9170836
DJ
276
277 return count;
278}
279
18a7247d 280static ssize_t store_down_threshold(struct cpufreq_policy *unused,
b9170836
DJ
281 const char *buf, size_t count)
282{
283 unsigned int input;
284 int ret;
9acef487 285 ret = sscanf(buf, "%u", &input);
b9170836 286
3fc54d37 287 mutex_lock(&dbs_mutex);
8e677ce8
AC
288 /* cannot be lower than 11 otherwise freq will not fall */
289 if (ret != 1 || input < 11 || input > 100 ||
290 input >= dbs_tuners_ins.up_threshold) {
3fc54d37 291 mutex_unlock(&dbs_mutex);
b9170836
DJ
292 return -EINVAL;
293 }
294
295 dbs_tuners_ins.down_threshold = input;
3fc54d37 296 mutex_unlock(&dbs_mutex);
b9170836
DJ
297
298 return count;
299}
300
001893cd 301static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
b9170836
DJ
302 const char *buf, size_t count)
303{
304 unsigned int input;
305 int ret;
306
307 unsigned int j;
18a7247d
DJ
308
309 ret = sscanf(buf, "%u", &input);
310 if (ret != 1)
b9170836
DJ
311 return -EINVAL;
312
18a7247d 313 if (input > 1)
b9170836 314 input = 1;
18a7247d 315
3fc54d37 316 mutex_lock(&dbs_mutex);
18a7247d 317 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
3fc54d37 318 mutex_unlock(&dbs_mutex);
b9170836
DJ
319 return count;
320 }
321 dbs_tuners_ins.ignore_nice = input;
322
8e677ce8 323 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 324 for_each_online_cpu(j) {
8e677ce8
AC
325 struct cpu_dbs_info_s *dbs_info;
326 dbs_info = &per_cpu(cpu_dbs_info, j);
327 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
328 &dbs_info->prev_cpu_wall);
329 if (dbs_tuners_ins.ignore_nice)
330 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
b9170836 331 }
3fc54d37 332 mutex_unlock(&dbs_mutex);
b9170836
DJ
333
334 return count;
335}
336
337static ssize_t store_freq_step(struct cpufreq_policy *policy,
338 const char *buf, size_t count)
339{
340 unsigned int input;
341 int ret;
18a7247d 342 ret = sscanf(buf, "%u", &input);
b9170836 343
18a7247d 344 if (ret != 1)
b9170836
DJ
345 return -EINVAL;
346
18a7247d 347 if (input > 100)
b9170836 348 input = 100;
18a7247d 349
b9170836
DJ
350 /* no need to test here if freq_step is zero as the user might actually
351 * want this, they would be crazy though :) */
3fc54d37 352 mutex_lock(&dbs_mutex);
b9170836 353 dbs_tuners_ins.freq_step = input;
3fc54d37 354 mutex_unlock(&dbs_mutex);
b9170836
DJ
355
356 return count;
357}
358
359#define define_one_rw(_name) \
360static struct freq_attr _name = \
361__ATTR(_name, 0644, show_##_name, store_##_name)
362
363define_one_rw(sampling_rate);
364define_one_rw(sampling_down_factor);
365define_one_rw(up_threshold);
366define_one_rw(down_threshold);
001893cd 367define_one_rw(ignore_nice_load);
b9170836
DJ
368define_one_rw(freq_step);
369
9acef487 370static struct attribute *dbs_attributes[] = {
b9170836
DJ
371 &sampling_rate_max.attr,
372 &sampling_rate_min.attr,
373 &sampling_rate.attr,
374 &sampling_down_factor.attr,
375 &up_threshold.attr,
376 &down_threshold.attr,
001893cd 377 &ignore_nice_load.attr,
b9170836
DJ
378 &freq_step.attr,
379 NULL
380};
381
382static struct attribute_group dbs_attr_group = {
383 .attrs = dbs_attributes,
384 .name = "conservative",
385};
386
387/************************** sysfs end ************************/
388
8e677ce8 389static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
b9170836 390{
8e677ce8 391 unsigned int load = 0;
f068c04b 392 unsigned int freq_target;
b9170836 393
8e677ce8
AC
394 struct cpufreq_policy *policy;
395 unsigned int j;
b9170836 396
08a28e2e
AC
397 policy = this_dbs_info->cur_policy;
398
18a7247d 399 /*
8e677ce8
AC
400 * Every sampling_rate, we check, if current idle time is less
401 * than 20% (default), then we try to increase frequency
402 * Every sampling_rate*sampling_down_factor, we check, if current
403 * idle time is more than 80%, then we try to decrease frequency
b9170836 404 *
18a7247d
DJ
405 * Any frequency increase takes it to the maximum frequency.
406 * Frequency reduction happens at minimum steps of
8e677ce8 407 * 5% (default) of maximum frequency
b9170836
DJ
408 */
409
8e677ce8
AC
410 /* Get Absolute Load */
411 for_each_cpu(j, policy->cpus) {
412 struct cpu_dbs_info_s *j_dbs_info;
413 cputime64_t cur_wall_time, cur_idle_time;
414 unsigned int idle_time, wall_time;
b9170836 415
8e677ce8
AC
416 j_dbs_info = &per_cpu(cpu_dbs_info, j);
417
418 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
419
420 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
421 j_dbs_info->prev_cpu_wall);
422 j_dbs_info->prev_cpu_wall = cur_wall_time;
08a28e2e 423
8e677ce8
AC
424 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
425 j_dbs_info->prev_cpu_idle);
426 j_dbs_info->prev_cpu_idle = cur_idle_time;
b9170836 427
8e677ce8
AC
428 if (dbs_tuners_ins.ignore_nice) {
429 cputime64_t cur_nice;
430 unsigned long cur_nice_jiffies;
431
432 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
433 j_dbs_info->prev_cpu_nice);
434 /*
435 * Assumption: nice time between sampling periods will
436 * be less than 2^32 jiffies for 32 bit sys
437 */
438 cur_nice_jiffies = (unsigned long)
439 cputime64_to_jiffies64(cur_nice);
440
441 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
442 idle_time += jiffies_to_usecs(cur_nice_jiffies);
443 }
444
445 if (unlikely(!wall_time || wall_time < idle_time))
446 continue;
447
448 load = 100 * (wall_time - idle_time) / wall_time;
449 }
450
451 /*
452 * break out if we 'cannot' reduce the speed as the user might
453 * want freq_step to be zero
454 */
455 if (dbs_tuners_ins.freq_step == 0)
456 return;
b9170836 457
8e677ce8
AC
458 /* Check for frequency increase */
459 if (load > dbs_tuners_ins.up_threshold) {
a159b827 460 this_dbs_info->down_skip = 0;
790d76fa 461
b9170836 462 /* if we are already at full speed then break out early */
a159b827 463 if (this_dbs_info->requested_freq == policy->max)
b9170836 464 return;
18a7247d 465
f068c04b 466 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836
DJ
467
468 /* max freq cannot be less than 100. But who knows.... */
f068c04b
DJ
469 if (unlikely(freq_target == 0))
470 freq_target = 5;
18a7247d 471
f068c04b 472 this_dbs_info->requested_freq += freq_target;
a159b827
AC
473 if (this_dbs_info->requested_freq > policy->max)
474 this_dbs_info->requested_freq = policy->max;
b9170836 475
a159b827 476 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
b9170836 477 CPUFREQ_RELATION_H);
b9170836
DJ
478 return;
479 }
480
8e677ce8
AC
481 /*
482 * The optimal frequency is the frequency that is the lowest that
483 * can support the current CPU usage without triggering the up
484 * policy. To be safe, we focus 10 points under the threshold.
485 */
486 if (load < (dbs_tuners_ins.down_threshold - 10)) {
f068c04b 487 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836 488
f068c04b 489 this_dbs_info->requested_freq -= freq_target;
a159b827
AC
490 if (this_dbs_info->requested_freq < policy->min)
491 this_dbs_info->requested_freq = policy->min;
b9170836 492
8e677ce8
AC
493 /*
494 * if we cannot reduce the frequency anymore, break out early
495 */
496 if (policy->cur == policy->min)
497 return;
498
a159b827 499 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
2c906b31 500 CPUFREQ_RELATION_H);
b9170836
DJ
501 return;
502 }
503}
504
c4028958 505static void do_dbs_timer(struct work_struct *work)
18a7247d 506{
8e677ce8
AC
507 struct cpu_dbs_info_s *dbs_info =
508 container_of(work, struct cpu_dbs_info_s, work.work);
509 unsigned int cpu = dbs_info->cpu;
510
511 /* We want all CPUs to do sampling nearly on same jiffy */
512 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
513
514 delay -= jiffies % delay;
515
516 if (lock_policy_rwsem_write(cpu) < 0)
517 return;
518
519 if (!dbs_info->enable) {
520 unlock_policy_rwsem_write(cpu);
521 return;
522 }
523
524 dbs_check_cpu(dbs_info);
525
526 queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
527 unlock_policy_rwsem_write(cpu);
18a7247d 528}
b9170836 529
8e677ce8 530static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
b9170836 531{
8e677ce8
AC
532 /* We want all CPUs to do sampling nearly on same jiffy */
533 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
534 delay -= jiffies % delay;
535
536 dbs_info->enable = 1;
537 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
538 queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
539 delay);
b9170836
DJ
540}
541
8e677ce8 542static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
b9170836 543{
8e677ce8
AC
544 dbs_info->enable = 0;
545 cancel_delayed_work(&dbs_info->work);
b9170836
DJ
546}
547
548static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
549 unsigned int event)
550{
551 unsigned int cpu = policy->cpu;
552 struct cpu_dbs_info_s *this_dbs_info;
553 unsigned int j;
914f7c31 554 int rc;
b9170836
DJ
555
556 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
557
558 switch (event) {
559 case CPUFREQ_GOV_START:
18a7247d 560 if ((!cpu_online(cpu)) || (!policy->cur))
b9170836
DJ
561 return -EINVAL;
562
b9170836
DJ
563 if (this_dbs_info->enable) /* Already enabled */
564 break;
18a7247d 565
3fc54d37 566 mutex_lock(&dbs_mutex);
914f7c31
JG
567
568 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
569 if (rc) {
570 mutex_unlock(&dbs_mutex);
571 return rc;
572 }
573
835481d9 574 for_each_cpu(j, policy->cpus) {
b9170836
DJ
575 struct cpu_dbs_info_s *j_dbs_info;
576 j_dbs_info = &per_cpu(cpu_dbs_info, j);
577 j_dbs_info->cur_policy = policy;
18a7247d 578
8e677ce8
AC
579 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
580 &j_dbs_info->prev_cpu_wall);
581 if (dbs_tuners_ins.ignore_nice) {
582 j_dbs_info->prev_cpu_nice =
583 kstat_cpu(j).cpustat.nice;
584 }
b9170836 585 }
a159b827
AC
586 this_dbs_info->down_skip = 0;
587 this_dbs_info->requested_freq = policy->cur;
914f7c31 588
b9170836
DJ
589 dbs_enable++;
590 /*
591 * Start the timerschedule work, when this governor
592 * is used for first time
593 */
594 if (dbs_enable == 1) {
595 unsigned int latency;
596 /* policy latency is in nS. Convert it to uS first */
2c906b31
AC
597 latency = policy->cpuinfo.transition_latency / 1000;
598 if (latency == 0)
599 latency = 1;
b9170836 600
112124ab 601 def_sampling_rate =
a75603a0 602 max(latency * LATENCY_MULTIPLIER,
112124ab 603 MIN_STAT_SAMPLING_RATE);
2c906b31 604
b9170836 605 dbs_tuners_ins.sampling_rate = def_sampling_rate;
b9170836 606
a8d7c3bc
EO
607 cpufreq_register_notifier(
608 &dbs_cpufreq_notifier_block,
609 CPUFREQ_TRANSITION_NOTIFIER);
b9170836 610 }
8e677ce8 611 dbs_timer_init(this_dbs_info);
18a7247d 612
3fc54d37 613 mutex_unlock(&dbs_mutex);
8e677ce8 614
b9170836
DJ
615 break;
616
617 case CPUFREQ_GOV_STOP:
3fc54d37 618 mutex_lock(&dbs_mutex);
8e677ce8 619 dbs_timer_exit(this_dbs_info);
b9170836
DJ
620 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
621 dbs_enable--;
8e677ce8 622
b9170836
DJ
623 /*
624 * Stop the timerschedule work, when this governor
625 * is used for first time
626 */
8e677ce8 627 if (dbs_enable == 0)
a8d7c3bc
EO
628 cpufreq_unregister_notifier(
629 &dbs_cpufreq_notifier_block,
630 CPUFREQ_TRANSITION_NOTIFIER);
a8d7c3bc 631
3fc54d37 632 mutex_unlock(&dbs_mutex);
b9170836
DJ
633
634 break;
635
636 case CPUFREQ_GOV_LIMITS:
3fc54d37 637 mutex_lock(&dbs_mutex);
b9170836
DJ
638 if (policy->max < this_dbs_info->cur_policy->cur)
639 __cpufreq_driver_target(
640 this_dbs_info->cur_policy,
18a7247d 641 policy->max, CPUFREQ_RELATION_H);
b9170836
DJ
642 else if (policy->min > this_dbs_info->cur_policy->cur)
643 __cpufreq_driver_target(
644 this_dbs_info->cur_policy,
18a7247d 645 policy->min, CPUFREQ_RELATION_L);
3fc54d37 646 mutex_unlock(&dbs_mutex);
8e677ce8 647
b9170836
DJ
648 break;
649 }
650 return 0;
651}
652
c4d14bc0
SW
653#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
654static
655#endif
1c256245
TR
656struct cpufreq_governor cpufreq_gov_conservative = {
657 .name = "conservative",
658 .governor = cpufreq_governor_dbs,
659 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
660 .owner = THIS_MODULE,
b9170836
DJ
661};
662
663static int __init cpufreq_gov_dbs_init(void)
664{
8e677ce8
AC
665 int err;
666
667 kconservative_wq = create_workqueue("kconservative");
668 if (!kconservative_wq) {
669 printk(KERN_ERR "Creation of kconservative failed\n");
670 return -EFAULT;
671 }
672
673 err = cpufreq_register_governor(&cpufreq_gov_conservative);
674 if (err)
675 destroy_workqueue(kconservative_wq);
676
677 return err;
b9170836
DJ
678}
679
680static void __exit cpufreq_gov_dbs_exit(void)
681{
1c256245 682 cpufreq_unregister_governor(&cpufreq_gov_conservative);
8e677ce8 683 destroy_workqueue(kconservative_wq);
b9170836
DJ
684}
685
686
11a80a9c 687MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
9acef487 688MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
b9170836
DJ
689 "Low Latency Frequency Transition capable processors "
690 "optimised for use in a battery environment");
9acef487 691MODULE_LICENSE("GPL");
b9170836 692
6915719b
JW
693#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
694fs_initcall(cpufreq_gov_dbs_init);
695#else
b9170836 696module_init(cpufreq_gov_dbs_init);
6915719b 697#endif
b9170836 698module_exit(cpufreq_gov_dbs_exit);