[PATCH] blk: use find_first_zero_bit() in blk_queue_start_tag()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / ll_rw_blk.c
CommitLineData
1da177e4
LT
1/*
2 * linux/drivers/block/ll_rw_blk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
15#include <linux/config.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/backing-dev.h>
19#include <linux/bio.h>
20#include <linux/blkdev.h>
21#include <linux/highmem.h>
22#include <linux/mm.h>
23#include <linux/kernel_stat.h>
24#include <linux/string.h>
25#include <linux/init.h>
26#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
1946089a 31#include <linux/blkdev.h>
1da177e4
LT
32
33/*
34 * for max sense size
35 */
36#include <scsi/scsi_cmnd.h>
37
38static void blk_unplug_work(void *data);
39static void blk_unplug_timeout(unsigned long data);
40
41/*
42 * For the allocated request tables
43 */
44static kmem_cache_t *request_cachep;
45
46/*
47 * For queue allocation
48 */
49static kmem_cache_t *requestq_cachep;
50
51/*
52 * For io context allocations
53 */
54static kmem_cache_t *iocontext_cachep;
55
56static wait_queue_head_t congestion_wqh[2] = {
57 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
59 };
60
61/*
62 * Controlling structure to kblockd
63 */
64static struct workqueue_struct *kblockd_workqueue;
65
66unsigned long blk_max_low_pfn, blk_max_pfn;
67
68EXPORT_SYMBOL(blk_max_low_pfn);
69EXPORT_SYMBOL(blk_max_pfn);
70
71/* Amount of time in which a process may batch requests */
72#define BLK_BATCH_TIME (HZ/50UL)
73
74/* Number of requests a "batching" process may submit */
75#define BLK_BATCH_REQ 32
76
77/*
78 * Return the threshold (number of used requests) at which the queue is
79 * considered to be congested. It include a little hysteresis to keep the
80 * context switch rate down.
81 */
82static inline int queue_congestion_on_threshold(struct request_queue *q)
83{
84 return q->nr_congestion_on;
85}
86
87/*
88 * The threshold at which a queue is considered to be uncongested
89 */
90static inline int queue_congestion_off_threshold(struct request_queue *q)
91{
92 return q->nr_congestion_off;
93}
94
95static void blk_queue_congestion_threshold(struct request_queue *q)
96{
97 int nr;
98
99 nr = q->nr_requests - (q->nr_requests / 8) + 1;
100 if (nr > q->nr_requests)
101 nr = q->nr_requests;
102 q->nr_congestion_on = nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
105 if (nr < 1)
106 nr = 1;
107 q->nr_congestion_off = nr;
108}
109
110/*
111 * A queue has just exitted congestion. Note this in the global counter of
112 * congested queues, and wake up anyone who was waiting for requests to be
113 * put back.
114 */
115static void clear_queue_congested(request_queue_t *q, int rw)
116{
117 enum bdi_state bit;
118 wait_queue_head_t *wqh = &congestion_wqh[rw];
119
120 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
121 clear_bit(bit, &q->backing_dev_info.state);
122 smp_mb__after_clear_bit();
123 if (waitqueue_active(wqh))
124 wake_up(wqh);
125}
126
127/*
128 * A queue has just entered congestion. Flag that in the queue's VM-visible
129 * state flags and increment the global gounter of congested queues.
130 */
131static void set_queue_congested(request_queue_t *q, int rw)
132{
133 enum bdi_state bit;
134
135 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
136 set_bit(bit, &q->backing_dev_info.state);
137}
138
139/**
140 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
141 * @bdev: device
142 *
143 * Locates the passed device's request queue and returns the address of its
144 * backing_dev_info
145 *
146 * Will return NULL if the request queue cannot be located.
147 */
148struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
149{
150 struct backing_dev_info *ret = NULL;
151 request_queue_t *q = bdev_get_queue(bdev);
152
153 if (q)
154 ret = &q->backing_dev_info;
155 return ret;
156}
157
158EXPORT_SYMBOL(blk_get_backing_dev_info);
159
160void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
161{
162 q->activity_fn = fn;
163 q->activity_data = data;
164}
165
166EXPORT_SYMBOL(blk_queue_activity_fn);
167
168/**
169 * blk_queue_prep_rq - set a prepare_request function for queue
170 * @q: queue
171 * @pfn: prepare_request function
172 *
173 * It's possible for a queue to register a prepare_request callback which
174 * is invoked before the request is handed to the request_fn. The goal of
175 * the function is to prepare a request for I/O, it can be used to build a
176 * cdb from the request data for instance.
177 *
178 */
179void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
180{
181 q->prep_rq_fn = pfn;
182}
183
184EXPORT_SYMBOL(blk_queue_prep_rq);
185
186/**
187 * blk_queue_merge_bvec - set a merge_bvec function for queue
188 * @q: queue
189 * @mbfn: merge_bvec_fn
190 *
191 * Usually queues have static limitations on the max sectors or segments that
192 * we can put in a request. Stacking drivers may have some settings that
193 * are dynamic, and thus we have to query the queue whether it is ok to
194 * add a new bio_vec to a bio at a given offset or not. If the block device
195 * has such limitations, it needs to register a merge_bvec_fn to control
196 * the size of bio's sent to it. Note that a block device *must* allow a
197 * single page to be added to an empty bio. The block device driver may want
198 * to use the bio_split() function to deal with these bio's. By default
199 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
200 * honored.
201 */
202void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
203{
204 q->merge_bvec_fn = mbfn;
205}
206
207EXPORT_SYMBOL(blk_queue_merge_bvec);
208
209/**
210 * blk_queue_make_request - define an alternate make_request function for a device
211 * @q: the request queue for the device to be affected
212 * @mfn: the alternate make_request function
213 *
214 * Description:
215 * The normal way for &struct bios to be passed to a device
216 * driver is for them to be collected into requests on a request
217 * queue, and then to allow the device driver to select requests
218 * off that queue when it is ready. This works well for many block
219 * devices. However some block devices (typically virtual devices
220 * such as md or lvm) do not benefit from the processing on the
221 * request queue, and are served best by having the requests passed
222 * directly to them. This can be achieved by providing a function
223 * to blk_queue_make_request().
224 *
225 * Caveat:
226 * The driver that does this *must* be able to deal appropriately
227 * with buffers in "highmemory". This can be accomplished by either calling
228 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
229 * blk_queue_bounce() to create a buffer in normal memory.
230 **/
231void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
232{
233 /*
234 * set defaults
235 */
236 q->nr_requests = BLKDEV_MAX_RQ;
237 q->max_phys_segments = MAX_PHYS_SEGMENTS;
238 q->max_hw_segments = MAX_HW_SEGMENTS;
239 q->make_request_fn = mfn;
240 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
241 q->backing_dev_info.state = 0;
242 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
243 blk_queue_max_sectors(q, MAX_SECTORS);
244 blk_queue_hardsect_size(q, 512);
245 blk_queue_dma_alignment(q, 511);
246 blk_queue_congestion_threshold(q);
247 q->nr_batching = BLK_BATCH_REQ;
248
249 q->unplug_thresh = 4; /* hmm */
250 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
251 if (q->unplug_delay == 0)
252 q->unplug_delay = 1;
253
254 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
255
256 q->unplug_timer.function = blk_unplug_timeout;
257 q->unplug_timer.data = (unsigned long)q;
258
259 /*
260 * by default assume old behaviour and bounce for any highmem page
261 */
262 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
263
264 blk_queue_activity_fn(q, NULL, NULL);
265
266 INIT_LIST_HEAD(&q->drain_list);
267}
268
269EXPORT_SYMBOL(blk_queue_make_request);
270
271static inline void rq_init(request_queue_t *q, struct request *rq)
272{
273 INIT_LIST_HEAD(&rq->queuelist);
274
275 rq->errors = 0;
276 rq->rq_status = RQ_ACTIVE;
277 rq->bio = rq->biotail = NULL;
278 rq->buffer = NULL;
279 rq->ref_count = 1;
280 rq->q = q;
281 rq->waiting = NULL;
282 rq->special = NULL;
283 rq->data_len = 0;
284 rq->data = NULL;
285 rq->sense = NULL;
286 rq->end_io = NULL;
287 rq->end_io_data = NULL;
288}
289
290/**
291 * blk_queue_ordered - does this queue support ordered writes
292 * @q: the request queue
293 * @flag: see below
294 *
295 * Description:
296 * For journalled file systems, doing ordered writes on a commit
297 * block instead of explicitly doing wait_on_buffer (which is bad
298 * for performance) can be a big win. Block drivers supporting this
299 * feature should call this function and indicate so.
300 *
301 **/
302void blk_queue_ordered(request_queue_t *q, int flag)
303{
304 switch (flag) {
305 case QUEUE_ORDERED_NONE:
306 if (q->flush_rq)
307 kmem_cache_free(request_cachep, q->flush_rq);
308 q->flush_rq = NULL;
309 q->ordered = flag;
310 break;
311 case QUEUE_ORDERED_TAG:
312 q->ordered = flag;
313 break;
314 case QUEUE_ORDERED_FLUSH:
315 q->ordered = flag;
316 if (!q->flush_rq)
317 q->flush_rq = kmem_cache_alloc(request_cachep,
318 GFP_KERNEL);
319 break;
320 default:
321 printk("blk_queue_ordered: bad value %d\n", flag);
322 break;
323 }
324}
325
326EXPORT_SYMBOL(blk_queue_ordered);
327
328/**
329 * blk_queue_issue_flush_fn - set function for issuing a flush
330 * @q: the request queue
331 * @iff: the function to be called issuing the flush
332 *
333 * Description:
334 * If a driver supports issuing a flush command, the support is notified
335 * to the block layer by defining it through this call.
336 *
337 **/
338void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
339{
340 q->issue_flush_fn = iff;
341}
342
343EXPORT_SYMBOL(blk_queue_issue_flush_fn);
344
345/*
346 * Cache flushing for ordered writes handling
347 */
348static void blk_pre_flush_end_io(struct request *flush_rq)
349{
350 struct request *rq = flush_rq->end_io_data;
351 request_queue_t *q = rq->q;
352
353 rq->flags |= REQ_BAR_PREFLUSH;
354
355 if (!flush_rq->errors)
356 elv_requeue_request(q, rq);
357 else {
358 q->end_flush_fn(q, flush_rq);
359 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
360 q->request_fn(q);
361 }
362}
363
364static void blk_post_flush_end_io(struct request *flush_rq)
365{
366 struct request *rq = flush_rq->end_io_data;
367 request_queue_t *q = rq->q;
368
369 rq->flags |= REQ_BAR_POSTFLUSH;
370
371 q->end_flush_fn(q, flush_rq);
372 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
373 q->request_fn(q);
374}
375
376struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
377{
378 struct request *flush_rq = q->flush_rq;
379
380 BUG_ON(!blk_barrier_rq(rq));
381
382 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
383 return NULL;
384
385 rq_init(q, flush_rq);
386 flush_rq->elevator_private = NULL;
387 flush_rq->flags = REQ_BAR_FLUSH;
388 flush_rq->rq_disk = rq->rq_disk;
389 flush_rq->rl = NULL;
390
391 /*
392 * prepare_flush returns 0 if no flush is needed, just mark both
393 * pre and post flush as done in that case
394 */
395 if (!q->prepare_flush_fn(q, flush_rq)) {
396 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
397 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
398 return rq;
399 }
400
401 /*
402 * some drivers dequeue requests right away, some only after io
403 * completion. make sure the request is dequeued.
404 */
405 if (!list_empty(&rq->queuelist))
406 blkdev_dequeue_request(rq);
407
408 elv_deactivate_request(q, rq);
409
410 flush_rq->end_io_data = rq;
411 flush_rq->end_io = blk_pre_flush_end_io;
412
413 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
414 return flush_rq;
415}
416
417static void blk_start_post_flush(request_queue_t *q, struct request *rq)
418{
419 struct request *flush_rq = q->flush_rq;
420
421 BUG_ON(!blk_barrier_rq(rq));
422
423 rq_init(q, flush_rq);
424 flush_rq->elevator_private = NULL;
425 flush_rq->flags = REQ_BAR_FLUSH;
426 flush_rq->rq_disk = rq->rq_disk;
427 flush_rq->rl = NULL;
428
429 if (q->prepare_flush_fn(q, flush_rq)) {
430 flush_rq->end_io_data = rq;
431 flush_rq->end_io = blk_post_flush_end_io;
432
433 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
434 q->request_fn(q);
435 }
436}
437
438static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
439 int sectors)
440{
441 if (sectors > rq->nr_sectors)
442 sectors = rq->nr_sectors;
443
444 rq->nr_sectors -= sectors;
445 return rq->nr_sectors;
446}
447
448static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
449 int sectors, int queue_locked)
450{
451 if (q->ordered != QUEUE_ORDERED_FLUSH)
452 return 0;
453 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
454 return 0;
455 if (blk_barrier_postflush(rq))
456 return 0;
457
458 if (!blk_check_end_barrier(q, rq, sectors)) {
459 unsigned long flags = 0;
460
461 if (!queue_locked)
462 spin_lock_irqsave(q->queue_lock, flags);
463
464 blk_start_post_flush(q, rq);
465
466 if (!queue_locked)
467 spin_unlock_irqrestore(q->queue_lock, flags);
468 }
469
470 return 1;
471}
472
473/**
474 * blk_complete_barrier_rq - complete possible barrier request
475 * @q: the request queue for the device
476 * @rq: the request
477 * @sectors: number of sectors to complete
478 *
479 * Description:
480 * Used in driver end_io handling to determine whether to postpone
481 * completion of a barrier request until a post flush has been done. This
482 * is the unlocked variant, used if the caller doesn't already hold the
483 * queue lock.
484 **/
485int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
486{
487 return __blk_complete_barrier_rq(q, rq, sectors, 0);
488}
489EXPORT_SYMBOL(blk_complete_barrier_rq);
490
491/**
492 * blk_complete_barrier_rq_locked - complete possible barrier request
493 * @q: the request queue for the device
494 * @rq: the request
495 * @sectors: number of sectors to complete
496 *
497 * Description:
498 * See blk_complete_barrier_rq(). This variant must be used if the caller
499 * holds the queue lock.
500 **/
501int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
502 int sectors)
503{
504 return __blk_complete_barrier_rq(q, rq, sectors, 1);
505}
506EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
507
508/**
509 * blk_queue_bounce_limit - set bounce buffer limit for queue
510 * @q: the request queue for the device
511 * @dma_addr: bus address limit
512 *
513 * Description:
514 * Different hardware can have different requirements as to what pages
515 * it can do I/O directly to. A low level driver can call
516 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
517 * buffers for doing I/O to pages residing above @page. By default
518 * the block layer sets this to the highest numbered "low" memory page.
519 **/
520void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
521{
522 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
523
524 /*
525 * set appropriate bounce gfp mask -- unfortunately we don't have a
526 * full 4GB zone, so we have to resort to low memory for any bounces.
527 * ISA has its own < 16MB zone.
528 */
529 if (bounce_pfn < blk_max_low_pfn) {
530 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
531 init_emergency_isa_pool();
532 q->bounce_gfp = GFP_NOIO | GFP_DMA;
533 } else
534 q->bounce_gfp = GFP_NOIO;
535
536 q->bounce_pfn = bounce_pfn;
537}
538
539EXPORT_SYMBOL(blk_queue_bounce_limit);
540
541/**
542 * blk_queue_max_sectors - set max sectors for a request for this queue
543 * @q: the request queue for the device
544 * @max_sectors: max sectors in the usual 512b unit
545 *
546 * Description:
547 * Enables a low level driver to set an upper limit on the size of
548 * received requests.
549 **/
550void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
551{
552 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
553 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
554 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
555 }
556
557 q->max_sectors = q->max_hw_sectors = max_sectors;
558}
559
560EXPORT_SYMBOL(blk_queue_max_sectors);
561
562/**
563 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
564 * @q: the request queue for the device
565 * @max_segments: max number of segments
566 *
567 * Description:
568 * Enables a low level driver to set an upper limit on the number of
569 * physical data segments in a request. This would be the largest sized
570 * scatter list the driver could handle.
571 **/
572void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
573{
574 if (!max_segments) {
575 max_segments = 1;
576 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
577 }
578
579 q->max_phys_segments = max_segments;
580}
581
582EXPORT_SYMBOL(blk_queue_max_phys_segments);
583
584/**
585 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
586 * @q: the request queue for the device
587 * @max_segments: max number of segments
588 *
589 * Description:
590 * Enables a low level driver to set an upper limit on the number of
591 * hw data segments in a request. This would be the largest number of
592 * address/length pairs the host adapter can actually give as once
593 * to the device.
594 **/
595void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
596{
597 if (!max_segments) {
598 max_segments = 1;
599 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
600 }
601
602 q->max_hw_segments = max_segments;
603}
604
605EXPORT_SYMBOL(blk_queue_max_hw_segments);
606
607/**
608 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
609 * @q: the request queue for the device
610 * @max_size: max size of segment in bytes
611 *
612 * Description:
613 * Enables a low level driver to set an upper limit on the size of a
614 * coalesced segment
615 **/
616void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
617{
618 if (max_size < PAGE_CACHE_SIZE) {
619 max_size = PAGE_CACHE_SIZE;
620 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
621 }
622
623 q->max_segment_size = max_size;
624}
625
626EXPORT_SYMBOL(blk_queue_max_segment_size);
627
628/**
629 * blk_queue_hardsect_size - set hardware sector size for the queue
630 * @q: the request queue for the device
631 * @size: the hardware sector size, in bytes
632 *
633 * Description:
634 * This should typically be set to the lowest possible sector size
635 * that the hardware can operate on (possible without reverting to
636 * even internal read-modify-write operations). Usually the default
637 * of 512 covers most hardware.
638 **/
639void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
640{
641 q->hardsect_size = size;
642}
643
644EXPORT_SYMBOL(blk_queue_hardsect_size);
645
646/*
647 * Returns the minimum that is _not_ zero, unless both are zero.
648 */
649#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
650
651/**
652 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
653 * @t: the stacking driver (top)
654 * @b: the underlying device (bottom)
655 **/
656void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
657{
658 /* zero is "infinity" */
659 t->max_sectors = t->max_hw_sectors =
660 min_not_zero(t->max_sectors,b->max_sectors);
661
662 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
663 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
664 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
665 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
666}
667
668EXPORT_SYMBOL(blk_queue_stack_limits);
669
670/**
671 * blk_queue_segment_boundary - set boundary rules for segment merging
672 * @q: the request queue for the device
673 * @mask: the memory boundary mask
674 **/
675void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
676{
677 if (mask < PAGE_CACHE_SIZE - 1) {
678 mask = PAGE_CACHE_SIZE - 1;
679 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
680 }
681
682 q->seg_boundary_mask = mask;
683}
684
685EXPORT_SYMBOL(blk_queue_segment_boundary);
686
687/**
688 * blk_queue_dma_alignment - set dma length and memory alignment
689 * @q: the request queue for the device
690 * @mask: alignment mask
691 *
692 * description:
693 * set required memory and length aligment for direct dma transactions.
694 * this is used when buiding direct io requests for the queue.
695 *
696 **/
697void blk_queue_dma_alignment(request_queue_t *q, int mask)
698{
699 q->dma_alignment = mask;
700}
701
702EXPORT_SYMBOL(blk_queue_dma_alignment);
703
704/**
705 * blk_queue_find_tag - find a request by its tag and queue
706 *
707 * @q: The request queue for the device
708 * @tag: The tag of the request
709 *
710 * Notes:
711 * Should be used when a device returns a tag and you want to match
712 * it with a request.
713 *
714 * no locks need be held.
715 **/
716struct request *blk_queue_find_tag(request_queue_t *q, int tag)
717{
718 struct blk_queue_tag *bqt = q->queue_tags;
719
720 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
721 return NULL;
722
723 return bqt->tag_index[tag];
724}
725
726EXPORT_SYMBOL(blk_queue_find_tag);
727
728/**
729 * __blk_queue_free_tags - release tag maintenance info
730 * @q: the request queue for the device
731 *
732 * Notes:
733 * blk_cleanup_queue() will take care of calling this function, if tagging
734 * has been used. So there's no need to call this directly.
735 **/
736static void __blk_queue_free_tags(request_queue_t *q)
737{
738 struct blk_queue_tag *bqt = q->queue_tags;
739
740 if (!bqt)
741 return;
742
743 if (atomic_dec_and_test(&bqt->refcnt)) {
744 BUG_ON(bqt->busy);
745 BUG_ON(!list_empty(&bqt->busy_list));
746
747 kfree(bqt->tag_index);
748 bqt->tag_index = NULL;
749
750 kfree(bqt->tag_map);
751 bqt->tag_map = NULL;
752
753 kfree(bqt);
754 }
755
756 q->queue_tags = NULL;
757 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
758}
759
760/**
761 * blk_queue_free_tags - release tag maintenance info
762 * @q: the request queue for the device
763 *
764 * Notes:
765 * This is used to disabled tagged queuing to a device, yet leave
766 * queue in function.
767 **/
768void blk_queue_free_tags(request_queue_t *q)
769{
770 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
771}
772
773EXPORT_SYMBOL(blk_queue_free_tags);
774
775static int
776init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
777{
778 int bits, i;
779 struct request **tag_index;
780 unsigned long *tag_map;
781
782 if (depth > q->nr_requests * 2) {
783 depth = q->nr_requests * 2;
784 printk(KERN_ERR "%s: adjusted depth to %d\n",
785 __FUNCTION__, depth);
786 }
787
788 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
789 if (!tag_index)
790 goto fail;
791
792 bits = (depth / BLK_TAGS_PER_LONG) + 1;
793 tag_map = kmalloc(bits * sizeof(unsigned long), GFP_ATOMIC);
794 if (!tag_map)
795 goto fail;
796
797 memset(tag_index, 0, depth * sizeof(struct request *));
798 memset(tag_map, 0, bits * sizeof(unsigned long));
799 tags->max_depth = depth;
800 tags->real_max_depth = bits * BITS_PER_LONG;
801 tags->tag_index = tag_index;
802 tags->tag_map = tag_map;
803
804 /*
805 * set the upper bits if the depth isn't a multiple of the word size
806 */
807 for (i = depth; i < bits * BLK_TAGS_PER_LONG; i++)
808 __set_bit(i, tag_map);
809
810 return 0;
811fail:
812 kfree(tag_index);
813 return -ENOMEM;
814}
815
816/**
817 * blk_queue_init_tags - initialize the queue tag info
818 * @q: the request queue for the device
819 * @depth: the maximum queue depth supported
820 * @tags: the tag to use
821 **/
822int blk_queue_init_tags(request_queue_t *q, int depth,
823 struct blk_queue_tag *tags)
824{
825 int rc;
826
827 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
828
829 if (!tags && !q->queue_tags) {
830 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
831 if (!tags)
832 goto fail;
833
834 if (init_tag_map(q, tags, depth))
835 goto fail;
836
837 INIT_LIST_HEAD(&tags->busy_list);
838 tags->busy = 0;
839 atomic_set(&tags->refcnt, 1);
840 } else if (q->queue_tags) {
841 if ((rc = blk_queue_resize_tags(q, depth)))
842 return rc;
843 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
844 return 0;
845 } else
846 atomic_inc(&tags->refcnt);
847
848 /*
849 * assign it, all done
850 */
851 q->queue_tags = tags;
852 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
853 return 0;
854fail:
855 kfree(tags);
856 return -ENOMEM;
857}
858
859EXPORT_SYMBOL(blk_queue_init_tags);
860
861/**
862 * blk_queue_resize_tags - change the queueing depth
863 * @q: the request queue for the device
864 * @new_depth: the new max command queueing depth
865 *
866 * Notes:
867 * Must be called with the queue lock held.
868 **/
869int blk_queue_resize_tags(request_queue_t *q, int new_depth)
870{
871 struct blk_queue_tag *bqt = q->queue_tags;
872 struct request **tag_index;
873 unsigned long *tag_map;
874 int bits, max_depth;
875
876 if (!bqt)
877 return -ENXIO;
878
879 /*
880 * don't bother sizing down
881 */
882 if (new_depth <= bqt->real_max_depth) {
883 bqt->max_depth = new_depth;
884 return 0;
885 }
886
887 /*
888 * save the old state info, so we can copy it back
889 */
890 tag_index = bqt->tag_index;
891 tag_map = bqt->tag_map;
892 max_depth = bqt->real_max_depth;
893
894 if (init_tag_map(q, bqt, new_depth))
895 return -ENOMEM;
896
897 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
898 bits = max_depth / BLK_TAGS_PER_LONG;
899 memcpy(bqt->tag_map, tag_map, bits * sizeof(unsigned long));
900
901 kfree(tag_index);
902 kfree(tag_map);
903 return 0;
904}
905
906EXPORT_SYMBOL(blk_queue_resize_tags);
907
908/**
909 * blk_queue_end_tag - end tag operations for a request
910 * @q: the request queue for the device
911 * @rq: the request that has completed
912 *
913 * Description:
914 * Typically called when end_that_request_first() returns 0, meaning
915 * all transfers have been done for a request. It's important to call
916 * this function before end_that_request_last(), as that will put the
917 * request back on the free list thus corrupting the internal tag list.
918 *
919 * Notes:
920 * queue lock must be held.
921 **/
922void blk_queue_end_tag(request_queue_t *q, struct request *rq)
923{
924 struct blk_queue_tag *bqt = q->queue_tags;
925 int tag = rq->tag;
926
927 BUG_ON(tag == -1);
928
929 if (unlikely(tag >= bqt->real_max_depth))
930 return;
931
932 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
933 printk("attempt to clear non-busy tag (%d)\n", tag);
934 return;
935 }
936
937 list_del_init(&rq->queuelist);
938 rq->flags &= ~REQ_QUEUED;
939 rq->tag = -1;
940
941 if (unlikely(bqt->tag_index[tag] == NULL))
942 printk("tag %d is missing\n", tag);
943
944 bqt->tag_index[tag] = NULL;
945 bqt->busy--;
946}
947
948EXPORT_SYMBOL(blk_queue_end_tag);
949
950/**
951 * blk_queue_start_tag - find a free tag and assign it
952 * @q: the request queue for the device
953 * @rq: the block request that needs tagging
954 *
955 * Description:
956 * This can either be used as a stand-alone helper, or possibly be
957 * assigned as the queue &prep_rq_fn (in which case &struct request
958 * automagically gets a tag assigned). Note that this function
959 * assumes that any type of request can be queued! if this is not
960 * true for your device, you must check the request type before
961 * calling this function. The request will also be removed from
962 * the request queue, so it's the drivers responsibility to readd
963 * it if it should need to be restarted for some reason.
964 *
965 * Notes:
966 * queue lock must be held.
967 **/
968int blk_queue_start_tag(request_queue_t *q, struct request *rq)
969{
970 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 971 int tag;
1da177e4
LT
972
973 if (unlikely((rq->flags & REQ_QUEUED))) {
974 printk(KERN_ERR
975 "request %p for device [%s] already tagged %d",
976 rq, rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
977 BUG();
978 }
979
2bf0fdad
TH
980 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
981 if (tag >= bqt->max_depth)
982 return 1;
1da177e4 983
1da177e4
LT
984 __set_bit(tag, bqt->tag_map);
985
986 rq->flags |= REQ_QUEUED;
987 rq->tag = tag;
988 bqt->tag_index[tag] = rq;
989 blkdev_dequeue_request(rq);
990 list_add(&rq->queuelist, &bqt->busy_list);
991 bqt->busy++;
992 return 0;
993}
994
995EXPORT_SYMBOL(blk_queue_start_tag);
996
997/**
998 * blk_queue_invalidate_tags - invalidate all pending tags
999 * @q: the request queue for the device
1000 *
1001 * Description:
1002 * Hardware conditions may dictate a need to stop all pending requests.
1003 * In this case, we will safely clear the block side of the tag queue and
1004 * readd all requests to the request queue in the right order.
1005 *
1006 * Notes:
1007 * queue lock must be held.
1008 **/
1009void blk_queue_invalidate_tags(request_queue_t *q)
1010{
1011 struct blk_queue_tag *bqt = q->queue_tags;
1012 struct list_head *tmp, *n;
1013 struct request *rq;
1014
1015 list_for_each_safe(tmp, n, &bqt->busy_list) {
1016 rq = list_entry_rq(tmp);
1017
1018 if (rq->tag == -1) {
1019 printk("bad tag found on list\n");
1020 list_del_init(&rq->queuelist);
1021 rq->flags &= ~REQ_QUEUED;
1022 } else
1023 blk_queue_end_tag(q, rq);
1024
1025 rq->flags &= ~REQ_STARTED;
1026 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1027 }
1028}
1029
1030EXPORT_SYMBOL(blk_queue_invalidate_tags);
1031
1032static char *rq_flags[] = {
1033 "REQ_RW",
1034 "REQ_FAILFAST",
1035 "REQ_SOFTBARRIER",
1036 "REQ_HARDBARRIER",
1037 "REQ_CMD",
1038 "REQ_NOMERGE",
1039 "REQ_STARTED",
1040 "REQ_DONTPREP",
1041 "REQ_QUEUED",
1042 "REQ_PC",
1043 "REQ_BLOCK_PC",
1044 "REQ_SENSE",
1045 "REQ_FAILED",
1046 "REQ_QUIET",
1047 "REQ_SPECIAL",
1048 "REQ_DRIVE_CMD",
1049 "REQ_DRIVE_TASK",
1050 "REQ_DRIVE_TASKFILE",
1051 "REQ_PREEMPT",
1052 "REQ_PM_SUSPEND",
1053 "REQ_PM_RESUME",
1054 "REQ_PM_SHUTDOWN",
1055};
1056
1057void blk_dump_rq_flags(struct request *rq, char *msg)
1058{
1059 int bit;
1060
1061 printk("%s: dev %s: flags = ", msg,
1062 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1063 bit = 0;
1064 do {
1065 if (rq->flags & (1 << bit))
1066 printk("%s ", rq_flags[bit]);
1067 bit++;
1068 } while (bit < __REQ_NR_BITS);
1069
1070 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1071 rq->nr_sectors,
1072 rq->current_nr_sectors);
1073 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1074
1075 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1076 printk("cdb: ");
1077 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1078 printk("%02x ", rq->cmd[bit]);
1079 printk("\n");
1080 }
1081}
1082
1083EXPORT_SYMBOL(blk_dump_rq_flags);
1084
1085void blk_recount_segments(request_queue_t *q, struct bio *bio)
1086{
1087 struct bio_vec *bv, *bvprv = NULL;
1088 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1089 int high, highprv = 1;
1090
1091 if (unlikely(!bio->bi_io_vec))
1092 return;
1093
1094 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1095 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1096 bio_for_each_segment(bv, bio, i) {
1097 /*
1098 * the trick here is making sure that a high page is never
1099 * considered part of another segment, since that might
1100 * change with the bounce page.
1101 */
1102 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1103 if (high || highprv)
1104 goto new_hw_segment;
1105 if (cluster) {
1106 if (seg_size + bv->bv_len > q->max_segment_size)
1107 goto new_segment;
1108 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1109 goto new_segment;
1110 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1111 goto new_segment;
1112 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1113 goto new_hw_segment;
1114
1115 seg_size += bv->bv_len;
1116 hw_seg_size += bv->bv_len;
1117 bvprv = bv;
1118 continue;
1119 }
1120new_segment:
1121 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1122 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1123 hw_seg_size += bv->bv_len;
1124 } else {
1125new_hw_segment:
1126 if (hw_seg_size > bio->bi_hw_front_size)
1127 bio->bi_hw_front_size = hw_seg_size;
1128 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1129 nr_hw_segs++;
1130 }
1131
1132 nr_phys_segs++;
1133 bvprv = bv;
1134 seg_size = bv->bv_len;
1135 highprv = high;
1136 }
1137 if (hw_seg_size > bio->bi_hw_back_size)
1138 bio->bi_hw_back_size = hw_seg_size;
1139 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1140 bio->bi_hw_front_size = hw_seg_size;
1141 bio->bi_phys_segments = nr_phys_segs;
1142 bio->bi_hw_segments = nr_hw_segs;
1143 bio->bi_flags |= (1 << BIO_SEG_VALID);
1144}
1145
1146
1147int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1148 struct bio *nxt)
1149{
1150 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1151 return 0;
1152
1153 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1154 return 0;
1155 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1156 return 0;
1157
1158 /*
1159 * bio and nxt are contigous in memory, check if the queue allows
1160 * these two to be merged into one
1161 */
1162 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1163 return 1;
1164
1165 return 0;
1166}
1167
1168EXPORT_SYMBOL(blk_phys_contig_segment);
1169
1170int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1171 struct bio *nxt)
1172{
1173 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1174 blk_recount_segments(q, bio);
1175 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1176 blk_recount_segments(q, nxt);
1177 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1178 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1179 return 0;
1180 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1181 return 0;
1182
1183 return 1;
1184}
1185
1186EXPORT_SYMBOL(blk_hw_contig_segment);
1187
1188/*
1189 * map a request to scatterlist, return number of sg entries setup. Caller
1190 * must make sure sg can hold rq->nr_phys_segments entries
1191 */
1192int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1193{
1194 struct bio_vec *bvec, *bvprv;
1195 struct bio *bio;
1196 int nsegs, i, cluster;
1197
1198 nsegs = 0;
1199 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1200
1201 /*
1202 * for each bio in rq
1203 */
1204 bvprv = NULL;
1205 rq_for_each_bio(bio, rq) {
1206 /*
1207 * for each segment in bio
1208 */
1209 bio_for_each_segment(bvec, bio, i) {
1210 int nbytes = bvec->bv_len;
1211
1212 if (bvprv && cluster) {
1213 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1214 goto new_segment;
1215
1216 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1217 goto new_segment;
1218 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1219 goto new_segment;
1220
1221 sg[nsegs - 1].length += nbytes;
1222 } else {
1223new_segment:
1224 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1225 sg[nsegs].page = bvec->bv_page;
1226 sg[nsegs].length = nbytes;
1227 sg[nsegs].offset = bvec->bv_offset;
1228
1229 nsegs++;
1230 }
1231 bvprv = bvec;
1232 } /* segments in bio */
1233 } /* bios in rq */
1234
1235 return nsegs;
1236}
1237
1238EXPORT_SYMBOL(blk_rq_map_sg);
1239
1240/*
1241 * the standard queue merge functions, can be overridden with device
1242 * specific ones if so desired
1243 */
1244
1245static inline int ll_new_mergeable(request_queue_t *q,
1246 struct request *req,
1247 struct bio *bio)
1248{
1249 int nr_phys_segs = bio_phys_segments(q, bio);
1250
1251 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1252 req->flags |= REQ_NOMERGE;
1253 if (req == q->last_merge)
1254 q->last_merge = NULL;
1255 return 0;
1256 }
1257
1258 /*
1259 * A hw segment is just getting larger, bump just the phys
1260 * counter.
1261 */
1262 req->nr_phys_segments += nr_phys_segs;
1263 return 1;
1264}
1265
1266static inline int ll_new_hw_segment(request_queue_t *q,
1267 struct request *req,
1268 struct bio *bio)
1269{
1270 int nr_hw_segs = bio_hw_segments(q, bio);
1271 int nr_phys_segs = bio_phys_segments(q, bio);
1272
1273 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1274 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1275 req->flags |= REQ_NOMERGE;
1276 if (req == q->last_merge)
1277 q->last_merge = NULL;
1278 return 0;
1279 }
1280
1281 /*
1282 * This will form the start of a new hw segment. Bump both
1283 * counters.
1284 */
1285 req->nr_hw_segments += nr_hw_segs;
1286 req->nr_phys_segments += nr_phys_segs;
1287 return 1;
1288}
1289
1290static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1291 struct bio *bio)
1292{
1293 int len;
1294
1295 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1296 req->flags |= REQ_NOMERGE;
1297 if (req == q->last_merge)
1298 q->last_merge = NULL;
1299 return 0;
1300 }
1301 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1302 blk_recount_segments(q, req->biotail);
1303 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1304 blk_recount_segments(q, bio);
1305 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1306 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1307 !BIOVEC_VIRT_OVERSIZE(len)) {
1308 int mergeable = ll_new_mergeable(q, req, bio);
1309
1310 if (mergeable) {
1311 if (req->nr_hw_segments == 1)
1312 req->bio->bi_hw_front_size = len;
1313 if (bio->bi_hw_segments == 1)
1314 bio->bi_hw_back_size = len;
1315 }
1316 return mergeable;
1317 }
1318
1319 return ll_new_hw_segment(q, req, bio);
1320}
1321
1322static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1323 struct bio *bio)
1324{
1325 int len;
1326
1327 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1328 req->flags |= REQ_NOMERGE;
1329 if (req == q->last_merge)
1330 q->last_merge = NULL;
1331 return 0;
1332 }
1333 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1334 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1335 blk_recount_segments(q, bio);
1336 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1337 blk_recount_segments(q, req->bio);
1338 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1339 !BIOVEC_VIRT_OVERSIZE(len)) {
1340 int mergeable = ll_new_mergeable(q, req, bio);
1341
1342 if (mergeable) {
1343 if (bio->bi_hw_segments == 1)
1344 bio->bi_hw_front_size = len;
1345 if (req->nr_hw_segments == 1)
1346 req->biotail->bi_hw_back_size = len;
1347 }
1348 return mergeable;
1349 }
1350
1351 return ll_new_hw_segment(q, req, bio);
1352}
1353
1354static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1355 struct request *next)
1356{
1357 int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
1358 int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1359
1360 /*
1361 * First check if the either of the requests are re-queued
1362 * requests. Can't merge them if they are.
1363 */
1364 if (req->special || next->special)
1365 return 0;
1366
1367 /*
1368 * Will it become to large?
1369 */
1370 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1371 return 0;
1372
1373 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1374 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1375 total_phys_segments--;
1376
1377 if (total_phys_segments > q->max_phys_segments)
1378 return 0;
1379
1380 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1381 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1382 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1383 /*
1384 * propagate the combined length to the end of the requests
1385 */
1386 if (req->nr_hw_segments == 1)
1387 req->bio->bi_hw_front_size = len;
1388 if (next->nr_hw_segments == 1)
1389 next->biotail->bi_hw_back_size = len;
1390 total_hw_segments--;
1391 }
1392
1393 if (total_hw_segments > q->max_hw_segments)
1394 return 0;
1395
1396 /* Merge is OK... */
1397 req->nr_phys_segments = total_phys_segments;
1398 req->nr_hw_segments = total_hw_segments;
1399 return 1;
1400}
1401
1402/*
1403 * "plug" the device if there are no outstanding requests: this will
1404 * force the transfer to start only after we have put all the requests
1405 * on the list.
1406 *
1407 * This is called with interrupts off and no requests on the queue and
1408 * with the queue lock held.
1409 */
1410void blk_plug_device(request_queue_t *q)
1411{
1412 WARN_ON(!irqs_disabled());
1413
1414 /*
1415 * don't plug a stopped queue, it must be paired with blk_start_queue()
1416 * which will restart the queueing
1417 */
1418 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1419 return;
1420
1421 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1422 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1423}
1424
1425EXPORT_SYMBOL(blk_plug_device);
1426
1427/*
1428 * remove the queue from the plugged list, if present. called with
1429 * queue lock held and interrupts disabled.
1430 */
1431int blk_remove_plug(request_queue_t *q)
1432{
1433 WARN_ON(!irqs_disabled());
1434
1435 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1436 return 0;
1437
1438 del_timer(&q->unplug_timer);
1439 return 1;
1440}
1441
1442EXPORT_SYMBOL(blk_remove_plug);
1443
1444/*
1445 * remove the plug and let it rip..
1446 */
1447void __generic_unplug_device(request_queue_t *q)
1448{
1449 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1450 return;
1451
1452 if (!blk_remove_plug(q))
1453 return;
1454
1455 /*
1456 * was plugged, fire request_fn if queue has stuff to do
1457 */
1458 if (elv_next_request(q))
1459 q->request_fn(q);
1460}
1461EXPORT_SYMBOL(__generic_unplug_device);
1462
1463/**
1464 * generic_unplug_device - fire a request queue
1465 * @q: The &request_queue_t in question
1466 *
1467 * Description:
1468 * Linux uses plugging to build bigger requests queues before letting
1469 * the device have at them. If a queue is plugged, the I/O scheduler
1470 * is still adding and merging requests on the queue. Once the queue
1471 * gets unplugged, the request_fn defined for the queue is invoked and
1472 * transfers started.
1473 **/
1474void generic_unplug_device(request_queue_t *q)
1475{
1476 spin_lock_irq(q->queue_lock);
1477 __generic_unplug_device(q);
1478 spin_unlock_irq(q->queue_lock);
1479}
1480EXPORT_SYMBOL(generic_unplug_device);
1481
1482static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1483 struct page *page)
1484{
1485 request_queue_t *q = bdi->unplug_io_data;
1486
1487 /*
1488 * devices don't necessarily have an ->unplug_fn defined
1489 */
1490 if (q->unplug_fn)
1491 q->unplug_fn(q);
1492}
1493
1494static void blk_unplug_work(void *data)
1495{
1496 request_queue_t *q = data;
1497
1498 q->unplug_fn(q);
1499}
1500
1501static void blk_unplug_timeout(unsigned long data)
1502{
1503 request_queue_t *q = (request_queue_t *)data;
1504
1505 kblockd_schedule_work(&q->unplug_work);
1506}
1507
1508/**
1509 * blk_start_queue - restart a previously stopped queue
1510 * @q: The &request_queue_t in question
1511 *
1512 * Description:
1513 * blk_start_queue() will clear the stop flag on the queue, and call
1514 * the request_fn for the queue if it was in a stopped state when
1515 * entered. Also see blk_stop_queue(). Queue lock must be held.
1516 **/
1517void blk_start_queue(request_queue_t *q)
1518{
1519 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1520
1521 /*
1522 * one level of recursion is ok and is much faster than kicking
1523 * the unplug handling
1524 */
1525 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1526 q->request_fn(q);
1527 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1528 } else {
1529 blk_plug_device(q);
1530 kblockd_schedule_work(&q->unplug_work);
1531 }
1532}
1533
1534EXPORT_SYMBOL(blk_start_queue);
1535
1536/**
1537 * blk_stop_queue - stop a queue
1538 * @q: The &request_queue_t in question
1539 *
1540 * Description:
1541 * The Linux block layer assumes that a block driver will consume all
1542 * entries on the request queue when the request_fn strategy is called.
1543 * Often this will not happen, because of hardware limitations (queue
1544 * depth settings). If a device driver gets a 'queue full' response,
1545 * or if it simply chooses not to queue more I/O at one point, it can
1546 * call this function to prevent the request_fn from being called until
1547 * the driver has signalled it's ready to go again. This happens by calling
1548 * blk_start_queue() to restart queue operations. Queue lock must be held.
1549 **/
1550void blk_stop_queue(request_queue_t *q)
1551{
1552 blk_remove_plug(q);
1553 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1554}
1555EXPORT_SYMBOL(blk_stop_queue);
1556
1557/**
1558 * blk_sync_queue - cancel any pending callbacks on a queue
1559 * @q: the queue
1560 *
1561 * Description:
1562 * The block layer may perform asynchronous callback activity
1563 * on a queue, such as calling the unplug function after a timeout.
1564 * A block device may call blk_sync_queue to ensure that any
1565 * such activity is cancelled, thus allowing it to release resources
1566 * the the callbacks might use. The caller must already have made sure
1567 * that its ->make_request_fn will not re-add plugging prior to calling
1568 * this function.
1569 *
1570 */
1571void blk_sync_queue(struct request_queue *q)
1572{
1573 del_timer_sync(&q->unplug_timer);
1574 kblockd_flush();
1575}
1576EXPORT_SYMBOL(blk_sync_queue);
1577
1578/**
1579 * blk_run_queue - run a single device queue
1580 * @q: The queue to run
1581 */
1582void blk_run_queue(struct request_queue *q)
1583{
1584 unsigned long flags;
1585
1586 spin_lock_irqsave(q->queue_lock, flags);
1587 blk_remove_plug(q);
a2997382
KC
1588 if (!elv_queue_empty(q))
1589 q->request_fn(q);
1da177e4
LT
1590 spin_unlock_irqrestore(q->queue_lock, flags);
1591}
1592EXPORT_SYMBOL(blk_run_queue);
1593
1594/**
1595 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1596 * @q: the request queue to be released
1597 *
1598 * Description:
1599 * blk_cleanup_queue is the pair to blk_init_queue() or
1600 * blk_queue_make_request(). It should be called when a request queue is
1601 * being released; typically when a block device is being de-registered.
1602 * Currently, its primary task it to free all the &struct request
1603 * structures that were allocated to the queue and the queue itself.
1604 *
1605 * Caveat:
1606 * Hopefully the low level driver will have finished any
1607 * outstanding requests first...
1608 **/
1609void blk_cleanup_queue(request_queue_t * q)
1610{
1611 struct request_list *rl = &q->rq;
1612
1613 if (!atomic_dec_and_test(&q->refcnt))
1614 return;
1615
1616 if (q->elevator)
1617 elevator_exit(q->elevator);
1618
1619 blk_sync_queue(q);
1620
1621 if (rl->rq_pool)
1622 mempool_destroy(rl->rq_pool);
1623
1624 if (q->queue_tags)
1625 __blk_queue_free_tags(q);
1626
1627 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1628
1629 kmem_cache_free(requestq_cachep, q);
1630}
1631
1632EXPORT_SYMBOL(blk_cleanup_queue);
1633
1634static int blk_init_free_list(request_queue_t *q)
1635{
1636 struct request_list *rl = &q->rq;
1637
1638 rl->count[READ] = rl->count[WRITE] = 0;
1639 rl->starved[READ] = rl->starved[WRITE] = 0;
1640 init_waitqueue_head(&rl->wait[READ]);
1641 init_waitqueue_head(&rl->wait[WRITE]);
1642 init_waitqueue_head(&rl->drain);
1643
1946089a
CL
1644 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1645 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1646
1647 if (!rl->rq_pool)
1648 return -ENOMEM;
1649
1650 return 0;
1651}
1652
1653static int __make_request(request_queue_t *, struct bio *);
1654
1655request_queue_t *blk_alloc_queue(int gfp_mask)
1656{
1946089a
CL
1657 return blk_alloc_queue_node(gfp_mask, -1);
1658}
1659EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1660
1946089a
CL
1661request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
1662{
1663 request_queue_t *q;
1664
1665 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1da177e4
LT
1666 if (!q)
1667 return NULL;
1668
1669 memset(q, 0, sizeof(*q));
1670 init_timer(&q->unplug_timer);
1671 atomic_set(&q->refcnt, 1);
1672
1673 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1674 q->backing_dev_info.unplug_io_data = q;
1675
1676 return q;
1677}
1946089a 1678EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1679
1680/**
1681 * blk_init_queue - prepare a request queue for use with a block device
1682 * @rfn: The function to be called to process requests that have been
1683 * placed on the queue.
1684 * @lock: Request queue spin lock
1685 *
1686 * Description:
1687 * If a block device wishes to use the standard request handling procedures,
1688 * which sorts requests and coalesces adjacent requests, then it must
1689 * call blk_init_queue(). The function @rfn will be called when there
1690 * are requests on the queue that need to be processed. If the device
1691 * supports plugging, then @rfn may not be called immediately when requests
1692 * are available on the queue, but may be called at some time later instead.
1693 * Plugged queues are generally unplugged when a buffer belonging to one
1694 * of the requests on the queue is needed, or due to memory pressure.
1695 *
1696 * @rfn is not required, or even expected, to remove all requests off the
1697 * queue, but only as many as it can handle at a time. If it does leave
1698 * requests on the queue, it is responsible for arranging that the requests
1699 * get dealt with eventually.
1700 *
1701 * The queue spin lock must be held while manipulating the requests on the
1702 * request queue.
1703 *
1704 * Function returns a pointer to the initialized request queue, or NULL if
1705 * it didn't succeed.
1706 *
1707 * Note:
1708 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1709 * when the block device is deactivated (such as at module unload).
1710 **/
1946089a 1711
1da177e4
LT
1712request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1713{
1946089a
CL
1714 return blk_init_queue_node(rfn, lock, -1);
1715}
1716EXPORT_SYMBOL(blk_init_queue);
1717
1718request_queue_t *
1719blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1720{
1721 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1722
1723 if (!q)
1724 return NULL;
1725
1946089a 1726 q->node = node_id;
1da177e4
LT
1727 if (blk_init_free_list(q))
1728 goto out_init;
1729
152587de
JA
1730 /*
1731 * if caller didn't supply a lock, they get per-queue locking with
1732 * our embedded lock
1733 */
1734 if (!lock) {
1735 spin_lock_init(&q->__queue_lock);
1736 lock = &q->__queue_lock;
1737 }
1738
1da177e4
LT
1739 q->request_fn = rfn;
1740 q->back_merge_fn = ll_back_merge_fn;
1741 q->front_merge_fn = ll_front_merge_fn;
1742 q->merge_requests_fn = ll_merge_requests_fn;
1743 q->prep_rq_fn = NULL;
1744 q->unplug_fn = generic_unplug_device;
1745 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1746 q->queue_lock = lock;
1747
1748 blk_queue_segment_boundary(q, 0xffffffff);
1749
1750 blk_queue_make_request(q, __make_request);
1751 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1752
1753 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1754 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1755
1756 /*
1757 * all done
1758 */
1759 if (!elevator_init(q, NULL)) {
1760 blk_queue_congestion_threshold(q);
1761 return q;
1762 }
1763
1764 blk_cleanup_queue(q);
1765out_init:
1766 kmem_cache_free(requestq_cachep, q);
1767 return NULL;
1768}
1946089a 1769EXPORT_SYMBOL(blk_init_queue_node);
1da177e4
LT
1770
1771int blk_get_queue(request_queue_t *q)
1772{
1773 if (!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
1774 atomic_inc(&q->refcnt);
1775 return 0;
1776 }
1777
1778 return 1;
1779}
1780
1781EXPORT_SYMBOL(blk_get_queue);
1782
1783static inline void blk_free_request(request_queue_t *q, struct request *rq)
1784{
1785 elv_put_request(q, rq);
1786 mempool_free(rq, q->rq.rq_pool);
1787}
1788
1789static inline struct request *blk_alloc_request(request_queue_t *q, int rw,
1790 int gfp_mask)
1791{
1792 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1793
1794 if (!rq)
1795 return NULL;
1796
1797 /*
1798 * first three bits are identical in rq->flags and bio->bi_rw,
1799 * see bio.h and blkdev.h
1800 */
1801 rq->flags = rw;
1802
1803 if (!elv_set_request(q, rq, gfp_mask))
1804 return rq;
1805
1806 mempool_free(rq, q->rq.rq_pool);
1807 return NULL;
1808}
1809
1810/*
1811 * ioc_batching returns true if the ioc is a valid batching request and
1812 * should be given priority access to a request.
1813 */
1814static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1815{
1816 if (!ioc)
1817 return 0;
1818
1819 /*
1820 * Make sure the process is able to allocate at least 1 request
1821 * even if the batch times out, otherwise we could theoretically
1822 * lose wakeups.
1823 */
1824 return ioc->nr_batch_requests == q->nr_batching ||
1825 (ioc->nr_batch_requests > 0
1826 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1827}
1828
1829/*
1830 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1831 * will cause the process to be a "batcher" on all queues in the system. This
1832 * is the behaviour we want though - once it gets a wakeup it should be given
1833 * a nice run.
1834 */
1835void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1836{
1837 if (!ioc || ioc_batching(q, ioc))
1838 return;
1839
1840 ioc->nr_batch_requests = q->nr_batching;
1841 ioc->last_waited = jiffies;
1842}
1843
1844static void __freed_request(request_queue_t *q, int rw)
1845{
1846 struct request_list *rl = &q->rq;
1847
1848 if (rl->count[rw] < queue_congestion_off_threshold(q))
1849 clear_queue_congested(q, rw);
1850
1851 if (rl->count[rw] + 1 <= q->nr_requests) {
1852 smp_mb();
1853 if (waitqueue_active(&rl->wait[rw]))
1854 wake_up(&rl->wait[rw]);
1855
1856 blk_clear_queue_full(q, rw);
1857 }
1858}
1859
1860/*
1861 * A request has just been released. Account for it, update the full and
1862 * congestion status, wake up any waiters. Called under q->queue_lock.
1863 */
1864static void freed_request(request_queue_t *q, int rw)
1865{
1866 struct request_list *rl = &q->rq;
1867
1868 rl->count[rw]--;
1869
1870 __freed_request(q, rw);
1871
1872 if (unlikely(rl->starved[rw ^ 1]))
1873 __freed_request(q, rw ^ 1);
1874
1875 if (!rl->count[READ] && !rl->count[WRITE]) {
1876 smp_mb();
1877 if (unlikely(waitqueue_active(&rl->drain)))
1878 wake_up(&rl->drain);
1879 }
1880}
1881
1882#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1883/*
1884 * Get a free request, queue_lock must not be held
1885 */
1886static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
1887{
1888 struct request *rq = NULL;
1889 struct request_list *rl = &q->rq;
1890 struct io_context *ioc = get_io_context(gfp_mask);
1891
1892 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1893 goto out;
1894
1895 spin_lock_irq(q->queue_lock);
1896 if (rl->count[rw]+1 >= q->nr_requests) {
1897 /*
1898 * The queue will fill after this allocation, so set it as
1899 * full, and mark this process as "batching". This process
1900 * will be allowed to complete a batch of requests, others
1901 * will be blocked.
1902 */
1903 if (!blk_queue_full(q, rw)) {
1904 ioc_set_batching(q, ioc);
1905 blk_set_queue_full(q, rw);
1906 }
1907 }
1908
1909 switch (elv_may_queue(q, rw)) {
1910 case ELV_MQUEUE_NO:
1911 goto rq_starved;
1912 case ELV_MQUEUE_MAY:
1913 break;
1914 case ELV_MQUEUE_MUST:
1915 goto get_rq;
1916 }
1917
1918 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1919 /*
1920 * The queue is full and the allocating process is not a
1921 * "batcher", and not exempted by the IO scheduler
1922 */
1923 spin_unlock_irq(q->queue_lock);
1924 goto out;
1925 }
1926
1927get_rq:
1928 rl->count[rw]++;
1929 rl->starved[rw] = 0;
1930 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1931 set_queue_congested(q, rw);
1932 spin_unlock_irq(q->queue_lock);
1933
1934 rq = blk_alloc_request(q, rw, gfp_mask);
1935 if (!rq) {
1936 /*
1937 * Allocation failed presumably due to memory. Undo anything
1938 * we might have messed up.
1939 *
1940 * Allocating task should really be put onto the front of the
1941 * wait queue, but this is pretty rare.
1942 */
1943 spin_lock_irq(q->queue_lock);
1944 freed_request(q, rw);
1945
1946 /*
1947 * in the very unlikely event that allocation failed and no
1948 * requests for this direction was pending, mark us starved
1949 * so that freeing of a request in the other direction will
1950 * notice us. another possible fix would be to split the
1951 * rq mempool into READ and WRITE
1952 */
1953rq_starved:
1954 if (unlikely(rl->count[rw] == 0))
1955 rl->starved[rw] = 1;
1956
1957 spin_unlock_irq(q->queue_lock);
1958 goto out;
1959 }
1960
1961 if (ioc_batching(q, ioc))
1962 ioc->nr_batch_requests--;
1963
1964 rq_init(q, rq);
1965 rq->rl = rl;
1966out:
1967 put_io_context(ioc);
1968 return rq;
1969}
1970
1971/*
1972 * No available requests for this queue, unplug the device and wait for some
1973 * requests to become available.
1974 */
1975static struct request *get_request_wait(request_queue_t *q, int rw)
1976{
1977 DEFINE_WAIT(wait);
1978 struct request *rq;
1979
1980 generic_unplug_device(q);
1981 do {
1982 struct request_list *rl = &q->rq;
1983
1984 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1985 TASK_UNINTERRUPTIBLE);
1986
1987 rq = get_request(q, rw, GFP_NOIO);
1988
1989 if (!rq) {
1990 struct io_context *ioc;
1991
1992 io_schedule();
1993
1994 /*
1995 * After sleeping, we become a "batching" process and
1996 * will be able to allocate at least one request, and
1997 * up to a big batch of them for a small period time.
1998 * See ioc_batching, ioc_set_batching
1999 */
2000 ioc = get_io_context(GFP_NOIO);
2001 ioc_set_batching(q, ioc);
2002 put_io_context(ioc);
2003 }
2004 finish_wait(&rl->wait[rw], &wait);
2005 } while (!rq);
2006
2007 return rq;
2008}
2009
2010struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
2011{
2012 struct request *rq;
2013
2014 BUG_ON(rw != READ && rw != WRITE);
2015
2016 if (gfp_mask & __GFP_WAIT)
2017 rq = get_request_wait(q, rw);
2018 else
2019 rq = get_request(q, rw, gfp_mask);
2020
2021 return rq;
2022}
2023
2024EXPORT_SYMBOL(blk_get_request);
2025
2026/**
2027 * blk_requeue_request - put a request back on queue
2028 * @q: request queue where request should be inserted
2029 * @rq: request to be inserted
2030 *
2031 * Description:
2032 * Drivers often keep queueing requests until the hardware cannot accept
2033 * more, when that condition happens we need to put the request back
2034 * on the queue. Must be called with queue lock held.
2035 */
2036void blk_requeue_request(request_queue_t *q, struct request *rq)
2037{
2038 if (blk_rq_tagged(rq))
2039 blk_queue_end_tag(q, rq);
2040
2041 elv_requeue_request(q, rq);
2042}
2043
2044EXPORT_SYMBOL(blk_requeue_request);
2045
2046/**
2047 * blk_insert_request - insert a special request in to a request queue
2048 * @q: request queue where request should be inserted
2049 * @rq: request to be inserted
2050 * @at_head: insert request at head or tail of queue
2051 * @data: private data
1da177e4
LT
2052 *
2053 * Description:
2054 * Many block devices need to execute commands asynchronously, so they don't
2055 * block the whole kernel from preemption during request execution. This is
2056 * accomplished normally by inserting aritficial requests tagged as
2057 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2058 * scheduled for actual execution by the request queue.
2059 *
2060 * We have the option of inserting the head or the tail of the queue.
2061 * Typically we use the tail for new ioctls and so forth. We use the head
2062 * of the queue for things like a QUEUE_FULL message from a device, or a
2063 * host that is unable to accept a particular command.
2064 */
2065void blk_insert_request(request_queue_t *q, struct request *rq,
867d1191 2066 int at_head, void *data)
1da177e4 2067{
867d1191 2068 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2069 unsigned long flags;
2070
2071 /*
2072 * tell I/O scheduler that this isn't a regular read/write (ie it
2073 * must not attempt merges on this) and that it acts as a soft
2074 * barrier
2075 */
2076 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2077
2078 rq->special = data;
2079
2080 spin_lock_irqsave(q->queue_lock, flags);
2081
2082 /*
2083 * If command is tagged, release the tag
2084 */
867d1191
TH
2085 if (blk_rq_tagged(rq))
2086 blk_queue_end_tag(q, rq);
1da177e4 2087
867d1191
TH
2088 drive_stat_acct(rq, rq->nr_sectors, 1);
2089 __elv_add_request(q, rq, where, 0);
1da177e4 2090
1da177e4
LT
2091 if (blk_queue_plugged(q))
2092 __generic_unplug_device(q);
2093 else
2094 q->request_fn(q);
2095 spin_unlock_irqrestore(q->queue_lock, flags);
2096}
2097
2098EXPORT_SYMBOL(blk_insert_request);
2099
2100/**
2101 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2102 * @q: request queue where request should be inserted
2103 * @rw: READ or WRITE data
2104 * @ubuf: the user buffer
2105 * @len: length of user data
2106 *
2107 * Description:
2108 * Data will be mapped directly for zero copy io, if possible. Otherwise
2109 * a kernel bounce buffer is used.
2110 *
2111 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2112 * still in process context.
2113 *
2114 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2115 * before being submitted to the device, as pages mapped may be out of
2116 * reach. It's the callers responsibility to make sure this happens. The
2117 * original bio must be passed back in to blk_rq_unmap_user() for proper
2118 * unmapping.
2119 */
2120struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
2121 unsigned int len)
2122{
2123 unsigned long uaddr;
2124 struct request *rq;
2125 struct bio *bio;
2126
2127 if (len > (q->max_sectors << 9))
2128 return ERR_PTR(-EINVAL);
2129 if ((!len && ubuf) || (len && !ubuf))
2130 return ERR_PTR(-EINVAL);
2131
2132 rq = blk_get_request(q, rw, __GFP_WAIT);
2133 if (!rq)
2134 return ERR_PTR(-ENOMEM);
2135
2136 /*
2137 * if alignment requirement is satisfied, map in user pages for
2138 * direct dma. else, set up kernel bounce buffers
2139 */
2140 uaddr = (unsigned long) ubuf;
2141 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2142 bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
2143 else
2144 bio = bio_copy_user(q, uaddr, len, rw == READ);
2145
2146 if (!IS_ERR(bio)) {
2147 rq->bio = rq->biotail = bio;
2148 blk_rq_bio_prep(q, rq, bio);
2149
2150 rq->buffer = rq->data = NULL;
2151 rq->data_len = len;
2152 return rq;
2153 }
2154
2155 /*
2156 * bio is the err-ptr
2157 */
2158 blk_put_request(rq);
2159 return (struct request *) bio;
2160}
2161
2162EXPORT_SYMBOL(blk_rq_map_user);
2163
2164/**
2165 * blk_rq_unmap_user - unmap a request with user data
2166 * @rq: request to be unmapped
2167 * @bio: bio for the request
2168 * @ulen: length of user buffer
2169 *
2170 * Description:
2171 * Unmap a request previously mapped by blk_rq_map_user().
2172 */
2173int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
2174{
2175 int ret = 0;
2176
2177 if (bio) {
2178 if (bio_flagged(bio, BIO_USER_MAPPED))
2179 bio_unmap_user(bio);
2180 else
2181 ret = bio_uncopy_user(bio);
2182 }
2183
2184 blk_put_request(rq);
2185 return ret;
2186}
2187
2188EXPORT_SYMBOL(blk_rq_unmap_user);
2189
2190/**
2191 * blk_execute_rq - insert a request into queue for execution
2192 * @q: queue to insert the request in
2193 * @bd_disk: matching gendisk
2194 * @rq: request to insert
2195 *
2196 * Description:
2197 * Insert a fully prepared request at the back of the io scheduler queue
2198 * for execution.
2199 */
2200int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2201 struct request *rq)
2202{
2203 DECLARE_COMPLETION(wait);
2204 char sense[SCSI_SENSE_BUFFERSIZE];
2205 int err = 0;
2206
2207 rq->rq_disk = bd_disk;
2208
2209 /*
2210 * we need an extra reference to the request, so we can look at
2211 * it after io completion
2212 */
2213 rq->ref_count++;
2214
2215 if (!rq->sense) {
2216 memset(sense, 0, sizeof(sense));
2217 rq->sense = sense;
2218 rq->sense_len = 0;
2219 }
2220
2221 rq->flags |= REQ_NOMERGE;
2222 rq->waiting = &wait;
2223 rq->end_io = blk_end_sync_rq;
2224 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2225 generic_unplug_device(q);
2226 wait_for_completion(&wait);
2227 rq->waiting = NULL;
2228
2229 if (rq->errors)
2230 err = -EIO;
2231
2232 return err;
2233}
2234
2235EXPORT_SYMBOL(blk_execute_rq);
2236
2237/**
2238 * blkdev_issue_flush - queue a flush
2239 * @bdev: blockdev to issue flush for
2240 * @error_sector: error sector
2241 *
2242 * Description:
2243 * Issue a flush for the block device in question. Caller can supply
2244 * room for storing the error offset in case of a flush error, if they
2245 * wish to. Caller must run wait_for_completion() on its own.
2246 */
2247int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2248{
2249 request_queue_t *q;
2250
2251 if (bdev->bd_disk == NULL)
2252 return -ENXIO;
2253
2254 q = bdev_get_queue(bdev);
2255 if (!q)
2256 return -ENXIO;
2257 if (!q->issue_flush_fn)
2258 return -EOPNOTSUPP;
2259
2260 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2261}
2262
2263EXPORT_SYMBOL(blkdev_issue_flush);
2264
2265/**
2266 * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
2267 * @q: device queue
2268 * @disk: gendisk
2269 * @error_sector: error offset
2270 *
2271 * Description:
2272 * Devices understanding the SCSI command set, can use this function as
2273 * a helper for issuing a cache flush. Note: driver is required to store
2274 * the error offset (in case of error flushing) in ->sector of struct
2275 * request.
2276 */
2277int blkdev_scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
2278 sector_t *error_sector)
2279{
2280 struct request *rq = blk_get_request(q, WRITE, __GFP_WAIT);
2281 int ret;
2282
2283 rq->flags |= REQ_BLOCK_PC | REQ_SOFTBARRIER;
2284 rq->sector = 0;
2285 memset(rq->cmd, 0, sizeof(rq->cmd));
2286 rq->cmd[0] = 0x35;
2287 rq->cmd_len = 12;
2288 rq->data = NULL;
2289 rq->data_len = 0;
2290 rq->timeout = 60 * HZ;
2291
2292 ret = blk_execute_rq(q, disk, rq);
2293
2294 if (ret && error_sector)
2295 *error_sector = rq->sector;
2296
2297 blk_put_request(rq);
2298 return ret;
2299}
2300
2301EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn);
2302
2303void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2304{
2305 int rw = rq_data_dir(rq);
2306
2307 if (!blk_fs_request(rq) || !rq->rq_disk)
2308 return;
2309
2310 if (rw == READ) {
2311 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2312 if (!new_io)
2313 __disk_stat_inc(rq->rq_disk, read_merges);
2314 } else if (rw == WRITE) {
2315 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2316 if (!new_io)
2317 __disk_stat_inc(rq->rq_disk, write_merges);
2318 }
2319 if (new_io) {
2320 disk_round_stats(rq->rq_disk);
2321 rq->rq_disk->in_flight++;
2322 }
2323}
2324
2325/*
2326 * add-request adds a request to the linked list.
2327 * queue lock is held and interrupts disabled, as we muck with the
2328 * request queue list.
2329 */
2330static inline void add_request(request_queue_t * q, struct request * req)
2331{
2332 drive_stat_acct(req, req->nr_sectors, 1);
2333
2334 if (q->activity_fn)
2335 q->activity_fn(q->activity_data, rq_data_dir(req));
2336
2337 /*
2338 * elevator indicated where it wants this request to be
2339 * inserted at elevator_merge time
2340 */
2341 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2342}
2343
2344/*
2345 * disk_round_stats() - Round off the performance stats on a struct
2346 * disk_stats.
2347 *
2348 * The average IO queue length and utilisation statistics are maintained
2349 * by observing the current state of the queue length and the amount of
2350 * time it has been in this state for.
2351 *
2352 * Normally, that accounting is done on IO completion, but that can result
2353 * in more than a second's worth of IO being accounted for within any one
2354 * second, leading to >100% utilisation. To deal with that, we call this
2355 * function to do a round-off before returning the results when reading
2356 * /proc/diskstats. This accounts immediately for all queue usage up to
2357 * the current jiffies and restarts the counters again.
2358 */
2359void disk_round_stats(struct gendisk *disk)
2360{
2361 unsigned long now = jiffies;
2362
2363 __disk_stat_add(disk, time_in_queue,
2364 disk->in_flight * (now - disk->stamp));
2365 disk->stamp = now;
2366
2367 if (disk->in_flight)
2368 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2369 disk->stamp_idle = now;
2370}
2371
2372/*
2373 * queue lock must be held
2374 */
2375static void __blk_put_request(request_queue_t *q, struct request *req)
2376{
2377 struct request_list *rl = req->rl;
2378
2379 if (unlikely(!q))
2380 return;
2381 if (unlikely(--req->ref_count))
2382 return;
2383
2384 req->rq_status = RQ_INACTIVE;
2385 req->q = NULL;
2386 req->rl = NULL;
2387
2388 /*
2389 * Request may not have originated from ll_rw_blk. if not,
2390 * it didn't come out of our reserved rq pools
2391 */
2392 if (rl) {
2393 int rw = rq_data_dir(req);
2394
2395 elv_completed_request(q, req);
2396
2397 BUG_ON(!list_empty(&req->queuelist));
2398
2399 blk_free_request(q, req);
2400 freed_request(q, rw);
2401 }
2402}
2403
2404void blk_put_request(struct request *req)
2405{
2406 /*
2407 * if req->rl isn't set, this request didnt originate from the
2408 * block layer, so it's safe to just disregard it
2409 */
2410 if (req->rl) {
2411 unsigned long flags;
2412 request_queue_t *q = req->q;
2413
2414 spin_lock_irqsave(q->queue_lock, flags);
2415 __blk_put_request(q, req);
2416 spin_unlock_irqrestore(q->queue_lock, flags);
2417 }
2418}
2419
2420EXPORT_SYMBOL(blk_put_request);
2421
2422/**
2423 * blk_end_sync_rq - executes a completion event on a request
2424 * @rq: request to complete
2425 */
2426void blk_end_sync_rq(struct request *rq)
2427{
2428 struct completion *waiting = rq->waiting;
2429
2430 rq->waiting = NULL;
2431 __blk_put_request(rq->q, rq);
2432
2433 /*
2434 * complete last, if this is a stack request the process (and thus
2435 * the rq pointer) could be invalid right after this complete()
2436 */
2437 complete(waiting);
2438}
2439EXPORT_SYMBOL(blk_end_sync_rq);
2440
2441/**
2442 * blk_congestion_wait - wait for a queue to become uncongested
2443 * @rw: READ or WRITE
2444 * @timeout: timeout in jiffies
2445 *
2446 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2447 * If no queues are congested then just wait for the next request to be
2448 * returned.
2449 */
2450long blk_congestion_wait(int rw, long timeout)
2451{
2452 long ret;
2453 DEFINE_WAIT(wait);
2454 wait_queue_head_t *wqh = &congestion_wqh[rw];
2455
2456 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2457 ret = io_schedule_timeout(timeout);
2458 finish_wait(wqh, &wait);
2459 return ret;
2460}
2461
2462EXPORT_SYMBOL(blk_congestion_wait);
2463
2464/*
2465 * Has to be called with the request spinlock acquired
2466 */
2467static int attempt_merge(request_queue_t *q, struct request *req,
2468 struct request *next)
2469{
2470 if (!rq_mergeable(req) || !rq_mergeable(next))
2471 return 0;
2472
2473 /*
2474 * not contigious
2475 */
2476 if (req->sector + req->nr_sectors != next->sector)
2477 return 0;
2478
2479 if (rq_data_dir(req) != rq_data_dir(next)
2480 || req->rq_disk != next->rq_disk
2481 || next->waiting || next->special)
2482 return 0;
2483
2484 /*
2485 * If we are allowed to merge, then append bio list
2486 * from next to rq and release next. merge_requests_fn
2487 * will have updated segment counts, update sector
2488 * counts here.
2489 */
2490 if (!q->merge_requests_fn(q, req, next))
2491 return 0;
2492
2493 /*
2494 * At this point we have either done a back merge
2495 * or front merge. We need the smaller start_time of
2496 * the merged requests to be the current request
2497 * for accounting purposes.
2498 */
2499 if (time_after(req->start_time, next->start_time))
2500 req->start_time = next->start_time;
2501
2502 req->biotail->bi_next = next->bio;
2503 req->biotail = next->biotail;
2504
2505 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2506
2507 elv_merge_requests(q, req, next);
2508
2509 if (req->rq_disk) {
2510 disk_round_stats(req->rq_disk);
2511 req->rq_disk->in_flight--;
2512 }
2513
2514 __blk_put_request(q, next);
2515 return 1;
2516}
2517
2518static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2519{
2520 struct request *next = elv_latter_request(q, rq);
2521
2522 if (next)
2523 return attempt_merge(q, rq, next);
2524
2525 return 0;
2526}
2527
2528static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2529{
2530 struct request *prev = elv_former_request(q, rq);
2531
2532 if (prev)
2533 return attempt_merge(q, prev, rq);
2534
2535 return 0;
2536}
2537
2538/**
2539 * blk_attempt_remerge - attempt to remerge active head with next request
2540 * @q: The &request_queue_t belonging to the device
2541 * @rq: The head request (usually)
2542 *
2543 * Description:
2544 * For head-active devices, the queue can easily be unplugged so quickly
2545 * that proper merging is not done on the front request. This may hurt
2546 * performance greatly for some devices. The block layer cannot safely
2547 * do merging on that first request for these queues, but the driver can
2548 * call this function and make it happen any way. Only the driver knows
2549 * when it is safe to do so.
2550 **/
2551void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2552{
2553 unsigned long flags;
2554
2555 spin_lock_irqsave(q->queue_lock, flags);
2556 attempt_back_merge(q, rq);
2557 spin_unlock_irqrestore(q->queue_lock, flags);
2558}
2559
2560EXPORT_SYMBOL(blk_attempt_remerge);
2561
2562/*
2563 * Non-locking blk_attempt_remerge variant.
2564 */
2565void __blk_attempt_remerge(request_queue_t *q, struct request *rq)
2566{
2567 attempt_back_merge(q, rq);
2568}
2569
2570EXPORT_SYMBOL(__blk_attempt_remerge);
2571
2572static int __make_request(request_queue_t *q, struct bio *bio)
2573{
2574 struct request *req, *freereq = NULL;
4a534f93 2575 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
1da177e4
LT
2576 sector_t sector;
2577
2578 sector = bio->bi_sector;
2579 nr_sectors = bio_sectors(bio);
2580 cur_nr_sectors = bio_cur_sectors(bio);
2581
2582 rw = bio_data_dir(bio);
4a534f93 2583 sync = bio_sync(bio);
1da177e4
LT
2584
2585 /*
2586 * low level driver can indicate that it wants pages above a
2587 * certain limit bounced to low memory (ie for highmem, or even
2588 * ISA dma in theory)
2589 */
2590 blk_queue_bounce(q, &bio);
2591
2592 spin_lock_prefetch(q->queue_lock);
2593
2594 barrier = bio_barrier(bio);
2595 if (barrier && (q->ordered == QUEUE_ORDERED_NONE)) {
2596 err = -EOPNOTSUPP;
2597 goto end_io;
2598 }
2599
2600again:
2601 spin_lock_irq(q->queue_lock);
2602
2603 if (elv_queue_empty(q)) {
2604 blk_plug_device(q);
2605 goto get_rq;
2606 }
2607 if (barrier)
2608 goto get_rq;
2609
2610 el_ret = elv_merge(q, &req, bio);
2611 switch (el_ret) {
2612 case ELEVATOR_BACK_MERGE:
2613 BUG_ON(!rq_mergeable(req));
2614
2615 if (!q->back_merge_fn(q, req, bio))
2616 break;
2617
2618 req->biotail->bi_next = bio;
2619 req->biotail = bio;
2620 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2621 drive_stat_acct(req, nr_sectors, 0);
2622 if (!attempt_back_merge(q, req))
2623 elv_merged_request(q, req);
2624 goto out;
2625
2626 case ELEVATOR_FRONT_MERGE:
2627 BUG_ON(!rq_mergeable(req));
2628
2629 if (!q->front_merge_fn(q, req, bio))
2630 break;
2631
2632 bio->bi_next = req->bio;
2633 req->bio = bio;
2634
2635 /*
2636 * may not be valid. if the low level driver said
2637 * it didn't need a bounce buffer then it better
2638 * not touch req->buffer either...
2639 */
2640 req->buffer = bio_data(bio);
2641 req->current_nr_sectors = cur_nr_sectors;
2642 req->hard_cur_sectors = cur_nr_sectors;
2643 req->sector = req->hard_sector = sector;
2644 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2645 drive_stat_acct(req, nr_sectors, 0);
2646 if (!attempt_front_merge(q, req))
2647 elv_merged_request(q, req);
2648 goto out;
2649
2650 /*
2651 * elevator says don't/can't merge. get new request
2652 */
2653 case ELEVATOR_NO_MERGE:
2654 break;
2655
2656 default:
2657 printk("elevator returned crap (%d)\n", el_ret);
2658 BUG();
2659 }
2660
2661 /*
2662 * Grab a free request from the freelist - if that is empty, check
2663 * if we are doing read ahead and abort instead of blocking for
2664 * a free slot.
2665 */
2666get_rq:
2667 if (freereq) {
2668 req = freereq;
2669 freereq = NULL;
2670 } else {
2671 spin_unlock_irq(q->queue_lock);
2672 if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
2673 /*
2674 * READA bit set
2675 */
2676 err = -EWOULDBLOCK;
2677 if (bio_rw_ahead(bio))
2678 goto end_io;
2679
2680 freereq = get_request_wait(q, rw);
2681 }
2682 goto again;
2683 }
2684
2685 req->flags |= REQ_CMD;
2686
2687 /*
2688 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2689 */
2690 if (bio_rw_ahead(bio) || bio_failfast(bio))
2691 req->flags |= REQ_FAILFAST;
2692
2693 /*
2694 * REQ_BARRIER implies no merging, but lets make it explicit
2695 */
2696 if (barrier)
2697 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2698
2699 req->errors = 0;
2700 req->hard_sector = req->sector = sector;
2701 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2702 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2703 req->nr_phys_segments = bio_phys_segments(q, bio);
2704 req->nr_hw_segments = bio_hw_segments(q, bio);
2705 req->buffer = bio_data(bio); /* see ->buffer comment above */
2706 req->waiting = NULL;
2707 req->bio = req->biotail = bio;
2708 req->rq_disk = bio->bi_bdev->bd_disk;
2709 req->start_time = jiffies;
2710
2711 add_request(q, req);
2712out:
2713 if (freereq)
2714 __blk_put_request(q, freereq);
4a534f93 2715 if (sync)
1da177e4
LT
2716 __generic_unplug_device(q);
2717
2718 spin_unlock_irq(q->queue_lock);
2719 return 0;
2720
2721end_io:
2722 bio_endio(bio, nr_sectors << 9, err);
2723 return 0;
2724}
2725
2726/*
2727 * If bio->bi_dev is a partition, remap the location
2728 */
2729static inline void blk_partition_remap(struct bio *bio)
2730{
2731 struct block_device *bdev = bio->bi_bdev;
2732
2733 if (bdev != bdev->bd_contains) {
2734 struct hd_struct *p = bdev->bd_part;
2735
2736 switch (bio->bi_rw) {
2737 case READ:
2738 p->read_sectors += bio_sectors(bio);
2739 p->reads++;
2740 break;
2741 case WRITE:
2742 p->write_sectors += bio_sectors(bio);
2743 p->writes++;
2744 break;
2745 }
2746 bio->bi_sector += p->start_sect;
2747 bio->bi_bdev = bdev->bd_contains;
2748 }
2749}
2750
2751void blk_finish_queue_drain(request_queue_t *q)
2752{
2753 struct request_list *rl = &q->rq;
2754 struct request *rq;
2755
2756 spin_lock_irq(q->queue_lock);
2757 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2758
2759 while (!list_empty(&q->drain_list)) {
2760 rq = list_entry_rq(q->drain_list.next);
2761
2762 list_del_init(&rq->queuelist);
2763 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2764 }
2765
2766 spin_unlock_irq(q->queue_lock);
2767
2768 wake_up(&rl->wait[0]);
2769 wake_up(&rl->wait[1]);
2770 wake_up(&rl->drain);
2771}
2772
2773static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2774{
2775 int wait = rl->count[READ] + rl->count[WRITE];
2776
2777 if (dispatch)
2778 wait += !list_empty(&q->queue_head);
2779
2780 return wait;
2781}
2782
2783/*
2784 * We rely on the fact that only requests allocated through blk_alloc_request()
2785 * have io scheduler private data structures associated with them. Any other
2786 * type of request (allocated on stack or through kmalloc()) should not go
2787 * to the io scheduler core, but be attached to the queue head instead.
2788 */
2789void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2790{
2791 struct request_list *rl = &q->rq;
2792 DEFINE_WAIT(wait);
2793
2794 spin_lock_irq(q->queue_lock);
2795 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2796
2797 while (wait_drain(q, rl, wait_dispatch)) {
2798 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2799
2800 if (wait_drain(q, rl, wait_dispatch)) {
2801 __generic_unplug_device(q);
2802 spin_unlock_irq(q->queue_lock);
2803 io_schedule();
2804 spin_lock_irq(q->queue_lock);
2805 }
2806
2807 finish_wait(&rl->drain, &wait);
2808 }
2809
2810 spin_unlock_irq(q->queue_lock);
2811}
2812
2813/*
2814 * block waiting for the io scheduler being started again.
2815 */
2816static inline void block_wait_queue_running(request_queue_t *q)
2817{
2818 DEFINE_WAIT(wait);
2819
2820 while (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)) {
2821 struct request_list *rl = &q->rq;
2822
2823 prepare_to_wait_exclusive(&rl->drain, &wait,
2824 TASK_UNINTERRUPTIBLE);
2825
2826 /*
2827 * re-check the condition. avoids using prepare_to_wait()
2828 * in the fast path (queue is running)
2829 */
2830 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2831 io_schedule();
2832
2833 finish_wait(&rl->drain, &wait);
2834 }
2835}
2836
2837static void handle_bad_sector(struct bio *bio)
2838{
2839 char b[BDEVNAME_SIZE];
2840
2841 printk(KERN_INFO "attempt to access beyond end of device\n");
2842 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2843 bdevname(bio->bi_bdev, b),
2844 bio->bi_rw,
2845 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2846 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2847
2848 set_bit(BIO_EOF, &bio->bi_flags);
2849}
2850
2851/**
2852 * generic_make_request: hand a buffer to its device driver for I/O
2853 * @bio: The bio describing the location in memory and on the device.
2854 *
2855 * generic_make_request() is used to make I/O requests of block
2856 * devices. It is passed a &struct bio, which describes the I/O that needs
2857 * to be done.
2858 *
2859 * generic_make_request() does not return any status. The
2860 * success/failure status of the request, along with notification of
2861 * completion, is delivered asynchronously through the bio->bi_end_io
2862 * function described (one day) else where.
2863 *
2864 * The caller of generic_make_request must make sure that bi_io_vec
2865 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2866 * set to describe the device address, and the
2867 * bi_end_io and optionally bi_private are set to describe how
2868 * completion notification should be signaled.
2869 *
2870 * generic_make_request and the drivers it calls may use bi_next if this
2871 * bio happens to be merged with someone else, and may change bi_dev and
2872 * bi_sector for remaps as it sees fit. So the values of these fields
2873 * should NOT be depended on after the call to generic_make_request.
2874 */
2875void generic_make_request(struct bio *bio)
2876{
2877 request_queue_t *q;
2878 sector_t maxsector;
2879 int ret, nr_sectors = bio_sectors(bio);
2880
2881 might_sleep();
2882 /* Test device or partition size, when known. */
2883 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2884 if (maxsector) {
2885 sector_t sector = bio->bi_sector;
2886
2887 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2888 /*
2889 * This may well happen - the kernel calls bread()
2890 * without checking the size of the device, e.g., when
2891 * mounting a device.
2892 */
2893 handle_bad_sector(bio);
2894 goto end_io;
2895 }
2896 }
2897
2898 /*
2899 * Resolve the mapping until finished. (drivers are
2900 * still free to implement/resolve their own stacking
2901 * by explicitly returning 0)
2902 *
2903 * NOTE: we don't repeat the blk_size check for each new device.
2904 * Stacking drivers are expected to know what they are doing.
2905 */
2906 do {
2907 char b[BDEVNAME_SIZE];
2908
2909 q = bdev_get_queue(bio->bi_bdev);
2910 if (!q) {
2911 printk(KERN_ERR
2912 "generic_make_request: Trying to access "
2913 "nonexistent block-device %s (%Lu)\n",
2914 bdevname(bio->bi_bdev, b),
2915 (long long) bio->bi_sector);
2916end_io:
2917 bio_endio(bio, bio->bi_size, -EIO);
2918 break;
2919 }
2920
2921 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2922 printk("bio too big device %s (%u > %u)\n",
2923 bdevname(bio->bi_bdev, b),
2924 bio_sectors(bio),
2925 q->max_hw_sectors);
2926 goto end_io;
2927 }
2928
2929 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))
2930 goto end_io;
2931
2932 block_wait_queue_running(q);
2933
2934 /*
2935 * If this device has partitions, remap block n
2936 * of partition p to block n+start(p) of the disk.
2937 */
2938 blk_partition_remap(bio);
2939
2940 ret = q->make_request_fn(q, bio);
2941 } while (ret);
2942}
2943
2944EXPORT_SYMBOL(generic_make_request);
2945
2946/**
2947 * submit_bio: submit a bio to the block device layer for I/O
2948 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2949 * @bio: The &struct bio which describes the I/O
2950 *
2951 * submit_bio() is very similar in purpose to generic_make_request(), and
2952 * uses that function to do most of the work. Both are fairly rough
2953 * interfaces, @bio must be presetup and ready for I/O.
2954 *
2955 */
2956void submit_bio(int rw, struct bio *bio)
2957{
2958 int count = bio_sectors(bio);
2959
2960 BIO_BUG_ON(!bio->bi_size);
2961 BIO_BUG_ON(!bio->bi_io_vec);
2962 bio->bi_rw = rw;
2963 if (rw & WRITE)
2964 mod_page_state(pgpgout, count);
2965 else
2966 mod_page_state(pgpgin, count);
2967
2968 if (unlikely(block_dump)) {
2969 char b[BDEVNAME_SIZE];
2970 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2971 current->comm, current->pid,
2972 (rw & WRITE) ? "WRITE" : "READ",
2973 (unsigned long long)bio->bi_sector,
2974 bdevname(bio->bi_bdev,b));
2975 }
2976
2977 generic_make_request(bio);
2978}
2979
2980EXPORT_SYMBOL(submit_bio);
2981
2982void blk_recalc_rq_segments(struct request *rq)
2983{
2984 struct bio *bio, *prevbio = NULL;
2985 int nr_phys_segs, nr_hw_segs;
2986 unsigned int phys_size, hw_size;
2987 request_queue_t *q = rq->q;
2988
2989 if (!rq->bio)
2990 return;
2991
2992 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
2993 rq_for_each_bio(bio, rq) {
2994 /* Force bio hw/phys segs to be recalculated. */
2995 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2996
2997 nr_phys_segs += bio_phys_segments(q, bio);
2998 nr_hw_segs += bio_hw_segments(q, bio);
2999 if (prevbio) {
3000 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3001 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3002
3003 if (blk_phys_contig_segment(q, prevbio, bio) &&
3004 pseg <= q->max_segment_size) {
3005 nr_phys_segs--;
3006 phys_size += prevbio->bi_size + bio->bi_size;
3007 } else
3008 phys_size = 0;
3009
3010 if (blk_hw_contig_segment(q, prevbio, bio) &&
3011 hseg <= q->max_segment_size) {
3012 nr_hw_segs--;
3013 hw_size += prevbio->bi_size + bio->bi_size;
3014 } else
3015 hw_size = 0;
3016 }
3017 prevbio = bio;
3018 }
3019
3020 rq->nr_phys_segments = nr_phys_segs;
3021 rq->nr_hw_segments = nr_hw_segs;
3022}
3023
3024void blk_recalc_rq_sectors(struct request *rq, int nsect)
3025{
3026 if (blk_fs_request(rq)) {
3027 rq->hard_sector += nsect;
3028 rq->hard_nr_sectors -= nsect;
3029
3030 /*
3031 * Move the I/O submission pointers ahead if required.
3032 */
3033 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3034 (rq->sector <= rq->hard_sector)) {
3035 rq->sector = rq->hard_sector;
3036 rq->nr_sectors = rq->hard_nr_sectors;
3037 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3038 rq->current_nr_sectors = rq->hard_cur_sectors;
3039 rq->buffer = bio_data(rq->bio);
3040 }
3041
3042 /*
3043 * if total number of sectors is less than the first segment
3044 * size, something has gone terribly wrong
3045 */
3046 if (rq->nr_sectors < rq->current_nr_sectors) {
3047 printk("blk: request botched\n");
3048 rq->nr_sectors = rq->current_nr_sectors;
3049 }
3050 }
3051}
3052
3053static int __end_that_request_first(struct request *req, int uptodate,
3054 int nr_bytes)
3055{
3056 int total_bytes, bio_nbytes, error, next_idx = 0;
3057 struct bio *bio;
3058
3059 /*
3060 * extend uptodate bool to allow < 0 value to be direct io error
3061 */
3062 error = 0;
3063 if (end_io_error(uptodate))
3064 error = !uptodate ? -EIO : uptodate;
3065
3066 /*
3067 * for a REQ_BLOCK_PC request, we want to carry any eventual
3068 * sense key with us all the way through
3069 */
3070 if (!blk_pc_request(req))
3071 req->errors = 0;
3072
3073 if (!uptodate) {
3074 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3075 printk("end_request: I/O error, dev %s, sector %llu\n",
3076 req->rq_disk ? req->rq_disk->disk_name : "?",
3077 (unsigned long long)req->sector);
3078 }
3079
3080 total_bytes = bio_nbytes = 0;
3081 while ((bio = req->bio) != NULL) {
3082 int nbytes;
3083
3084 if (nr_bytes >= bio->bi_size) {
3085 req->bio = bio->bi_next;
3086 nbytes = bio->bi_size;
3087 bio_endio(bio, nbytes, error);
3088 next_idx = 0;
3089 bio_nbytes = 0;
3090 } else {
3091 int idx = bio->bi_idx + next_idx;
3092
3093 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3094 blk_dump_rq_flags(req, "__end_that");
3095 printk("%s: bio idx %d >= vcnt %d\n",
3096 __FUNCTION__,
3097 bio->bi_idx, bio->bi_vcnt);
3098 break;
3099 }
3100
3101 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3102 BIO_BUG_ON(nbytes > bio->bi_size);
3103
3104 /*
3105 * not a complete bvec done
3106 */
3107 if (unlikely(nbytes > nr_bytes)) {
3108 bio_nbytes += nr_bytes;
3109 total_bytes += nr_bytes;
3110 break;
3111 }
3112
3113 /*
3114 * advance to the next vector
3115 */
3116 next_idx++;
3117 bio_nbytes += nbytes;
3118 }
3119
3120 total_bytes += nbytes;
3121 nr_bytes -= nbytes;
3122
3123 if ((bio = req->bio)) {
3124 /*
3125 * end more in this run, or just return 'not-done'
3126 */
3127 if (unlikely(nr_bytes <= 0))
3128 break;
3129 }
3130 }
3131
3132 /*
3133 * completely done
3134 */
3135 if (!req->bio)
3136 return 0;
3137
3138 /*
3139 * if the request wasn't completed, update state
3140 */
3141 if (bio_nbytes) {
3142 bio_endio(bio, bio_nbytes, error);
3143 bio->bi_idx += next_idx;
3144 bio_iovec(bio)->bv_offset += nr_bytes;
3145 bio_iovec(bio)->bv_len -= nr_bytes;
3146 }
3147
3148 blk_recalc_rq_sectors(req, total_bytes >> 9);
3149 blk_recalc_rq_segments(req);
3150 return 1;
3151}
3152
3153/**
3154 * end_that_request_first - end I/O on a request
3155 * @req: the request being processed
3156 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3157 * @nr_sectors: number of sectors to end I/O on
3158 *
3159 * Description:
3160 * Ends I/O on a number of sectors attached to @req, and sets it up
3161 * for the next range of segments (if any) in the cluster.
3162 *
3163 * Return:
3164 * 0 - we are done with this request, call end_that_request_last()
3165 * 1 - still buffers pending for this request
3166 **/
3167int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3168{
3169 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3170}
3171
3172EXPORT_SYMBOL(end_that_request_first);
3173
3174/**
3175 * end_that_request_chunk - end I/O on a request
3176 * @req: the request being processed
3177 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3178 * @nr_bytes: number of bytes to complete
3179 *
3180 * Description:
3181 * Ends I/O on a number of bytes attached to @req, and sets it up
3182 * for the next range of segments (if any). Like end_that_request_first(),
3183 * but deals with bytes instead of sectors.
3184 *
3185 * Return:
3186 * 0 - we are done with this request, call end_that_request_last()
3187 * 1 - still buffers pending for this request
3188 **/
3189int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3190{
3191 return __end_that_request_first(req, uptodate, nr_bytes);
3192}
3193
3194EXPORT_SYMBOL(end_that_request_chunk);
3195
3196/*
3197 * queue lock must be held
3198 */
3199void end_that_request_last(struct request *req)
3200{
3201 struct gendisk *disk = req->rq_disk;
3202
3203 if (unlikely(laptop_mode) && blk_fs_request(req))
3204 laptop_io_completion();
3205
3206 if (disk && blk_fs_request(req)) {
3207 unsigned long duration = jiffies - req->start_time;
3208 switch (rq_data_dir(req)) {
3209 case WRITE:
3210 __disk_stat_inc(disk, writes);
3211 __disk_stat_add(disk, write_ticks, duration);
3212 break;
3213 case READ:
3214 __disk_stat_inc(disk, reads);
3215 __disk_stat_add(disk, read_ticks, duration);
3216 break;
3217 }
3218 disk_round_stats(disk);
3219 disk->in_flight--;
3220 }
3221 if (req->end_io)
3222 req->end_io(req);
3223 else
3224 __blk_put_request(req->q, req);
3225}
3226
3227EXPORT_SYMBOL(end_that_request_last);
3228
3229void end_request(struct request *req, int uptodate)
3230{
3231 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3232 add_disk_randomness(req->rq_disk);
3233 blkdev_dequeue_request(req);
3234 end_that_request_last(req);
3235 }
3236}
3237
3238EXPORT_SYMBOL(end_request);
3239
3240void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3241{
3242 /* first three bits are identical in rq->flags and bio->bi_rw */
3243 rq->flags |= (bio->bi_rw & 7);
3244
3245 rq->nr_phys_segments = bio_phys_segments(q, bio);
3246 rq->nr_hw_segments = bio_hw_segments(q, bio);
3247 rq->current_nr_sectors = bio_cur_sectors(bio);
3248 rq->hard_cur_sectors = rq->current_nr_sectors;
3249 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3250 rq->buffer = bio_data(bio);
3251
3252 rq->bio = rq->biotail = bio;
3253}
3254
3255EXPORT_SYMBOL(blk_rq_bio_prep);
3256
3257int kblockd_schedule_work(struct work_struct *work)
3258{
3259 return queue_work(kblockd_workqueue, work);
3260}
3261
3262EXPORT_SYMBOL(kblockd_schedule_work);
3263
3264void kblockd_flush(void)
3265{
3266 flush_workqueue(kblockd_workqueue);
3267}
3268EXPORT_SYMBOL(kblockd_flush);
3269
3270int __init blk_dev_init(void)
3271{
3272 kblockd_workqueue = create_workqueue("kblockd");
3273 if (!kblockd_workqueue)
3274 panic("Failed to create kblockd\n");
3275
3276 request_cachep = kmem_cache_create("blkdev_requests",
3277 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3278
3279 requestq_cachep = kmem_cache_create("blkdev_queue",
3280 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3281
3282 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3283 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3284
3285 blk_max_low_pfn = max_low_pfn;
3286 blk_max_pfn = max_pfn;
3287
3288 return 0;
3289}
3290
3291/*
3292 * IO Context helper functions
3293 */
3294void put_io_context(struct io_context *ioc)
3295{
3296 if (ioc == NULL)
3297 return;
3298
3299 BUG_ON(atomic_read(&ioc->refcount) == 0);
3300
3301 if (atomic_dec_and_test(&ioc->refcount)) {
3302 if (ioc->aic && ioc->aic->dtor)
3303 ioc->aic->dtor(ioc->aic);
3304 if (ioc->cic && ioc->cic->dtor)
3305 ioc->cic->dtor(ioc->cic);
3306
3307 kmem_cache_free(iocontext_cachep, ioc);
3308 }
3309}
3310EXPORT_SYMBOL(put_io_context);
3311
3312/* Called by the exitting task */
3313void exit_io_context(void)
3314{
3315 unsigned long flags;
3316 struct io_context *ioc;
3317
3318 local_irq_save(flags);
3319 ioc = current->io_context;
3320 current->io_context = NULL;
3321 local_irq_restore(flags);
3322
3323 if (ioc->aic && ioc->aic->exit)
3324 ioc->aic->exit(ioc->aic);
3325 if (ioc->cic && ioc->cic->exit)
3326 ioc->cic->exit(ioc->cic);
3327
3328 put_io_context(ioc);
3329}
3330
3331/*
3332 * If the current task has no IO context then create one and initialise it.
3333 * If it does have a context, take a ref on it.
3334 *
3335 * This is always called in the context of the task which submitted the I/O.
3336 * But weird things happen, so we disable local interrupts to ensure exclusive
3337 * access to *current.
3338 */
3339struct io_context *get_io_context(int gfp_flags)
3340{
3341 struct task_struct *tsk = current;
3342 unsigned long flags;
3343 struct io_context *ret;
3344
3345 local_irq_save(flags);
3346 ret = tsk->io_context;
3347 if (ret)
3348 goto out;
3349
3350 local_irq_restore(flags);
3351
3352 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3353 if (ret) {
3354 atomic_set(&ret->refcount, 1);
3355 ret->pid = tsk->pid;
3356 ret->last_waited = jiffies; /* doesn't matter... */
3357 ret->nr_batch_requests = 0; /* because this is 0 */
3358 ret->aic = NULL;
3359 ret->cic = NULL;
3360 spin_lock_init(&ret->lock);
3361
3362 local_irq_save(flags);
3363
3364 /*
3365 * very unlikely, someone raced with us in setting up the task
3366 * io context. free new context and just grab a reference.
3367 */
3368 if (!tsk->io_context)
3369 tsk->io_context = ret;
3370 else {
3371 kmem_cache_free(iocontext_cachep, ret);
3372 ret = tsk->io_context;
3373 }
3374
3375out:
3376 atomic_inc(&ret->refcount);
3377 local_irq_restore(flags);
3378 }
3379
3380 return ret;
3381}
3382EXPORT_SYMBOL(get_io_context);
3383
3384void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3385{
3386 struct io_context *src = *psrc;
3387 struct io_context *dst = *pdst;
3388
3389 if (src) {
3390 BUG_ON(atomic_read(&src->refcount) == 0);
3391 atomic_inc(&src->refcount);
3392 put_io_context(dst);
3393 *pdst = src;
3394 }
3395}
3396EXPORT_SYMBOL(copy_io_context);
3397
3398void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3399{
3400 struct io_context *temp;
3401 temp = *ioc1;
3402 *ioc1 = *ioc2;
3403 *ioc2 = temp;
3404}
3405EXPORT_SYMBOL(swap_io_context);
3406
3407/*
3408 * sysfs parts below
3409 */
3410struct queue_sysfs_entry {
3411 struct attribute attr;
3412 ssize_t (*show)(struct request_queue *, char *);
3413 ssize_t (*store)(struct request_queue *, const char *, size_t);
3414};
3415
3416static ssize_t
3417queue_var_show(unsigned int var, char *page)
3418{
3419 return sprintf(page, "%d\n", var);
3420}
3421
3422static ssize_t
3423queue_var_store(unsigned long *var, const char *page, size_t count)
3424{
3425 char *p = (char *) page;
3426
3427 *var = simple_strtoul(p, &p, 10);
3428 return count;
3429}
3430
3431static ssize_t queue_requests_show(struct request_queue *q, char *page)
3432{
3433 return queue_var_show(q->nr_requests, (page));
3434}
3435
3436static ssize_t
3437queue_requests_store(struct request_queue *q, const char *page, size_t count)
3438{
3439 struct request_list *rl = &q->rq;
3440
3441 int ret = queue_var_store(&q->nr_requests, page, count);
3442 if (q->nr_requests < BLKDEV_MIN_RQ)
3443 q->nr_requests = BLKDEV_MIN_RQ;
3444 blk_queue_congestion_threshold(q);
3445
3446 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3447 set_queue_congested(q, READ);
3448 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3449 clear_queue_congested(q, READ);
3450
3451 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3452 set_queue_congested(q, WRITE);
3453 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3454 clear_queue_congested(q, WRITE);
3455
3456 if (rl->count[READ] >= q->nr_requests) {
3457 blk_set_queue_full(q, READ);
3458 } else if (rl->count[READ]+1 <= q->nr_requests) {
3459 blk_clear_queue_full(q, READ);
3460 wake_up(&rl->wait[READ]);
3461 }
3462
3463 if (rl->count[WRITE] >= q->nr_requests) {
3464 blk_set_queue_full(q, WRITE);
3465 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3466 blk_clear_queue_full(q, WRITE);
3467 wake_up(&rl->wait[WRITE]);
3468 }
3469 return ret;
3470}
3471
3472static ssize_t queue_ra_show(struct request_queue *q, char *page)
3473{
3474 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3475
3476 return queue_var_show(ra_kb, (page));
3477}
3478
3479static ssize_t
3480queue_ra_store(struct request_queue *q, const char *page, size_t count)
3481{
3482 unsigned long ra_kb;
3483 ssize_t ret = queue_var_store(&ra_kb, page, count);
3484
3485 spin_lock_irq(q->queue_lock);
3486 if (ra_kb > (q->max_sectors >> 1))
3487 ra_kb = (q->max_sectors >> 1);
3488
3489 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3490 spin_unlock_irq(q->queue_lock);
3491
3492 return ret;
3493}
3494
3495static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3496{
3497 int max_sectors_kb = q->max_sectors >> 1;
3498
3499 return queue_var_show(max_sectors_kb, (page));
3500}
3501
3502static ssize_t
3503queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3504{
3505 unsigned long max_sectors_kb,
3506 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3507 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3508 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3509 int ra_kb;
3510
3511 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3512 return -EINVAL;
3513 /*
3514 * Take the queue lock to update the readahead and max_sectors
3515 * values synchronously:
3516 */
3517 spin_lock_irq(q->queue_lock);
3518 /*
3519 * Trim readahead window as well, if necessary:
3520 */
3521 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3522 if (ra_kb > max_sectors_kb)
3523 q->backing_dev_info.ra_pages =
3524 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3525
3526 q->max_sectors = max_sectors_kb << 1;
3527 spin_unlock_irq(q->queue_lock);
3528
3529 return ret;
3530}
3531
3532static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3533{
3534 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3535
3536 return queue_var_show(max_hw_sectors_kb, (page));
3537}
3538
3539
3540static struct queue_sysfs_entry queue_requests_entry = {
3541 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3542 .show = queue_requests_show,
3543 .store = queue_requests_store,
3544};
3545
3546static struct queue_sysfs_entry queue_ra_entry = {
3547 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3548 .show = queue_ra_show,
3549 .store = queue_ra_store,
3550};
3551
3552static struct queue_sysfs_entry queue_max_sectors_entry = {
3553 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3554 .show = queue_max_sectors_show,
3555 .store = queue_max_sectors_store,
3556};
3557
3558static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3559 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3560 .show = queue_max_hw_sectors_show,
3561};
3562
3563static struct queue_sysfs_entry queue_iosched_entry = {
3564 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3565 .show = elv_iosched_show,
3566 .store = elv_iosched_store,
3567};
3568
3569static struct attribute *default_attrs[] = {
3570 &queue_requests_entry.attr,
3571 &queue_ra_entry.attr,
3572 &queue_max_hw_sectors_entry.attr,
3573 &queue_max_sectors_entry.attr,
3574 &queue_iosched_entry.attr,
3575 NULL,
3576};
3577
3578#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3579
3580static ssize_t
3581queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3582{
3583 struct queue_sysfs_entry *entry = to_queue(attr);
3584 struct request_queue *q;
3585
3586 q = container_of(kobj, struct request_queue, kobj);
3587 if (!entry->show)
6c1852a0 3588 return -EIO;
1da177e4
LT
3589
3590 return entry->show(q, page);
3591}
3592
3593static ssize_t
3594queue_attr_store(struct kobject *kobj, struct attribute *attr,
3595 const char *page, size_t length)
3596{
3597 struct queue_sysfs_entry *entry = to_queue(attr);
3598 struct request_queue *q;
3599
3600 q = container_of(kobj, struct request_queue, kobj);
3601 if (!entry->store)
6c1852a0 3602 return -EIO;
1da177e4
LT
3603
3604 return entry->store(q, page, length);
3605}
3606
3607static struct sysfs_ops queue_sysfs_ops = {
3608 .show = queue_attr_show,
3609 .store = queue_attr_store,
3610};
3611
3612struct kobj_type queue_ktype = {
3613 .sysfs_ops = &queue_sysfs_ops,
3614 .default_attrs = default_attrs,
3615};
3616
3617int blk_register_queue(struct gendisk *disk)
3618{
3619 int ret;
3620
3621 request_queue_t *q = disk->queue;
3622
3623 if (!q || !q->request_fn)
3624 return -ENXIO;
3625
3626 q->kobj.parent = kobject_get(&disk->kobj);
3627 if (!q->kobj.parent)
3628 return -EBUSY;
3629
3630 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3631 q->kobj.ktype = &queue_ktype;
3632
3633 ret = kobject_register(&q->kobj);
3634 if (ret < 0)
3635 return ret;
3636
3637 ret = elv_register_queue(q);
3638 if (ret) {
3639 kobject_unregister(&q->kobj);
3640 return ret;
3641 }
3642
3643 return 0;
3644}
3645
3646void blk_unregister_queue(struct gendisk *disk)
3647{
3648 request_queue_t *q = disk->queue;
3649
3650 if (q && q->request_fn) {
3651 elv_unregister_queue(q);
3652
3653 kobject_unregister(&q->kobj);
3654 kobject_put(&disk->kobj);
3655 }
3656}