remove unused LOCAL_END_REQUEST
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / char / stallion.c
CommitLineData
1da177e4
LT
1/*****************************************************************************/
2
3/*
4 * stallion.c -- stallion multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27/*****************************************************************************/
28
29#include <linux/config.h>
30#include <linux/module.h>
31#include <linux/slab.h>
32#include <linux/interrupt.h>
33#include <linux/tty.h>
34#include <linux/tty_flip.h>
35#include <linux/serial.h>
36#include <linux/cd1400.h>
37#include <linux/sc26198.h>
38#include <linux/comstats.h>
39#include <linux/stallion.h>
40#include <linux/ioport.h>
41#include <linux/init.h>
42#include <linux/smp_lock.h>
43#include <linux/devfs_fs_kernel.h>
44#include <linux/device.h>
45#include <linux/delay.h>
46
47#include <asm/io.h>
48#include <asm/uaccess.h>
49
50#ifdef CONFIG_PCI
51#include <linux/pci.h>
52#endif
53
54/*****************************************************************************/
55
56/*
57 * Define different board types. Use the standard Stallion "assigned"
58 * board numbers. Boards supported in this driver are abbreviated as
59 * EIO = EasyIO and ECH = EasyConnection 8/32.
60 */
61#define BRD_EASYIO 20
62#define BRD_ECH 21
63#define BRD_ECHMC 22
64#define BRD_ECHPCI 26
65#define BRD_ECH64PCI 27
66#define BRD_EASYIOPCI 28
67
68/*
69 * Define a configuration structure to hold the board configuration.
70 * Need to set this up in the code (for now) with the boards that are
71 * to be configured into the system. This is what needs to be modified
72 * when adding/removing/modifying boards. Each line entry in the
73 * stl_brdconf[] array is a board. Each line contains io/irq/memory
74 * ranges for that board (as well as what type of board it is).
75 * Some examples:
76 * { BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },
77 * This line would configure an EasyIO board (4 or 8, no difference),
78 * at io address 2a0 and irq 10.
79 * Another example:
80 * { BRD_ECH, 0x2a8, 0x280, 0, 12, 0 },
81 * This line will configure an EasyConnection 8/32 board at primary io
82 * address 2a8, secondary io address 280 and irq 12.
83 * Enter as many lines into this array as you want (only the first 4
84 * will actually be used!). Any combination of EasyIO and EasyConnection
85 * boards can be specified. EasyConnection 8/32 boards can share their
86 * secondary io addresses between each other.
87 *
88 * NOTE: there is no need to put any entries in this table for PCI
89 * boards. They will be found automatically by the driver - provided
90 * PCI BIOS32 support is compiled into the kernel.
91 */
92
93typedef struct {
94 int brdtype;
95 int ioaddr1;
96 int ioaddr2;
97 unsigned long memaddr;
98 int irq;
99 int irqtype;
100} stlconf_t;
101
102static stlconf_t stl_brdconf[] = {
103 /*{ BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },*/
104};
105
fe971071 106static int stl_nrbrds = ARRAY_SIZE(stl_brdconf);
1da177e4
LT
107
108/*****************************************************************************/
109
110/*
111 * Define some important driver characteristics. Device major numbers
112 * allocated as per Linux Device Registry.
113 */
114#ifndef STL_SIOMEMMAJOR
115#define STL_SIOMEMMAJOR 28
116#endif
117#ifndef STL_SERIALMAJOR
118#define STL_SERIALMAJOR 24
119#endif
120#ifndef STL_CALLOUTMAJOR
121#define STL_CALLOUTMAJOR 25
122#endif
123
124/*
125 * Set the TX buffer size. Bigger is better, but we don't want
126 * to chew too much memory with buffers!
127 */
128#define STL_TXBUFLOW 512
129#define STL_TXBUFSIZE 4096
130
131/*****************************************************************************/
132
133/*
134 * Define our local driver identity first. Set up stuff to deal with
135 * all the local structures required by a serial tty driver.
136 */
137static char *stl_drvtitle = "Stallion Multiport Serial Driver";
138static char *stl_drvname = "stallion";
139static char *stl_drvversion = "5.6.0";
140
141static struct tty_driver *stl_serial;
142
143/*
144 * We will need to allocate a temporary write buffer for chars that
145 * come direct from user space. The problem is that a copy from user
146 * space might cause a page fault (typically on a system that is
147 * swapping!). All ports will share one buffer - since if the system
148 * is already swapping a shared buffer won't make things any worse.
149 */
150static char *stl_tmpwritebuf;
151static DECLARE_MUTEX(stl_tmpwritesem);
152
153/*
154 * Define a local default termios struct. All ports will be created
155 * with this termios initially. Basically all it defines is a raw port
156 * at 9600, 8 data bits, 1 stop bit.
157 */
158static struct termios stl_deftermios = {
159 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
160 .c_cc = INIT_C_CC,
161};
162
163/*
164 * Define global stats structures. Not used often, and can be
165 * re-used for each stats call.
166 */
167static comstats_t stl_comstats;
168static combrd_t stl_brdstats;
169static stlbrd_t stl_dummybrd;
170static stlport_t stl_dummyport;
171
172/*
173 * Define global place to put buffer overflow characters.
174 */
175static char stl_unwanted[SC26198_RXFIFOSIZE];
176
177/*****************************************************************************/
178
179static stlbrd_t *stl_brds[STL_MAXBRDS];
180
181/*
182 * Per board state flags. Used with the state field of the board struct.
183 * Not really much here!
184 */
185#define BRD_FOUND 0x1
186
187/*
188 * Define the port structure istate flags. These set of flags are
189 * modified at interrupt time - so setting and reseting them needs
190 * to be atomic. Use the bit clear/setting routines for this.
191 */
192#define ASYI_TXBUSY 1
193#define ASYI_TXLOW 2
194#define ASYI_DCDCHANGE 3
195#define ASYI_TXFLOWED 4
196
197/*
198 * Define an array of board names as printable strings. Handy for
199 * referencing boards when printing trace and stuff.
200 */
201static char *stl_brdnames[] = {
202 (char *) NULL,
203 (char *) NULL,
204 (char *) NULL,
205 (char *) NULL,
206 (char *) NULL,
207 (char *) NULL,
208 (char *) NULL,
209 (char *) NULL,
210 (char *) NULL,
211 (char *) NULL,
212 (char *) NULL,
213 (char *) NULL,
214 (char *) NULL,
215 (char *) NULL,
216 (char *) NULL,
217 (char *) NULL,
218 (char *) NULL,
219 (char *) NULL,
220 (char *) NULL,
221 (char *) NULL,
222 "EasyIO",
223 "EC8/32-AT",
224 "EC8/32-MC",
225 (char *) NULL,
226 (char *) NULL,
227 (char *) NULL,
228 "EC8/32-PCI",
229 "EC8/64-PCI",
230 "EasyIO-PCI",
231};
232
233/*****************************************************************************/
234
235/*
236 * Define some string labels for arguments passed from the module
237 * load line. These allow for easy board definitions, and easy
238 * modification of the io, memory and irq resoucres.
239 */
240static int stl_nargs = 0;
241static char *board0[4];
242static char *board1[4];
243static char *board2[4];
244static char *board3[4];
245
246static char **stl_brdsp[] = {
247 (char **) &board0,
248 (char **) &board1,
249 (char **) &board2,
250 (char **) &board3
251};
252
253/*
254 * Define a set of common board names, and types. This is used to
255 * parse any module arguments.
256 */
257
258typedef struct stlbrdtype {
259 char *name;
260 int type;
261} stlbrdtype_t;
262
263static stlbrdtype_t stl_brdstr[] = {
264 { "easyio", BRD_EASYIO },
265 { "eio", BRD_EASYIO },
266 { "20", BRD_EASYIO },
267 { "ec8/32", BRD_ECH },
268 { "ec8/32-at", BRD_ECH },
269 { "ec8/32-isa", BRD_ECH },
270 { "ech", BRD_ECH },
271 { "echat", BRD_ECH },
272 { "21", BRD_ECH },
273 { "ec8/32-mc", BRD_ECHMC },
274 { "ec8/32-mca", BRD_ECHMC },
275 { "echmc", BRD_ECHMC },
276 { "echmca", BRD_ECHMC },
277 { "22", BRD_ECHMC },
278 { "ec8/32-pc", BRD_ECHPCI },
279 { "ec8/32-pci", BRD_ECHPCI },
280 { "26", BRD_ECHPCI },
281 { "ec8/64-pc", BRD_ECH64PCI },
282 { "ec8/64-pci", BRD_ECH64PCI },
283 { "ech-pci", BRD_ECH64PCI },
284 { "echpci", BRD_ECH64PCI },
285 { "echpc", BRD_ECH64PCI },
286 { "27", BRD_ECH64PCI },
287 { "easyio-pc", BRD_EASYIOPCI },
288 { "easyio-pci", BRD_EASYIOPCI },
289 { "eio-pci", BRD_EASYIOPCI },
290 { "eiopci", BRD_EASYIOPCI },
291 { "28", BRD_EASYIOPCI },
292};
293
294/*
295 * Define the module agruments.
296 */
297MODULE_AUTHOR("Greg Ungerer");
298MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
299MODULE_LICENSE("GPL");
300
301module_param_array(board0, charp, &stl_nargs, 0);
302MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
303module_param_array(board1, charp, &stl_nargs, 0);
304MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
305module_param_array(board2, charp, &stl_nargs, 0);
306MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
307module_param_array(board3, charp, &stl_nargs, 0);
308MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
309
310/*****************************************************************************/
311
312/*
313 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
314 * to the directly accessible io ports of these boards (not the uarts -
315 * they are in cd1400.h and sc26198.h).
316 */
317#define EIO_8PORTRS 0x04
318#define EIO_4PORTRS 0x05
319#define EIO_8PORTDI 0x00
320#define EIO_8PORTM 0x06
321#define EIO_MK3 0x03
322#define EIO_IDBITMASK 0x07
323
324#define EIO_BRDMASK 0xf0
325#define ID_BRD4 0x10
326#define ID_BRD8 0x20
327#define ID_BRD16 0x30
328
329#define EIO_INTRPEND 0x08
330#define EIO_INTEDGE 0x00
331#define EIO_INTLEVEL 0x08
332#define EIO_0WS 0x10
333
334#define ECH_ID 0xa0
335#define ECH_IDBITMASK 0xe0
336#define ECH_BRDENABLE 0x08
337#define ECH_BRDDISABLE 0x00
338#define ECH_INTENABLE 0x01
339#define ECH_INTDISABLE 0x00
340#define ECH_INTLEVEL 0x02
341#define ECH_INTEDGE 0x00
342#define ECH_INTRPEND 0x01
343#define ECH_BRDRESET 0x01
344
345#define ECHMC_INTENABLE 0x01
346#define ECHMC_BRDRESET 0x02
347
348#define ECH_PNLSTATUS 2
349#define ECH_PNL16PORT 0x20
350#define ECH_PNLIDMASK 0x07
351#define ECH_PNLXPID 0x40
352#define ECH_PNLINTRPEND 0x80
353
354#define ECH_ADDR2MASK 0x1e0
355
356/*
357 * Define the vector mapping bits for the programmable interrupt board
358 * hardware. These bits encode the interrupt for the board to use - it
359 * is software selectable (except the EIO-8M).
360 */
361static unsigned char stl_vecmap[] = {
362 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
363 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
364};
365
366/*
367 * Set up enable and disable macros for the ECH boards. They require
368 * the secondary io address space to be activated and deactivated.
369 * This way all ECH boards can share their secondary io region.
370 * If this is an ECH-PCI board then also need to set the page pointer
371 * to point to the correct page.
372 */
373#define BRDENABLE(brdnr,pagenr) \
374 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
375 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
376 stl_brds[(brdnr)]->ioctrl); \
377 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
378 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
379
380#define BRDDISABLE(brdnr) \
381 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
382 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
383 stl_brds[(brdnr)]->ioctrl);
384
385#define STL_CD1400MAXBAUD 230400
386#define STL_SC26198MAXBAUD 460800
387
388#define STL_BAUDBASE 115200
389#define STL_CLOSEDELAY (5 * HZ / 10)
390
391/*****************************************************************************/
392
393#ifdef CONFIG_PCI
394
395/*
396 * Define the Stallion PCI vendor and device IDs.
397 */
398#ifndef PCI_VENDOR_ID_STALLION
399#define PCI_VENDOR_ID_STALLION 0x124d
400#endif
401#ifndef PCI_DEVICE_ID_ECHPCI832
402#define PCI_DEVICE_ID_ECHPCI832 0x0000
403#endif
404#ifndef PCI_DEVICE_ID_ECHPCI864
405#define PCI_DEVICE_ID_ECHPCI864 0x0002
406#endif
407#ifndef PCI_DEVICE_ID_EIOPCI
408#define PCI_DEVICE_ID_EIOPCI 0x0003
409#endif
410
411/*
412 * Define structure to hold all Stallion PCI boards.
413 */
414typedef struct stlpcibrd {
415 unsigned short vendid;
416 unsigned short devid;
417 int brdtype;
418} stlpcibrd_t;
419
420static stlpcibrd_t stl_pcibrds[] = {
421 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864, BRD_ECH64PCI },
422 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI, BRD_EASYIOPCI },
423 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832, BRD_ECHPCI },
424 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410, BRD_ECHPCI },
425};
426
fe971071 427static int stl_nrpcibrds = ARRAY_SIZE(stl_pcibrds);
1da177e4
LT
428
429#endif
430
431/*****************************************************************************/
432
433/*
434 * Define macros to extract a brd/port number from a minor number.
435 */
436#define MINOR2BRD(min) (((min) & 0xc0) >> 6)
437#define MINOR2PORT(min) ((min) & 0x3f)
438
439/*
440 * Define a baud rate table that converts termios baud rate selector
441 * into the actual baud rate value. All baud rate calculations are
442 * based on the actual baud rate required.
443 */
444static unsigned int stl_baudrates[] = {
445 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
446 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
447};
448
449/*
450 * Define some handy local macros...
451 */
452#undef MIN
453#define MIN(a,b) (((a) <= (b)) ? (a) : (b))
454
455#undef TOLOWER
456#define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
457
458/*****************************************************************************/
459
460/*
461 * Declare all those functions in this driver!
462 */
463
464static void stl_argbrds(void);
465static int stl_parsebrd(stlconf_t *confp, char **argp);
466
467static unsigned long stl_atol(char *str);
468
408b664a 469static int stl_init(void);
1da177e4
LT
470static int stl_open(struct tty_struct *tty, struct file *filp);
471static void stl_close(struct tty_struct *tty, struct file *filp);
472static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count);
473static void stl_putchar(struct tty_struct *tty, unsigned char ch);
474static void stl_flushchars(struct tty_struct *tty);
475static int stl_writeroom(struct tty_struct *tty);
476static int stl_charsinbuffer(struct tty_struct *tty);
477static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
478static void stl_settermios(struct tty_struct *tty, struct termios *old);
479static void stl_throttle(struct tty_struct *tty);
480static void stl_unthrottle(struct tty_struct *tty);
481static void stl_stop(struct tty_struct *tty);
482static void stl_start(struct tty_struct *tty);
483static void stl_flushbuffer(struct tty_struct *tty);
484static void stl_breakctl(struct tty_struct *tty, int state);
485static void stl_waituntilsent(struct tty_struct *tty, int timeout);
486static void stl_sendxchar(struct tty_struct *tty, char ch);
487static void stl_hangup(struct tty_struct *tty);
488static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
489static int stl_portinfo(stlport_t *portp, int portnr, char *pos);
490static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data);
491
492static int stl_brdinit(stlbrd_t *brdp);
493static int stl_initports(stlbrd_t *brdp, stlpanel_t *panelp);
494static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp);
495static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp);
496static int stl_getbrdstats(combrd_t __user *bp);
497static int stl_getportstats(stlport_t *portp, comstats_t __user *cp);
498static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp);
499static int stl_getportstruct(stlport_t __user *arg);
500static int stl_getbrdstruct(stlbrd_t __user *arg);
501static int stl_waitcarrier(stlport_t *portp, struct file *filp);
502static int stl_eiointr(stlbrd_t *brdp);
503static int stl_echatintr(stlbrd_t *brdp);
504static int stl_echmcaintr(stlbrd_t *brdp);
505static int stl_echpciintr(stlbrd_t *brdp);
506static int stl_echpci64intr(stlbrd_t *brdp);
507static void stl_offintr(void *private);
508static void *stl_memalloc(int len);
509static stlbrd_t *stl_allocbrd(void);
510static stlport_t *stl_getport(int brdnr, int panelnr, int portnr);
511
512static inline int stl_initbrds(void);
513static inline int stl_initeio(stlbrd_t *brdp);
514static inline int stl_initech(stlbrd_t *brdp);
515static inline int stl_getbrdnr(void);
516
517#ifdef CONFIG_PCI
518static inline int stl_findpcibrds(void);
519static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp);
520#endif
521
522/*
523 * CD1400 uart specific handling functions.
524 */
525static void stl_cd1400setreg(stlport_t *portp, int regnr, int value);
526static int stl_cd1400getreg(stlport_t *portp, int regnr);
527static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value);
528static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
529static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
530static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp);
531static int stl_cd1400getsignals(stlport_t *portp);
532static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts);
533static void stl_cd1400ccrwait(stlport_t *portp);
534static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx);
535static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx);
536static void stl_cd1400disableintrs(stlport_t *portp);
537static void stl_cd1400sendbreak(stlport_t *portp, int len);
538static void stl_cd1400flowctrl(stlport_t *portp, int state);
539static void stl_cd1400sendflow(stlport_t *portp, int state);
540static void stl_cd1400flush(stlport_t *portp);
541static int stl_cd1400datastate(stlport_t *portp);
542static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase);
543static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase);
544static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr);
545static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr);
546static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr);
547
548static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr);
549
550/*
551 * SC26198 uart specific handling functions.
552 */
553static void stl_sc26198setreg(stlport_t *portp, int regnr, int value);
554static int stl_sc26198getreg(stlport_t *portp, int regnr);
555static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value);
556static int stl_sc26198getglobreg(stlport_t *portp, int regnr);
557static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
558static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
559static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp);
560static int stl_sc26198getsignals(stlport_t *portp);
561static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts);
562static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx);
563static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx);
564static void stl_sc26198disableintrs(stlport_t *portp);
565static void stl_sc26198sendbreak(stlport_t *portp, int len);
566static void stl_sc26198flowctrl(stlport_t *portp, int state);
567static void stl_sc26198sendflow(stlport_t *portp, int state);
568static void stl_sc26198flush(stlport_t *portp);
569static int stl_sc26198datastate(stlport_t *portp);
570static void stl_sc26198wait(stlport_t *portp);
571static void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty);
572static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase);
573static void stl_sc26198txisr(stlport_t *port);
574static void stl_sc26198rxisr(stlport_t *port, unsigned int iack);
575static void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch);
576static void stl_sc26198rxbadchars(stlport_t *portp);
577static void stl_sc26198otherisr(stlport_t *port, unsigned int iack);
578
579/*****************************************************************************/
580
581/*
582 * Generic UART support structure.
583 */
584typedef struct uart {
585 int (*panelinit)(stlbrd_t *brdp, stlpanel_t *panelp);
586 void (*portinit)(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
587 void (*setport)(stlport_t *portp, struct termios *tiosp);
588 int (*getsignals)(stlport_t *portp);
589 void (*setsignals)(stlport_t *portp, int dtr, int rts);
590 void (*enablerxtx)(stlport_t *portp, int rx, int tx);
591 void (*startrxtx)(stlport_t *portp, int rx, int tx);
592 void (*disableintrs)(stlport_t *portp);
593 void (*sendbreak)(stlport_t *portp, int len);
594 void (*flowctrl)(stlport_t *portp, int state);
595 void (*sendflow)(stlport_t *portp, int state);
596 void (*flush)(stlport_t *portp);
597 int (*datastate)(stlport_t *portp);
598 void (*intr)(stlpanel_t *panelp, unsigned int iobase);
599} uart_t;
600
601/*
602 * Define some macros to make calling these functions nice and clean.
603 */
604#define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
605#define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
606#define stl_setport (* ((uart_t *) portp->uartp)->setport)
607#define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
608#define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
609#define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
610#define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
611#define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
612#define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
613#define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
614#define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
615#define stl_flush (* ((uart_t *) portp->uartp)->flush)
616#define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
617
618/*****************************************************************************/
619
620/*
621 * CD1400 UART specific data initialization.
622 */
623static uart_t stl_cd1400uart = {
624 stl_cd1400panelinit,
625 stl_cd1400portinit,
626 stl_cd1400setport,
627 stl_cd1400getsignals,
628 stl_cd1400setsignals,
629 stl_cd1400enablerxtx,
630 stl_cd1400startrxtx,
631 stl_cd1400disableintrs,
632 stl_cd1400sendbreak,
633 stl_cd1400flowctrl,
634 stl_cd1400sendflow,
635 stl_cd1400flush,
636 stl_cd1400datastate,
637 stl_cd1400eiointr
638};
639
640/*
641 * Define the offsets within the register bank of a cd1400 based panel.
642 * These io address offsets are common to the EasyIO board as well.
643 */
644#define EREG_ADDR 0
645#define EREG_DATA 4
646#define EREG_RXACK 5
647#define EREG_TXACK 6
648#define EREG_MDACK 7
649
650#define EREG_BANKSIZE 8
651
652#define CD1400_CLK 25000000
653#define CD1400_CLK8M 20000000
654
655/*
656 * Define the cd1400 baud rate clocks. These are used when calculating
657 * what clock and divisor to use for the required baud rate. Also
658 * define the maximum baud rate allowed, and the default base baud.
659 */
660static int stl_cd1400clkdivs[] = {
661 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
662};
663
664/*****************************************************************************/
665
666/*
667 * SC26198 UART specific data initization.
668 */
669static uart_t stl_sc26198uart = {
670 stl_sc26198panelinit,
671 stl_sc26198portinit,
672 stl_sc26198setport,
673 stl_sc26198getsignals,
674 stl_sc26198setsignals,
675 stl_sc26198enablerxtx,
676 stl_sc26198startrxtx,
677 stl_sc26198disableintrs,
678 stl_sc26198sendbreak,
679 stl_sc26198flowctrl,
680 stl_sc26198sendflow,
681 stl_sc26198flush,
682 stl_sc26198datastate,
683 stl_sc26198intr
684};
685
686/*
687 * Define the offsets within the register bank of a sc26198 based panel.
688 */
689#define XP_DATA 0
690#define XP_ADDR 1
691#define XP_MODID 2
692#define XP_STATUS 2
693#define XP_IACK 3
694
695#define XP_BANKSIZE 4
696
697/*
698 * Define the sc26198 baud rate table. Offsets within the table
699 * represent the actual baud rate selector of sc26198 registers.
700 */
701static unsigned int sc26198_baudtable[] = {
702 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
703 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
704 230400, 460800, 921600
705};
706
fe971071 707#define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
1da177e4
LT
708
709/*****************************************************************************/
710
711/*
712 * Define the driver info for a user level control device. Used mainly
713 * to get at port stats - only not using the port device itself.
714 */
715static struct file_operations stl_fsiomem = {
716 .owner = THIS_MODULE,
717 .ioctl = stl_memioctl,
718};
719
720/*****************************************************************************/
721
ca8eca68 722static struct class *stallion_class;
1da177e4
LT
723
724/*
725 * Loadable module initialization stuff.
726 */
727
728static int __init stallion_module_init(void)
729{
730 unsigned long flags;
731
732#ifdef DEBUG
733 printk("init_module()\n");
734#endif
735
736 save_flags(flags);
737 cli();
738 stl_init();
739 restore_flags(flags);
740
741 return(0);
742}
743
744/*****************************************************************************/
745
746static void __exit stallion_module_exit(void)
747{
748 stlbrd_t *brdp;
749 stlpanel_t *panelp;
750 stlport_t *portp;
751 unsigned long flags;
752 int i, j, k;
753
754#ifdef DEBUG
755 printk("cleanup_module()\n");
756#endif
757
758 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
759 stl_drvversion);
760
761 save_flags(flags);
762 cli();
763
764/*
765 * Free up all allocated resources used by the ports. This includes
766 * memory and interrupts. As part of this process we will also do
767 * a hangup on every open port - to try to flush out any processes
768 * hanging onto ports.
769 */
770 i = tty_unregister_driver(stl_serial);
771 put_tty_driver(stl_serial);
772 if (i) {
773 printk("STALLION: failed to un-register tty driver, "
774 "errno=%d\n", -i);
775 restore_flags(flags);
776 return;
777 }
778 for (i = 0; i < 4; i++) {
779 devfs_remove("staliomem/%d", i);
ca8eca68 780 class_device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
1da177e4
LT
781 }
782 devfs_remove("staliomem");
783 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
784 printk("STALLION: failed to un-register serial memory device, "
785 "errno=%d\n", -i);
ca8eca68 786 class_destroy(stallion_class);
1da177e4 787
735d5661 788 kfree(stl_tmpwritebuf);
1da177e4
LT
789
790 for (i = 0; (i < stl_nrbrds); i++) {
791 if ((brdp = stl_brds[i]) == (stlbrd_t *) NULL)
792 continue;
793
794 free_irq(brdp->irq, brdp);
795
796 for (j = 0; (j < STL_MAXPANELS); j++) {
797 panelp = brdp->panels[j];
798 if (panelp == (stlpanel_t *) NULL)
799 continue;
800 for (k = 0; (k < STL_PORTSPERPANEL); k++) {
801 portp = panelp->ports[k];
802 if (portp == (stlport_t *) NULL)
803 continue;
804 if (portp->tty != (struct tty_struct *) NULL)
805 stl_hangup(portp->tty);
735d5661 806 kfree(portp->tx.buf);
1da177e4
LT
807 kfree(portp);
808 }
809 kfree(panelp);
810 }
811
812 release_region(brdp->ioaddr1, brdp->iosize1);
813 if (brdp->iosize2 > 0)
814 release_region(brdp->ioaddr2, brdp->iosize2);
815
816 kfree(brdp);
817 stl_brds[i] = (stlbrd_t *) NULL;
818 }
819
820 restore_flags(flags);
821}
822
823module_init(stallion_module_init);
824module_exit(stallion_module_exit);
825
826/*****************************************************************************/
827
828/*
829 * Check for any arguments passed in on the module load command line.
830 */
831
832static void stl_argbrds(void)
833{
834 stlconf_t conf;
835 stlbrd_t *brdp;
836 int i;
837
838#ifdef DEBUG
839 printk("stl_argbrds()\n");
840#endif
841
842 for (i = stl_nrbrds; (i < stl_nargs); i++) {
843 memset(&conf, 0, sizeof(conf));
844 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
845 continue;
846 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
847 continue;
848 stl_nrbrds = i + 1;
849 brdp->brdnr = i;
850 brdp->brdtype = conf.brdtype;
851 brdp->ioaddr1 = conf.ioaddr1;
852 brdp->ioaddr2 = conf.ioaddr2;
853 brdp->irq = conf.irq;
854 brdp->irqtype = conf.irqtype;
855 stl_brdinit(brdp);
856 }
857}
858
859/*****************************************************************************/
860
861/*
862 * Convert an ascii string number into an unsigned long.
863 */
864
865static unsigned long stl_atol(char *str)
866{
867 unsigned long val;
868 int base, c;
869 char *sp;
870
871 val = 0;
872 sp = str;
873 if ((*sp == '0') && (*(sp+1) == 'x')) {
874 base = 16;
875 sp += 2;
876 } else if (*sp == '0') {
877 base = 8;
878 sp++;
879 } else {
880 base = 10;
881 }
882
883 for (; (*sp != 0); sp++) {
884 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
885 if ((c < 0) || (c >= base)) {
886 printk("STALLION: invalid argument %s\n", str);
887 val = 0;
888 break;
889 }
890 val = (val * base) + c;
891 }
892 return(val);
893}
894
895/*****************************************************************************/
896
897/*
898 * Parse the supplied argument string, into the board conf struct.
899 */
900
901static int stl_parsebrd(stlconf_t *confp, char **argp)
902{
903 char *sp;
fe971071 904 int i;
1da177e4
LT
905
906#ifdef DEBUG
907 printk("stl_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
908#endif
909
910 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
911 return(0);
912
913 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
914 *sp = TOLOWER(*sp);
915
fe971071 916 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++) {
1da177e4
LT
917 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
918 break;
919 }
fe971071 920 if (i == ARRAY_SIZE(stl_brdstr)) {
1da177e4 921 printk("STALLION: unknown board name, %s?\n", argp[0]);
fe971071 922 return 0;
1da177e4
LT
923 }
924
925 confp->brdtype = stl_brdstr[i].type;
926
927 i = 1;
928 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
929 confp->ioaddr1 = stl_atol(argp[i]);
930 i++;
931 if (confp->brdtype == BRD_ECH) {
932 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
933 confp->ioaddr2 = stl_atol(argp[i]);
934 i++;
935 }
936 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
937 confp->irq = stl_atol(argp[i]);
938 return(1);
939}
940
941/*****************************************************************************/
942
943/*
944 * Local driver kernel memory allocation routine.
945 */
946
947static void *stl_memalloc(int len)
948{
949 return((void *) kmalloc(len, GFP_KERNEL));
950}
951
952/*****************************************************************************/
953
954/*
955 * Allocate a new board structure. Fill out the basic info in it.
956 */
957
958static stlbrd_t *stl_allocbrd(void)
959{
960 stlbrd_t *brdp;
961
962 brdp = (stlbrd_t *) stl_memalloc(sizeof(stlbrd_t));
963 if (brdp == (stlbrd_t *) NULL) {
964 printk("STALLION: failed to allocate memory (size=%d)\n",
965 sizeof(stlbrd_t));
966 return((stlbrd_t *) NULL);
967 }
968
969 memset(brdp, 0, sizeof(stlbrd_t));
970 brdp->magic = STL_BOARDMAGIC;
971 return(brdp);
972}
973
974/*****************************************************************************/
975
976static int stl_open(struct tty_struct *tty, struct file *filp)
977{
978 stlport_t *portp;
979 stlbrd_t *brdp;
980 unsigned int minordev;
981 int brdnr, panelnr, portnr, rc;
982
983#ifdef DEBUG
984 printk("stl_open(tty=%x,filp=%x): device=%s\n", (int) tty,
985 (int) filp, tty->name);
986#endif
987
988 minordev = tty->index;
989 brdnr = MINOR2BRD(minordev);
990 if (brdnr >= stl_nrbrds)
991 return(-ENODEV);
992 brdp = stl_brds[brdnr];
993 if (brdp == (stlbrd_t *) NULL)
994 return(-ENODEV);
995 minordev = MINOR2PORT(minordev);
996 for (portnr = -1, panelnr = 0; (panelnr < STL_MAXPANELS); panelnr++) {
997 if (brdp->panels[panelnr] == (stlpanel_t *) NULL)
998 break;
999 if (minordev < brdp->panels[panelnr]->nrports) {
1000 portnr = minordev;
1001 break;
1002 }
1003 minordev -= brdp->panels[panelnr]->nrports;
1004 }
1005 if (portnr < 0)
1006 return(-ENODEV);
1007
1008 portp = brdp->panels[panelnr]->ports[portnr];
1009 if (portp == (stlport_t *) NULL)
1010 return(-ENODEV);
1011
1012/*
1013 * On the first open of the device setup the port hardware, and
1014 * initialize the per port data structure.
1015 */
1016 portp->tty = tty;
1017 tty->driver_data = portp;
1018 portp->refcount++;
1019
1020 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
1021 if (portp->tx.buf == (char *) NULL) {
1022 portp->tx.buf = (char *) stl_memalloc(STL_TXBUFSIZE);
1023 if (portp->tx.buf == (char *) NULL)
1024 return(-ENOMEM);
1025 portp->tx.head = portp->tx.buf;
1026 portp->tx.tail = portp->tx.buf;
1027 }
1028 stl_setport(portp, tty->termios);
1029 portp->sigs = stl_getsignals(portp);
1030 stl_setsignals(portp, 1, 1);
1031 stl_enablerxtx(portp, 1, 1);
1032 stl_startrxtx(portp, 1, 0);
1033 clear_bit(TTY_IO_ERROR, &tty->flags);
1034 portp->flags |= ASYNC_INITIALIZED;
1035 }
1036
1037/*
1038 * Check if this port is in the middle of closing. If so then wait
1039 * until it is closed then return error status, based on flag settings.
1040 * The sleep here does not need interrupt protection since the wakeup
1041 * for it is done with the same context.
1042 */
1043 if (portp->flags & ASYNC_CLOSING) {
1044 interruptible_sleep_on(&portp->close_wait);
1045 if (portp->flags & ASYNC_HUP_NOTIFY)
1046 return(-EAGAIN);
1047 return(-ERESTARTSYS);
1048 }
1049
1050/*
1051 * Based on type of open being done check if it can overlap with any
1052 * previous opens still in effect. If we are a normal serial device
1053 * then also we might have to wait for carrier.
1054 */
1055 if (!(filp->f_flags & O_NONBLOCK)) {
1056 if ((rc = stl_waitcarrier(portp, filp)) != 0)
1057 return(rc);
1058 }
1059 portp->flags |= ASYNC_NORMAL_ACTIVE;
1060
1061 return(0);
1062}
1063
1064/*****************************************************************************/
1065
1066/*
1067 * Possibly need to wait for carrier (DCD signal) to come high. Say
1068 * maybe because if we are clocal then we don't need to wait...
1069 */
1070
1071static int stl_waitcarrier(stlport_t *portp, struct file *filp)
1072{
1073 unsigned long flags;
1074 int rc, doclocal;
1075
1076#ifdef DEBUG
1077 printk("stl_waitcarrier(portp=%x,filp=%x)\n", (int) portp, (int) filp);
1078#endif
1079
1080 rc = 0;
1081 doclocal = 0;
1082
1083 if (portp->tty->termios->c_cflag & CLOCAL)
1084 doclocal++;
1085
1086 save_flags(flags);
1087 cli();
1088 portp->openwaitcnt++;
1089 if (! tty_hung_up_p(filp))
1090 portp->refcount--;
1091
1092 for (;;) {
1093 stl_setsignals(portp, 1, 1);
1094 if (tty_hung_up_p(filp) ||
1095 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1096 if (portp->flags & ASYNC_HUP_NOTIFY)
1097 rc = -EBUSY;
1098 else
1099 rc = -ERESTARTSYS;
1100 break;
1101 }
1102 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1103 (doclocal || (portp->sigs & TIOCM_CD))) {
1104 break;
1105 }
1106 if (signal_pending(current)) {
1107 rc = -ERESTARTSYS;
1108 break;
1109 }
1110 interruptible_sleep_on(&portp->open_wait);
1111 }
1112
1113 if (! tty_hung_up_p(filp))
1114 portp->refcount++;
1115 portp->openwaitcnt--;
1116 restore_flags(flags);
1117
1118 return(rc);
1119}
1120
1121/*****************************************************************************/
1122
1123static void stl_close(struct tty_struct *tty, struct file *filp)
1124{
1125 stlport_t *portp;
1126 unsigned long flags;
1127
1128#ifdef DEBUG
1129 printk("stl_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1130#endif
1131
1132 portp = tty->driver_data;
1133 if (portp == (stlport_t *) NULL)
1134 return;
1135
1136 save_flags(flags);
1137 cli();
1138 if (tty_hung_up_p(filp)) {
1139 restore_flags(flags);
1140 return;
1141 }
1142 if ((tty->count == 1) && (portp->refcount != 1))
1143 portp->refcount = 1;
1144 if (portp->refcount-- > 1) {
1145 restore_flags(flags);
1146 return;
1147 }
1148
1149 portp->refcount = 0;
1150 portp->flags |= ASYNC_CLOSING;
1151
1152/*
1153 * May want to wait for any data to drain before closing. The BUSY
1154 * flag keeps track of whether we are still sending or not - it is
1155 * very accurate for the cd1400, not quite so for the sc26198.
1156 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
1157 */
1158 tty->closing = 1;
1159 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1160 tty_wait_until_sent(tty, portp->closing_wait);
1161 stl_waituntilsent(tty, (HZ / 2));
1162
1163 portp->flags &= ~ASYNC_INITIALIZED;
1164 stl_disableintrs(portp);
1165 if (tty->termios->c_cflag & HUPCL)
1166 stl_setsignals(portp, 0, 0);
1167 stl_enablerxtx(portp, 0, 0);
1168 stl_flushbuffer(tty);
1169 portp->istate = 0;
1170 if (portp->tx.buf != (char *) NULL) {
1171 kfree(portp->tx.buf);
1172 portp->tx.buf = (char *) NULL;
1173 portp->tx.head = (char *) NULL;
1174 portp->tx.tail = (char *) NULL;
1175 }
1176 set_bit(TTY_IO_ERROR, &tty->flags);
1177 tty_ldisc_flush(tty);
1178
1179 tty->closing = 0;
1180 portp->tty = (struct tty_struct *) NULL;
1181
1182 if (portp->openwaitcnt) {
1183 if (portp->close_delay)
1184 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1185 wake_up_interruptible(&portp->open_wait);
1186 }
1187
1188 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1189 wake_up_interruptible(&portp->close_wait);
1190 restore_flags(flags);
1191}
1192
1193/*****************************************************************************/
1194
1195/*
1196 * Write routine. Take data and stuff it in to the TX ring queue.
1197 * If transmit interrupts are not running then start them.
1198 */
1199
1200static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
1201{
1202 stlport_t *portp;
1203 unsigned int len, stlen;
1204 unsigned char *chbuf;
1205 char *head, *tail;
1206
1207#ifdef DEBUG
1208 printk("stl_write(tty=%x,buf=%x,count=%d)\n",
1209 (int) tty, (int) buf, count);
1210#endif
1211
1212 if ((tty == (struct tty_struct *) NULL) ||
1213 (stl_tmpwritebuf == (char *) NULL))
1214 return(0);
1215 portp = tty->driver_data;
1216 if (portp == (stlport_t *) NULL)
1217 return(0);
1218 if (portp->tx.buf == (char *) NULL)
1219 return(0);
1220
1221/*
1222 * If copying direct from user space we must cater for page faults,
1223 * causing us to "sleep" here for a while. To handle this copy in all
1224 * the data we need now, into a local buffer. Then when we got it all
1225 * copy it into the TX buffer.
1226 */
1227 chbuf = (unsigned char *) buf;
1228
1229 head = portp->tx.head;
1230 tail = portp->tx.tail;
1231 if (head >= tail) {
1232 len = STL_TXBUFSIZE - (head - tail) - 1;
1233 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
1234 } else {
1235 len = tail - head - 1;
1236 stlen = len;
1237 }
1238
1239 len = MIN(len, count);
1240 count = 0;
1241 while (len > 0) {
1242 stlen = MIN(len, stlen);
1243 memcpy(head, chbuf, stlen);
1244 len -= stlen;
1245 chbuf += stlen;
1246 count += stlen;
1247 head += stlen;
1248 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
1249 head = portp->tx.buf;
1250 stlen = tail - head;
1251 }
1252 }
1253 portp->tx.head = head;
1254
1255 clear_bit(ASYI_TXLOW, &portp->istate);
1256 stl_startrxtx(portp, -1, 1);
1257
1258 return(count);
1259}
1260
1261/*****************************************************************************/
1262
1263static void stl_putchar(struct tty_struct *tty, unsigned char ch)
1264{
1265 stlport_t *portp;
1266 unsigned int len;
1267 char *head, *tail;
1268
1269#ifdef DEBUG
1270 printk("stl_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1271#endif
1272
1273 if (tty == (struct tty_struct *) NULL)
1274 return;
1275 portp = tty->driver_data;
1276 if (portp == (stlport_t *) NULL)
1277 return;
1278 if (portp->tx.buf == (char *) NULL)
1279 return;
1280
1281 head = portp->tx.head;
1282 tail = portp->tx.tail;
1283
1284 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1285 len--;
1286
1287 if (len > 0) {
1288 *head++ = ch;
1289 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1290 head = portp->tx.buf;
1291 }
1292 portp->tx.head = head;
1293}
1294
1295/*****************************************************************************/
1296
1297/*
1298 * If there are any characters in the buffer then make sure that TX
1299 * interrupts are on and get'em out. Normally used after the putchar
1300 * routine has been called.
1301 */
1302
1303static void stl_flushchars(struct tty_struct *tty)
1304{
1305 stlport_t *portp;
1306
1307#ifdef DEBUG
1308 printk("stl_flushchars(tty=%x)\n", (int) tty);
1309#endif
1310
1311 if (tty == (struct tty_struct *) NULL)
1312 return;
1313 portp = tty->driver_data;
1314 if (portp == (stlport_t *) NULL)
1315 return;
1316 if (portp->tx.buf == (char *) NULL)
1317 return;
1318
1319#if 0
1320 if (tty->stopped || tty->hw_stopped ||
1321 (portp->tx.head == portp->tx.tail))
1322 return;
1323#endif
1324 stl_startrxtx(portp, -1, 1);
1325}
1326
1327/*****************************************************************************/
1328
1329static int stl_writeroom(struct tty_struct *tty)
1330{
1331 stlport_t *portp;
1332 char *head, *tail;
1333
1334#ifdef DEBUG
1335 printk("stl_writeroom(tty=%x)\n", (int) tty);
1336#endif
1337
1338 if (tty == (struct tty_struct *) NULL)
1339 return(0);
1340 portp = tty->driver_data;
1341 if (portp == (stlport_t *) NULL)
1342 return(0);
1343 if (portp->tx.buf == (char *) NULL)
1344 return(0);
1345
1346 head = portp->tx.head;
1347 tail = portp->tx.tail;
1348 return((head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1));
1349}
1350
1351/*****************************************************************************/
1352
1353/*
1354 * Return number of chars in the TX buffer. Normally we would just
1355 * calculate the number of chars in the buffer and return that, but if
1356 * the buffer is empty and TX interrupts are still on then we return
1357 * that the buffer still has 1 char in it. This way whoever called us
1358 * will not think that ALL chars have drained - since the UART still
1359 * must have some chars in it (we are busy after all).
1360 */
1361
1362static int stl_charsinbuffer(struct tty_struct *tty)
1363{
1364 stlport_t *portp;
1365 unsigned int size;
1366 char *head, *tail;
1367
1368#ifdef DEBUG
1369 printk("stl_charsinbuffer(tty=%x)\n", (int) tty);
1370#endif
1371
1372 if (tty == (struct tty_struct *) NULL)
1373 return(0);
1374 portp = tty->driver_data;
1375 if (portp == (stlport_t *) NULL)
1376 return(0);
1377 if (portp->tx.buf == (char *) NULL)
1378 return(0);
1379
1380 head = portp->tx.head;
1381 tail = portp->tx.tail;
1382 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1383 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1384 size = 1;
1385 return(size);
1386}
1387
1388/*****************************************************************************/
1389
1390/*
1391 * Generate the serial struct info.
1392 */
1393
1394static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp)
1395{
1396 struct serial_struct sio;
1397 stlbrd_t *brdp;
1398
1399#ifdef DEBUG
1400 printk("stl_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1401#endif
1402
1403 memset(&sio, 0, sizeof(struct serial_struct));
1404 sio.line = portp->portnr;
1405 sio.port = portp->ioaddr;
1406 sio.flags = portp->flags;
1407 sio.baud_base = portp->baud_base;
1408 sio.close_delay = portp->close_delay;
1409 sio.closing_wait = portp->closing_wait;
1410 sio.custom_divisor = portp->custom_divisor;
1411 sio.hub6 = 0;
1412 if (portp->uartp == &stl_cd1400uart) {
1413 sio.type = PORT_CIRRUS;
1414 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1415 } else {
1416 sio.type = PORT_UNKNOWN;
1417 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1418 }
1419
1420 brdp = stl_brds[portp->brdnr];
1421 if (brdp != (stlbrd_t *) NULL)
1422 sio.irq = brdp->irq;
1423
1424 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1425}
1426
1427/*****************************************************************************/
1428
1429/*
1430 * Set port according to the serial struct info.
1431 * At this point we do not do any auto-configure stuff, so we will
1432 * just quietly ignore any requests to change irq, etc.
1433 */
1434
1435static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp)
1436{
1437 struct serial_struct sio;
1438
1439#ifdef DEBUG
1440 printk("stl_setserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1441#endif
1442
1443 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1444 return -EFAULT;
1445 if (!capable(CAP_SYS_ADMIN)) {
1446 if ((sio.baud_base != portp->baud_base) ||
1447 (sio.close_delay != portp->close_delay) ||
1448 ((sio.flags & ~ASYNC_USR_MASK) !=
1449 (portp->flags & ~ASYNC_USR_MASK)))
1450 return(-EPERM);
1451 }
1452
1453 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1454 (sio.flags & ASYNC_USR_MASK);
1455 portp->baud_base = sio.baud_base;
1456 portp->close_delay = sio.close_delay;
1457 portp->closing_wait = sio.closing_wait;
1458 portp->custom_divisor = sio.custom_divisor;
1459 stl_setport(portp, portp->tty->termios);
1460 return(0);
1461}
1462
1463/*****************************************************************************/
1464
1465static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1466{
1467 stlport_t *portp;
1468
1469 if (tty == (struct tty_struct *) NULL)
1470 return(-ENODEV);
1471 portp = tty->driver_data;
1472 if (portp == (stlport_t *) NULL)
1473 return(-ENODEV);
1474 if (tty->flags & (1 << TTY_IO_ERROR))
1475 return(-EIO);
1476
1477 return stl_getsignals(portp);
1478}
1479
1480static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1481 unsigned int set, unsigned int clear)
1482{
1483 stlport_t *portp;
1484 int rts = -1, dtr = -1;
1485
1486 if (tty == (struct tty_struct *) NULL)
1487 return(-ENODEV);
1488 portp = tty->driver_data;
1489 if (portp == (stlport_t *) NULL)
1490 return(-ENODEV);
1491 if (tty->flags & (1 << TTY_IO_ERROR))
1492 return(-EIO);
1493
1494 if (set & TIOCM_RTS)
1495 rts = 1;
1496 if (set & TIOCM_DTR)
1497 dtr = 1;
1498 if (clear & TIOCM_RTS)
1499 rts = 0;
1500 if (clear & TIOCM_DTR)
1501 dtr = 0;
1502
1503 stl_setsignals(portp, dtr, rts);
1504 return 0;
1505}
1506
1507static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1508{
1509 stlport_t *portp;
1510 unsigned int ival;
1511 int rc;
1512 void __user *argp = (void __user *)arg;
1513
1514#ifdef DEBUG
1515 printk("stl_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1516 (int) tty, (int) file, cmd, (int) arg);
1517#endif
1518
1519 if (tty == (struct tty_struct *) NULL)
1520 return(-ENODEV);
1521 portp = tty->driver_data;
1522 if (portp == (stlport_t *) NULL)
1523 return(-ENODEV);
1524
1525 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1526 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1527 if (tty->flags & (1 << TTY_IO_ERROR))
1528 return(-EIO);
1529 }
1530
1531 rc = 0;
1532
1533 switch (cmd) {
1534 case TIOCGSOFTCAR:
1535 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1536 (unsigned __user *) argp);
1537 break;
1538 case TIOCSSOFTCAR:
1539 if (get_user(ival, (unsigned int __user *) arg))
1540 return -EFAULT;
1541 tty->termios->c_cflag =
1542 (tty->termios->c_cflag & ~CLOCAL) |
1543 (ival ? CLOCAL : 0);
1544 break;
1545 case TIOCGSERIAL:
1546 rc = stl_getserial(portp, argp);
1547 break;
1548 case TIOCSSERIAL:
1549 rc = stl_setserial(portp, argp);
1550 break;
1551 case COM_GETPORTSTATS:
1552 rc = stl_getportstats(portp, argp);
1553 break;
1554 case COM_CLRPORTSTATS:
1555 rc = stl_clrportstats(portp, argp);
1556 break;
1557 case TIOCSERCONFIG:
1558 case TIOCSERGWILD:
1559 case TIOCSERSWILD:
1560 case TIOCSERGETLSR:
1561 case TIOCSERGSTRUCT:
1562 case TIOCSERGETMULTI:
1563 case TIOCSERSETMULTI:
1564 default:
1565 rc = -ENOIOCTLCMD;
1566 break;
1567 }
1568
1569 return(rc);
1570}
1571
1572/*****************************************************************************/
1573
1574static void stl_settermios(struct tty_struct *tty, struct termios *old)
1575{
1576 stlport_t *portp;
1577 struct termios *tiosp;
1578
1579#ifdef DEBUG
1580 printk("stl_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
1581#endif
1582
1583 if (tty == (struct tty_struct *) NULL)
1584 return;
1585 portp = tty->driver_data;
1586 if (portp == (stlport_t *) NULL)
1587 return;
1588
1589 tiosp = tty->termios;
1590 if ((tiosp->c_cflag == old->c_cflag) &&
1591 (tiosp->c_iflag == old->c_iflag))
1592 return;
1593
1594 stl_setport(portp, tiosp);
1595 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1596 -1);
1597 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1598 tty->hw_stopped = 0;
1599 stl_start(tty);
1600 }
1601 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1602 wake_up_interruptible(&portp->open_wait);
1603}
1604
1605/*****************************************************************************/
1606
1607/*
1608 * Attempt to flow control who ever is sending us data. Based on termios
1609 * settings use software or/and hardware flow control.
1610 */
1611
1612static void stl_throttle(struct tty_struct *tty)
1613{
1614 stlport_t *portp;
1615
1616#ifdef DEBUG
1617 printk("stl_throttle(tty=%x)\n", (int) tty);
1618#endif
1619
1620 if (tty == (struct tty_struct *) NULL)
1621 return;
1622 portp = tty->driver_data;
1623 if (portp == (stlport_t *) NULL)
1624 return;
1625 stl_flowctrl(portp, 0);
1626}
1627
1628/*****************************************************************************/
1629
1630/*
1631 * Unflow control the device sending us data...
1632 */
1633
1634static void stl_unthrottle(struct tty_struct *tty)
1635{
1636 stlport_t *portp;
1637
1638#ifdef DEBUG
1639 printk("stl_unthrottle(tty=%x)\n", (int) tty);
1640#endif
1641
1642 if (tty == (struct tty_struct *) NULL)
1643 return;
1644 portp = tty->driver_data;
1645 if (portp == (stlport_t *) NULL)
1646 return;
1647 stl_flowctrl(portp, 1);
1648}
1649
1650/*****************************************************************************/
1651
1652/*
1653 * Stop the transmitter. Basically to do this we will just turn TX
1654 * interrupts off.
1655 */
1656
1657static void stl_stop(struct tty_struct *tty)
1658{
1659 stlport_t *portp;
1660
1661#ifdef DEBUG
1662 printk("stl_stop(tty=%x)\n", (int) tty);
1663#endif
1664
1665 if (tty == (struct tty_struct *) NULL)
1666 return;
1667 portp = tty->driver_data;
1668 if (portp == (stlport_t *) NULL)
1669 return;
1670 stl_startrxtx(portp, -1, 0);
1671}
1672
1673/*****************************************************************************/
1674
1675/*
1676 * Start the transmitter again. Just turn TX interrupts back on.
1677 */
1678
1679static void stl_start(struct tty_struct *tty)
1680{
1681 stlport_t *portp;
1682
1683#ifdef DEBUG
1684 printk("stl_start(tty=%x)\n", (int) tty);
1685#endif
1686
1687 if (tty == (struct tty_struct *) NULL)
1688 return;
1689 portp = tty->driver_data;
1690 if (portp == (stlport_t *) NULL)
1691 return;
1692 stl_startrxtx(portp, -1, 1);
1693}
1694
1695/*****************************************************************************/
1696
1697/*
1698 * Hangup this port. This is pretty much like closing the port, only
1699 * a little more brutal. No waiting for data to drain. Shutdown the
1700 * port and maybe drop signals.
1701 */
1702
1703static void stl_hangup(struct tty_struct *tty)
1704{
1705 stlport_t *portp;
1706
1707#ifdef DEBUG
1708 printk("stl_hangup(tty=%x)\n", (int) tty);
1709#endif
1710
1711 if (tty == (struct tty_struct *) NULL)
1712 return;
1713 portp = tty->driver_data;
1714 if (portp == (stlport_t *) NULL)
1715 return;
1716
1717 portp->flags &= ~ASYNC_INITIALIZED;
1718 stl_disableintrs(portp);
1719 if (tty->termios->c_cflag & HUPCL)
1720 stl_setsignals(portp, 0, 0);
1721 stl_enablerxtx(portp, 0, 0);
1722 stl_flushbuffer(tty);
1723 portp->istate = 0;
1724 set_bit(TTY_IO_ERROR, &tty->flags);
1725 if (portp->tx.buf != (char *) NULL) {
1726 kfree(portp->tx.buf);
1727 portp->tx.buf = (char *) NULL;
1728 portp->tx.head = (char *) NULL;
1729 portp->tx.tail = (char *) NULL;
1730 }
1731 portp->tty = (struct tty_struct *) NULL;
1732 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1733 portp->refcount = 0;
1734 wake_up_interruptible(&portp->open_wait);
1735}
1736
1737/*****************************************************************************/
1738
1739static void stl_flushbuffer(struct tty_struct *tty)
1740{
1741 stlport_t *portp;
1742
1743#ifdef DEBUG
1744 printk("stl_flushbuffer(tty=%x)\n", (int) tty);
1745#endif
1746
1747 if (tty == (struct tty_struct *) NULL)
1748 return;
1749 portp = tty->driver_data;
1750 if (portp == (stlport_t *) NULL)
1751 return;
1752
1753 stl_flush(portp);
1754 tty_wakeup(tty);
1755}
1756
1757/*****************************************************************************/
1758
1759static void stl_breakctl(struct tty_struct *tty, int state)
1760{
1761 stlport_t *portp;
1762
1763#ifdef DEBUG
1764 printk("stl_breakctl(tty=%x,state=%d)\n", (int) tty, state);
1765#endif
1766
1767 if (tty == (struct tty_struct *) NULL)
1768 return;
1769 portp = tty->driver_data;
1770 if (portp == (stlport_t *) NULL)
1771 return;
1772
1773 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1774}
1775
1776/*****************************************************************************/
1777
1778static void stl_waituntilsent(struct tty_struct *tty, int timeout)
1779{
1780 stlport_t *portp;
1781 unsigned long tend;
1782
1783#ifdef DEBUG
1784 printk("stl_waituntilsent(tty=%x,timeout=%d)\n", (int) tty, timeout);
1785#endif
1786
1787 if (tty == (struct tty_struct *) NULL)
1788 return;
1789 portp = tty->driver_data;
1790 if (portp == (stlport_t *) NULL)
1791 return;
1792
1793 if (timeout == 0)
1794 timeout = HZ;
1795 tend = jiffies + timeout;
1796
1797 while (stl_datastate(portp)) {
1798 if (signal_pending(current))
1799 break;
1800 msleep_interruptible(20);
1801 if (time_after_eq(jiffies, tend))
1802 break;
1803 }
1804}
1805
1806/*****************************************************************************/
1807
1808static void stl_sendxchar(struct tty_struct *tty, char ch)
1809{
1810 stlport_t *portp;
1811
1812#ifdef DEBUG
1813 printk("stl_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
1814#endif
1815
1816 if (tty == (struct tty_struct *) NULL)
1817 return;
1818 portp = tty->driver_data;
1819 if (portp == (stlport_t *) NULL)
1820 return;
1821
1822 if (ch == STOP_CHAR(tty))
1823 stl_sendflow(portp, 0);
1824 else if (ch == START_CHAR(tty))
1825 stl_sendflow(portp, 1);
1826 else
1827 stl_putchar(tty, ch);
1828}
1829
1830/*****************************************************************************/
1831
1832#define MAXLINE 80
1833
1834/*
1835 * Format info for a specified port. The line is deliberately limited
1836 * to 80 characters. (If it is too long it will be truncated, if too
1837 * short then padded with spaces).
1838 */
1839
1840static int stl_portinfo(stlport_t *portp, int portnr, char *pos)
1841{
1842 char *sp;
1843 int sigs, cnt;
1844
1845 sp = pos;
1846 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1847 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1848 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1849
1850 if (portp->stats.rxframing)
1851 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1852 if (portp->stats.rxparity)
1853 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1854 if (portp->stats.rxbreaks)
1855 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1856 if (portp->stats.rxoverrun)
1857 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1858
1859 sigs = stl_getsignals(portp);
1860 cnt = sprintf(sp, "%s%s%s%s%s ",
1861 (sigs & TIOCM_RTS) ? "|RTS" : "",
1862 (sigs & TIOCM_CTS) ? "|CTS" : "",
1863 (sigs & TIOCM_DTR) ? "|DTR" : "",
1864 (sigs & TIOCM_CD) ? "|DCD" : "",
1865 (sigs & TIOCM_DSR) ? "|DSR" : "");
1866 *sp = ' ';
1867 sp += cnt;
1868
1869 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
1870 *sp++ = ' ';
1871 if (cnt >= MAXLINE)
1872 pos[(MAXLINE - 2)] = '+';
1873 pos[(MAXLINE - 1)] = '\n';
1874
1875 return(MAXLINE);
1876}
1877
1878/*****************************************************************************/
1879
1880/*
1881 * Port info, read from the /proc file system.
1882 */
1883
1884static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1885{
1886 stlbrd_t *brdp;
1887 stlpanel_t *panelp;
1888 stlport_t *portp;
1889 int brdnr, panelnr, portnr, totalport;
1890 int curoff, maxoff;
1891 char *pos;
1892
1893#ifdef DEBUG
1894 printk("stl_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
1895 "data=%x\n", (int) page, (int) start, (int) off, count,
1896 (int) eof, (int) data);
1897#endif
1898
1899 pos = page;
1900 totalport = 0;
1901 curoff = 0;
1902
1903 if (off == 0) {
1904 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1905 stl_drvversion);
1906 while (pos < (page + MAXLINE - 1))
1907 *pos++ = ' ';
1908 *pos++ = '\n';
1909 }
1910 curoff = MAXLINE;
1911
1912/*
1913 * We scan through for each board, panel and port. The offset is
1914 * calculated on the fly, and irrelevant ports are skipped.
1915 */
1916 for (brdnr = 0; (brdnr < stl_nrbrds); brdnr++) {
1917 brdp = stl_brds[brdnr];
1918 if (brdp == (stlbrd_t *) NULL)
1919 continue;
1920 if (brdp->state == 0)
1921 continue;
1922
1923 maxoff = curoff + (brdp->nrports * MAXLINE);
1924 if (off >= maxoff) {
1925 curoff = maxoff;
1926 continue;
1927 }
1928
1929 totalport = brdnr * STL_MAXPORTS;
1930 for (panelnr = 0; (panelnr < brdp->nrpanels); panelnr++) {
1931 panelp = brdp->panels[panelnr];
1932 if (panelp == (stlpanel_t *) NULL)
1933 continue;
1934
1935 maxoff = curoff + (panelp->nrports * MAXLINE);
1936 if (off >= maxoff) {
1937 curoff = maxoff;
1938 totalport += panelp->nrports;
1939 continue;
1940 }
1941
1942 for (portnr = 0; (portnr < panelp->nrports); portnr++,
1943 totalport++) {
1944 portp = panelp->ports[portnr];
1945 if (portp == (stlport_t *) NULL)
1946 continue;
1947 if (off >= (curoff += MAXLINE))
1948 continue;
1949 if ((pos - page + MAXLINE) > count)
1950 goto stl_readdone;
1951 pos += stl_portinfo(portp, totalport, pos);
1952 }
1953 }
1954 }
1955
1956 *eof = 1;
1957
1958stl_readdone:
1959 *start = page;
1960 return(pos - page);
1961}
1962
1963/*****************************************************************************/
1964
1965/*
1966 * All board interrupts are vectored through here first. This code then
1967 * calls off to the approrpriate board interrupt handlers.
1968 */
1969
1970static irqreturn_t stl_intr(int irq, void *dev_id, struct pt_regs *regs)
1971{
1972 stlbrd_t *brdp = (stlbrd_t *) dev_id;
1973
1974#ifdef DEBUG
1975 printk("stl_intr(brdp=%x,irq=%d,regs=%x)\n", (int) brdp, irq,
1976 (int) regs);
1977#endif
1978
1979 return IRQ_RETVAL((* brdp->isr)(brdp));
1980}
1981
1982/*****************************************************************************/
1983
1984/*
1985 * Interrupt service routine for EasyIO board types.
1986 */
1987
1988static int stl_eiointr(stlbrd_t *brdp)
1989{
1990 stlpanel_t *panelp;
1991 unsigned int iobase;
1992 int handled = 0;
1993
1994 panelp = brdp->panels[0];
1995 iobase = panelp->iobase;
1996 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1997 handled = 1;
1998 (* panelp->isr)(panelp, iobase);
1999 }
2000 return handled;
2001}
2002
2003/*****************************************************************************/
2004
2005/*
2006 * Interrupt service routine for ECH-AT board types.
2007 */
2008
2009static int stl_echatintr(stlbrd_t *brdp)
2010{
2011 stlpanel_t *panelp;
2012 unsigned int ioaddr;
2013 int bnknr;
2014 int handled = 0;
2015
2016 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2017
2018 while (inb(brdp->iostatus) & ECH_INTRPEND) {
2019 handled = 1;
2020 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2021 ioaddr = brdp->bnkstataddr[bnknr];
2022 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2023 panelp = brdp->bnk2panel[bnknr];
2024 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2025 }
2026 }
2027 }
2028
2029 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2030
2031 return handled;
2032}
2033
2034/*****************************************************************************/
2035
2036/*
2037 * Interrupt service routine for ECH-MCA board types.
2038 */
2039
2040static int stl_echmcaintr(stlbrd_t *brdp)
2041{
2042 stlpanel_t *panelp;
2043 unsigned int ioaddr;
2044 int bnknr;
2045 int handled = 0;
2046
2047 while (inb(brdp->iostatus) & ECH_INTRPEND) {
2048 handled = 1;
2049 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2050 ioaddr = brdp->bnkstataddr[bnknr];
2051 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2052 panelp = brdp->bnk2panel[bnknr];
2053 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2054 }
2055 }
2056 }
2057 return handled;
2058}
2059
2060/*****************************************************************************/
2061
2062/*
2063 * Interrupt service routine for ECH-PCI board types.
2064 */
2065
2066static int stl_echpciintr(stlbrd_t *brdp)
2067{
2068 stlpanel_t *panelp;
2069 unsigned int ioaddr;
2070 int bnknr, recheck;
2071 int handled = 0;
2072
2073 while (1) {
2074 recheck = 0;
2075 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2076 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
2077 ioaddr = brdp->bnkstataddr[bnknr];
2078 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2079 panelp = brdp->bnk2panel[bnknr];
2080 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2081 recheck++;
2082 handled = 1;
2083 }
2084 }
2085 if (! recheck)
2086 break;
2087 }
2088 return handled;
2089}
2090
2091/*****************************************************************************/
2092
2093/*
2094 * Interrupt service routine for ECH-8/64-PCI board types.
2095 */
2096
2097static int stl_echpci64intr(stlbrd_t *brdp)
2098{
2099 stlpanel_t *panelp;
2100 unsigned int ioaddr;
2101 int bnknr;
2102 int handled = 0;
2103
2104 while (inb(brdp->ioctrl) & 0x1) {
2105 handled = 1;
2106 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2107 ioaddr = brdp->bnkstataddr[bnknr];
2108 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2109 panelp = brdp->bnk2panel[bnknr];
2110 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2111 }
2112 }
2113 }
2114
2115 return handled;
2116}
2117
2118/*****************************************************************************/
2119
2120/*
2121 * Service an off-level request for some channel.
2122 */
2123static void stl_offintr(void *private)
2124{
2125 stlport_t *portp;
2126 struct tty_struct *tty;
2127 unsigned int oldsigs;
2128
2129 portp = private;
2130
2131#ifdef DEBUG
2132 printk("stl_offintr(portp=%x)\n", (int) portp);
2133#endif
2134
2135 if (portp == (stlport_t *) NULL)
2136 return;
2137
2138 tty = portp->tty;
2139 if (tty == (struct tty_struct *) NULL)
2140 return;
2141
2142 lock_kernel();
2143 if (test_bit(ASYI_TXLOW, &portp->istate)) {
2144 tty_wakeup(tty);
2145 }
2146 if (test_bit(ASYI_DCDCHANGE, &portp->istate)) {
2147 clear_bit(ASYI_DCDCHANGE, &portp->istate);
2148 oldsigs = portp->sigs;
2149 portp->sigs = stl_getsignals(portp);
2150 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
2151 wake_up_interruptible(&portp->open_wait);
2152 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0)) {
2153 if (portp->flags & ASYNC_CHECK_CD)
2154 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2155 }
2156 }
2157 unlock_kernel();
2158}
2159
2160/*****************************************************************************/
2161
2162/*
2163 * Initialize all the ports on a panel.
2164 */
2165
2166static int __init stl_initports(stlbrd_t *brdp, stlpanel_t *panelp)
2167{
2168 stlport_t *portp;
2169 int chipmask, i;
2170
2171#ifdef DEBUG
2172 printk("stl_initports(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
2173#endif
2174
2175 chipmask = stl_panelinit(brdp, panelp);
2176
2177/*
2178 * All UART's are initialized (if found!). Now go through and setup
2179 * each ports data structures.
2180 */
2181 for (i = 0; (i < panelp->nrports); i++) {
2182 portp = (stlport_t *) stl_memalloc(sizeof(stlport_t));
2183 if (portp == (stlport_t *) NULL) {
2184 printk("STALLION: failed to allocate memory "
2185 "(size=%d)\n", sizeof(stlport_t));
2186 break;
2187 }
2188 memset(portp, 0, sizeof(stlport_t));
2189
2190 portp->magic = STL_PORTMAGIC;
2191 portp->portnr = i;
2192 portp->brdnr = panelp->brdnr;
2193 portp->panelnr = panelp->panelnr;
2194 portp->uartp = panelp->uartp;
2195 portp->clk = brdp->clk;
2196 portp->baud_base = STL_BAUDBASE;
2197 portp->close_delay = STL_CLOSEDELAY;
2198 portp->closing_wait = 30 * HZ;
2199 INIT_WORK(&portp->tqueue, stl_offintr, portp);
2200 init_waitqueue_head(&portp->open_wait);
2201 init_waitqueue_head(&portp->close_wait);
2202 portp->stats.brd = portp->brdnr;
2203 portp->stats.panel = portp->panelnr;
2204 portp->stats.port = portp->portnr;
2205 panelp->ports[i] = portp;
2206 stl_portinit(brdp, panelp, portp);
2207 }
2208
2209 return(0);
2210}
2211
2212/*****************************************************************************/
2213
2214/*
2215 * Try to find and initialize an EasyIO board.
2216 */
2217
2218static inline int stl_initeio(stlbrd_t *brdp)
2219{
2220 stlpanel_t *panelp;
2221 unsigned int status;
2222 char *name;
2223 int rc;
2224
2225#ifdef DEBUG
2226 printk("stl_initeio(brdp=%x)\n", (int) brdp);
2227#endif
2228
2229 brdp->ioctrl = brdp->ioaddr1 + 1;
2230 brdp->iostatus = brdp->ioaddr1 + 2;
2231
2232 status = inb(brdp->iostatus);
2233 if ((status & EIO_IDBITMASK) == EIO_MK3)
2234 brdp->ioctrl++;
2235
2236/*
2237 * Handle board specific stuff now. The real difference is PCI
2238 * or not PCI.
2239 */
2240 if (brdp->brdtype == BRD_EASYIOPCI) {
2241 brdp->iosize1 = 0x80;
2242 brdp->iosize2 = 0x80;
2243 name = "serial(EIO-PCI)";
2244 outb(0x41, (brdp->ioaddr2 + 0x4c));
2245 } else {
2246 brdp->iosize1 = 8;
2247 name = "serial(EIO)";
2248 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2249 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2250 printk("STALLION: invalid irq=%d for brd=%d\n",
2251 brdp->irq, brdp->brdnr);
2252 return(-EINVAL);
2253 }
2254 outb((stl_vecmap[brdp->irq] | EIO_0WS |
2255 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
2256 brdp->ioctrl);
2257 }
2258
2259 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2260 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2261 "%x conflicts with another device\n", brdp->brdnr,
2262 brdp->ioaddr1);
2263 return(-EBUSY);
2264 }
2265
2266 if (brdp->iosize2 > 0)
2267 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2268 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2269 "address %x conflicts with another device\n",
2270 brdp->brdnr, brdp->ioaddr2);
2271 printk(KERN_WARNING "STALLION: Warning, also "
2272 "releasing board %d I/O address %x \n",
2273 brdp->brdnr, brdp->ioaddr1);
2274 release_region(brdp->ioaddr1, brdp->iosize1);
2275 return(-EBUSY);
2276 }
2277
2278/*
2279 * Everything looks OK, so let's go ahead and probe for the hardware.
2280 */
2281 brdp->clk = CD1400_CLK;
2282 brdp->isr = stl_eiointr;
2283
2284 switch (status & EIO_IDBITMASK) {
2285 case EIO_8PORTM:
2286 brdp->clk = CD1400_CLK8M;
2287 /* fall thru */
2288 case EIO_8PORTRS:
2289 case EIO_8PORTDI:
2290 brdp->nrports = 8;
2291 break;
2292 case EIO_4PORTRS:
2293 brdp->nrports = 4;
2294 break;
2295 case EIO_MK3:
2296 switch (status & EIO_BRDMASK) {
2297 case ID_BRD4:
2298 brdp->nrports = 4;
2299 break;
2300 case ID_BRD8:
2301 brdp->nrports = 8;
2302 break;
2303 case ID_BRD16:
2304 brdp->nrports = 16;
2305 break;
2306 default:
2307 return(-ENODEV);
2308 }
2309 break;
2310 default:
2311 return(-ENODEV);
2312 }
2313
2314/*
2315 * We have verified that the board is actually present, so now we
2316 * can complete the setup.
2317 */
2318
2319 panelp = (stlpanel_t *) stl_memalloc(sizeof(stlpanel_t));
2320 if (panelp == (stlpanel_t *) NULL) {
2321 printk(KERN_WARNING "STALLION: failed to allocate memory "
2322 "(size=%d)\n", sizeof(stlpanel_t));
2323 return(-ENOMEM);
2324 }
2325 memset(panelp, 0, sizeof(stlpanel_t));
2326
2327 panelp->magic = STL_PANELMAGIC;
2328 panelp->brdnr = brdp->brdnr;
2329 panelp->panelnr = 0;
2330 panelp->nrports = brdp->nrports;
2331 panelp->iobase = brdp->ioaddr1;
2332 panelp->hwid = status;
2333 if ((status & EIO_IDBITMASK) == EIO_MK3) {
2334 panelp->uartp = (void *) &stl_sc26198uart;
2335 panelp->isr = stl_sc26198intr;
2336 } else {
2337 panelp->uartp = (void *) &stl_cd1400uart;
2338 panelp->isr = stl_cd1400eiointr;
2339 }
2340
2341 brdp->panels[0] = panelp;
2342 brdp->nrpanels = 1;
2343 brdp->state |= BRD_FOUND;
2344 brdp->hwid = status;
2345 if (request_irq(brdp->irq, stl_intr, SA_SHIRQ, name, brdp) != 0) {
2346 printk("STALLION: failed to register interrupt "
2347 "routine for %s irq=%d\n", name, brdp->irq);
2348 rc = -ENODEV;
2349 } else {
2350 rc = 0;
2351 }
2352 return(rc);
2353}
2354
2355/*****************************************************************************/
2356
2357/*
2358 * Try to find an ECH board and initialize it. This code is capable of
2359 * dealing with all types of ECH board.
2360 */
2361
2362static inline int stl_initech(stlbrd_t *brdp)
2363{
2364 stlpanel_t *panelp;
2365 unsigned int status, nxtid, ioaddr, conflict;
2366 int panelnr, banknr, i;
2367 char *name;
2368
2369#ifdef DEBUG
2370 printk("stl_initech(brdp=%x)\n", (int) brdp);
2371#endif
2372
2373 status = 0;
2374 conflict = 0;
2375
2376/*
2377 * Set up the initial board register contents for boards. This varies a
2378 * bit between the different board types. So we need to handle each
2379 * separately. Also do a check that the supplied IRQ is good.
2380 */
2381 switch (brdp->brdtype) {
2382
2383 case BRD_ECH:
2384 brdp->isr = stl_echatintr;
2385 brdp->ioctrl = brdp->ioaddr1 + 1;
2386 brdp->iostatus = brdp->ioaddr1 + 1;
2387 status = inb(brdp->iostatus);
2388 if ((status & ECH_IDBITMASK) != ECH_ID)
2389 return(-ENODEV);
2390 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2391 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2392 printk("STALLION: invalid irq=%d for brd=%d\n",
2393 brdp->irq, brdp->brdnr);
2394 return(-EINVAL);
2395 }
2396 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2397 status |= (stl_vecmap[brdp->irq] << 1);
2398 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2399 brdp->ioctrlval = ECH_INTENABLE |
2400 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2401 for (i = 0; (i < 10); i++)
2402 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2403 brdp->iosize1 = 2;
2404 brdp->iosize2 = 32;
2405 name = "serial(EC8/32)";
2406 outb(status, brdp->ioaddr1);
2407 break;
2408
2409 case BRD_ECHMC:
2410 brdp->isr = stl_echmcaintr;
2411 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2412 brdp->iostatus = brdp->ioctrl;
2413 status = inb(brdp->iostatus);
2414 if ((status & ECH_IDBITMASK) != ECH_ID)
2415 return(-ENODEV);
2416 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2417 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2418 printk("STALLION: invalid irq=%d for brd=%d\n",
2419 brdp->irq, brdp->brdnr);
2420 return(-EINVAL);
2421 }
2422 outb(ECHMC_BRDRESET, brdp->ioctrl);
2423 outb(ECHMC_INTENABLE, brdp->ioctrl);
2424 brdp->iosize1 = 64;
2425 name = "serial(EC8/32-MC)";
2426 break;
2427
2428 case BRD_ECHPCI:
2429 brdp->isr = stl_echpciintr;
2430 brdp->ioctrl = brdp->ioaddr1 + 2;
2431 brdp->iosize1 = 4;
2432 brdp->iosize2 = 8;
2433 name = "serial(EC8/32-PCI)";
2434 break;
2435
2436 case BRD_ECH64PCI:
2437 brdp->isr = stl_echpci64intr;
2438 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2439 outb(0x43, (brdp->ioaddr1 + 0x4c));
2440 brdp->iosize1 = 0x80;
2441 brdp->iosize2 = 0x80;
2442 name = "serial(EC8/64-PCI)";
2443 break;
2444
2445 default:
2446 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2447 return(-EINVAL);
2448 break;
2449 }
2450
2451/*
2452 * Check boards for possible IO address conflicts and return fail status
2453 * if an IO conflict found.
2454 */
2455 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2456 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2457 "%x conflicts with another device\n", brdp->brdnr,
2458 brdp->ioaddr1);
2459 return(-EBUSY);
2460 }
2461
2462 if (brdp->iosize2 > 0)
2463 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2464 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2465 "address %x conflicts with another device\n",
2466 brdp->brdnr, brdp->ioaddr2);
2467 printk(KERN_WARNING "STALLION: Warning, also "
2468 "releasing board %d I/O address %x \n",
2469 brdp->brdnr, brdp->ioaddr1);
2470 release_region(brdp->ioaddr1, brdp->iosize1);
2471 return(-EBUSY);
2472 }
2473
2474/*
2475 * Scan through the secondary io address space looking for panels.
2476 * As we find'em allocate and initialize panel structures for each.
2477 */
2478 brdp->clk = CD1400_CLK;
2479 brdp->hwid = status;
2480
2481 ioaddr = brdp->ioaddr2;
2482 banknr = 0;
2483 panelnr = 0;
2484 nxtid = 0;
2485
2486 for (i = 0; (i < STL_MAXPANELS); i++) {
2487 if (brdp->brdtype == BRD_ECHPCI) {
2488 outb(nxtid, brdp->ioctrl);
2489 ioaddr = brdp->ioaddr2;
2490 }
2491 status = inb(ioaddr + ECH_PNLSTATUS);
2492 if ((status & ECH_PNLIDMASK) != nxtid)
2493 break;
2494 panelp = (stlpanel_t *) stl_memalloc(sizeof(stlpanel_t));
2495 if (panelp == (stlpanel_t *) NULL) {
2496 printk("STALLION: failed to allocate memory "
2497 "(size=%d)\n", sizeof(stlpanel_t));
2498 break;
2499 }
2500 memset(panelp, 0, sizeof(stlpanel_t));
2501 panelp->magic = STL_PANELMAGIC;
2502 panelp->brdnr = brdp->brdnr;
2503 panelp->panelnr = panelnr;
2504 panelp->iobase = ioaddr;
2505 panelp->pagenr = nxtid;
2506 panelp->hwid = status;
2507 brdp->bnk2panel[banknr] = panelp;
2508 brdp->bnkpageaddr[banknr] = nxtid;
2509 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2510
2511 if (status & ECH_PNLXPID) {
2512 panelp->uartp = (void *) &stl_sc26198uart;
2513 panelp->isr = stl_sc26198intr;
2514 if (status & ECH_PNL16PORT) {
2515 panelp->nrports = 16;
2516 brdp->bnk2panel[banknr] = panelp;
2517 brdp->bnkpageaddr[banknr] = nxtid;
2518 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2519 ECH_PNLSTATUS;
2520 } else {
2521 panelp->nrports = 8;
2522 }
2523 } else {
2524 panelp->uartp = (void *) &stl_cd1400uart;
2525 panelp->isr = stl_cd1400echintr;
2526 if (status & ECH_PNL16PORT) {
2527 panelp->nrports = 16;
2528 panelp->ackmask = 0x80;
2529 if (brdp->brdtype != BRD_ECHPCI)
2530 ioaddr += EREG_BANKSIZE;
2531 brdp->bnk2panel[banknr] = panelp;
2532 brdp->bnkpageaddr[banknr] = ++nxtid;
2533 brdp->bnkstataddr[banknr++] = ioaddr +
2534 ECH_PNLSTATUS;
2535 } else {
2536 panelp->nrports = 8;
2537 panelp->ackmask = 0xc0;
2538 }
2539 }
2540
2541 nxtid++;
2542 ioaddr += EREG_BANKSIZE;
2543 brdp->nrports += panelp->nrports;
2544 brdp->panels[panelnr++] = panelp;
2545 if ((brdp->brdtype != BRD_ECHPCI) &&
2546 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2)))
2547 break;
2548 }
2549
2550 brdp->nrpanels = panelnr;
2551 brdp->nrbnks = banknr;
2552 if (brdp->brdtype == BRD_ECH)
2553 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2554
2555 brdp->state |= BRD_FOUND;
2556 if (request_irq(brdp->irq, stl_intr, SA_SHIRQ, name, brdp) != 0) {
2557 printk("STALLION: failed to register interrupt "
2558 "routine for %s irq=%d\n", name, brdp->irq);
2559 i = -ENODEV;
2560 } else {
2561 i = 0;
2562 }
2563
2564 return(i);
2565}
2566
2567/*****************************************************************************/
2568
2569/*
2570 * Initialize and configure the specified board.
2571 * Scan through all the boards in the configuration and see what we
2572 * can find. Handle EIO and the ECH boards a little differently here
2573 * since the initial search and setup is very different.
2574 */
2575
2576static int __init stl_brdinit(stlbrd_t *brdp)
2577{
2578 int i;
2579
2580#ifdef DEBUG
2581 printk("stl_brdinit(brdp=%x)\n", (int) brdp);
2582#endif
2583
2584 switch (brdp->brdtype) {
2585 case BRD_EASYIO:
2586 case BRD_EASYIOPCI:
2587 stl_initeio(brdp);
2588 break;
2589 case BRD_ECH:
2590 case BRD_ECHMC:
2591 case BRD_ECHPCI:
2592 case BRD_ECH64PCI:
2593 stl_initech(brdp);
2594 break;
2595 default:
2596 printk("STALLION: board=%d is unknown board type=%d\n",
2597 brdp->brdnr, brdp->brdtype);
2598 return(ENODEV);
2599 }
2600
2601 stl_brds[brdp->brdnr] = brdp;
2602 if ((brdp->state & BRD_FOUND) == 0) {
2603 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2604 stl_brdnames[brdp->brdtype], brdp->brdnr,
2605 brdp->ioaddr1, brdp->irq);
2606 return(ENODEV);
2607 }
2608
2609 for (i = 0; (i < STL_MAXPANELS); i++)
2610 if (brdp->panels[i] != (stlpanel_t *) NULL)
2611 stl_initports(brdp, brdp->panels[i]);
2612
2613 printk("STALLION: %s found, board=%d io=%x irq=%d "
2614 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2615 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2616 brdp->nrports);
2617 return(0);
2618}
2619
2620/*****************************************************************************/
2621
2622/*
2623 * Find the next available board number that is free.
2624 */
2625
2626static inline int stl_getbrdnr(void)
2627{
2628 int i;
2629
2630 for (i = 0; (i < STL_MAXBRDS); i++) {
2631 if (stl_brds[i] == (stlbrd_t *) NULL) {
2632 if (i >= stl_nrbrds)
2633 stl_nrbrds = i + 1;
2634 return(i);
2635 }
2636 }
2637 return(-1);
2638}
2639
2640/*****************************************************************************/
2641
2642#ifdef CONFIG_PCI
2643
2644/*
2645 * We have a Stallion board. Allocate a board structure and
2646 * initialize it. Read its IO and IRQ resources from PCI
2647 * configuration space.
2648 */
2649
2650static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp)
2651{
2652 stlbrd_t *brdp;
2653
2654#ifdef DEBUG
2655 printk("stl_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n", brdtype,
2656 devp->bus->number, devp->devfn);
2657#endif
2658
2659 if (pci_enable_device(devp))
2660 return(-EIO);
2661 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
2662 return(-ENOMEM);
2663 if ((brdp->brdnr = stl_getbrdnr()) < 0) {
2664 printk("STALLION: too many boards found, "
2665 "maximum supported %d\n", STL_MAXBRDS);
2666 return(0);
2667 }
2668 brdp->brdtype = brdtype;
2669
2670/*
2671 * Different Stallion boards use the BAR registers in different ways,
2672 * so set up io addresses based on board type.
2673 */
2674#ifdef DEBUG
2675 printk("%s(%d): BAR[]=%x,%x,%x,%x IRQ=%x\n", __FILE__, __LINE__,
2676 pci_resource_start(devp, 0), pci_resource_start(devp, 1),
2677 pci_resource_start(devp, 2), pci_resource_start(devp, 3), devp->irq);
2678#endif
2679
2680/*
2681 * We have all resources from the board, so let's setup the actual
2682 * board structure now.
2683 */
2684 switch (brdtype) {
2685 case BRD_ECHPCI:
2686 brdp->ioaddr2 = pci_resource_start(devp, 0);
2687 brdp->ioaddr1 = pci_resource_start(devp, 1);
2688 break;
2689 case BRD_ECH64PCI:
2690 brdp->ioaddr2 = pci_resource_start(devp, 2);
2691 brdp->ioaddr1 = pci_resource_start(devp, 1);
2692 break;
2693 case BRD_EASYIOPCI:
2694 brdp->ioaddr1 = pci_resource_start(devp, 2);
2695 brdp->ioaddr2 = pci_resource_start(devp, 1);
2696 break;
2697 default:
2698 printk("STALLION: unknown PCI board type=%d\n", brdtype);
2699 break;
2700 }
2701
2702 brdp->irq = devp->irq;
2703 stl_brdinit(brdp);
2704
2705 return(0);
2706}
2707
2708/*****************************************************************************/
2709
2710/*
2711 * Find all Stallion PCI boards that might be installed. Initialize each
2712 * one as it is found.
2713 */
2714
2715
2716static inline int stl_findpcibrds(void)
2717{
2718 struct pci_dev *dev = NULL;
2719 int i, rc;
2720
2721#ifdef DEBUG
2722 printk("stl_findpcibrds()\n");
2723#endif
2724
2725 for (i = 0; (i < stl_nrpcibrds); i++)
2726 while ((dev = pci_find_device(stl_pcibrds[i].vendid,
2727 stl_pcibrds[i].devid, dev))) {
2728
2729/*
2730 * Found a device on the PCI bus that has our vendor and
2731 * device ID. Need to check now that it is really us.
2732 */
2733 if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2734 continue;
2735
2736 rc = stl_initpcibrd(stl_pcibrds[i].brdtype, dev);
2737 if (rc)
2738 return(rc);
2739 }
2740
2741 return(0);
2742}
2743
2744#endif
2745
2746/*****************************************************************************/
2747
2748/*
2749 * Scan through all the boards in the configuration and see what we
2750 * can find. Handle EIO and the ECH boards a little differently here
2751 * since the initial search and setup is too different.
2752 */
2753
2754static inline int stl_initbrds(void)
2755{
2756 stlbrd_t *brdp;
2757 stlconf_t *confp;
2758 int i;
2759
2760#ifdef DEBUG
2761 printk("stl_initbrds()\n");
2762#endif
2763
2764 if (stl_nrbrds > STL_MAXBRDS) {
2765 printk("STALLION: too many boards in configuration table, "
2766 "truncating to %d\n", STL_MAXBRDS);
2767 stl_nrbrds = STL_MAXBRDS;
2768 }
2769
2770/*
2771 * Firstly scan the list of static boards configured. Allocate
2772 * resources and initialize the boards as found.
2773 */
2774 for (i = 0; (i < stl_nrbrds); i++) {
2775 confp = &stl_brdconf[i];
2776 stl_parsebrd(confp, stl_brdsp[i]);
2777 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
2778 return(-ENOMEM);
2779 brdp->brdnr = i;
2780 brdp->brdtype = confp->brdtype;
2781 brdp->ioaddr1 = confp->ioaddr1;
2782 brdp->ioaddr2 = confp->ioaddr2;
2783 brdp->irq = confp->irq;
2784 brdp->irqtype = confp->irqtype;
2785 stl_brdinit(brdp);
2786 }
2787
2788/*
2789 * Find any dynamically supported boards. That is via module load
2790 * line options or auto-detected on the PCI bus.
2791 */
2792 stl_argbrds();
2793#ifdef CONFIG_PCI
2794 stl_findpcibrds();
2795#endif
2796
2797 return(0);
2798}
2799
2800/*****************************************************************************/
2801
2802/*
2803 * Return the board stats structure to user app.
2804 */
2805
2806static int stl_getbrdstats(combrd_t __user *bp)
2807{
2808 stlbrd_t *brdp;
2809 stlpanel_t *panelp;
2810 int i;
2811
2812 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2813 return -EFAULT;
2814 if (stl_brdstats.brd >= STL_MAXBRDS)
2815 return(-ENODEV);
2816 brdp = stl_brds[stl_brdstats.brd];
2817 if (brdp == (stlbrd_t *) NULL)
2818 return(-ENODEV);
2819
2820 memset(&stl_brdstats, 0, sizeof(combrd_t));
2821 stl_brdstats.brd = brdp->brdnr;
2822 stl_brdstats.type = brdp->brdtype;
2823 stl_brdstats.hwid = brdp->hwid;
2824 stl_brdstats.state = brdp->state;
2825 stl_brdstats.ioaddr = brdp->ioaddr1;
2826 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2827 stl_brdstats.irq = brdp->irq;
2828 stl_brdstats.nrpanels = brdp->nrpanels;
2829 stl_brdstats.nrports = brdp->nrports;
2830 for (i = 0; (i < brdp->nrpanels); i++) {
2831 panelp = brdp->panels[i];
2832 stl_brdstats.panels[i].panel = i;
2833 stl_brdstats.panels[i].hwid = panelp->hwid;
2834 stl_brdstats.panels[i].nrports = panelp->nrports;
2835 }
2836
2837 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2838}
2839
2840/*****************************************************************************/
2841
2842/*
2843 * Resolve the referenced port number into a port struct pointer.
2844 */
2845
2846static stlport_t *stl_getport(int brdnr, int panelnr, int portnr)
2847{
2848 stlbrd_t *brdp;
2849 stlpanel_t *panelp;
2850
2851 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
2852 return((stlport_t *) NULL);
2853 brdp = stl_brds[brdnr];
2854 if (brdp == (stlbrd_t *) NULL)
2855 return((stlport_t *) NULL);
2856 if ((panelnr < 0) || (panelnr >= brdp->nrpanels))
2857 return((stlport_t *) NULL);
2858 panelp = brdp->panels[panelnr];
2859 if (panelp == (stlpanel_t *) NULL)
2860 return((stlport_t *) NULL);
2861 if ((portnr < 0) || (portnr >= panelp->nrports))
2862 return((stlport_t *) NULL);
2863 return(panelp->ports[portnr]);
2864}
2865
2866/*****************************************************************************/
2867
2868/*
2869 * Return the port stats structure to user app. A NULL port struct
2870 * pointer passed in means that we need to find out from the app
2871 * what port to get stats for (used through board control device).
2872 */
2873
2874static int stl_getportstats(stlport_t *portp, comstats_t __user *cp)
2875{
2876 unsigned char *head, *tail;
2877 unsigned long flags;
2878
2879 if (!portp) {
2880 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2881 return -EFAULT;
2882 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2883 stl_comstats.port);
2884 if (portp == (stlport_t *) NULL)
2885 return(-ENODEV);
2886 }
2887
2888 portp->stats.state = portp->istate;
2889 portp->stats.flags = portp->flags;
2890 portp->stats.hwid = portp->hwid;
2891
2892 portp->stats.ttystate = 0;
2893 portp->stats.cflags = 0;
2894 portp->stats.iflags = 0;
2895 portp->stats.oflags = 0;
2896 portp->stats.lflags = 0;
2897 portp->stats.rxbuffered = 0;
2898
2899 save_flags(flags);
2900 cli();
2901 if (portp->tty != (struct tty_struct *) NULL) {
2902 if (portp->tty->driver_data == portp) {
2903 portp->stats.ttystate = portp->tty->flags;
33f0f88f
AC
2904 /* No longer available as a statistic */
2905 portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */
1da177e4
LT
2906 if (portp->tty->termios != (struct termios *) NULL) {
2907 portp->stats.cflags = portp->tty->termios->c_cflag;
2908 portp->stats.iflags = portp->tty->termios->c_iflag;
2909 portp->stats.oflags = portp->tty->termios->c_oflag;
2910 portp->stats.lflags = portp->tty->termios->c_lflag;
2911 }
2912 }
2913 }
2914 restore_flags(flags);
2915
2916 head = portp->tx.head;
2917 tail = portp->tx.tail;
2918 portp->stats.txbuffered = ((head >= tail) ? (head - tail) :
2919 (STL_TXBUFSIZE - (tail - head)));
2920
2921 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2922
2923 return copy_to_user(cp, &portp->stats,
2924 sizeof(comstats_t)) ? -EFAULT : 0;
2925}
2926
2927/*****************************************************************************/
2928
2929/*
2930 * Clear the port stats structure. We also return it zeroed out...
2931 */
2932
2933static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp)
2934{
2935 if (!portp) {
2936 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2937 return -EFAULT;
2938 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2939 stl_comstats.port);
2940 if (portp == (stlport_t *) NULL)
2941 return(-ENODEV);
2942 }
2943
2944 memset(&portp->stats, 0, sizeof(comstats_t));
2945 portp->stats.brd = portp->brdnr;
2946 portp->stats.panel = portp->panelnr;
2947 portp->stats.port = portp->portnr;
2948 return copy_to_user(cp, &portp->stats,
2949 sizeof(comstats_t)) ? -EFAULT : 0;
2950}
2951
2952/*****************************************************************************/
2953
2954/*
2955 * Return the entire driver ports structure to a user app.
2956 */
2957
2958static int stl_getportstruct(stlport_t __user *arg)
2959{
2960 stlport_t *portp;
2961
2962 if (copy_from_user(&stl_dummyport, arg, sizeof(stlport_t)))
2963 return -EFAULT;
2964 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2965 stl_dummyport.portnr);
2966 if (!portp)
2967 return -ENODEV;
2968 return copy_to_user(arg, portp, sizeof(stlport_t)) ? -EFAULT : 0;
2969}
2970
2971/*****************************************************************************/
2972
2973/*
2974 * Return the entire driver board structure to a user app.
2975 */
2976
2977static int stl_getbrdstruct(stlbrd_t __user *arg)
2978{
2979 stlbrd_t *brdp;
2980
2981 if (copy_from_user(&stl_dummybrd, arg, sizeof(stlbrd_t)))
2982 return -EFAULT;
2983 if ((stl_dummybrd.brdnr < 0) || (stl_dummybrd.brdnr >= STL_MAXBRDS))
2984 return -ENODEV;
2985 brdp = stl_brds[stl_dummybrd.brdnr];
2986 if (!brdp)
2987 return(-ENODEV);
2988 return copy_to_user(arg, brdp, sizeof(stlbrd_t)) ? -EFAULT : 0;
2989}
2990
2991/*****************************************************************************/
2992
2993/*
2994 * The "staliomem" device is also required to do some special operations
2995 * on the board and/or ports. In this driver it is mostly used for stats
2996 * collection.
2997 */
2998
2999static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
3000{
3001 int brdnr, rc;
3002 void __user *argp = (void __user *)arg;
3003
3004#ifdef DEBUG
3005 printk("stl_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n", (int) ip,
3006 (int) fp, cmd, (int) arg);
3007#endif
3008
3009 brdnr = iminor(ip);
3010 if (brdnr >= STL_MAXBRDS)
3011 return(-ENODEV);
3012 rc = 0;
3013
3014 switch (cmd) {
3015 case COM_GETPORTSTATS:
3016 rc = stl_getportstats(NULL, argp);
3017 break;
3018 case COM_CLRPORTSTATS:
3019 rc = stl_clrportstats(NULL, argp);
3020 break;
3021 case COM_GETBRDSTATS:
3022 rc = stl_getbrdstats(argp);
3023 break;
3024 case COM_READPORT:
3025 rc = stl_getportstruct(argp);
3026 break;
3027 case COM_READBOARD:
3028 rc = stl_getbrdstruct(argp);
3029 break;
3030 default:
3031 rc = -ENOIOCTLCMD;
3032 break;
3033 }
3034
3035 return(rc);
3036}
3037
3038static struct tty_operations stl_ops = {
3039 .open = stl_open,
3040 .close = stl_close,
3041 .write = stl_write,
3042 .put_char = stl_putchar,
3043 .flush_chars = stl_flushchars,
3044 .write_room = stl_writeroom,
3045 .chars_in_buffer = stl_charsinbuffer,
3046 .ioctl = stl_ioctl,
3047 .set_termios = stl_settermios,
3048 .throttle = stl_throttle,
3049 .unthrottle = stl_unthrottle,
3050 .stop = stl_stop,
3051 .start = stl_start,
3052 .hangup = stl_hangup,
3053 .flush_buffer = stl_flushbuffer,
3054 .break_ctl = stl_breakctl,
3055 .wait_until_sent = stl_waituntilsent,
3056 .send_xchar = stl_sendxchar,
3057 .read_proc = stl_readproc,
3058 .tiocmget = stl_tiocmget,
3059 .tiocmset = stl_tiocmset,
3060};
3061
3062/*****************************************************************************/
3063
408b664a 3064static int __init stl_init(void)
1da177e4
LT
3065{
3066 int i;
3067 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
3068
3069 stl_initbrds();
3070
3071 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
3072 if (!stl_serial)
3073 return -1;
3074
3075/*
3076 * Allocate a temporary write buffer.
3077 */
3078 stl_tmpwritebuf = (char *) stl_memalloc(STL_TXBUFSIZE);
3079 if (stl_tmpwritebuf == (char *) NULL)
3080 printk("STALLION: failed to allocate memory (size=%d)\n",
3081 STL_TXBUFSIZE);
3082
3083/*
3084 * Set up a character driver for per board stuff. This is mainly used
3085 * to do stats ioctls on the ports.
3086 */
3087 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
3088 printk("STALLION: failed to register serial board device\n");
3089 devfs_mk_dir("staliomem");
3090
ca8eca68 3091 stallion_class = class_create(THIS_MODULE, "staliomem");
1da177e4
LT
3092 for (i = 0; i < 4; i++) {
3093 devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR, i),
3094 S_IFCHR|S_IRUSR|S_IWUSR,
3095 "staliomem/%d", i);
53f46542
GKH
3096 class_device_create(stallion_class, NULL,
3097 MKDEV(STL_SIOMEMMAJOR, i), NULL,
3098 "staliomem%d", i);
1da177e4
LT
3099 }
3100
3101 stl_serial->owner = THIS_MODULE;
3102 stl_serial->driver_name = stl_drvname;
3103 stl_serial->name = "ttyE";
3104 stl_serial->devfs_name = "tts/E";
3105 stl_serial->major = STL_SERIALMAJOR;
3106 stl_serial->minor_start = 0;
3107 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
3108 stl_serial->subtype = SERIAL_TYPE_NORMAL;
3109 stl_serial->init_termios = stl_deftermios;
3110 stl_serial->flags = TTY_DRIVER_REAL_RAW;
3111 tty_set_operations(stl_serial, &stl_ops);
3112
3113 if (tty_register_driver(stl_serial)) {
3114 put_tty_driver(stl_serial);
3115 printk("STALLION: failed to register serial driver\n");
3116 return -1;
3117 }
3118
3119 return(0);
3120}
3121
3122/*****************************************************************************/
3123/* CD1400 HARDWARE FUNCTIONS */
3124/*****************************************************************************/
3125
3126/*
3127 * These functions get/set/update the registers of the cd1400 UARTs.
3128 * Access to the cd1400 registers is via an address/data io port pair.
3129 * (Maybe should make this inline...)
3130 */
3131
3132static int stl_cd1400getreg(stlport_t *portp, int regnr)
3133{
3134 outb((regnr + portp->uartaddr), portp->ioaddr);
3135 return(inb(portp->ioaddr + EREG_DATA));
3136}
3137
3138static void stl_cd1400setreg(stlport_t *portp, int regnr, int value)
3139{
3140 outb((regnr + portp->uartaddr), portp->ioaddr);
3141 outb(value, portp->ioaddr + EREG_DATA);
3142}
3143
3144static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value)
3145{
3146 outb((regnr + portp->uartaddr), portp->ioaddr);
3147 if (inb(portp->ioaddr + EREG_DATA) != value) {
3148 outb(value, portp->ioaddr + EREG_DATA);
3149 return(1);
3150 }
3151 return(0);
3152}
3153
3154/*****************************************************************************/
3155
3156/*
3157 * Inbitialize the UARTs in a panel. We don't care what sort of board
3158 * these ports are on - since the port io registers are almost
3159 * identical when dealing with ports.
3160 */
3161
3162static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
3163{
3164 unsigned int gfrcr;
3165 int chipmask, i, j;
3166 int nrchips, uartaddr, ioaddr;
3167
3168#ifdef DEBUG
3169 printk("stl_panelinit(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
3170#endif
3171
3172 BRDENABLE(panelp->brdnr, panelp->pagenr);
3173
3174/*
3175 * Check that each chip is present and started up OK.
3176 */
3177 chipmask = 0;
3178 nrchips = panelp->nrports / CD1400_PORTS;
3179 for (i = 0; (i < nrchips); i++) {
3180 if (brdp->brdtype == BRD_ECHPCI) {
3181 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
3182 ioaddr = panelp->iobase;
3183 } else {
3184 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
3185 }
3186 uartaddr = (i & 0x01) ? 0x080 : 0;
3187 outb((GFRCR + uartaddr), ioaddr);
3188 outb(0, (ioaddr + EREG_DATA));
3189 outb((CCR + uartaddr), ioaddr);
3190 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
3191 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
3192 outb((GFRCR + uartaddr), ioaddr);
3193 for (j = 0; (j < CCR_MAXWAIT); j++) {
3194 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
3195 break;
3196 }
3197 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
3198 printk("STALLION: cd1400 not responding, "
3199 "brd=%d panel=%d chip=%d\n",
3200 panelp->brdnr, panelp->panelnr, i);
3201 continue;
3202 }
3203 chipmask |= (0x1 << i);
3204 outb((PPR + uartaddr), ioaddr);
3205 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
3206 }
3207
3208 BRDDISABLE(panelp->brdnr);
3209 return(chipmask);
3210}
3211
3212/*****************************************************************************/
3213
3214/*
3215 * Initialize hardware specific port registers.
3216 */
3217
3218static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
3219{
3220#ifdef DEBUG
3221 printk("stl_cd1400portinit(brdp=%x,panelp=%x,portp=%x)\n",
3222 (int) brdp, (int) panelp, (int) portp);
3223#endif
3224
3225 if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
3226 (portp == (stlport_t *) NULL))
3227 return;
3228
3229 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
3230 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
3231 portp->uartaddr = (portp->portnr & 0x04) << 5;
3232 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
3233
3234 BRDENABLE(portp->brdnr, portp->pagenr);
3235 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3236 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
3237 portp->hwid = stl_cd1400getreg(portp, GFRCR);
3238 BRDDISABLE(portp->brdnr);
3239}
3240
3241/*****************************************************************************/
3242
3243/*
3244 * Wait for the command register to be ready. We will poll this,
3245 * since it won't usually take too long to be ready.
3246 */
3247
3248static void stl_cd1400ccrwait(stlport_t *portp)
3249{
3250 int i;
3251
3252 for (i = 0; (i < CCR_MAXWAIT); i++) {
3253 if (stl_cd1400getreg(portp, CCR) == 0) {
3254 return;
3255 }
3256 }
3257
3258 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
3259 portp->portnr, portp->panelnr, portp->brdnr);
3260}
3261
3262/*****************************************************************************/
3263
3264/*
3265 * Set up the cd1400 registers for a port based on the termios port
3266 * settings.
3267 */
3268
3269static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp)
3270{
3271 stlbrd_t *brdp;
3272 unsigned long flags;
3273 unsigned int clkdiv, baudrate;
3274 unsigned char cor1, cor2, cor3;
3275 unsigned char cor4, cor5, ccr;
3276 unsigned char srer, sreron, sreroff;
3277 unsigned char mcor1, mcor2, rtpr;
3278 unsigned char clk, div;
3279
3280 cor1 = 0;
3281 cor2 = 0;
3282 cor3 = 0;
3283 cor4 = 0;
3284 cor5 = 0;
3285 ccr = 0;
3286 rtpr = 0;
3287 clk = 0;
3288 div = 0;
3289 mcor1 = 0;
3290 mcor2 = 0;
3291 sreron = 0;
3292 sreroff = 0;
3293
3294 brdp = stl_brds[portp->brdnr];
3295 if (brdp == (stlbrd_t *) NULL)
3296 return;
3297
3298/*
3299 * Set up the RX char ignore mask with those RX error types we
3300 * can ignore. We can get the cd1400 to help us out a little here,
3301 * it will ignore parity errors and breaks for us.
3302 */
3303 portp->rxignoremsk = 0;
3304 if (tiosp->c_iflag & IGNPAR) {
3305 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
3306 cor1 |= COR1_PARIGNORE;
3307 }
3308 if (tiosp->c_iflag & IGNBRK) {
3309 portp->rxignoremsk |= ST_BREAK;
3310 cor4 |= COR4_IGNBRK;
3311 }
3312
3313 portp->rxmarkmsk = ST_OVERRUN;
3314 if (tiosp->c_iflag & (INPCK | PARMRK))
3315 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
3316 if (tiosp->c_iflag & BRKINT)
3317 portp->rxmarkmsk |= ST_BREAK;
3318
3319/*
3320 * Go through the char size, parity and stop bits and set all the
3321 * option register appropriately.
3322 */
3323 switch (tiosp->c_cflag & CSIZE) {
3324 case CS5:
3325 cor1 |= COR1_CHL5;
3326 break;
3327 case CS6:
3328 cor1 |= COR1_CHL6;
3329 break;
3330 case CS7:
3331 cor1 |= COR1_CHL7;
3332 break;
3333 default:
3334 cor1 |= COR1_CHL8;
3335 break;
3336 }
3337
3338 if (tiosp->c_cflag & CSTOPB)
3339 cor1 |= COR1_STOP2;
3340 else
3341 cor1 |= COR1_STOP1;
3342
3343 if (tiosp->c_cflag & PARENB) {
3344 if (tiosp->c_cflag & PARODD)
3345 cor1 |= (COR1_PARENB | COR1_PARODD);
3346 else
3347 cor1 |= (COR1_PARENB | COR1_PAREVEN);
3348 } else {
3349 cor1 |= COR1_PARNONE;
3350 }
3351
3352/*
3353 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
3354 * space for hardware flow control and the like. This should be set to
3355 * VMIN. Also here we will set the RX data timeout to 10ms - this should
3356 * really be based on VTIME.
3357 */
3358 cor3 |= FIFO_RXTHRESHOLD;
3359 rtpr = 2;
3360
3361/*
3362 * Calculate the baud rate timers. For now we will just assume that
3363 * the input and output baud are the same. Could have used a baud
3364 * table here, but this way we can generate virtually any baud rate
3365 * we like!
3366 */
3367 baudrate = tiosp->c_cflag & CBAUD;
3368 if (baudrate & CBAUDEX) {
3369 baudrate &= ~CBAUDEX;
3370 if ((baudrate < 1) || (baudrate > 4))
3371 tiosp->c_cflag &= ~CBAUDEX;
3372 else
3373 baudrate += 15;
3374 }
3375 baudrate = stl_baudrates[baudrate];
3376 if ((tiosp->c_cflag & CBAUD) == B38400) {
3377 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3378 baudrate = 57600;
3379 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3380 baudrate = 115200;
3381 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3382 baudrate = 230400;
3383 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3384 baudrate = 460800;
3385 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3386 baudrate = (portp->baud_base / portp->custom_divisor);
3387 }
3388 if (baudrate > STL_CD1400MAXBAUD)
3389 baudrate = STL_CD1400MAXBAUD;
3390
3391 if (baudrate > 0) {
3392 for (clk = 0; (clk < CD1400_NUMCLKS); clk++) {
3393 clkdiv = ((portp->clk / stl_cd1400clkdivs[clk]) / baudrate);
3394 if (clkdiv < 0x100)
3395 break;
3396 }
3397 div = (unsigned char) clkdiv;
3398 }
3399
3400/*
3401 * Check what form of modem signaling is required and set it up.
3402 */
3403 if ((tiosp->c_cflag & CLOCAL) == 0) {
3404 mcor1 |= MCOR1_DCD;
3405 mcor2 |= MCOR2_DCD;
3406 sreron |= SRER_MODEM;
3407 portp->flags |= ASYNC_CHECK_CD;
3408 } else {
3409 portp->flags &= ~ASYNC_CHECK_CD;
3410 }
3411
3412/*
3413 * Setup cd1400 enhanced modes if we can. In particular we want to
3414 * handle as much of the flow control as possible automatically. As
3415 * well as saving a few CPU cycles it will also greatly improve flow
3416 * control reliability.
3417 */
3418 if (tiosp->c_iflag & IXON) {
3419 cor2 |= COR2_TXIBE;
3420 cor3 |= COR3_SCD12;
3421 if (tiosp->c_iflag & IXANY)
3422 cor2 |= COR2_IXM;
3423 }
3424
3425 if (tiosp->c_cflag & CRTSCTS) {
3426 cor2 |= COR2_CTSAE;
3427 mcor1 |= FIFO_RTSTHRESHOLD;
3428 }
3429
3430/*
3431 * All cd1400 register values calculated so go through and set
3432 * them all up.
3433 */
3434
3435#ifdef DEBUG
3436 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3437 portp->portnr, portp->panelnr, portp->brdnr);
3438 printk(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3439 cor1, cor2, cor3, cor4, cor5);
3440 printk(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3441 mcor1, mcor2, rtpr, sreron, sreroff);
3442 printk(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
3443 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3444 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3445 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3446#endif
3447
3448 save_flags(flags);
3449 cli();
3450 BRDENABLE(portp->brdnr, portp->pagenr);
3451 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
3452 srer = stl_cd1400getreg(portp, SRER);
3453 stl_cd1400setreg(portp, SRER, 0);
3454 if (stl_cd1400updatereg(portp, COR1, cor1))
3455 ccr = 1;
3456 if (stl_cd1400updatereg(portp, COR2, cor2))
3457 ccr = 1;
3458 if (stl_cd1400updatereg(portp, COR3, cor3))
3459 ccr = 1;
3460 if (ccr) {
3461 stl_cd1400ccrwait(portp);
3462 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
3463 }
3464 stl_cd1400setreg(portp, COR4, cor4);
3465 stl_cd1400setreg(portp, COR5, cor5);
3466 stl_cd1400setreg(portp, MCOR1, mcor1);
3467 stl_cd1400setreg(portp, MCOR2, mcor2);
3468 if (baudrate > 0) {
3469 stl_cd1400setreg(portp, TCOR, clk);
3470 stl_cd1400setreg(portp, TBPR, div);
3471 stl_cd1400setreg(portp, RCOR, clk);
3472 stl_cd1400setreg(portp, RBPR, div);
3473 }
3474 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3475 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3476 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3477 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3478 stl_cd1400setreg(portp, RTPR, rtpr);
3479 mcor1 = stl_cd1400getreg(portp, MSVR1);
3480 if (mcor1 & MSVR1_DCD)
3481 portp->sigs |= TIOCM_CD;
3482 else
3483 portp->sigs &= ~TIOCM_CD;
3484 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3485 BRDDISABLE(portp->brdnr);
3486 restore_flags(flags);
3487}
3488
3489/*****************************************************************************/
3490
3491/*
3492 * Set the state of the DTR and RTS signals.
3493 */
3494
3495static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts)
3496{
3497 unsigned char msvr1, msvr2;
3498 unsigned long flags;
3499
3500#ifdef DEBUG
3501 printk("stl_cd1400setsignals(portp=%x,dtr=%d,rts=%d)\n",
3502 (int) portp, dtr, rts);
3503#endif
3504
3505 msvr1 = 0;
3506 msvr2 = 0;
3507 if (dtr > 0)
3508 msvr1 = MSVR1_DTR;
3509 if (rts > 0)
3510 msvr2 = MSVR2_RTS;
3511
3512 save_flags(flags);
3513 cli();
3514 BRDENABLE(portp->brdnr, portp->pagenr);
3515 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3516 if (rts >= 0)
3517 stl_cd1400setreg(portp, MSVR2, msvr2);
3518 if (dtr >= 0)
3519 stl_cd1400setreg(portp, MSVR1, msvr1);
3520 BRDDISABLE(portp->brdnr);
3521 restore_flags(flags);
3522}
3523
3524/*****************************************************************************/
3525
3526/*
3527 * Return the state of the signals.
3528 */
3529
3530static int stl_cd1400getsignals(stlport_t *portp)
3531{
3532 unsigned char msvr1, msvr2;
3533 unsigned long flags;
3534 int sigs;
3535
3536#ifdef DEBUG
3537 printk("stl_cd1400getsignals(portp=%x)\n", (int) portp);
3538#endif
3539
3540 save_flags(flags);
3541 cli();
3542 BRDENABLE(portp->brdnr, portp->pagenr);
3543 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3544 msvr1 = stl_cd1400getreg(portp, MSVR1);
3545 msvr2 = stl_cd1400getreg(portp, MSVR2);
3546 BRDDISABLE(portp->brdnr);
3547 restore_flags(flags);
3548
3549 sigs = 0;
3550 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3551 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3552 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3553 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3554#if 0
3555 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3556 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3557#else
3558 sigs |= TIOCM_DSR;
3559#endif
3560 return(sigs);
3561}
3562
3563/*****************************************************************************/
3564
3565/*
3566 * Enable/Disable the Transmitter and/or Receiver.
3567 */
3568
3569static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx)
3570{
3571 unsigned char ccr;
3572 unsigned long flags;
3573
3574#ifdef DEBUG
3575 printk("stl_cd1400enablerxtx(portp=%x,rx=%d,tx=%d)\n",
3576 (int) portp, rx, tx);
3577#endif
3578 ccr = 0;
3579
3580 if (tx == 0)
3581 ccr |= CCR_TXDISABLE;
3582 else if (tx > 0)
3583 ccr |= CCR_TXENABLE;
3584 if (rx == 0)
3585 ccr |= CCR_RXDISABLE;
3586 else if (rx > 0)
3587 ccr |= CCR_RXENABLE;
3588
3589 save_flags(flags);
3590 cli();
3591 BRDENABLE(portp->brdnr, portp->pagenr);
3592 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3593 stl_cd1400ccrwait(portp);
3594 stl_cd1400setreg(portp, CCR, ccr);
3595 stl_cd1400ccrwait(portp);
3596 BRDDISABLE(portp->brdnr);
3597 restore_flags(flags);
3598}
3599
3600/*****************************************************************************/
3601
3602/*
3603 * Start/stop the Transmitter and/or Receiver.
3604 */
3605
3606static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx)
3607{
3608 unsigned char sreron, sreroff;
3609 unsigned long flags;
3610
3611#ifdef DEBUG
3612 printk("stl_cd1400startrxtx(portp=%x,rx=%d,tx=%d)\n",
3613 (int) portp, rx, tx);
3614#endif
3615
3616 sreron = 0;
3617 sreroff = 0;
3618 if (tx == 0)
3619 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3620 else if (tx == 1)
3621 sreron |= SRER_TXDATA;
3622 else if (tx >= 2)
3623 sreron |= SRER_TXEMPTY;
3624 if (rx == 0)
3625 sreroff |= SRER_RXDATA;
3626 else if (rx > 0)
3627 sreron |= SRER_RXDATA;
3628
3629 save_flags(flags);
3630 cli();
3631 BRDENABLE(portp->brdnr, portp->pagenr);
3632 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3633 stl_cd1400setreg(portp, SRER,
3634 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3635 BRDDISABLE(portp->brdnr);
3636 if (tx > 0)
3637 set_bit(ASYI_TXBUSY, &portp->istate);
3638 restore_flags(flags);
3639}
3640
3641/*****************************************************************************/
3642
3643/*
3644 * Disable all interrupts from this port.
3645 */
3646
3647static void stl_cd1400disableintrs(stlport_t *portp)
3648{
3649 unsigned long flags;
3650
3651#ifdef DEBUG
3652 printk("stl_cd1400disableintrs(portp=%x)\n", (int) portp);
3653#endif
3654 save_flags(flags);
3655 cli();
3656 BRDENABLE(portp->brdnr, portp->pagenr);
3657 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3658 stl_cd1400setreg(portp, SRER, 0);
3659 BRDDISABLE(portp->brdnr);
3660 restore_flags(flags);
3661}
3662
3663/*****************************************************************************/
3664
3665static void stl_cd1400sendbreak(stlport_t *portp, int len)
3666{
3667 unsigned long flags;
3668
3669#ifdef DEBUG
3670 printk("stl_cd1400sendbreak(portp=%x,len=%d)\n", (int) portp, len);
3671#endif
3672
3673 save_flags(flags);
3674 cli();
3675 BRDENABLE(portp->brdnr, portp->pagenr);
3676 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3677 stl_cd1400setreg(portp, SRER,
3678 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3679 SRER_TXEMPTY));
3680 BRDDISABLE(portp->brdnr);
3681 portp->brklen = len;
3682 if (len == 1)
3683 portp->stats.txbreaks++;
3684 restore_flags(flags);
3685}
3686
3687/*****************************************************************************/
3688
3689/*
3690 * Take flow control actions...
3691 */
3692
3693static void stl_cd1400flowctrl(stlport_t *portp, int state)
3694{
3695 struct tty_struct *tty;
3696 unsigned long flags;
3697
3698#ifdef DEBUG
3699 printk("stl_cd1400flowctrl(portp=%x,state=%x)\n", (int) portp, state);
3700#endif
3701
3702 if (portp == (stlport_t *) NULL)
3703 return;
3704 tty = portp->tty;
3705 if (tty == (struct tty_struct *) NULL)
3706 return;
3707
3708 save_flags(flags);
3709 cli();
3710 BRDENABLE(portp->brdnr, portp->pagenr);
3711 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3712
3713 if (state) {
3714 if (tty->termios->c_iflag & IXOFF) {
3715 stl_cd1400ccrwait(portp);
3716 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3717 portp->stats.rxxon++;
3718 stl_cd1400ccrwait(portp);
3719 }
3720/*
3721 * Question: should we return RTS to what it was before? It may
3722 * have been set by an ioctl... Suppose not, since if you have
3723 * hardware flow control set then it is pretty silly to go and
3724 * set the RTS line by hand.
3725 */
3726 if (tty->termios->c_cflag & CRTSCTS) {
3727 stl_cd1400setreg(portp, MCOR1,
3728 (stl_cd1400getreg(portp, MCOR1) |
3729 FIFO_RTSTHRESHOLD));
3730 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3731 portp->stats.rxrtson++;
3732 }
3733 } else {
3734 if (tty->termios->c_iflag & IXOFF) {
3735 stl_cd1400ccrwait(portp);
3736 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3737 portp->stats.rxxoff++;
3738 stl_cd1400ccrwait(portp);
3739 }
3740 if (tty->termios->c_cflag & CRTSCTS) {
3741 stl_cd1400setreg(portp, MCOR1,
3742 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3743 stl_cd1400setreg(portp, MSVR2, 0);
3744 portp->stats.rxrtsoff++;
3745 }
3746 }
3747
3748 BRDDISABLE(portp->brdnr);
3749 restore_flags(flags);
3750}
3751
3752/*****************************************************************************/
3753
3754/*
3755 * Send a flow control character...
3756 */
3757
3758static void stl_cd1400sendflow(stlport_t *portp, int state)
3759{
3760 struct tty_struct *tty;
3761 unsigned long flags;
3762
3763#ifdef DEBUG
3764 printk("stl_cd1400sendflow(portp=%x,state=%x)\n", (int) portp, state);
3765#endif
3766
3767 if (portp == (stlport_t *) NULL)
3768 return;
3769 tty = portp->tty;
3770 if (tty == (struct tty_struct *) NULL)
3771 return;
3772
3773 save_flags(flags);
3774 cli();
3775 BRDENABLE(portp->brdnr, portp->pagenr);
3776 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3777 if (state) {
3778 stl_cd1400ccrwait(portp);
3779 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3780 portp->stats.rxxon++;
3781 stl_cd1400ccrwait(portp);
3782 } else {
3783 stl_cd1400ccrwait(portp);
3784 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3785 portp->stats.rxxoff++;
3786 stl_cd1400ccrwait(portp);
3787 }
3788 BRDDISABLE(portp->brdnr);
3789 restore_flags(flags);
3790}
3791
3792/*****************************************************************************/
3793
3794static void stl_cd1400flush(stlport_t *portp)
3795{
3796 unsigned long flags;
3797
3798#ifdef DEBUG
3799 printk("stl_cd1400flush(portp=%x)\n", (int) portp);
3800#endif
3801
3802 if (portp == (stlport_t *) NULL)
3803 return;
3804
3805 save_flags(flags);
3806 cli();
3807 BRDENABLE(portp->brdnr, portp->pagenr);
3808 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3809 stl_cd1400ccrwait(portp);
3810 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3811 stl_cd1400ccrwait(portp);
3812 portp->tx.tail = portp->tx.head;
3813 BRDDISABLE(portp->brdnr);
3814 restore_flags(flags);
3815}
3816
3817/*****************************************************************************/
3818
3819/*
3820 * Return the current state of data flow on this port. This is only
3821 * really interresting when determining if data has fully completed
3822 * transmission or not... This is easy for the cd1400, it accurately
3823 * maintains the busy port flag.
3824 */
3825
3826static int stl_cd1400datastate(stlport_t *portp)
3827{
3828#ifdef DEBUG
3829 printk("stl_cd1400datastate(portp=%x)\n", (int) portp);
3830#endif
3831
3832 if (portp == (stlport_t *) NULL)
3833 return(0);
3834
3835 return(test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0);
3836}
3837
3838/*****************************************************************************/
3839
3840/*
3841 * Interrupt service routine for cd1400 EasyIO boards.
3842 */
3843
3844static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase)
3845{
3846 unsigned char svrtype;
3847
3848#ifdef DEBUG
3849 printk("stl_cd1400eiointr(panelp=%x,iobase=%x)\n",
3850 (int) panelp, iobase);
3851#endif
3852
3853 outb(SVRR, iobase);
3854 svrtype = inb(iobase + EREG_DATA);
3855 if (panelp->nrports > 4) {
3856 outb((SVRR + 0x80), iobase);
3857 svrtype |= inb(iobase + EREG_DATA);
3858 }
3859
3860 if (svrtype & SVRR_RX)
3861 stl_cd1400rxisr(panelp, iobase);
3862 else if (svrtype & SVRR_TX)
3863 stl_cd1400txisr(panelp, iobase);
3864 else if (svrtype & SVRR_MDM)
3865 stl_cd1400mdmisr(panelp, iobase);
3866}
3867
3868/*****************************************************************************/
3869
3870/*
3871 * Interrupt service routine for cd1400 panels.
3872 */
3873
3874static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase)
3875{
3876 unsigned char svrtype;
3877
3878#ifdef DEBUG
3879 printk("stl_cd1400echintr(panelp=%x,iobase=%x)\n", (int) panelp,
3880 iobase);
3881#endif
3882
3883 outb(SVRR, iobase);
3884 svrtype = inb(iobase + EREG_DATA);
3885 outb((SVRR + 0x80), iobase);
3886 svrtype |= inb(iobase + EREG_DATA);
3887 if (svrtype & SVRR_RX)
3888 stl_cd1400rxisr(panelp, iobase);
3889 else if (svrtype & SVRR_TX)
3890 stl_cd1400txisr(panelp, iobase);
3891 else if (svrtype & SVRR_MDM)
3892 stl_cd1400mdmisr(panelp, iobase);
3893}
3894
3895
3896/*****************************************************************************/
3897
3898/*
3899 * Unfortunately we need to handle breaks in the TX data stream, since
3900 * this is the only way to generate them on the cd1400.
3901 */
3902
3903static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr)
3904{
3905 if (portp->brklen == 1) {
3906 outb((COR2 + portp->uartaddr), ioaddr);
3907 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3908 (ioaddr + EREG_DATA));
3909 outb((TDR + portp->uartaddr), ioaddr);
3910 outb(ETC_CMD, (ioaddr + EREG_DATA));
3911 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3912 outb((SRER + portp->uartaddr), ioaddr);
3913 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3914 (ioaddr + EREG_DATA));
3915 return(1);
3916 } else if (portp->brklen > 1) {
3917 outb((TDR + portp->uartaddr), ioaddr);
3918 outb(ETC_CMD, (ioaddr + EREG_DATA));
3919 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3920 portp->brklen = -1;
3921 return(1);
3922 } else {
3923 outb((COR2 + portp->uartaddr), ioaddr);
3924 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3925 (ioaddr + EREG_DATA));
3926 portp->brklen = 0;
3927 }
3928 return(0);
3929}
3930
3931/*****************************************************************************/
3932
3933/*
3934 * Transmit interrupt handler. This has gotta be fast! Handling TX
3935 * chars is pretty simple, stuff as many as possible from the TX buffer
3936 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3937 * are embedded as commands in the data stream. Oh no, had to use a goto!
3938 * This could be optimized more, will do when I get time...
3939 * In practice it is possible that interrupts are enabled but that the
3940 * port has been hung up. Need to handle not having any TX buffer here,
3941 * this is done by using the side effect that head and tail will also
3942 * be NULL if the buffer has been freed.
3943 */
3944
3945static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr)
3946{
3947 stlport_t *portp;
3948 int len, stlen;
3949 char *head, *tail;
3950 unsigned char ioack, srer;
3951
3952#ifdef DEBUG
3953 printk("stl_cd1400txisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
3954#endif
3955
3956 ioack = inb(ioaddr + EREG_TXACK);
3957 if (((ioack & panelp->ackmask) != 0) ||
3958 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3959 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3960 return;
3961 }
3962 portp = panelp->ports[(ioack >> 3)];
3963
3964/*
3965 * Unfortunately we need to handle breaks in the data stream, since
3966 * this is the only way to generate them on the cd1400. Do it now if
3967 * a break is to be sent.
3968 */
3969 if (portp->brklen != 0)
3970 if (stl_cd1400breakisr(portp, ioaddr))
3971 goto stl_txalldone;
3972
3973 head = portp->tx.head;
3974 tail = portp->tx.tail;
3975 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3976 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3977 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3978 set_bit(ASYI_TXLOW, &portp->istate);
3979 schedule_work(&portp->tqueue);
3980 }
3981
3982 if (len == 0) {
3983 outb((SRER + portp->uartaddr), ioaddr);
3984 srer = inb(ioaddr + EREG_DATA);
3985 if (srer & SRER_TXDATA) {
3986 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3987 } else {
3988 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3989 clear_bit(ASYI_TXBUSY, &portp->istate);
3990 }
3991 outb(srer, (ioaddr + EREG_DATA));
3992 } else {
3993 len = MIN(len, CD1400_TXFIFOSIZE);
3994 portp->stats.txtotal += len;
3995 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
3996 outb((TDR + portp->uartaddr), ioaddr);
3997 outsb((ioaddr + EREG_DATA), tail, stlen);
3998 len -= stlen;
3999 tail += stlen;
4000 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4001 tail = portp->tx.buf;
4002 if (len > 0) {
4003 outsb((ioaddr + EREG_DATA), tail, len);
4004 tail += len;
4005 }
4006 portp->tx.tail = tail;
4007 }
4008
4009stl_txalldone:
4010 outb((EOSRR + portp->uartaddr), ioaddr);
4011 outb(0, (ioaddr + EREG_DATA));
4012}
4013
4014/*****************************************************************************/
4015
4016/*
4017 * Receive character interrupt handler. Determine if we have good chars
4018 * or bad chars and then process appropriately. Good chars are easy
4019 * just shove the lot into the RX buffer and set all status byte to 0.
4020 * If a bad RX char then process as required. This routine needs to be
4021 * fast! In practice it is possible that we get an interrupt on a port
4022 * that is closed. This can happen on hangups - since they completely
4023 * shutdown a port not in user context. Need to handle this case.
4024 */
4025
4026static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr)
4027{
4028 stlport_t *portp;
4029 struct tty_struct *tty;
4030 unsigned int ioack, len, buflen;
4031 unsigned char status;
4032 char ch;
4033
4034#ifdef DEBUG
4035 printk("stl_cd1400rxisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
4036#endif
4037
4038 ioack = inb(ioaddr + EREG_RXACK);
4039 if ((ioack & panelp->ackmask) != 0) {
4040 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
4041 return;
4042 }
4043 portp = panelp->ports[(ioack >> 3)];
4044 tty = portp->tty;
4045
4046 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
4047 outb((RDCR + portp->uartaddr), ioaddr);
4048 len = inb(ioaddr + EREG_DATA);
33f0f88f 4049 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
1da177e4
LT
4050 len = MIN(len, sizeof(stl_unwanted));
4051 outb((RDSR + portp->uartaddr), ioaddr);
4052 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
4053 portp->stats.rxlost += len;
4054 portp->stats.rxtotal += len;
4055 } else {
4056 len = MIN(len, buflen);
4057 if (len > 0) {
33f0f88f 4058 unsigned char *ptr;
1da177e4 4059 outb((RDSR + portp->uartaddr), ioaddr);
33f0f88f
AC
4060 tty_prepare_flip_string(tty, &ptr, len);
4061 insb((ioaddr + EREG_DATA), ptr, len);
1da177e4
LT
4062 tty_schedule_flip(tty);
4063 portp->stats.rxtotal += len;
4064 }
4065 }
4066 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
4067 outb((RDSR + portp->uartaddr), ioaddr);
4068 status = inb(ioaddr + EREG_DATA);
4069 ch = inb(ioaddr + EREG_DATA);
4070 if (status & ST_PARITY)
4071 portp->stats.rxparity++;
4072 if (status & ST_FRAMING)
4073 portp->stats.rxframing++;
4074 if (status & ST_OVERRUN)
4075 portp->stats.rxoverrun++;
4076 if (status & ST_BREAK)
4077 portp->stats.rxbreaks++;
4078 if (status & ST_SCHARMASK) {
4079 if ((status & ST_SCHARMASK) == ST_SCHAR1)
4080 portp->stats.txxon++;
4081 if ((status & ST_SCHARMASK) == ST_SCHAR2)
4082 portp->stats.txxoff++;
4083 goto stl_rxalldone;
4084 }
33f0f88f 4085 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
1da177e4
LT
4086 if (portp->rxmarkmsk & status) {
4087 if (status & ST_BREAK) {
4088 status = TTY_BREAK;
4089 if (portp->flags & ASYNC_SAK) {
4090 do_SAK(tty);
4091 BRDENABLE(portp->brdnr, portp->pagenr);
4092 }
4093 } else if (status & ST_PARITY) {
4094 status = TTY_PARITY;
4095 } else if (status & ST_FRAMING) {
4096 status = TTY_FRAME;
4097 } else if(status & ST_OVERRUN) {
4098 status = TTY_OVERRUN;
4099 } else {
4100 status = 0;
4101 }
4102 } else {
4103 status = 0;
4104 }
33f0f88f
AC
4105 tty_insert_flip_char(tty, ch, status);
4106 tty_schedule_flip(tty);
1da177e4
LT
4107 }
4108 } else {
4109 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
4110 return;
4111 }
4112
4113stl_rxalldone:
4114 outb((EOSRR + portp->uartaddr), ioaddr);
4115 outb(0, (ioaddr + EREG_DATA));
4116}
4117
4118/*****************************************************************************/
4119
4120/*
4121 * Modem interrupt handler. The is called when the modem signal line
4122 * (DCD) has changed state. Leave most of the work to the off-level
4123 * processing routine.
4124 */
4125
4126static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr)
4127{
4128 stlport_t *portp;
4129 unsigned int ioack;
4130 unsigned char misr;
4131
4132#ifdef DEBUG
4133 printk("stl_cd1400mdmisr(panelp=%x)\n", (int) panelp);
4134#endif
4135
4136 ioack = inb(ioaddr + EREG_MDACK);
4137 if (((ioack & panelp->ackmask) != 0) ||
4138 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
4139 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
4140 return;
4141 }
4142 portp = panelp->ports[(ioack >> 3)];
4143
4144 outb((MISR + portp->uartaddr), ioaddr);
4145 misr = inb(ioaddr + EREG_DATA);
4146 if (misr & MISR_DCD) {
4147 set_bit(ASYI_DCDCHANGE, &portp->istate);
4148 schedule_work(&portp->tqueue);
4149 portp->stats.modem++;
4150 }
4151
4152 outb((EOSRR + portp->uartaddr), ioaddr);
4153 outb(0, (ioaddr + EREG_DATA));
4154}
4155
4156/*****************************************************************************/
4157/* SC26198 HARDWARE FUNCTIONS */
4158/*****************************************************************************/
4159
4160/*
4161 * These functions get/set/update the registers of the sc26198 UARTs.
4162 * Access to the sc26198 registers is via an address/data io port pair.
4163 * (Maybe should make this inline...)
4164 */
4165
4166static int stl_sc26198getreg(stlport_t *portp, int regnr)
4167{
4168 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4169 return(inb(portp->ioaddr + XP_DATA));
4170}
4171
4172static void stl_sc26198setreg(stlport_t *portp, int regnr, int value)
4173{
4174 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4175 outb(value, (portp->ioaddr + XP_DATA));
4176}
4177
4178static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value)
4179{
4180 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4181 if (inb(portp->ioaddr + XP_DATA) != value) {
4182 outb(value, (portp->ioaddr + XP_DATA));
4183 return(1);
4184 }
4185 return(0);
4186}
4187
4188/*****************************************************************************/
4189
4190/*
4191 * Functions to get and set the sc26198 global registers.
4192 */
4193
4194static int stl_sc26198getglobreg(stlport_t *portp, int regnr)
4195{
4196 outb(regnr, (portp->ioaddr + XP_ADDR));
4197 return(inb(portp->ioaddr + XP_DATA));
4198}
4199
4200#if 0
4201static void stl_sc26198setglobreg(stlport_t *portp, int regnr, int value)
4202{
4203 outb(regnr, (portp->ioaddr + XP_ADDR));
4204 outb(value, (portp->ioaddr + XP_DATA));
4205}
4206#endif
4207
4208/*****************************************************************************/
4209
4210/*
4211 * Inbitialize the UARTs in a panel. We don't care what sort of board
4212 * these ports are on - since the port io registers are almost
4213 * identical when dealing with ports.
4214 */
4215
4216static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
4217{
4218 int chipmask, i;
4219 int nrchips, ioaddr;
4220
4221#ifdef DEBUG
4222 printk("stl_sc26198panelinit(brdp=%x,panelp=%x)\n",
4223 (int) brdp, (int) panelp);
4224#endif
4225
4226 BRDENABLE(panelp->brdnr, panelp->pagenr);
4227
4228/*
4229 * Check that each chip is present and started up OK.
4230 */
4231 chipmask = 0;
4232 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
4233 if (brdp->brdtype == BRD_ECHPCI)
4234 outb(panelp->pagenr, brdp->ioctrl);
4235
4236 for (i = 0; (i < nrchips); i++) {
4237 ioaddr = panelp->iobase + (i * 4);
4238 outb(SCCR, (ioaddr + XP_ADDR));
4239 outb(CR_RESETALL, (ioaddr + XP_DATA));
4240 outb(TSTR, (ioaddr + XP_ADDR));
4241 if (inb(ioaddr + XP_DATA) != 0) {
4242 printk("STALLION: sc26198 not responding, "
4243 "brd=%d panel=%d chip=%d\n",
4244 panelp->brdnr, panelp->panelnr, i);
4245 continue;
4246 }
4247 chipmask |= (0x1 << i);
4248 outb(GCCR, (ioaddr + XP_ADDR));
4249 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
4250 outb(WDTRCR, (ioaddr + XP_ADDR));
4251 outb(0xff, (ioaddr + XP_DATA));
4252 }
4253
4254 BRDDISABLE(panelp->brdnr);
4255 return(chipmask);
4256}
4257
4258/*****************************************************************************/
4259
4260/*
4261 * Initialize hardware specific port registers.
4262 */
4263
4264static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
4265{
4266#ifdef DEBUG
4267 printk("stl_sc26198portinit(brdp=%x,panelp=%x,portp=%x)\n",
4268 (int) brdp, (int) panelp, (int) portp);
4269#endif
4270
4271 if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
4272 (portp == (stlport_t *) NULL))
4273 return;
4274
4275 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
4276 portp->uartaddr = (portp->portnr & 0x07) << 4;
4277 portp->pagenr = panelp->pagenr;
4278 portp->hwid = 0x1;
4279
4280 BRDENABLE(portp->brdnr, portp->pagenr);
4281 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
4282 BRDDISABLE(portp->brdnr);
4283}
4284
4285/*****************************************************************************/
4286
4287/*
4288 * Set up the sc26198 registers for a port based on the termios port
4289 * settings.
4290 */
4291
4292static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp)
4293{
4294 stlbrd_t *brdp;
4295 unsigned long flags;
4296 unsigned int baudrate;
4297 unsigned char mr0, mr1, mr2, clk;
4298 unsigned char imron, imroff, iopr, ipr;
4299
4300 mr0 = 0;
4301 mr1 = 0;
4302 mr2 = 0;
4303 clk = 0;
4304 iopr = 0;
4305 imron = 0;
4306 imroff = 0;
4307
4308 brdp = stl_brds[portp->brdnr];
4309 if (brdp == (stlbrd_t *) NULL)
4310 return;
4311
4312/*
4313 * Set up the RX char ignore mask with those RX error types we
4314 * can ignore.
4315 */
4316 portp->rxignoremsk = 0;
4317 if (tiosp->c_iflag & IGNPAR)
4318 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
4319 SR_RXOVERRUN);
4320 if (tiosp->c_iflag & IGNBRK)
4321 portp->rxignoremsk |= SR_RXBREAK;
4322
4323 portp->rxmarkmsk = SR_RXOVERRUN;
4324 if (tiosp->c_iflag & (INPCK | PARMRK))
4325 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
4326 if (tiosp->c_iflag & BRKINT)
4327 portp->rxmarkmsk |= SR_RXBREAK;
4328
4329/*
4330 * Go through the char size, parity and stop bits and set all the
4331 * option register appropriately.
4332 */
4333 switch (tiosp->c_cflag & CSIZE) {
4334 case CS5:
4335 mr1 |= MR1_CS5;
4336 break;
4337 case CS6:
4338 mr1 |= MR1_CS6;
4339 break;
4340 case CS7:
4341 mr1 |= MR1_CS7;
4342 break;
4343 default:
4344 mr1 |= MR1_CS8;
4345 break;
4346 }
4347
4348 if (tiosp->c_cflag & CSTOPB)
4349 mr2 |= MR2_STOP2;
4350 else
4351 mr2 |= MR2_STOP1;
4352
4353 if (tiosp->c_cflag & PARENB) {
4354 if (tiosp->c_cflag & PARODD)
4355 mr1 |= (MR1_PARENB | MR1_PARODD);
4356 else
4357 mr1 |= (MR1_PARENB | MR1_PAREVEN);
4358 } else {
4359 mr1 |= MR1_PARNONE;
4360 }
4361
4362 mr1 |= MR1_ERRBLOCK;
4363
4364/*
4365 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
4366 * space for hardware flow control and the like. This should be set to
4367 * VMIN.
4368 */
4369 mr2 |= MR2_RXFIFOHALF;
4370
4371/*
4372 * Calculate the baud rate timers. For now we will just assume that
4373 * the input and output baud are the same. The sc26198 has a fixed
4374 * baud rate table, so only discrete baud rates possible.
4375 */
4376 baudrate = tiosp->c_cflag & CBAUD;
4377 if (baudrate & CBAUDEX) {
4378 baudrate &= ~CBAUDEX;
4379 if ((baudrate < 1) || (baudrate > 4))
4380 tiosp->c_cflag &= ~CBAUDEX;
4381 else
4382 baudrate += 15;
4383 }
4384 baudrate = stl_baudrates[baudrate];
4385 if ((tiosp->c_cflag & CBAUD) == B38400) {
4386 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
4387 baudrate = 57600;
4388 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
4389 baudrate = 115200;
4390 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
4391 baudrate = 230400;
4392 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
4393 baudrate = 460800;
4394 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
4395 baudrate = (portp->baud_base / portp->custom_divisor);
4396 }
4397 if (baudrate > STL_SC26198MAXBAUD)
4398 baudrate = STL_SC26198MAXBAUD;
4399
4400 if (baudrate > 0) {
4401 for (clk = 0; (clk < SC26198_NRBAUDS); clk++) {
4402 if (baudrate <= sc26198_baudtable[clk])
4403 break;
4404 }
4405 }
4406
4407/*
4408 * Check what form of modem signaling is required and set it up.
4409 */
4410 if (tiosp->c_cflag & CLOCAL) {
4411 portp->flags &= ~ASYNC_CHECK_CD;
4412 } else {
4413 iopr |= IOPR_DCDCOS;
4414 imron |= IR_IOPORT;
4415 portp->flags |= ASYNC_CHECK_CD;
4416 }
4417
4418/*
4419 * Setup sc26198 enhanced modes if we can. In particular we want to
4420 * handle as much of the flow control as possible automatically. As
4421 * well as saving a few CPU cycles it will also greatly improve flow
4422 * control reliability.
4423 */
4424 if (tiosp->c_iflag & IXON) {
4425 mr0 |= MR0_SWFTX | MR0_SWFT;
4426 imron |= IR_XONXOFF;
4427 } else {
4428 imroff |= IR_XONXOFF;
4429 }
4430 if (tiosp->c_iflag & IXOFF)
4431 mr0 |= MR0_SWFRX;
4432
4433 if (tiosp->c_cflag & CRTSCTS) {
4434 mr2 |= MR2_AUTOCTS;
4435 mr1 |= MR1_AUTORTS;
4436 }
4437
4438/*
4439 * All sc26198 register values calculated so go through and set
4440 * them all up.
4441 */
4442
4443#ifdef DEBUG
4444 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
4445 portp->portnr, portp->panelnr, portp->brdnr);
4446 printk(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
4447 printk(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
4448 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
4449 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
4450 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
4451#endif
4452
4453 save_flags(flags);
4454 cli();
4455 BRDENABLE(portp->brdnr, portp->pagenr);
4456 stl_sc26198setreg(portp, IMR, 0);
4457 stl_sc26198updatereg(portp, MR0, mr0);
4458 stl_sc26198updatereg(portp, MR1, mr1);
4459 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
4460 stl_sc26198updatereg(portp, MR2, mr2);
4461 stl_sc26198updatereg(portp, IOPIOR,
4462 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
4463
4464 if (baudrate > 0) {
4465 stl_sc26198setreg(portp, TXCSR, clk);
4466 stl_sc26198setreg(portp, RXCSR, clk);
4467 }
4468
4469 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
4470 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
4471
4472 ipr = stl_sc26198getreg(portp, IPR);
4473 if (ipr & IPR_DCD)
4474 portp->sigs &= ~TIOCM_CD;
4475 else
4476 portp->sigs |= TIOCM_CD;
4477
4478 portp->imr = (portp->imr & ~imroff) | imron;
4479 stl_sc26198setreg(portp, IMR, portp->imr);
4480 BRDDISABLE(portp->brdnr);
4481 restore_flags(flags);
4482}
4483
4484/*****************************************************************************/
4485
4486/*
4487 * Set the state of the DTR and RTS signals.
4488 */
4489
4490static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts)
4491{
4492 unsigned char iopioron, iopioroff;
4493 unsigned long flags;
4494
4495#ifdef DEBUG
4496 printk("stl_sc26198setsignals(portp=%x,dtr=%d,rts=%d)\n",
4497 (int) portp, dtr, rts);
4498#endif
4499
4500 iopioron = 0;
4501 iopioroff = 0;
4502 if (dtr == 0)
4503 iopioroff |= IPR_DTR;
4504 else if (dtr > 0)
4505 iopioron |= IPR_DTR;
4506 if (rts == 0)
4507 iopioroff |= IPR_RTS;
4508 else if (rts > 0)
4509 iopioron |= IPR_RTS;
4510
4511 save_flags(flags);
4512 cli();
4513 BRDENABLE(portp->brdnr, portp->pagenr);
4514 stl_sc26198setreg(portp, IOPIOR,
4515 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4516 BRDDISABLE(portp->brdnr);
4517 restore_flags(flags);
4518}
4519
4520/*****************************************************************************/
4521
4522/*
4523 * Return the state of the signals.
4524 */
4525
4526static int stl_sc26198getsignals(stlport_t *portp)
4527{
4528 unsigned char ipr;
4529 unsigned long flags;
4530 int sigs;
4531
4532#ifdef DEBUG
4533 printk("stl_sc26198getsignals(portp=%x)\n", (int) portp);
4534#endif
4535
4536 save_flags(flags);
4537 cli();
4538 BRDENABLE(portp->brdnr, portp->pagenr);
4539 ipr = stl_sc26198getreg(portp, IPR);
4540 BRDDISABLE(portp->brdnr);
4541 restore_flags(flags);
4542
4543 sigs = 0;
4544 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4545 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4546 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4547 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4548 sigs |= TIOCM_DSR;
4549 return(sigs);
4550}
4551
4552/*****************************************************************************/
4553
4554/*
4555 * Enable/Disable the Transmitter and/or Receiver.
4556 */
4557
4558static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx)
4559{
4560 unsigned char ccr;
4561 unsigned long flags;
4562
4563#ifdef DEBUG
4564 printk("stl_sc26198enablerxtx(portp=%x,rx=%d,tx=%d)\n",
4565 (int) portp, rx, tx);
4566#endif
4567
4568 ccr = portp->crenable;
4569 if (tx == 0)
4570 ccr &= ~CR_TXENABLE;
4571 else if (tx > 0)
4572 ccr |= CR_TXENABLE;
4573 if (rx == 0)
4574 ccr &= ~CR_RXENABLE;
4575 else if (rx > 0)
4576 ccr |= CR_RXENABLE;
4577
4578 save_flags(flags);
4579 cli();
4580 BRDENABLE(portp->brdnr, portp->pagenr);
4581 stl_sc26198setreg(portp, SCCR, ccr);
4582 BRDDISABLE(portp->brdnr);
4583 portp->crenable = ccr;
4584 restore_flags(flags);
4585}
4586
4587/*****************************************************************************/
4588
4589/*
4590 * Start/stop the Transmitter and/or Receiver.
4591 */
4592
4593static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx)
4594{
4595 unsigned char imr;
4596 unsigned long flags;
4597
4598#ifdef DEBUG
4599 printk("stl_sc26198startrxtx(portp=%x,rx=%d,tx=%d)\n",
4600 (int) portp, rx, tx);
4601#endif
4602
4603 imr = portp->imr;
4604 if (tx == 0)
4605 imr &= ~IR_TXRDY;
4606 else if (tx == 1)
4607 imr |= IR_TXRDY;
4608 if (rx == 0)
4609 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4610 else if (rx > 0)
4611 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4612
4613 save_flags(flags);
4614 cli();
4615 BRDENABLE(portp->brdnr, portp->pagenr);
4616 stl_sc26198setreg(portp, IMR, imr);
4617 BRDDISABLE(portp->brdnr);
4618 portp->imr = imr;
4619 if (tx > 0)
4620 set_bit(ASYI_TXBUSY, &portp->istate);
4621 restore_flags(flags);
4622}
4623
4624/*****************************************************************************/
4625
4626/*
4627 * Disable all interrupts from this port.
4628 */
4629
4630static void stl_sc26198disableintrs(stlport_t *portp)
4631{
4632 unsigned long flags;
4633
4634#ifdef DEBUG
4635 printk("stl_sc26198disableintrs(portp=%x)\n", (int) portp);
4636#endif
4637
4638 save_flags(flags);
4639 cli();
4640 BRDENABLE(portp->brdnr, portp->pagenr);
4641 portp->imr = 0;
4642 stl_sc26198setreg(portp, IMR, 0);
4643 BRDDISABLE(portp->brdnr);
4644 restore_flags(flags);
4645}
4646
4647/*****************************************************************************/
4648
4649static void stl_sc26198sendbreak(stlport_t *portp, int len)
4650{
4651 unsigned long flags;
4652
4653#ifdef DEBUG
4654 printk("stl_sc26198sendbreak(portp=%x,len=%d)\n", (int) portp, len);
4655#endif
4656
4657 save_flags(flags);
4658 cli();
4659 BRDENABLE(portp->brdnr, portp->pagenr);
4660 if (len == 1) {
4661 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4662 portp->stats.txbreaks++;
4663 } else {
4664 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4665 }
4666 BRDDISABLE(portp->brdnr);
4667 restore_flags(flags);
4668}
4669
4670/*****************************************************************************/
4671
4672/*
4673 * Take flow control actions...
4674 */
4675
4676static void stl_sc26198flowctrl(stlport_t *portp, int state)
4677{
4678 struct tty_struct *tty;
4679 unsigned long flags;
4680 unsigned char mr0;
4681
4682#ifdef DEBUG
4683 printk("stl_sc26198flowctrl(portp=%x,state=%x)\n", (int) portp, state);
4684#endif
4685
4686 if (portp == (stlport_t *) NULL)
4687 return;
4688 tty = portp->tty;
4689 if (tty == (struct tty_struct *) NULL)
4690 return;
4691
4692 save_flags(flags);
4693 cli();
4694 BRDENABLE(portp->brdnr, portp->pagenr);
4695
4696 if (state) {
4697 if (tty->termios->c_iflag & IXOFF) {
4698 mr0 = stl_sc26198getreg(portp, MR0);
4699 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4700 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4701 mr0 |= MR0_SWFRX;
4702 portp->stats.rxxon++;
4703 stl_sc26198wait(portp);
4704 stl_sc26198setreg(portp, MR0, mr0);
4705 }
4706/*
4707 * Question: should we return RTS to what it was before? It may
4708 * have been set by an ioctl... Suppose not, since if you have
4709 * hardware flow control set then it is pretty silly to go and
4710 * set the RTS line by hand.
4711 */
4712 if (tty->termios->c_cflag & CRTSCTS) {
4713 stl_sc26198setreg(portp, MR1,
4714 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4715 stl_sc26198setreg(portp, IOPIOR,
4716 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4717 portp->stats.rxrtson++;
4718 }
4719 } else {
4720 if (tty->termios->c_iflag & IXOFF) {
4721 mr0 = stl_sc26198getreg(portp, MR0);
4722 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4723 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4724 mr0 &= ~MR0_SWFRX;
4725 portp->stats.rxxoff++;
4726 stl_sc26198wait(portp);
4727 stl_sc26198setreg(portp, MR0, mr0);
4728 }
4729 if (tty->termios->c_cflag & CRTSCTS) {
4730 stl_sc26198setreg(portp, MR1,
4731 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4732 stl_sc26198setreg(portp, IOPIOR,
4733 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4734 portp->stats.rxrtsoff++;
4735 }
4736 }
4737
4738 BRDDISABLE(portp->brdnr);
4739 restore_flags(flags);
4740}
4741
4742/*****************************************************************************/
4743
4744/*
4745 * Send a flow control character.
4746 */
4747
4748static void stl_sc26198sendflow(stlport_t *portp, int state)
4749{
4750 struct tty_struct *tty;
4751 unsigned long flags;
4752 unsigned char mr0;
4753
4754#ifdef DEBUG
4755 printk("stl_sc26198sendflow(portp=%x,state=%x)\n", (int) portp, state);
4756#endif
4757
4758 if (portp == (stlport_t *) NULL)
4759 return;
4760 tty = portp->tty;
4761 if (tty == (struct tty_struct *) NULL)
4762 return;
4763
4764 save_flags(flags);
4765 cli();
4766 BRDENABLE(portp->brdnr, portp->pagenr);
4767 if (state) {
4768 mr0 = stl_sc26198getreg(portp, MR0);
4769 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4770 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4771 mr0 |= MR0_SWFRX;
4772 portp->stats.rxxon++;
4773 stl_sc26198wait(portp);
4774 stl_sc26198setreg(portp, MR0, mr0);
4775 } else {
4776 mr0 = stl_sc26198getreg(portp, MR0);
4777 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4778 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4779 mr0 &= ~MR0_SWFRX;
4780 portp->stats.rxxoff++;
4781 stl_sc26198wait(portp);
4782 stl_sc26198setreg(portp, MR0, mr0);
4783 }
4784 BRDDISABLE(portp->brdnr);
4785 restore_flags(flags);
4786}
4787
4788/*****************************************************************************/
4789
4790static void stl_sc26198flush(stlport_t *portp)
4791{
4792 unsigned long flags;
4793
4794#ifdef DEBUG
4795 printk("stl_sc26198flush(portp=%x)\n", (int) portp);
4796#endif
4797
4798 if (portp == (stlport_t *) NULL)
4799 return;
4800
4801 save_flags(flags);
4802 cli();
4803 BRDENABLE(portp->brdnr, portp->pagenr);
4804 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4805 stl_sc26198setreg(portp, SCCR, portp->crenable);
4806 BRDDISABLE(portp->brdnr);
4807 portp->tx.tail = portp->tx.head;
4808 restore_flags(flags);
4809}
4810
4811/*****************************************************************************/
4812
4813/*
4814 * Return the current state of data flow on this port. This is only
4815 * really interresting when determining if data has fully completed
4816 * transmission or not... The sc26198 interrupt scheme cannot
4817 * determine when all data has actually drained, so we need to
4818 * check the port statusy register to be sure.
4819 */
4820
4821static int stl_sc26198datastate(stlport_t *portp)
4822{
4823 unsigned long flags;
4824 unsigned char sr;
4825
4826#ifdef DEBUG
4827 printk("stl_sc26198datastate(portp=%x)\n", (int) portp);
4828#endif
4829
4830 if (portp == (stlport_t *) NULL)
4831 return(0);
4832 if (test_bit(ASYI_TXBUSY, &portp->istate))
4833 return(1);
4834
4835 save_flags(flags);
4836 cli();
4837 BRDENABLE(portp->brdnr, portp->pagenr);
4838 sr = stl_sc26198getreg(portp, SR);
4839 BRDDISABLE(portp->brdnr);
4840 restore_flags(flags);
4841
4842 return((sr & SR_TXEMPTY) ? 0 : 1);
4843}
4844
4845/*****************************************************************************/
4846
4847/*
4848 * Delay for a small amount of time, to give the sc26198 a chance
4849 * to process a command...
4850 */
4851
4852static void stl_sc26198wait(stlport_t *portp)
4853{
4854 int i;
4855
4856#ifdef DEBUG
4857 printk("stl_sc26198wait(portp=%x)\n", (int) portp);
4858#endif
4859
4860 if (portp == (stlport_t *) NULL)
4861 return;
4862
4863 for (i = 0; (i < 20); i++)
4864 stl_sc26198getglobreg(portp, TSTR);
4865}
4866
4867/*****************************************************************************/
4868
4869/*
4870 * If we are TX flow controlled and in IXANY mode then we may
4871 * need to unflow control here. We gotta do this because of the
4872 * automatic flow control modes of the sc26198.
4873 */
4874
4875static inline void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty)
4876{
4877 unsigned char mr0;
4878
4879 mr0 = stl_sc26198getreg(portp, MR0);
4880 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4881 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4882 stl_sc26198wait(portp);
4883 stl_sc26198setreg(portp, MR0, mr0);
4884 clear_bit(ASYI_TXFLOWED, &portp->istate);
4885}
4886
4887/*****************************************************************************/
4888
4889/*
4890 * Interrupt service routine for sc26198 panels.
4891 */
4892
4893static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase)
4894{
4895 stlport_t *portp;
4896 unsigned int iack;
4897
4898/*
4899 * Work around bug in sc26198 chip... Cannot have A6 address
4900 * line of UART high, else iack will be returned as 0.
4901 */
4902 outb(0, (iobase + 1));
4903
4904 iack = inb(iobase + XP_IACK);
4905 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4906
4907 if (iack & IVR_RXDATA)
4908 stl_sc26198rxisr(portp, iack);
4909 else if (iack & IVR_TXDATA)
4910 stl_sc26198txisr(portp);
4911 else
4912 stl_sc26198otherisr(portp, iack);
4913}
4914
4915/*****************************************************************************/
4916
4917/*
4918 * Transmit interrupt handler. This has gotta be fast! Handling TX
4919 * chars is pretty simple, stuff as many as possible from the TX buffer
4920 * into the sc26198 FIFO.
4921 * In practice it is possible that interrupts are enabled but that the
4922 * port has been hung up. Need to handle not having any TX buffer here,
4923 * this is done by using the side effect that head and tail will also
4924 * be NULL if the buffer has been freed.
4925 */
4926
4927static void stl_sc26198txisr(stlport_t *portp)
4928{
4929 unsigned int ioaddr;
4930 unsigned char mr0;
4931 int len, stlen;
4932 char *head, *tail;
4933
4934#ifdef DEBUG
4935 printk("stl_sc26198txisr(portp=%x)\n", (int) portp);
4936#endif
4937
4938 ioaddr = portp->ioaddr;
4939 head = portp->tx.head;
4940 tail = portp->tx.tail;
4941 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4942 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4943 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4944 set_bit(ASYI_TXLOW, &portp->istate);
4945 schedule_work(&portp->tqueue);
4946 }
4947
4948 if (len == 0) {
4949 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4950 mr0 = inb(ioaddr + XP_DATA);
4951 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4952 portp->imr &= ~IR_TXRDY;
4953 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4954 outb(portp->imr, (ioaddr + XP_DATA));
4955 clear_bit(ASYI_TXBUSY, &portp->istate);
4956 } else {
4957 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4958 outb(mr0, (ioaddr + XP_DATA));
4959 }
4960 } else {
4961 len = MIN(len, SC26198_TXFIFOSIZE);
4962 portp->stats.txtotal += len;
4963 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
4964 outb(GTXFIFO, (ioaddr + XP_ADDR));
4965 outsb((ioaddr + XP_DATA), tail, stlen);
4966 len -= stlen;
4967 tail += stlen;
4968 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4969 tail = portp->tx.buf;
4970 if (len > 0) {
4971 outsb((ioaddr + XP_DATA), tail, len);
4972 tail += len;
4973 }
4974 portp->tx.tail = tail;
4975 }
4976}
4977
4978/*****************************************************************************/
4979
4980/*
4981 * Receive character interrupt handler. Determine if we have good chars
4982 * or bad chars and then process appropriately. Good chars are easy
4983 * just shove the lot into the RX buffer and set all status byte to 0.
4984 * If a bad RX char then process as required. This routine needs to be
4985 * fast! In practice it is possible that we get an interrupt on a port
4986 * that is closed. This can happen on hangups - since they completely
4987 * shutdown a port not in user context. Need to handle this case.
4988 */
4989
4990static void stl_sc26198rxisr(stlport_t *portp, unsigned int iack)
4991{
4992 struct tty_struct *tty;
4993 unsigned int len, buflen, ioaddr;
4994
4995#ifdef DEBUG
4996 printk("stl_sc26198rxisr(portp=%x,iack=%x)\n", (int) portp, iack);
4997#endif
4998
4999 tty = portp->tty;
5000 ioaddr = portp->ioaddr;
5001 outb(GIBCR, (ioaddr + XP_ADDR));
5002 len = inb(ioaddr + XP_DATA) + 1;
5003
5004 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
33f0f88f 5005 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
1da177e4
LT
5006 len = MIN(len, sizeof(stl_unwanted));
5007 outb(GRXFIFO, (ioaddr + XP_ADDR));
5008 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
5009 portp->stats.rxlost += len;
5010 portp->stats.rxtotal += len;
5011 } else {
5012 len = MIN(len, buflen);
5013 if (len > 0) {
33f0f88f 5014 unsigned char *ptr;
1da177e4 5015 outb(GRXFIFO, (ioaddr + XP_ADDR));
33f0f88f
AC
5016 tty_prepare_flip_string(tty, &ptr, len);
5017 insb((ioaddr + XP_DATA), ptr, len);
1da177e4
LT
5018 tty_schedule_flip(tty);
5019 portp->stats.rxtotal += len;
5020 }
5021 }
5022 } else {
5023 stl_sc26198rxbadchars(portp);
5024 }
5025
5026/*
5027 * If we are TX flow controlled and in IXANY mode then we may need
5028 * to unflow control here. We gotta do this because of the automatic
5029 * flow control modes of the sc26198.
5030 */
5031 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
5032 if ((tty != (struct tty_struct *) NULL) &&
5033 (tty->termios != (struct termios *) NULL) &&
5034 (tty->termios->c_iflag & IXANY)) {
5035 stl_sc26198txunflow(portp, tty);
5036 }
5037 }
5038}
5039
5040/*****************************************************************************/
5041
5042/*
5043 * Process an RX bad character.
5044 */
5045
5046static inline void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch)
5047{
5048 struct tty_struct *tty;
5049 unsigned int ioaddr;
5050
5051 tty = portp->tty;
5052 ioaddr = portp->ioaddr;
5053
5054 if (status & SR_RXPARITY)
5055 portp->stats.rxparity++;
5056 if (status & SR_RXFRAMING)
5057 portp->stats.rxframing++;
5058 if (status & SR_RXOVERRUN)
5059 portp->stats.rxoverrun++;
5060 if (status & SR_RXBREAK)
5061 portp->stats.rxbreaks++;
5062
5063 if ((tty != (struct tty_struct *) NULL) &&
5064 ((portp->rxignoremsk & status) == 0)) {
5065 if (portp->rxmarkmsk & status) {
5066 if (status & SR_RXBREAK) {
5067 status = TTY_BREAK;
5068 if (portp->flags & ASYNC_SAK) {
5069 do_SAK(tty);
5070 BRDENABLE(portp->brdnr, portp->pagenr);
5071 }
5072 } else if (status & SR_RXPARITY) {
5073 status = TTY_PARITY;
5074 } else if (status & SR_RXFRAMING) {
5075 status = TTY_FRAME;
5076 } else if(status & SR_RXOVERRUN) {
5077 status = TTY_OVERRUN;
5078 } else {
5079 status = 0;
5080 }
5081 } else {
5082 status = 0;
5083 }
5084
33f0f88f
AC
5085 tty_insert_flip_char(tty, ch, status);
5086 tty_schedule_flip(tty);
1da177e4
LT
5087
5088 if (status == 0)
5089 portp->stats.rxtotal++;
5090 }
5091}
5092
5093/*****************************************************************************/
5094
5095/*
5096 * Process all characters in the RX FIFO of the UART. Check all char
5097 * status bytes as well, and process as required. We need to check
5098 * all bytes in the FIFO, in case some more enter the FIFO while we
5099 * are here. To get the exact character error type we need to switch
5100 * into CHAR error mode (that is why we need to make sure we empty
5101 * the FIFO).
5102 */
5103
5104static void stl_sc26198rxbadchars(stlport_t *portp)
5105{
5106 unsigned char status, mr1;
5107 char ch;
5108
5109/*
5110 * To get the precise error type for each character we must switch
5111 * back into CHAR error mode.
5112 */
5113 mr1 = stl_sc26198getreg(portp, MR1);
5114 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
5115
5116 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
5117 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
5118 ch = stl_sc26198getreg(portp, RXFIFO);
5119 stl_sc26198rxbadch(portp, status, ch);
5120 }
5121
5122/*
5123 * To get correct interrupt class we must switch back into BLOCK
5124 * error mode.
5125 */
5126 stl_sc26198setreg(portp, MR1, mr1);
5127}
5128
5129/*****************************************************************************/
5130
5131/*
5132 * Other interrupt handler. This includes modem signals, flow
5133 * control actions, etc. Most stuff is left to off-level interrupt
5134 * processing time.
5135 */
5136
5137static void stl_sc26198otherisr(stlport_t *portp, unsigned int iack)
5138{
5139 unsigned char cir, ipr, xisr;
5140
5141#ifdef DEBUG
5142 printk("stl_sc26198otherisr(portp=%x,iack=%x)\n", (int) portp, iack);
5143#endif
5144
5145 cir = stl_sc26198getglobreg(portp, CIR);
5146
5147 switch (cir & CIR_SUBTYPEMASK) {
5148 case CIR_SUBCOS:
5149 ipr = stl_sc26198getreg(portp, IPR);
5150 if (ipr & IPR_DCDCHANGE) {
5151 set_bit(ASYI_DCDCHANGE, &portp->istate);
5152 schedule_work(&portp->tqueue);
5153 portp->stats.modem++;
5154 }
5155 break;
5156 case CIR_SUBXONXOFF:
5157 xisr = stl_sc26198getreg(portp, XISR);
5158 if (xisr & XISR_RXXONGOT) {
5159 set_bit(ASYI_TXFLOWED, &portp->istate);
5160 portp->stats.txxoff++;
5161 }
5162 if (xisr & XISR_RXXOFFGOT) {
5163 clear_bit(ASYI_TXFLOWED, &portp->istate);
5164 portp->stats.txxon++;
5165 }
5166 break;
5167 case CIR_SUBBREAK:
5168 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
5169 stl_sc26198rxbadchars(portp);
5170 break;
5171 default:
5172 break;
5173 }
5174}
5175
5176/*****************************************************************************/