battery: sec_battery: export {CURRENT/VOLTAGE}_MAX to sysfs
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4
LT
252#include <linux/spinlock.h>
253#include <linux/percpu.h>
254#include <linux/cryptohash.h>
5b739ef8 255#include <linux/fips.h>
775f4b29 256#include <linux/ptrace.h>
e6d4947b 257#include <linux/kmemcheck.h>
cc89abca 258#include <linux/uuid.h>
1da177e4 259
d178a1eb
YL
260#ifdef CONFIG_GENERIC_HARDIRQS
261# include <linux/irq.h>
262#endif
263
54439ba6
TT
264#include <linux/syscalls.h>
265#include <linux/completion.h>
266
1da177e4
LT
267#include <asm/processor.h>
268#include <asm/uaccess.h>
269#include <asm/irq.h>
775f4b29 270#include <asm/irq_regs.h>
1da177e4
LT
271#include <asm/io.h>
272
00ce1db1
TT
273#define CREATE_TRACE_POINTS
274#include <trace/events/random.h>
275
1da177e4
LT
276/*
277 * Configuration information
278 */
279#define INPUT_POOL_WORDS 128
280#define OUTPUT_POOL_WORDS 32
281#define SEC_XFER_SIZE 512
e954bc91 282#define EXTRACT_SIZE 10
1da177e4 283
d2e7c96a
PA
284#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
285
1da177e4
LT
286/*
287 * The minimum number of bits of entropy before we wake up a read on
288 * /dev/random. Should be enough to do a significant reseed.
289 */
3c2a0909
S
290#ifdef CONFIG_CRYPTO_FIPS
291static int random_read_wakeup_thresh = 256;
292#else
1da177e4 293static int random_read_wakeup_thresh = 64;
3c2a0909 294#endif
1da177e4
LT
295/*
296 * If the entropy count falls under this number of bits, then we
297 * should wake up processes which are selecting or polling on write
298 * access to /dev/random.
299 */
3c2a0909
S
300#ifdef CONFIG_CRYPTO_FIPS
301static int random_write_wakeup_thresh = 320;
302#else
1da177e4 303static int random_write_wakeup_thresh = 128;
3c2a0909 304#endif
1da177e4
LT
305
306/*
307 * When the input pool goes over trickle_thresh, start dropping most
308 * samples to avoid wasting CPU time and reduce lock contention.
309 */
310
6c036527 311static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
1da177e4 312
90b75ee5 313static DEFINE_PER_CPU(int, trickle_count);
1da177e4
LT
314
315/*
316 * A pool of size .poolwords is stirred with a primitive polynomial
317 * of degree .poolwords over GF(2). The taps for various sizes are
318 * defined below. They are chosen to be evenly spaced (minimum RMS
319 * distance from evenly spaced; the numbers in the comments are a
320 * scaled squared error sum) except for the last tap, which is 1 to
321 * get the twisting happening as fast as possible.
322 */
323static struct poolinfo {
324 int poolwords;
325 int tap1, tap2, tap3, tap4, tap5;
326} poolinfo_table[] = {
327 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
328 { 128, 103, 76, 51, 25, 1 },
329 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
330 { 32, 26, 20, 14, 7, 1 },
331#if 0
332 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
333 { 2048, 1638, 1231, 819, 411, 1 },
334
335 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
336 { 1024, 817, 615, 412, 204, 1 },
337
338 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
339 { 1024, 819, 616, 410, 207, 2 },
340
341 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
342 { 512, 411, 308, 208, 104, 1 },
343
344 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
345 { 512, 409, 307, 206, 102, 2 },
346 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
347 { 512, 409, 309, 205, 103, 2 },
348
349 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
350 { 256, 205, 155, 101, 52, 1 },
351
352 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
353 { 128, 103, 78, 51, 27, 2 },
354
355 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
356 { 64, 52, 39, 26, 14, 1 },
357#endif
358};
359
360#define POOLBITS poolwords*32
361#define POOLBYTES poolwords*4
362
363/*
364 * For the purposes of better mixing, we use the CRC-32 polynomial as
365 * well to make a twisted Generalized Feedback Shift Reigster
366 *
367 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
368 * Transactions on Modeling and Computer Simulation 2(3):179-194.
369 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
370 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
371 *
372 * Thanks to Colin Plumb for suggesting this.
373 *
374 * We have not analyzed the resultant polynomial to prove it primitive;
375 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
376 * of a random large-degree polynomial over GF(2) are more than large enough
377 * that periodicity is not a concern.
378 *
379 * The input hash is much less sensitive than the output hash. All
380 * that we want of it is that it be a good non-cryptographic hash;
381 * i.e. it not produce collisions when fed "random" data of the sort
382 * we expect to see. As long as the pool state differs for different
383 * inputs, we have preserved the input entropy and done a good job.
384 * The fact that an intelligent attacker can construct inputs that
385 * will produce controlled alterations to the pool's state is not
386 * important because we don't consider such inputs to contribute any
387 * randomness. The only property we need with respect to them is that
388 * the attacker can't increase his/her knowledge of the pool's state.
389 * Since all additions are reversible (knowing the final state and the
390 * input, you can reconstruct the initial state), if an attacker has
391 * any uncertainty about the initial state, he/she can only shuffle
392 * that uncertainty about, but never cause any collisions (which would
393 * decrease the uncertainty).
394 *
395 * The chosen system lets the state of the pool be (essentially) the input
396 * modulo the generator polymnomial. Now, for random primitive polynomials,
397 * this is a universal class of hash functions, meaning that the chance
398 * of a collision is limited by the attacker's knowledge of the generator
399 * polynomail, so if it is chosen at random, an attacker can never force
400 * a collision. Here, we use a fixed polynomial, but we *can* assume that
401 * ###--> it is unknown to the processes generating the input entropy. <-###
402 * Because of this important property, this is a good, collision-resistant
403 * hash; hash collisions will occur no more often than chance.
404 */
405
406/*
407 * Static global variables
408 */
409static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
410static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
54439ba6 411static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
9a6f70bb 412static struct fasync_struct *fasync;
1da177e4 413
90ab5ee9 414static bool debug;
1da177e4 415module_param(debug, bool, 0644);
90b75ee5
MM
416#define DEBUG_ENT(fmt, arg...) do { \
417 if (debug) \
418 printk(KERN_DEBUG "random %04d %04d %04d: " \
419 fmt,\
420 input_pool.entropy_count,\
421 blocking_pool.entropy_count,\
422 nonblocking_pool.entropy_count,\
423 ## arg); } while (0)
1da177e4
LT
424
425/**********************************************************************
426 *
427 * OS independent entropy store. Here are the functions which handle
428 * storing entropy in an entropy pool.
429 *
430 **********************************************************************/
431
432struct entropy_store;
433struct entropy_store {
43358209 434 /* read-only data: */
1da177e4
LT
435 struct poolinfo *poolinfo;
436 __u32 *pool;
437 const char *name;
1da177e4 438 struct entropy_store *pull;
4015d9a8 439 int limit;
1da177e4
LT
440
441 /* read-write data: */
43358209 442 spinlock_t lock;
1da177e4 443 unsigned add_ptr;
902c098a 444 unsigned input_rotate;
cda796a3 445 int entropy_count;
775f4b29 446 int entropy_total;
775f4b29 447 unsigned int initialized:1;
ec8f02da 448 bool last_data_init;
e954bc91 449 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
450};
451
452static __u32 input_pool_data[INPUT_POOL_WORDS];
453static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
454static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
455
456static struct entropy_store input_pool = {
457 .poolinfo = &poolinfo_table[0],
458 .name = "input",
459 .limit = 1,
eece09ec 460 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
461 .pool = input_pool_data
462};
463
464static struct entropy_store blocking_pool = {
465 .poolinfo = &poolinfo_table[1],
466 .name = "blocking",
467 .limit = 1,
468 .pull = &input_pool,
eece09ec 469 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
1da177e4
LT
470 .pool = blocking_pool_data
471};
472
473static struct entropy_store nonblocking_pool = {
474 .poolinfo = &poolinfo_table[1],
475 .name = "nonblocking",
476 .pull = &input_pool,
eece09ec 477 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
1da177e4
LT
478 .pool = nonblocking_pool_data
479};
480
775f4b29
TT
481static __u32 const twist_table[8] = {
482 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
483 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
484
1da177e4 485/*
e68e5b66 486 * This function adds bytes into the entropy "pool". It does not
1da177e4 487 * update the entropy estimate. The caller should call
adc782da 488 * credit_entropy_bits if this is appropriate.
1da177e4
LT
489 *
490 * The pool is stirred with a primitive polynomial of the appropriate
491 * degree, and then twisted. We twist by three bits at a time because
492 * it's cheap to do so and helps slightly in the expected case where
493 * the entropy is concentrated in the low-order bits.
494 */
00ce1db1
TT
495static void _mix_pool_bytes(struct entropy_store *r, const void *in,
496 int nbytes, __u8 out[64])
1da177e4 497{
993ba211 498 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
feee7697 499 int input_rotate;
1da177e4 500 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 501 const char *bytes = in;
6d38b827 502 __u32 w;
1da177e4 503
1da177e4
LT
504 tap1 = r->poolinfo->tap1;
505 tap2 = r->poolinfo->tap2;
506 tap3 = r->poolinfo->tap3;
507 tap4 = r->poolinfo->tap4;
508 tap5 = r->poolinfo->tap5;
1da177e4 509
902c098a
TT
510 smp_rmb();
511 input_rotate = ACCESS_ONCE(r->input_rotate);
512 i = ACCESS_ONCE(r->add_ptr);
1da177e4 513
e68e5b66
MM
514 /* mix one byte at a time to simplify size handling and churn faster */
515 while (nbytes--) {
516 w = rol32(*bytes++, input_rotate & 31);
993ba211 517 i = (i - 1) & wordmask;
1da177e4
LT
518
519 /* XOR in the various taps */
993ba211 520 w ^= r->pool[i];
1da177e4
LT
521 w ^= r->pool[(i + tap1) & wordmask];
522 w ^= r->pool[(i + tap2) & wordmask];
523 w ^= r->pool[(i + tap3) & wordmask];
524 w ^= r->pool[(i + tap4) & wordmask];
525 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
526
527 /* Mix the result back in with a twist */
1da177e4 528 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
529
530 /*
531 * Normally, we add 7 bits of rotation to the pool.
532 * At the beginning of the pool, add an extra 7 bits
533 * rotation, so that successive passes spread the
534 * input bits across the pool evenly.
535 */
536 input_rotate += i ? 7 : 14;
1da177e4
LT
537 }
538
902c098a
TT
539 ACCESS_ONCE(r->input_rotate) = input_rotate;
540 ACCESS_ONCE(r->add_ptr) = i;
541 smp_wmb();
1da177e4 542
993ba211
MM
543 if (out)
544 for (j = 0; j < 16; j++)
e68e5b66 545 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
1da177e4
LT
546}
547
00ce1db1 548static void __mix_pool_bytes(struct entropy_store *r, const void *in,
902c098a 549 int nbytes, __u8 out[64])
00ce1db1
TT
550{
551 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
552 _mix_pool_bytes(r, in, nbytes, out);
553}
554
555static void mix_pool_bytes(struct entropy_store *r, const void *in,
556 int nbytes, __u8 out[64])
1da177e4 557{
902c098a
TT
558 unsigned long flags;
559
00ce1db1 560 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 561 spin_lock_irqsave(&r->lock, flags);
00ce1db1 562 _mix_pool_bytes(r, in, nbytes, out);
902c098a 563 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
564}
565
775f4b29
TT
566struct fast_pool {
567 __u32 pool[4];
568 unsigned long last;
569 unsigned short count;
570 unsigned char rotate;
571 unsigned char last_timer_intr;
572};
573
574/*
575 * This is a fast mixing routine used by the interrupt randomness
576 * collector. It's hardcoded for an 128 bit pool and assumes that any
577 * locks that might be needed are taken by the caller.
578 */
579static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
580{
581 const char *bytes = in;
582 __u32 w;
583 unsigned i = f->count;
584 unsigned input_rotate = f->rotate;
585
586 while (nbytes--) {
587 w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
588 f->pool[(i + 1) & 3];
589 f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
590 input_rotate += (i++ & 3) ? 7 : 14;
591 }
592 f->count = i;
593 f->rotate = input_rotate;
594}
595
1da177e4
LT
596/*
597 * Credit (or debit) the entropy store with n bits of entropy
598 */
adc782da 599static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 600{
902c098a 601 int entropy_count, orig;
1da177e4 602
adc782da
MM
603 if (!nbits)
604 return;
605
adc782da 606 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
902c098a
TT
607retry:
608 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
8b76f46a 609 entropy_count += nbits;
00ce1db1 610
8b76f46a 611 if (entropy_count < 0) {
adc782da 612 DEBUG_ENT("negative entropy/overflow\n");
8b76f46a
AM
613 entropy_count = 0;
614 } else if (entropy_count > r->poolinfo->POOLBITS)
615 entropy_count = r->poolinfo->POOLBITS;
902c098a
TT
616 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
617 goto retry;
1da177e4 618
54439ba6
TT
619 r->entropy_total += nbits;
620 if (!r->initialized && r->entropy_total > 128) {
621 r->initialized = 1;
622 r->entropy_total = 0;
623 if (r == &nonblocking_pool) {
624 prandom_reseed_late();
3fe7fd34 625 wake_up_all(&urandom_init_wait);
54439ba6 626 pr_notice("random: %s pool is initialized\n", r->name);
cb7af6c5 627 }
775f4b29
TT
628 }
629
00ce1db1
TT
630 trace_credit_entropy_bits(r->name, nbits, entropy_count,
631 r->entropy_total, _RET_IP_);
632
88c730da 633 /* should we wake readers? */
8b76f46a 634 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
88c730da 635 wake_up_interruptible(&random_read_wait);
9a6f70bb
JD
636 kill_fasync(&fasync, SIGIO, POLL_IN);
637 }
1da177e4
LT
638}
639
640/*********************************************************************
641 *
642 * Entropy input management
643 *
644 *********************************************************************/
645
646/* There is one of these per entropy source */
647struct timer_rand_state {
648 cycles_t last_time;
90b75ee5 649 long last_delta, last_delta2;
1da177e4
LT
650 unsigned dont_count_entropy:1;
651};
652
a2080a67
LT
653/*
654 * Add device- or boot-specific data to the input and nonblocking
655 * pools to help initialize them to unique values.
656 *
657 * None of this adds any entropy, it is meant to avoid the
658 * problem of the nonblocking pool having similar initial state
659 * across largely identical devices.
660 */
661void add_device_randomness(const void *buf, unsigned int size)
662{
663 unsigned long time = get_cycles() ^ jiffies;
664
665 mix_pool_bytes(&input_pool, buf, size, NULL);
666 mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
667 mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
668 mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
669}
670EXPORT_SYMBOL(add_device_randomness);
671
3060d6fe
YL
672static struct timer_rand_state input_timer_state;
673
1da177e4
LT
674/*
675 * This function adds entropy to the entropy "pool" by using timing
676 * delays. It uses the timer_rand_state structure to make an estimate
677 * of how many bits of entropy this call has added to the pool.
678 *
679 * The number "num" is also added to the pool - it should somehow describe
680 * the type of event which just happened. This is currently 0-255 for
681 * keyboard scan codes, and 256 upwards for interrupts.
682 *
683 */
684static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
685{
686 struct {
1da177e4 687 long jiffies;
cf833d0b 688 unsigned cycles;
1da177e4
LT
689 unsigned num;
690 } sample;
691 long delta, delta2, delta3;
692
693 preempt_disable();
694 /* if over the trickle threshold, use only 1 in 4096 samples */
695 if (input_pool.entropy_count > trickle_thresh &&
b29c617a 696 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
1da177e4
LT
697 goto out;
698
699 sample.jiffies = jiffies;
e6d4947b 700 sample.cycles = get_cycles();
1da177e4 701 sample.num = num;
902c098a 702 mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
1da177e4
LT
703
704 /*
705 * Calculate number of bits of randomness we probably added.
706 * We take into account the first, second and third-order deltas
707 * in order to make our estimate.
708 */
709
710 if (!state->dont_count_entropy) {
711 delta = sample.jiffies - state->last_time;
712 state->last_time = sample.jiffies;
713
714 delta2 = delta - state->last_delta;
715 state->last_delta = delta;
716
717 delta3 = delta2 - state->last_delta2;
718 state->last_delta2 = delta2;
719
720 if (delta < 0)
721 delta = -delta;
722 if (delta2 < 0)
723 delta2 = -delta2;
724 if (delta3 < 0)
725 delta3 = -delta3;
726 if (delta > delta2)
727 delta = delta2;
728 if (delta > delta3)
729 delta = delta3;
730
731 /*
732 * delta is now minimum absolute delta.
733 * Round down by 1 bit on general principles,
734 * and limit entropy entimate to 12 bits.
735 */
adc782da
MM
736 credit_entropy_bits(&input_pool,
737 min_t(int, fls(delta>>1), 11));
1da177e4 738 }
1da177e4
LT
739out:
740 preempt_enable();
741}
742
d251575a 743void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
744 unsigned int value)
745{
746 static unsigned char last_value;
747
748 /* ignore autorepeat and the like */
749 if (value == last_value)
750 return;
751
752 DEBUG_ENT("input event\n");
753 last_value = value;
754 add_timer_randomness(&input_timer_state,
755 (type << 4) ^ code ^ (code >> 4) ^ value);
756}
80fc9f53 757EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 758
775f4b29
TT
759static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
760
761void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 762{
775f4b29
TT
763 struct entropy_store *r;
764 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
765 struct pt_regs *regs = get_irq_regs();
766 unsigned long now = jiffies;
767 __u32 input[4], cycles = get_cycles();
768
769 input[0] = cycles ^ jiffies;
770 input[1] = irq;
771 if (regs) {
772 __u64 ip = instruction_pointer(regs);
773 input[2] = ip;
774 input[3] = ip >> 32;
775 }
3060d6fe 776
775f4b29 777 fast_mix(fast_pool, input, sizeof(input));
3060d6fe 778
775f4b29
TT
779 if ((fast_pool->count & 1023) &&
780 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
781 return;
782
775f4b29
TT
783 fast_pool->last = now;
784
785 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
902c098a 786 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
775f4b29
TT
787 /*
788 * If we don't have a valid cycle counter, and we see
789 * back-to-back timer interrupts, then skip giving credit for
790 * any entropy.
791 */
792 if (cycles == 0) {
793 if (irq_flags & __IRQF_TIMER) {
794 if (fast_pool->last_timer_intr)
795 return;
796 fast_pool->last_timer_intr = 1;
797 } else
798 fast_pool->last_timer_intr = 0;
799 }
800 credit_entropy_bits(r, 1);
1da177e4
LT
801}
802
9361401e 803#ifdef CONFIG_BLOCK
1da177e4
LT
804void add_disk_randomness(struct gendisk *disk)
805{
806 if (!disk || !disk->random)
807 return;
808 /* first major is 1, so we get >= 0x200 here */
f331c029
TH
809 DEBUG_ENT("disk event %d:%d\n",
810 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
1da177e4 811
f331c029 812 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1da177e4 813}
9361401e 814#endif
1da177e4 815
1da177e4
LT
816/*********************************************************************
817 *
818 * Entropy extraction routines
819 *
820 *********************************************************************/
821
90b75ee5 822static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
823 size_t nbytes, int min, int rsvd);
824
825/*
25985edc 826 * This utility inline function is responsible for transferring entropy
1da177e4
LT
827 * from the primary pool to the secondary extraction pool. We make
828 * sure we pull enough for a 'catastrophic reseed'.
829 */
830static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
831{
d2e7c96a 832 __u32 tmp[OUTPUT_POOL_WORDS];
1da177e4
LT
833
834 if (r->pull && r->entropy_count < nbytes * 8 &&
835 r->entropy_count < r->poolinfo->POOLBITS) {
5a021e9f 836 /* If we're limited, always leave two wakeup worth's BITS */
1da177e4 837 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
5a021e9f
MM
838 int bytes = nbytes;
839
840 /* pull at least as many as BYTES as wakeup BITS */
841 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
842 /* but never more than the buffer size */
d2e7c96a 843 bytes = min_t(int, bytes, sizeof(tmp));
1da177e4
LT
844
845 DEBUG_ENT("going to reseed %s with %d bits "
8eb2ffbf 846 "(%zu of %d requested)\n",
1da177e4
LT
847 r->name, bytes * 8, nbytes * 8, r->entropy_count);
848
d2e7c96a 849 bytes = extract_entropy(r->pull, tmp, bytes,
90b75ee5 850 random_read_wakeup_thresh / 8, rsvd);
d2e7c96a 851 mix_pool_bytes(r, tmp, bytes, NULL);
adc782da 852 credit_entropy_bits(r, bytes*8);
1da177e4
LT
853 }
854}
855
856/*
857 * These functions extracts randomness from the "entropy pool", and
858 * returns it in a buffer.
859 *
860 * The min parameter specifies the minimum amount we can pull before
861 * failing to avoid races that defeat catastrophic reseeding while the
862 * reserved parameter indicates how much entropy we must leave in the
863 * pool after each pull to avoid starving other readers.
864 *
865 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
866 */
867
868static size_t account(struct entropy_store *r, size_t nbytes, int min,
869 int reserved)
870{
871 unsigned long flags;
b9809552 872 int wakeup_write = 0;
1da177e4 873
1da177e4
LT
874 /* Hold lock while accounting */
875 spin_lock_irqsave(&r->lock, flags);
876
cda796a3 877 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
8eb2ffbf 878 DEBUG_ENT("trying to extract %zu bits from %s\n",
1da177e4
LT
879 nbytes * 8, r->name);
880
881 /* Can we pull enough? */
882 if (r->entropy_count / 8 < min + reserved) {
883 nbytes = 0;
884 } else {
10b3a32d
JK
885 int entropy_count, orig;
886retry:
887 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1da177e4 888 /* If limited, never pull more than available */
10b3a32d
JK
889 if (r->limit && nbytes + reserved >= entropy_count / 8)
890 nbytes = entropy_count/8 - reserved;
891
892 if (entropy_count / 8 >= nbytes + reserved) {
893 entropy_count -= nbytes*8;
894 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
895 goto retry;
896 } else {
897 entropy_count = reserved;
898 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
899 goto retry;
900 }
901
902 if (entropy_count < random_write_wakeup_thresh)
b9809552 903 wakeup_write = 1;
1da177e4
LT
904 }
905
8eb2ffbf 906 DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
1da177e4
LT
907 nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
908
909 spin_unlock_irqrestore(&r->lock, flags);
910
b9809552
TT
911 if (wakeup_write) {
912 wake_up_interruptible(&random_write_wait);
913 kill_fasync(&fasync, SIGIO, POLL_OUT);
914 }
915
1da177e4
LT
916 return nbytes;
917}
918
919static void extract_buf(struct entropy_store *r, __u8 *out)
920{
602b6aee 921 int i;
d2e7c96a
PA
922 union {
923 __u32 w[5];
924 unsigned long l[LONGS(EXTRACT_SIZE)];
925 } hash;
926 __u32 workspace[SHA_WORKSPACE_WORDS];
e68e5b66 927 __u8 extract[64];
902c098a 928 unsigned long flags;
1da177e4 929
1c0ad3d4 930 /* Generate a hash across the pool, 16 words (512 bits) at a time */
d2e7c96a 931 sha_init(hash.w);
902c098a 932 spin_lock_irqsave(&r->lock, flags);
1c0ad3d4 933 for (i = 0; i < r->poolinfo->poolwords; i += 16)
d2e7c96a 934 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1c0ad3d4 935
1da177e4 936 /*
1c0ad3d4
MM
937 * We mix the hash back into the pool to prevent backtracking
938 * attacks (where the attacker knows the state of the pool
939 * plus the current outputs, and attempts to find previous
940 * ouputs), unless the hash function can be inverted. By
941 * mixing at least a SHA1 worth of hash data back, we make
942 * brute-forcing the feedback as hard as brute-forcing the
943 * hash.
1da177e4 944 */
d2e7c96a 945 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
902c098a 946 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
947
948 /*
1c0ad3d4
MM
949 * To avoid duplicates, we atomically extract a portion of the
950 * pool while mixing, and hash one final time.
1da177e4 951 */
d2e7c96a 952 sha_transform(hash.w, extract, workspace);
25e1465a
DB
953 memzero_explicit(extract, sizeof(extract));
954 memzero_explicit(workspace, sizeof(workspace));
1da177e4
LT
955
956 /*
1c0ad3d4
MM
957 * In case the hash function has some recognizable output
958 * pattern, we fold it in half. Thus, we always feed back
959 * twice as much data as we output.
1da177e4 960 */
d2e7c96a
PA
961 hash.w[0] ^= hash.w[3];
962 hash.w[1] ^= hash.w[4];
963 hash.w[2] ^= rol32(hash.w[2], 16);
964
965 /*
966 * If we have a architectural hardware random number
967 * generator, mix that in, too.
968 */
969 for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
970 unsigned long v;
971 if (!arch_get_random_long(&v))
972 break;
973 hash.l[i] ^= v;
974 }
975
976 memcpy(out, &hash, EXTRACT_SIZE);
25e1465a 977 memzero_explicit(&hash, sizeof(hash));
1da177e4
LT
978}
979
90b75ee5 980static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 981 size_t nbytes, int min, int reserved)
1da177e4
LT
982{
983 ssize_t ret = 0, i;
984 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 985 unsigned long flags;
1da177e4 986
ec8f02da 987 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
988 if (fips_enabled) {
989 spin_lock_irqsave(&r->lock, flags);
990 if (!r->last_data_init) {
991 r->last_data_init = true;
992 spin_unlock_irqrestore(&r->lock, flags);
993 trace_extract_entropy(r->name, EXTRACT_SIZE,
994 r->entropy_count, _RET_IP_);
995 xfer_secondary_pool(r, EXTRACT_SIZE);
996 extract_buf(r, tmp);
997 spin_lock_irqsave(&r->lock, flags);
998 memcpy(r->last_data, tmp, EXTRACT_SIZE);
999 }
1000 spin_unlock_irqrestore(&r->lock, flags);
1001 }
ec8f02da 1002
00ce1db1 1003 trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
1da177e4
LT
1004 xfer_secondary_pool(r, nbytes);
1005 nbytes = account(r, nbytes, min, reserved);
1006
1007 while (nbytes) {
1008 extract_buf(r, tmp);
5b739ef8 1009
e954bc91 1010 if (fips_enabled) {
5b739ef8
NH
1011 spin_lock_irqsave(&r->lock, flags);
1012 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1013 panic("Hardware RNG duplicated output!\n");
1014 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1015 spin_unlock_irqrestore(&r->lock, flags);
1016 }
1da177e4
LT
1017 i = min_t(int, nbytes, EXTRACT_SIZE);
1018 memcpy(buf, tmp, i);
1019 nbytes -= i;
1020 buf += i;
1021 ret += i;
1022 }
1023
1024 /* Wipe data just returned from memory */
25e1465a 1025 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1026
1027 return ret;
1028}
1029
1030static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1031 size_t nbytes)
1032{
1033 ssize_t ret = 0, i;
1034 __u8 tmp[EXTRACT_SIZE];
54439ba6 1035 int large_request = (nbytes > 256);
1da177e4 1036
00ce1db1 1037 trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
1da177e4
LT
1038 xfer_secondary_pool(r, nbytes);
1039 nbytes = account(r, nbytes, 0, 0);
1040
1041 while (nbytes) {
54439ba6 1042 if (large_request && need_resched()) {
1da177e4
LT
1043 if (signal_pending(current)) {
1044 if (ret == 0)
1045 ret = -ERESTARTSYS;
1046 break;
1047 }
1048 schedule();
1049 }
1050
1051 extract_buf(r, tmp);
1052 i = min_t(int, nbytes, EXTRACT_SIZE);
1053 if (copy_to_user(buf, tmp, i)) {
1054 ret = -EFAULT;
1055 break;
1056 }
1057
1058 nbytes -= i;
1059 buf += i;
1060 ret += i;
1061 }
1062
1063 /* Wipe data just returned from memory */
25e1465a 1064 memzero_explicit(tmp, sizeof(tmp));
1da177e4
LT
1065
1066 return ret;
1067}
1068
1069/*
1070 * This function is the exported kernel interface. It returns some
c2557a30
TT
1071 * number of good random numbers, suitable for key generation, seeding
1072 * TCP sequence numbers, etc. It does not use the hw random number
1073 * generator, if available; use get_random_bytes_arch() for that.
1da177e4
LT
1074 */
1075void get_random_bytes(void *buf, int nbytes)
c2557a30
TT
1076{
1077 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1078}
1079EXPORT_SYMBOL(get_random_bytes);
1080
1081/*
1082 * This function will use the architecture-specific hardware random
1083 * number generator if it is available. The arch-specific hw RNG will
1084 * almost certainly be faster than what we can do in software, but it
1085 * is impossible to verify that it is implemented securely (as
1086 * opposed, to, say, the AES encryption of a sequence number using a
1087 * key known by the NSA). So it's useful if we need the speed, but
1088 * only if we're willing to trust the hardware manufacturer not to
1089 * have put in a back door.
1090 */
1091void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1092{
63d77173
PA
1093 char *p = buf;
1094
00ce1db1 1095 trace_get_random_bytes(nbytes, _RET_IP_);
63d77173
PA
1096 while (nbytes) {
1097 unsigned long v;
1098 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1099
63d77173
PA
1100 if (!arch_get_random_long(&v))
1101 break;
1102
bd29e568 1103 memcpy(p, &v, chunk);
63d77173
PA
1104 p += chunk;
1105 nbytes -= chunk;
1106 }
1107
c2557a30
TT
1108 if (nbytes)
1109 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1da177e4 1110}
c2557a30
TT
1111EXPORT_SYMBOL(get_random_bytes_arch);
1112
1da177e4
LT
1113
1114/*
1115 * init_std_data - initialize pool with system data
1116 *
1117 * @r: pool to initialize
1118 *
1119 * This function clears the pool's entropy count and mixes some system
1120 * data into the pool to prepare it for use. The pool is not cleared
1121 * as that can only decrease the entropy in the pool.
1122 */
1123static void init_std_data(struct entropy_store *r)
1124{
3e88bdff 1125 int i;
902c098a
TT
1126 ktime_t now = ktime_get_real();
1127 unsigned long rv;
1da177e4 1128
1da177e4 1129 r->entropy_count = 0;
775f4b29 1130 r->entropy_total = 0;
ec8f02da 1131 r->last_data_init = false;
902c098a
TT
1132 mix_pool_bytes(r, &now, sizeof(now), NULL);
1133 for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
1134 if (!arch_get_random_long(&rv))
3e88bdff 1135 break;
902c098a 1136 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
3e88bdff 1137 }
902c098a 1138 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1da177e4
LT
1139}
1140
cbc96b75
TL
1141/*
1142 * Note that setup_arch() may call add_device_randomness()
1143 * long before we get here. This allows seeding of the pools
1144 * with some platform dependent data very early in the boot
1145 * process. But it limits our options here. We must use
1146 * statically allocated structures that already have all
1147 * initializations complete at compile time. We should also
1148 * take care not to overwrite the precious per platform data
1149 * we were given.
1150 */
53c3f63e 1151static int rand_initialize(void)
1da177e4
LT
1152{
1153 init_std_data(&input_pool);
1154 init_std_data(&blocking_pool);
1155 init_std_data(&nonblocking_pool);
1156 return 0;
1157}
1158module_init(rand_initialize);
1159
9361401e 1160#ifdef CONFIG_BLOCK
1da177e4
LT
1161void rand_initialize_disk(struct gendisk *disk)
1162{
1163 struct timer_rand_state *state;
1164
1165 /*
f8595815 1166 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1167 * source.
1168 */
f8595815
ED
1169 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1170 if (state)
1da177e4 1171 disk->random = state;
1da177e4 1172}
9361401e 1173#endif
1da177e4
LT
1174
1175static ssize_t
54439ba6 1176_random_read(int nonblock, char __user *buf, size_t nbytes)
1da177e4
LT
1177{
1178 ssize_t n, retval = 0, count = 0;
1179
1180 if (nbytes == 0)
1181 return 0;
1182
1183 while (nbytes > 0) {
1184 n = nbytes;
1185 if (n > SEC_XFER_SIZE)
1186 n = SEC_XFER_SIZE;
1187
8eb2ffbf 1188 DEBUG_ENT("reading %zu bits\n", n*8);
1da177e4
LT
1189
1190 n = extract_entropy_user(&blocking_pool, buf, n);
1191
8eb2ffbf
JK
1192 if (n < 0) {
1193 retval = n;
1194 break;
1195 }
1196
1197 DEBUG_ENT("read got %zd bits (%zd still needed)\n",
1da177e4
LT
1198 n*8, (nbytes-n)*8);
1199
1200 if (n == 0) {
54439ba6 1201 if (nonblock) {
1da177e4
LT
1202 retval = -EAGAIN;
1203 break;
1204 }
1205
1206 DEBUG_ENT("sleeping?\n");
1207
1208 wait_event_interruptible(random_read_wait,
1209 input_pool.entropy_count >=
1210 random_read_wakeup_thresh);
1211
1212 DEBUG_ENT("awake\n");
1213
1214 if (signal_pending(current)) {
1215 retval = -ERESTARTSYS;
1216 break;
1217 }
1218
1219 continue;
1220 }
1221
1da177e4
LT
1222 count += n;
1223 buf += n;
1224 nbytes -= n;
1225 break; /* This break makes the device work */
1226 /* like a named pipe */
1227 }
1228
1da177e4
LT
1229 return (count ? count : retval);
1230}
1231
54439ba6
TT
1232static ssize_t
1233random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1234{
1235 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1236}
1237
1da177e4 1238static ssize_t
90b75ee5 1239urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
1240{
1241 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1242}
1243
1244static unsigned int
1245random_poll(struct file *file, poll_table * wait)
1246{
1247 unsigned int mask;
1248
1249 poll_wait(file, &random_read_wait, wait);
1250 poll_wait(file, &random_write_wait, wait);
1251 mask = 0;
1252 if (input_pool.entropy_count >= random_read_wakeup_thresh)
1253 mask |= POLLIN | POLLRDNORM;
1254 if (input_pool.entropy_count < random_write_wakeup_thresh)
1255 mask |= POLLOUT | POLLWRNORM;
1256 return mask;
1257}
1258
7f397dcd
MM
1259static int
1260write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1261{
1da177e4
LT
1262 size_t bytes;
1263 __u32 buf[16];
1264 const char __user *p = buffer;
1da177e4 1265
7f397dcd
MM
1266 while (count > 0) {
1267 bytes = min(count, sizeof(buf));
1268 if (copy_from_user(&buf, p, bytes))
1269 return -EFAULT;
1da177e4 1270
7f397dcd 1271 count -= bytes;
1da177e4
LT
1272 p += bytes;
1273
902c098a 1274 mix_pool_bytes(r, buf, bytes, NULL);
91f3f1e3 1275 cond_resched();
1da177e4 1276 }
7f397dcd
MM
1277
1278 return 0;
1279}
1280
90b75ee5
MM
1281static ssize_t random_write(struct file *file, const char __user *buffer,
1282 size_t count, loff_t *ppos)
7f397dcd
MM
1283{
1284 size_t ret;
7f397dcd
MM
1285
1286 ret = write_pool(&blocking_pool, buffer, count);
1287 if (ret)
1288 return ret;
1289 ret = write_pool(&nonblocking_pool, buffer, count);
1290 if (ret)
1291 return ret;
1292
7f397dcd 1293 return (ssize_t)count;
1da177e4
LT
1294}
1295
43ae4860 1296static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1297{
1298 int size, ent_count;
1299 int __user *p = (int __user *)arg;
1300 int retval;
1301
1302 switch (cmd) {
1303 case RNDGETENTCNT:
43ae4860
MM
1304 /* inherently racy, no point locking */
1305 if (put_user(input_pool.entropy_count, p))
1da177e4
LT
1306 return -EFAULT;
1307 return 0;
1308 case RNDADDTOENTCNT:
1309 if (!capable(CAP_SYS_ADMIN))
1310 return -EPERM;
1311 if (get_user(ent_count, p))
1312 return -EFAULT;
adc782da 1313 credit_entropy_bits(&input_pool, ent_count);
1da177e4
LT
1314 return 0;
1315 case RNDADDENTROPY:
1316 if (!capable(CAP_SYS_ADMIN))
1317 return -EPERM;
1318 if (get_user(ent_count, p++))
1319 return -EFAULT;
1320 if (ent_count < 0)
1321 return -EINVAL;
1322 if (get_user(size, p++))
1323 return -EFAULT;
7f397dcd
MM
1324 retval = write_pool(&input_pool, (const char __user *)p,
1325 size);
1da177e4
LT
1326 if (retval < 0)
1327 return retval;
adc782da 1328 credit_entropy_bits(&input_pool, ent_count);
1da177e4
LT
1329 return 0;
1330 case RNDZAPENTCNT:
1331 case RNDCLEARPOOL:
1332 /* Clear the entropy pool counters. */
1333 if (!capable(CAP_SYS_ADMIN))
1334 return -EPERM;
53c3f63e 1335 rand_initialize();
1da177e4
LT
1336 return 0;
1337 default:
1338 return -EINVAL;
1339 }
1340}
1341
9a6f70bb
JD
1342static int random_fasync(int fd, struct file *filp, int on)
1343{
1344 return fasync_helper(fd, filp, on, &fasync);
1345}
1346
2b8693c0 1347const struct file_operations random_fops = {
1da177e4
LT
1348 .read = random_read,
1349 .write = random_write,
1350 .poll = random_poll,
43ae4860 1351 .unlocked_ioctl = random_ioctl,
9a6f70bb 1352 .fasync = random_fasync,
6038f373 1353 .llseek = noop_llseek,
1da177e4
LT
1354};
1355
2b8693c0 1356const struct file_operations urandom_fops = {
1da177e4
LT
1357 .read = urandom_read,
1358 .write = random_write,
43ae4860 1359 .unlocked_ioctl = random_ioctl,
9a6f70bb 1360 .fasync = random_fasync,
6038f373 1361 .llseek = noop_llseek,
1da177e4
LT
1362};
1363
54439ba6
TT
1364SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1365 unsigned int, flags)
1366{
1367 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1368 return -EINVAL;
1369 if (count > INT_MAX)
1370 count = INT_MAX;
1371 if (flags & GRND_RANDOM)
1372 return _random_read(flags & GRND_NONBLOCK, buf, count);
1373 if (unlikely(nonblocking_pool.initialized == 0)) {
1374 if (flags & GRND_NONBLOCK)
1375 return -EAGAIN;
1376 wait_event_interruptible(urandom_init_wait,
1377 nonblocking_pool.initialized);
1378 if (signal_pending(current))
1379 return -ERESTARTSYS;
1380 }
1381 return urandom_read(NULL, buf, count, NULL);
1382}
1383
1da177e4
LT
1384/********************************************************************
1385 *
1386 * Sysctl interface
1387 *
1388 ********************************************************************/
1389
1390#ifdef CONFIG_SYSCTL
1391
1392#include <linux/sysctl.h>
1393
1394static int min_read_thresh = 8, min_write_thresh;
1395static int max_read_thresh = INPUT_POOL_WORDS * 32;
1396static int max_write_thresh = INPUT_POOL_WORDS * 32;
1397static char sysctl_bootid[16];
1398
1399/*
1400 * These functions is used to return both the bootid UUID, and random
1401 * UUID. The difference is in whether table->data is NULL; if it is,
1402 * then a new UUID is generated and returned to the user.
1403 *
1404 * If the user accesses this via the proc interface, it will be returned
1405 * as an ASCII string in the standard UUID format. If accesses via the
1406 * sysctl system call, it is returned as 16 bytes of binary data.
1407 */
8d65af78 1408static int proc_do_uuid(ctl_table *table, int write,
1da177e4
LT
1409 void __user *buffer, size_t *lenp, loff_t *ppos)
1410{
1411 ctl_table fake_table;
1412 unsigned char buf[64], tmp_uuid[16], *uuid;
1413
1414 uuid = table->data;
1415 if (!uuid) {
1416 uuid = tmp_uuid;
1da177e4 1417 generate_random_uuid(uuid);
44e4360f
MD
1418 } else {
1419 static DEFINE_SPINLOCK(bootid_spinlock);
1420
1421 spin_lock(&bootid_spinlock);
1422 if (!uuid[8])
1423 generate_random_uuid(uuid);
1424 spin_unlock(&bootid_spinlock);
1425 }
1da177e4 1426
35900771
JP
1427 sprintf(buf, "%pU", uuid);
1428
1da177e4
LT
1429 fake_table.data = buf;
1430 fake_table.maxlen = sizeof(buf);
1431
8d65af78 1432 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1433}
1434
1da177e4 1435static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
74feec5d 1436extern ctl_table random_table[];
1da177e4
LT
1437ctl_table random_table[] = {
1438 {
1da177e4
LT
1439 .procname = "poolsize",
1440 .data = &sysctl_poolsize,
1441 .maxlen = sizeof(int),
1442 .mode = 0444,
6d456111 1443 .proc_handler = proc_dointvec,
1da177e4
LT
1444 },
1445 {
1da177e4
LT
1446 .procname = "entropy_avail",
1447 .maxlen = sizeof(int),
1448 .mode = 0444,
6d456111 1449 .proc_handler = proc_dointvec,
1da177e4
LT
1450 .data = &input_pool.entropy_count,
1451 },
1452 {
1da177e4
LT
1453 .procname = "read_wakeup_threshold",
1454 .data = &random_read_wakeup_thresh,
1455 .maxlen = sizeof(int),
1456 .mode = 0644,
6d456111 1457 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1458 .extra1 = &min_read_thresh,
1459 .extra2 = &max_read_thresh,
1460 },
1461 {
1da177e4
LT
1462 .procname = "write_wakeup_threshold",
1463 .data = &random_write_wakeup_thresh,
1464 .maxlen = sizeof(int),
1465 .mode = 0644,
6d456111 1466 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1467 .extra1 = &min_write_thresh,
1468 .extra2 = &max_write_thresh,
1469 },
1470 {
1da177e4
LT
1471 .procname = "boot_id",
1472 .data = &sysctl_bootid,
1473 .maxlen = 16,
1474 .mode = 0444,
6d456111 1475 .proc_handler = proc_do_uuid,
1da177e4
LT
1476 },
1477 {
1da177e4
LT
1478 .procname = "uuid",
1479 .maxlen = 16,
1480 .mode = 0444,
6d456111 1481 .proc_handler = proc_do_uuid,
1da177e4 1482 },
894d2491 1483 { }
1da177e4
LT
1484};
1485#endif /* CONFIG_SYSCTL */
1486
6e5714ea 1487static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 1488
b7a52f51 1489int random_int_secret_init(void)
1da177e4 1490{
6e5714ea 1491 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
1492 return 0;
1493}
1da177e4
LT
1494
1495/*
1496 * Get a random word for internal kernel use only. Similar to urandom but
1497 * with the goal of minimal entropy pool depletion. As a result, the random
1498 * value is not cryptographically secure but for several uses the cost of
1499 * depleting entropy is too high
1500 */
74feec5d 1501static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1da177e4
LT
1502unsigned int get_random_int(void)
1503{
63d77173 1504 __u32 *hash;
6e5714ea 1505 unsigned int ret;
8a0a9bd4 1506
63d77173
PA
1507 if (arch_get_random_int(&ret))
1508 return ret;
1509
1510 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 1511
26a9a418 1512 hash[0] += current->pid + jiffies + get_cycles();
6e5714ea
DM
1513 md5_transform(hash, random_int_secret);
1514 ret = hash[0];
8a0a9bd4
LT
1515 put_cpu_var(get_random_int_hash);
1516
1517 return ret;
1da177e4 1518}
16c7fa05 1519EXPORT_SYMBOL(get_random_int);
1da177e4 1520
3c2a0909
S
1521/*
1522 * Same as get_random_int(), but returns unsigned long.
1523 */
1524unsigned long get_random_long(void)
1525{
1526 __u32 *hash;
1527 unsigned long ret;
1528
1529 if (arch_get_random_long(&ret))
1530 return ret;
1531
1532 hash = get_cpu_var(get_random_int_hash);
1533
1534 hash[0] += current->pid + jiffies + get_cycles();
1535 md5_transform(hash, random_int_secret);
1536 ret = *(unsigned long *)hash;
1537 put_cpu_var(get_random_int_hash);
1538
1539 return ret;
1540}
1541EXPORT_SYMBOL(get_random_long);
1542
1da177e4
LT
1543/*
1544 * randomize_range() returns a start address such that
1545 *
1546 * [...... <range> .....]
1547 * start end
1548 *
1549 * a <range> with size "len" starting at the return value is inside in the
1550 * area defined by [start, end], but is otherwise randomized.
1551 */
1552unsigned long
1553randomize_range(unsigned long start, unsigned long end, unsigned long len)
1554{
1555 unsigned long range = end - len - start;
1556
1557 if (end <= start + len)
1558 return 0;
1559 return PAGE_ALIGN(get_random_int() % range + start);
1560}