Merge branch 'for-2.6.27' of git://git.infradead.org/users/dwmw2/firmware-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / atm / ambassador.c
CommitLineData
1da177e4
LT
1/*
2 Madge Ambassador ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
21*/
22
23/* * dedicated to the memory of Graham Gordon 1971-1998 * */
24
25#include <linux/module.h>
26#include <linux/types.h>
27#include <linux/pci.h>
28#include <linux/kernel.h>
29#include <linux/init.h>
30#include <linux/ioport.h>
31#include <linux/atmdev.h>
32#include <linux/delay.h>
33#include <linux/interrupt.h>
3c6b3773 34#include <linux/poison.h>
0a858857 35#include <linux/bitrev.h>
eff0dee5 36#include <linux/mutex.h>
27d202ff
DW
37#include <linux/firmware.h>
38#include <linux/ihex.h>
1da177e4
LT
39
40#include <asm/atomic.h>
41#include <asm/io.h>
42#include <asm/byteorder.h>
43
44#include "ambassador.h"
45
46#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
47#define description_string "Madge ATM Ambassador driver"
48#define version_string "1.2.4"
49
50static inline void __init show_version (void) {
51 printk ("%s version %s\n", description_string, version_string);
52}
53
54/*
55
56 Theory of Operation
57
58 I Hardware, detection, initialisation and shutdown.
59
60 1. Supported Hardware
61
62 This driver is for the PCI ATMizer-based Ambassador card (except
63 very early versions). It is not suitable for the similar EISA "TR7"
64 card. Commercially, both cards are known as Collage Server ATM
65 adapters.
66
67 The loader supports image transfer to the card, image start and few
68 other miscellaneous commands.
69
70 Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023.
71
72 The cards are big-endian.
73
74 2. Detection
75
76 Standard PCI stuff, the early cards are detected and rejected.
77
78 3. Initialisation
79
80 The cards are reset and the self-test results are checked. The
81 microcode image is then transferred and started. This waits for a
82 pointer to a descriptor containing details of the host-based queues
83 and buffers and various parameters etc. Once they are processed
84 normal operations may begin. The BIA is read using a microcode
85 command.
86
87 4. Shutdown
88
89 This may be accomplished either by a card reset or via the microcode
90 shutdown command. Further investigation required.
91
92 5. Persistent state
93
94 The card reset does not affect PCI configuration (good) or the
95 contents of several other "shared run-time registers" (bad) which
96 include doorbell and interrupt control as well as EEPROM and PCI
97 control. The driver must be careful when modifying these registers
98 not to touch bits it does not use and to undo any changes at exit.
99
100 II Driver software
101
102 0. Generalities
103
104 The adapter is quite intelligent (fast) and has a simple interface
105 (few features). VPI is always zero, 1024 VCIs are supported. There
106 is limited cell rate support. UBR channels can be capped and ABR
107 (explicit rate, but not EFCI) is supported. There is no CBR or VBR
108 support.
109
110 1. Driver <-> Adapter Communication
111
112 Apart from the basic loader commands, the driver communicates
113 through three entities: the command queue (CQ), the transmit queue
114 pair (TXQ) and the receive queue pairs (RXQ). These three entities
115 are set up by the host and passed to the microcode just after it has
116 been started.
117
118 All queues are host-based circular queues. They are contiguous and
119 (due to hardware limitations) have some restrictions as to their
120 locations in (bus) memory. They are of the "full means the same as
121 empty so don't do that" variety since the adapter uses pointers
122 internally.
123
124 The queue pairs work as follows: one queue is for supply to the
125 adapter, items in it are pending and are owned by the adapter; the
126 other is the queue for return from the adapter, items in it have
127 been dealt with by the adapter. The host adds items to the supply
128 (TX descriptors and free RX buffer descriptors) and removes items
129 from the return (TX and RX completions). The adapter deals with out
130 of order completions.
131
132 Interrupts (card to host) and the doorbell (host to card) are used
133 for signalling.
134
135 1. CQ
136
137 This is to communicate "open VC", "close VC", "get stats" etc. to
138 the adapter. At most one command is retired every millisecond by the
139 card. There is no out of order completion or notification. The
140 driver needs to check the return code of the command, waiting as
141 appropriate.
142
143 2. TXQ
144
145 TX supply items are of variable length (scatter gather support) and
146 so the queue items are (more or less) pointers to the real thing.
147 Each TX supply item contains a unique, host-supplied handle (the skb
148 bus address seems most sensible as this works for Alphas as well,
149 there is no need to do any endian conversions on the handles).
150
151 TX return items consist of just the handles above.
152
153 3. RXQ (up to 4 of these with different lengths and buffer sizes)
154
155 RX supply items consist of a unique, host-supplied handle (the skb
156 bus address again) and a pointer to the buffer data area.
157
158 RX return items consist of the handle above, the VC, length and a
159 status word. This just screams "oh so easy" doesn't it?
160
161 Note on RX pool sizes:
162
163 Each pool should have enough buffers to handle a back-to-back stream
164 of minimum sized frames on a single VC. For example:
165
166 frame spacing = 3us (about right)
167
168 delay = IRQ lat + RX handling + RX buffer replenish = 20 (us) (a guess)
169
170 min number of buffers for one VC = 1 + delay/spacing (buffers)
171
172 delay/spacing = latency = (20+2)/3 = 7 (buffers) (rounding up)
173
174 The 20us delay assumes that there is no need to sleep; if we need to
175 sleep to get buffers we are going to drop frames anyway.
176
177 In fact, each pool should have enough buffers to support the
178 simultaneous reassembly of a separate frame on each VC and cope with
179 the case in which frames complete in round robin cell fashion on
180 each VC.
181
182 Only one frame can complete at each cell arrival, so if "n" VCs are
183 open, the worst case is to have them all complete frames together
184 followed by all starting new frames together.
185
186 desired number of buffers = n + delay/spacing
187
188 These are the extreme requirements, however, they are "n+k" for some
189 "k" so we have only the constant to choose. This is the argument
190 rx_lats which current defaults to 7.
191
192 Actually, "n ? n+k : 0" is better and this is what is implemented,
193 subject to the limit given by the pool size.
194
195 4. Driver locking
196
197 Simple spinlocks are used around the TX and RX queue mechanisms.
198 Anyone with a faster, working method is welcome to implement it.
199
200 The adapter command queue is protected with a spinlock. We always
201 wait for commands to complete.
202
203 A more complex form of locking is used around parts of the VC open
204 and close functions. There are three reasons for a lock: 1. we need
205 to do atomic rate reservation and release (not used yet), 2. Opening
206 sometimes involves two adapter commands which must not be separated
207 by another command on the same VC, 3. the changes to RX pool size
208 must be atomic. The lock needs to work over context switches, so we
209 use a semaphore.
210
211 III Hardware Features and Microcode Bugs
212
213 1. Byte Ordering
214
215 *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*!
216
217 2. Memory access
218
219 All structures that are not accessed using DMA must be 4-byte
220 aligned (not a problem) and must not cross 4MB boundaries.
221
222 There is a DMA memory hole at E0000000-E00000FF (groan).
223
224 TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB
225 but for a hardware bug).
226
227 RX buffers (DMA write) must not cross 16MB boundaries and must
228 include spare trailing bytes up to the next 4-byte boundary; they
229 will be written with rubbish.
230
231 The PLX likes to prefetch; if reading up to 4 u32 past the end of
232 each TX fragment is not a problem, then TX can be made to go a
233 little faster by passing a flag at init that disables a prefetch
234 workaround. We do not pass this flag. (new microcode only)
235
236 Now we:
237 . Note that alloc_skb rounds up size to a 16byte boundary.
238 . Ensure all areas do not traverse 4MB boundaries.
239 . Ensure all areas do not start at a E00000xx bus address.
240 (I cannot be certain, but this may always hold with Linux)
241 . Make all failures cause a loud message.
242 . Discard non-conforming SKBs (causes TX failure or RX fill delay).
243 . Discard non-conforming TX fragment descriptors (the TX fails).
244 In the future we could:
245 . Allow RX areas that traverse 4MB (but not 16MB) boundaries.
246 . Segment TX areas into some/more fragments, when necessary.
247 . Relax checks for non-DMA items (ignore hole).
248 . Give scatter-gather (iovec) requirements using ???. (?)
249
250 3. VC close is broken (only for new microcode)
251
252 The VC close adapter microcode command fails to do anything if any
253 frames have been received on the VC but none have been transmitted.
254 Frames continue to be reassembled and passed (with IRQ) to the
255 driver.
256
257 IV To Do List
258
259 . Fix bugs!
260
261 . Timer code may be broken.
262
263 . Deal with buggy VC close (somehow) in microcode 12.
264
265 . Handle interrupted and/or non-blocking writes - is this a job for
266 the protocol layer?
267
268 . Add code to break up TX fragments when they span 4MB boundaries.
269
270 . Add SUNI phy layer (need to know where SUNI lives on card).
271
272 . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b)
273 leave extra headroom space for Ambassador TX descriptors.
274
275 . Understand these elements of struct atm_vcc: recvq (proto?),
276 sleep, callback, listenq, backlog_quota, reply and user_back.
277
278 . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable).
279
280 . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow.
281
282 . Decide whether RX buffer recycling is or can be made completely safe;
283 turn it back on. It looks like Werner is going to axe this.
284
285 . Implement QoS changes on open VCs (involves extracting parts of VC open
286 and close into separate functions and using them to make changes).
287
288 . Hack on command queue so that someone can issue multiple commands and wait
289 on the last one (OR only "no-op" or "wait" commands are waited for).
290
291 . Eliminate need for while-schedule around do_command.
292
293*/
294
1da177e4
LT
295static void do_housekeeping (unsigned long arg);
296/********** globals **********/
297
298static unsigned short debug = 0;
299static unsigned int cmds = 8;
300static unsigned int txs = 32;
301static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 };
302static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 };
303static unsigned int rx_lats = 7;
304static unsigned char pci_lat = 0;
305
306static const unsigned long onegigmask = -1 << 30;
307
308/********** access to adapter **********/
309
310static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) {
311 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data);
312#ifdef AMB_MMIO
313 dev->membase[addr / sizeof(u32)] = data;
314#else
315 outl (data, dev->iobase + addr);
316#endif
317}
318
319static inline u32 rd_plain (const amb_dev * dev, size_t addr) {
320#ifdef AMB_MMIO
321 u32 data = dev->membase[addr / sizeof(u32)];
322#else
323 u32 data = inl (dev->iobase + addr);
324#endif
325 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data);
326 return data;
327}
328
329static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) {
330 __be32 be = cpu_to_be32 (data);
331 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be);
332#ifdef AMB_MMIO
333 dev->membase[addr / sizeof(u32)] = be;
334#else
335 outl (be, dev->iobase + addr);
336#endif
337}
338
339static inline u32 rd_mem (const amb_dev * dev, size_t addr) {
340#ifdef AMB_MMIO
341 __be32 be = dev->membase[addr / sizeof(u32)];
342#else
343 __be32 be = inl (dev->iobase + addr);
344#endif
345 u32 data = be32_to_cpu (be);
346 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be);
347 return data;
348}
349
350/********** dump routines **********/
351
352static inline void dump_registers (const amb_dev * dev) {
353#ifdef DEBUG_AMBASSADOR
354 if (debug & DBG_REGS) {
355 size_t i;
356 PRINTD (DBG_REGS, "reading PLX control: ");
357 for (i = 0x00; i < 0x30; i += sizeof(u32))
358 rd_mem (dev, i);
359 PRINTD (DBG_REGS, "reading mailboxes: ");
360 for (i = 0x40; i < 0x60; i += sizeof(u32))
361 rd_mem (dev, i);
362 PRINTD (DBG_REGS, "reading doorb irqev irqen reset:");
363 for (i = 0x60; i < 0x70; i += sizeof(u32))
364 rd_mem (dev, i);
365 }
366#else
367 (void) dev;
368#endif
369 return;
370}
371
372static inline void dump_loader_block (volatile loader_block * lb) {
373#ifdef DEBUG_AMBASSADOR
374 unsigned int i;
375 PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:",
376 lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command));
377 for (i = 0; i < MAX_COMMAND_DATA; ++i)
378 PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i]));
379 PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid));
380#else
381 (void) lb;
382#endif
383 return;
384}
385
386static inline void dump_command (command * cmd) {
387#ifdef DEBUG_AMBASSADOR
388 unsigned int i;
389 PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:",
390 cmd, /*be32_to_cpu*/ (cmd->request));
391 for (i = 0; i < 3; ++i)
392 PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i]));
393 PRINTDE (DBG_CMD, "");
394#else
395 (void) cmd;
396#endif
397 return;
398}
399
400static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
401#ifdef DEBUG_AMBASSADOR
402 unsigned int i;
403 unsigned char * data = skb->data;
404 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
405 for (i=0; i<skb->len && i < 256;i++)
406 PRINTDM (DBG_DATA, "%02x ", data[i]);
407 PRINTDE (DBG_DATA,"");
408#else
409 (void) prefix;
410 (void) vc;
411 (void) skb;
412#endif
413 return;
414}
415
416/********** check memory areas for use by Ambassador **********/
417
418/* see limitations under Hardware Features */
419
a5b2db67 420static int check_area (void * start, size_t length) {
1da177e4
LT
421 // assumes length > 0
422 const u32 fourmegmask = -1 << 22;
423 const u32 twofivesixmask = -1 << 8;
424 const u32 starthole = 0xE0000000;
425 u32 startaddress = virt_to_bus (start);
426 u32 lastaddress = startaddress+length-1;
427 if ((startaddress ^ lastaddress) & fourmegmask ||
428 (startaddress & twofivesixmask) == starthole) {
429 PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!",
430 startaddress, lastaddress);
431 return -1;
432 } else {
433 return 0;
434 }
435}
436
437/********** free an skb (as per ATM device driver documentation) **********/
438
a5b2db67 439static void amb_kfree_skb (struct sk_buff * skb) {
1da177e4
LT
440 if (ATM_SKB(skb)->vcc->pop) {
441 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
442 } else {
443 dev_kfree_skb_any (skb);
444 }
445}
446
447/********** TX completion **********/
448
a5b2db67 449static void tx_complete (amb_dev * dev, tx_out * tx) {
1da177e4
LT
450 tx_simple * tx_descr = bus_to_virt (tx->handle);
451 struct sk_buff * skb = tx_descr->skb;
452
453 PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx);
454
455 // VC layer stats
456 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
457
458 // free the descriptor
459 kfree (tx_descr);
460
461 // free the skb
462 amb_kfree_skb (skb);
463
464 dev->stats.tx_ok++;
465 return;
466}
467
468/********** RX completion **********/
469
470static void rx_complete (amb_dev * dev, rx_out * rx) {
471 struct sk_buff * skb = bus_to_virt (rx->handle);
472 u16 vc = be16_to_cpu (rx->vc);
473 // unused: u16 lec_id = be16_to_cpu (rx->lec_id);
474 u16 status = be16_to_cpu (rx->status);
475 u16 rx_len = be16_to_cpu (rx->length);
476
477 PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len);
478
479 // XXX move this in and add to VC stats ???
480 if (!status) {
481 struct atm_vcc * atm_vcc = dev->rxer[vc];
482 dev->stats.rx.ok++;
483
484 if (atm_vcc) {
485
486 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
487
488 if (atm_charge (atm_vcc, skb->truesize)) {
489
490 // prepare socket buffer
491 ATM_SKB(skb)->vcc = atm_vcc;
492 skb_put (skb, rx_len);
493
494 dump_skb ("<<<", vc, skb);
495
496 // VC layer stats
497 atomic_inc(&atm_vcc->stats->rx);
a61bbcf2 498 __net_timestamp(skb);
1da177e4
LT
499 // end of our responsability
500 atm_vcc->push (atm_vcc, skb);
501 return;
502
503 } else {
504 // someone fix this (message), please!
505 PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize);
506 // drop stats incremented in atm_charge
507 }
508
509 } else {
510 PRINTK (KERN_INFO, "dropped over-size frame");
511 // should we count this?
512 atomic_inc(&atm_vcc->stats->rx_drop);
513 }
514
515 } else {
516 PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc);
517 // this is an adapter bug, only in new version of microcode
518 }
519
520 } else {
521 dev->stats.rx.error++;
522 if (status & CRC_ERR)
523 dev->stats.rx.badcrc++;
524 if (status & LEN_ERR)
525 dev->stats.rx.toolong++;
526 if (status & ABORT_ERR)
527 dev->stats.rx.aborted++;
528 if (status & UNUSED_ERR)
529 dev->stats.rx.unused++;
530 }
531
532 dev_kfree_skb_any (skb);
533 return;
534}
535
536/*
537
538 Note on queue handling.
539
540 Here "give" and "take" refer to queue entries and a queue (pair)
541 rather than frames to or from the host or adapter. Empty frame
542 buffers are given to the RX queue pair and returned unused or
543 containing RX frames. TX frames (well, pointers to TX fragment
544 lists) are given to the TX queue pair, completions are returned.
545
546*/
547
548/********** command queue **********/
549
550// I really don't like this, but it's the best I can do at the moment
551
552// also, the callers are responsible for byte order as the microcode
553// sometimes does 16-bit accesses (yuk yuk yuk)
554
555static int command_do (amb_dev * dev, command * cmd) {
556 amb_cq * cq = &dev->cq;
557 volatile amb_cq_ptrs * ptrs = &cq->ptrs;
558 command * my_slot;
559
560 PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev);
561
562 if (test_bit (dead, &dev->flags))
563 return 0;
564
565 spin_lock (&cq->lock);
566
567 // if not full...
568 if (cq->pending < cq->maximum) {
569 // remember my slot for later
570 my_slot = ptrs->in;
571 PRINTD (DBG_CMD, "command in slot %p", my_slot);
572
573 dump_command (cmd);
574
575 // copy command in
576 *ptrs->in = *cmd;
577 cq->pending++;
578 ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit);
579
580 // mail the command
581 wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in));
582
583 if (cq->pending > cq->high)
584 cq->high = cq->pending;
585 spin_unlock (&cq->lock);
586
587 // these comments were in a while-loop before, msleep removes the loop
588 // go to sleep
589 // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout);
590 msleep(cq->pending);
591
592 // wait for my slot to be reached (all waiters are here or above, until...)
593 while (ptrs->out != my_slot) {
594 PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out);
595 set_current_state(TASK_UNINTERRUPTIBLE);
596 schedule();
597 }
598
599 // wait on my slot (... one gets to its slot, and... )
600 while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) {
601 PRINTD (DBG_CMD, "wait: command slot completion");
602 set_current_state(TASK_UNINTERRUPTIBLE);
603 schedule();
604 }
605
606 PRINTD (DBG_CMD, "command complete");
607 // update queue (... moves the queue along to the next slot)
608 spin_lock (&cq->lock);
609 cq->pending--;
610 // copy command out
611 *cmd = *ptrs->out;
612 ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit);
613 spin_unlock (&cq->lock);
614
615 return 0;
616 } else {
617 cq->filled++;
618 spin_unlock (&cq->lock);
619 return -EAGAIN;
620 }
621
622}
623
624/********** TX queue pair **********/
625
a5b2db67 626static int tx_give (amb_dev * dev, tx_in * tx) {
1da177e4
LT
627 amb_txq * txq = &dev->txq;
628 unsigned long flags;
629
630 PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev);
631
632 if (test_bit (dead, &dev->flags))
633 return 0;
634
635 spin_lock_irqsave (&txq->lock, flags);
636
637 if (txq->pending < txq->maximum) {
638 PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr);
639
640 *txq->in.ptr = *tx;
641 txq->pending++;
642 txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit);
643 // hand over the TX and ring the bell
644 wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr));
645 wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME);
646
647 if (txq->pending > txq->high)
648 txq->high = txq->pending;
649 spin_unlock_irqrestore (&txq->lock, flags);
650 return 0;
651 } else {
652 txq->filled++;
653 spin_unlock_irqrestore (&txq->lock, flags);
654 return -EAGAIN;
655 }
656}
657
a5b2db67 658static int tx_take (amb_dev * dev) {
1da177e4
LT
659 amb_txq * txq = &dev->txq;
660 unsigned long flags;
661
662 PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev);
663
664 spin_lock_irqsave (&txq->lock, flags);
665
666 if (txq->pending && txq->out.ptr->handle) {
667 // deal with TX completion
668 tx_complete (dev, txq->out.ptr);
669 // mark unused again
670 txq->out.ptr->handle = 0;
671 // remove item
672 txq->pending--;
673 txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit);
674
675 spin_unlock_irqrestore (&txq->lock, flags);
676 return 0;
677 } else {
678
679 spin_unlock_irqrestore (&txq->lock, flags);
680 return -1;
681 }
682}
683
684/********** RX queue pairs **********/
685
a5b2db67 686static int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) {
1da177e4
LT
687 amb_rxq * rxq = &dev->rxq[pool];
688 unsigned long flags;
689
690 PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool);
691
692 spin_lock_irqsave (&rxq->lock, flags);
693
694 if (rxq->pending < rxq->maximum) {
695 PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr);
696
697 *rxq->in.ptr = *rx;
698 rxq->pending++;
699 rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit);
700 // hand over the RX buffer
701 wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr));
702
703 spin_unlock_irqrestore (&rxq->lock, flags);
704 return 0;
705 } else {
706 spin_unlock_irqrestore (&rxq->lock, flags);
707 return -1;
708 }
709}
710
a5b2db67 711static int rx_take (amb_dev * dev, unsigned char pool) {
1da177e4
LT
712 amb_rxq * rxq = &dev->rxq[pool];
713 unsigned long flags;
714
715 PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool);
716
717 spin_lock_irqsave (&rxq->lock, flags);
718
719 if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) {
720 // deal with RX completion
721 rx_complete (dev, rxq->out.ptr);
722 // mark unused again
723 rxq->out.ptr->status = 0;
724 rxq->out.ptr->length = 0;
725 // remove item
726 rxq->pending--;
727 rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit);
728
729 if (rxq->pending < rxq->low)
730 rxq->low = rxq->pending;
731 spin_unlock_irqrestore (&rxq->lock, flags);
732 return 0;
733 } else {
734 if (!rxq->pending && rxq->buffers_wanted)
735 rxq->emptied++;
736 spin_unlock_irqrestore (&rxq->lock, flags);
737 return -1;
738 }
739}
740
741/********** RX Pool handling **********/
742
743/* pre: buffers_wanted = 0, post: pending = 0 */
a5b2db67 744static void drain_rx_pool (amb_dev * dev, unsigned char pool) {
1da177e4
LT
745 amb_rxq * rxq = &dev->rxq[pool];
746
747 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool);
748
749 if (test_bit (dead, &dev->flags))
750 return;
751
752 /* we are not quite like the fill pool routines as we cannot just
753 remove one buffer, we have to remove all of them, but we might as
754 well pretend... */
755 if (rxq->pending > rxq->buffers_wanted) {
756 command cmd;
757 cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q);
758 cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
759 while (command_do (dev, &cmd))
760 schedule();
761 /* the pool may also be emptied via the interrupt handler */
762 while (rxq->pending > rxq->buffers_wanted)
763 if (rx_take (dev, pool))
764 schedule();
765 }
766
767 return;
768}
769
770static void drain_rx_pools (amb_dev * dev) {
771 unsigned char pool;
772
773 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev);
774
775 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
776 drain_rx_pool (dev, pool);
777}
778
a5b2db67 779static void fill_rx_pool (amb_dev * dev, unsigned char pool,
dd0fc66f 780 gfp_t priority)
5938a7b5 781{
1da177e4
LT
782 rx_in rx;
783 amb_rxq * rxq;
784
785 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority);
786
787 if (test_bit (dead, &dev->flags))
788 return;
789
790 rxq = &dev->rxq[pool];
791 while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) {
792
793 struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority);
794 if (!skb) {
795 PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool);
796 return;
797 }
798 if (check_area (skb->data, skb->truesize)) {
799 dev_kfree_skb_any (skb);
800 return;
801 }
802 // cast needed as there is no %? for pointer differences
803 PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li",
4305b541 804 skb, skb->head, (long) (skb_end_pointer(skb) - skb->head));
1da177e4
LT
805 rx.handle = virt_to_bus (skb);
806 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
807 if (rx_give (dev, &rx, pool))
808 dev_kfree_skb_any (skb);
809
810 }
811
812 return;
813}
814
815// top up all RX pools (can also be called as a bottom half)
816static void fill_rx_pools (amb_dev * dev) {
817 unsigned char pool;
818
819 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev);
820
821 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
822 fill_rx_pool (dev, pool, GFP_ATOMIC);
823
824 return;
825}
826
827/********** enable host interrupts **********/
828
a5b2db67 829static void interrupts_on (amb_dev * dev) {
1da177e4
LT
830 wr_plain (dev, offsetof(amb_mem, interrupt_control),
831 rd_plain (dev, offsetof(amb_mem, interrupt_control))
832 | AMB_INTERRUPT_BITS);
833}
834
835/********** disable host interrupts **********/
836
a5b2db67 837static void interrupts_off (amb_dev * dev) {
1da177e4
LT
838 wr_plain (dev, offsetof(amb_mem, interrupt_control),
839 rd_plain (dev, offsetof(amb_mem, interrupt_control))
840 &~ AMB_INTERRUPT_BITS);
841}
842
843/********** interrupt handling **********/
844
7d12e780 845static irqreturn_t interrupt_handler(int irq, void *dev_id) {
c7bec5ab 846 amb_dev * dev = dev_id;
1da177e4
LT
847
848 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id);
849
1da177e4
LT
850 {
851 u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt));
852
853 // for us or someone else sharing the same interrupt
854 if (!interrupt) {
855 PRINTD (DBG_IRQ, "irq not for me: %d", irq);
856 return IRQ_NONE;
857 }
858
859 // definitely for us
860 PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt);
861 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
862 }
863
864 {
865 unsigned int irq_work = 0;
866 unsigned char pool;
867 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
868 while (!rx_take (dev, pool))
869 ++irq_work;
870 while (!tx_take (dev))
871 ++irq_work;
872
873 if (irq_work) {
874#ifdef FILL_RX_POOLS_IN_BH
875 schedule_work (&dev->bh);
876#else
877 fill_rx_pools (dev);
878#endif
879
880 PRINTD (DBG_IRQ, "work done: %u", irq_work);
881 } else {
882 PRINTD (DBG_IRQ|DBG_WARN, "no work done");
883 }
884 }
885
886 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
887 return IRQ_HANDLED;
888}
889
890/********** make rate (not quite as much fun as Horizon) **********/
891
3a4e5e20
JG
892static int make_rate (unsigned int rate, rounding r,
893 u16 * bits, unsigned int * actual) {
1da177e4
LT
894 unsigned char exp = -1; // hush gcc
895 unsigned int man = -1; // hush gcc
896
897 PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate);
898
899 // rates in cells per second, ITU format (nasty 16-bit floating-point)
900 // given 5-bit e and 9-bit m:
901 // rate = EITHER (1+m/2^9)*2^e OR 0
902 // bits = EITHER 1<<14 | e<<9 | m OR 0
903 // (bit 15 is "reserved", bit 14 "non-zero")
904 // smallest rate is 0 (special representation)
905 // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
906 // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
907 // simple algorithm:
908 // find position of top bit, this gives e
909 // remove top bit and shift (rounding if feeling clever) by 9-e
910
911 // ucode bug: please don't set bit 14! so 0 rate not representable
912
913 if (rate > 0xffc00000U) {
914 // larger than largest representable rate
915
916 if (r == round_up) {
917 return -EINVAL;
918 } else {
919 exp = 31;
920 man = 511;
921 }
922
923 } else if (rate) {
924 // representable rate
925
926 exp = 31;
927 man = rate;
928
929 // invariant: rate = man*2^(exp-31)
930 while (!(man & (1<<31))) {
931 exp = exp - 1;
932 man = man<<1;
933 }
934
935 // man has top bit set
936 // rate = (2^31+(man-2^31))*2^(exp-31)
937 // rate = (1+(man-2^31)/2^31)*2^exp
938 man = man<<1;
939 man &= 0xffffffffU; // a nop on 32-bit systems
940 // rate = (1+man/2^32)*2^exp
941
942 // exp is in the range 0 to 31, man is in the range 0 to 2^32-1
943 // time to lose significance... we want m in the range 0 to 2^9-1
944 // rounding presents a minor problem... we first decide which way
945 // we are rounding (based on given rounding direction and possibly
946 // the bits of the mantissa that are to be discarded).
947
948 switch (r) {
949 case round_down: {
950 // just truncate
951 man = man>>(32-9);
952 break;
953 }
954 case round_up: {
955 // check all bits that we are discarding
5f3f24fa 956 if (man & (~0U>>9)) {
1da177e4
LT
957 man = (man>>(32-9)) + 1;
958 if (man == (1<<9)) {
959 // no need to check for round up outside of range
960 man = 0;
961 exp += 1;
962 }
963 } else {
964 man = (man>>(32-9));
965 }
966 break;
967 }
968 case round_nearest: {
969 // check msb that we are discarding
970 if (man & (1<<(32-9-1))) {
971 man = (man>>(32-9)) + 1;
972 if (man == (1<<9)) {
973 // no need to check for round up outside of range
974 man = 0;
975 exp += 1;
976 }
977 } else {
978 man = (man>>(32-9));
979 }
980 break;
981 }
982 }
983
984 } else {
985 // zero rate - not representable
986
987 if (r == round_down) {
988 return -EINVAL;
989 } else {
990 exp = 0;
991 man = 0;
992 }
993
994 }
995
996 PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp);
997
998 if (bits)
999 *bits = /* (1<<14) | */ (exp<<9) | man;
1000
1001 if (actual)
1002 *actual = (exp >= 9)
1003 ? (1 << exp) + (man << (exp-9))
1004 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
1005
1006 return 0;
1007}
1008
1009/********** Linux ATM Operations **********/
1010
1011// some are not yet implemented while others do not make sense for
1012// this device
1013
1014/********** Open a VC **********/
1015
1016static int amb_open (struct atm_vcc * atm_vcc)
1017{
1018 int error;
1019
1020 struct atm_qos * qos;
1021 struct atm_trafprm * txtp;
1022 struct atm_trafprm * rxtp;
b1734d23 1023 u16 tx_rate_bits = -1; // hush gcc
1da177e4
LT
1024 u16 tx_vc_bits = -1; // hush gcc
1025 u16 tx_frame_bits = -1; // hush gcc
1026
1027 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1028 amb_vcc * vcc;
1029 unsigned char pool = -1; // hush gcc
1030 short vpi = atm_vcc->vpi;
1031 int vci = atm_vcc->vci;
1032
1033 PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci);
1034
1035#ifdef ATM_VPI_UNSPEC
1036 // UNSPEC is deprecated, remove this code eventually
1037 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
1038 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
1039 return -EINVAL;
1040 }
1041#endif
1042
1043 if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) &&
1044 0 <= vci && vci < (1<<NUM_VCI_BITS))) {
1045 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
1046 return -EINVAL;
1047 }
1048
1049 qos = &atm_vcc->qos;
1050
1051 if (qos->aal != ATM_AAL5) {
1052 PRINTD (DBG_QOS, "AAL not supported");
1053 return -EINVAL;
1054 }
1055
1056 // traffic parameters
1057
1058 PRINTD (DBG_QOS, "TX:");
1059 txtp = &qos->txtp;
1060 if (txtp->traffic_class != ATM_NONE) {
1061 switch (txtp->traffic_class) {
1062 case ATM_UBR: {
1063 // we take "the PCR" as a rate-cap
1064 int pcr = atm_pcr_goal (txtp);
1065 if (!pcr) {
1066 // no rate cap
1067 tx_rate_bits = 0;
1068 tx_vc_bits = TX_UBR;
1069 tx_frame_bits = TX_FRAME_NOTCAP;
1070 } else {
1071 rounding r;
1072 if (pcr < 0) {
1073 r = round_down;
1074 pcr = -pcr;
1075 } else {
1076 r = round_up;
1077 }
1078 error = make_rate (pcr, r, &tx_rate_bits, NULL);
b1734d23
JG
1079 if (error)
1080 return error;
1da177e4
LT
1081 tx_vc_bits = TX_UBR_CAPPED;
1082 tx_frame_bits = TX_FRAME_CAPPED;
1083 }
1084 break;
1085 }
1086#if 0
1087 case ATM_ABR: {
1088 pcr = atm_pcr_goal (txtp);
1089 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1090 break;
1091 }
1092#endif
1093 default: {
1094 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1095 PRINTD (DBG_QOS, "request for non-UBR denied");
1096 return -EINVAL;
1097 }
1098 }
1099 PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx",
1100 tx_rate_bits, tx_vc_bits);
1101 }
1102
1103 PRINTD (DBG_QOS, "RX:");
1104 rxtp = &qos->rxtp;
1105 if (rxtp->traffic_class == ATM_NONE) {
1106 // do nothing
1107 } else {
1108 // choose an RX pool (arranged in increasing size)
1109 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1110 if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) {
1111 PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)",
1112 pool, rxtp->max_sdu, dev->rxq[pool].buffer_size);
1113 break;
1114 }
1115 if (pool == NUM_RX_POOLS) {
1116 PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL,
1117 "no pool suitable for VC (RX max_sdu %d is too large)",
1118 rxtp->max_sdu);
1119 return -EINVAL;
1120 }
1121
1122 switch (rxtp->traffic_class) {
1123 case ATM_UBR: {
1124 break;
1125 }
1126#if 0
1127 case ATM_ABR: {
1128 pcr = atm_pcr_goal (rxtp);
1129 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1130 break;
1131 }
1132#endif
1133 default: {
1134 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1135 PRINTD (DBG_QOS, "request for non-UBR denied");
1136 return -EINVAL;
1137 }
1138 }
1139 }
1140
1141 // get space for our vcc stuff
1142 vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL);
1143 if (!vcc) {
1144 PRINTK (KERN_ERR, "out of memory!");
1145 return -ENOMEM;
1146 }
1147 atm_vcc->dev_data = (void *) vcc;
1148
1149 // no failures beyond this point
1150
1151 // we are not really "immediately before allocating the connection
1152 // identifier in hardware", but it will just have to do!
1153 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
1154
1155 if (txtp->traffic_class != ATM_NONE) {
1156 command cmd;
1157
1158 vcc->tx_frame_bits = tx_frame_bits;
1159
eff0dee5 1160 mutex_lock(&dev->vcc_sf);
1da177e4
LT
1161 if (dev->rxer[vci]) {
1162 // RXer on the channel already, just modify rate...
1163 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1164 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1165 cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1166 while (command_do (dev, &cmd))
1167 schedule();
1168 // ... and TX flags, preserving the RX pool
1169 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1170 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1171 cmd.args.modify_flags.flags = cpu_to_be32
1172 ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT)
1173 | (tx_vc_bits << SRB_FLAGS_SHIFT) );
1174 while (command_do (dev, &cmd))
1175 schedule();
1176 } else {
1177 // no RXer on the channel, just open (with pool zero)
1178 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1179 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1180 cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT);
1181 cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1182 while (command_do (dev, &cmd))
1183 schedule();
1184 }
1185 dev->txer[vci].tx_present = 1;
eff0dee5 1186 mutex_unlock(&dev->vcc_sf);
1da177e4
LT
1187 }
1188
1189 if (rxtp->traffic_class != ATM_NONE) {
1190 command cmd;
1191
1192 vcc->rx_info.pool = pool;
1193
eff0dee5 1194 mutex_lock(&dev->vcc_sf);
1da177e4
LT
1195 /* grow RX buffer pool */
1196 if (!dev->rxq[pool].buffers_wanted)
1197 dev->rxq[pool].buffers_wanted = rx_lats;
1198 dev->rxq[pool].buffers_wanted += 1;
1199 fill_rx_pool (dev, pool, GFP_KERNEL);
1200
1201 if (dev->txer[vci].tx_present) {
1202 // TXer on the channel already
1203 // switch (from pool zero) to this pool, preserving the TX bits
1204 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1205 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1206 cmd.args.modify_flags.flags = cpu_to_be32
1207 ( (pool << SRB_POOL_SHIFT)
1208 | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) );
1209 } else {
1210 // no TXer on the channel, open the VC (with no rate info)
1211 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1212 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1213 cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
1214 cmd.args.open.rate = cpu_to_be32 (0);
1215 }
1216 while (command_do (dev, &cmd))
1217 schedule();
1218 // this link allows RX frames through
1219 dev->rxer[vci] = atm_vcc;
eff0dee5 1220 mutex_unlock(&dev->vcc_sf);
1da177e4
LT
1221 }
1222
1223 // indicate readiness
1224 set_bit(ATM_VF_READY,&atm_vcc->flags);
1225
1226 return 0;
1227}
1228
1229/********** Close a VC **********/
1230
1231static void amb_close (struct atm_vcc * atm_vcc) {
1232 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1233 amb_vcc * vcc = AMB_VCC (atm_vcc);
1234 u16 vci = atm_vcc->vci;
1235
1236 PRINTD (DBG_VCC|DBG_FLOW, "amb_close");
1237
1238 // indicate unreadiness
1239 clear_bit(ATM_VF_READY,&atm_vcc->flags);
1240
1241 // disable TXing
1242 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
1243 command cmd;
1244
eff0dee5 1245 mutex_lock(&dev->vcc_sf);
1da177e4
LT
1246 if (dev->rxer[vci]) {
1247 // RXer still on the channel, just modify rate... XXX not really needed
1248 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1249 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1250 cmd.args.modify_rate.rate = cpu_to_be32 (0);
1251 // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool
1252 } else {
1253 // no RXer on the channel, close channel
1254 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1255 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1256 }
1257 dev->txer[vci].tx_present = 0;
1258 while (command_do (dev, &cmd))
1259 schedule();
eff0dee5 1260 mutex_unlock(&dev->vcc_sf);
1da177e4
LT
1261 }
1262
1263 // disable RXing
1264 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1265 command cmd;
1266
1267 // this is (the?) one reason why we need the amb_vcc struct
1268 unsigned char pool = vcc->rx_info.pool;
1269
eff0dee5 1270 mutex_lock(&dev->vcc_sf);
1da177e4
LT
1271 if (dev->txer[vci].tx_present) {
1272 // TXer still on the channel, just go to pool zero XXX not really needed
1273 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1274 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1275 cmd.args.modify_flags.flags = cpu_to_be32
1276 (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT);
1277 } else {
1278 // no TXer on the channel, close the VC
1279 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1280 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1281 }
1282 // forget the rxer - no more skbs will be pushed
1283 if (atm_vcc != dev->rxer[vci])
1284 PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p",
1285 "arghhh! we're going to die!",
1286 vcc, dev->rxer[vci]);
1287 dev->rxer[vci] = NULL;
1288 while (command_do (dev, &cmd))
1289 schedule();
1290
1291 /* shrink RX buffer pool */
1292 dev->rxq[pool].buffers_wanted -= 1;
1293 if (dev->rxq[pool].buffers_wanted == rx_lats) {
1294 dev->rxq[pool].buffers_wanted = 0;
1295 drain_rx_pool (dev, pool);
1296 }
eff0dee5 1297 mutex_unlock(&dev->vcc_sf);
1da177e4
LT
1298 }
1299
1300 // free our structure
1301 kfree (vcc);
1302
1303 // say the VPI/VCI is free again
1304 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
1305
1306 return;
1307}
1308
1309/********** Set socket options for a VC **********/
1310
1311// int amb_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1312
1313/********** Set socket options for a VC **********/
1314
1315// int amb_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1316
1317/********** Send **********/
1318
1319static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1320 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1321 amb_vcc * vcc = AMB_VCC(atm_vcc);
1322 u16 vc = atm_vcc->vci;
1323 unsigned int tx_len = skb->len;
1324 unsigned char * tx_data = skb->data;
1325 tx_simple * tx_descr;
1326 tx_in tx;
1327
1328 if (test_bit (dead, &dev->flags))
1329 return -EIO;
1330
1331 PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u",
1332 vc, tx_data, tx_len);
1333
1334 dump_skb (">>>", vc, skb);
1335
1336 if (!dev->txer[vc].tx_present) {
1337 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc);
1338 return -EBADFD;
1339 }
1340
1341 // this is a driver private field so we have to set it ourselves,
1342 // despite the fact that we are _required_ to use it to check for a
1343 // pop function
1344 ATM_SKB(skb)->vcc = atm_vcc;
1345
1346 if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) {
1347 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1348 return -EIO;
1349 }
1350
1351 if (check_area (skb->data, skb->len)) {
1352 atomic_inc(&atm_vcc->stats->tx_err);
1353 return -ENOMEM; // ?
1354 }
1355
1356 // allocate memory for fragments
1357 tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL);
1358 if (!tx_descr) {
1359 PRINTK (KERN_ERR, "could not allocate TX descriptor");
1360 return -ENOMEM;
1361 }
1362 if (check_area (tx_descr, sizeof(tx_simple))) {
1363 kfree (tx_descr);
1364 return -ENOMEM;
1365 }
1366 PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr);
1367
1368 tx_descr->skb = skb;
1369
1370 tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len);
1371 tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data));
1372
1373 tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr);
1374 tx_descr->tx_frag_end.vc = 0;
1375 tx_descr->tx_frag_end.next_descriptor_length = 0;
1376 tx_descr->tx_frag_end.next_descriptor = 0;
1377#ifdef AMB_NEW_MICROCODE
1378 tx_descr->tx_frag_end.cpcs_uu = 0;
1379 tx_descr->tx_frag_end.cpi = 0;
1380 tx_descr->tx_frag_end.pad = 0;
1381#endif
1382
1383 tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc);
1384 tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end));
1385 tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag));
1386
1387 while (tx_give (dev, &tx))
1388 schedule();
1389 return 0;
1390}
1391
1392/********** Change QoS on a VC **********/
1393
1394// int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags);
1395
1396/********** Free RX Socket Buffer **********/
1397
1398#if 0
1399static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1400 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1401 amb_vcc * vcc = AMB_VCC (atm_vcc);
1402 unsigned char pool = vcc->rx_info.pool;
1403 rx_in rx;
1404
1405 // This may be unsafe for various reasons that I cannot really guess
1406 // at. However, I note that the ATM layer calls kfree_skb rather
1407 // than dev_kfree_skb at this point so we are least covered as far
1408 // as buffer locking goes. There may be bugs if pcap clones RX skbs.
1409
1410 PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)",
1411 skb, atm_vcc, vcc);
1412
1413 rx.handle = virt_to_bus (skb);
1414 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
1415
1416 skb->data = skb->head;
1417 skb->tail = skb->head;
1418 skb->len = 0;
1419
1420 if (!rx_give (dev, &rx, pool)) {
1421 // success
1422 PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool);
1423 return;
1424 }
1425
1426 // just do what the ATM layer would have done
1427 dev_kfree_skb_any (skb);
1428
1429 return;
1430}
1431#endif
1432
1433/********** Proc File Output **********/
1434
1435static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
1436 amb_dev * dev = AMB_DEV (atm_dev);
1437 int left = *pos;
1438 unsigned char pool;
1439
1440 PRINTD (DBG_FLOW, "amb_proc_read");
1441
1442 /* more diagnostics here? */
1443
1444 if (!left--) {
1445 amb_stats * s = &dev->stats;
1446 return sprintf (page,
1447 "frames: TX OK %lu, RX OK %lu, RX bad %lu "
1448 "(CRC %lu, long %lu, aborted %lu, unused %lu).\n",
1449 s->tx_ok, s->rx.ok, s->rx.error,
1450 s->rx.badcrc, s->rx.toolong,
1451 s->rx.aborted, s->rx.unused);
1452 }
1453
1454 if (!left--) {
1455 amb_cq * c = &dev->cq;
1456 return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ",
1457 c->pending, c->high, c->maximum);
1458 }
1459
1460 if (!left--) {
1461 amb_txq * t = &dev->txq;
1462 return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n",
1463 t->pending, t->maximum, t->high, t->filled);
1464 }
1465
1466 if (!left--) {
1467 unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:");
1468 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1469 amb_rxq * r = &dev->rxq[pool];
1470 count += sprintf (page+count, " %u/%u/%u %u %u",
1471 r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied);
1472 }
1473 count += sprintf (page+count, ".\n");
1474 return count;
1475 }
1476
1477 if (!left--) {
1478 unsigned int count = sprintf (page, "RX buffer sizes:");
1479 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1480 amb_rxq * r = &dev->rxq[pool];
1481 count += sprintf (page+count, " %u", r->buffer_size);
1482 }
1483 count += sprintf (page+count, ".\n");
1484 return count;
1485 }
1486
1487#if 0
1488 if (!left--) {
1489 // suni block etc?
1490 }
1491#endif
1492
1493 return 0;
1494}
1495
1496/********** Operation Structure **********/
1497
1498static const struct atmdev_ops amb_ops = {
1499 .open = amb_open,
1500 .close = amb_close,
1501 .send = amb_send,
1502 .proc_read = amb_proc_read,
1503 .owner = THIS_MODULE,
1504};
1505
1506/********** housekeeping **********/
1507static void do_housekeeping (unsigned long arg) {
1508 amb_dev * dev = (amb_dev *) arg;
1509
1510 // could collect device-specific (not driver/atm-linux) stats here
1511
1512 // last resort refill once every ten seconds
1513 fill_rx_pools (dev);
1514 mod_timer(&dev->housekeeping, jiffies + 10*HZ);
1515
1516 return;
1517}
1518
1519/********** creation of communication queues **********/
1520
1521static int __devinit create_queues (amb_dev * dev, unsigned int cmds,
1522 unsigned int txs, unsigned int * rxs,
1523 unsigned int * rx_buffer_sizes) {
1524 unsigned char pool;
1525 size_t total = 0;
1526 void * memory;
1527 void * limit;
1528
1529 PRINTD (DBG_FLOW, "create_queues %p", dev);
1530
1531 total += cmds * sizeof(command);
1532
1533 total += txs * (sizeof(tx_in) + sizeof(tx_out));
1534
1535 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1536 total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out));
1537
1538 memory = kmalloc (total, GFP_KERNEL);
1539 if (!memory) {
1540 PRINTK (KERN_ERR, "could not allocate queues");
1541 return -ENOMEM;
1542 }
1543 if (check_area (memory, total)) {
1544 PRINTK (KERN_ERR, "queues allocated in nasty area");
1545 kfree (memory);
1546 return -ENOMEM;
1547 }
1548
1549 limit = memory + total;
1550 PRINTD (DBG_INIT, "queues from %p to %p", memory, limit);
1551
1552 PRINTD (DBG_CMD, "command queue at %p", memory);
1553
1554 {
1555 command * cmd = memory;
1556 amb_cq * cq = &dev->cq;
1557
1558 cq->pending = 0;
1559 cq->high = 0;
1560 cq->maximum = cmds - 1;
1561
1562 cq->ptrs.start = cmd;
1563 cq->ptrs.in = cmd;
1564 cq->ptrs.out = cmd;
1565 cq->ptrs.limit = cmd + cmds;
1566
1567 memory = cq->ptrs.limit;
1568 }
1569
1570 PRINTD (DBG_TX, "TX queue pair at %p", memory);
1571
1572 {
1573 tx_in * in = memory;
1574 tx_out * out;
1575 amb_txq * txq = &dev->txq;
1576
1577 txq->pending = 0;
1578 txq->high = 0;
1579 txq->filled = 0;
1580 txq->maximum = txs - 1;
1581
1582 txq->in.start = in;
1583 txq->in.ptr = in;
1584 txq->in.limit = in + txs;
1585
1586 memory = txq->in.limit;
1587 out = memory;
1588
1589 txq->out.start = out;
1590 txq->out.ptr = out;
1591 txq->out.limit = out + txs;
1592
1593 memory = txq->out.limit;
1594 }
1595
1596 PRINTD (DBG_RX, "RX queue pairs at %p", memory);
1597
1598 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1599 rx_in * in = memory;
1600 rx_out * out;
1601 amb_rxq * rxq = &dev->rxq[pool];
1602
1603 rxq->buffer_size = rx_buffer_sizes[pool];
1604 rxq->buffers_wanted = 0;
1605
1606 rxq->pending = 0;
1607 rxq->low = rxs[pool] - 1;
1608 rxq->emptied = 0;
1609 rxq->maximum = rxs[pool] - 1;
1610
1611 rxq->in.start = in;
1612 rxq->in.ptr = in;
1613 rxq->in.limit = in + rxs[pool];
1614
1615 memory = rxq->in.limit;
1616 out = memory;
1617
1618 rxq->out.start = out;
1619 rxq->out.ptr = out;
1620 rxq->out.limit = out + rxs[pool];
1621
1622 memory = rxq->out.limit;
1623 }
1624
1625 if (memory == limit) {
1626 return 0;
1627 } else {
1628 PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit);
1629 kfree (limit - total);
1630 return -ENOMEM;
1631 }
1632
1633}
1634
1635/********** destruction of communication queues **********/
1636
1637static void destroy_queues (amb_dev * dev) {
1638 // all queues assumed empty
1639 void * memory = dev->cq.ptrs.start;
1640 // includes txq.in, txq.out, rxq[].in and rxq[].out
1641
1642 PRINTD (DBG_FLOW, "destroy_queues %p", dev);
1643
1644 PRINTD (DBG_INIT, "freeing queues at %p", memory);
1645 kfree (memory);
1646
1647 return;
1648}
1649
1650/********** basic loader commands and error handling **********/
1651// centisecond timeouts - guessing away here
1652static unsigned int command_timeouts [] = {
1653 [host_memory_test] = 15,
1654 [read_adapter_memory] = 2,
1655 [write_adapter_memory] = 2,
1656 [adapter_start] = 50,
1657 [get_version_number] = 10,
1658 [interrupt_host] = 1,
1659 [flash_erase_sector] = 1,
1660 [adap_download_block] = 1,
1661 [adap_erase_flash] = 1,
1662 [adap_run_in_iram] = 1,
1663 [adap_end_download] = 1
1664};
1665
1666
1667static unsigned int command_successes [] = {
1668 [host_memory_test] = COMMAND_PASSED_TEST,
1669 [read_adapter_memory] = COMMAND_READ_DATA_OK,
1670 [write_adapter_memory] = COMMAND_WRITE_DATA_OK,
1671 [adapter_start] = COMMAND_COMPLETE,
1672 [get_version_number] = COMMAND_COMPLETE,
1673 [interrupt_host] = COMMAND_COMPLETE,
1674 [flash_erase_sector] = COMMAND_COMPLETE,
1675 [adap_download_block] = COMMAND_COMPLETE,
1676 [adap_erase_flash] = COMMAND_COMPLETE,
1677 [adap_run_in_iram] = COMMAND_COMPLETE,
1678 [adap_end_download] = COMMAND_COMPLETE
1679};
1680
1681static int decode_loader_result (loader_command cmd, u32 result)
1682{
1683 int res;
1684 const char *msg;
1685
1686 if (result == command_successes[cmd])
1687 return 0;
1688
1689 switch (result) {
1690 case BAD_COMMAND:
1691 res = -EINVAL;
1692 msg = "bad command";
1693 break;
1694 case COMMAND_IN_PROGRESS:
1695 res = -ETIMEDOUT;
1696 msg = "command in progress";
1697 break;
1698 case COMMAND_PASSED_TEST:
1699 res = 0;
1700 msg = "command passed test";
1701 break;
1702 case COMMAND_FAILED_TEST:
1703 res = -EIO;
1704 msg = "command failed test";
1705 break;
1706 case COMMAND_READ_DATA_OK:
1707 res = 0;
1708 msg = "command read data ok";
1709 break;
1710 case COMMAND_READ_BAD_ADDRESS:
1711 res = -EINVAL;
1712 msg = "command read bad address";
1713 break;
1714 case COMMAND_WRITE_DATA_OK:
1715 res = 0;
1716 msg = "command write data ok";
1717 break;
1718 case COMMAND_WRITE_BAD_ADDRESS:
1719 res = -EINVAL;
1720 msg = "command write bad address";
1721 break;
1722 case COMMAND_WRITE_FLASH_FAILURE:
1723 res = -EIO;
1724 msg = "command write flash failure";
1725 break;
1726 case COMMAND_COMPLETE:
1727 res = 0;
1728 msg = "command complete";
1729 break;
1730 case COMMAND_FLASH_ERASE_FAILURE:
1731 res = -EIO;
1732 msg = "command flash erase failure";
1733 break;
1734 case COMMAND_WRITE_BAD_DATA:
1735 res = -EINVAL;
1736 msg = "command write bad data";
1737 break;
1738 default:
1739 res = -EINVAL;
1740 msg = "unknown error";
1741 PRINTD (DBG_LOAD|DBG_ERR,
1742 "decode_loader_result got %d=%x !",
1743 result, result);
1744 break;
1745 }
1746
1747 PRINTK (KERN_ERR, "%s", msg);
1748 return res;
1749}
1750
1751static int __devinit do_loader_command (volatile loader_block * lb,
1752 const amb_dev * dev, loader_command cmd) {
1753
1754 unsigned long timeout;
1755
1756 PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command");
1757
1758 /* do a command
1759
1760 Set the return value to zero, set the command type and set the
1761 valid entry to the right magic value. The payload is already
1762 correctly byte-ordered so we leave it alone. Hit the doorbell
1763 with the bus address of this structure.
1764
1765 */
1766
1767 lb->result = 0;
1768 lb->command = cpu_to_be32 (cmd);
1769 lb->valid = cpu_to_be32 (DMA_VALID);
1770 // dump_registers (dev);
1771 // dump_loader_block (lb);
1772 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask);
1773
1774 timeout = command_timeouts[cmd] * 10;
1775
1776 while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS))
1777 if (timeout) {
1778 timeout = msleep_interruptible(timeout);
1779 } else {
1780 PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd);
1781 dump_registers (dev);
1782 dump_loader_block (lb);
1783 return -ETIMEDOUT;
1784 }
1785
1786 if (cmd == adapter_start) {
1787 // wait for start command to acknowledge...
1788 timeout = 100;
1789 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
1790 if (timeout) {
1791 timeout = msleep_interruptible(timeout);
1792 } else {
1793 PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x",
1794 be32_to_cpu (lb->result));
1795 dump_registers (dev);
1796 return -ETIMEDOUT;
1797 }
1798 return 0;
1799 } else {
1800 return decode_loader_result (cmd, be32_to_cpu (lb->result));
1801 }
1802
1803}
1804
1805/* loader: determine loader version */
1806
1807static int __devinit get_loader_version (loader_block * lb,
1808 const amb_dev * dev, u32 * version) {
1809 int res;
1810
1811 PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version");
1812
1813 res = do_loader_command (lb, dev, get_version_number);
1814 if (res)
1815 return res;
1816 if (version)
1817 *version = be32_to_cpu (lb->payload.version);
1818 return 0;
1819}
1820
1821/* loader: write memory data blocks */
1822
27d202ff
DW
1823static int __devinit loader_write (loader_block* lb,
1824 const amb_dev *dev,
1825 const struct ihex_binrec *rec) {
1da177e4
LT
1826 transfer_block * tb = &lb->payload.transfer;
1827
1828 PRINTD (DBG_FLOW|DBG_LOAD, "loader_write");
27d202ff
DW
1829
1830 tb->address = rec->addr;
1831 tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1832 memcpy(tb->data, rec->data, be16_to_cpu(rec->len));
1da177e4
LT
1833 return do_loader_command (lb, dev, write_adapter_memory);
1834}
1835
1836/* loader: verify memory data blocks */
1837
1838static int __devinit loader_verify (loader_block * lb,
27d202ff
DW
1839 const amb_dev *dev,
1840 const struct ihex_binrec *rec) {
1da177e4
LT
1841 transfer_block * tb = &lb->payload.transfer;
1842 int res;
1843
1844 PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify");
1845
27d202ff
DW
1846 tb->address = rec->addr;
1847 tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1da177e4 1848 res = do_loader_command (lb, dev, read_adapter_memory);
27d202ff
DW
1849 if (!res && memcmp(tb->data, rec->data, be16_to_cpu(rec->len)))
1850 res = -EINVAL;
1da177e4
LT
1851 return res;
1852}
1853
1854/* loader: start microcode */
1855
1856static int __devinit loader_start (loader_block * lb,
1857 const amb_dev * dev, u32 address) {
1858 PRINTD (DBG_FLOW|DBG_LOAD, "loader_start");
1859
1860 lb->payload.start = cpu_to_be32 (address);
1861 return do_loader_command (lb, dev, adapter_start);
1862}
1863
1864/********** reset card **********/
1865
1866static inline void sf (const char * msg)
1867{
1868 PRINTK (KERN_ERR, "self-test failed: %s", msg);
1869}
1870
1871static int amb_reset (amb_dev * dev, int diags) {
1872 u32 word;
1873
1874 PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset");
1875
1876 word = rd_plain (dev, offsetof(amb_mem, reset_control));
1877 // put card into reset state
1878 wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS);
1879 // wait a short while
1880 udelay (10);
1881#if 1
1882 // put card into known good state
1883 wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS);
1884 // clear all interrupts just in case
1885 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
1886#endif
1887 // clear self-test done flag
1888 wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0);
1889 // take card out of reset state
1890 wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS);
1891
1892 if (diags) {
1893 unsigned long timeout;
1894 // 4.2 second wait
1895 msleep(4200);
1896 // half second time-out
1897 timeout = 500;
1898 while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready)))
1899 if (timeout) {
1900 timeout = msleep_interruptible(timeout);
1901 } else {
1902 PRINTD (DBG_LOAD|DBG_ERR, "reset timed out");
1903 return -ETIMEDOUT;
1904 }
1905
1906 // get results of self-test
1907 // XXX double check byte-order
1908 word = rd_mem (dev, offsetof(amb_mem, mb.loader.result));
1909 if (word & SELF_TEST_FAILURE) {
1910 if (word & GPINT_TST_FAILURE)
1911 sf ("interrupt");
1912 if (word & SUNI_DATA_PATTERN_FAILURE)
1913 sf ("SUNI data pattern");
1914 if (word & SUNI_DATA_BITS_FAILURE)
1915 sf ("SUNI data bits");
1916 if (word & SUNI_UTOPIA_FAILURE)
1917 sf ("SUNI UTOPIA interface");
1918 if (word & SUNI_FIFO_FAILURE)
1919 sf ("SUNI cell buffer FIFO");
1920 if (word & SRAM_FAILURE)
1921 sf ("bad SRAM");
1922 // better return value?
1923 return -EIO;
1924 }
1925
1926 }
1927 return 0;
1928}
1929
1930/********** transfer and start the microcode **********/
1931
1932static int __devinit ucode_init (loader_block * lb, amb_dev * dev) {
27d202ff
DW
1933 const struct firmware *fw;
1934 unsigned long start_address;
1935 const struct ihex_binrec *rec;
1da177e4
LT
1936 int res;
1937
27d202ff
DW
1938 res = request_ihex_firmware(&fw, "atmsar11.fw", &dev->pci_dev->dev);
1939 if (res) {
1940 PRINTK (KERN_ERR, "Cannot load microcode data");
1941 return res;
1942 }
1943
1944 /* First record contains just the start address */
1945 rec = (const struct ihex_binrec *)fw->data;
1946 if (be16_to_cpu(rec->len) != sizeof(__be32) || be32_to_cpu(rec->addr)) {
1947 PRINTK (KERN_ERR, "Bad microcode data (no start record)");
1948 return -EINVAL;
1949 }
1950 start_address = be32_to_cpup((__be32 *)rec->data);
1951
1952 rec = ihex_next_binrec(rec);
1953
1da177e4 1954 PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init");
27d202ff
DW
1955
1956 while (rec) {
1957 PRINTD (DBG_LOAD, "starting region (%x, %u)", be32_to_cpu(rec->addr),
1958 be16_to_cpu(rec->len));
1959 if (be16_to_cpu(rec->len) > 4 * MAX_TRANSFER_DATA) {
1960 PRINTK (KERN_ERR, "Bad microcode data (record too long)");
1961 return -EINVAL;
1da177e4 1962 }
27d202ff
DW
1963 if (be16_to_cpu(rec->len) & 3) {
1964 PRINTK (KERN_ERR, "Bad microcode data (odd number of bytes)");
1965 return -EINVAL;
1966 }
1967 res = loader_write(lb, dev, rec);
1968 if (res)
1969 break;
1970
1971 res = loader_verify(lb, dev, rec);
1972 if (res)
1973 break;
1da177e4 1974 }
27d202ff
DW
1975 release_firmware(fw);
1976 if (!res)
1977 res = loader_start(lb, dev, start_address);
1978
1979 return res;
1da177e4
LT
1980}
1981
1982/********** give adapter parameters **********/
1983
1984static inline __be32 bus_addr(void * addr) {
1985 return cpu_to_be32 (virt_to_bus (addr));
1986}
1987
1988static int __devinit amb_talk (amb_dev * dev) {
1989 adap_talk_block a;
1990 unsigned char pool;
1991 unsigned long timeout;
1992
1993 PRINTD (DBG_FLOW, "amb_talk %p", dev);
1994
1995 a.command_start = bus_addr (dev->cq.ptrs.start);
1996 a.command_end = bus_addr (dev->cq.ptrs.limit);
1997 a.tx_start = bus_addr (dev->txq.in.start);
1998 a.tx_end = bus_addr (dev->txq.in.limit);
1999 a.txcom_start = bus_addr (dev->txq.out.start);
2000 a.txcom_end = bus_addr (dev->txq.out.limit);
2001
2002 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
2003 // the other "a" items are set up by the adapter
2004 a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start);
2005 a.rec_struct[pool].buffer_end = bus_addr (dev->rxq[pool].in.limit);
2006 a.rec_struct[pool].rx_start = bus_addr (dev->rxq[pool].out.start);
2007 a.rec_struct[pool].rx_end = bus_addr (dev->rxq[pool].out.limit);
2008 a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size);
2009 }
2010
2011#ifdef AMB_NEW_MICROCODE
2012 // disable fast PLX prefetching
2013 a.init_flags = 0;
2014#endif
2015
2016 // pass the structure
2017 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a));
2018
2019 // 2.2 second wait (must not touch doorbell during 2 second DMA test)
2020 msleep(2200);
2021 // give the adapter another half second?
2022 timeout = 500;
2023 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
2024 if (timeout) {
2025 timeout = msleep_interruptible(timeout);
2026 } else {
2027 PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out");
2028 return -ETIMEDOUT;
2029 }
2030
2031 return 0;
2032}
2033
2034// get microcode version
2035static void __devinit amb_ucode_version (amb_dev * dev) {
2036 u32 major;
2037 u32 minor;
2038 command cmd;
2039 cmd.request = cpu_to_be32 (SRB_GET_VERSION);
2040 while (command_do (dev, &cmd)) {
2041 set_current_state(TASK_UNINTERRUPTIBLE);
2042 schedule();
2043 }
2044 major = be32_to_cpu (cmd.args.version.major);
2045 minor = be32_to_cpu (cmd.args.version.minor);
2046 PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor);
2047}
2048
1da177e4
LT
2049// get end station address
2050static void __devinit amb_esi (amb_dev * dev, u8 * esi) {
2051 u32 lower4;
2052 u16 upper2;
2053 command cmd;
2054
2055 cmd.request = cpu_to_be32 (SRB_GET_BIA);
2056 while (command_do (dev, &cmd)) {
2057 set_current_state(TASK_UNINTERRUPTIBLE);
2058 schedule();
2059 }
2060 lower4 = be32_to_cpu (cmd.args.bia.lower4);
2061 upper2 = be32_to_cpu (cmd.args.bia.upper2);
2062 PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2);
2063
2064 if (esi) {
2065 unsigned int i;
2066
2067 PRINTDB (DBG_INIT, "ESI:");
2068 for (i = 0; i < ESI_LEN; ++i) {
2069 if (i < 4)
0a858857 2070 esi[i] = bitrev8(lower4>>(8*i));
1da177e4 2071 else
0a858857 2072 esi[i] = bitrev8(upper2>>(8*(i-4)));
1da177e4
LT
2073 PRINTDM (DBG_INIT, " %02x", esi[i]);
2074 }
2075
2076 PRINTDE (DBG_INIT, "");
2077 }
2078
2079 return;
2080}
2081
2082static void fixup_plx_window (amb_dev *dev, loader_block *lb)
2083{
2084 // fix up the PLX-mapped window base address to match the block
2085 unsigned long blb;
2086 u32 mapreg;
2087 blb = virt_to_bus(lb);
2088 // the kernel stack had better not ever cross a 1Gb boundary!
2089 mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10]));
2090 mapreg &= ~onegigmask;
2091 mapreg |= blb & onegigmask;
2092 wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg);
2093 return;
2094}
2095
2096static int __devinit amb_init (amb_dev * dev)
2097{
2098 loader_block lb;
2099
2100 u32 version;
2101
2102 if (amb_reset (dev, 1)) {
2103 PRINTK (KERN_ERR, "card reset failed!");
2104 } else {
2105 fixup_plx_window (dev, &lb);
2106
2107 if (get_loader_version (&lb, dev, &version)) {
2108 PRINTK (KERN_INFO, "failed to get loader version");
2109 } else {
2110 PRINTK (KERN_INFO, "loader version is %08x", version);
2111
2112 if (ucode_init (&lb, dev)) {
2113 PRINTK (KERN_ERR, "microcode failure");
2114 } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) {
2115 PRINTK (KERN_ERR, "failed to get memory for queues");
2116 } else {
2117
2118 if (amb_talk (dev)) {
2119 PRINTK (KERN_ERR, "adapter did not accept queues");
2120 } else {
2121
2122 amb_ucode_version (dev);
2123 return 0;
2124
2125 } /* amb_talk */
2126
2127 destroy_queues (dev);
2128 } /* create_queues, ucode_init */
2129
2130 amb_reset (dev, 0);
2131 } /* get_loader_version */
2132
2133 } /* amb_reset */
2134
2135 return -EINVAL;
2136}
2137
2138static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev)
2139{
2140 unsigned char pool;
1da177e4
LT
2141
2142 // set up known dev items straight away
2143 dev->pci_dev = pci_dev;
2144 pci_set_drvdata(pci_dev, dev);
2145
2146 dev->iobase = pci_resource_start (pci_dev, 1);
2147 dev->irq = pci_dev->irq;
2148 dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0));
2149
2150 // flags (currently only dead)
2151 dev->flags = 0;
2152
2153 // Allocate cell rates (fibre)
2154 // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2155 // to be really pedantic, this should be ATM_OC3c_PCR
2156 dev->tx_avail = ATM_OC3_PCR;
2157 dev->rx_avail = ATM_OC3_PCR;
2158
2159#ifdef FILL_RX_POOLS_IN_BH
2160 // initialise bottom half
2161 INIT_WORK(&dev->bh, (void (*)(void *)) fill_rx_pools, dev);
2162#endif
2163
2164 // semaphore for txer/rxer modifications - we cannot use a
2165 // spinlock as the critical region needs to switch processes
eff0dee5 2166 mutex_init(&dev->vcc_sf);
1da177e4
LT
2167 // queue manipulation spinlocks; we want atomic reads and
2168 // writes to the queue descriptors (handles IRQ and SMP)
2169 // consider replacing "int pending" -> "atomic_t available"
2170 // => problem related to who gets to move queue pointers
2171 spin_lock_init (&dev->cq.lock);
2172 spin_lock_init (&dev->txq.lock);
2173 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2174 spin_lock_init (&dev->rxq[pool].lock);
2175}
2176
2177static void setup_pci_dev(struct pci_dev *pci_dev)
2178{
2179 unsigned char lat;
2180
2181 // enable bus master accesses
2182 pci_set_master(pci_dev);
2183
2184 // frobnicate latency (upwards, usually)
2185 pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2186
2187 if (!pci_lat)
2188 pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat;
2189
2190 if (lat != pci_lat) {
2191 PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu",
2192 lat, pci_lat);
2193 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2194 }
2195}
2196
2197static int __devinit amb_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2198{
2199 amb_dev * dev;
2200 int err;
2201 unsigned int irq;
2202
2203 err = pci_enable_device(pci_dev);
2204 if (err < 0) {
2205 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2206 goto out;
2207 }
2208
2209 // read resources from PCI configuration space
2210 irq = pci_dev->irq;
2211
2212 if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) {
2213 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2214 err = -EINVAL;
2215 goto out_disable;
2216 }
2217
2218 PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at"
e29419ff
GKH
2219 " IO %llx, IRQ %u, MEM %p",
2220 (unsigned long long)pci_resource_start(pci_dev, 1),
1da177e4
LT
2221 irq, bus_to_virt(pci_resource_start(pci_dev, 0)));
2222
2223 // check IO region
2224 err = pci_request_region(pci_dev, 1, DEV_LABEL);
2225 if (err < 0) {
2226 PRINTK (KERN_ERR, "IO range already in use!");
2227 goto out_disable;
2228 }
2229
a5929af4 2230 dev = kzalloc(sizeof(amb_dev), GFP_KERNEL);
1da177e4
LT
2231 if (!dev) {
2232 PRINTK (KERN_ERR, "out of memory!");
2233 err = -ENOMEM;
2234 goto out_release;
2235 }
2236
2237 setup_dev(dev, pci_dev);
2238
2239 err = amb_init(dev);
2240 if (err < 0) {
2241 PRINTK (KERN_ERR, "adapter initialisation failure");
2242 goto out_free;
2243 }
2244
2245 setup_pci_dev(pci_dev);
2246
2247 // grab (but share) IRQ and install handler
dace1453 2248 err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev);
1da177e4
LT
2249 if (err < 0) {
2250 PRINTK (KERN_ERR, "request IRQ failed!");
2251 goto out_reset;
2252 }
2253
2254 dev->atm_dev = atm_dev_register (DEV_LABEL, &amb_ops, -1, NULL);
2255 if (!dev->atm_dev) {
2256 PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2257 err = -EINVAL;
2258 goto out_free_irq;
2259 }
2260
2261 PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2262 dev->atm_dev->number, dev, dev->atm_dev);
2263 dev->atm_dev->dev_data = (void *) dev;
2264
2265 // register our address
2266 amb_esi (dev, dev->atm_dev->esi);
2267
2268 // 0 bits for vpi, 10 bits for vci
2269 dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS;
2270 dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS;
2271
2272 init_timer(&dev->housekeeping);
2273 dev->housekeeping.function = do_housekeeping;
2274 dev->housekeeping.data = (unsigned long) dev;
2275 mod_timer(&dev->housekeeping, jiffies);
2276
2277 // enable host interrupts
2278 interrupts_on (dev);
2279
2280out:
2281 return err;
2282
2283out_free_irq:
2284 free_irq(irq, dev);
2285out_reset:
2286 amb_reset(dev, 0);
2287out_free:
2288 kfree(dev);
2289out_release:
2290 pci_release_region(pci_dev, 1);
2291out_disable:
2292 pci_disable_device(pci_dev);
2293 goto out;
2294}
2295
2296
2297static void __devexit amb_remove_one(struct pci_dev *pci_dev)
2298{
2299 struct amb_dev *dev;
2300
2301 dev = pci_get_drvdata(pci_dev);
2302
2303 PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2304 del_timer_sync(&dev->housekeeping);
2305 // the drain should not be necessary
2306 drain_rx_pools(dev);
2307 interrupts_off(dev);
2308 amb_reset(dev, 0);
2309 free_irq(dev->irq, dev);
2310 pci_disable_device(pci_dev);
2311 destroy_queues(dev);
2312 atm_dev_deregister(dev->atm_dev);
2313 kfree(dev);
2314 pci_release_region(pci_dev, 1);
2315}
2316
2317static void __init amb_check_args (void) {
2318 unsigned char pool;
2319 unsigned int max_rx_size;
2320
2321#ifdef DEBUG_AMBASSADOR
2322 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2323#else
2324 if (debug)
2325 PRINTK (KERN_NOTICE, "no debugging support");
2326#endif
2327
2328 if (cmds < MIN_QUEUE_SIZE)
2329 PRINTK (KERN_NOTICE, "cmds has been raised to %u",
2330 cmds = MIN_QUEUE_SIZE);
2331
2332 if (txs < MIN_QUEUE_SIZE)
2333 PRINTK (KERN_NOTICE, "txs has been raised to %u",
2334 txs = MIN_QUEUE_SIZE);
2335
2336 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2337 if (rxs[pool] < MIN_QUEUE_SIZE)
2338 PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u",
2339 pool, rxs[pool] = MIN_QUEUE_SIZE);
2340
2341 // buffers sizes should be greater than zero and strictly increasing
2342 max_rx_size = 0;
2343 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2344 if (rxs_bs[pool] <= max_rx_size)
2345 PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)",
2346 pool, rxs_bs[pool]);
2347 else
2348 max_rx_size = rxs_bs[pool];
2349
2350 if (rx_lats < MIN_RX_BUFFERS)
2351 PRINTK (KERN_NOTICE, "rx_lats has been raised to %u",
2352 rx_lats = MIN_RX_BUFFERS);
2353
2354 return;
2355}
2356
2357/********** module stuff **********/
2358
2359MODULE_AUTHOR(maintainer_string);
2360MODULE_DESCRIPTION(description_string);
2361MODULE_LICENSE("GPL");
2362module_param(debug, ushort, 0644);
2363module_param(cmds, uint, 0);
2364module_param(txs, uint, 0);
2365module_param_array(rxs, uint, NULL, 0);
2366module_param_array(rxs_bs, uint, NULL, 0);
2367module_param(rx_lats, uint, 0);
2368module_param(pci_lat, byte, 0);
2369MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2370MODULE_PARM_DESC(cmds, "number of command queue entries");
2371MODULE_PARM_DESC(txs, "number of TX queue entries");
2372MODULE_PARM_DESC(rxs, "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]");
2373MODULE_PARM_DESC(rxs_bs, "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]");
2374MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies");
2375MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2376
2377/********** module entry **********/
2378
2379static struct pci_device_id amb_pci_tbl[] = {
2380 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR, PCI_ANY_ID, PCI_ANY_ID,
2381 0, 0, 0 },
2382 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD, PCI_ANY_ID, PCI_ANY_ID,
2383 0, 0, 0 },
2384 { 0, }
2385};
2386
2387MODULE_DEVICE_TABLE(pci, amb_pci_tbl);
2388
2389static struct pci_driver amb_driver = {
2390 .name = "amb",
2391 .probe = amb_probe,
2392 .remove = __devexit_p(amb_remove_one),
2393 .id_table = amb_pci_tbl,
2394};
2395
2396static int __init amb_module_init (void)
2397{
2398 PRINTD (DBG_FLOW|DBG_INIT, "init_module");
2399
2400 // sanity check - cast needed as printk does not support %Zu
2401 if (sizeof(amb_mem) != 4*16 + 4*12) {
2402 PRINTK (KERN_ERR, "Fix amb_mem (is %lu words).",
2403 (unsigned long) sizeof(amb_mem));
2404 return -ENOMEM;
2405 }
2406
2407 show_version();
2408
2409 amb_check_args();
2410
2411 // get the juice
2412 return pci_register_driver(&amb_driver);
2413}
2414
2415/********** module exit **********/
2416
2417static void __exit amb_module_exit (void)
2418{
2419 PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module");
b45eccdb
TK
2420
2421 pci_unregister_driver(&amb_driver);
1da177e4
LT
2422}
2423
2424module_init(amb_module_init);
2425module_exit(amb_module_exit);