[PATCH] drivers/isdn/hisax/: possible cleanups
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / ll_rw_blk.c
CommitLineData
1da177e4
LT
1/*
2 * linux/drivers/block/ll_rw_blk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
15#include <linux/config.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/backing-dev.h>
19#include <linux/bio.h>
20#include <linux/blkdev.h>
21#include <linux/highmem.h>
22#include <linux/mm.h>
23#include <linux/kernel_stat.h>
24#include <linux/string.h>
25#include <linux/init.h>
26#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
1946089a 31#include <linux/blkdev.h>
1da177e4
LT
32
33/*
34 * for max sense size
35 */
36#include <scsi/scsi_cmnd.h>
37
38static void blk_unplug_work(void *data);
39static void blk_unplug_timeout(unsigned long data);
93d17d3d 40static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
45static kmem_cache_t *request_cachep;
46
47/*
48 * For queue allocation
49 */
50static kmem_cache_t *requestq_cachep;
51
52/*
53 * For io context allocations
54 */
55static kmem_cache_t *iocontext_cachep;
56
57static wait_queue_head_t congestion_wqh[2] = {
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
60 };
61
62/*
63 * Controlling structure to kblockd
64 */
65static struct workqueue_struct *kblockd_workqueue;
66
67unsigned long blk_max_low_pfn, blk_max_pfn;
68
69EXPORT_SYMBOL(blk_max_low_pfn);
70EXPORT_SYMBOL(blk_max_pfn);
71
72/* Amount of time in which a process may batch requests */
73#define BLK_BATCH_TIME (HZ/50UL)
74
75/* Number of requests a "batching" process may submit */
76#define BLK_BATCH_REQ 32
77
78/*
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
82 */
83static inline int queue_congestion_on_threshold(struct request_queue *q)
84{
85 return q->nr_congestion_on;
86}
87
88/*
89 * The threshold at which a queue is considered to be uncongested
90 */
91static inline int queue_congestion_off_threshold(struct request_queue *q)
92{
93 return q->nr_congestion_off;
94}
95
96static void blk_queue_congestion_threshold(struct request_queue *q)
97{
98 int nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
109}
110
111/*
112 * A queue has just exitted congestion. Note this in the global counter of
113 * congested queues, and wake up anyone who was waiting for requests to be
114 * put back.
115 */
116static void clear_queue_congested(request_queue_t *q, int rw)
117{
118 enum bdi_state bit;
119 wait_queue_head_t *wqh = &congestion_wqh[rw];
120
121 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
122 clear_bit(bit, &q->backing_dev_info.state);
123 smp_mb__after_clear_bit();
124 if (waitqueue_active(wqh))
125 wake_up(wqh);
126}
127
128/*
129 * A queue has just entered congestion. Flag that in the queue's VM-visible
130 * state flags and increment the global gounter of congested queues.
131 */
132static void set_queue_congested(request_queue_t *q, int rw)
133{
134 enum bdi_state bit;
135
136 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
137 set_bit(bit, &q->backing_dev_info.state);
138}
139
140/**
141 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
142 * @bdev: device
143 *
144 * Locates the passed device's request queue and returns the address of its
145 * backing_dev_info
146 *
147 * Will return NULL if the request queue cannot be located.
148 */
149struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
150{
151 struct backing_dev_info *ret = NULL;
152 request_queue_t *q = bdev_get_queue(bdev);
153
154 if (q)
155 ret = &q->backing_dev_info;
156 return ret;
157}
158
159EXPORT_SYMBOL(blk_get_backing_dev_info);
160
161void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
162{
163 q->activity_fn = fn;
164 q->activity_data = data;
165}
166
167EXPORT_SYMBOL(blk_queue_activity_fn);
168
169/**
170 * blk_queue_prep_rq - set a prepare_request function for queue
171 * @q: queue
172 * @pfn: prepare_request function
173 *
174 * It's possible for a queue to register a prepare_request callback which
175 * is invoked before the request is handed to the request_fn. The goal of
176 * the function is to prepare a request for I/O, it can be used to build a
177 * cdb from the request data for instance.
178 *
179 */
180void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
181{
182 q->prep_rq_fn = pfn;
183}
184
185EXPORT_SYMBOL(blk_queue_prep_rq);
186
187/**
188 * blk_queue_merge_bvec - set a merge_bvec function for queue
189 * @q: queue
190 * @mbfn: merge_bvec_fn
191 *
192 * Usually queues have static limitations on the max sectors or segments that
193 * we can put in a request. Stacking drivers may have some settings that
194 * are dynamic, and thus we have to query the queue whether it is ok to
195 * add a new bio_vec to a bio at a given offset or not. If the block device
196 * has such limitations, it needs to register a merge_bvec_fn to control
197 * the size of bio's sent to it. Note that a block device *must* allow a
198 * single page to be added to an empty bio. The block device driver may want
199 * to use the bio_split() function to deal with these bio's. By default
200 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
201 * honored.
202 */
203void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
204{
205 q->merge_bvec_fn = mbfn;
206}
207
208EXPORT_SYMBOL(blk_queue_merge_bvec);
209
210/**
211 * blk_queue_make_request - define an alternate make_request function for a device
212 * @q: the request queue for the device to be affected
213 * @mfn: the alternate make_request function
214 *
215 * Description:
216 * The normal way for &struct bios to be passed to a device
217 * driver is for them to be collected into requests on a request
218 * queue, and then to allow the device driver to select requests
219 * off that queue when it is ready. This works well for many block
220 * devices. However some block devices (typically virtual devices
221 * such as md or lvm) do not benefit from the processing on the
222 * request queue, and are served best by having the requests passed
223 * directly to them. This can be achieved by providing a function
224 * to blk_queue_make_request().
225 *
226 * Caveat:
227 * The driver that does this *must* be able to deal appropriately
228 * with buffers in "highmemory". This can be accomplished by either calling
229 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
230 * blk_queue_bounce() to create a buffer in normal memory.
231 **/
232void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
233{
234 /*
235 * set defaults
236 */
237 q->nr_requests = BLKDEV_MAX_RQ;
238 q->max_phys_segments = MAX_PHYS_SEGMENTS;
239 q->max_hw_segments = MAX_HW_SEGMENTS;
240 q->make_request_fn = mfn;
241 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
242 q->backing_dev_info.state = 0;
243 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
244 blk_queue_max_sectors(q, MAX_SECTORS);
245 blk_queue_hardsect_size(q, 512);
246 blk_queue_dma_alignment(q, 511);
247 blk_queue_congestion_threshold(q);
248 q->nr_batching = BLK_BATCH_REQ;
249
250 q->unplug_thresh = 4; /* hmm */
251 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
252 if (q->unplug_delay == 0)
253 q->unplug_delay = 1;
254
255 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
256
257 q->unplug_timer.function = blk_unplug_timeout;
258 q->unplug_timer.data = (unsigned long)q;
259
260 /*
261 * by default assume old behaviour and bounce for any highmem page
262 */
263 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
264
265 blk_queue_activity_fn(q, NULL, NULL);
266
267 INIT_LIST_HEAD(&q->drain_list);
268}
269
270EXPORT_SYMBOL(blk_queue_make_request);
271
272static inline void rq_init(request_queue_t *q, struct request *rq)
273{
274 INIT_LIST_HEAD(&rq->queuelist);
275
276 rq->errors = 0;
277 rq->rq_status = RQ_ACTIVE;
278 rq->bio = rq->biotail = NULL;
279 rq->buffer = NULL;
280 rq->ref_count = 1;
281 rq->q = q;
282 rq->waiting = NULL;
283 rq->special = NULL;
284 rq->data_len = 0;
285 rq->data = NULL;
286 rq->sense = NULL;
287 rq->end_io = NULL;
288 rq->end_io_data = NULL;
289}
290
291/**
292 * blk_queue_ordered - does this queue support ordered writes
293 * @q: the request queue
294 * @flag: see below
295 *
296 * Description:
297 * For journalled file systems, doing ordered writes on a commit
298 * block instead of explicitly doing wait_on_buffer (which is bad
299 * for performance) can be a big win. Block drivers supporting this
300 * feature should call this function and indicate so.
301 *
302 **/
303void blk_queue_ordered(request_queue_t *q, int flag)
304{
305 switch (flag) {
306 case QUEUE_ORDERED_NONE:
307 if (q->flush_rq)
308 kmem_cache_free(request_cachep, q->flush_rq);
309 q->flush_rq = NULL;
310 q->ordered = flag;
311 break;
312 case QUEUE_ORDERED_TAG:
313 q->ordered = flag;
314 break;
315 case QUEUE_ORDERED_FLUSH:
316 q->ordered = flag;
317 if (!q->flush_rq)
318 q->flush_rq = kmem_cache_alloc(request_cachep,
319 GFP_KERNEL);
320 break;
321 default:
322 printk("blk_queue_ordered: bad value %d\n", flag);
323 break;
324 }
325}
326
327EXPORT_SYMBOL(blk_queue_ordered);
328
329/**
330 * blk_queue_issue_flush_fn - set function for issuing a flush
331 * @q: the request queue
332 * @iff: the function to be called issuing the flush
333 *
334 * Description:
335 * If a driver supports issuing a flush command, the support is notified
336 * to the block layer by defining it through this call.
337 *
338 **/
339void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
340{
341 q->issue_flush_fn = iff;
342}
343
344EXPORT_SYMBOL(blk_queue_issue_flush_fn);
345
346/*
347 * Cache flushing for ordered writes handling
348 */
349static void blk_pre_flush_end_io(struct request *flush_rq)
350{
351 struct request *rq = flush_rq->end_io_data;
352 request_queue_t *q = rq->q;
353
354 rq->flags |= REQ_BAR_PREFLUSH;
355
356 if (!flush_rq->errors)
357 elv_requeue_request(q, rq);
358 else {
359 q->end_flush_fn(q, flush_rq);
360 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
361 q->request_fn(q);
362 }
363}
364
365static void blk_post_flush_end_io(struct request *flush_rq)
366{
367 struct request *rq = flush_rq->end_io_data;
368 request_queue_t *q = rq->q;
369
370 rq->flags |= REQ_BAR_POSTFLUSH;
371
372 q->end_flush_fn(q, flush_rq);
373 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
374 q->request_fn(q);
375}
376
377struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
378{
379 struct request *flush_rq = q->flush_rq;
380
381 BUG_ON(!blk_barrier_rq(rq));
382
383 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
384 return NULL;
385
386 rq_init(q, flush_rq);
387 flush_rq->elevator_private = NULL;
388 flush_rq->flags = REQ_BAR_FLUSH;
389 flush_rq->rq_disk = rq->rq_disk;
390 flush_rq->rl = NULL;
391
392 /*
393 * prepare_flush returns 0 if no flush is needed, just mark both
394 * pre and post flush as done in that case
395 */
396 if (!q->prepare_flush_fn(q, flush_rq)) {
397 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
398 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
399 return rq;
400 }
401
402 /*
403 * some drivers dequeue requests right away, some only after io
404 * completion. make sure the request is dequeued.
405 */
406 if (!list_empty(&rq->queuelist))
407 blkdev_dequeue_request(rq);
408
409 elv_deactivate_request(q, rq);
410
411 flush_rq->end_io_data = rq;
412 flush_rq->end_io = blk_pre_flush_end_io;
413
414 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
415 return flush_rq;
416}
417
418static void blk_start_post_flush(request_queue_t *q, struct request *rq)
419{
420 struct request *flush_rq = q->flush_rq;
421
422 BUG_ON(!blk_barrier_rq(rq));
423
424 rq_init(q, flush_rq);
425 flush_rq->elevator_private = NULL;
426 flush_rq->flags = REQ_BAR_FLUSH;
427 flush_rq->rq_disk = rq->rq_disk;
428 flush_rq->rl = NULL;
429
430 if (q->prepare_flush_fn(q, flush_rq)) {
431 flush_rq->end_io_data = rq;
432 flush_rq->end_io = blk_post_flush_end_io;
433
434 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
435 q->request_fn(q);
436 }
437}
438
439static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
440 int sectors)
441{
442 if (sectors > rq->nr_sectors)
443 sectors = rq->nr_sectors;
444
445 rq->nr_sectors -= sectors;
446 return rq->nr_sectors;
447}
448
449static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
450 int sectors, int queue_locked)
451{
452 if (q->ordered != QUEUE_ORDERED_FLUSH)
453 return 0;
454 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
455 return 0;
456 if (blk_barrier_postflush(rq))
457 return 0;
458
459 if (!blk_check_end_barrier(q, rq, sectors)) {
460 unsigned long flags = 0;
461
462 if (!queue_locked)
463 spin_lock_irqsave(q->queue_lock, flags);
464
465 blk_start_post_flush(q, rq);
466
467 if (!queue_locked)
468 spin_unlock_irqrestore(q->queue_lock, flags);
469 }
470
471 return 1;
472}
473
474/**
475 * blk_complete_barrier_rq - complete possible barrier request
476 * @q: the request queue for the device
477 * @rq: the request
478 * @sectors: number of sectors to complete
479 *
480 * Description:
481 * Used in driver end_io handling to determine whether to postpone
482 * completion of a barrier request until a post flush has been done. This
483 * is the unlocked variant, used if the caller doesn't already hold the
484 * queue lock.
485 **/
486int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
487{
488 return __blk_complete_barrier_rq(q, rq, sectors, 0);
489}
490EXPORT_SYMBOL(blk_complete_barrier_rq);
491
492/**
493 * blk_complete_barrier_rq_locked - complete possible barrier request
494 * @q: the request queue for the device
495 * @rq: the request
496 * @sectors: number of sectors to complete
497 *
498 * Description:
499 * See blk_complete_barrier_rq(). This variant must be used if the caller
500 * holds the queue lock.
501 **/
502int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
503 int sectors)
504{
505 return __blk_complete_barrier_rq(q, rq, sectors, 1);
506}
507EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
508
509/**
510 * blk_queue_bounce_limit - set bounce buffer limit for queue
511 * @q: the request queue for the device
512 * @dma_addr: bus address limit
513 *
514 * Description:
515 * Different hardware can have different requirements as to what pages
516 * it can do I/O directly to. A low level driver can call
517 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
518 * buffers for doing I/O to pages residing above @page. By default
519 * the block layer sets this to the highest numbered "low" memory page.
520 **/
521void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
522{
523 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
524
525 /*
526 * set appropriate bounce gfp mask -- unfortunately we don't have a
527 * full 4GB zone, so we have to resort to low memory for any bounces.
528 * ISA has its own < 16MB zone.
529 */
530 if (bounce_pfn < blk_max_low_pfn) {
531 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
532 init_emergency_isa_pool();
533 q->bounce_gfp = GFP_NOIO | GFP_DMA;
534 } else
535 q->bounce_gfp = GFP_NOIO;
536
537 q->bounce_pfn = bounce_pfn;
538}
539
540EXPORT_SYMBOL(blk_queue_bounce_limit);
541
542/**
543 * blk_queue_max_sectors - set max sectors for a request for this queue
544 * @q: the request queue for the device
545 * @max_sectors: max sectors in the usual 512b unit
546 *
547 * Description:
548 * Enables a low level driver to set an upper limit on the size of
549 * received requests.
550 **/
551void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
552{
553 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
554 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
555 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
556 }
557
558 q->max_sectors = q->max_hw_sectors = max_sectors;
559}
560
561EXPORT_SYMBOL(blk_queue_max_sectors);
562
563/**
564 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
565 * @q: the request queue for the device
566 * @max_segments: max number of segments
567 *
568 * Description:
569 * Enables a low level driver to set an upper limit on the number of
570 * physical data segments in a request. This would be the largest sized
571 * scatter list the driver could handle.
572 **/
573void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
574{
575 if (!max_segments) {
576 max_segments = 1;
577 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
578 }
579
580 q->max_phys_segments = max_segments;
581}
582
583EXPORT_SYMBOL(blk_queue_max_phys_segments);
584
585/**
586 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
587 * @q: the request queue for the device
588 * @max_segments: max number of segments
589 *
590 * Description:
591 * Enables a low level driver to set an upper limit on the number of
592 * hw data segments in a request. This would be the largest number of
593 * address/length pairs the host adapter can actually give as once
594 * to the device.
595 **/
596void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
597{
598 if (!max_segments) {
599 max_segments = 1;
600 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
601 }
602
603 q->max_hw_segments = max_segments;
604}
605
606EXPORT_SYMBOL(blk_queue_max_hw_segments);
607
608/**
609 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
610 * @q: the request queue for the device
611 * @max_size: max size of segment in bytes
612 *
613 * Description:
614 * Enables a low level driver to set an upper limit on the size of a
615 * coalesced segment
616 **/
617void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
618{
619 if (max_size < PAGE_CACHE_SIZE) {
620 max_size = PAGE_CACHE_SIZE;
621 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
622 }
623
624 q->max_segment_size = max_size;
625}
626
627EXPORT_SYMBOL(blk_queue_max_segment_size);
628
629/**
630 * blk_queue_hardsect_size - set hardware sector size for the queue
631 * @q: the request queue for the device
632 * @size: the hardware sector size, in bytes
633 *
634 * Description:
635 * This should typically be set to the lowest possible sector size
636 * that the hardware can operate on (possible without reverting to
637 * even internal read-modify-write operations). Usually the default
638 * of 512 covers most hardware.
639 **/
640void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
641{
642 q->hardsect_size = size;
643}
644
645EXPORT_SYMBOL(blk_queue_hardsect_size);
646
647/*
648 * Returns the minimum that is _not_ zero, unless both are zero.
649 */
650#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
651
652/**
653 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
654 * @t: the stacking driver (top)
655 * @b: the underlying device (bottom)
656 **/
657void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
658{
659 /* zero is "infinity" */
660 t->max_sectors = t->max_hw_sectors =
661 min_not_zero(t->max_sectors,b->max_sectors);
662
663 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
664 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
665 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
666 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
667}
668
669EXPORT_SYMBOL(blk_queue_stack_limits);
670
671/**
672 * blk_queue_segment_boundary - set boundary rules for segment merging
673 * @q: the request queue for the device
674 * @mask: the memory boundary mask
675 **/
676void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
677{
678 if (mask < PAGE_CACHE_SIZE - 1) {
679 mask = PAGE_CACHE_SIZE - 1;
680 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
681 }
682
683 q->seg_boundary_mask = mask;
684}
685
686EXPORT_SYMBOL(blk_queue_segment_boundary);
687
688/**
689 * blk_queue_dma_alignment - set dma length and memory alignment
690 * @q: the request queue for the device
691 * @mask: alignment mask
692 *
693 * description:
694 * set required memory and length aligment for direct dma transactions.
695 * this is used when buiding direct io requests for the queue.
696 *
697 **/
698void blk_queue_dma_alignment(request_queue_t *q, int mask)
699{
700 q->dma_alignment = mask;
701}
702
703EXPORT_SYMBOL(blk_queue_dma_alignment);
704
705/**
706 * blk_queue_find_tag - find a request by its tag and queue
707 *
708 * @q: The request queue for the device
709 * @tag: The tag of the request
710 *
711 * Notes:
712 * Should be used when a device returns a tag and you want to match
713 * it with a request.
714 *
715 * no locks need be held.
716 **/
717struct request *blk_queue_find_tag(request_queue_t *q, int tag)
718{
719 struct blk_queue_tag *bqt = q->queue_tags;
720
fa72b903 721 if (unlikely(bqt == NULL || tag >= bqt->max_depth))
1da177e4
LT
722 return NULL;
723
724 return bqt->tag_index[tag];
725}
726
727EXPORT_SYMBOL(blk_queue_find_tag);
728
729/**
730 * __blk_queue_free_tags - release tag maintenance info
731 * @q: the request queue for the device
732 *
733 * Notes:
734 * blk_cleanup_queue() will take care of calling this function, if tagging
735 * has been used. So there's no need to call this directly.
736 **/
737static void __blk_queue_free_tags(request_queue_t *q)
738{
739 struct blk_queue_tag *bqt = q->queue_tags;
740
741 if (!bqt)
742 return;
743
744 if (atomic_dec_and_test(&bqt->refcnt)) {
745 BUG_ON(bqt->busy);
746 BUG_ON(!list_empty(&bqt->busy_list));
747
748 kfree(bqt->tag_index);
749 bqt->tag_index = NULL;
750
751 kfree(bqt->tag_map);
752 bqt->tag_map = NULL;
753
754 kfree(bqt);
755 }
756
757 q->queue_tags = NULL;
758 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
759}
760
761/**
762 * blk_queue_free_tags - release tag maintenance info
763 * @q: the request queue for the device
764 *
765 * Notes:
766 * This is used to disabled tagged queuing to a device, yet leave
767 * queue in function.
768 **/
769void blk_queue_free_tags(request_queue_t *q)
770{
771 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
772}
773
774EXPORT_SYMBOL(blk_queue_free_tags);
775
776static int
777init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
778{
1da177e4
LT
779 struct request **tag_index;
780 unsigned long *tag_map;
fa72b903 781 int nr_ulongs;
1da177e4
LT
782
783 if (depth > q->nr_requests * 2) {
784 depth = q->nr_requests * 2;
785 printk(KERN_ERR "%s: adjusted depth to %d\n",
786 __FUNCTION__, depth);
787 }
788
789 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
790 if (!tag_index)
791 goto fail;
792
f7d37d02 793 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 794 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
795 if (!tag_map)
796 goto fail;
797
798 memset(tag_index, 0, depth * sizeof(struct request *));
fa72b903 799 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
1da177e4 800 tags->max_depth = depth;
1da177e4
LT
801 tags->tag_index = tag_index;
802 tags->tag_map = tag_map;
803
1da177e4
LT
804 return 0;
805fail:
806 kfree(tag_index);
807 return -ENOMEM;
808}
809
810/**
811 * blk_queue_init_tags - initialize the queue tag info
812 * @q: the request queue for the device
813 * @depth: the maximum queue depth supported
814 * @tags: the tag to use
815 **/
816int blk_queue_init_tags(request_queue_t *q, int depth,
817 struct blk_queue_tag *tags)
818{
819 int rc;
820
821 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
822
823 if (!tags && !q->queue_tags) {
824 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
825 if (!tags)
826 goto fail;
827
828 if (init_tag_map(q, tags, depth))
829 goto fail;
830
831 INIT_LIST_HEAD(&tags->busy_list);
832 tags->busy = 0;
833 atomic_set(&tags->refcnt, 1);
834 } else if (q->queue_tags) {
835 if ((rc = blk_queue_resize_tags(q, depth)))
836 return rc;
837 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
838 return 0;
839 } else
840 atomic_inc(&tags->refcnt);
841
842 /*
843 * assign it, all done
844 */
845 q->queue_tags = tags;
846 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
847 return 0;
848fail:
849 kfree(tags);
850 return -ENOMEM;
851}
852
853EXPORT_SYMBOL(blk_queue_init_tags);
854
855/**
856 * blk_queue_resize_tags - change the queueing depth
857 * @q: the request queue for the device
858 * @new_depth: the new max command queueing depth
859 *
860 * Notes:
861 * Must be called with the queue lock held.
862 **/
863int blk_queue_resize_tags(request_queue_t *q, int new_depth)
864{
865 struct blk_queue_tag *bqt = q->queue_tags;
866 struct request **tag_index;
867 unsigned long *tag_map;
fa72b903 868 int max_depth, nr_ulongs;
1da177e4
LT
869
870 if (!bqt)
871 return -ENXIO;
872
1da177e4
LT
873 /*
874 * save the old state info, so we can copy it back
875 */
876 tag_index = bqt->tag_index;
877 tag_map = bqt->tag_map;
fa72b903 878 max_depth = bqt->max_depth;
1da177e4
LT
879
880 if (init_tag_map(q, bqt, new_depth))
881 return -ENOMEM;
882
883 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 884 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 885 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
886
887 kfree(tag_index);
888 kfree(tag_map);
889 return 0;
890}
891
892EXPORT_SYMBOL(blk_queue_resize_tags);
893
894/**
895 * blk_queue_end_tag - end tag operations for a request
896 * @q: the request queue for the device
897 * @rq: the request that has completed
898 *
899 * Description:
900 * Typically called when end_that_request_first() returns 0, meaning
901 * all transfers have been done for a request. It's important to call
902 * this function before end_that_request_last(), as that will put the
903 * request back on the free list thus corrupting the internal tag list.
904 *
905 * Notes:
906 * queue lock must be held.
907 **/
908void blk_queue_end_tag(request_queue_t *q, struct request *rq)
909{
910 struct blk_queue_tag *bqt = q->queue_tags;
911 int tag = rq->tag;
912
913 BUG_ON(tag == -1);
914
fa72b903 915 if (unlikely(tag >= bqt->max_depth))
040c928c
TH
916 /*
917 * This can happen after tag depth has been reduced.
918 * FIXME: how about a warning or info message here?
919 */
1da177e4
LT
920 return;
921
922 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
040c928c
TH
923 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
924 __FUNCTION__, tag);
1da177e4
LT
925 return;
926 }
927
928 list_del_init(&rq->queuelist);
929 rq->flags &= ~REQ_QUEUED;
930 rq->tag = -1;
931
932 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
933 printk(KERN_ERR "%s: tag %d is missing\n",
934 __FUNCTION__, tag);
1da177e4
LT
935
936 bqt->tag_index[tag] = NULL;
937 bqt->busy--;
938}
939
940EXPORT_SYMBOL(blk_queue_end_tag);
941
942/**
943 * blk_queue_start_tag - find a free tag and assign it
944 * @q: the request queue for the device
945 * @rq: the block request that needs tagging
946 *
947 * Description:
948 * This can either be used as a stand-alone helper, or possibly be
949 * assigned as the queue &prep_rq_fn (in which case &struct request
950 * automagically gets a tag assigned). Note that this function
951 * assumes that any type of request can be queued! if this is not
952 * true for your device, you must check the request type before
953 * calling this function. The request will also be removed from
954 * the request queue, so it's the drivers responsibility to readd
955 * it if it should need to be restarted for some reason.
956 *
957 * Notes:
958 * queue lock must be held.
959 **/
960int blk_queue_start_tag(request_queue_t *q, struct request *rq)
961{
962 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 963 int tag;
1da177e4
LT
964
965 if (unlikely((rq->flags & REQ_QUEUED))) {
966 printk(KERN_ERR
040c928c
TH
967 "%s: request %p for device [%s] already tagged %d",
968 __FUNCTION__, rq,
969 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
970 BUG();
971 }
972
2bf0fdad
TH
973 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
974 if (tag >= bqt->max_depth)
975 return 1;
1da177e4 976
1da177e4
LT
977 __set_bit(tag, bqt->tag_map);
978
979 rq->flags |= REQ_QUEUED;
980 rq->tag = tag;
981 bqt->tag_index[tag] = rq;
982 blkdev_dequeue_request(rq);
983 list_add(&rq->queuelist, &bqt->busy_list);
984 bqt->busy++;
985 return 0;
986}
987
988EXPORT_SYMBOL(blk_queue_start_tag);
989
990/**
991 * blk_queue_invalidate_tags - invalidate all pending tags
992 * @q: the request queue for the device
993 *
994 * Description:
995 * Hardware conditions may dictate a need to stop all pending requests.
996 * In this case, we will safely clear the block side of the tag queue and
997 * readd all requests to the request queue in the right order.
998 *
999 * Notes:
1000 * queue lock must be held.
1001 **/
1002void blk_queue_invalidate_tags(request_queue_t *q)
1003{
1004 struct blk_queue_tag *bqt = q->queue_tags;
1005 struct list_head *tmp, *n;
1006 struct request *rq;
1007
1008 list_for_each_safe(tmp, n, &bqt->busy_list) {
1009 rq = list_entry_rq(tmp);
1010
1011 if (rq->tag == -1) {
040c928c
TH
1012 printk(KERN_ERR
1013 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4
LT
1014 list_del_init(&rq->queuelist);
1015 rq->flags &= ~REQ_QUEUED;
1016 } else
1017 blk_queue_end_tag(q, rq);
1018
1019 rq->flags &= ~REQ_STARTED;
1020 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1021 }
1022}
1023
1024EXPORT_SYMBOL(blk_queue_invalidate_tags);
1025
1026static char *rq_flags[] = {
1027 "REQ_RW",
1028 "REQ_FAILFAST",
1029 "REQ_SOFTBARRIER",
1030 "REQ_HARDBARRIER",
1031 "REQ_CMD",
1032 "REQ_NOMERGE",
1033 "REQ_STARTED",
1034 "REQ_DONTPREP",
1035 "REQ_QUEUED",
1036 "REQ_PC",
1037 "REQ_BLOCK_PC",
1038 "REQ_SENSE",
1039 "REQ_FAILED",
1040 "REQ_QUIET",
1041 "REQ_SPECIAL",
1042 "REQ_DRIVE_CMD",
1043 "REQ_DRIVE_TASK",
1044 "REQ_DRIVE_TASKFILE",
1045 "REQ_PREEMPT",
1046 "REQ_PM_SUSPEND",
1047 "REQ_PM_RESUME",
1048 "REQ_PM_SHUTDOWN",
1049};
1050
1051void blk_dump_rq_flags(struct request *rq, char *msg)
1052{
1053 int bit;
1054
1055 printk("%s: dev %s: flags = ", msg,
1056 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1057 bit = 0;
1058 do {
1059 if (rq->flags & (1 << bit))
1060 printk("%s ", rq_flags[bit]);
1061 bit++;
1062 } while (bit < __REQ_NR_BITS);
1063
1064 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1065 rq->nr_sectors,
1066 rq->current_nr_sectors);
1067 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1068
1069 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1070 printk("cdb: ");
1071 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1072 printk("%02x ", rq->cmd[bit]);
1073 printk("\n");
1074 }
1075}
1076
1077EXPORT_SYMBOL(blk_dump_rq_flags);
1078
1079void blk_recount_segments(request_queue_t *q, struct bio *bio)
1080{
1081 struct bio_vec *bv, *bvprv = NULL;
1082 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1083 int high, highprv = 1;
1084
1085 if (unlikely(!bio->bi_io_vec))
1086 return;
1087
1088 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1089 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1090 bio_for_each_segment(bv, bio, i) {
1091 /*
1092 * the trick here is making sure that a high page is never
1093 * considered part of another segment, since that might
1094 * change with the bounce page.
1095 */
1096 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1097 if (high || highprv)
1098 goto new_hw_segment;
1099 if (cluster) {
1100 if (seg_size + bv->bv_len > q->max_segment_size)
1101 goto new_segment;
1102 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1103 goto new_segment;
1104 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1105 goto new_segment;
1106 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1107 goto new_hw_segment;
1108
1109 seg_size += bv->bv_len;
1110 hw_seg_size += bv->bv_len;
1111 bvprv = bv;
1112 continue;
1113 }
1114new_segment:
1115 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1116 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1117 hw_seg_size += bv->bv_len;
1118 } else {
1119new_hw_segment:
1120 if (hw_seg_size > bio->bi_hw_front_size)
1121 bio->bi_hw_front_size = hw_seg_size;
1122 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1123 nr_hw_segs++;
1124 }
1125
1126 nr_phys_segs++;
1127 bvprv = bv;
1128 seg_size = bv->bv_len;
1129 highprv = high;
1130 }
1131 if (hw_seg_size > bio->bi_hw_back_size)
1132 bio->bi_hw_back_size = hw_seg_size;
1133 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1134 bio->bi_hw_front_size = hw_seg_size;
1135 bio->bi_phys_segments = nr_phys_segs;
1136 bio->bi_hw_segments = nr_hw_segs;
1137 bio->bi_flags |= (1 << BIO_SEG_VALID);
1138}
1139
1140
93d17d3d 1141static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1142 struct bio *nxt)
1143{
1144 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1145 return 0;
1146
1147 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1148 return 0;
1149 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1150 return 0;
1151
1152 /*
1153 * bio and nxt are contigous in memory, check if the queue allows
1154 * these two to be merged into one
1155 */
1156 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1157 return 1;
1158
1159 return 0;
1160}
1161
93d17d3d 1162static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1163 struct bio *nxt)
1164{
1165 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1166 blk_recount_segments(q, bio);
1167 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1168 blk_recount_segments(q, nxt);
1169 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1170 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1171 return 0;
1172 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1173 return 0;
1174
1175 return 1;
1176}
1177
1da177e4
LT
1178/*
1179 * map a request to scatterlist, return number of sg entries setup. Caller
1180 * must make sure sg can hold rq->nr_phys_segments entries
1181 */
1182int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1183{
1184 struct bio_vec *bvec, *bvprv;
1185 struct bio *bio;
1186 int nsegs, i, cluster;
1187
1188 nsegs = 0;
1189 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1190
1191 /*
1192 * for each bio in rq
1193 */
1194 bvprv = NULL;
1195 rq_for_each_bio(bio, rq) {
1196 /*
1197 * for each segment in bio
1198 */
1199 bio_for_each_segment(bvec, bio, i) {
1200 int nbytes = bvec->bv_len;
1201
1202 if (bvprv && cluster) {
1203 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1204 goto new_segment;
1205
1206 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1207 goto new_segment;
1208 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1209 goto new_segment;
1210
1211 sg[nsegs - 1].length += nbytes;
1212 } else {
1213new_segment:
1214 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1215 sg[nsegs].page = bvec->bv_page;
1216 sg[nsegs].length = nbytes;
1217 sg[nsegs].offset = bvec->bv_offset;
1218
1219 nsegs++;
1220 }
1221 bvprv = bvec;
1222 } /* segments in bio */
1223 } /* bios in rq */
1224
1225 return nsegs;
1226}
1227
1228EXPORT_SYMBOL(blk_rq_map_sg);
1229
1230/*
1231 * the standard queue merge functions, can be overridden with device
1232 * specific ones if so desired
1233 */
1234
1235static inline int ll_new_mergeable(request_queue_t *q,
1236 struct request *req,
1237 struct bio *bio)
1238{
1239 int nr_phys_segs = bio_phys_segments(q, bio);
1240
1241 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1242 req->flags |= REQ_NOMERGE;
1243 if (req == q->last_merge)
1244 q->last_merge = NULL;
1245 return 0;
1246 }
1247
1248 /*
1249 * A hw segment is just getting larger, bump just the phys
1250 * counter.
1251 */
1252 req->nr_phys_segments += nr_phys_segs;
1253 return 1;
1254}
1255
1256static inline int ll_new_hw_segment(request_queue_t *q,
1257 struct request *req,
1258 struct bio *bio)
1259{
1260 int nr_hw_segs = bio_hw_segments(q, bio);
1261 int nr_phys_segs = bio_phys_segments(q, bio);
1262
1263 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1264 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1265 req->flags |= REQ_NOMERGE;
1266 if (req == q->last_merge)
1267 q->last_merge = NULL;
1268 return 0;
1269 }
1270
1271 /*
1272 * This will form the start of a new hw segment. Bump both
1273 * counters.
1274 */
1275 req->nr_hw_segments += nr_hw_segs;
1276 req->nr_phys_segments += nr_phys_segs;
1277 return 1;
1278}
1279
1280static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1281 struct bio *bio)
1282{
1283 int len;
1284
1285 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1286 req->flags |= REQ_NOMERGE;
1287 if (req == q->last_merge)
1288 q->last_merge = NULL;
1289 return 0;
1290 }
1291 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1292 blk_recount_segments(q, req->biotail);
1293 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1294 blk_recount_segments(q, bio);
1295 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1296 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1297 !BIOVEC_VIRT_OVERSIZE(len)) {
1298 int mergeable = ll_new_mergeable(q, req, bio);
1299
1300 if (mergeable) {
1301 if (req->nr_hw_segments == 1)
1302 req->bio->bi_hw_front_size = len;
1303 if (bio->bi_hw_segments == 1)
1304 bio->bi_hw_back_size = len;
1305 }
1306 return mergeable;
1307 }
1308
1309 return ll_new_hw_segment(q, req, bio);
1310}
1311
1312static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1313 struct bio *bio)
1314{
1315 int len;
1316
1317 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1318 req->flags |= REQ_NOMERGE;
1319 if (req == q->last_merge)
1320 q->last_merge = NULL;
1321 return 0;
1322 }
1323 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1324 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1325 blk_recount_segments(q, bio);
1326 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1327 blk_recount_segments(q, req->bio);
1328 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1329 !BIOVEC_VIRT_OVERSIZE(len)) {
1330 int mergeable = ll_new_mergeable(q, req, bio);
1331
1332 if (mergeable) {
1333 if (bio->bi_hw_segments == 1)
1334 bio->bi_hw_front_size = len;
1335 if (req->nr_hw_segments == 1)
1336 req->biotail->bi_hw_back_size = len;
1337 }
1338 return mergeable;
1339 }
1340
1341 return ll_new_hw_segment(q, req, bio);
1342}
1343
1344static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1345 struct request *next)
1346{
1347 int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
1348 int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1349
1350 /*
1351 * First check if the either of the requests are re-queued
1352 * requests. Can't merge them if they are.
1353 */
1354 if (req->special || next->special)
1355 return 0;
1356
1357 /*
1358 * Will it become to large?
1359 */
1360 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1361 return 0;
1362
1363 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1364 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1365 total_phys_segments--;
1366
1367 if (total_phys_segments > q->max_phys_segments)
1368 return 0;
1369
1370 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1371 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1372 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1373 /*
1374 * propagate the combined length to the end of the requests
1375 */
1376 if (req->nr_hw_segments == 1)
1377 req->bio->bi_hw_front_size = len;
1378 if (next->nr_hw_segments == 1)
1379 next->biotail->bi_hw_back_size = len;
1380 total_hw_segments--;
1381 }
1382
1383 if (total_hw_segments > q->max_hw_segments)
1384 return 0;
1385
1386 /* Merge is OK... */
1387 req->nr_phys_segments = total_phys_segments;
1388 req->nr_hw_segments = total_hw_segments;
1389 return 1;
1390}
1391
1392/*
1393 * "plug" the device if there are no outstanding requests: this will
1394 * force the transfer to start only after we have put all the requests
1395 * on the list.
1396 *
1397 * This is called with interrupts off and no requests on the queue and
1398 * with the queue lock held.
1399 */
1400void blk_plug_device(request_queue_t *q)
1401{
1402 WARN_ON(!irqs_disabled());
1403
1404 /*
1405 * don't plug a stopped queue, it must be paired with blk_start_queue()
1406 * which will restart the queueing
1407 */
1408 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1409 return;
1410
1411 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1412 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1413}
1414
1415EXPORT_SYMBOL(blk_plug_device);
1416
1417/*
1418 * remove the queue from the plugged list, if present. called with
1419 * queue lock held and interrupts disabled.
1420 */
1421int blk_remove_plug(request_queue_t *q)
1422{
1423 WARN_ON(!irqs_disabled());
1424
1425 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1426 return 0;
1427
1428 del_timer(&q->unplug_timer);
1429 return 1;
1430}
1431
1432EXPORT_SYMBOL(blk_remove_plug);
1433
1434/*
1435 * remove the plug and let it rip..
1436 */
1437void __generic_unplug_device(request_queue_t *q)
1438{
fde6ad22 1439 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
1da177e4
LT
1440 return;
1441
1442 if (!blk_remove_plug(q))
1443 return;
1444
1445 /*
1446 * was plugged, fire request_fn if queue has stuff to do
1447 */
1448 if (elv_next_request(q))
1449 q->request_fn(q);
1450}
1451EXPORT_SYMBOL(__generic_unplug_device);
1452
1453/**
1454 * generic_unplug_device - fire a request queue
1455 * @q: The &request_queue_t in question
1456 *
1457 * Description:
1458 * Linux uses plugging to build bigger requests queues before letting
1459 * the device have at them. If a queue is plugged, the I/O scheduler
1460 * is still adding and merging requests on the queue. Once the queue
1461 * gets unplugged, the request_fn defined for the queue is invoked and
1462 * transfers started.
1463 **/
1464void generic_unplug_device(request_queue_t *q)
1465{
1466 spin_lock_irq(q->queue_lock);
1467 __generic_unplug_device(q);
1468 spin_unlock_irq(q->queue_lock);
1469}
1470EXPORT_SYMBOL(generic_unplug_device);
1471
1472static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1473 struct page *page)
1474{
1475 request_queue_t *q = bdi->unplug_io_data;
1476
1477 /*
1478 * devices don't necessarily have an ->unplug_fn defined
1479 */
1480 if (q->unplug_fn)
1481 q->unplug_fn(q);
1482}
1483
1484static void blk_unplug_work(void *data)
1485{
1486 request_queue_t *q = data;
1487
1488 q->unplug_fn(q);
1489}
1490
1491static void blk_unplug_timeout(unsigned long data)
1492{
1493 request_queue_t *q = (request_queue_t *)data;
1494
1495 kblockd_schedule_work(&q->unplug_work);
1496}
1497
1498/**
1499 * blk_start_queue - restart a previously stopped queue
1500 * @q: The &request_queue_t in question
1501 *
1502 * Description:
1503 * blk_start_queue() will clear the stop flag on the queue, and call
1504 * the request_fn for the queue if it was in a stopped state when
1505 * entered. Also see blk_stop_queue(). Queue lock must be held.
1506 **/
1507void blk_start_queue(request_queue_t *q)
1508{
1509 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1510
1511 /*
1512 * one level of recursion is ok and is much faster than kicking
1513 * the unplug handling
1514 */
1515 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1516 q->request_fn(q);
1517 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1518 } else {
1519 blk_plug_device(q);
1520 kblockd_schedule_work(&q->unplug_work);
1521 }
1522}
1523
1524EXPORT_SYMBOL(blk_start_queue);
1525
1526/**
1527 * blk_stop_queue - stop a queue
1528 * @q: The &request_queue_t in question
1529 *
1530 * Description:
1531 * The Linux block layer assumes that a block driver will consume all
1532 * entries on the request queue when the request_fn strategy is called.
1533 * Often this will not happen, because of hardware limitations (queue
1534 * depth settings). If a device driver gets a 'queue full' response,
1535 * or if it simply chooses not to queue more I/O at one point, it can
1536 * call this function to prevent the request_fn from being called until
1537 * the driver has signalled it's ready to go again. This happens by calling
1538 * blk_start_queue() to restart queue operations. Queue lock must be held.
1539 **/
1540void blk_stop_queue(request_queue_t *q)
1541{
1542 blk_remove_plug(q);
1543 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1544}
1545EXPORT_SYMBOL(blk_stop_queue);
1546
1547/**
1548 * blk_sync_queue - cancel any pending callbacks on a queue
1549 * @q: the queue
1550 *
1551 * Description:
1552 * The block layer may perform asynchronous callback activity
1553 * on a queue, such as calling the unplug function after a timeout.
1554 * A block device may call blk_sync_queue to ensure that any
1555 * such activity is cancelled, thus allowing it to release resources
1556 * the the callbacks might use. The caller must already have made sure
1557 * that its ->make_request_fn will not re-add plugging prior to calling
1558 * this function.
1559 *
1560 */
1561void blk_sync_queue(struct request_queue *q)
1562{
1563 del_timer_sync(&q->unplug_timer);
1564 kblockd_flush();
1565}
1566EXPORT_SYMBOL(blk_sync_queue);
1567
1568/**
1569 * blk_run_queue - run a single device queue
1570 * @q: The queue to run
1571 */
1572void blk_run_queue(struct request_queue *q)
1573{
1574 unsigned long flags;
1575
1576 spin_lock_irqsave(q->queue_lock, flags);
1577 blk_remove_plug(q);
a2997382
KC
1578 if (!elv_queue_empty(q))
1579 q->request_fn(q);
1da177e4
LT
1580 spin_unlock_irqrestore(q->queue_lock, flags);
1581}
1582EXPORT_SYMBOL(blk_run_queue);
1583
1584/**
1585 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1586 * @q: the request queue to be released
1587 *
1588 * Description:
1589 * blk_cleanup_queue is the pair to blk_init_queue() or
1590 * blk_queue_make_request(). It should be called when a request queue is
1591 * being released; typically when a block device is being de-registered.
1592 * Currently, its primary task it to free all the &struct request
1593 * structures that were allocated to the queue and the queue itself.
1594 *
1595 * Caveat:
1596 * Hopefully the low level driver will have finished any
1597 * outstanding requests first...
1598 **/
1599void blk_cleanup_queue(request_queue_t * q)
1600{
1601 struct request_list *rl = &q->rq;
1602
1603 if (!atomic_dec_and_test(&q->refcnt))
1604 return;
1605
1606 if (q->elevator)
1607 elevator_exit(q->elevator);
1608
1609 blk_sync_queue(q);
1610
1611 if (rl->rq_pool)
1612 mempool_destroy(rl->rq_pool);
1613
1614 if (q->queue_tags)
1615 __blk_queue_free_tags(q);
1616
1617 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1618
1619 kmem_cache_free(requestq_cachep, q);
1620}
1621
1622EXPORT_SYMBOL(blk_cleanup_queue);
1623
1624static int blk_init_free_list(request_queue_t *q)
1625{
1626 struct request_list *rl = &q->rq;
1627
1628 rl->count[READ] = rl->count[WRITE] = 0;
1629 rl->starved[READ] = rl->starved[WRITE] = 0;
1630 init_waitqueue_head(&rl->wait[READ]);
1631 init_waitqueue_head(&rl->wait[WRITE]);
1632 init_waitqueue_head(&rl->drain);
1633
1946089a
CL
1634 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1635 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1636
1637 if (!rl->rq_pool)
1638 return -ENOMEM;
1639
1640 return 0;
1641}
1642
1643static int __make_request(request_queue_t *, struct bio *);
1644
1645request_queue_t *blk_alloc_queue(int gfp_mask)
1646{
1946089a
CL
1647 return blk_alloc_queue_node(gfp_mask, -1);
1648}
1649EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1650
1946089a
CL
1651request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
1652{
1653 request_queue_t *q;
1654
1655 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1da177e4
LT
1656 if (!q)
1657 return NULL;
1658
1659 memset(q, 0, sizeof(*q));
1660 init_timer(&q->unplug_timer);
1661 atomic_set(&q->refcnt, 1);
1662
1663 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1664 q->backing_dev_info.unplug_io_data = q;
1665
1666 return q;
1667}
1946089a 1668EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1669
1670/**
1671 * blk_init_queue - prepare a request queue for use with a block device
1672 * @rfn: The function to be called to process requests that have been
1673 * placed on the queue.
1674 * @lock: Request queue spin lock
1675 *
1676 * Description:
1677 * If a block device wishes to use the standard request handling procedures,
1678 * which sorts requests and coalesces adjacent requests, then it must
1679 * call blk_init_queue(). The function @rfn will be called when there
1680 * are requests on the queue that need to be processed. If the device
1681 * supports plugging, then @rfn may not be called immediately when requests
1682 * are available on the queue, but may be called at some time later instead.
1683 * Plugged queues are generally unplugged when a buffer belonging to one
1684 * of the requests on the queue is needed, or due to memory pressure.
1685 *
1686 * @rfn is not required, or even expected, to remove all requests off the
1687 * queue, but only as many as it can handle at a time. If it does leave
1688 * requests on the queue, it is responsible for arranging that the requests
1689 * get dealt with eventually.
1690 *
1691 * The queue spin lock must be held while manipulating the requests on the
1692 * request queue.
1693 *
1694 * Function returns a pointer to the initialized request queue, or NULL if
1695 * it didn't succeed.
1696 *
1697 * Note:
1698 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1699 * when the block device is deactivated (such as at module unload).
1700 **/
1946089a 1701
1da177e4
LT
1702request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1703{
1946089a
CL
1704 return blk_init_queue_node(rfn, lock, -1);
1705}
1706EXPORT_SYMBOL(blk_init_queue);
1707
1708request_queue_t *
1709blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1710{
1711 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1712
1713 if (!q)
1714 return NULL;
1715
1946089a 1716 q->node = node_id;
1da177e4
LT
1717 if (blk_init_free_list(q))
1718 goto out_init;
1719
152587de
JA
1720 /*
1721 * if caller didn't supply a lock, they get per-queue locking with
1722 * our embedded lock
1723 */
1724 if (!lock) {
1725 spin_lock_init(&q->__queue_lock);
1726 lock = &q->__queue_lock;
1727 }
1728
1da177e4
LT
1729 q->request_fn = rfn;
1730 q->back_merge_fn = ll_back_merge_fn;
1731 q->front_merge_fn = ll_front_merge_fn;
1732 q->merge_requests_fn = ll_merge_requests_fn;
1733 q->prep_rq_fn = NULL;
1734 q->unplug_fn = generic_unplug_device;
1735 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1736 q->queue_lock = lock;
1737
1738 blk_queue_segment_boundary(q, 0xffffffff);
1739
1740 blk_queue_make_request(q, __make_request);
1741 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1742
1743 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1744 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1745
1746 /*
1747 * all done
1748 */
1749 if (!elevator_init(q, NULL)) {
1750 blk_queue_congestion_threshold(q);
1751 return q;
1752 }
1753
1754 blk_cleanup_queue(q);
1755out_init:
1756 kmem_cache_free(requestq_cachep, q);
1757 return NULL;
1758}
1946089a 1759EXPORT_SYMBOL(blk_init_queue_node);
1da177e4
LT
1760
1761int blk_get_queue(request_queue_t *q)
1762{
fde6ad22 1763 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1da177e4
LT
1764 atomic_inc(&q->refcnt);
1765 return 0;
1766 }
1767
1768 return 1;
1769}
1770
1771EXPORT_SYMBOL(blk_get_queue);
1772
1773static inline void blk_free_request(request_queue_t *q, struct request *rq)
1774{
1775 elv_put_request(q, rq);
1776 mempool_free(rq, q->rq.rq_pool);
1777}
1778
1779static inline struct request *blk_alloc_request(request_queue_t *q, int rw,
1780 int gfp_mask)
1781{
1782 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1783
1784 if (!rq)
1785 return NULL;
1786
1787 /*
1788 * first three bits are identical in rq->flags and bio->bi_rw,
1789 * see bio.h and blkdev.h
1790 */
1791 rq->flags = rw;
1792
1793 if (!elv_set_request(q, rq, gfp_mask))
1794 return rq;
1795
1796 mempool_free(rq, q->rq.rq_pool);
1797 return NULL;
1798}
1799
1800/*
1801 * ioc_batching returns true if the ioc is a valid batching request and
1802 * should be given priority access to a request.
1803 */
1804static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1805{
1806 if (!ioc)
1807 return 0;
1808
1809 /*
1810 * Make sure the process is able to allocate at least 1 request
1811 * even if the batch times out, otherwise we could theoretically
1812 * lose wakeups.
1813 */
1814 return ioc->nr_batch_requests == q->nr_batching ||
1815 (ioc->nr_batch_requests > 0
1816 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1817}
1818
1819/*
1820 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1821 * will cause the process to be a "batcher" on all queues in the system. This
1822 * is the behaviour we want though - once it gets a wakeup it should be given
1823 * a nice run.
1824 */
93d17d3d 1825static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1da177e4
LT
1826{
1827 if (!ioc || ioc_batching(q, ioc))
1828 return;
1829
1830 ioc->nr_batch_requests = q->nr_batching;
1831 ioc->last_waited = jiffies;
1832}
1833
1834static void __freed_request(request_queue_t *q, int rw)
1835{
1836 struct request_list *rl = &q->rq;
1837
1838 if (rl->count[rw] < queue_congestion_off_threshold(q))
1839 clear_queue_congested(q, rw);
1840
1841 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
1842 if (waitqueue_active(&rl->wait[rw]))
1843 wake_up(&rl->wait[rw]);
1844
1845 blk_clear_queue_full(q, rw);
1846 }
1847}
1848
1849/*
1850 * A request has just been released. Account for it, update the full and
1851 * congestion status, wake up any waiters. Called under q->queue_lock.
1852 */
1853static void freed_request(request_queue_t *q, int rw)
1854{
1855 struct request_list *rl = &q->rq;
1856
1857 rl->count[rw]--;
1858
1859 __freed_request(q, rw);
1860
1861 if (unlikely(rl->starved[rw ^ 1]))
1862 __freed_request(q, rw ^ 1);
1863
1864 if (!rl->count[READ] && !rl->count[WRITE]) {
1865 smp_mb();
1866 if (unlikely(waitqueue_active(&rl->drain)))
1867 wake_up(&rl->drain);
1868 }
1869}
1870
1871#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1872/*
1873 * Get a free request, queue_lock must not be held
1874 */
1875static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
1876{
1877 struct request *rq = NULL;
1878 struct request_list *rl = &q->rq;
1879 struct io_context *ioc = get_io_context(gfp_mask);
1880
1881 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1882 goto out;
1883
1884 spin_lock_irq(q->queue_lock);
1885 if (rl->count[rw]+1 >= q->nr_requests) {
1886 /*
1887 * The queue will fill after this allocation, so set it as
1888 * full, and mark this process as "batching". This process
1889 * will be allowed to complete a batch of requests, others
1890 * will be blocked.
1891 */
1892 if (!blk_queue_full(q, rw)) {
1893 ioc_set_batching(q, ioc);
1894 blk_set_queue_full(q, rw);
1895 }
1896 }
1897
1898 switch (elv_may_queue(q, rw)) {
1899 case ELV_MQUEUE_NO:
1900 goto rq_starved;
1901 case ELV_MQUEUE_MAY:
1902 break;
1903 case ELV_MQUEUE_MUST:
1904 goto get_rq;
1905 }
1906
1907 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1908 /*
1909 * The queue is full and the allocating process is not a
1910 * "batcher", and not exempted by the IO scheduler
1911 */
1912 spin_unlock_irq(q->queue_lock);
1913 goto out;
1914 }
1915
1916get_rq:
1917 rl->count[rw]++;
1918 rl->starved[rw] = 0;
1919 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1920 set_queue_congested(q, rw);
1921 spin_unlock_irq(q->queue_lock);
1922
1923 rq = blk_alloc_request(q, rw, gfp_mask);
1924 if (!rq) {
1925 /*
1926 * Allocation failed presumably due to memory. Undo anything
1927 * we might have messed up.
1928 *
1929 * Allocating task should really be put onto the front of the
1930 * wait queue, but this is pretty rare.
1931 */
1932 spin_lock_irq(q->queue_lock);
1933 freed_request(q, rw);
1934
1935 /*
1936 * in the very unlikely event that allocation failed and no
1937 * requests for this direction was pending, mark us starved
1938 * so that freeing of a request in the other direction will
1939 * notice us. another possible fix would be to split the
1940 * rq mempool into READ and WRITE
1941 */
1942rq_starved:
1943 if (unlikely(rl->count[rw] == 0))
1944 rl->starved[rw] = 1;
1945
1946 spin_unlock_irq(q->queue_lock);
1947 goto out;
1948 }
1949
1950 if (ioc_batching(q, ioc))
1951 ioc->nr_batch_requests--;
1952
1953 rq_init(q, rq);
1954 rq->rl = rl;
1955out:
1956 put_io_context(ioc);
1957 return rq;
1958}
1959
1960/*
1961 * No available requests for this queue, unplug the device and wait for some
1962 * requests to become available.
1963 */
1964static struct request *get_request_wait(request_queue_t *q, int rw)
1965{
1966 DEFINE_WAIT(wait);
1967 struct request *rq;
1968
1da177e4
LT
1969 do {
1970 struct request_list *rl = &q->rq;
1971
1972 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1973 TASK_UNINTERRUPTIBLE);
1974
1975 rq = get_request(q, rw, GFP_NOIO);
1976
1977 if (!rq) {
1978 struct io_context *ioc;
1979
bdd646a4 1980 generic_unplug_device(q);
1da177e4
LT
1981 io_schedule();
1982
1983 /*
1984 * After sleeping, we become a "batching" process and
1985 * will be able to allocate at least one request, and
1986 * up to a big batch of them for a small period time.
1987 * See ioc_batching, ioc_set_batching
1988 */
1989 ioc = get_io_context(GFP_NOIO);
1990 ioc_set_batching(q, ioc);
1991 put_io_context(ioc);
1992 }
1993 finish_wait(&rl->wait[rw], &wait);
1994 } while (!rq);
1995
1996 return rq;
1997}
1998
1999struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
2000{
2001 struct request *rq;
2002
2003 BUG_ON(rw != READ && rw != WRITE);
2004
2005 if (gfp_mask & __GFP_WAIT)
2006 rq = get_request_wait(q, rw);
2007 else
2008 rq = get_request(q, rw, gfp_mask);
2009
2010 return rq;
2011}
2012
2013EXPORT_SYMBOL(blk_get_request);
2014
2015/**
2016 * blk_requeue_request - put a request back on queue
2017 * @q: request queue where request should be inserted
2018 * @rq: request to be inserted
2019 *
2020 * Description:
2021 * Drivers often keep queueing requests until the hardware cannot accept
2022 * more, when that condition happens we need to put the request back
2023 * on the queue. Must be called with queue lock held.
2024 */
2025void blk_requeue_request(request_queue_t *q, struct request *rq)
2026{
2027 if (blk_rq_tagged(rq))
2028 blk_queue_end_tag(q, rq);
2029
2030 elv_requeue_request(q, rq);
2031}
2032
2033EXPORT_SYMBOL(blk_requeue_request);
2034
2035/**
2036 * blk_insert_request - insert a special request in to a request queue
2037 * @q: request queue where request should be inserted
2038 * @rq: request to be inserted
2039 * @at_head: insert request at head or tail of queue
2040 * @data: private data
1da177e4
LT
2041 *
2042 * Description:
2043 * Many block devices need to execute commands asynchronously, so they don't
2044 * block the whole kernel from preemption during request execution. This is
2045 * accomplished normally by inserting aritficial requests tagged as
2046 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2047 * scheduled for actual execution by the request queue.
2048 *
2049 * We have the option of inserting the head or the tail of the queue.
2050 * Typically we use the tail for new ioctls and so forth. We use the head
2051 * of the queue for things like a QUEUE_FULL message from a device, or a
2052 * host that is unable to accept a particular command.
2053 */
2054void blk_insert_request(request_queue_t *q, struct request *rq,
867d1191 2055 int at_head, void *data)
1da177e4 2056{
867d1191 2057 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2058 unsigned long flags;
2059
2060 /*
2061 * tell I/O scheduler that this isn't a regular read/write (ie it
2062 * must not attempt merges on this) and that it acts as a soft
2063 * barrier
2064 */
2065 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2066
2067 rq->special = data;
2068
2069 spin_lock_irqsave(q->queue_lock, flags);
2070
2071 /*
2072 * If command is tagged, release the tag
2073 */
867d1191
TH
2074 if (blk_rq_tagged(rq))
2075 blk_queue_end_tag(q, rq);
1da177e4 2076
867d1191
TH
2077 drive_stat_acct(rq, rq->nr_sectors, 1);
2078 __elv_add_request(q, rq, where, 0);
1da177e4 2079
1da177e4
LT
2080 if (blk_queue_plugged(q))
2081 __generic_unplug_device(q);
2082 else
2083 q->request_fn(q);
2084 spin_unlock_irqrestore(q->queue_lock, flags);
2085}
2086
2087EXPORT_SYMBOL(blk_insert_request);
2088
2089/**
2090 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2091 * @q: request queue where request should be inserted
2092 * @rw: READ or WRITE data
2093 * @ubuf: the user buffer
2094 * @len: length of user data
2095 *
2096 * Description:
2097 * Data will be mapped directly for zero copy io, if possible. Otherwise
2098 * a kernel bounce buffer is used.
2099 *
2100 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2101 * still in process context.
2102 *
2103 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2104 * before being submitted to the device, as pages mapped may be out of
2105 * reach. It's the callers responsibility to make sure this happens. The
2106 * original bio must be passed back in to blk_rq_unmap_user() for proper
2107 * unmapping.
2108 */
2109struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
2110 unsigned int len)
2111{
2112 unsigned long uaddr;
2113 struct request *rq;
2114 struct bio *bio;
2115
2116 if (len > (q->max_sectors << 9))
2117 return ERR_PTR(-EINVAL);
2118 if ((!len && ubuf) || (len && !ubuf))
2119 return ERR_PTR(-EINVAL);
2120
2121 rq = blk_get_request(q, rw, __GFP_WAIT);
2122 if (!rq)
2123 return ERR_PTR(-ENOMEM);
2124
2125 /*
2126 * if alignment requirement is satisfied, map in user pages for
2127 * direct dma. else, set up kernel bounce buffers
2128 */
2129 uaddr = (unsigned long) ubuf;
2130 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2131 bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
2132 else
2133 bio = bio_copy_user(q, uaddr, len, rw == READ);
2134
2135 if (!IS_ERR(bio)) {
2136 rq->bio = rq->biotail = bio;
2137 blk_rq_bio_prep(q, rq, bio);
2138
2139 rq->buffer = rq->data = NULL;
2140 rq->data_len = len;
2141 return rq;
2142 }
2143
2144 /*
2145 * bio is the err-ptr
2146 */
2147 blk_put_request(rq);
2148 return (struct request *) bio;
2149}
2150
2151EXPORT_SYMBOL(blk_rq_map_user);
2152
2153/**
2154 * blk_rq_unmap_user - unmap a request with user data
2155 * @rq: request to be unmapped
2156 * @bio: bio for the request
2157 * @ulen: length of user buffer
2158 *
2159 * Description:
2160 * Unmap a request previously mapped by blk_rq_map_user().
2161 */
2162int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
2163{
2164 int ret = 0;
2165
2166 if (bio) {
2167 if (bio_flagged(bio, BIO_USER_MAPPED))
2168 bio_unmap_user(bio);
2169 else
2170 ret = bio_uncopy_user(bio);
2171 }
2172
2173 blk_put_request(rq);
2174 return ret;
2175}
2176
2177EXPORT_SYMBOL(blk_rq_unmap_user);
2178
2179/**
2180 * blk_execute_rq - insert a request into queue for execution
2181 * @q: queue to insert the request in
2182 * @bd_disk: matching gendisk
2183 * @rq: request to insert
2184 *
2185 * Description:
2186 * Insert a fully prepared request at the back of the io scheduler queue
2187 * for execution.
2188 */
2189int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2190 struct request *rq)
2191{
2192 DECLARE_COMPLETION(wait);
2193 char sense[SCSI_SENSE_BUFFERSIZE];
2194 int err = 0;
2195
2196 rq->rq_disk = bd_disk;
2197
2198 /*
2199 * we need an extra reference to the request, so we can look at
2200 * it after io completion
2201 */
2202 rq->ref_count++;
2203
2204 if (!rq->sense) {
2205 memset(sense, 0, sizeof(sense));
2206 rq->sense = sense;
2207 rq->sense_len = 0;
2208 }
2209
2210 rq->flags |= REQ_NOMERGE;
2211 rq->waiting = &wait;
2212 rq->end_io = blk_end_sync_rq;
2213 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2214 generic_unplug_device(q);
2215 wait_for_completion(&wait);
2216 rq->waiting = NULL;
2217
2218 if (rq->errors)
2219 err = -EIO;
2220
2221 return err;
2222}
2223
2224EXPORT_SYMBOL(blk_execute_rq);
2225
2226/**
2227 * blkdev_issue_flush - queue a flush
2228 * @bdev: blockdev to issue flush for
2229 * @error_sector: error sector
2230 *
2231 * Description:
2232 * Issue a flush for the block device in question. Caller can supply
2233 * room for storing the error offset in case of a flush error, if they
2234 * wish to. Caller must run wait_for_completion() on its own.
2235 */
2236int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2237{
2238 request_queue_t *q;
2239
2240 if (bdev->bd_disk == NULL)
2241 return -ENXIO;
2242
2243 q = bdev_get_queue(bdev);
2244 if (!q)
2245 return -ENXIO;
2246 if (!q->issue_flush_fn)
2247 return -EOPNOTSUPP;
2248
2249 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2250}
2251
2252EXPORT_SYMBOL(blkdev_issue_flush);
2253
93d17d3d 2254static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2255{
2256 int rw = rq_data_dir(rq);
2257
2258 if (!blk_fs_request(rq) || !rq->rq_disk)
2259 return;
2260
2261 if (rw == READ) {
2262 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2263 if (!new_io)
2264 __disk_stat_inc(rq->rq_disk, read_merges);
2265 } else if (rw == WRITE) {
2266 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2267 if (!new_io)
2268 __disk_stat_inc(rq->rq_disk, write_merges);
2269 }
2270 if (new_io) {
2271 disk_round_stats(rq->rq_disk);
2272 rq->rq_disk->in_flight++;
2273 }
2274}
2275
2276/*
2277 * add-request adds a request to the linked list.
2278 * queue lock is held and interrupts disabled, as we muck with the
2279 * request queue list.
2280 */
2281static inline void add_request(request_queue_t * q, struct request * req)
2282{
2283 drive_stat_acct(req, req->nr_sectors, 1);
2284
2285 if (q->activity_fn)
2286 q->activity_fn(q->activity_data, rq_data_dir(req));
2287
2288 /*
2289 * elevator indicated where it wants this request to be
2290 * inserted at elevator_merge time
2291 */
2292 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2293}
2294
2295/*
2296 * disk_round_stats() - Round off the performance stats on a struct
2297 * disk_stats.
2298 *
2299 * The average IO queue length and utilisation statistics are maintained
2300 * by observing the current state of the queue length and the amount of
2301 * time it has been in this state for.
2302 *
2303 * Normally, that accounting is done on IO completion, but that can result
2304 * in more than a second's worth of IO being accounted for within any one
2305 * second, leading to >100% utilisation. To deal with that, we call this
2306 * function to do a round-off before returning the results when reading
2307 * /proc/diskstats. This accounts immediately for all queue usage up to
2308 * the current jiffies and restarts the counters again.
2309 */
2310void disk_round_stats(struct gendisk *disk)
2311{
2312 unsigned long now = jiffies;
2313
2314 __disk_stat_add(disk, time_in_queue,
2315 disk->in_flight * (now - disk->stamp));
2316 disk->stamp = now;
2317
2318 if (disk->in_flight)
2319 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2320 disk->stamp_idle = now;
2321}
2322
2323/*
2324 * queue lock must be held
2325 */
2326static void __blk_put_request(request_queue_t *q, struct request *req)
2327{
2328 struct request_list *rl = req->rl;
2329
2330 if (unlikely(!q))
2331 return;
2332 if (unlikely(--req->ref_count))
2333 return;
2334
2335 req->rq_status = RQ_INACTIVE;
2336 req->q = NULL;
2337 req->rl = NULL;
2338
2339 /*
2340 * Request may not have originated from ll_rw_blk. if not,
2341 * it didn't come out of our reserved rq pools
2342 */
2343 if (rl) {
2344 int rw = rq_data_dir(req);
2345
2346 elv_completed_request(q, req);
2347
2348 BUG_ON(!list_empty(&req->queuelist));
2349
2350 blk_free_request(q, req);
2351 freed_request(q, rw);
2352 }
2353}
2354
2355void blk_put_request(struct request *req)
2356{
2357 /*
2358 * if req->rl isn't set, this request didnt originate from the
2359 * block layer, so it's safe to just disregard it
2360 */
2361 if (req->rl) {
2362 unsigned long flags;
2363 request_queue_t *q = req->q;
2364
2365 spin_lock_irqsave(q->queue_lock, flags);
2366 __blk_put_request(q, req);
2367 spin_unlock_irqrestore(q->queue_lock, flags);
2368 }
2369}
2370
2371EXPORT_SYMBOL(blk_put_request);
2372
2373/**
2374 * blk_end_sync_rq - executes a completion event on a request
2375 * @rq: request to complete
2376 */
2377void blk_end_sync_rq(struct request *rq)
2378{
2379 struct completion *waiting = rq->waiting;
2380
2381 rq->waiting = NULL;
2382 __blk_put_request(rq->q, rq);
2383
2384 /*
2385 * complete last, if this is a stack request the process (and thus
2386 * the rq pointer) could be invalid right after this complete()
2387 */
2388 complete(waiting);
2389}
2390EXPORT_SYMBOL(blk_end_sync_rq);
2391
2392/**
2393 * blk_congestion_wait - wait for a queue to become uncongested
2394 * @rw: READ or WRITE
2395 * @timeout: timeout in jiffies
2396 *
2397 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2398 * If no queues are congested then just wait for the next request to be
2399 * returned.
2400 */
2401long blk_congestion_wait(int rw, long timeout)
2402{
2403 long ret;
2404 DEFINE_WAIT(wait);
2405 wait_queue_head_t *wqh = &congestion_wqh[rw];
2406
2407 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2408 ret = io_schedule_timeout(timeout);
2409 finish_wait(wqh, &wait);
2410 return ret;
2411}
2412
2413EXPORT_SYMBOL(blk_congestion_wait);
2414
2415/*
2416 * Has to be called with the request spinlock acquired
2417 */
2418static int attempt_merge(request_queue_t *q, struct request *req,
2419 struct request *next)
2420{
2421 if (!rq_mergeable(req) || !rq_mergeable(next))
2422 return 0;
2423
2424 /*
2425 * not contigious
2426 */
2427 if (req->sector + req->nr_sectors != next->sector)
2428 return 0;
2429
2430 if (rq_data_dir(req) != rq_data_dir(next)
2431 || req->rq_disk != next->rq_disk
2432 || next->waiting || next->special)
2433 return 0;
2434
2435 /*
2436 * If we are allowed to merge, then append bio list
2437 * from next to rq and release next. merge_requests_fn
2438 * will have updated segment counts, update sector
2439 * counts here.
2440 */
2441 if (!q->merge_requests_fn(q, req, next))
2442 return 0;
2443
2444 /*
2445 * At this point we have either done a back merge
2446 * or front merge. We need the smaller start_time of
2447 * the merged requests to be the current request
2448 * for accounting purposes.
2449 */
2450 if (time_after(req->start_time, next->start_time))
2451 req->start_time = next->start_time;
2452
2453 req->biotail->bi_next = next->bio;
2454 req->biotail = next->biotail;
2455
2456 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2457
2458 elv_merge_requests(q, req, next);
2459
2460 if (req->rq_disk) {
2461 disk_round_stats(req->rq_disk);
2462 req->rq_disk->in_flight--;
2463 }
2464
2465 __blk_put_request(q, next);
2466 return 1;
2467}
2468
2469static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2470{
2471 struct request *next = elv_latter_request(q, rq);
2472
2473 if (next)
2474 return attempt_merge(q, rq, next);
2475
2476 return 0;
2477}
2478
2479static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2480{
2481 struct request *prev = elv_former_request(q, rq);
2482
2483 if (prev)
2484 return attempt_merge(q, prev, rq);
2485
2486 return 0;
2487}
2488
2489/**
2490 * blk_attempt_remerge - attempt to remerge active head with next request
2491 * @q: The &request_queue_t belonging to the device
2492 * @rq: The head request (usually)
2493 *
2494 * Description:
2495 * For head-active devices, the queue can easily be unplugged so quickly
2496 * that proper merging is not done on the front request. This may hurt
2497 * performance greatly for some devices. The block layer cannot safely
2498 * do merging on that first request for these queues, but the driver can
2499 * call this function and make it happen any way. Only the driver knows
2500 * when it is safe to do so.
2501 **/
2502void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2503{
2504 unsigned long flags;
2505
2506 spin_lock_irqsave(q->queue_lock, flags);
2507 attempt_back_merge(q, rq);
2508 spin_unlock_irqrestore(q->queue_lock, flags);
2509}
2510
2511EXPORT_SYMBOL(blk_attempt_remerge);
2512
1da177e4
LT
2513static int __make_request(request_queue_t *q, struct bio *bio)
2514{
2515 struct request *req, *freereq = NULL;
4a534f93 2516 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
1da177e4
LT
2517 sector_t sector;
2518
2519 sector = bio->bi_sector;
2520 nr_sectors = bio_sectors(bio);
2521 cur_nr_sectors = bio_cur_sectors(bio);
2522
2523 rw = bio_data_dir(bio);
4a534f93 2524 sync = bio_sync(bio);
1da177e4
LT
2525
2526 /*
2527 * low level driver can indicate that it wants pages above a
2528 * certain limit bounced to low memory (ie for highmem, or even
2529 * ISA dma in theory)
2530 */
2531 blk_queue_bounce(q, &bio);
2532
2533 spin_lock_prefetch(q->queue_lock);
2534
2535 barrier = bio_barrier(bio);
fde6ad22 2536 if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2537 err = -EOPNOTSUPP;
2538 goto end_io;
2539 }
2540
2541again:
2542 spin_lock_irq(q->queue_lock);
2543
2544 if (elv_queue_empty(q)) {
2545 blk_plug_device(q);
2546 goto get_rq;
2547 }
2548 if (barrier)
2549 goto get_rq;
2550
2551 el_ret = elv_merge(q, &req, bio);
2552 switch (el_ret) {
2553 case ELEVATOR_BACK_MERGE:
2554 BUG_ON(!rq_mergeable(req));
2555
2556 if (!q->back_merge_fn(q, req, bio))
2557 break;
2558
2559 req->biotail->bi_next = bio;
2560 req->biotail = bio;
2561 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2562 drive_stat_acct(req, nr_sectors, 0);
2563 if (!attempt_back_merge(q, req))
2564 elv_merged_request(q, req);
2565 goto out;
2566
2567 case ELEVATOR_FRONT_MERGE:
2568 BUG_ON(!rq_mergeable(req));
2569
2570 if (!q->front_merge_fn(q, req, bio))
2571 break;
2572
2573 bio->bi_next = req->bio;
2574 req->bio = bio;
2575
2576 /*
2577 * may not be valid. if the low level driver said
2578 * it didn't need a bounce buffer then it better
2579 * not touch req->buffer either...
2580 */
2581 req->buffer = bio_data(bio);
2582 req->current_nr_sectors = cur_nr_sectors;
2583 req->hard_cur_sectors = cur_nr_sectors;
2584 req->sector = req->hard_sector = sector;
2585 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2586 drive_stat_acct(req, nr_sectors, 0);
2587 if (!attempt_front_merge(q, req))
2588 elv_merged_request(q, req);
2589 goto out;
2590
2591 /*
2592 * elevator says don't/can't merge. get new request
2593 */
2594 case ELEVATOR_NO_MERGE:
2595 break;
2596
2597 default:
2598 printk("elevator returned crap (%d)\n", el_ret);
2599 BUG();
2600 }
2601
2602 /*
2603 * Grab a free request from the freelist - if that is empty, check
2604 * if we are doing read ahead and abort instead of blocking for
2605 * a free slot.
2606 */
2607get_rq:
2608 if (freereq) {
2609 req = freereq;
2610 freereq = NULL;
2611 } else {
2612 spin_unlock_irq(q->queue_lock);
2613 if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
2614 /*
2615 * READA bit set
2616 */
2617 err = -EWOULDBLOCK;
2618 if (bio_rw_ahead(bio))
2619 goto end_io;
2620
2621 freereq = get_request_wait(q, rw);
2622 }
2623 goto again;
2624 }
2625
2626 req->flags |= REQ_CMD;
2627
2628 /*
2629 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2630 */
2631 if (bio_rw_ahead(bio) || bio_failfast(bio))
2632 req->flags |= REQ_FAILFAST;
2633
2634 /*
2635 * REQ_BARRIER implies no merging, but lets make it explicit
2636 */
fde6ad22 2637 if (unlikely(barrier))
1da177e4
LT
2638 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2639
2640 req->errors = 0;
2641 req->hard_sector = req->sector = sector;
2642 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2643 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2644 req->nr_phys_segments = bio_phys_segments(q, bio);
2645 req->nr_hw_segments = bio_hw_segments(q, bio);
2646 req->buffer = bio_data(bio); /* see ->buffer comment above */
2647 req->waiting = NULL;
2648 req->bio = req->biotail = bio;
2649 req->rq_disk = bio->bi_bdev->bd_disk;
2650 req->start_time = jiffies;
2651
2652 add_request(q, req);
2653out:
2654 if (freereq)
2655 __blk_put_request(q, freereq);
4a534f93 2656 if (sync)
1da177e4
LT
2657 __generic_unplug_device(q);
2658
2659 spin_unlock_irq(q->queue_lock);
2660 return 0;
2661
2662end_io:
2663 bio_endio(bio, nr_sectors << 9, err);
2664 return 0;
2665}
2666
2667/*
2668 * If bio->bi_dev is a partition, remap the location
2669 */
2670static inline void blk_partition_remap(struct bio *bio)
2671{
2672 struct block_device *bdev = bio->bi_bdev;
2673
2674 if (bdev != bdev->bd_contains) {
2675 struct hd_struct *p = bdev->bd_part;
2676
2677 switch (bio->bi_rw) {
2678 case READ:
2679 p->read_sectors += bio_sectors(bio);
2680 p->reads++;
2681 break;
2682 case WRITE:
2683 p->write_sectors += bio_sectors(bio);
2684 p->writes++;
2685 break;
2686 }
2687 bio->bi_sector += p->start_sect;
2688 bio->bi_bdev = bdev->bd_contains;
2689 }
2690}
2691
2692void blk_finish_queue_drain(request_queue_t *q)
2693{
2694 struct request_list *rl = &q->rq;
2695 struct request *rq;
2696
2697 spin_lock_irq(q->queue_lock);
2698 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2699
2700 while (!list_empty(&q->drain_list)) {
2701 rq = list_entry_rq(q->drain_list.next);
2702
2703 list_del_init(&rq->queuelist);
2704 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2705 }
2706
2707 spin_unlock_irq(q->queue_lock);
2708
2709 wake_up(&rl->wait[0]);
2710 wake_up(&rl->wait[1]);
2711 wake_up(&rl->drain);
2712}
2713
2714static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2715{
2716 int wait = rl->count[READ] + rl->count[WRITE];
2717
2718 if (dispatch)
2719 wait += !list_empty(&q->queue_head);
2720
2721 return wait;
2722}
2723
2724/*
2725 * We rely on the fact that only requests allocated through blk_alloc_request()
2726 * have io scheduler private data structures associated with them. Any other
2727 * type of request (allocated on stack or through kmalloc()) should not go
2728 * to the io scheduler core, but be attached to the queue head instead.
2729 */
2730void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2731{
2732 struct request_list *rl = &q->rq;
2733 DEFINE_WAIT(wait);
2734
2735 spin_lock_irq(q->queue_lock);
2736 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2737
2738 while (wait_drain(q, rl, wait_dispatch)) {
2739 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2740
2741 if (wait_drain(q, rl, wait_dispatch)) {
2742 __generic_unplug_device(q);
2743 spin_unlock_irq(q->queue_lock);
2744 io_schedule();
2745 spin_lock_irq(q->queue_lock);
2746 }
2747
2748 finish_wait(&rl->drain, &wait);
2749 }
2750
2751 spin_unlock_irq(q->queue_lock);
2752}
2753
2754/*
2755 * block waiting for the io scheduler being started again.
2756 */
2757static inline void block_wait_queue_running(request_queue_t *q)
2758{
2759 DEFINE_WAIT(wait);
2760
fde6ad22 2761 while (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))) {
1da177e4
LT
2762 struct request_list *rl = &q->rq;
2763
2764 prepare_to_wait_exclusive(&rl->drain, &wait,
2765 TASK_UNINTERRUPTIBLE);
2766
2767 /*
2768 * re-check the condition. avoids using prepare_to_wait()
2769 * in the fast path (queue is running)
2770 */
2771 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2772 io_schedule();
2773
2774 finish_wait(&rl->drain, &wait);
2775 }
2776}
2777
2778static void handle_bad_sector(struct bio *bio)
2779{
2780 char b[BDEVNAME_SIZE];
2781
2782 printk(KERN_INFO "attempt to access beyond end of device\n");
2783 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2784 bdevname(bio->bi_bdev, b),
2785 bio->bi_rw,
2786 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2787 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2788
2789 set_bit(BIO_EOF, &bio->bi_flags);
2790}
2791
2792/**
2793 * generic_make_request: hand a buffer to its device driver for I/O
2794 * @bio: The bio describing the location in memory and on the device.
2795 *
2796 * generic_make_request() is used to make I/O requests of block
2797 * devices. It is passed a &struct bio, which describes the I/O that needs
2798 * to be done.
2799 *
2800 * generic_make_request() does not return any status. The
2801 * success/failure status of the request, along with notification of
2802 * completion, is delivered asynchronously through the bio->bi_end_io
2803 * function described (one day) else where.
2804 *
2805 * The caller of generic_make_request must make sure that bi_io_vec
2806 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2807 * set to describe the device address, and the
2808 * bi_end_io and optionally bi_private are set to describe how
2809 * completion notification should be signaled.
2810 *
2811 * generic_make_request and the drivers it calls may use bi_next if this
2812 * bio happens to be merged with someone else, and may change bi_dev and
2813 * bi_sector for remaps as it sees fit. So the values of these fields
2814 * should NOT be depended on after the call to generic_make_request.
2815 */
2816void generic_make_request(struct bio *bio)
2817{
2818 request_queue_t *q;
2819 sector_t maxsector;
2820 int ret, nr_sectors = bio_sectors(bio);
2821
2822 might_sleep();
2823 /* Test device or partition size, when known. */
2824 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2825 if (maxsector) {
2826 sector_t sector = bio->bi_sector;
2827
2828 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2829 /*
2830 * This may well happen - the kernel calls bread()
2831 * without checking the size of the device, e.g., when
2832 * mounting a device.
2833 */
2834 handle_bad_sector(bio);
2835 goto end_io;
2836 }
2837 }
2838
2839 /*
2840 * Resolve the mapping until finished. (drivers are
2841 * still free to implement/resolve their own stacking
2842 * by explicitly returning 0)
2843 *
2844 * NOTE: we don't repeat the blk_size check for each new device.
2845 * Stacking drivers are expected to know what they are doing.
2846 */
2847 do {
2848 char b[BDEVNAME_SIZE];
2849
2850 q = bdev_get_queue(bio->bi_bdev);
2851 if (!q) {
2852 printk(KERN_ERR
2853 "generic_make_request: Trying to access "
2854 "nonexistent block-device %s (%Lu)\n",
2855 bdevname(bio->bi_bdev, b),
2856 (long long) bio->bi_sector);
2857end_io:
2858 bio_endio(bio, bio->bi_size, -EIO);
2859 break;
2860 }
2861
2862 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2863 printk("bio too big device %s (%u > %u)\n",
2864 bdevname(bio->bi_bdev, b),
2865 bio_sectors(bio),
2866 q->max_hw_sectors);
2867 goto end_io;
2868 }
2869
fde6ad22 2870 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
2871 goto end_io;
2872
2873 block_wait_queue_running(q);
2874
2875 /*
2876 * If this device has partitions, remap block n
2877 * of partition p to block n+start(p) of the disk.
2878 */
2879 blk_partition_remap(bio);
2880
2881 ret = q->make_request_fn(q, bio);
2882 } while (ret);
2883}
2884
2885EXPORT_SYMBOL(generic_make_request);
2886
2887/**
2888 * submit_bio: submit a bio to the block device layer for I/O
2889 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2890 * @bio: The &struct bio which describes the I/O
2891 *
2892 * submit_bio() is very similar in purpose to generic_make_request(), and
2893 * uses that function to do most of the work. Both are fairly rough
2894 * interfaces, @bio must be presetup and ready for I/O.
2895 *
2896 */
2897void submit_bio(int rw, struct bio *bio)
2898{
2899 int count = bio_sectors(bio);
2900
2901 BIO_BUG_ON(!bio->bi_size);
2902 BIO_BUG_ON(!bio->bi_io_vec);
2903 bio->bi_rw = rw;
2904 if (rw & WRITE)
2905 mod_page_state(pgpgout, count);
2906 else
2907 mod_page_state(pgpgin, count);
2908
2909 if (unlikely(block_dump)) {
2910 char b[BDEVNAME_SIZE];
2911 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2912 current->comm, current->pid,
2913 (rw & WRITE) ? "WRITE" : "READ",
2914 (unsigned long long)bio->bi_sector,
2915 bdevname(bio->bi_bdev,b));
2916 }
2917
2918 generic_make_request(bio);
2919}
2920
2921EXPORT_SYMBOL(submit_bio);
2922
93d17d3d 2923static void blk_recalc_rq_segments(struct request *rq)
1da177e4
LT
2924{
2925 struct bio *bio, *prevbio = NULL;
2926 int nr_phys_segs, nr_hw_segs;
2927 unsigned int phys_size, hw_size;
2928 request_queue_t *q = rq->q;
2929
2930 if (!rq->bio)
2931 return;
2932
2933 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
2934 rq_for_each_bio(bio, rq) {
2935 /* Force bio hw/phys segs to be recalculated. */
2936 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2937
2938 nr_phys_segs += bio_phys_segments(q, bio);
2939 nr_hw_segs += bio_hw_segments(q, bio);
2940 if (prevbio) {
2941 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
2942 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
2943
2944 if (blk_phys_contig_segment(q, prevbio, bio) &&
2945 pseg <= q->max_segment_size) {
2946 nr_phys_segs--;
2947 phys_size += prevbio->bi_size + bio->bi_size;
2948 } else
2949 phys_size = 0;
2950
2951 if (blk_hw_contig_segment(q, prevbio, bio) &&
2952 hseg <= q->max_segment_size) {
2953 nr_hw_segs--;
2954 hw_size += prevbio->bi_size + bio->bi_size;
2955 } else
2956 hw_size = 0;
2957 }
2958 prevbio = bio;
2959 }
2960
2961 rq->nr_phys_segments = nr_phys_segs;
2962 rq->nr_hw_segments = nr_hw_segs;
2963}
2964
93d17d3d 2965static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
2966{
2967 if (blk_fs_request(rq)) {
2968 rq->hard_sector += nsect;
2969 rq->hard_nr_sectors -= nsect;
2970
2971 /*
2972 * Move the I/O submission pointers ahead if required.
2973 */
2974 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
2975 (rq->sector <= rq->hard_sector)) {
2976 rq->sector = rq->hard_sector;
2977 rq->nr_sectors = rq->hard_nr_sectors;
2978 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
2979 rq->current_nr_sectors = rq->hard_cur_sectors;
2980 rq->buffer = bio_data(rq->bio);
2981 }
2982
2983 /*
2984 * if total number of sectors is less than the first segment
2985 * size, something has gone terribly wrong
2986 */
2987 if (rq->nr_sectors < rq->current_nr_sectors) {
2988 printk("blk: request botched\n");
2989 rq->nr_sectors = rq->current_nr_sectors;
2990 }
2991 }
2992}
2993
2994static int __end_that_request_first(struct request *req, int uptodate,
2995 int nr_bytes)
2996{
2997 int total_bytes, bio_nbytes, error, next_idx = 0;
2998 struct bio *bio;
2999
3000 /*
3001 * extend uptodate bool to allow < 0 value to be direct io error
3002 */
3003 error = 0;
3004 if (end_io_error(uptodate))
3005 error = !uptodate ? -EIO : uptodate;
3006
3007 /*
3008 * for a REQ_BLOCK_PC request, we want to carry any eventual
3009 * sense key with us all the way through
3010 */
3011 if (!blk_pc_request(req))
3012 req->errors = 0;
3013
3014 if (!uptodate) {
3015 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3016 printk("end_request: I/O error, dev %s, sector %llu\n",
3017 req->rq_disk ? req->rq_disk->disk_name : "?",
3018 (unsigned long long)req->sector);
3019 }
3020
3021 total_bytes = bio_nbytes = 0;
3022 while ((bio = req->bio) != NULL) {
3023 int nbytes;
3024
3025 if (nr_bytes >= bio->bi_size) {
3026 req->bio = bio->bi_next;
3027 nbytes = bio->bi_size;
3028 bio_endio(bio, nbytes, error);
3029 next_idx = 0;
3030 bio_nbytes = 0;
3031 } else {
3032 int idx = bio->bi_idx + next_idx;
3033
3034 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3035 blk_dump_rq_flags(req, "__end_that");
3036 printk("%s: bio idx %d >= vcnt %d\n",
3037 __FUNCTION__,
3038 bio->bi_idx, bio->bi_vcnt);
3039 break;
3040 }
3041
3042 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3043 BIO_BUG_ON(nbytes > bio->bi_size);
3044
3045 /*
3046 * not a complete bvec done
3047 */
3048 if (unlikely(nbytes > nr_bytes)) {
3049 bio_nbytes += nr_bytes;
3050 total_bytes += nr_bytes;
3051 break;
3052 }
3053
3054 /*
3055 * advance to the next vector
3056 */
3057 next_idx++;
3058 bio_nbytes += nbytes;
3059 }
3060
3061 total_bytes += nbytes;
3062 nr_bytes -= nbytes;
3063
3064 if ((bio = req->bio)) {
3065 /*
3066 * end more in this run, or just return 'not-done'
3067 */
3068 if (unlikely(nr_bytes <= 0))
3069 break;
3070 }
3071 }
3072
3073 /*
3074 * completely done
3075 */
3076 if (!req->bio)
3077 return 0;
3078
3079 /*
3080 * if the request wasn't completed, update state
3081 */
3082 if (bio_nbytes) {
3083 bio_endio(bio, bio_nbytes, error);
3084 bio->bi_idx += next_idx;
3085 bio_iovec(bio)->bv_offset += nr_bytes;
3086 bio_iovec(bio)->bv_len -= nr_bytes;
3087 }
3088
3089 blk_recalc_rq_sectors(req, total_bytes >> 9);
3090 blk_recalc_rq_segments(req);
3091 return 1;
3092}
3093
3094/**
3095 * end_that_request_first - end I/O on a request
3096 * @req: the request being processed
3097 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3098 * @nr_sectors: number of sectors to end I/O on
3099 *
3100 * Description:
3101 * Ends I/O on a number of sectors attached to @req, and sets it up
3102 * for the next range of segments (if any) in the cluster.
3103 *
3104 * Return:
3105 * 0 - we are done with this request, call end_that_request_last()
3106 * 1 - still buffers pending for this request
3107 **/
3108int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3109{
3110 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3111}
3112
3113EXPORT_SYMBOL(end_that_request_first);
3114
3115/**
3116 * end_that_request_chunk - end I/O on a request
3117 * @req: the request being processed
3118 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3119 * @nr_bytes: number of bytes to complete
3120 *
3121 * Description:
3122 * Ends I/O on a number of bytes attached to @req, and sets it up
3123 * for the next range of segments (if any). Like end_that_request_first(),
3124 * but deals with bytes instead of sectors.
3125 *
3126 * Return:
3127 * 0 - we are done with this request, call end_that_request_last()
3128 * 1 - still buffers pending for this request
3129 **/
3130int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3131{
3132 return __end_that_request_first(req, uptodate, nr_bytes);
3133}
3134
3135EXPORT_SYMBOL(end_that_request_chunk);
3136
3137/*
3138 * queue lock must be held
3139 */
3140void end_that_request_last(struct request *req)
3141{
3142 struct gendisk *disk = req->rq_disk;
3143
3144 if (unlikely(laptop_mode) && blk_fs_request(req))
3145 laptop_io_completion();
3146
3147 if (disk && blk_fs_request(req)) {
3148 unsigned long duration = jiffies - req->start_time;
3149 switch (rq_data_dir(req)) {
3150 case WRITE:
3151 __disk_stat_inc(disk, writes);
3152 __disk_stat_add(disk, write_ticks, duration);
3153 break;
3154 case READ:
3155 __disk_stat_inc(disk, reads);
3156 __disk_stat_add(disk, read_ticks, duration);
3157 break;
3158 }
3159 disk_round_stats(disk);
3160 disk->in_flight--;
3161 }
3162 if (req->end_io)
3163 req->end_io(req);
3164 else
3165 __blk_put_request(req->q, req);
3166}
3167
3168EXPORT_SYMBOL(end_that_request_last);
3169
3170void end_request(struct request *req, int uptodate)
3171{
3172 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3173 add_disk_randomness(req->rq_disk);
3174 blkdev_dequeue_request(req);
3175 end_that_request_last(req);
3176 }
3177}
3178
3179EXPORT_SYMBOL(end_request);
3180
3181void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3182{
3183 /* first three bits are identical in rq->flags and bio->bi_rw */
3184 rq->flags |= (bio->bi_rw & 7);
3185
3186 rq->nr_phys_segments = bio_phys_segments(q, bio);
3187 rq->nr_hw_segments = bio_hw_segments(q, bio);
3188 rq->current_nr_sectors = bio_cur_sectors(bio);
3189 rq->hard_cur_sectors = rq->current_nr_sectors;
3190 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3191 rq->buffer = bio_data(bio);
3192
3193 rq->bio = rq->biotail = bio;
3194}
3195
3196EXPORT_SYMBOL(blk_rq_bio_prep);
3197
3198int kblockd_schedule_work(struct work_struct *work)
3199{
3200 return queue_work(kblockd_workqueue, work);
3201}
3202
3203EXPORT_SYMBOL(kblockd_schedule_work);
3204
3205void kblockd_flush(void)
3206{
3207 flush_workqueue(kblockd_workqueue);
3208}
3209EXPORT_SYMBOL(kblockd_flush);
3210
3211int __init blk_dev_init(void)
3212{
3213 kblockd_workqueue = create_workqueue("kblockd");
3214 if (!kblockd_workqueue)
3215 panic("Failed to create kblockd\n");
3216
3217 request_cachep = kmem_cache_create("blkdev_requests",
3218 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3219
3220 requestq_cachep = kmem_cache_create("blkdev_queue",
3221 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3222
3223 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3224 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3225
3226 blk_max_low_pfn = max_low_pfn;
3227 blk_max_pfn = max_pfn;
3228
3229 return 0;
3230}
3231
3232/*
3233 * IO Context helper functions
3234 */
3235void put_io_context(struct io_context *ioc)
3236{
3237 if (ioc == NULL)
3238 return;
3239
3240 BUG_ON(atomic_read(&ioc->refcount) == 0);
3241
3242 if (atomic_dec_and_test(&ioc->refcount)) {
3243 if (ioc->aic && ioc->aic->dtor)
3244 ioc->aic->dtor(ioc->aic);
3245 if (ioc->cic && ioc->cic->dtor)
3246 ioc->cic->dtor(ioc->cic);
3247
3248 kmem_cache_free(iocontext_cachep, ioc);
3249 }
3250}
3251EXPORT_SYMBOL(put_io_context);
3252
3253/* Called by the exitting task */
3254void exit_io_context(void)
3255{
3256 unsigned long flags;
3257 struct io_context *ioc;
3258
3259 local_irq_save(flags);
3260 ioc = current->io_context;
3261 current->io_context = NULL;
3262 local_irq_restore(flags);
3263
3264 if (ioc->aic && ioc->aic->exit)
3265 ioc->aic->exit(ioc->aic);
3266 if (ioc->cic && ioc->cic->exit)
3267 ioc->cic->exit(ioc->cic);
3268
3269 put_io_context(ioc);
3270}
3271
3272/*
3273 * If the current task has no IO context then create one and initialise it.
3274 * If it does have a context, take a ref on it.
3275 *
3276 * This is always called in the context of the task which submitted the I/O.
3277 * But weird things happen, so we disable local interrupts to ensure exclusive
3278 * access to *current.
3279 */
3280struct io_context *get_io_context(int gfp_flags)
3281{
3282 struct task_struct *tsk = current;
3283 unsigned long flags;
3284 struct io_context *ret;
3285
3286 local_irq_save(flags);
3287 ret = tsk->io_context;
3288 if (ret)
3289 goto out;
3290
3291 local_irq_restore(flags);
3292
3293 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3294 if (ret) {
3295 atomic_set(&ret->refcount, 1);
3296 ret->pid = tsk->pid;
3297 ret->last_waited = jiffies; /* doesn't matter... */
3298 ret->nr_batch_requests = 0; /* because this is 0 */
3299 ret->aic = NULL;
3300 ret->cic = NULL;
3301 spin_lock_init(&ret->lock);
3302
3303 local_irq_save(flags);
3304
3305 /*
3306 * very unlikely, someone raced with us in setting up the task
3307 * io context. free new context and just grab a reference.
3308 */
3309 if (!tsk->io_context)
3310 tsk->io_context = ret;
3311 else {
3312 kmem_cache_free(iocontext_cachep, ret);
3313 ret = tsk->io_context;
3314 }
3315
3316out:
3317 atomic_inc(&ret->refcount);
3318 local_irq_restore(flags);
3319 }
3320
3321 return ret;
3322}
3323EXPORT_SYMBOL(get_io_context);
3324
3325void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3326{
3327 struct io_context *src = *psrc;
3328 struct io_context *dst = *pdst;
3329
3330 if (src) {
3331 BUG_ON(atomic_read(&src->refcount) == 0);
3332 atomic_inc(&src->refcount);
3333 put_io_context(dst);
3334 *pdst = src;
3335 }
3336}
3337EXPORT_SYMBOL(copy_io_context);
3338
3339void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3340{
3341 struct io_context *temp;
3342 temp = *ioc1;
3343 *ioc1 = *ioc2;
3344 *ioc2 = temp;
3345}
3346EXPORT_SYMBOL(swap_io_context);
3347
3348/*
3349 * sysfs parts below
3350 */
3351struct queue_sysfs_entry {
3352 struct attribute attr;
3353 ssize_t (*show)(struct request_queue *, char *);
3354 ssize_t (*store)(struct request_queue *, const char *, size_t);
3355};
3356
3357static ssize_t
3358queue_var_show(unsigned int var, char *page)
3359{
3360 return sprintf(page, "%d\n", var);
3361}
3362
3363static ssize_t
3364queue_var_store(unsigned long *var, const char *page, size_t count)
3365{
3366 char *p = (char *) page;
3367
3368 *var = simple_strtoul(p, &p, 10);
3369 return count;
3370}
3371
3372static ssize_t queue_requests_show(struct request_queue *q, char *page)
3373{
3374 return queue_var_show(q->nr_requests, (page));
3375}
3376
3377static ssize_t
3378queue_requests_store(struct request_queue *q, const char *page, size_t count)
3379{
3380 struct request_list *rl = &q->rq;
3381
3382 int ret = queue_var_store(&q->nr_requests, page, count);
3383 if (q->nr_requests < BLKDEV_MIN_RQ)
3384 q->nr_requests = BLKDEV_MIN_RQ;
3385 blk_queue_congestion_threshold(q);
3386
3387 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3388 set_queue_congested(q, READ);
3389 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3390 clear_queue_congested(q, READ);
3391
3392 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3393 set_queue_congested(q, WRITE);
3394 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3395 clear_queue_congested(q, WRITE);
3396
3397 if (rl->count[READ] >= q->nr_requests) {
3398 blk_set_queue_full(q, READ);
3399 } else if (rl->count[READ]+1 <= q->nr_requests) {
3400 blk_clear_queue_full(q, READ);
3401 wake_up(&rl->wait[READ]);
3402 }
3403
3404 if (rl->count[WRITE] >= q->nr_requests) {
3405 blk_set_queue_full(q, WRITE);
3406 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3407 blk_clear_queue_full(q, WRITE);
3408 wake_up(&rl->wait[WRITE]);
3409 }
3410 return ret;
3411}
3412
3413static ssize_t queue_ra_show(struct request_queue *q, char *page)
3414{
3415 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3416
3417 return queue_var_show(ra_kb, (page));
3418}
3419
3420static ssize_t
3421queue_ra_store(struct request_queue *q, const char *page, size_t count)
3422{
3423 unsigned long ra_kb;
3424 ssize_t ret = queue_var_store(&ra_kb, page, count);
3425
3426 spin_lock_irq(q->queue_lock);
3427 if (ra_kb > (q->max_sectors >> 1))
3428 ra_kb = (q->max_sectors >> 1);
3429
3430 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3431 spin_unlock_irq(q->queue_lock);
3432
3433 return ret;
3434}
3435
3436static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3437{
3438 int max_sectors_kb = q->max_sectors >> 1;
3439
3440 return queue_var_show(max_sectors_kb, (page));
3441}
3442
3443static ssize_t
3444queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3445{
3446 unsigned long max_sectors_kb,
3447 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3448 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3449 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3450 int ra_kb;
3451
3452 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3453 return -EINVAL;
3454 /*
3455 * Take the queue lock to update the readahead and max_sectors
3456 * values synchronously:
3457 */
3458 spin_lock_irq(q->queue_lock);
3459 /*
3460 * Trim readahead window as well, if necessary:
3461 */
3462 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3463 if (ra_kb > max_sectors_kb)
3464 q->backing_dev_info.ra_pages =
3465 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3466
3467 q->max_sectors = max_sectors_kb << 1;
3468 spin_unlock_irq(q->queue_lock);
3469
3470 return ret;
3471}
3472
3473static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3474{
3475 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3476
3477 return queue_var_show(max_hw_sectors_kb, (page));
3478}
3479
3480
3481static struct queue_sysfs_entry queue_requests_entry = {
3482 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3483 .show = queue_requests_show,
3484 .store = queue_requests_store,
3485};
3486
3487static struct queue_sysfs_entry queue_ra_entry = {
3488 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3489 .show = queue_ra_show,
3490 .store = queue_ra_store,
3491};
3492
3493static struct queue_sysfs_entry queue_max_sectors_entry = {
3494 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3495 .show = queue_max_sectors_show,
3496 .store = queue_max_sectors_store,
3497};
3498
3499static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3500 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3501 .show = queue_max_hw_sectors_show,
3502};
3503
3504static struct queue_sysfs_entry queue_iosched_entry = {
3505 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3506 .show = elv_iosched_show,
3507 .store = elv_iosched_store,
3508};
3509
3510static struct attribute *default_attrs[] = {
3511 &queue_requests_entry.attr,
3512 &queue_ra_entry.attr,
3513 &queue_max_hw_sectors_entry.attr,
3514 &queue_max_sectors_entry.attr,
3515 &queue_iosched_entry.attr,
3516 NULL,
3517};
3518
3519#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3520
3521static ssize_t
3522queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3523{
3524 struct queue_sysfs_entry *entry = to_queue(attr);
3525 struct request_queue *q;
3526
3527 q = container_of(kobj, struct request_queue, kobj);
3528 if (!entry->show)
6c1852a0 3529 return -EIO;
1da177e4
LT
3530
3531 return entry->show(q, page);
3532}
3533
3534static ssize_t
3535queue_attr_store(struct kobject *kobj, struct attribute *attr,
3536 const char *page, size_t length)
3537{
3538 struct queue_sysfs_entry *entry = to_queue(attr);
3539 struct request_queue *q;
3540
3541 q = container_of(kobj, struct request_queue, kobj);
3542 if (!entry->store)
6c1852a0 3543 return -EIO;
1da177e4
LT
3544
3545 return entry->store(q, page, length);
3546}
3547
3548static struct sysfs_ops queue_sysfs_ops = {
3549 .show = queue_attr_show,
3550 .store = queue_attr_store,
3551};
3552
93d17d3d 3553static struct kobj_type queue_ktype = {
1da177e4
LT
3554 .sysfs_ops = &queue_sysfs_ops,
3555 .default_attrs = default_attrs,
3556};
3557
3558int blk_register_queue(struct gendisk *disk)
3559{
3560 int ret;
3561
3562 request_queue_t *q = disk->queue;
3563
3564 if (!q || !q->request_fn)
3565 return -ENXIO;
3566
3567 q->kobj.parent = kobject_get(&disk->kobj);
3568 if (!q->kobj.parent)
3569 return -EBUSY;
3570
3571 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3572 q->kobj.ktype = &queue_ktype;
3573
3574 ret = kobject_register(&q->kobj);
3575 if (ret < 0)
3576 return ret;
3577
3578 ret = elv_register_queue(q);
3579 if (ret) {
3580 kobject_unregister(&q->kobj);
3581 return ret;
3582 }
3583
3584 return 0;
3585}
3586
3587void blk_unregister_queue(struct gendisk *disk)
3588{
3589 request_queue_t *q = disk->queue;
3590
3591 if (q && q->request_fn) {
3592 elv_unregister_queue(q);
3593
3594 kobject_unregister(&q->kobj);
3595 kobject_put(&disk->kobj);
3596 }
3597}