usb: gadget: f_mtp: Avoid race between mtp_read and mtp_function_disable
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4 252#include <linux/spinlock.h>
c84dbf61 253#include <linux/kthread.h>
1da177e4
LT
254#include <linux/percpu.h>
255#include <linux/cryptohash.h>
5b739ef8 256#include <linux/fips.h>
775f4b29 257#include <linux/ptrace.h>
e6d4947b 258#include <linux/kmemcheck.h>
6265e169 259#include <linux/workqueue.h>
0244ad00 260#include <linux/irq.h>
c6e9d6f3
TT
261#include <linux/syscalls.h>
262#include <linux/completion.h>
1cac41cb 263#include <linux/freezer.h>
d178a1eb 264
1da177e4
LT
265#include <asm/processor.h>
266#include <asm/uaccess.h>
267#include <asm/irq.h>
775f4b29 268#include <asm/irq_regs.h>
1da177e4
LT
269#include <asm/io.h>
270
00ce1db1
TT
271#define CREATE_TRACE_POINTS
272#include <trace/events/random.h>
273
43759d4f
TT
274/* #define ADD_INTERRUPT_BENCH */
275
1da177e4
LT
276/*
277 * Configuration information
278 */
30e37ec5
PA
279#define INPUT_POOL_SHIFT 12
280#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
281#define OUTPUT_POOL_SHIFT 10
282#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
283#define SEC_XFER_SIZE 512
284#define EXTRACT_SIZE 10
1da177e4 285
392a546d 286#define DEBUG_RANDOM_BOOT 0
1da177e4 287
d2e7c96a
PA
288#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
289
a283b5c4 290/*
95b709b6
TT
291 * To allow fractional bits to be tracked, the entropy_count field is
292 * denominated in units of 1/8th bits.
30e37ec5
PA
293 *
294 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
295 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
296 */
297#define ENTROPY_SHIFT 3
298#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
299
1da177e4
LT
300/*
301 * The minimum number of bits of entropy before we wake up a read on
302 * /dev/random. Should be enough to do a significant reseed.
303 */
2132a96f 304static int random_read_wakeup_bits = 64;
1da177e4
LT
305
306/*
307 * If the entropy count falls under this number of bits, then we
308 * should wake up processes which are selecting or polling on write
309 * access to /dev/random.
310 */
2132a96f 311static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4
LT
312
313/*
dfd38750 314 * The minimum number of seconds between urandom pool reseeding. We
f5c2742c
TT
315 * do this to limit the amount of entropy that can be drained from the
316 * input pool even if there are heavy demands on /dev/urandom.
1da177e4 317 */
f5c2742c 318static int random_min_urandom_seed = 60;
1da177e4
LT
319
320/*
6e9fa2c8
TT
321 * Originally, we used a primitive polynomial of degree .poolwords
322 * over GF(2). The taps for various sizes are defined below. They
323 * were chosen to be evenly spaced except for the last tap, which is 1
324 * to get the twisting happening as fast as possible.
325 *
326 * For the purposes of better mixing, we use the CRC-32 polynomial as
327 * well to make a (modified) twisted Generalized Feedback Shift
328 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
329 * generators. ACM Transactions on Modeling and Computer Simulation
330 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 331 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
332 * Simulation 4:254-266)
333 *
334 * Thanks to Colin Plumb for suggesting this.
335 *
336 * The mixing operation is much less sensitive than the output hash,
337 * where we use SHA-1. All that we want of mixing operation is that
338 * it be a good non-cryptographic hash; i.e. it not produce collisions
339 * when fed "random" data of the sort we expect to see. As long as
340 * the pool state differs for different inputs, we have preserved the
341 * input entropy and done a good job. The fact that an intelligent
342 * attacker can construct inputs that will produce controlled
343 * alterations to the pool's state is not important because we don't
344 * consider such inputs to contribute any randomness. The only
345 * property we need with respect to them is that the attacker can't
346 * increase his/her knowledge of the pool's state. Since all
347 * additions are reversible (knowing the final state and the input,
348 * you can reconstruct the initial state), if an attacker has any
349 * uncertainty about the initial state, he/she can only shuffle that
350 * uncertainty about, but never cause any collisions (which would
351 * decrease the uncertainty).
352 *
353 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
354 * Videau in their paper, "The Linux Pseudorandom Number Generator
355 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
356 * paper, they point out that we are not using a true Twisted GFSR,
357 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
358 * is, with only three taps, instead of the six that we are using).
359 * As a result, the resulting polynomial is neither primitive nor
360 * irreducible, and hence does not have a maximal period over
361 * GF(2**32). They suggest a slight change to the generator
362 * polynomial which improves the resulting TGFSR polynomial to be
363 * irreducible, which we have made here.
1da177e4
LT
364 */
365static struct poolinfo {
a283b5c4
PA
366 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
367#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
368 int tap1, tap2, tap3, tap4, tap5;
369} poolinfo_table[] = {
6e9fa2c8
TT
370 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
371 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
372 { S(128), 104, 76, 51, 25, 1 },
373 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
374 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
375 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
376#if 0
377 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 378 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
379
380 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 381 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
382
383 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 384 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
385
386 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 387 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
388
389 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 390 { S(512), 409, 307, 206, 102, 2 },
1da177e4 391 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 392 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
393
394 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 395 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
396
397 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 398 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
399
400 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 401 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
402#endif
403};
404
1da177e4
LT
405/*
406 * Static global variables
407 */
408static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
409static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
c6e9d6f3 410static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
9a6f70bb 411static struct fasync_struct *fasync;
1da177e4 412
205a525c
HX
413static DEFINE_SPINLOCK(random_ready_list_lock);
414static LIST_HEAD(random_ready_list);
415
1da177e4
LT
416/**********************************************************************
417 *
418 * OS independent entropy store. Here are the functions which handle
419 * storing entropy in an entropy pool.
420 *
421 **********************************************************************/
422
423struct entropy_store;
424struct entropy_store {
43358209 425 /* read-only data: */
30e37ec5 426 const struct poolinfo *poolinfo;
1da177e4
LT
427 __u32 *pool;
428 const char *name;
1da177e4 429 struct entropy_store *pull;
6265e169 430 struct work_struct push_work;
1da177e4
LT
431
432 /* read-write data: */
f5c2742c 433 unsigned long last_pulled;
43358209 434 spinlock_t lock;
c59974ae
TT
435 unsigned short add_ptr;
436 unsigned short input_rotate;
cda796a3 437 int entropy_count;
775f4b29 438 int entropy_total;
775f4b29 439 unsigned int initialized:1;
c59974ae
TT
440 unsigned int limit:1;
441 unsigned int last_data_init:1;
e954bc91 442 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
443};
444
6265e169 445static void push_to_pool(struct work_struct *work);
1da177e4
LT
446static __u32 input_pool_data[INPUT_POOL_WORDS];
447static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
448static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
449
450static struct entropy_store input_pool = {
451 .poolinfo = &poolinfo_table[0],
452 .name = "input",
453 .limit = 1,
eece09ec 454 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
455 .pool = input_pool_data
456};
457
458static struct entropy_store blocking_pool = {
459 .poolinfo = &poolinfo_table[1],
460 .name = "blocking",
461 .limit = 1,
462 .pull = &input_pool,
eece09ec 463 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
464 .pool = blocking_pool_data,
465 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
466 push_to_pool),
1da177e4
LT
467};
468
469static struct entropy_store nonblocking_pool = {
470 .poolinfo = &poolinfo_table[1],
471 .name = "nonblocking",
472 .pull = &input_pool,
eece09ec 473 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
6265e169
TT
474 .pool = nonblocking_pool_data,
475 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
476 push_to_pool),
1da177e4
LT
477};
478
775f4b29
TT
479static __u32 const twist_table[8] = {
480 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
481 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
482
1da177e4 483/*
e68e5b66 484 * This function adds bytes into the entropy "pool". It does not
1da177e4 485 * update the entropy estimate. The caller should call
adc782da 486 * credit_entropy_bits if this is appropriate.
1da177e4
LT
487 *
488 * The pool is stirred with a primitive polynomial of the appropriate
489 * degree, and then twisted. We twist by three bits at a time because
490 * it's cheap to do so and helps slightly in the expected case where
491 * the entropy is concentrated in the low-order bits.
492 */
00ce1db1 493static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 494 int nbytes)
1da177e4 495{
85608f8e 496 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 497 int input_rotate;
1da177e4 498 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 499 const char *bytes = in;
6d38b827 500 __u32 w;
1da177e4 501
1da177e4
LT
502 tap1 = r->poolinfo->tap1;
503 tap2 = r->poolinfo->tap2;
504 tap3 = r->poolinfo->tap3;
505 tap4 = r->poolinfo->tap4;
506 tap5 = r->poolinfo->tap5;
1da177e4 507
91fcb532
TT
508 input_rotate = r->input_rotate;
509 i = r->add_ptr;
1da177e4 510
e68e5b66
MM
511 /* mix one byte at a time to simplify size handling and churn faster */
512 while (nbytes--) {
c59974ae 513 w = rol32(*bytes++, input_rotate);
993ba211 514 i = (i - 1) & wordmask;
1da177e4
LT
515
516 /* XOR in the various taps */
993ba211 517 w ^= r->pool[i];
1da177e4
LT
518 w ^= r->pool[(i + tap1) & wordmask];
519 w ^= r->pool[(i + tap2) & wordmask];
520 w ^= r->pool[(i + tap3) & wordmask];
521 w ^= r->pool[(i + tap4) & wordmask];
522 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
523
524 /* Mix the result back in with a twist */
1da177e4 525 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
526
527 /*
528 * Normally, we add 7 bits of rotation to the pool.
529 * At the beginning of the pool, add an extra 7 bits
530 * rotation, so that successive passes spread the
531 * input bits across the pool evenly.
532 */
c59974ae 533 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
534 }
535
91fcb532
TT
536 r->input_rotate = input_rotate;
537 r->add_ptr = i;
1da177e4
LT
538}
539
00ce1db1 540static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 541 int nbytes)
00ce1db1
TT
542{
543 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 544 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
545}
546
547static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 548 int nbytes)
1da177e4 549{
902c098a
TT
550 unsigned long flags;
551
00ce1db1 552 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 553 spin_lock_irqsave(&r->lock, flags);
85608f8e 554 _mix_pool_bytes(r, in, nbytes);
902c098a 555 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
556}
557
775f4b29
TT
558struct fast_pool {
559 __u32 pool[4];
560 unsigned long last;
ee3e00e9 561 unsigned short reg_idx;
840f9507 562 unsigned char count;
775f4b29
TT
563};
564
565/*
566 * This is a fast mixing routine used by the interrupt randomness
567 * collector. It's hardcoded for an 128 bit pool and assumes that any
568 * locks that might be needed are taken by the caller.
569 */
43759d4f 570static void fast_mix(struct fast_pool *f)
775f4b29 571{
43759d4f
TT
572 __u32 a = f->pool[0], b = f->pool[1];
573 __u32 c = f->pool[2], d = f->pool[3];
574
575 a += b; c += d;
19acc77a 576 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
577 d ^= a; b ^= c;
578
579 a += b; c += d;
19acc77a 580 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
581 d ^= a; b ^= c;
582
583 a += b; c += d;
19acc77a 584 b = rol32(b, 6); d = rol32(d, 27);
43759d4f
TT
585 d ^= a; b ^= c;
586
587 a += b; c += d;
19acc77a 588 b = rol32(b, 16); d = rol32(d, 14);
43759d4f
TT
589 d ^= a; b ^= c;
590
591 f->pool[0] = a; f->pool[1] = b;
592 f->pool[2] = c; f->pool[3] = d;
655b2264 593 f->count++;
775f4b29
TT
594}
595
205a525c
HX
596static void process_random_ready_list(void)
597{
598 unsigned long flags;
599 struct random_ready_callback *rdy, *tmp;
600
601 spin_lock_irqsave(&random_ready_list_lock, flags);
602 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
603 struct module *owner = rdy->owner;
604
605 list_del_init(&rdy->list);
606 rdy->func(rdy);
607 module_put(owner);
608 }
609 spin_unlock_irqrestore(&random_ready_list_lock, flags);
610}
611
1da177e4 612/*
a283b5c4
PA
613 * Credit (or debit) the entropy store with n bits of entropy.
614 * Use credit_entropy_bits_safe() if the value comes from userspace
615 * or otherwise should be checked for extreme values.
1da177e4 616 */
adc782da 617static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 618{
902c098a 619 int entropy_count, orig;
30e37ec5
PA
620 const int pool_size = r->poolinfo->poolfracbits;
621 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 622
adc782da
MM
623 if (!nbits)
624 return;
625
902c098a
TT
626retry:
627 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
628 if (nfrac < 0) {
629 /* Debit */
630 entropy_count += nfrac;
631 } else {
632 /*
633 * Credit: we have to account for the possibility of
634 * overwriting already present entropy. Even in the
635 * ideal case of pure Shannon entropy, new contributions
636 * approach the full value asymptotically:
637 *
638 * entropy <- entropy + (pool_size - entropy) *
639 * (1 - exp(-add_entropy/pool_size))
640 *
641 * For add_entropy <= pool_size/2 then
642 * (1 - exp(-add_entropy/pool_size)) >=
643 * (add_entropy/pool_size)*0.7869...
644 * so we can approximate the exponential with
645 * 3/4*add_entropy/pool_size and still be on the
646 * safe side by adding at most pool_size/2 at a time.
647 *
648 * The use of pool_size-2 in the while statement is to
649 * prevent rounding artifacts from making the loop
650 * arbitrarily long; this limits the loop to log2(pool_size)*2
651 * turns no matter how large nbits is.
652 */
653 int pnfrac = nfrac;
654 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
655 /* The +2 corresponds to the /4 in the denominator */
656
657 do {
658 unsigned int anfrac = min(pnfrac, pool_size/2);
659 unsigned int add =
660 ((pool_size - entropy_count)*anfrac*3) >> s;
661
662 entropy_count += add;
663 pnfrac -= anfrac;
664 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
665 }
00ce1db1 666
79a84687 667 if (unlikely(entropy_count < 0)) {
f80bbd8b
TT
668 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
669 r->name, entropy_count);
670 WARN_ON(1);
8b76f46a 671 entropy_count = 0;
30e37ec5
PA
672 } else if (entropy_count > pool_size)
673 entropy_count = pool_size;
902c098a
TT
674 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
675 goto retry;
1da177e4 676
6265e169 677 r->entropy_total += nbits;
0891ad82
LT
678 if (!r->initialized && r->entropy_total > 128) {
679 r->initialized = 1;
680 r->entropy_total = 0;
681 if (r == &nonblocking_pool) {
682 prandom_reseed_late();
205a525c 683 process_random_ready_list();
1d9de44e 684 wake_up_all(&urandom_init_wait);
0891ad82 685 pr_notice("random: %s pool is initialized\n", r->name);
4af712e8 686 }
775f4b29
TT
687 }
688
a283b5c4
PA
689 trace_credit_entropy_bits(r->name, nbits,
690 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
691 r->entropy_total, _RET_IP_);
692
6265e169 693 if (r == &input_pool) {
7d1b08c4 694 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169
TT
695
696 /* should we wake readers? */
2132a96f 697 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
698 wake_up_interruptible(&random_read_wait);
699 kill_fasync(&fasync, SIGIO, POLL_IN);
700 }
701 /* If the input pool is getting full, send some
702 * entropy to the two output pools, flipping back and
703 * forth between them, until the output pools are 75%
704 * full.
705 */
2132a96f 706 if (entropy_bits > random_write_wakeup_bits &&
6265e169 707 r->initialized &&
2132a96f 708 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
709 static struct entropy_store *last = &blocking_pool;
710 struct entropy_store *other = &blocking_pool;
711
712 if (last == &blocking_pool)
713 other = &nonblocking_pool;
714 if (other->entropy_count <=
715 3 * other->poolinfo->poolfracbits / 4)
716 last = other;
717 if (last->entropy_count <=
718 3 * last->poolinfo->poolfracbits / 4) {
719 schedule_work(&last->push_work);
720 r->entropy_total = 0;
721 }
722 }
9a6f70bb 723 }
1da177e4
LT
724}
725
93f84c88 726static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
a283b5c4
PA
727{
728 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
729
93f84c88
TT
730 if (nbits < 0)
731 return -EINVAL;
732
a283b5c4
PA
733 /* Cap the value to avoid overflows */
734 nbits = min(nbits, nbits_max);
a283b5c4
PA
735
736 credit_entropy_bits(r, nbits);
93f84c88 737 return 0;
a283b5c4
PA
738}
739
1da177e4
LT
740/*********************************************************************
741 *
742 * Entropy input management
743 *
744 *********************************************************************/
745
746/* There is one of these per entropy source */
747struct timer_rand_state {
748 cycles_t last_time;
90b75ee5 749 long last_delta, last_delta2;
1da177e4
LT
750 unsigned dont_count_entropy:1;
751};
752
644008df
TT
753#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
754
a2080a67
LT
755/*
756 * Add device- or boot-specific data to the input and nonblocking
757 * pools to help initialize them to unique values.
758 *
759 * None of this adds any entropy, it is meant to avoid the
760 * problem of the nonblocking pool having similar initial state
761 * across largely identical devices.
762 */
763void add_device_randomness(const void *buf, unsigned int size)
764{
61875f30 765 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 766 unsigned long flags;
a2080a67 767
5910895f 768 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 769 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
770 _mix_pool_bytes(&input_pool, buf, size);
771 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d
TT
772 spin_unlock_irqrestore(&input_pool.lock, flags);
773
774 spin_lock_irqsave(&nonblocking_pool.lock, flags);
85608f8e
TT
775 _mix_pool_bytes(&nonblocking_pool, buf, size);
776 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time));
3ef4cb2d 777 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
a2080a67
LT
778}
779EXPORT_SYMBOL(add_device_randomness);
780
644008df 781static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 782
1da177e4
LT
783/*
784 * This function adds entropy to the entropy "pool" by using timing
785 * delays. It uses the timer_rand_state structure to make an estimate
786 * of how many bits of entropy this call has added to the pool.
787 *
788 * The number "num" is also added to the pool - it should somehow describe
789 * the type of event which just happened. This is currently 0-255 for
790 * keyboard scan codes, and 256 upwards for interrupts.
791 *
792 */
793static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
794{
40db23e5 795 struct entropy_store *r;
1da177e4 796 struct {
1da177e4 797 long jiffies;
cf833d0b 798 unsigned cycles;
1da177e4
LT
799 unsigned num;
800 } sample;
801 long delta, delta2, delta3;
802
803 preempt_disable();
1da177e4
LT
804
805 sample.jiffies = jiffies;
61875f30 806 sample.cycles = random_get_entropy();
1da177e4 807 sample.num = num;
40db23e5 808 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
85608f8e 809 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
810
811 /*
812 * Calculate number of bits of randomness we probably added.
813 * We take into account the first, second and third-order deltas
814 * in order to make our estimate.
815 */
816
817 if (!state->dont_count_entropy) {
818 delta = sample.jiffies - state->last_time;
819 state->last_time = sample.jiffies;
820
821 delta2 = delta - state->last_delta;
822 state->last_delta = delta;
823
824 delta3 = delta2 - state->last_delta2;
825 state->last_delta2 = delta2;
826
827 if (delta < 0)
828 delta = -delta;
829 if (delta2 < 0)
830 delta2 = -delta2;
831 if (delta3 < 0)
832 delta3 = -delta3;
833 if (delta > delta2)
834 delta = delta2;
835 if (delta > delta3)
836 delta = delta3;
837
838 /*
839 * delta is now minimum absolute delta.
840 * Round down by 1 bit on general principles,
841 * and limit entropy entimate to 12 bits.
842 */
40db23e5 843 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 844 }
1da177e4
LT
845 preempt_enable();
846}
847
d251575a 848void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
849 unsigned int value)
850{
851 static unsigned char last_value;
852
853 /* ignore autorepeat and the like */
854 if (value == last_value)
855 return;
856
1da177e4
LT
857 last_value = value;
858 add_timer_randomness(&input_timer_state,
859 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 860 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 861}
80fc9f53 862EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 863
775f4b29
TT
864static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
865
43759d4f
TT
866#ifdef ADD_INTERRUPT_BENCH
867static unsigned long avg_cycles, avg_deviation;
868
869#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
870#define FIXED_1_2 (1 << (AVG_SHIFT-1))
871
872static void add_interrupt_bench(cycles_t start)
873{
874 long delta = random_get_entropy() - start;
875
876 /* Use a weighted moving average */
877 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
878 avg_cycles += delta;
879 /* And average deviation */
880 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
881 avg_deviation += delta;
882}
883#else
884#define add_interrupt_bench(x)
885#endif
886
ee3e00e9
TT
887static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
888{
889 __u32 *ptr = (__u32 *) regs;
890
891 if (regs == NULL)
892 return 0;
893 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
894 f->reg_idx = 0;
895 return *(ptr + f->reg_idx++);
896}
897
775f4b29 898void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 899{
775f4b29 900 struct entropy_store *r;
1b2a1a7e 901 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
775f4b29
TT
902 struct pt_regs *regs = get_irq_regs();
903 unsigned long now = jiffies;
655b2264 904 cycles_t cycles = random_get_entropy();
43759d4f 905 __u32 c_high, j_high;
655b2264 906 __u64 ip;
83664a69 907 unsigned long seed;
91fcb532 908 int credit = 0;
3060d6fe 909
ee3e00e9
TT
910 if (cycles == 0)
911 cycles = get_reg(fast_pool, regs);
655b2264
TT
912 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
913 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
43759d4f
TT
914 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
915 fast_pool->pool[1] ^= now ^ c_high;
655b2264 916 ip = regs ? instruction_pointer(regs) : _RET_IP_;
43759d4f 917 fast_pool->pool[2] ^= ip;
ee3e00e9
TT
918 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
919 get_reg(fast_pool, regs);
3060d6fe 920
43759d4f 921 fast_mix(fast_pool);
43759d4f 922 add_interrupt_bench(cycles);
3060d6fe 923
ee3e00e9
TT
924 if ((fast_pool->count < 64) &&
925 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
926 return;
927
775f4b29 928 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
840f9507 929 if (!spin_trylock(&r->lock))
91fcb532 930 return;
83664a69 931
91fcb532 932 fast_pool->last = now;
85608f8e 933 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69
PA
934
935 /*
936 * If we have architectural seed generator, produce a seed and
48d6be95
TT
937 * add it to the pool. For the sake of paranoia don't let the
938 * architectural seed generator dominate the input from the
939 * interrupt noise.
83664a69
PA
940 */
941 if (arch_get_random_seed_long(&seed)) {
85608f8e 942 __mix_pool_bytes(r, &seed, sizeof(seed));
48d6be95 943 credit = 1;
83664a69 944 }
91fcb532 945 spin_unlock(&r->lock);
83664a69 946
ee3e00e9 947 fast_pool->count = 0;
83664a69 948
ee3e00e9
TT
949 /* award one bit for the contents of the fast pool */
950 credit_entropy_bits(r, credit + 1);
1da177e4 951}
f48dd2d0 952EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1da177e4 953
9361401e 954#ifdef CONFIG_BLOCK
1da177e4
LT
955void add_disk_randomness(struct gendisk *disk)
956{
957 if (!disk || !disk->random)
958 return;
959 /* first major is 1, so we get >= 0x200 here */
f331c029 960 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 961 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 962}
bdcfa3e5 963EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 964#endif
1da177e4 965
1da177e4
LT
966/*********************************************************************
967 *
968 * Entropy extraction routines
969 *
970 *********************************************************************/
971
90b75ee5 972static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
973 size_t nbytes, int min, int rsvd);
974
975/*
25985edc 976 * This utility inline function is responsible for transferring entropy
1da177e4
LT
977 * from the primary pool to the secondary extraction pool. We make
978 * sure we pull enough for a 'catastrophic reseed'.
979 */
6265e169 980static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
981static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
982{
cff85031
TT
983 if (!r->pull ||
984 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
985 r->entropy_count > r->poolinfo->poolfracbits)
986 return;
987
f5c2742c
TT
988 if (r->limit == 0 && random_min_urandom_seed) {
989 unsigned long now = jiffies;
1da177e4 990
f5c2742c
TT
991 if (time_before(now,
992 r->last_pulled + random_min_urandom_seed * HZ))
993 return;
994 r->last_pulled = now;
1da177e4 995 }
cff85031
TT
996
997 _xfer_secondary_pool(r, nbytes);
6265e169
TT
998}
999
1000static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1001{
1002 __u32 tmp[OUTPUT_POOL_WORDS];
1003
2132a96f
GP
1004 /* For /dev/random's pool, always leave two wakeups' worth */
1005 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
6265e169
TT
1006 int bytes = nbytes;
1007
2132a96f
GP
1008 /* pull at least as much as a wakeup */
1009 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
1010 /* but never more than the buffer size */
1011 bytes = min_t(int, bytes, sizeof(tmp));
1012
f80bbd8b
TT
1013 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1014 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 1015 bytes = extract_entropy(r->pull, tmp, bytes,
2132a96f 1016 random_read_wakeup_bits / 8, rsvd_bytes);
85608f8e 1017 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
1018 credit_entropy_bits(r, bytes*8);
1019}
1020
1021/*
1022 * Used as a workqueue function so that when the input pool is getting
1023 * full, we can "spill over" some entropy to the output pools. That
1024 * way the output pools can store some of the excess entropy instead
1025 * of letting it go to waste.
1026 */
1027static void push_to_pool(struct work_struct *work)
1028{
1029 struct entropy_store *r = container_of(work, struct entropy_store,
1030 push_work);
1031 BUG_ON(!r);
2132a96f 1032 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
1033 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1034 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
1035}
1036
1037/*
19fa5be1
GP
1038 * This function decides how many bytes to actually take from the
1039 * given pool, and also debits the entropy count accordingly.
1da177e4 1040 */
1da177e4
LT
1041static size_t account(struct entropy_store *r, size_t nbytes, int min,
1042 int reserved)
1043{
a283b5c4 1044 int entropy_count, orig;
79a84687 1045 size_t ibytes, nfrac;
1da177e4 1046
a283b5c4 1047 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
1048
1049 /* Can we pull enough? */
10b3a32d 1050retry:
a283b5c4 1051 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
a283b5c4 1052 ibytes = nbytes;
0fb7a01a 1053 /* If limited, never pull more than available */
e33ba5fa
TT
1054 if (r->limit) {
1055 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1056
1057 if ((have_bytes -= reserved) < 0)
1058 have_bytes = 0;
1059 ibytes = min_t(size_t, ibytes, have_bytes);
1060 }
0fb7a01a 1061 if (ibytes < min)
a283b5c4 1062 ibytes = 0;
79a84687
HFS
1063
1064 if (unlikely(entropy_count < 0)) {
1065 pr_warn("random: negative entropy count: pool %s count %d\n",
1066 r->name, entropy_count);
1067 WARN_ON(1);
1068 entropy_count = 0;
1069 }
1070 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1071 if ((size_t) entropy_count > nfrac)
1072 entropy_count -= nfrac;
1073 else
e33ba5fa 1074 entropy_count = 0;
f9c6d498 1075
0fb7a01a
GP
1076 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1077 goto retry;
1da177e4 1078
f80bbd8b 1079 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1080 if (ibytes &&
2132a96f 1081 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1082 wake_up_interruptible(&random_write_wait);
1083 kill_fasync(&fasync, SIGIO, POLL_OUT);
1084 }
1085
a283b5c4 1086 return ibytes;
1da177e4
LT
1087}
1088
19fa5be1
GP
1089/*
1090 * This function does the actual extraction for extract_entropy and
1091 * extract_entropy_user.
1092 *
1093 * Note: we assume that .poolwords is a multiple of 16 words.
1094 */
1da177e4
LT
1095static void extract_buf(struct entropy_store *r, __u8 *out)
1096{
602b6aee 1097 int i;
d2e7c96a
PA
1098 union {
1099 __u32 w[5];
85a1f777 1100 unsigned long l[LONGS(20)];
d2e7c96a
PA
1101 } hash;
1102 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1103 unsigned long flags;
1da177e4 1104
85a1f777 1105 /*
dfd38750 1106 * If we have an architectural hardware random number
46884442 1107 * generator, use it for SHA's initial vector
85a1f777 1108 */
46884442 1109 sha_init(hash.w);
85a1f777
TT
1110 for (i = 0; i < LONGS(20); i++) {
1111 unsigned long v;
1112 if (!arch_get_random_long(&v))
1113 break;
46884442 1114 hash.l[i] = v;
85a1f777
TT
1115 }
1116
46884442
TT
1117 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1118 spin_lock_irqsave(&r->lock, flags);
1119 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1120 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1121
1da177e4 1122 /*
1c0ad3d4
MM
1123 * We mix the hash back into the pool to prevent backtracking
1124 * attacks (where the attacker knows the state of the pool
1125 * plus the current outputs, and attempts to find previous
1126 * ouputs), unless the hash function can be inverted. By
1127 * mixing at least a SHA1 worth of hash data back, we make
1128 * brute-forcing the feedback as hard as brute-forcing the
1129 * hash.
1da177e4 1130 */
85608f8e 1131 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1132 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1133
d4c5efdb 1134 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
1135
1136 /*
1c0ad3d4
MM
1137 * In case the hash function has some recognizable output
1138 * pattern, we fold it in half. Thus, we always feed back
1139 * twice as much data as we output.
1da177e4 1140 */
d2e7c96a
PA
1141 hash.w[0] ^= hash.w[3];
1142 hash.w[1] ^= hash.w[4];
1143 hash.w[2] ^= rol32(hash.w[2], 16);
1144
d2e7c96a 1145 memcpy(out, &hash, EXTRACT_SIZE);
d4c5efdb 1146 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
1147}
1148
19fa5be1
GP
1149/*
1150 * This function extracts randomness from the "entropy pool", and
1151 * returns it in a buffer.
1152 *
1153 * The min parameter specifies the minimum amount we can pull before
1154 * failing to avoid races that defeat catastrophic reseeding while the
1155 * reserved parameter indicates how much entropy we must leave in the
1156 * pool after each pull to avoid starving other readers.
1157 */
90b75ee5 1158static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1159 size_t nbytes, int min, int reserved)
1da177e4
LT
1160{
1161 ssize_t ret = 0, i;
1162 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1163 unsigned long flags;
1da177e4 1164
ec8f02da 1165 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1166 if (fips_enabled) {
1167 spin_lock_irqsave(&r->lock, flags);
1168 if (!r->last_data_init) {
c59974ae 1169 r->last_data_init = 1;
1e7e2e05
JW
1170 spin_unlock_irqrestore(&r->lock, flags);
1171 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1172 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1173 xfer_secondary_pool(r, EXTRACT_SIZE);
1174 extract_buf(r, tmp);
1175 spin_lock_irqsave(&r->lock, flags);
1176 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1177 }
1178 spin_unlock_irqrestore(&r->lock, flags);
1179 }
ec8f02da 1180
a283b5c4 1181 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1182 xfer_secondary_pool(r, nbytes);
1183 nbytes = account(r, nbytes, min, reserved);
1184
1185 while (nbytes) {
1186 extract_buf(r, tmp);
5b739ef8 1187
e954bc91 1188 if (fips_enabled) {
5b739ef8
NH
1189 spin_lock_irqsave(&r->lock, flags);
1190 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1191 panic("Hardware RNG duplicated output!\n");
1192 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1193 spin_unlock_irqrestore(&r->lock, flags);
1194 }
1da177e4
LT
1195 i = min_t(int, nbytes, EXTRACT_SIZE);
1196 memcpy(buf, tmp, i);
1197 nbytes -= i;
1198 buf += i;
1199 ret += i;
1200 }
1201
1202 /* Wipe data just returned from memory */
d4c5efdb 1203 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1204
1205 return ret;
1206}
1207
19fa5be1
GP
1208/*
1209 * This function extracts randomness from the "entropy pool", and
1210 * returns it in a userspace buffer.
1211 */
1da177e4
LT
1212static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1213 size_t nbytes)
1214{
1215 ssize_t ret = 0, i;
1216 __u8 tmp[EXTRACT_SIZE];
c6e9d6f3 1217 int large_request = (nbytes > 256);
1da177e4 1218
a283b5c4 1219 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1220 xfer_secondary_pool(r, nbytes);
1221 nbytes = account(r, nbytes, 0, 0);
1222
1223 while (nbytes) {
c6e9d6f3 1224 if (large_request && need_resched()) {
1da177e4
LT
1225 if (signal_pending(current)) {
1226 if (ret == 0)
1227 ret = -ERESTARTSYS;
1228 break;
1229 }
1230 schedule();
1231 }
1232
1233 extract_buf(r, tmp);
1234 i = min_t(int, nbytes, EXTRACT_SIZE);
1235 if (copy_to_user(buf, tmp, i)) {
1236 ret = -EFAULT;
1237 break;
1238 }
1239
1240 nbytes -= i;
1241 buf += i;
1242 ret += i;
1243 }
1244
1245 /* Wipe data just returned from memory */
d4c5efdb 1246 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1247
1248 return ret;
1249}
1250
1251/*
1252 * This function is the exported kernel interface. It returns some
c2557a30 1253 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1254 * TCP sequence numbers, etc. It does not rely on the hardware random
1255 * number generator. For random bytes direct from the hardware RNG
1256 * (when available), use get_random_bytes_arch().
1da177e4
LT
1257 */
1258void get_random_bytes(void *buf, int nbytes)
c2557a30 1259{
392a546d
TT
1260#if DEBUG_RANDOM_BOOT > 0
1261 if (unlikely(nonblocking_pool.initialized == 0))
1262 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1263 "with %d bits of entropy available\n",
1264 (void *) _RET_IP_,
1265 nonblocking_pool.entropy_total);
1266#endif
5910895f 1267 trace_get_random_bytes(nbytes, _RET_IP_);
c2557a30
TT
1268 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1269}
1270EXPORT_SYMBOL(get_random_bytes);
1271
205a525c
HX
1272/*
1273 * Add a callback function that will be invoked when the nonblocking
1274 * pool is initialised.
1275 *
1276 * returns: 0 if callback is successfully added
1277 * -EALREADY if pool is already initialised (callback not called)
1278 * -ENOENT if module for callback is not alive
1279 */
1280int add_random_ready_callback(struct random_ready_callback *rdy)
1281{
1282 struct module *owner;
1283 unsigned long flags;
1284 int err = -EALREADY;
1285
1286 if (likely(nonblocking_pool.initialized))
1287 return err;
1288
1289 owner = rdy->owner;
1290 if (!try_module_get(owner))
1291 return -ENOENT;
1292
1293 spin_lock_irqsave(&random_ready_list_lock, flags);
1294 if (nonblocking_pool.initialized)
1295 goto out;
1296
1297 owner = NULL;
1298
1299 list_add(&rdy->list, &random_ready_list);
1300 err = 0;
1301
1302out:
1303 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1304
1305 module_put(owner);
1306
1307 return err;
1308}
1309EXPORT_SYMBOL(add_random_ready_callback);
1310
1311/*
1312 * Delete a previously registered readiness callback function.
1313 */
1314void del_random_ready_callback(struct random_ready_callback *rdy)
1315{
1316 unsigned long flags;
1317 struct module *owner = NULL;
1318
1319 spin_lock_irqsave(&random_ready_list_lock, flags);
1320 if (!list_empty(&rdy->list)) {
1321 list_del_init(&rdy->list);
1322 owner = rdy->owner;
1323 }
1324 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1325
1326 module_put(owner);
1327}
1328EXPORT_SYMBOL(del_random_ready_callback);
1329
c2557a30
TT
1330/*
1331 * This function will use the architecture-specific hardware random
1332 * number generator if it is available. The arch-specific hw RNG will
1333 * almost certainly be faster than what we can do in software, but it
1334 * is impossible to verify that it is implemented securely (as
1335 * opposed, to, say, the AES encryption of a sequence number using a
1336 * key known by the NSA). So it's useful if we need the speed, but
1337 * only if we're willing to trust the hardware manufacturer not to
1338 * have put in a back door.
1339 */
1340void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1341{
63d77173
PA
1342 char *p = buf;
1343
5910895f 1344 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1345 while (nbytes) {
1346 unsigned long v;
1347 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1348
63d77173
PA
1349 if (!arch_get_random_long(&v))
1350 break;
1cac41cb 1351
bd29e568 1352 memcpy(p, &v, chunk);
63d77173
PA
1353 p += chunk;
1354 nbytes -= chunk;
1355 }
1356
c2557a30
TT
1357 if (nbytes)
1358 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1da177e4 1359}
c2557a30
TT
1360EXPORT_SYMBOL(get_random_bytes_arch);
1361
1da177e4
LT
1362
1363/*
1364 * init_std_data - initialize pool with system data
1365 *
1366 * @r: pool to initialize
1367 *
1368 * This function clears the pool's entropy count and mixes some system
1369 * data into the pool to prepare it for use. The pool is not cleared
1370 * as that can only decrease the entropy in the pool.
1371 */
1372static void init_std_data(struct entropy_store *r)
1373{
3e88bdff 1374 int i;
902c098a
TT
1375 ktime_t now = ktime_get_real();
1376 unsigned long rv;
1da177e4 1377
f5c2742c 1378 r->last_pulled = jiffies;
85608f8e 1379 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1380 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1381 if (!arch_get_random_seed_long(&rv) &&
1382 !arch_get_random_long(&rv))
ae9ecd92 1383 rv = random_get_entropy();
85608f8e 1384 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1385 }
85608f8e 1386 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1387}
1388
cbc96b75
TL
1389/*
1390 * Note that setup_arch() may call add_device_randomness()
1391 * long before we get here. This allows seeding of the pools
1392 * with some platform dependent data very early in the boot
1393 * process. But it limits our options here. We must use
1394 * statically allocated structures that already have all
1395 * initializations complete at compile time. We should also
1396 * take care not to overwrite the precious per platform data
1397 * we were given.
1398 */
53c3f63e 1399static int rand_initialize(void)
1da177e4
LT
1400{
1401 init_std_data(&input_pool);
1402 init_std_data(&blocking_pool);
1403 init_std_data(&nonblocking_pool);
1404 return 0;
1405}
ae9ecd92 1406early_initcall(rand_initialize);
1da177e4 1407
9361401e 1408#ifdef CONFIG_BLOCK
1da177e4
LT
1409void rand_initialize_disk(struct gendisk *disk)
1410{
1411 struct timer_rand_state *state;
1412
1413 /*
f8595815 1414 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1415 * source.
1416 */
f8595815 1417 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1418 if (state) {
1419 state->last_time = INITIAL_JIFFIES;
1da177e4 1420 disk->random = state;
644008df 1421 }
1da177e4 1422}
9361401e 1423#endif
1da177e4
LT
1424
1425static ssize_t
c6e9d6f3 1426_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4 1427{
12ff3a51 1428 ssize_t n;
1da177e4
LT
1429
1430 if (nbytes == 0)
1431 return 0;
1432
12ff3a51
GP
1433 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1434 while (1) {
1435 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1436 if (n < 0)
1437 return n;
f80bbd8b
TT
1438 trace_random_read(n*8, (nbytes-n)*8,
1439 ENTROPY_BITS(&blocking_pool),
1440 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1441 if (n > 0)
1442 return n;
331c6490 1443
12ff3a51 1444 /* Pool is (near) empty. Maybe wait and retry. */
c6e9d6f3 1445 if (nonblock)
12ff3a51
GP
1446 return -EAGAIN;
1447
1448 wait_event_interruptible(random_read_wait,
1449 ENTROPY_BITS(&input_pool) >=
2132a96f 1450 random_read_wakeup_bits);
12ff3a51
GP
1451 if (signal_pending(current))
1452 return -ERESTARTSYS;
1da177e4 1453 }
1da177e4
LT
1454}
1455
c6e9d6f3
TT
1456static ssize_t
1457random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1458{
1459 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1460}
1461
1da177e4 1462static ssize_t
90b75ee5 1463urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1464{
529025b1 1465 static int maxwarn = 10;
301f0595
TT
1466 int ret;
1467
529025b1
TT
1468 if (unlikely(nonblocking_pool.initialized == 0) &&
1469 maxwarn > 0) {
1470 maxwarn--;
1471 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
1472 "(%zd bytes read, %d bits of entropy available)\n",
1473 current->comm, nbytes, nonblocking_pool.entropy_total);
1474 }
301f0595 1475
79a84687 1476 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
301f0595 1477 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
f80bbd8b
TT
1478
1479 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1480 ENTROPY_BITS(&input_pool));
1481 return ret;
1da177e4
LT
1482}
1483
1484static unsigned int
1485random_poll(struct file *file, poll_table * wait)
1486{
1487 unsigned int mask;
1488
1489 poll_wait(file, &random_read_wait, wait);
1490 poll_wait(file, &random_write_wait, wait);
1491 mask = 0;
2132a96f 1492 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1493 mask |= POLLIN | POLLRDNORM;
2132a96f 1494 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1495 mask |= POLLOUT | POLLWRNORM;
1496 return mask;
1497}
1498
7f397dcd
MM
1499static int
1500write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1501{
1da177e4
LT
1502 size_t bytes;
1503 __u32 buf[16];
1504 const char __user *p = buffer;
1da177e4 1505
7f397dcd
MM
1506 while (count > 0) {
1507 bytes = min(count, sizeof(buf));
1508 if (copy_from_user(&buf, p, bytes))
1509 return -EFAULT;
1da177e4 1510
7f397dcd 1511 count -= bytes;
1da177e4
LT
1512 p += bytes;
1513
85608f8e 1514 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1515 cond_resched();
1da177e4 1516 }
7f397dcd
MM
1517
1518 return 0;
1519}
1520
90b75ee5
MM
1521static ssize_t random_write(struct file *file, const char __user *buffer,
1522 size_t count, loff_t *ppos)
7f397dcd
MM
1523{
1524 size_t ret;
7f397dcd
MM
1525
1526 ret = write_pool(&blocking_pool, buffer, count);
1527 if (ret)
1528 return ret;
1529 ret = write_pool(&nonblocking_pool, buffer, count);
1530 if (ret)
1531 return ret;
1532
7f397dcd 1533 return (ssize_t)count;
1da177e4
LT
1534}
1535
43ae4860 1536static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1537{
1538 int size, ent_count;
1539 int __user *p = (int __user *)arg;
1540 int retval;
1541
1542 switch (cmd) {
1543 case RNDGETENTCNT:
43ae4860 1544 /* inherently racy, no point locking */
a283b5c4
PA
1545 ent_count = ENTROPY_BITS(&input_pool);
1546 if (put_user(ent_count, p))
1da177e4
LT
1547 return -EFAULT;
1548 return 0;
1549 case RNDADDTOENTCNT:
1550 if (!capable(CAP_SYS_ADMIN))
1551 return -EPERM;
1552 if (get_user(ent_count, p))
1553 return -EFAULT;
93f84c88 1554 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1555 case RNDADDENTROPY:
1556 if (!capable(CAP_SYS_ADMIN))
1557 return -EPERM;
1558 if (get_user(ent_count, p++))
1559 return -EFAULT;
1560 if (ent_count < 0)
1561 return -EINVAL;
1562 if (get_user(size, p++))
1563 return -EFAULT;
7f397dcd
MM
1564 retval = write_pool(&input_pool, (const char __user *)p,
1565 size);
1da177e4
LT
1566 if (retval < 0)
1567 return retval;
93f84c88 1568 return credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1569 case RNDZAPENTCNT:
1570 case RNDCLEARPOOL:
ae9ecd92
TT
1571 /*
1572 * Clear the entropy pool counters. We no longer clear
1573 * the entropy pool, as that's silly.
1574 */
1da177e4
LT
1575 if (!capable(CAP_SYS_ADMIN))
1576 return -EPERM;
ae9ecd92
TT
1577 input_pool.entropy_count = 0;
1578 nonblocking_pool.entropy_count = 0;
1579 blocking_pool.entropy_count = 0;
1da177e4
LT
1580 return 0;
1581 default:
1582 return -EINVAL;
1583 }
1584}
1585
9a6f70bb
JD
1586static int random_fasync(int fd, struct file *filp, int on)
1587{
1588 return fasync_helper(fd, filp, on, &fasync);
1589}
1590
2b8693c0 1591const struct file_operations random_fops = {
1da177e4
LT
1592 .read = random_read,
1593 .write = random_write,
1594 .poll = random_poll,
43ae4860 1595 .unlocked_ioctl = random_ioctl,
9a6f70bb 1596 .fasync = random_fasync,
6038f373 1597 .llseek = noop_llseek,
1da177e4
LT
1598};
1599
2b8693c0 1600const struct file_operations urandom_fops = {
1da177e4
LT
1601 .read = urandom_read,
1602 .write = random_write,
43ae4860 1603 .unlocked_ioctl = random_ioctl,
9a6f70bb 1604 .fasync = random_fasync,
6038f373 1605 .llseek = noop_llseek,
1da177e4
LT
1606};
1607
c6e9d6f3
TT
1608SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1609 unsigned int, flags)
1610{
1611 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1612 return -EINVAL;
1613
1614 if (count > INT_MAX)
1615 count = INT_MAX;
1616
1617 if (flags & GRND_RANDOM)
1618 return _random_read(flags & GRND_NONBLOCK, buf, count);
1619
1620 if (unlikely(nonblocking_pool.initialized == 0)) {
1621 if (flags & GRND_NONBLOCK)
1622 return -EAGAIN;
1623 wait_event_interruptible(urandom_init_wait,
1624 nonblocking_pool.initialized);
1625 if (signal_pending(current))
1626 return -ERESTARTSYS;
1627 }
1628 return urandom_read(NULL, buf, count, NULL);
1629}
1630
1da177e4
LT
1631/***************************************************************
1632 * Random UUID interface
1633 *
1634 * Used here for a Boot ID, but can be useful for other kernel
1635 * drivers.
1636 ***************************************************************/
1637
1638/*
1639 * Generate random UUID
1640 */
1641void generate_random_uuid(unsigned char uuid_out[16])
1642{
1643 get_random_bytes(uuid_out, 16);
c41b20e7 1644 /* Set UUID version to 4 --- truly random generation */
1da177e4
LT
1645 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1646 /* Set the UUID variant to DCE */
1647 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1648}
1da177e4
LT
1649EXPORT_SYMBOL(generate_random_uuid);
1650
1651/********************************************************************
1652 *
1653 * Sysctl interface
1654 *
1655 ********************************************************************/
1656
1657#ifdef CONFIG_SYSCTL
1658
1659#include <linux/sysctl.h>
1660
1661static int min_read_thresh = 8, min_write_thresh;
8c2aa339 1662static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4
LT
1663static int max_write_thresh = INPUT_POOL_WORDS * 32;
1664static char sysctl_bootid[16];
1665
1666/*
f22052b2 1667 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1668 * UUID. The difference is in whether table->data is NULL; if it is,
1669 * then a new UUID is generated and returned to the user.
1670 *
f22052b2
GP
1671 * If the user accesses this via the proc interface, the UUID will be
1672 * returned as an ASCII string in the standard UUID format; if via the
1673 * sysctl system call, as 16 bytes of binary data.
1da177e4 1674 */
a151427e 1675static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1676 void __user *buffer, size_t *lenp, loff_t *ppos)
1677{
a151427e 1678 struct ctl_table fake_table;
1da177e4
LT
1679 unsigned char buf[64], tmp_uuid[16], *uuid;
1680
1681 uuid = table->data;
1682 if (!uuid) {
1683 uuid = tmp_uuid;
1da177e4 1684 generate_random_uuid(uuid);
44e4360f
MD
1685 } else {
1686 static DEFINE_SPINLOCK(bootid_spinlock);
1687
1688 spin_lock(&bootid_spinlock);
1689 if (!uuid[8])
1690 generate_random_uuid(uuid);
1691 spin_unlock(&bootid_spinlock);
1692 }
1da177e4 1693
35900771
JP
1694 sprintf(buf, "%pU", uuid);
1695
1da177e4
LT
1696 fake_table.data = buf;
1697 fake_table.maxlen = sizeof(buf);
1698
8d65af78 1699 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1700}
1701
a283b5c4
PA
1702/*
1703 * Return entropy available scaled to integral bits
1704 */
5eb10d91 1705static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
1706 void __user *buffer, size_t *lenp, loff_t *ppos)
1707{
5eb10d91 1708 struct ctl_table fake_table;
a283b5c4
PA
1709 int entropy_count;
1710
1711 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1712
1713 fake_table.data = &entropy_count;
1714 fake_table.maxlen = sizeof(entropy_count);
1715
1716 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1717}
1718
1da177e4 1719static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1720extern struct ctl_table random_table[];
1721struct ctl_table random_table[] = {
1da177e4 1722 {
1da177e4
LT
1723 .procname = "poolsize",
1724 .data = &sysctl_poolsize,
1725 .maxlen = sizeof(int),
1726 .mode = 0444,
6d456111 1727 .proc_handler = proc_dointvec,
1da177e4
LT
1728 },
1729 {
1da177e4
LT
1730 .procname = "entropy_avail",
1731 .maxlen = sizeof(int),
1732 .mode = 0444,
a283b5c4 1733 .proc_handler = proc_do_entropy,
1da177e4
LT
1734 .data = &input_pool.entropy_count,
1735 },
1736 {
1da177e4 1737 .procname = "read_wakeup_threshold",
2132a96f 1738 .data = &random_read_wakeup_bits,
1da177e4
LT
1739 .maxlen = sizeof(int),
1740 .mode = 0644,
6d456111 1741 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1742 .extra1 = &min_read_thresh,
1743 .extra2 = &max_read_thresh,
1744 },
1745 {
1da177e4 1746 .procname = "write_wakeup_threshold",
2132a96f 1747 .data = &random_write_wakeup_bits,
1da177e4
LT
1748 .maxlen = sizeof(int),
1749 .mode = 0644,
6d456111 1750 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1751 .extra1 = &min_write_thresh,
1752 .extra2 = &max_write_thresh,
1753 },
f5c2742c
TT
1754 {
1755 .procname = "urandom_min_reseed_secs",
1756 .data = &random_min_urandom_seed,
1757 .maxlen = sizeof(int),
1758 .mode = 0644,
1759 .proc_handler = proc_dointvec,
1760 },
1da177e4 1761 {
1da177e4
LT
1762 .procname = "boot_id",
1763 .data = &sysctl_bootid,
1764 .maxlen = 16,
1765 .mode = 0444,
6d456111 1766 .proc_handler = proc_do_uuid,
1da177e4
LT
1767 },
1768 {
1da177e4
LT
1769 .procname = "uuid",
1770 .maxlen = 16,
1771 .mode = 0444,
6d456111 1772 .proc_handler = proc_do_uuid,
1da177e4 1773 },
43759d4f
TT
1774#ifdef ADD_INTERRUPT_BENCH
1775 {
1776 .procname = "add_interrupt_avg_cycles",
1777 .data = &avg_cycles,
1778 .maxlen = sizeof(avg_cycles),
1779 .mode = 0444,
1780 .proc_handler = proc_doulongvec_minmax,
1781 },
1782 {
1783 .procname = "add_interrupt_avg_deviation",
1784 .data = &avg_deviation,
1785 .maxlen = sizeof(avg_deviation),
1786 .mode = 0444,
1787 .proc_handler = proc_doulongvec_minmax,
1788 },
1789#endif
894d2491 1790 { }
1da177e4
LT
1791};
1792#endif /* CONFIG_SYSCTL */
1793
6e5714ea 1794static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 1795
47d06e53 1796int random_int_secret_init(void)
1da177e4 1797{
6e5714ea 1798 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
1799 return 0;
1800}
1da177e4 1801
1025503b
EB
1802static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
1803 __aligned(sizeof(unsigned long));
1804
1da177e4
LT
1805/*
1806 * Get a random word for internal kernel use only. Similar to urandom but
1807 * with the goal of minimal entropy pool depletion. As a result, the random
1808 * value is not cryptographically secure but for several uses the cost of
1809 * depleting entropy is too high
1810 */
1811unsigned int get_random_int(void)
1812{
63d77173 1813 __u32 *hash;
6e5714ea 1814 unsigned int ret;
8a0a9bd4 1815
63d77173
PA
1816 if (arch_get_random_int(&ret))
1817 return ret;
1818
1819 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 1820
61875f30 1821 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
1822 md5_transform(hash, random_int_secret);
1823 ret = hash[0];
8a0a9bd4
LT
1824 put_cpu_var(get_random_int_hash);
1825
1826 return ret;
1da177e4 1827}
16c7fa05 1828EXPORT_SYMBOL(get_random_int);
1da177e4 1829
baae8c3c
DC
1830/*
1831 * Same as get_random_int(), but returns unsigned long.
1832 */
1833unsigned long get_random_long(void)
1834{
1835 __u32 *hash;
1836 unsigned long ret;
1837
1838 if (arch_get_random_long(&ret))
1839 return ret;
1840
1841 hash = get_cpu_var(get_random_int_hash);
1842
1843 hash[0] += current->pid + jiffies + random_get_entropy();
1844 md5_transform(hash, random_int_secret);
1845 ret = *(unsigned long *)hash;
1846 put_cpu_var(get_random_int_hash);
1847
1848 return ret;
1849}
1850EXPORT_SYMBOL(get_random_long);
1851
1da177e4
LT
1852/*
1853 * randomize_range() returns a start address such that
1854 *
1855 * [...... <range> .....]
1856 * start end
1857 *
1858 * a <range> with size "len" starting at the return value is inside in the
1859 * area defined by [start, end], but is otherwise randomized.
1860 */
1861unsigned long
1862randomize_range(unsigned long start, unsigned long end, unsigned long len)
1863{
1864 unsigned long range = end - len - start;
1865
1866 if (end <= start + len)
1867 return 0;
1868 return PAGE_ALIGN(get_random_int() % range + start);
1869}
c84dbf61
TD
1870
1871/* Interface for in-kernel drivers of true hardware RNGs.
1872 * Those devices may produce endless random bits and will be throttled
1873 * when our pool is full.
1874 */
1875void add_hwgenerator_randomness(const char *buffer, size_t count,
1876 size_t entropy)
1877{
1878 struct entropy_store *poolp = &input_pool;
1879
f41fc0bf
TT
1880 if (unlikely(nonblocking_pool.initialized == 0))
1881 poolp = &nonblocking_pool;
1882 else {
1883 /* Suspend writing if we're above the trickle
1884 * threshold. We'll be woken up again once below
1885 * random_write_wakeup_thresh, or when the calling
1886 * thread is about to terminate.
1887 */
1cac41cb 1888 wait_event_freezable(random_write_wait,
f41fc0bf 1889 kthread_should_stop() ||
c84dbf61 1890 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
f41fc0bf 1891 }
c84dbf61
TD
1892 mix_pool_bytes(poolp, buffer, count);
1893 credit_entropy_bits(poolp, entropy);
1894}
1895EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);