Merge branch 's3c-fixes-rc4' of git://aeryn.fluff.org.uk/bjdooks/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / char / rtc.c
CommitLineData
1da177e4 1/*
5fd1fe9c 2 * Real Time Clock interface for Linux
1da177e4
LT
3 *
4 * Copyright (C) 1996 Paul Gortmaker
5 *
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
10 *
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
15 *
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
5fd1fe9c 20 * interrupts since the last read in the remaining high bytes. The
1da177e4
LT
21 * /dev/rtc interface can also be used with the select(2) call.
22 *
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
27 *
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
30 *
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
12a0a703 38 * 1.10 Paul Barton-Davis: add support for async I/O
1da177e4
LT
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
12a0a703 44 * 1.11 Takashi Iwai: Kernel access functions
1da177e4
LT
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
38e0e8c0 49 * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
b7599587 50 * 1.12ac Alan Cox: Allow read access to the day of week register
048cd588 51 * 1.12b David John: Remove calls to the BKL.
1da177e4
LT
52 */
53
048cd588 54#define RTC_VERSION "1.12b"
1da177e4 55
1da177e4
LT
56/*
57 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 * design of the RTC, we don't want two different things trying to
60 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
61 * this driver.)
62 */
63
1da177e4
LT
64#include <linux/interrupt.h>
65#include <linux/module.h>
66#include <linux/kernel.h>
67#include <linux/types.h>
68#include <linux/miscdevice.h>
69#include <linux/ioport.h>
70#include <linux/fcntl.h>
71#include <linux/mc146818rtc.h>
72#include <linux/init.h>
73#include <linux/poll.h>
74#include <linux/proc_fs.h>
75#include <linux/seq_file.h>
76#include <linux/spinlock.h>
77#include <linux/sysctl.h>
78#include <linux/wait.h>
79#include <linux/bcd.h>
47f176fd 80#include <linux/delay.h>
53f1b143 81#include <linux/uaccess.h>
1da177e4
LT
82
83#include <asm/current.h>
1da177e4
LT
84#include <asm/system.h>
85
55f93afd 86#ifdef CONFIG_X86
1da177e4
LT
87#include <asm/hpet.h>
88#endif
89
cdee99d7 90#ifdef CONFIG_SPARC32
75081322
DM
91#include <linux/of.h>
92#include <linux/of_device.h>
93#include <asm/io.h>
1da177e4
LT
94
95static unsigned long rtc_port;
75081322 96static int rtc_irq;
1da177e4
LT
97#endif
98
0f4d3fd8 99#ifdef CONFIG_HPET_EMULATE_RTC
1da177e4
LT
100#undef RTC_IRQ
101#endif
102
103#ifdef RTC_IRQ
104static int rtc_has_irq = 1;
105#endif
106
107#ifndef CONFIG_HPET_EMULATE_RTC
108#define is_hpet_enabled() 0
5fd1fe9c
IM
109#define hpet_set_alarm_time(hrs, min, sec) 0
110#define hpet_set_periodic_freq(arg) 0
111#define hpet_mask_rtc_irq_bit(arg) 0
112#define hpet_set_rtc_irq_bit(arg) 0
113#define hpet_rtc_timer_init() do { } while (0)
114#define hpet_rtc_dropped_irq() 0
32fa4586
DH
115#define hpet_register_irq_handler(h) ({ 0; })
116#define hpet_unregister_irq_handler(h) ({ 0; })
533ffc28
AM
117#ifdef RTC_IRQ
118static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
119{
120 return 0;
121}
122#endif
1da177e4
LT
123#endif
124
125/*
126 * We sponge a minor off of the misc major. No need slurping
127 * up another valuable major dev number for this. If you add
128 * an ioctl, make sure you don't conflict with SPARC's RTC
129 * ioctls.
130 */
131
132static struct fasync_struct *rtc_async_queue;
133
134static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
135
136#ifdef RTC_IRQ
40565f19
JS
137static void rtc_dropped_irq(unsigned long data);
138
139static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
1da177e4
LT
140#endif
141
142static ssize_t rtc_read(struct file *file, char __user *buf,
143 size_t count, loff_t *ppos);
144
53f1b143 145static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
9580d85f 146static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
1da177e4
LT
147
148#ifdef RTC_IRQ
149static unsigned int rtc_poll(struct file *file, poll_table *wait);
150#endif
151
5fd1fe9c 152static void get_rtc_alm_time(struct rtc_time *alm_tm);
1da177e4 153#ifdef RTC_IRQ
c3348760
TI
154static void set_rtc_irq_bit_locked(unsigned char bit);
155static void mask_rtc_irq_bit_locked(unsigned char bit);
156
157static inline void set_rtc_irq_bit(unsigned char bit)
158{
159 spin_lock_irq(&rtc_lock);
160 set_rtc_irq_bit_locked(bit);
161 spin_unlock_irq(&rtc_lock);
162}
163
164static void mask_rtc_irq_bit(unsigned char bit)
165{
166 spin_lock_irq(&rtc_lock);
167 mask_rtc_irq_bit_locked(bit);
168 spin_unlock_irq(&rtc_lock);
169}
1da177e4
LT
170#endif
171
9cef779e 172#ifdef CONFIG_PROC_FS
1da177e4 173static int rtc_proc_open(struct inode *inode, struct file *file);
9cef779e 174#endif
1da177e4
LT
175
176/*
177 * Bits in rtc_status. (6 bits of room for future expansion)
178 */
179
180#define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
181#define RTC_TIMER_ON 0x02 /* missed irq timer active */
182
183/*
184 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
048cd588
DJ
185 * protected by the spin lock rtc_lock. However, ioctl can still disable the
186 * timer in rtc_status and then with del_timer after the interrupt has read
1da177e4
LT
187 * rtc_status but before mod_timer is called, which would then reenable the
188 * timer (but you would need to have an awful timing before you'd trip on it)
189 */
5fd1fe9c
IM
190static unsigned long rtc_status; /* bitmapped status byte. */
191static unsigned long rtc_freq; /* Current periodic IRQ rate */
192static unsigned long rtc_irq_data; /* our output to the world */
1da177e4
LT
193static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
194
195#ifdef RTC_IRQ
196/*
197 * rtc_task_lock nests inside rtc_lock.
198 */
199static DEFINE_SPINLOCK(rtc_task_lock);
5fd1fe9c 200static rtc_task_t *rtc_callback;
1da177e4
LT
201#endif
202
203/*
204 * If this driver ever becomes modularised, it will be really nice
205 * to make the epoch retain its value across module reload...
206 */
207
208static unsigned long epoch = 1900; /* year corresponding to 0x00 */
209
5fd1fe9c 210static const unsigned char days_in_mo[] =
1da177e4
LT
211{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
212
213/*
214 * Returns true if a clock update is in progress
215 */
216static inline unsigned char rtc_is_updating(void)
217{
0b16f21f 218 unsigned long flags;
1da177e4
LT
219 unsigned char uip;
220
0b16f21f 221 spin_lock_irqsave(&rtc_lock, flags);
1da177e4 222 uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
0b16f21f 223 spin_unlock_irqrestore(&rtc_lock, flags);
1da177e4
LT
224 return uip;
225}
226
227#ifdef RTC_IRQ
228/*
0f2ed4c6 229 * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
1da177e4
LT
230 * but there is possibility of conflicting with the set_rtc_mmss()
231 * call (the rtc irq and the timer irq can easily run at the same
232 * time in two different CPUs). So we need to serialize
233 * accesses to the chip with the rtc_lock spinlock that each
234 * architecture should implement in the timer code.
235 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
236 */
237
9580d85f 238static irqreturn_t rtc_interrupt(int irq, void *dev_id)
1da177e4
LT
239{
240 /*
241 * Can be an alarm interrupt, update complete interrupt,
242 * or a periodic interrupt. We store the status in the
243 * low byte and the number of interrupts received since
244 * the last read in the remainder of rtc_irq_data.
245 */
246
5fd1fe9c 247 spin_lock(&rtc_lock);
1da177e4
LT
248 rtc_irq_data += 0x100;
249 rtc_irq_data &= ~0xff;
250 if (is_hpet_enabled()) {
251 /*
252 * In this case it is HPET RTC interrupt handler
253 * calling us, with the interrupt information
254 * passed as arg1, instead of irq.
255 */
256 rtc_irq_data |= (unsigned long)irq & 0xF0;
257 } else {
258 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
259 }
260
261 if (rtc_status & RTC_TIMER_ON)
262 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
263
5fd1fe9c 264 spin_unlock(&rtc_lock);
1da177e4
LT
265
266 /* Now do the rest of the actions */
267 spin_lock(&rtc_task_lock);
268 if (rtc_callback)
269 rtc_callback->func(rtc_callback->private_data);
270 spin_unlock(&rtc_task_lock);
5fd1fe9c 271 wake_up_interruptible(&rtc_wait);
1da177e4 272
5fd1fe9c 273 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1da177e4
LT
274
275 return IRQ_HANDLED;
276}
277#endif
278
279/*
280 * sysctl-tuning infrastructure.
281 */
282static ctl_table rtc_table[] = {
283 {
7735362a 284 .ctl_name = CTL_UNNUMBERED,
1da177e4
LT
285 .procname = "max-user-freq",
286 .data = &rtc_max_user_freq,
287 .maxlen = sizeof(int),
288 .mode = 0644,
289 .proc_handler = &proc_dointvec,
290 },
291 { .ctl_name = 0 }
292};
293
294static ctl_table rtc_root[] = {
295 {
7735362a 296 .ctl_name = CTL_UNNUMBERED,
1da177e4 297 .procname = "rtc",
1da177e4
LT
298 .mode = 0555,
299 .child = rtc_table,
300 },
301 { .ctl_name = 0 }
302};
303
304static ctl_table dev_root[] = {
305 {
306 .ctl_name = CTL_DEV,
307 .procname = "dev",
1da177e4
LT
308 .mode = 0555,
309 .child = rtc_root,
310 },
311 { .ctl_name = 0 }
312};
313
314static struct ctl_table_header *sysctl_header;
315
316static int __init init_sysctl(void)
317{
0b4d4147 318 sysctl_header = register_sysctl_table(dev_root);
1da177e4
LT
319 return 0;
320}
321
322static void __exit cleanup_sysctl(void)
323{
324 unregister_sysctl_table(sysctl_header);
325}
326
327/*
328 * Now all the various file operations that we export.
329 */
330
331static ssize_t rtc_read(struct file *file, char __user *buf,
332 size_t count, loff_t *ppos)
333{
334#ifndef RTC_IRQ
335 return -EIO;
336#else
337 DECLARE_WAITQUEUE(wait, current);
338 unsigned long data;
339 ssize_t retval;
5fd1fe9c 340
1da177e4
LT
341 if (rtc_has_irq == 0)
342 return -EIO;
343
38e0e8c0
MR
344 /*
345 * Historically this function used to assume that sizeof(unsigned long)
346 * is the same in userspace and kernelspace. This lead to problems
347 * for configurations with multiple ABIs such a the MIPS o32 and 64
348 * ABIs supported on the same kernel. So now we support read of both
349 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
350 * userspace ABI.
351 */
352 if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
1da177e4
LT
353 return -EINVAL;
354
355 add_wait_queue(&rtc_wait, &wait);
356
357 do {
358 /* First make it right. Then make it fast. Putting this whole
359 * block within the parentheses of a while would be too
360 * confusing. And no, xchg() is not the answer. */
361
362 __set_current_state(TASK_INTERRUPTIBLE);
5fd1fe9c
IM
363
364 spin_lock_irq(&rtc_lock);
1da177e4
LT
365 data = rtc_irq_data;
366 rtc_irq_data = 0;
5fd1fe9c 367 spin_unlock_irq(&rtc_lock);
1da177e4
LT
368
369 if (data != 0)
370 break;
371
372 if (file->f_flags & O_NONBLOCK) {
373 retval = -EAGAIN;
374 goto out;
375 }
376 if (signal_pending(current)) {
377 retval = -ERESTARTSYS;
378 goto out;
379 }
380 schedule();
381 } while (1);
382
5fd1fe9c
IM
383 if (count == sizeof(unsigned int)) {
384 retval = put_user(data,
385 (unsigned int __user *)buf) ?: sizeof(int);
386 } else {
387 retval = put_user(data,
388 (unsigned long __user *)buf) ?: sizeof(long);
389 }
38e0e8c0
MR
390 if (!retval)
391 retval = count;
1da177e4 392 out:
cc0a8fbb 393 __set_current_state(TASK_RUNNING);
1da177e4
LT
394 remove_wait_queue(&rtc_wait, &wait);
395
396 return retval;
397#endif
398}
399
400static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
401{
5fd1fe9c 402 struct rtc_time wtime;
1da177e4
LT
403
404#ifdef RTC_IRQ
405 if (rtc_has_irq == 0) {
406 switch (cmd) {
407 case RTC_AIE_OFF:
408 case RTC_AIE_ON:
409 case RTC_PIE_OFF:
410 case RTC_PIE_ON:
411 case RTC_UIE_OFF:
412 case RTC_UIE_ON:
413 case RTC_IRQP_READ:
414 case RTC_IRQP_SET:
415 return -EINVAL;
416 };
417 }
418#endif
419
420 switch (cmd) {
421#ifdef RTC_IRQ
422 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
423 {
424 mask_rtc_irq_bit(RTC_AIE);
425 return 0;
426 }
427 case RTC_AIE_ON: /* Allow alarm interrupts. */
428 {
429 set_rtc_irq_bit(RTC_AIE);
430 return 0;
431 }
432 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
433 {
5fd1fe9c
IM
434 /* can be called from isr via rtc_control() */
435 unsigned long flags;
436
437 spin_lock_irqsave(&rtc_lock, flags);
c3348760 438 mask_rtc_irq_bit_locked(RTC_PIE);
1da177e4 439 if (rtc_status & RTC_TIMER_ON) {
1da177e4
LT
440 rtc_status &= ~RTC_TIMER_ON;
441 del_timer(&rtc_irq_timer);
1da177e4 442 }
5fd1fe9c
IM
443 spin_unlock_irqrestore(&rtc_lock, flags);
444
1da177e4
LT
445 return 0;
446 }
447 case RTC_PIE_ON: /* Allow periodic ints */
448 {
5fd1fe9c
IM
449 /* can be called from isr via rtc_control() */
450 unsigned long flags;
451
1da177e4
LT
452 /*
453 * We don't really want Joe User enabling more
454 * than 64Hz of interrupts on a multi-user machine.
455 */
456 if (!kernel && (rtc_freq > rtc_max_user_freq) &&
5fd1fe9c 457 (!capable(CAP_SYS_RESOURCE)))
1da177e4
LT
458 return -EACCES;
459
5fd1fe9c 460 spin_lock_irqsave(&rtc_lock, flags);
1da177e4 461 if (!(rtc_status & RTC_TIMER_ON)) {
40565f19
JS
462 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
463 2*HZ/100);
1da177e4 464 rtc_status |= RTC_TIMER_ON;
1da177e4 465 }
c3348760 466 set_rtc_irq_bit_locked(RTC_PIE);
5fd1fe9c
IM
467 spin_unlock_irqrestore(&rtc_lock, flags);
468
1da177e4
LT
469 return 0;
470 }
471 case RTC_UIE_OFF: /* Mask ints from RTC updates. */
472 {
473 mask_rtc_irq_bit(RTC_UIE);
474 return 0;
475 }
476 case RTC_UIE_ON: /* Allow ints for RTC updates. */
477 {
478 set_rtc_irq_bit(RTC_UIE);
479 return 0;
480 }
481#endif
482 case RTC_ALM_READ: /* Read the present alarm time */
483 {
484 /*
485 * This returns a struct rtc_time. Reading >= 0xc0
486 * means "don't care" or "match all". Only the tm_hour,
487 * tm_min, and tm_sec values are filled in.
488 */
489 memset(&wtime, 0, sizeof(struct rtc_time));
490 get_rtc_alm_time(&wtime);
5fd1fe9c 491 break;
1da177e4
LT
492 }
493 case RTC_ALM_SET: /* Store a time into the alarm */
494 {
495 /*
496 * This expects a struct rtc_time. Writing 0xff means
497 * "don't care" or "match all". Only the tm_hour,
498 * tm_min and tm_sec are used.
499 */
500 unsigned char hrs, min, sec;
501 struct rtc_time alm_tm;
502
503 if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
504 sizeof(struct rtc_time)))
505 return -EFAULT;
506
507 hrs = alm_tm.tm_hour;
508 min = alm_tm.tm_min;
509 sec = alm_tm.tm_sec;
510
511 spin_lock_irq(&rtc_lock);
512 if (hpet_set_alarm_time(hrs, min, sec)) {
513 /*
514 * Fallthru and set alarm time in CMOS too,
515 * so that we will get proper value in RTC_ALM_READ
516 */
517 }
518 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
5fd1fe9c
IM
519 RTC_ALWAYS_BCD) {
520 if (sec < 60)
357c6e63 521 sec = bin2bcd(sec);
5fd1fe9c
IM
522 else
523 sec = 0xff;
524
525 if (min < 60)
357c6e63 526 min = bin2bcd(min);
5fd1fe9c
IM
527 else
528 min = 0xff;
529
530 if (hrs < 24)
357c6e63 531 hrs = bin2bcd(hrs);
5fd1fe9c
IM
532 else
533 hrs = 0xff;
1da177e4
LT
534 }
535 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
536 CMOS_WRITE(min, RTC_MINUTES_ALARM);
537 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
538 spin_unlock_irq(&rtc_lock);
539
540 return 0;
541 }
542 case RTC_RD_TIME: /* Read the time/date from RTC */
543 {
544 memset(&wtime, 0, sizeof(struct rtc_time));
545 rtc_get_rtc_time(&wtime);
546 break;
547 }
548 case RTC_SET_TIME: /* Set the RTC */
549 {
550 struct rtc_time rtc_tm;
551 unsigned char mon, day, hrs, min, sec, leap_yr;
552 unsigned char save_control, save_freq_select;
553 unsigned int yrs;
554#ifdef CONFIG_MACH_DECSTATION
555 unsigned int real_yrs;
556#endif
557
558 if (!capable(CAP_SYS_TIME))
559 return -EACCES;
560
561 if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
562 sizeof(struct rtc_time)))
563 return -EFAULT;
564
565 yrs = rtc_tm.tm_year + 1900;
566 mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
567 day = rtc_tm.tm_mday;
568 hrs = rtc_tm.tm_hour;
569 min = rtc_tm.tm_min;
570 sec = rtc_tm.tm_sec;
571
572 if (yrs < 1970)
573 return -EINVAL;
574
575 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
576
577 if ((mon > 12) || (day == 0))
578 return -EINVAL;
579
580 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
581 return -EINVAL;
5fd1fe9c 582
1da177e4
LT
583 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
584 return -EINVAL;
585
5fd1fe9c
IM
586 yrs -= epoch;
587 if (yrs > 255) /* They are unsigned */
1da177e4
LT
588 return -EINVAL;
589
590 spin_lock_irq(&rtc_lock);
591#ifdef CONFIG_MACH_DECSTATION
592 real_yrs = yrs;
593 yrs = 72;
594
595 /*
596 * We want to keep the year set to 73 until March
597 * for non-leap years, so that Feb, 29th is handled
598 * correctly.
599 */
600 if (!leap_yr && mon < 3) {
601 real_yrs--;
602 yrs = 73;
603 }
604#endif
605 /* These limits and adjustments are independent of
606 * whether the chip is in binary mode or not.
607 */
608 if (yrs > 169) {
609 spin_unlock_irq(&rtc_lock);
610 return -EINVAL;
611 }
612 if (yrs >= 100)
613 yrs -= 100;
614
615 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
616 || RTC_ALWAYS_BCD) {
357c6e63
AB
617 sec = bin2bcd(sec);
618 min = bin2bcd(min);
619 hrs = bin2bcd(hrs);
620 day = bin2bcd(day);
621 mon = bin2bcd(mon);
622 yrs = bin2bcd(yrs);
1da177e4
LT
623 }
624
625 save_control = CMOS_READ(RTC_CONTROL);
626 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
627 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
628 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
629
630#ifdef CONFIG_MACH_DECSTATION
631 CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
632#endif
633 CMOS_WRITE(yrs, RTC_YEAR);
634 CMOS_WRITE(mon, RTC_MONTH);
635 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
636 CMOS_WRITE(hrs, RTC_HOURS);
637 CMOS_WRITE(min, RTC_MINUTES);
638 CMOS_WRITE(sec, RTC_SECONDS);
639
640 CMOS_WRITE(save_control, RTC_CONTROL);
641 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
642
643 spin_unlock_irq(&rtc_lock);
644 return 0;
645 }
646#ifdef RTC_IRQ
647 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
648 {
649 return put_user(rtc_freq, (unsigned long __user *)arg);
650 }
651 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
652 {
653 int tmp = 0;
654 unsigned char val;
5fd1fe9c
IM
655 /* can be called from isr via rtc_control() */
656 unsigned long flags;
1da177e4 657
5fd1fe9c 658 /*
1da177e4
LT
659 * The max we can do is 8192Hz.
660 */
661 if ((arg < 2) || (arg > 8192))
662 return -EINVAL;
663 /*
664 * We don't really want Joe User generating more
665 * than 64Hz of interrupts on a multi-user machine.
666 */
5fd1fe9c
IM
667 if (!kernel && (arg > rtc_max_user_freq) &&
668 !capable(CAP_SYS_RESOURCE))
1da177e4
LT
669 return -EACCES;
670
671 while (arg > (1<<tmp))
672 tmp++;
673
674 /*
675 * Check that the input was really a power of 2.
676 */
677 if (arg != (1<<tmp))
678 return -EINVAL;
679
61ca9daa
PG
680 rtc_freq = arg;
681
c3348760 682 spin_lock_irqsave(&rtc_lock, flags);
1da177e4 683 if (hpet_set_periodic_freq(arg)) {
c3348760 684 spin_unlock_irqrestore(&rtc_lock, flags);
1da177e4
LT
685 return 0;
686 }
1da177e4
LT
687
688 val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
689 val |= (16 - tmp);
690 CMOS_WRITE(val, RTC_FREQ_SELECT);
c3348760 691 spin_unlock_irqrestore(&rtc_lock, flags);
1da177e4
LT
692 return 0;
693 }
694#endif
695 case RTC_EPOCH_READ: /* Read the epoch. */
696 {
5fd1fe9c 697 return put_user(epoch, (unsigned long __user *)arg);
1da177e4
LT
698 }
699 case RTC_EPOCH_SET: /* Set the epoch. */
700 {
5fd1fe9c 701 /*
1da177e4
LT
702 * There were no RTC clocks before 1900.
703 */
704 if (arg < 1900)
705 return -EINVAL;
706
707 if (!capable(CAP_SYS_TIME))
708 return -EACCES;
709
710 epoch = arg;
711 return 0;
712 }
713 default:
714 return -ENOTTY;
715 }
5fd1fe9c
IM
716 return copy_to_user((void __user *)arg,
717 &wtime, sizeof wtime) ? -EFAULT : 0;
1da177e4
LT
718}
719
53f1b143 720static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1da177e4 721{
53f1b143 722 long ret;
53f1b143 723 ret = rtc_do_ioctl(cmd, arg, 0);
53f1b143 724 return ret;
1da177e4
LT
725}
726
727/*
728 * We enforce only one user at a time here with the open/close.
729 * Also clear the previous interrupt data on an open, and clean
730 * up things on a close.
731 */
1da177e4
LT
732static int rtc_open(struct inode *inode, struct file *file)
733{
5fd1fe9c 734 spin_lock_irq(&rtc_lock);
1da177e4 735
5fd1fe9c 736 if (rtc_status & RTC_IS_OPEN)
1da177e4
LT
737 goto out_busy;
738
739 rtc_status |= RTC_IS_OPEN;
740
741 rtc_irq_data = 0;
5fd1fe9c 742 spin_unlock_irq(&rtc_lock);
1da177e4
LT
743 return 0;
744
745out_busy:
5fd1fe9c 746 spin_unlock_irq(&rtc_lock);
1da177e4
LT
747 return -EBUSY;
748}
749
5fd1fe9c 750static int rtc_fasync(int fd, struct file *filp, int on)
1da177e4 751{
5fd1fe9c 752 return fasync_helper(fd, filp, on, &rtc_async_queue);
1da177e4
LT
753}
754
755static int rtc_release(struct inode *inode, struct file *file)
756{
757#ifdef RTC_IRQ
758 unsigned char tmp;
759
760 if (rtc_has_irq == 0)
761 goto no_irq;
762
763 /*
764 * Turn off all interrupts once the device is no longer
765 * in use, and clear the data.
766 */
767
768 spin_lock_irq(&rtc_lock);
769 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
770 tmp = CMOS_READ(RTC_CONTROL);
771 tmp &= ~RTC_PIE;
772 tmp &= ~RTC_AIE;
773 tmp &= ~RTC_UIE;
774 CMOS_WRITE(tmp, RTC_CONTROL);
775 CMOS_READ(RTC_INTR_FLAGS);
776 }
777 if (rtc_status & RTC_TIMER_ON) {
778 rtc_status &= ~RTC_TIMER_ON;
779 del_timer(&rtc_irq_timer);
780 }
781 spin_unlock_irq(&rtc_lock);
782
1da177e4
LT
783no_irq:
784#endif
785
5fd1fe9c 786 spin_lock_irq(&rtc_lock);
1da177e4
LT
787 rtc_irq_data = 0;
788 rtc_status &= ~RTC_IS_OPEN;
5fd1fe9c
IM
789 spin_unlock_irq(&rtc_lock);
790
1da177e4
LT
791 return 0;
792}
793
794#ifdef RTC_IRQ
1da177e4
LT
795static unsigned int rtc_poll(struct file *file, poll_table *wait)
796{
797 unsigned long l;
798
799 if (rtc_has_irq == 0)
800 return 0;
801
802 poll_wait(file, &rtc_wait, wait);
803
5fd1fe9c 804 spin_lock_irq(&rtc_lock);
1da177e4 805 l = rtc_irq_data;
5fd1fe9c 806 spin_unlock_irq(&rtc_lock);
1da177e4
LT
807
808 if (l != 0)
809 return POLLIN | POLLRDNORM;
810 return 0;
811}
812#endif
813
1da177e4
LT
814int rtc_register(rtc_task_t *task)
815{
816#ifndef RTC_IRQ
817 return -EIO;
818#else
819 if (task == NULL || task->func == NULL)
820 return -EINVAL;
821 spin_lock_irq(&rtc_lock);
822 if (rtc_status & RTC_IS_OPEN) {
823 spin_unlock_irq(&rtc_lock);
824 return -EBUSY;
825 }
826 spin_lock(&rtc_task_lock);
827 if (rtc_callback) {
828 spin_unlock(&rtc_task_lock);
829 spin_unlock_irq(&rtc_lock);
830 return -EBUSY;
831 }
832 rtc_status |= RTC_IS_OPEN;
833 rtc_callback = task;
834 spin_unlock(&rtc_task_lock);
835 spin_unlock_irq(&rtc_lock);
836 return 0;
837#endif
838}
5fd1fe9c 839EXPORT_SYMBOL(rtc_register);
1da177e4
LT
840
841int rtc_unregister(rtc_task_t *task)
842{
843#ifndef RTC_IRQ
844 return -EIO;
845#else
846 unsigned char tmp;
847
848 spin_lock_irq(&rtc_lock);
849 spin_lock(&rtc_task_lock);
850 if (rtc_callback != task) {
851 spin_unlock(&rtc_task_lock);
852 spin_unlock_irq(&rtc_lock);
853 return -ENXIO;
854 }
855 rtc_callback = NULL;
5fd1fe9c 856
1da177e4
LT
857 /* disable controls */
858 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
859 tmp = CMOS_READ(RTC_CONTROL);
860 tmp &= ~RTC_PIE;
861 tmp &= ~RTC_AIE;
862 tmp &= ~RTC_UIE;
863 CMOS_WRITE(tmp, RTC_CONTROL);
864 CMOS_READ(RTC_INTR_FLAGS);
865 }
866 if (rtc_status & RTC_TIMER_ON) {
867 rtc_status &= ~RTC_TIMER_ON;
868 del_timer(&rtc_irq_timer);
869 }
870 rtc_status &= ~RTC_IS_OPEN;
871 spin_unlock(&rtc_task_lock);
872 spin_unlock_irq(&rtc_lock);
873 return 0;
874#endif
875}
5fd1fe9c 876EXPORT_SYMBOL(rtc_unregister);
1da177e4
LT
877
878int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
879{
880#ifndef RTC_IRQ
881 return -EIO;
882#else
c3348760
TI
883 unsigned long flags;
884 if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
885 return -EINVAL;
886 spin_lock_irqsave(&rtc_task_lock, flags);
1da177e4 887 if (rtc_callback != task) {
c3348760 888 spin_unlock_irqrestore(&rtc_task_lock, flags);
1da177e4
LT
889 return -ENXIO;
890 }
c3348760 891 spin_unlock_irqrestore(&rtc_task_lock, flags);
1da177e4
LT
892 return rtc_do_ioctl(cmd, arg, 1);
893#endif
894}
5fd1fe9c 895EXPORT_SYMBOL(rtc_control);
1da177e4
LT
896
897/*
898 * The various file operations we support.
899 */
900
62322d25 901static const struct file_operations rtc_fops = {
1da177e4
LT
902 .owner = THIS_MODULE,
903 .llseek = no_llseek,
904 .read = rtc_read,
905#ifdef RTC_IRQ
906 .poll = rtc_poll,
907#endif
53f1b143 908 .unlocked_ioctl = rtc_ioctl,
1da177e4
LT
909 .open = rtc_open,
910 .release = rtc_release,
911 .fasync = rtc_fasync,
912};
913
914static struct miscdevice rtc_dev = {
915 .minor = RTC_MINOR,
916 .name = "rtc",
917 .fops = &rtc_fops,
918};
919
9cef779e 920#ifdef CONFIG_PROC_FS
62322d25 921static const struct file_operations rtc_proc_fops = {
5fd1fe9c
IM
922 .owner = THIS_MODULE,
923 .open = rtc_proc_open,
924 .read = seq_read,
925 .llseek = seq_lseek,
926 .release = single_release,
1da177e4 927};
1da177e4
LT
928#endif
929
9626f1f1
BH
930static resource_size_t rtc_size;
931
932static struct resource * __init rtc_request_region(resource_size_t size)
933{
934 struct resource *r;
935
936 if (RTC_IOMAPPED)
937 r = request_region(RTC_PORT(0), size, "rtc");
938 else
939 r = request_mem_region(RTC_PORT(0), size, "rtc");
940
941 if (r)
942 rtc_size = size;
943
944 return r;
945}
946
4c06be10
BH
947static void rtc_release_region(void)
948{
949 if (RTC_IOMAPPED)
9626f1f1 950 release_region(RTC_PORT(0), rtc_size);
4c06be10 951 else
9626f1f1 952 release_mem_region(RTC_PORT(0), rtc_size);
4c06be10
BH
953}
954
1da177e4
LT
955static int __init rtc_init(void)
956{
9cef779e 957#ifdef CONFIG_PROC_FS
1da177e4 958 struct proc_dir_entry *ent;
9cef779e 959#endif
1da177e4
LT
960#if defined(__alpha__) || defined(__mips__)
961 unsigned int year, ctrl;
1da177e4
LT
962 char *guess = NULL;
963#endif
cdee99d7 964#ifdef CONFIG_SPARC32
75081322
DM
965 struct device_node *ebus_dp;
966 struct of_device *op;
9cef779e 967#else
38e0e8c0 968 void *r;
9cef779e
JB
969#ifdef RTC_IRQ
970 irq_handler_t rtc_int_handler_ptr;
971#endif
38e0e8c0 972#endif
1da177e4 973
cdee99d7 974#ifdef CONFIG_SPARC32
75081322
DM
975 for_each_node_by_name(ebus_dp, "ebus") {
976 struct device_node *dp;
977 for (dp = ebus_dp; dp; dp = dp->sibling) {
978 if (!strcmp(dp->name, "rtc")) {
979 op = of_find_device_by_node(dp);
980 if (op) {
981 rtc_port = op->resource[0].start;
982 rtc_irq = op->irqs[0];
983 goto found;
984 }
1da177e4
LT
985 }
986 }
987 }
f3e92d35 988 rtc_has_irq = 0;
1da177e4
LT
989 printk(KERN_ERR "rtc_init: no PC rtc found\n");
990 return -EIO;
991
992found:
75081322 993 if (!rtc_irq) {
1da177e4
LT
994 rtc_has_irq = 0;
995 goto no_irq;
996 }
997
998 /*
999 * XXX Interrupt pin #7 in Espresso is shared between RTC and
53d0fc27 1000 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
1da177e4 1001 */
5fd1fe9c
IM
1002 if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1003 (void *)&rtc_port)) {
f3e92d35 1004 rtc_has_irq = 0;
1da177e4
LT
1005 printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1006 return -EIO;
1007 }
1008no_irq:
1009#else
9626f1f1
BH
1010 r = rtc_request_region(RTC_IO_EXTENT);
1011
1012 /*
1013 * If we've already requested a smaller range (for example, because
1014 * PNPBIOS or ACPI told us how the device is configured), the request
1015 * above might fail because it's too big.
1016 *
1017 * If so, request just the range we actually use.
1018 */
1019 if (!r)
1020 r = rtc_request_region(RTC_IO_EXTENT_USED);
38e0e8c0 1021 if (!r) {
f3e92d35
JB
1022#ifdef RTC_IRQ
1023 rtc_has_irq = 0;
1024#endif
38e0e8c0
MR
1025 printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1026 (long)(RTC_PORT(0)));
1da177e4
LT
1027 return -EIO;
1028 }
1029
1030#ifdef RTC_IRQ
1031 if (is_hpet_enabled()) {
f8f76481
BW
1032 int err;
1033
1da177e4 1034 rtc_int_handler_ptr = hpet_rtc_interrupt;
f8f76481
BW
1035 err = hpet_register_irq_handler(rtc_interrupt);
1036 if (err != 0) {
1037 printk(KERN_WARNING "hpet_register_irq_handler failed "
1038 "in rtc_init().");
1039 return err;
1040 }
1da177e4
LT
1041 } else {
1042 rtc_int_handler_ptr = rtc_interrupt;
1043 }
1044
5fd1fe9c
IM
1045 if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1046 "rtc", NULL)) {
1da177e4 1047 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
f3e92d35 1048 rtc_has_irq = 0;
1da177e4 1049 printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
4c06be10 1050 rtc_release_region();
5fd1fe9c 1051
1da177e4
LT
1052 return -EIO;
1053 }
1054 hpet_rtc_timer_init();
1055
1056#endif
1057
cdee99d7 1058#endif /* CONFIG_SPARC32 vs. others */
1da177e4
LT
1059
1060 if (misc_register(&rtc_dev)) {
1061#ifdef RTC_IRQ
1062 free_irq(RTC_IRQ, NULL);
f8f76481 1063 hpet_unregister_irq_handler(rtc_interrupt);
f3e92d35 1064 rtc_has_irq = 0;
1da177e4 1065#endif
4c06be10 1066 rtc_release_region();
1da177e4
LT
1067 return -ENODEV;
1068 }
1069
9cef779e 1070#ifdef CONFIG_PROC_FS
1b502217
DL
1071 ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1072 if (!ent)
9cef779e 1073 printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1da177e4 1074#endif
1da177e4
LT
1075
1076#if defined(__alpha__) || defined(__mips__)
1077 rtc_freq = HZ;
5fd1fe9c 1078
1da177e4
LT
1079 /* Each operating system on an Alpha uses its own epoch.
1080 Let's try to guess which one we are using now. */
5fd1fe9c 1081
1da177e4 1082 if (rtc_is_updating() != 0)
47f176fd 1083 msleep(20);
5fd1fe9c 1084
1da177e4
LT
1085 spin_lock_irq(&rtc_lock);
1086 year = CMOS_READ(RTC_YEAR);
1087 ctrl = CMOS_READ(RTC_CONTROL);
1088 spin_unlock_irq(&rtc_lock);
5fd1fe9c 1089
1da177e4 1090 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
357c6e63 1091 year = bcd2bin(year); /* This should never happen... */
5fd1fe9c 1092
1da177e4
LT
1093 if (year < 20) {
1094 epoch = 2000;
1095 guess = "SRM (post-2000)";
1096 } else if (year >= 20 && year < 48) {
1097 epoch = 1980;
1098 guess = "ARC console";
1099 } else if (year >= 48 && year < 72) {
1100 epoch = 1952;
1101 guess = "Digital UNIX";
1102#if defined(__mips__)
1103 } else if (year >= 72 && year < 74) {
1104 epoch = 2000;
1105 guess = "Digital DECstation";
1106#else
1107 } else if (year >= 70) {
1108 epoch = 1900;
1109 guess = "Standard PC (1900)";
1110#endif
1111 }
1112 if (guess)
5fd1fe9c
IM
1113 printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1114 guess, epoch);
1da177e4
LT
1115#endif
1116#ifdef RTC_IRQ
1117 if (rtc_has_irq == 0)
1118 goto no_irq2;
1119
1da177e4
LT
1120 spin_lock_irq(&rtc_lock);
1121 rtc_freq = 1024;
1122 if (!hpet_set_periodic_freq(rtc_freq)) {
5fd1fe9c
IM
1123 /*
1124 * Initialize periodic frequency to CMOS reset default,
1125 * which is 1024Hz
1126 */
1127 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1128 RTC_FREQ_SELECT);
1da177e4
LT
1129 }
1130 spin_unlock_irq(&rtc_lock);
1131no_irq2:
1132#endif
1133
1134 (void) init_sysctl();
1135
1136 printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1137
1138 return 0;
1139}
1140
5fd1fe9c 1141static void __exit rtc_exit(void)
1da177e4
LT
1142{
1143 cleanup_sysctl();
5fd1fe9c 1144 remove_proc_entry("driver/rtc", NULL);
1da177e4
LT
1145 misc_deregister(&rtc_dev);
1146
cdee99d7 1147#ifdef CONFIG_SPARC32
1da177e4 1148 if (rtc_has_irq)
5fd1fe9c 1149 free_irq(rtc_irq, &rtc_port);
1da177e4 1150#else
4c06be10 1151 rtc_release_region();
1da177e4 1152#ifdef RTC_IRQ
f8f76481 1153 if (rtc_has_irq) {
5fd1fe9c 1154 free_irq(RTC_IRQ, NULL);
f8f76481
BW
1155 hpet_unregister_irq_handler(hpet_rtc_interrupt);
1156 }
1da177e4 1157#endif
cdee99d7 1158#endif /* CONFIG_SPARC32 */
1da177e4
LT
1159}
1160
1161module_init(rtc_init);
1162module_exit(rtc_exit);
1163
1164#ifdef RTC_IRQ
1165/*
5fd1fe9c 1166 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1da177e4
LT
1167 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1168 * Since the interrupt handler doesn't get called, the IRQ status
1169 * byte doesn't get read, and the RTC stops generating interrupts.
1170 * A timer is set, and will call this function if/when that happens.
1171 * To get it out of this stalled state, we just read the status.
1172 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
5fd1fe9c 1173 * (You *really* shouldn't be trying to use a non-realtime system
1da177e4
LT
1174 * for something that requires a steady > 1KHz signal anyways.)
1175 */
1176
1177static void rtc_dropped_irq(unsigned long data)
1178{
1179 unsigned long freq;
1180
5fd1fe9c 1181 spin_lock_irq(&rtc_lock);
1da177e4
LT
1182
1183 if (hpet_rtc_dropped_irq()) {
1184 spin_unlock_irq(&rtc_lock);
1185 return;
1186 }
1187
1188 /* Just in case someone disabled the timer from behind our back... */
1189 if (rtc_status & RTC_TIMER_ON)
1190 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1191
1192 rtc_irq_data += ((rtc_freq/HZ)<<8);
1193 rtc_irq_data &= ~0xff;
1194 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
1195
1196 freq = rtc_freq;
1197
1198 spin_unlock_irq(&rtc_lock);
1199
5fd1fe9c
IM
1200 if (printk_ratelimit()) {
1201 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1202 freq);
1203 }
1da177e4
LT
1204
1205 /* Now we have new data */
1206 wake_up_interruptible(&rtc_wait);
1207
5fd1fe9c 1208 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1da177e4
LT
1209}
1210#endif
1211
9cef779e 1212#ifdef CONFIG_PROC_FS
1da177e4
LT
1213/*
1214 * Info exported via "/proc/driver/rtc".
1215 */
1216
1217static int rtc_proc_show(struct seq_file *seq, void *v)
1218{
1219#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1220#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1221 struct rtc_time tm;
1222 unsigned char batt, ctrl;
1223 unsigned long freq;
1224
1225 spin_lock_irq(&rtc_lock);
1226 batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1227 ctrl = CMOS_READ(RTC_CONTROL);
1228 freq = rtc_freq;
1229 spin_unlock_irq(&rtc_lock);
1230
1231
1232 rtc_get_rtc_time(&tm);
1233
1234 /*
1235 * There is no way to tell if the luser has the RTC set for local
1236 * time or for Universal Standard Time (GMT). Probably local though.
1237 */
1238 seq_printf(seq,
1239 "rtc_time\t: %02d:%02d:%02d\n"
1240 "rtc_date\t: %04d-%02d-%02d\n"
1241 "rtc_epoch\t: %04lu\n",
1242 tm.tm_hour, tm.tm_min, tm.tm_sec,
1243 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1244
1245 get_rtc_alm_time(&tm);
1246
1247 /*
1248 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1249 * match any value for that particular field. Values that are
1250 * greater than a valid time, but less than 0xc0 shouldn't appear.
1251 */
1252 seq_puts(seq, "alarm\t\t: ");
1253 if (tm.tm_hour <= 24)
1254 seq_printf(seq, "%02d:", tm.tm_hour);
1255 else
1256 seq_puts(seq, "**:");
1257
1258 if (tm.tm_min <= 59)
1259 seq_printf(seq, "%02d:", tm.tm_min);
1260 else
1261 seq_puts(seq, "**:");
1262
1263 if (tm.tm_sec <= 59)
1264 seq_printf(seq, "%02d\n", tm.tm_sec);
1265 else
1266 seq_puts(seq, "**\n");
1267
1268 seq_printf(seq,
1269 "DST_enable\t: %s\n"
1270 "BCD\t\t: %s\n"
1271 "24hr\t\t: %s\n"
1272 "square_wave\t: %s\n"
1273 "alarm_IRQ\t: %s\n"
1274 "update_IRQ\t: %s\n"
1275 "periodic_IRQ\t: %s\n"
1276 "periodic_freq\t: %ld\n"
1277 "batt_status\t: %s\n",
1278 YN(RTC_DST_EN),
1279 NY(RTC_DM_BINARY),
1280 YN(RTC_24H),
1281 YN(RTC_SQWE),
1282 YN(RTC_AIE),
1283 YN(RTC_UIE),
1284 YN(RTC_PIE),
1285 freq,
1286 batt ? "okay" : "dead");
1287
1288 return 0;
1289#undef YN
1290#undef NY
1291}
1292
1293static int rtc_proc_open(struct inode *inode, struct file *file)
1294{
1295 return single_open(file, rtc_proc_show, NULL);
1296}
9cef779e 1297#endif
1da177e4 1298
9580d85f 1299static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1da177e4 1300{
0f749646 1301 unsigned long uip_watchdog = jiffies, flags;
1da177e4
LT
1302 unsigned char ctrl;
1303#ifdef CONFIG_MACH_DECSTATION
1304 unsigned int real_year;
1305#endif
1306
1307 /*
1308 * read RTC once any update in progress is done. The update
47f176fd 1309 * can take just over 2ms. We wait 20ms. There is no need to
1da177e4
LT
1310 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1311 * If you need to know *exactly* when a second has started, enable
5fd1fe9c 1312 * periodic update complete interrupts, (via ioctl) and then
1da177e4
LT
1313 * immediately read /dev/rtc which will block until you get the IRQ.
1314 * Once the read clears, read the RTC time (again via ioctl). Easy.
1315 */
1316
dca03a51
JL
1317 while (rtc_is_updating() != 0 &&
1318 time_before(jiffies, uip_watchdog + 2*HZ/100))
403fe5ae 1319 cpu_relax();
1da177e4
LT
1320
1321 /*
1322 * Only the values that we read from the RTC are set. We leave
b7599587
AC
1323 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1324 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1325 * only updated by the RTC when initially set to a non-zero value.
1da177e4 1326 */
0f749646 1327 spin_lock_irqsave(&rtc_lock, flags);
1da177e4
LT
1328 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1329 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1330 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1331 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1332 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1333 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
b7599587
AC
1334 /* Only set from 2.6.16 onwards */
1335 rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1336
1da177e4
LT
1337#ifdef CONFIG_MACH_DECSTATION
1338 real_year = CMOS_READ(RTC_DEC_YEAR);
1339#endif
1340 ctrl = CMOS_READ(RTC_CONTROL);
0f749646 1341 spin_unlock_irqrestore(&rtc_lock, flags);
1da177e4 1342
5fd1fe9c 1343 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
357c6e63
AB
1344 rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1345 rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1346 rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1347 rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1348 rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1349 rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1350 rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1da177e4
LT
1351 }
1352
1353#ifdef CONFIG_MACH_DECSTATION
1354 rtc_tm->tm_year += real_year - 72;
1355#endif
1356
1357 /*
1358 * Account for differences between how the RTC uses the values
1359 * and how they are defined in a struct rtc_time;
1360 */
5fd1fe9c
IM
1361 rtc_tm->tm_year += epoch - 1900;
1362 if (rtc_tm->tm_year <= 69)
1da177e4
LT
1363 rtc_tm->tm_year += 100;
1364
1365 rtc_tm->tm_mon--;
1366}
1367
1368static void get_rtc_alm_time(struct rtc_time *alm_tm)
1369{
1370 unsigned char ctrl;
1371
1372 /*
1373 * Only the values that we read from the RTC are set. That
1374 * means only tm_hour, tm_min, and tm_sec.
1375 */
1376 spin_lock_irq(&rtc_lock);
1377 alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1378 alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1379 alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1380 ctrl = CMOS_READ(RTC_CONTROL);
1381 spin_unlock_irq(&rtc_lock);
1382
5fd1fe9c 1383 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
357c6e63
AB
1384 alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1385 alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1386 alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1da177e4
LT
1387 }
1388}
1389
1390#ifdef RTC_IRQ
1391/*
1392 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1393 * Rumour has it that if you frob the interrupt enable/disable
1394 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1395 * ensure you actually start getting interrupts. Probably for
1396 * compatibility with older/broken chipset RTC implementations.
1397 * We also clear out any old irq data after an ioctl() that
1398 * meddles with the interrupt enable/disable bits.
1399 */
1400
c3348760 1401static void mask_rtc_irq_bit_locked(unsigned char bit)
1da177e4
LT
1402{
1403 unsigned char val;
1404
c3348760 1405 if (hpet_mask_rtc_irq_bit(bit))
1da177e4 1406 return;
1da177e4
LT
1407 val = CMOS_READ(RTC_CONTROL);
1408 val &= ~bit;
1409 CMOS_WRITE(val, RTC_CONTROL);
1410 CMOS_READ(RTC_INTR_FLAGS);
1411
1412 rtc_irq_data = 0;
1da177e4
LT
1413}
1414
c3348760 1415static void set_rtc_irq_bit_locked(unsigned char bit)
1da177e4
LT
1416{
1417 unsigned char val;
1418
c3348760 1419 if (hpet_set_rtc_irq_bit(bit))
1da177e4 1420 return;
1da177e4
LT
1421 val = CMOS_READ(RTC_CONTROL);
1422 val |= bit;
1423 CMOS_WRITE(val, RTC_CONTROL);
1424 CMOS_READ(RTC_INTR_FLAGS);
1425
1426 rtc_irq_data = 0;
1da177e4
LT
1427}
1428#endif
1429
1430MODULE_AUTHOR("Paul Gortmaker");
1431MODULE_LICENSE("GPL");
1432MODULE_ALIAS_MISCDEV(RTC_MINOR);