libata-acpi: add ACPI _PSx method
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/highmem.h>
50#include <linux/spinlock.h>
51#include <linux/blkdev.h>
52#include <linux/delay.h>
53#include <linux/timer.h>
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
67846b30 58#include <linux/jiffies.h>
378f058c 59#include <linux/scatterlist.h>
2dcb407e 60#include <linux/io.h>
1da177e4 61#include <scsi/scsi.h>
193515d5 62#include <scsi/scsi_cmnd.h>
1da177e4
LT
63#include <scsi/scsi_host.h>
64#include <linux/libata.h>
1da177e4
LT
65#include <asm/semaphore.h>
66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
1da177e4
LT
68
69#include "libata.h"
70
fda0efc5 71
d7bb4cc7 72/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
73const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 76
3373efd8
TH
77static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
80static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
3373efd8 82static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 83static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 84
f3187195 85unsigned int ata_print_id = 1;
1da177e4
LT
86static struct workqueue_struct *ata_wq;
87
453b07ac
TH
88struct workqueue_struct *ata_aux_wq;
89
418dc1f5 90int atapi_enabled = 1;
1623c81e
JG
91module_param(atapi_enabled, int, 0444);
92MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
93
95de719a
AL
94int atapi_dmadir = 0;
95module_param(atapi_dmadir, int, 0444);
96MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
97
baf4fdfa
ML
98int atapi_passthru16 = 1;
99module_param(atapi_passthru16, int, 0444);
100MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
101
c3c013a2
JG
102int libata_fua = 0;
103module_param_named(fua, libata_fua, int, 0444);
104MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
105
2dcb407e 106static int ata_ignore_hpa;
1e999736
AC
107module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
108MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
109
b3a70601
AC
110static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
111module_param_named(dma, libata_dma_mask, int, 0444);
112MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
113
a8601e5f
AM
114static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
115module_param(ata_probe_timeout, int, 0444);
116MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
117
6ebe9d86 118int libata_noacpi = 0;
d7d0dad6 119module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 120MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 121
ae8d4ee7
AC
122int libata_allow_tpm = 0;
123module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
124MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
125
1da177e4
LT
126MODULE_AUTHOR("Jeff Garzik");
127MODULE_DESCRIPTION("Library module for ATA devices");
128MODULE_LICENSE("GPL");
129MODULE_VERSION(DRV_VERSION);
130
0baab86b 131
1da177e4
LT
132/**
133 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
134 * @tf: Taskfile to convert
1da177e4 135 * @pmp: Port multiplier port
9977126c
TH
136 * @is_cmd: This FIS is for command
137 * @fis: Buffer into which data will output
1da177e4
LT
138 *
139 * Converts a standard ATA taskfile to a Serial ATA
140 * FIS structure (Register - Host to Device).
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
9977126c 145void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 146{
9977126c
TH
147 fis[0] = 0x27; /* Register - Host to Device FIS */
148 fis[1] = pmp & 0xf; /* Port multiplier number*/
149 if (is_cmd)
150 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
151
1da177e4
LT
152 fis[2] = tf->command;
153 fis[3] = tf->feature;
154
155 fis[4] = tf->lbal;
156 fis[5] = tf->lbam;
157 fis[6] = tf->lbah;
158 fis[7] = tf->device;
159
160 fis[8] = tf->hob_lbal;
161 fis[9] = tf->hob_lbam;
162 fis[10] = tf->hob_lbah;
163 fis[11] = tf->hob_feature;
164
165 fis[12] = tf->nsect;
166 fis[13] = tf->hob_nsect;
167 fis[14] = 0;
168 fis[15] = tf->ctl;
169
170 fis[16] = 0;
171 fis[17] = 0;
172 fis[18] = 0;
173 fis[19] = 0;
174}
175
176/**
177 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
178 * @fis: Buffer from which data will be input
179 * @tf: Taskfile to output
180 *
e12a1be6 181 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
182 *
183 * LOCKING:
184 * Inherited from caller.
185 */
186
057ace5e 187void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
188{
189 tf->command = fis[2]; /* status */
190 tf->feature = fis[3]; /* error */
191
192 tf->lbal = fis[4];
193 tf->lbam = fis[5];
194 tf->lbah = fis[6];
195 tf->device = fis[7];
196
197 tf->hob_lbal = fis[8];
198 tf->hob_lbam = fis[9];
199 tf->hob_lbah = fis[10];
200
201 tf->nsect = fis[12];
202 tf->hob_nsect = fis[13];
203}
204
8cbd6df1
AL
205static const u8 ata_rw_cmds[] = {
206 /* pio multi */
207 ATA_CMD_READ_MULTI,
208 ATA_CMD_WRITE_MULTI,
209 ATA_CMD_READ_MULTI_EXT,
210 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
211 0,
212 0,
213 0,
214 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
215 /* pio */
216 ATA_CMD_PIO_READ,
217 ATA_CMD_PIO_WRITE,
218 ATA_CMD_PIO_READ_EXT,
219 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
220 0,
221 0,
222 0,
223 0,
8cbd6df1
AL
224 /* dma */
225 ATA_CMD_READ,
226 ATA_CMD_WRITE,
227 ATA_CMD_READ_EXT,
9a3dccc4
TH
228 ATA_CMD_WRITE_EXT,
229 0,
230 0,
231 0,
232 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 233};
1da177e4
LT
234
235/**
8cbd6df1 236 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
237 * @tf: command to examine and configure
238 * @dev: device tf belongs to
1da177e4 239 *
2e9edbf8 240 * Examine the device configuration and tf->flags to calculate
8cbd6df1 241 * the proper read/write commands and protocol to use.
1da177e4
LT
242 *
243 * LOCKING:
244 * caller.
245 */
bd056d7e 246static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 247{
9a3dccc4 248 u8 cmd;
1da177e4 249
9a3dccc4 250 int index, fua, lba48, write;
2e9edbf8 251
9a3dccc4 252 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
253 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
254 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 255
8cbd6df1
AL
256 if (dev->flags & ATA_DFLAG_PIO) {
257 tf->protocol = ATA_PROT_PIO;
9a3dccc4 258 index = dev->multi_count ? 0 : 8;
9af5c9c9 259 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
260 /* Unable to use DMA due to host limitation */
261 tf->protocol = ATA_PROT_PIO;
0565c26d 262 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
263 } else {
264 tf->protocol = ATA_PROT_DMA;
9a3dccc4 265 index = 16;
8cbd6df1 266 }
1da177e4 267
9a3dccc4
TH
268 cmd = ata_rw_cmds[index + fua + lba48 + write];
269 if (cmd) {
270 tf->command = cmd;
271 return 0;
272 }
273 return -1;
1da177e4
LT
274}
275
35b649fe
TH
276/**
277 * ata_tf_read_block - Read block address from ATA taskfile
278 * @tf: ATA taskfile of interest
279 * @dev: ATA device @tf belongs to
280 *
281 * LOCKING:
282 * None.
283 *
284 * Read block address from @tf. This function can handle all
285 * three address formats - LBA, LBA48 and CHS. tf->protocol and
286 * flags select the address format to use.
287 *
288 * RETURNS:
289 * Block address read from @tf.
290 */
291u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
292{
293 u64 block = 0;
294
295 if (tf->flags & ATA_TFLAG_LBA) {
296 if (tf->flags & ATA_TFLAG_LBA48) {
297 block |= (u64)tf->hob_lbah << 40;
298 block |= (u64)tf->hob_lbam << 32;
299 block |= tf->hob_lbal << 24;
300 } else
301 block |= (tf->device & 0xf) << 24;
302
303 block |= tf->lbah << 16;
304 block |= tf->lbam << 8;
305 block |= tf->lbal;
306 } else {
307 u32 cyl, head, sect;
308
309 cyl = tf->lbam | (tf->lbah << 8);
310 head = tf->device & 0xf;
311 sect = tf->lbal;
312
313 block = (cyl * dev->heads + head) * dev->sectors + sect;
314 }
315
316 return block;
317}
318
bd056d7e
TH
319/**
320 * ata_build_rw_tf - Build ATA taskfile for given read/write request
321 * @tf: Target ATA taskfile
322 * @dev: ATA device @tf belongs to
323 * @block: Block address
324 * @n_block: Number of blocks
325 * @tf_flags: RW/FUA etc...
326 * @tag: tag
327 *
328 * LOCKING:
329 * None.
330 *
331 * Build ATA taskfile @tf for read/write request described by
332 * @block, @n_block, @tf_flags and @tag on @dev.
333 *
334 * RETURNS:
335 *
336 * 0 on success, -ERANGE if the request is too large for @dev,
337 * -EINVAL if the request is invalid.
338 */
339int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
340 u64 block, u32 n_block, unsigned int tf_flags,
341 unsigned int tag)
342{
343 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
344 tf->flags |= tf_flags;
345
6d1245bf 346 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
347 /* yay, NCQ */
348 if (!lba_48_ok(block, n_block))
349 return -ERANGE;
350
351 tf->protocol = ATA_PROT_NCQ;
352 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
353
354 if (tf->flags & ATA_TFLAG_WRITE)
355 tf->command = ATA_CMD_FPDMA_WRITE;
356 else
357 tf->command = ATA_CMD_FPDMA_READ;
358
359 tf->nsect = tag << 3;
360 tf->hob_feature = (n_block >> 8) & 0xff;
361 tf->feature = n_block & 0xff;
362
363 tf->hob_lbah = (block >> 40) & 0xff;
364 tf->hob_lbam = (block >> 32) & 0xff;
365 tf->hob_lbal = (block >> 24) & 0xff;
366 tf->lbah = (block >> 16) & 0xff;
367 tf->lbam = (block >> 8) & 0xff;
368 tf->lbal = block & 0xff;
369
370 tf->device = 1 << 6;
371 if (tf->flags & ATA_TFLAG_FUA)
372 tf->device |= 1 << 7;
373 } else if (dev->flags & ATA_DFLAG_LBA) {
374 tf->flags |= ATA_TFLAG_LBA;
375
376 if (lba_28_ok(block, n_block)) {
377 /* use LBA28 */
378 tf->device |= (block >> 24) & 0xf;
379 } else if (lba_48_ok(block, n_block)) {
380 if (!(dev->flags & ATA_DFLAG_LBA48))
381 return -ERANGE;
382
383 /* use LBA48 */
384 tf->flags |= ATA_TFLAG_LBA48;
385
386 tf->hob_nsect = (n_block >> 8) & 0xff;
387
388 tf->hob_lbah = (block >> 40) & 0xff;
389 tf->hob_lbam = (block >> 32) & 0xff;
390 tf->hob_lbal = (block >> 24) & 0xff;
391 } else
392 /* request too large even for LBA48 */
393 return -ERANGE;
394
395 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
396 return -EINVAL;
397
398 tf->nsect = n_block & 0xff;
399
400 tf->lbah = (block >> 16) & 0xff;
401 tf->lbam = (block >> 8) & 0xff;
402 tf->lbal = block & 0xff;
403
404 tf->device |= ATA_LBA;
405 } else {
406 /* CHS */
407 u32 sect, head, cyl, track;
408
409 /* The request -may- be too large for CHS addressing. */
410 if (!lba_28_ok(block, n_block))
411 return -ERANGE;
412
413 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
414 return -EINVAL;
415
416 /* Convert LBA to CHS */
417 track = (u32)block / dev->sectors;
418 cyl = track / dev->heads;
419 head = track % dev->heads;
420 sect = (u32)block % dev->sectors + 1;
421
422 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
423 (u32)block, track, cyl, head, sect);
424
425 /* Check whether the converted CHS can fit.
426 Cylinder: 0-65535
427 Head: 0-15
428 Sector: 1-255*/
429 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
430 return -ERANGE;
431
432 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
433 tf->lbal = sect;
434 tf->lbam = cyl;
435 tf->lbah = cyl >> 8;
436 tf->device |= head;
437 }
438
439 return 0;
440}
441
cb95d562
TH
442/**
443 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
444 * @pio_mask: pio_mask
445 * @mwdma_mask: mwdma_mask
446 * @udma_mask: udma_mask
447 *
448 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
449 * unsigned int xfer_mask.
450 *
451 * LOCKING:
452 * None.
453 *
454 * RETURNS:
455 * Packed xfer_mask.
456 */
457static unsigned int ata_pack_xfermask(unsigned int pio_mask,
458 unsigned int mwdma_mask,
459 unsigned int udma_mask)
460{
461 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
462 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
463 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
464}
465
c0489e4e
TH
466/**
467 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
468 * @xfer_mask: xfer_mask to unpack
469 * @pio_mask: resulting pio_mask
470 * @mwdma_mask: resulting mwdma_mask
471 * @udma_mask: resulting udma_mask
472 *
473 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
474 * Any NULL distination masks will be ignored.
475 */
476static void ata_unpack_xfermask(unsigned int xfer_mask,
477 unsigned int *pio_mask,
478 unsigned int *mwdma_mask,
479 unsigned int *udma_mask)
480{
481 if (pio_mask)
482 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
483 if (mwdma_mask)
484 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
485 if (udma_mask)
486 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
487}
488
cb95d562 489static const struct ata_xfer_ent {
be9a50c8 490 int shift, bits;
cb95d562
TH
491 u8 base;
492} ata_xfer_tbl[] = {
493 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
494 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
495 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
496 { -1, },
497};
498
499/**
500 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
501 * @xfer_mask: xfer_mask of interest
502 *
503 * Return matching XFER_* value for @xfer_mask. Only the highest
504 * bit of @xfer_mask is considered.
505 *
506 * LOCKING:
507 * None.
508 *
509 * RETURNS:
510 * Matching XFER_* value, 0 if no match found.
511 */
512static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
513{
514 int highbit = fls(xfer_mask) - 1;
515 const struct ata_xfer_ent *ent;
516
517 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
518 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
519 return ent->base + highbit - ent->shift;
520 return 0;
521}
522
523/**
524 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
525 * @xfer_mode: XFER_* of interest
526 *
527 * Return matching xfer_mask for @xfer_mode.
528 *
529 * LOCKING:
530 * None.
531 *
532 * RETURNS:
533 * Matching xfer_mask, 0 if no match found.
534 */
535static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
536{
537 const struct ata_xfer_ent *ent;
538
539 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
540 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
541 return 1 << (ent->shift + xfer_mode - ent->base);
542 return 0;
543}
544
545/**
546 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
547 * @xfer_mode: XFER_* of interest
548 *
549 * Return matching xfer_shift for @xfer_mode.
550 *
551 * LOCKING:
552 * None.
553 *
554 * RETURNS:
555 * Matching xfer_shift, -1 if no match found.
556 */
557static int ata_xfer_mode2shift(unsigned int xfer_mode)
558{
559 const struct ata_xfer_ent *ent;
560
561 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
562 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
563 return ent->shift;
564 return -1;
565}
566
1da177e4 567/**
1da7b0d0
TH
568 * ata_mode_string - convert xfer_mask to string
569 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
570 *
571 * Determine string which represents the highest speed
1da7b0d0 572 * (highest bit in @modemask).
1da177e4
LT
573 *
574 * LOCKING:
575 * None.
576 *
577 * RETURNS:
578 * Constant C string representing highest speed listed in
1da7b0d0 579 * @mode_mask, or the constant C string "<n/a>".
1da177e4 580 */
1da7b0d0 581static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 582{
75f554bc
TH
583 static const char * const xfer_mode_str[] = {
584 "PIO0",
585 "PIO1",
586 "PIO2",
587 "PIO3",
588 "PIO4",
b352e57d
AC
589 "PIO5",
590 "PIO6",
75f554bc
TH
591 "MWDMA0",
592 "MWDMA1",
593 "MWDMA2",
b352e57d
AC
594 "MWDMA3",
595 "MWDMA4",
75f554bc
TH
596 "UDMA/16",
597 "UDMA/25",
598 "UDMA/33",
599 "UDMA/44",
600 "UDMA/66",
601 "UDMA/100",
602 "UDMA/133",
603 "UDMA7",
604 };
1da7b0d0 605 int highbit;
1da177e4 606
1da7b0d0
TH
607 highbit = fls(xfer_mask) - 1;
608 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
609 return xfer_mode_str[highbit];
1da177e4 610 return "<n/a>";
1da177e4
LT
611}
612
4c360c81
TH
613static const char *sata_spd_string(unsigned int spd)
614{
615 static const char * const spd_str[] = {
616 "1.5 Gbps",
617 "3.0 Gbps",
618 };
619
620 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
621 return "<unknown>";
622 return spd_str[spd - 1];
623}
624
3373efd8 625void ata_dev_disable(struct ata_device *dev)
0b8efb0a 626{
09d7f9b0 627 if (ata_dev_enabled(dev)) {
9af5c9c9 628 if (ata_msg_drv(dev->link->ap))
09d7f9b0 629 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
562f0c2d 630 ata_acpi_on_disable(dev);
4ae72a1e
TH
631 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
632 ATA_DNXFER_QUIET);
0b8efb0a
TH
633 dev->class++;
634 }
635}
636
ca77329f
KCA
637static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
638{
639 struct ata_link *link = dev->link;
640 struct ata_port *ap = link->ap;
641 u32 scontrol;
642 unsigned int err_mask;
643 int rc;
644
645 /*
646 * disallow DIPM for drivers which haven't set
647 * ATA_FLAG_IPM. This is because when DIPM is enabled,
648 * phy ready will be set in the interrupt status on
649 * state changes, which will cause some drivers to
650 * think there are errors - additionally drivers will
651 * need to disable hot plug.
652 */
653 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
654 ap->pm_policy = NOT_AVAILABLE;
655 return -EINVAL;
656 }
657
658 /*
659 * For DIPM, we will only enable it for the
660 * min_power setting.
661 *
662 * Why? Because Disks are too stupid to know that
663 * If the host rejects a request to go to SLUMBER
664 * they should retry at PARTIAL, and instead it
665 * just would give up. So, for medium_power to
666 * work at all, we need to only allow HIPM.
667 */
668 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
669 if (rc)
670 return rc;
671
672 switch (policy) {
673 case MIN_POWER:
674 /* no restrictions on IPM transitions */
675 scontrol &= ~(0x3 << 8);
676 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
677 if (rc)
678 return rc;
679
680 /* enable DIPM */
681 if (dev->flags & ATA_DFLAG_DIPM)
682 err_mask = ata_dev_set_feature(dev,
683 SETFEATURES_SATA_ENABLE, SATA_DIPM);
684 break;
685 case MEDIUM_POWER:
686 /* allow IPM to PARTIAL */
687 scontrol &= ~(0x1 << 8);
688 scontrol |= (0x2 << 8);
689 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
690 if (rc)
691 return rc;
692
f5456b63
KCA
693 /*
694 * we don't have to disable DIPM since IPM flags
695 * disallow transitions to SLUMBER, which effectively
696 * disable DIPM if it does not support PARTIAL
697 */
ca77329f
KCA
698 break;
699 case NOT_AVAILABLE:
700 case MAX_PERFORMANCE:
701 /* disable all IPM transitions */
702 scontrol |= (0x3 << 8);
703 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
704 if (rc)
705 return rc;
706
f5456b63
KCA
707 /*
708 * we don't have to disable DIPM since IPM flags
709 * disallow all transitions which effectively
710 * disable DIPM anyway.
711 */
ca77329f
KCA
712 break;
713 }
714
715 /* FIXME: handle SET FEATURES failure */
716 (void) err_mask;
717
718 return 0;
719}
720
721/**
722 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
723 * @dev: device to enable power management
724 * @policy: the link power management policy
ca77329f
KCA
725 *
726 * Enable SATA Interface power management. This will enable
727 * Device Interface Power Management (DIPM) for min_power
728 * policy, and then call driver specific callbacks for
729 * enabling Host Initiated Power management.
730 *
731 * Locking: Caller.
732 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
733 */
734void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
735{
736 int rc = 0;
737 struct ata_port *ap = dev->link->ap;
738
739 /* set HIPM first, then DIPM */
740 if (ap->ops->enable_pm)
741 rc = ap->ops->enable_pm(ap, policy);
742 if (rc)
743 goto enable_pm_out;
744 rc = ata_dev_set_dipm(dev, policy);
745
746enable_pm_out:
747 if (rc)
748 ap->pm_policy = MAX_PERFORMANCE;
749 else
750 ap->pm_policy = policy;
751 return /* rc */; /* hopefully we can use 'rc' eventually */
752}
753
1992a5ed 754#ifdef CONFIG_PM
ca77329f
KCA
755/**
756 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 757 * @dev: device to disable power management
ca77329f
KCA
758 *
759 * Disable SATA Interface power management. This will disable
760 * Device Interface Power Management (DIPM) without changing
761 * policy, call driver specific callbacks for disabling Host
762 * Initiated Power management.
763 *
764 * Locking: Caller.
765 * Returns: void
766 */
767static void ata_dev_disable_pm(struct ata_device *dev)
768{
769 struct ata_port *ap = dev->link->ap;
770
771 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
772 if (ap->ops->disable_pm)
773 ap->ops->disable_pm(ap);
774}
1992a5ed 775#endif /* CONFIG_PM */
ca77329f
KCA
776
777void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
778{
779 ap->pm_policy = policy;
780 ap->link.eh_info.action |= ATA_EHI_LPM;
781 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
782 ata_port_schedule_eh(ap);
783}
784
1992a5ed 785#ifdef CONFIG_PM
ca77329f
KCA
786static void ata_lpm_enable(struct ata_host *host)
787{
788 struct ata_link *link;
789 struct ata_port *ap;
790 struct ata_device *dev;
791 int i;
792
793 for (i = 0; i < host->n_ports; i++) {
794 ap = host->ports[i];
795 ata_port_for_each_link(link, ap) {
796 ata_link_for_each_dev(dev, link)
797 ata_dev_disable_pm(dev);
798 }
799 }
800}
801
802static void ata_lpm_disable(struct ata_host *host)
803{
804 int i;
805
806 for (i = 0; i < host->n_ports; i++) {
807 struct ata_port *ap = host->ports[i];
808 ata_lpm_schedule(ap, ap->pm_policy);
809 }
810}
1992a5ed 811#endif /* CONFIG_PM */
ca77329f
KCA
812
813
1da177e4 814/**
0d5ff566 815 * ata_devchk - PATA device presence detection
1da177e4
LT
816 * @ap: ATA channel to examine
817 * @device: Device to examine (starting at zero)
818 *
819 * This technique was originally described in
820 * Hale Landis's ATADRVR (www.ata-atapi.com), and
821 * later found its way into the ATA/ATAPI spec.
822 *
823 * Write a pattern to the ATA shadow registers,
824 * and if a device is present, it will respond by
825 * correctly storing and echoing back the
826 * ATA shadow register contents.
827 *
828 * LOCKING:
829 * caller.
830 */
831
0d5ff566 832static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
833{
834 struct ata_ioports *ioaddr = &ap->ioaddr;
835 u8 nsect, lbal;
836
837 ap->ops->dev_select(ap, device);
838
0d5ff566
TH
839 iowrite8(0x55, ioaddr->nsect_addr);
840 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 841
0d5ff566
TH
842 iowrite8(0xaa, ioaddr->nsect_addr);
843 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 844
0d5ff566
TH
845 iowrite8(0x55, ioaddr->nsect_addr);
846 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 847
0d5ff566
TH
848 nsect = ioread8(ioaddr->nsect_addr);
849 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
850
851 if ((nsect == 0x55) && (lbal == 0xaa))
852 return 1; /* we found a device */
853
854 return 0; /* nothing found */
855}
856
1da177e4
LT
857/**
858 * ata_dev_classify - determine device type based on ATA-spec signature
859 * @tf: ATA taskfile register set for device to be identified
860 *
861 * Determine from taskfile register contents whether a device is
862 * ATA or ATAPI, as per "Signature and persistence" section
863 * of ATA/PI spec (volume 1, sect 5.14).
864 *
865 * LOCKING:
866 * None.
867 *
868 * RETURNS:
633273a3
TH
869 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
870 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 871 */
057ace5e 872unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
873{
874 /* Apple's open source Darwin code hints that some devices only
875 * put a proper signature into the LBA mid/high registers,
876 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
877 *
878 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
879 * signatures for ATA and ATAPI devices attached on SerialATA,
880 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
881 * spec has never mentioned about using different signatures
882 * for ATA/ATAPI devices. Then, Serial ATA II: Port
883 * Multiplier specification began to use 0x69/0x96 to identify
884 * port multpliers and 0x3c/0xc3 to identify SEMB device.
885 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
886 * 0x69/0x96 shortly and described them as reserved for
887 * SerialATA.
888 *
889 * We follow the current spec and consider that 0x69/0x96
890 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 891 */
633273a3 892 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
893 DPRINTK("found ATA device by sig\n");
894 return ATA_DEV_ATA;
895 }
896
633273a3 897 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
898 DPRINTK("found ATAPI device by sig\n");
899 return ATA_DEV_ATAPI;
900 }
901
633273a3
TH
902 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
903 DPRINTK("found PMP device by sig\n");
904 return ATA_DEV_PMP;
905 }
906
907 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 908 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
909 return ATA_DEV_SEMB_UNSUP; /* not yet */
910 }
911
1da177e4
LT
912 DPRINTK("unknown device\n");
913 return ATA_DEV_UNKNOWN;
914}
915
916/**
917 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
918 * @dev: ATA device to classify (starting at zero)
919 * @present: device seems present
b4dc7623 920 * @r_err: Value of error register on completion
1da177e4
LT
921 *
922 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
923 * an ATA/ATAPI-defined set of values is placed in the ATA
924 * shadow registers, indicating the results of device detection
925 * and diagnostics.
926 *
927 * Select the ATA device, and read the values from the ATA shadow
928 * registers. Then parse according to the Error register value,
929 * and the spec-defined values examined by ata_dev_classify().
930 *
931 * LOCKING:
932 * caller.
b4dc7623
TH
933 *
934 * RETURNS:
935 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 936 */
3f19859e
TH
937unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
938 u8 *r_err)
1da177e4 939{
3f19859e 940 struct ata_port *ap = dev->link->ap;
1da177e4
LT
941 struct ata_taskfile tf;
942 unsigned int class;
943 u8 err;
944
3f19859e 945 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
946
947 memset(&tf, 0, sizeof(tf));
948
1da177e4 949 ap->ops->tf_read(ap, &tf);
0169e284 950 err = tf.feature;
b4dc7623
TH
951 if (r_err)
952 *r_err = err;
1da177e4 953
93590859 954 /* see if device passed diags: if master then continue and warn later */
3f19859e 955 if (err == 0 && dev->devno == 0)
93590859 956 /* diagnostic fail : do nothing _YET_ */
3f19859e 957 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 958 else if (err == 1)
1da177e4 959 /* do nothing */ ;
3f19859e 960 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
961 /* do nothing */ ;
962 else
b4dc7623 963 return ATA_DEV_NONE;
1da177e4 964
b4dc7623 965 /* determine if device is ATA or ATAPI */
1da177e4 966 class = ata_dev_classify(&tf);
b4dc7623 967
d7fbee05
TH
968 if (class == ATA_DEV_UNKNOWN) {
969 /* If the device failed diagnostic, it's likely to
970 * have reported incorrect device signature too.
971 * Assume ATA device if the device seems present but
972 * device signature is invalid with diagnostic
973 * failure.
974 */
975 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
976 class = ATA_DEV_ATA;
977 else
978 class = ATA_DEV_NONE;
979 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
980 class = ATA_DEV_NONE;
981
b4dc7623 982 return class;
1da177e4
LT
983}
984
985/**
6a62a04d 986 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
987 * @id: IDENTIFY DEVICE results we will examine
988 * @s: string into which data is output
989 * @ofs: offset into identify device page
990 * @len: length of string to return. must be an even number.
991 *
992 * The strings in the IDENTIFY DEVICE page are broken up into
993 * 16-bit chunks. Run through the string, and output each
994 * 8-bit chunk linearly, regardless of platform.
995 *
996 * LOCKING:
997 * caller.
998 */
999
6a62a04d
TH
1000void ata_id_string(const u16 *id, unsigned char *s,
1001 unsigned int ofs, unsigned int len)
1da177e4
LT
1002{
1003 unsigned int c;
1004
1005 while (len > 0) {
1006 c = id[ofs] >> 8;
1007 *s = c;
1008 s++;
1009
1010 c = id[ofs] & 0xff;
1011 *s = c;
1012 s++;
1013
1014 ofs++;
1015 len -= 2;
1016 }
1017}
1018
0e949ff3 1019/**
6a62a04d 1020 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1021 * @id: IDENTIFY DEVICE results we will examine
1022 * @s: string into which data is output
1023 * @ofs: offset into identify device page
1024 * @len: length of string to return. must be an odd number.
1025 *
6a62a04d 1026 * This function is identical to ata_id_string except that it
0e949ff3
TH
1027 * trims trailing spaces and terminates the resulting string with
1028 * null. @len must be actual maximum length (even number) + 1.
1029 *
1030 * LOCKING:
1031 * caller.
1032 */
6a62a04d
TH
1033void ata_id_c_string(const u16 *id, unsigned char *s,
1034 unsigned int ofs, unsigned int len)
0e949ff3
TH
1035{
1036 unsigned char *p;
1037
1038 WARN_ON(!(len & 1));
1039
6a62a04d 1040 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1041
1042 p = s + strnlen(s, len - 1);
1043 while (p > s && p[-1] == ' ')
1044 p--;
1045 *p = '\0';
1046}
0baab86b 1047
db6f8759
TH
1048static u64 ata_id_n_sectors(const u16 *id)
1049{
1050 if (ata_id_has_lba(id)) {
1051 if (ata_id_has_lba48(id))
1052 return ata_id_u64(id, 100);
1053 else
1054 return ata_id_u32(id, 60);
1055 } else {
1056 if (ata_id_current_chs_valid(id))
1057 return ata_id_u32(id, 57);
1058 else
1059 return id[1] * id[3] * id[6];
1060 }
1061}
1062
1e999736
AC
1063static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1064{
1065 u64 sectors = 0;
1066
1067 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1068 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1069 sectors |= (tf->hob_lbal & 0xff) << 24;
1070 sectors |= (tf->lbah & 0xff) << 16;
1071 sectors |= (tf->lbam & 0xff) << 8;
1072 sectors |= (tf->lbal & 0xff);
1073
1074 return ++sectors;
1075}
1076
1077static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1078{
1079 u64 sectors = 0;
1080
1081 sectors |= (tf->device & 0x0f) << 24;
1082 sectors |= (tf->lbah & 0xff) << 16;
1083 sectors |= (tf->lbam & 0xff) << 8;
1084 sectors |= (tf->lbal & 0xff);
1085
1086 return ++sectors;
1087}
1088
1089/**
c728a914
TH
1090 * ata_read_native_max_address - Read native max address
1091 * @dev: target device
1092 * @max_sectors: out parameter for the result native max address
1e999736 1093 *
c728a914
TH
1094 * Perform an LBA48 or LBA28 native size query upon the device in
1095 * question.
1e999736 1096 *
c728a914
TH
1097 * RETURNS:
1098 * 0 on success, -EACCES if command is aborted by the drive.
1099 * -EIO on other errors.
1e999736 1100 */
c728a914 1101static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1102{
c728a914 1103 unsigned int err_mask;
1e999736 1104 struct ata_taskfile tf;
c728a914 1105 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1106
1107 ata_tf_init(dev, &tf);
1108
c728a914 1109 /* always clear all address registers */
1e999736 1110 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1111
c728a914
TH
1112 if (lba48) {
1113 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1114 tf.flags |= ATA_TFLAG_LBA48;
1115 } else
1116 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1117
1e999736 1118 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1119 tf.device |= ATA_LBA;
1120
2b789108 1121 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1122 if (err_mask) {
1123 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1124 "max address (err_mask=0x%x)\n", err_mask);
1125 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1126 return -EACCES;
1127 return -EIO;
1128 }
1e999736 1129
c728a914
TH
1130 if (lba48)
1131 *max_sectors = ata_tf_to_lba48(&tf);
1132 else
1133 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 1134 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1135 (*max_sectors)--;
c728a914 1136 return 0;
1e999736
AC
1137}
1138
1139/**
c728a914
TH
1140 * ata_set_max_sectors - Set max sectors
1141 * @dev: target device
6b38d1d1 1142 * @new_sectors: new max sectors value to set for the device
1e999736 1143 *
c728a914
TH
1144 * Set max sectors of @dev to @new_sectors.
1145 *
1146 * RETURNS:
1147 * 0 on success, -EACCES if command is aborted or denied (due to
1148 * previous non-volatile SET_MAX) by the drive. -EIO on other
1149 * errors.
1e999736 1150 */
05027adc 1151static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1152{
c728a914 1153 unsigned int err_mask;
1e999736 1154 struct ata_taskfile tf;
c728a914 1155 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1156
1157 new_sectors--;
1158
1159 ata_tf_init(dev, &tf);
1160
1e999736 1161 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1162
1163 if (lba48) {
1164 tf.command = ATA_CMD_SET_MAX_EXT;
1165 tf.flags |= ATA_TFLAG_LBA48;
1166
1167 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1168 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1169 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1170 } else {
c728a914
TH
1171 tf.command = ATA_CMD_SET_MAX;
1172
1e582ba4
TH
1173 tf.device |= (new_sectors >> 24) & 0xf;
1174 }
1175
1e999736 1176 tf.protocol |= ATA_PROT_NODATA;
c728a914 1177 tf.device |= ATA_LBA;
1e999736
AC
1178
1179 tf.lbal = (new_sectors >> 0) & 0xff;
1180 tf.lbam = (new_sectors >> 8) & 0xff;
1181 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1182
2b789108 1183 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1184 if (err_mask) {
1185 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1186 "max address (err_mask=0x%x)\n", err_mask);
1187 if (err_mask == AC_ERR_DEV &&
1188 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1189 return -EACCES;
1190 return -EIO;
1191 }
1192
c728a914 1193 return 0;
1e999736
AC
1194}
1195
1196/**
1197 * ata_hpa_resize - Resize a device with an HPA set
1198 * @dev: Device to resize
1199 *
1200 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1201 * it if required to the full size of the media. The caller must check
1202 * the drive has the HPA feature set enabled.
05027adc
TH
1203 *
1204 * RETURNS:
1205 * 0 on success, -errno on failure.
1e999736 1206 */
05027adc 1207static int ata_hpa_resize(struct ata_device *dev)
1e999736 1208{
05027adc
TH
1209 struct ata_eh_context *ehc = &dev->link->eh_context;
1210 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1211 u64 sectors = ata_id_n_sectors(dev->id);
1212 u64 native_sectors;
c728a914 1213 int rc;
a617c09f 1214
05027adc
TH
1215 /* do we need to do it? */
1216 if (dev->class != ATA_DEV_ATA ||
1217 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1218 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1219 return 0;
1e999736 1220
05027adc
TH
1221 /* read native max address */
1222 rc = ata_read_native_max_address(dev, &native_sectors);
1223 if (rc) {
1224 /* If HPA isn't going to be unlocked, skip HPA
1225 * resizing from the next try.
1226 */
1227 if (!ata_ignore_hpa) {
1228 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1229 "broken, will skip HPA handling\n");
1230 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1231
1232 /* we can continue if device aborted the command */
1233 if (rc == -EACCES)
1234 rc = 0;
1e999736 1235 }
37301a55 1236
05027adc
TH
1237 return rc;
1238 }
1239
1240 /* nothing to do? */
1241 if (native_sectors <= sectors || !ata_ignore_hpa) {
1242 if (!print_info || native_sectors == sectors)
1243 return 0;
1244
1245 if (native_sectors > sectors)
1246 ata_dev_printk(dev, KERN_INFO,
1247 "HPA detected: current %llu, native %llu\n",
1248 (unsigned long long)sectors,
1249 (unsigned long long)native_sectors);
1250 else if (native_sectors < sectors)
1251 ata_dev_printk(dev, KERN_WARNING,
1252 "native sectors (%llu) is smaller than "
1253 "sectors (%llu)\n",
1254 (unsigned long long)native_sectors,
1255 (unsigned long long)sectors);
1256 return 0;
1257 }
1258
1259 /* let's unlock HPA */
1260 rc = ata_set_max_sectors(dev, native_sectors);
1261 if (rc == -EACCES) {
1262 /* if device aborted the command, skip HPA resizing */
1263 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1264 "(%llu -> %llu), skipping HPA handling\n",
1265 (unsigned long long)sectors,
1266 (unsigned long long)native_sectors);
1267 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1268 return 0;
1269 } else if (rc)
1270 return rc;
1271
1272 /* re-read IDENTIFY data */
1273 rc = ata_dev_reread_id(dev, 0);
1274 if (rc) {
1275 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1276 "data after HPA resizing\n");
1277 return rc;
1278 }
1279
1280 if (print_info) {
1281 u64 new_sectors = ata_id_n_sectors(dev->id);
1282 ata_dev_printk(dev, KERN_INFO,
1283 "HPA unlocked: %llu -> %llu, native %llu\n",
1284 (unsigned long long)sectors,
1285 (unsigned long long)new_sectors,
1286 (unsigned long long)native_sectors);
1287 }
1288
1289 return 0;
1e999736
AC
1290}
1291
10305f0f
AC
1292/**
1293 * ata_id_to_dma_mode - Identify DMA mode from id block
1294 * @dev: device to identify
cc261267 1295 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1296 *
1297 * Set up the timing values for the device based upon the identify
1298 * reported values for the DMA mode. This function is used by drivers
1299 * which rely upon firmware configured modes, but wish to report the
1300 * mode correctly when possible.
1301 *
1302 * In addition we emit similarly formatted messages to the default
1303 * ata_dev_set_mode handler, in order to provide consistency of
1304 * presentation.
1305 */
1306
1307void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1308{
1309 unsigned int mask;
1310 u8 mode;
1311
1312 /* Pack the DMA modes */
1313 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1314 if (dev->id[53] & 0x04)
1315 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1316
1317 /* Select the mode in use */
1318 mode = ata_xfer_mask2mode(mask);
1319
1320 if (mode != 0) {
1321 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1322 ata_mode_string(mask));
1323 } else {
1324 /* SWDMA perhaps ? */
1325 mode = unknown;
1326 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1327 }
1328
1329 /* Configure the device reporting */
1330 dev->xfer_mode = mode;
1331 dev->xfer_shift = ata_xfer_mode2shift(mode);
1332}
1333
0baab86b
EF
1334/**
1335 * ata_noop_dev_select - Select device 0/1 on ATA bus
1336 * @ap: ATA channel to manipulate
1337 * @device: ATA device (numbered from zero) to select
1338 *
1339 * This function performs no actual function.
1340 *
1341 * May be used as the dev_select() entry in ata_port_operations.
1342 *
1343 * LOCKING:
1344 * caller.
1345 */
2dcb407e 1346void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1347{
1348}
1349
0baab86b 1350
1da177e4
LT
1351/**
1352 * ata_std_dev_select - Select device 0/1 on ATA bus
1353 * @ap: ATA channel to manipulate
1354 * @device: ATA device (numbered from zero) to select
1355 *
1356 * Use the method defined in the ATA specification to
1357 * make either device 0, or device 1, active on the
0baab86b
EF
1358 * ATA channel. Works with both PIO and MMIO.
1359 *
1360 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1361 *
1362 * LOCKING:
1363 * caller.
1364 */
1365
2dcb407e 1366void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1367{
1368 u8 tmp;
1369
1370 if (device == 0)
1371 tmp = ATA_DEVICE_OBS;
1372 else
1373 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1374
0d5ff566 1375 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1376 ata_pause(ap); /* needed; also flushes, for mmio */
1377}
1378
1379/**
1380 * ata_dev_select - Select device 0/1 on ATA bus
1381 * @ap: ATA channel to manipulate
1382 * @device: ATA device (numbered from zero) to select
1383 * @wait: non-zero to wait for Status register BSY bit to clear
1384 * @can_sleep: non-zero if context allows sleeping
1385 *
1386 * Use the method defined in the ATA specification to
1387 * make either device 0, or device 1, active on the
1388 * ATA channel.
1389 *
1390 * This is a high-level version of ata_std_dev_select(),
1391 * which additionally provides the services of inserting
1392 * the proper pauses and status polling, where needed.
1393 *
1394 * LOCKING:
1395 * caller.
1396 */
1397
1398void ata_dev_select(struct ata_port *ap, unsigned int device,
1399 unsigned int wait, unsigned int can_sleep)
1400{
88574551 1401 if (ata_msg_probe(ap))
44877b4e
TH
1402 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1403 "device %u, wait %u\n", device, wait);
1da177e4
LT
1404
1405 if (wait)
1406 ata_wait_idle(ap);
1407
1408 ap->ops->dev_select(ap, device);
1409
1410 if (wait) {
9af5c9c9 1411 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1412 msleep(150);
1413 ata_wait_idle(ap);
1414 }
1415}
1416
1417/**
1418 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1419 * @id: IDENTIFY DEVICE page to dump
1da177e4 1420 *
0bd3300a
TH
1421 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1422 * page.
1da177e4
LT
1423 *
1424 * LOCKING:
1425 * caller.
1426 */
1427
0bd3300a 1428static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1429{
1430 DPRINTK("49==0x%04x "
1431 "53==0x%04x "
1432 "63==0x%04x "
1433 "64==0x%04x "
1434 "75==0x%04x \n",
0bd3300a
TH
1435 id[49],
1436 id[53],
1437 id[63],
1438 id[64],
1439 id[75]);
1da177e4
LT
1440 DPRINTK("80==0x%04x "
1441 "81==0x%04x "
1442 "82==0x%04x "
1443 "83==0x%04x "
1444 "84==0x%04x \n",
0bd3300a
TH
1445 id[80],
1446 id[81],
1447 id[82],
1448 id[83],
1449 id[84]);
1da177e4
LT
1450 DPRINTK("88==0x%04x "
1451 "93==0x%04x\n",
0bd3300a
TH
1452 id[88],
1453 id[93]);
1da177e4
LT
1454}
1455
cb95d562
TH
1456/**
1457 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1458 * @id: IDENTIFY data to compute xfer mask from
1459 *
1460 * Compute the xfermask for this device. This is not as trivial
1461 * as it seems if we must consider early devices correctly.
1462 *
1463 * FIXME: pre IDE drive timing (do we care ?).
1464 *
1465 * LOCKING:
1466 * None.
1467 *
1468 * RETURNS:
1469 * Computed xfermask
1470 */
1471static unsigned int ata_id_xfermask(const u16 *id)
1472{
1473 unsigned int pio_mask, mwdma_mask, udma_mask;
1474
1475 /* Usual case. Word 53 indicates word 64 is valid */
1476 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1477 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1478 pio_mask <<= 3;
1479 pio_mask |= 0x7;
1480 } else {
1481 /* If word 64 isn't valid then Word 51 high byte holds
1482 * the PIO timing number for the maximum. Turn it into
1483 * a mask.
1484 */
7a0f1c8a 1485 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1486 if (mode < 5) /* Valid PIO range */
2dcb407e 1487 pio_mask = (2 << mode) - 1;
46767aeb
AC
1488 else
1489 pio_mask = 1;
cb95d562
TH
1490
1491 /* But wait.. there's more. Design your standards by
1492 * committee and you too can get a free iordy field to
1493 * process. However its the speeds not the modes that
1494 * are supported... Note drivers using the timing API
1495 * will get this right anyway
1496 */
1497 }
1498
1499 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1500
b352e57d
AC
1501 if (ata_id_is_cfa(id)) {
1502 /*
1503 * Process compact flash extended modes
1504 */
1505 int pio = id[163] & 0x7;
1506 int dma = (id[163] >> 3) & 7;
1507
1508 if (pio)
1509 pio_mask |= (1 << 5);
1510 if (pio > 1)
1511 pio_mask |= (1 << 6);
1512 if (dma)
1513 mwdma_mask |= (1 << 3);
1514 if (dma > 1)
1515 mwdma_mask |= (1 << 4);
1516 }
1517
fb21f0d0
TH
1518 udma_mask = 0;
1519 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1520 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1521
1522 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1523}
1524
86e45b6b
TH
1525/**
1526 * ata_port_queue_task - Queue port_task
1527 * @ap: The ata_port to queue port_task for
e2a7f77a 1528 * @fn: workqueue function to be scheduled
65f27f38 1529 * @data: data for @fn to use
e2a7f77a 1530 * @delay: delay time for workqueue function
86e45b6b
TH
1531 *
1532 * Schedule @fn(@data) for execution after @delay jiffies using
1533 * port_task. There is one port_task per port and it's the
1534 * user(low level driver)'s responsibility to make sure that only
1535 * one task is active at any given time.
1536 *
1537 * libata core layer takes care of synchronization between
1538 * port_task and EH. ata_port_queue_task() may be ignored for EH
1539 * synchronization.
1540 *
1541 * LOCKING:
1542 * Inherited from caller.
1543 */
65f27f38 1544void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1545 unsigned long delay)
1546{
65f27f38
DH
1547 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1548 ap->port_task_data = data;
86e45b6b 1549
45a66c1c
ON
1550 /* may fail if ata_port_flush_task() in progress */
1551 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1552}
1553
1554/**
1555 * ata_port_flush_task - Flush port_task
1556 * @ap: The ata_port to flush port_task for
1557 *
1558 * After this function completes, port_task is guranteed not to
1559 * be running or scheduled.
1560 *
1561 * LOCKING:
1562 * Kernel thread context (may sleep)
1563 */
1564void ata_port_flush_task(struct ata_port *ap)
1565{
86e45b6b
TH
1566 DPRINTK("ENTER\n");
1567
45a66c1c 1568 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1569
0dd4b21f
BP
1570 if (ata_msg_ctl(ap))
1571 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1572}
1573
7102d230 1574static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1575{
77853bf2 1576 struct completion *waiting = qc->private_data;
a2a7a662 1577
a2a7a662 1578 complete(waiting);
a2a7a662
TH
1579}
1580
1581/**
2432697b 1582 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1583 * @dev: Device to which the command is sent
1584 * @tf: Taskfile registers for the command and the result
d69cf37d 1585 * @cdb: CDB for packet command
a2a7a662 1586 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1587 * @sgl: sg list for the data buffer of the command
2432697b 1588 * @n_elem: Number of sg entries
2b789108 1589 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1590 *
1591 * Executes libata internal command with timeout. @tf contains
1592 * command on entry and result on return. Timeout and error
1593 * conditions are reported via return value. No recovery action
1594 * is taken after a command times out. It's caller's duty to
1595 * clean up after timeout.
1596 *
1597 * LOCKING:
1598 * None. Should be called with kernel context, might sleep.
551e8889
TH
1599 *
1600 * RETURNS:
1601 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1602 */
2432697b
TH
1603unsigned ata_exec_internal_sg(struct ata_device *dev,
1604 struct ata_taskfile *tf, const u8 *cdb,
87260216 1605 int dma_dir, struct scatterlist *sgl,
2b789108 1606 unsigned int n_elem, unsigned long timeout)
a2a7a662 1607{
9af5c9c9
TH
1608 struct ata_link *link = dev->link;
1609 struct ata_port *ap = link->ap;
a2a7a662
TH
1610 u8 command = tf->command;
1611 struct ata_queued_cmd *qc;
2ab7db1f 1612 unsigned int tag, preempted_tag;
dedaf2b0 1613 u32 preempted_sactive, preempted_qc_active;
da917d69 1614 int preempted_nr_active_links;
60be6b9a 1615 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1616 unsigned long flags;
77853bf2 1617 unsigned int err_mask;
d95a717f 1618 int rc;
a2a7a662 1619
ba6a1308 1620 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1621
e3180499 1622 /* no internal command while frozen */
b51e9e5d 1623 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1624 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1625 return AC_ERR_SYSTEM;
1626 }
1627
2ab7db1f 1628 /* initialize internal qc */
a2a7a662 1629
2ab7db1f
TH
1630 /* XXX: Tag 0 is used for drivers with legacy EH as some
1631 * drivers choke if any other tag is given. This breaks
1632 * ata_tag_internal() test for those drivers. Don't use new
1633 * EH stuff without converting to it.
1634 */
1635 if (ap->ops->error_handler)
1636 tag = ATA_TAG_INTERNAL;
1637 else
1638 tag = 0;
1639
6cec4a39 1640 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1641 BUG();
f69499f4 1642 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1643
1644 qc->tag = tag;
1645 qc->scsicmd = NULL;
1646 qc->ap = ap;
1647 qc->dev = dev;
1648 ata_qc_reinit(qc);
1649
9af5c9c9
TH
1650 preempted_tag = link->active_tag;
1651 preempted_sactive = link->sactive;
dedaf2b0 1652 preempted_qc_active = ap->qc_active;
da917d69 1653 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1654 link->active_tag = ATA_TAG_POISON;
1655 link->sactive = 0;
dedaf2b0 1656 ap->qc_active = 0;
da917d69 1657 ap->nr_active_links = 0;
2ab7db1f
TH
1658
1659 /* prepare & issue qc */
a2a7a662 1660 qc->tf = *tf;
d69cf37d
TH
1661 if (cdb)
1662 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1663 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1664 qc->dma_dir = dma_dir;
1665 if (dma_dir != DMA_NONE) {
2432697b 1666 unsigned int i, buflen = 0;
87260216 1667 struct scatterlist *sg;
2432697b 1668
87260216
JA
1669 for_each_sg(sgl, sg, n_elem, i)
1670 buflen += sg->length;
2432697b 1671
87260216 1672 ata_sg_init(qc, sgl, n_elem);
49c80429 1673 qc->nbytes = buflen;
a2a7a662
TH
1674 }
1675
77853bf2 1676 qc->private_data = &wait;
a2a7a662
TH
1677 qc->complete_fn = ata_qc_complete_internal;
1678
8e0e694a 1679 ata_qc_issue(qc);
a2a7a662 1680
ba6a1308 1681 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1682
2b789108
TH
1683 if (!timeout)
1684 timeout = ata_probe_timeout * 1000 / HZ;
1685
1686 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1687
1688 ata_port_flush_task(ap);
41ade50c 1689
d95a717f 1690 if (!rc) {
ba6a1308 1691 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1692
1693 /* We're racing with irq here. If we lose, the
1694 * following test prevents us from completing the qc
d95a717f
TH
1695 * twice. If we win, the port is frozen and will be
1696 * cleaned up by ->post_internal_cmd().
a2a7a662 1697 */
77853bf2 1698 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1699 qc->err_mask |= AC_ERR_TIMEOUT;
1700
1701 if (ap->ops->error_handler)
1702 ata_port_freeze(ap);
1703 else
1704 ata_qc_complete(qc);
f15a1daf 1705
0dd4b21f
BP
1706 if (ata_msg_warn(ap))
1707 ata_dev_printk(dev, KERN_WARNING,
88574551 1708 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1709 }
1710
ba6a1308 1711 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1712 }
1713
d95a717f
TH
1714 /* do post_internal_cmd */
1715 if (ap->ops->post_internal_cmd)
1716 ap->ops->post_internal_cmd(qc);
1717
a51d644a
TH
1718 /* perform minimal error analysis */
1719 if (qc->flags & ATA_QCFLAG_FAILED) {
1720 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1721 qc->err_mask |= AC_ERR_DEV;
1722
1723 if (!qc->err_mask)
1724 qc->err_mask |= AC_ERR_OTHER;
1725
1726 if (qc->err_mask & ~AC_ERR_OTHER)
1727 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1728 }
1729
15869303 1730 /* finish up */
ba6a1308 1731 spin_lock_irqsave(ap->lock, flags);
15869303 1732
e61e0672 1733 *tf = qc->result_tf;
77853bf2
TH
1734 err_mask = qc->err_mask;
1735
1736 ata_qc_free(qc);
9af5c9c9
TH
1737 link->active_tag = preempted_tag;
1738 link->sactive = preempted_sactive;
dedaf2b0 1739 ap->qc_active = preempted_qc_active;
da917d69 1740 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1741
1f7dd3e9
TH
1742 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1743 * Until those drivers are fixed, we detect the condition
1744 * here, fail the command with AC_ERR_SYSTEM and reenable the
1745 * port.
1746 *
1747 * Note that this doesn't change any behavior as internal
1748 * command failure results in disabling the device in the
1749 * higher layer for LLDDs without new reset/EH callbacks.
1750 *
1751 * Kill the following code as soon as those drivers are fixed.
1752 */
198e0fed 1753 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1754 err_mask |= AC_ERR_SYSTEM;
1755 ata_port_probe(ap);
1756 }
1757
ba6a1308 1758 spin_unlock_irqrestore(ap->lock, flags);
15869303 1759
77853bf2 1760 return err_mask;
a2a7a662
TH
1761}
1762
2432697b 1763/**
33480a0e 1764 * ata_exec_internal - execute libata internal command
2432697b
TH
1765 * @dev: Device to which the command is sent
1766 * @tf: Taskfile registers for the command and the result
1767 * @cdb: CDB for packet command
1768 * @dma_dir: Data tranfer direction of the command
1769 * @buf: Data buffer of the command
1770 * @buflen: Length of data buffer
2b789108 1771 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1772 *
1773 * Wrapper around ata_exec_internal_sg() which takes simple
1774 * buffer instead of sg list.
1775 *
1776 * LOCKING:
1777 * None. Should be called with kernel context, might sleep.
1778 *
1779 * RETURNS:
1780 * Zero on success, AC_ERR_* mask on failure
1781 */
1782unsigned ata_exec_internal(struct ata_device *dev,
1783 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1784 int dma_dir, void *buf, unsigned int buflen,
1785 unsigned long timeout)
2432697b 1786{
33480a0e
TH
1787 struct scatterlist *psg = NULL, sg;
1788 unsigned int n_elem = 0;
2432697b 1789
33480a0e
TH
1790 if (dma_dir != DMA_NONE) {
1791 WARN_ON(!buf);
1792 sg_init_one(&sg, buf, buflen);
1793 psg = &sg;
1794 n_elem++;
1795 }
2432697b 1796
2b789108
TH
1797 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1798 timeout);
2432697b
TH
1799}
1800
977e6b9f
TH
1801/**
1802 * ata_do_simple_cmd - execute simple internal command
1803 * @dev: Device to which the command is sent
1804 * @cmd: Opcode to execute
1805 *
1806 * Execute a 'simple' command, that only consists of the opcode
1807 * 'cmd' itself, without filling any other registers
1808 *
1809 * LOCKING:
1810 * Kernel thread context (may sleep).
1811 *
1812 * RETURNS:
1813 * Zero on success, AC_ERR_* mask on failure
e58eb583 1814 */
77b08fb5 1815unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1816{
1817 struct ata_taskfile tf;
e58eb583
TH
1818
1819 ata_tf_init(dev, &tf);
1820
1821 tf.command = cmd;
1822 tf.flags |= ATA_TFLAG_DEVICE;
1823 tf.protocol = ATA_PROT_NODATA;
1824
2b789108 1825 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1826}
1827
1bc4ccff
AC
1828/**
1829 * ata_pio_need_iordy - check if iordy needed
1830 * @adev: ATA device
1831 *
1832 * Check if the current speed of the device requires IORDY. Used
1833 * by various controllers for chip configuration.
1834 */
a617c09f 1835
1bc4ccff
AC
1836unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1837{
432729f0
AC
1838 /* Controller doesn't support IORDY. Probably a pointless check
1839 as the caller should know this */
9af5c9c9 1840 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1841 return 0;
432729f0
AC
1842 /* PIO3 and higher it is mandatory */
1843 if (adev->pio_mode > XFER_PIO_2)
1844 return 1;
1845 /* We turn it on when possible */
1846 if (ata_id_has_iordy(adev->id))
1bc4ccff 1847 return 1;
432729f0
AC
1848 return 0;
1849}
2e9edbf8 1850
432729f0
AC
1851/**
1852 * ata_pio_mask_no_iordy - Return the non IORDY mask
1853 * @adev: ATA device
1854 *
1855 * Compute the highest mode possible if we are not using iordy. Return
1856 * -1 if no iordy mode is available.
1857 */
a617c09f 1858
432729f0
AC
1859static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1860{
1bc4ccff 1861 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1862 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1863 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1864 /* Is the speed faster than the drive allows non IORDY ? */
1865 if (pio) {
1866 /* This is cycle times not frequency - watch the logic! */
1867 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1868 return 3 << ATA_SHIFT_PIO;
1869 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1870 }
1871 }
432729f0 1872 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1873}
1874
1da177e4 1875/**
49016aca 1876 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1877 * @dev: target device
1878 * @p_class: pointer to class of the target device (may be changed)
bff04647 1879 * @flags: ATA_READID_* flags
fe635c7e 1880 * @id: buffer to read IDENTIFY data into
1da177e4 1881 *
49016aca
TH
1882 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1883 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1884 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1885 * for pre-ATA4 drives.
1da177e4 1886 *
50a99018 1887 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1888 * now we abort if we hit that case.
50a99018 1889 *
1da177e4 1890 * LOCKING:
49016aca
TH
1891 * Kernel thread context (may sleep)
1892 *
1893 * RETURNS:
1894 * 0 on success, -errno otherwise.
1da177e4 1895 */
a9beec95 1896int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1897 unsigned int flags, u16 *id)
1da177e4 1898{
9af5c9c9 1899 struct ata_port *ap = dev->link->ap;
49016aca 1900 unsigned int class = *p_class;
a0123703 1901 struct ata_taskfile tf;
49016aca
TH
1902 unsigned int err_mask = 0;
1903 const char *reason;
54936f8b 1904 int may_fallback = 1, tried_spinup = 0;
49016aca 1905 int rc;
1da177e4 1906
0dd4b21f 1907 if (ata_msg_ctl(ap))
44877b4e 1908 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1909
49016aca 1910 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1911 retry:
3373efd8 1912 ata_tf_init(dev, &tf);
a0123703 1913
49016aca
TH
1914 switch (class) {
1915 case ATA_DEV_ATA:
a0123703 1916 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1917 break;
1918 case ATA_DEV_ATAPI:
a0123703 1919 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1920 break;
1921 default:
1922 rc = -ENODEV;
1923 reason = "unsupported class";
1924 goto err_out;
1da177e4
LT
1925 }
1926
a0123703 1927 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1928
1929 /* Some devices choke if TF registers contain garbage. Make
1930 * sure those are properly initialized.
1931 */
1932 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1933
1934 /* Device presence detection is unreliable on some
1935 * controllers. Always poll IDENTIFY if available.
1936 */
1937 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1938
3373efd8 1939 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1940 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1941 if (err_mask) {
800b3996 1942 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1943 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1944 ap->print_id, dev->devno);
55a8e2c8
TH
1945 return -ENOENT;
1946 }
1947
54936f8b
TH
1948 /* Device or controller might have reported the wrong
1949 * device class. Give a shot at the other IDENTIFY if
1950 * the current one is aborted by the device.
1951 */
1952 if (may_fallback &&
1953 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1954 may_fallback = 0;
1955
1956 if (class == ATA_DEV_ATA)
1957 class = ATA_DEV_ATAPI;
1958 else
1959 class = ATA_DEV_ATA;
1960 goto retry;
1961 }
1962
49016aca
TH
1963 rc = -EIO;
1964 reason = "I/O error";
1da177e4
LT
1965 goto err_out;
1966 }
1967
54936f8b
TH
1968 /* Falling back doesn't make sense if ID data was read
1969 * successfully at least once.
1970 */
1971 may_fallback = 0;
1972
49016aca 1973 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1974
49016aca 1975 /* sanity check */
a4f5749b 1976 rc = -EINVAL;
6070068b 1977 reason = "device reports invalid type";
a4f5749b
TH
1978
1979 if (class == ATA_DEV_ATA) {
1980 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1981 goto err_out;
1982 } else {
1983 if (ata_id_is_ata(id))
1984 goto err_out;
49016aca
TH
1985 }
1986
169439c2
ML
1987 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1988 tried_spinup = 1;
1989 /*
1990 * Drive powered-up in standby mode, and requires a specific
1991 * SET_FEATURES spin-up subcommand before it will accept
1992 * anything other than the original IDENTIFY command.
1993 */
218f3d30 1994 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1995 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1996 rc = -EIO;
1997 reason = "SPINUP failed";
1998 goto err_out;
1999 }
2000 /*
2001 * If the drive initially returned incomplete IDENTIFY info,
2002 * we now must reissue the IDENTIFY command.
2003 */
2004 if (id[2] == 0x37c8)
2005 goto retry;
2006 }
2007
bff04647 2008 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2009 /*
2010 * The exact sequence expected by certain pre-ATA4 drives is:
2011 * SRST RESET
50a99018
AC
2012 * IDENTIFY (optional in early ATA)
2013 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2014 * anything else..
2015 * Some drives were very specific about that exact sequence.
50a99018
AC
2016 *
2017 * Note that ATA4 says lba is mandatory so the second check
2018 * shoud never trigger.
49016aca
TH
2019 */
2020 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2021 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2022 if (err_mask) {
2023 rc = -EIO;
2024 reason = "INIT_DEV_PARAMS failed";
2025 goto err_out;
2026 }
2027
2028 /* current CHS translation info (id[53-58]) might be
2029 * changed. reread the identify device info.
2030 */
bff04647 2031 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2032 goto retry;
2033 }
2034 }
2035
2036 *p_class = class;
fe635c7e 2037
49016aca
TH
2038 return 0;
2039
2040 err_out:
88574551 2041 if (ata_msg_warn(ap))
0dd4b21f 2042 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2043 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2044 return rc;
2045}
2046
3373efd8 2047static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2048{
9af5c9c9
TH
2049 struct ata_port *ap = dev->link->ap;
2050 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2051}
2052
a6e6ce8e
TH
2053static void ata_dev_config_ncq(struct ata_device *dev,
2054 char *desc, size_t desc_sz)
2055{
9af5c9c9 2056 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2057 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2058
2059 if (!ata_id_has_ncq(dev->id)) {
2060 desc[0] = '\0';
2061 return;
2062 }
75683fe7 2063 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2064 snprintf(desc, desc_sz, "NCQ (not used)");
2065 return;
2066 }
a6e6ce8e 2067 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2068 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2069 dev->flags |= ATA_DFLAG_NCQ;
2070 }
2071
2072 if (hdepth >= ddepth)
2073 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2074 else
2075 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2076}
2077
49016aca 2078/**
ffeae418 2079 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2080 * @dev: Target device to configure
2081 *
2082 * Configure @dev according to @dev->id. Generic and low-level
2083 * driver specific fixups are also applied.
49016aca
TH
2084 *
2085 * LOCKING:
ffeae418
TH
2086 * Kernel thread context (may sleep)
2087 *
2088 * RETURNS:
2089 * 0 on success, -errno otherwise
49016aca 2090 */
efdaedc4 2091int ata_dev_configure(struct ata_device *dev)
49016aca 2092{
9af5c9c9
TH
2093 struct ata_port *ap = dev->link->ap;
2094 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2095 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2096 const u16 *id = dev->id;
ff8854b2 2097 unsigned int xfer_mask;
b352e57d 2098 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2099 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2100 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2101 int rc;
49016aca 2102
0dd4b21f 2103 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
2104 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2105 __FUNCTION__);
ffeae418 2106 return 0;
49016aca
TH
2107 }
2108
0dd4b21f 2109 if (ata_msg_probe(ap))
44877b4e 2110 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 2111
75683fe7
TH
2112 /* set horkage */
2113 dev->horkage |= ata_dev_blacklisted(dev);
2114
6746544c
TH
2115 /* let ACPI work its magic */
2116 rc = ata_acpi_on_devcfg(dev);
2117 if (rc)
2118 return rc;
08573a86 2119
05027adc
TH
2120 /* massage HPA, do it early as it might change IDENTIFY data */
2121 rc = ata_hpa_resize(dev);
2122 if (rc)
2123 return rc;
2124
c39f5ebe 2125 /* print device capabilities */
0dd4b21f 2126 if (ata_msg_probe(ap))
88574551
TH
2127 ata_dev_printk(dev, KERN_DEBUG,
2128 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2129 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 2130 __FUNCTION__,
f15a1daf
TH
2131 id[49], id[82], id[83], id[84],
2132 id[85], id[86], id[87], id[88]);
c39f5ebe 2133
208a9933 2134 /* initialize to-be-configured parameters */
ea1dd4e1 2135 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2136 dev->max_sectors = 0;
2137 dev->cdb_len = 0;
2138 dev->n_sectors = 0;
2139 dev->cylinders = 0;
2140 dev->heads = 0;
2141 dev->sectors = 0;
2142
1da177e4
LT
2143 /*
2144 * common ATA, ATAPI feature tests
2145 */
2146
ff8854b2 2147 /* find max transfer mode; for printk only */
1148c3a7 2148 xfer_mask = ata_id_xfermask(id);
1da177e4 2149
0dd4b21f
BP
2150 if (ata_msg_probe(ap))
2151 ata_dump_id(id);
1da177e4 2152
ef143d57
AL
2153 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2154 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2155 sizeof(fwrevbuf));
2156
2157 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2158 sizeof(modelbuf));
2159
1da177e4
LT
2160 /* ATA-specific feature tests */
2161 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2162 if (ata_id_is_cfa(id)) {
2163 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2164 ata_dev_printk(dev, KERN_WARNING,
2165 "supports DRM functions and may "
2166 "not be fully accessable.\n");
b352e57d 2167 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2168 } else {
2dcb407e 2169 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2170 /* Warn the user if the device has TPM extensions */
2171 if (ata_id_has_tpm(id))
2172 ata_dev_printk(dev, KERN_WARNING,
2173 "supports DRM functions and may "
2174 "not be fully accessable.\n");
2175 }
b352e57d 2176
1148c3a7 2177 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2178
3f64f565
EM
2179 if (dev->id[59] & 0x100)
2180 dev->multi_count = dev->id[59] & 0xff;
2181
1148c3a7 2182 if (ata_id_has_lba(id)) {
4c2d721a 2183 const char *lba_desc;
a6e6ce8e 2184 char ncq_desc[20];
8bf62ece 2185
4c2d721a
TH
2186 lba_desc = "LBA";
2187 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2188 if (ata_id_has_lba48(id)) {
8bf62ece 2189 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2190 lba_desc = "LBA48";
6fc49adb
TH
2191
2192 if (dev->n_sectors >= (1UL << 28) &&
2193 ata_id_has_flush_ext(id))
2194 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2195 }
8bf62ece 2196
a6e6ce8e
TH
2197 /* config NCQ */
2198 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2199
8bf62ece 2200 /* print device info to dmesg */
3f64f565
EM
2201 if (ata_msg_drv(ap) && print_info) {
2202 ata_dev_printk(dev, KERN_INFO,
2203 "%s: %s, %s, max %s\n",
2204 revbuf, modelbuf, fwrevbuf,
2205 ata_mode_string(xfer_mask));
2206 ata_dev_printk(dev, KERN_INFO,
2207 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2208 (unsigned long long)dev->n_sectors,
3f64f565
EM
2209 dev->multi_count, lba_desc, ncq_desc);
2210 }
ffeae418 2211 } else {
8bf62ece
AL
2212 /* CHS */
2213
2214 /* Default translation */
1148c3a7
TH
2215 dev->cylinders = id[1];
2216 dev->heads = id[3];
2217 dev->sectors = id[6];
8bf62ece 2218
1148c3a7 2219 if (ata_id_current_chs_valid(id)) {
8bf62ece 2220 /* Current CHS translation is valid. */
1148c3a7
TH
2221 dev->cylinders = id[54];
2222 dev->heads = id[55];
2223 dev->sectors = id[56];
8bf62ece
AL
2224 }
2225
2226 /* print device info to dmesg */
3f64f565 2227 if (ata_msg_drv(ap) && print_info) {
88574551 2228 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2229 "%s: %s, %s, max %s\n",
2230 revbuf, modelbuf, fwrevbuf,
2231 ata_mode_string(xfer_mask));
a84471fe 2232 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2233 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2234 (unsigned long long)dev->n_sectors,
2235 dev->multi_count, dev->cylinders,
2236 dev->heads, dev->sectors);
2237 }
07f6f7d0
AL
2238 }
2239
6e7846e9 2240 dev->cdb_len = 16;
1da177e4
LT
2241 }
2242
2243 /* ATAPI-specific feature tests */
2c13b7ce 2244 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2245 const char *cdb_intr_string = "";
2246 const char *atapi_an_string = "";
7d77b247 2247 u32 sntf;
08a556db 2248
1148c3a7 2249 rc = atapi_cdb_len(id);
1da177e4 2250 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2251 if (ata_msg_warn(ap))
88574551
TH
2252 ata_dev_printk(dev, KERN_WARNING,
2253 "unsupported CDB len\n");
ffeae418 2254 rc = -EINVAL;
1da177e4
LT
2255 goto err_out_nosup;
2256 }
6e7846e9 2257 dev->cdb_len = (unsigned int) rc;
1da177e4 2258
7d77b247
TH
2259 /* Enable ATAPI AN if both the host and device have
2260 * the support. If PMP is attached, SNTF is required
2261 * to enable ATAPI AN to discern between PHY status
2262 * changed notifications and ATAPI ANs.
9f45cbd3 2263 */
7d77b247
TH
2264 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2265 (!ap->nr_pmp_links ||
2266 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2267 unsigned int err_mask;
2268
9f45cbd3 2269 /* issue SET feature command to turn this on */
218f3d30
JG
2270 err_mask = ata_dev_set_feature(dev,
2271 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2272 if (err_mask)
9f45cbd3 2273 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2274 "failed to enable ATAPI AN "
2275 "(err_mask=0x%x)\n", err_mask);
2276 else {
9f45cbd3 2277 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2278 atapi_an_string = ", ATAPI AN";
2279 }
9f45cbd3
KCA
2280 }
2281
08a556db 2282 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2283 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2284 cdb_intr_string = ", CDB intr";
2285 }
312f7da2 2286
1da177e4 2287 /* print device info to dmesg */
5afc8142 2288 if (ata_msg_drv(ap) && print_info)
ef143d57 2289 ata_dev_printk(dev, KERN_INFO,
854c73a2 2290 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2291 modelbuf, fwrevbuf,
12436c30 2292 ata_mode_string(xfer_mask),
854c73a2 2293 cdb_intr_string, atapi_an_string);
1da177e4
LT
2294 }
2295
914ed354
TH
2296 /* determine max_sectors */
2297 dev->max_sectors = ATA_MAX_SECTORS;
2298 if (dev->flags & ATA_DFLAG_LBA48)
2299 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2300
ca77329f
KCA
2301 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2302 if (ata_id_has_hipm(dev->id))
2303 dev->flags |= ATA_DFLAG_HIPM;
2304 if (ata_id_has_dipm(dev->id))
2305 dev->flags |= ATA_DFLAG_DIPM;
2306 }
2307
93590859
AC
2308 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2309 /* Let the user know. We don't want to disallow opens for
2310 rescue purposes, or in case the vendor is just a blithering
2311 idiot */
2dcb407e 2312 if (print_info) {
93590859
AC
2313 ata_dev_printk(dev, KERN_WARNING,
2314"Drive reports diagnostics failure. This may indicate a drive\n");
2315 ata_dev_printk(dev, KERN_WARNING,
2316"fault or invalid emulation. Contact drive vendor for information.\n");
2317 }
2318 }
2319
4b2f3ede 2320 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2321 if (ata_dev_knobble(dev)) {
5afc8142 2322 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2323 ata_dev_printk(dev, KERN_INFO,
2324 "applying bridge limits\n");
5a529139 2325 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2326 dev->max_sectors = ATA_MAX_SECTORS;
2327 }
2328
f8d8e579 2329 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2330 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2331 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2332 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2333 }
f8d8e579 2334
75683fe7 2335 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2336 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2337 dev->max_sectors);
18d6e9d5 2338
ca77329f
KCA
2339 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2340 dev->horkage |= ATA_HORKAGE_IPM;
2341
2342 /* reset link pm_policy for this port to no pm */
2343 ap->pm_policy = MAX_PERFORMANCE;
2344 }
2345
4b2f3ede 2346 if (ap->ops->dev_config)
cd0d3bbc 2347 ap->ops->dev_config(dev);
4b2f3ede 2348
0dd4b21f
BP
2349 if (ata_msg_probe(ap))
2350 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2351 __FUNCTION__, ata_chk_status(ap));
ffeae418 2352 return 0;
1da177e4
LT
2353
2354err_out_nosup:
0dd4b21f 2355 if (ata_msg_probe(ap))
88574551
TH
2356 ata_dev_printk(dev, KERN_DEBUG,
2357 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2358 return rc;
1da177e4
LT
2359}
2360
be0d18df 2361/**
2e41e8e6 2362 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2363 * @ap: port
2364 *
2e41e8e6 2365 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2366 * detection.
2367 */
2368
2369int ata_cable_40wire(struct ata_port *ap)
2370{
2371 return ATA_CBL_PATA40;
2372}
2373
2374/**
2e41e8e6 2375 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2376 * @ap: port
2377 *
2e41e8e6 2378 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2379 * detection.
2380 */
2381
2382int ata_cable_80wire(struct ata_port *ap)
2383{
2384 return ATA_CBL_PATA80;
2385}
2386
2387/**
2388 * ata_cable_unknown - return unknown PATA cable.
2389 * @ap: port
2390 *
2391 * Helper method for drivers which have no PATA cable detection.
2392 */
2393
2394int ata_cable_unknown(struct ata_port *ap)
2395{
2396 return ATA_CBL_PATA_UNK;
2397}
2398
2399/**
2400 * ata_cable_sata - return SATA cable type
2401 * @ap: port
2402 *
2403 * Helper method for drivers which have SATA cables
2404 */
2405
2406int ata_cable_sata(struct ata_port *ap)
2407{
2408 return ATA_CBL_SATA;
2409}
2410
1da177e4
LT
2411/**
2412 * ata_bus_probe - Reset and probe ATA bus
2413 * @ap: Bus to probe
2414 *
0cba632b
JG
2415 * Master ATA bus probing function. Initiates a hardware-dependent
2416 * bus reset, then attempts to identify any devices found on
2417 * the bus.
2418 *
1da177e4 2419 * LOCKING:
0cba632b 2420 * PCI/etc. bus probe sem.
1da177e4
LT
2421 *
2422 * RETURNS:
96072e69 2423 * Zero on success, negative errno otherwise.
1da177e4
LT
2424 */
2425
80289167 2426int ata_bus_probe(struct ata_port *ap)
1da177e4 2427{
28ca5c57 2428 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2429 int tries[ATA_MAX_DEVICES];
f58229f8 2430 int rc;
e82cbdb9 2431 struct ata_device *dev;
1da177e4 2432
28ca5c57 2433 ata_port_probe(ap);
c19ba8af 2434
f58229f8
TH
2435 ata_link_for_each_dev(dev, &ap->link)
2436 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2437
2438 retry:
cdeab114
TH
2439 ata_link_for_each_dev(dev, &ap->link) {
2440 /* If we issue an SRST then an ATA drive (not ATAPI)
2441 * may change configuration and be in PIO0 timing. If
2442 * we do a hard reset (or are coming from power on)
2443 * this is true for ATA or ATAPI. Until we've set a
2444 * suitable controller mode we should not touch the
2445 * bus as we may be talking too fast.
2446 */
2447 dev->pio_mode = XFER_PIO_0;
2448
2449 /* If the controller has a pio mode setup function
2450 * then use it to set the chipset to rights. Don't
2451 * touch the DMA setup as that will be dealt with when
2452 * configuring devices.
2453 */
2454 if (ap->ops->set_piomode)
2455 ap->ops->set_piomode(ap, dev);
2456 }
2457
2044470c 2458 /* reset and determine device classes */
52783c5d 2459 ap->ops->phy_reset(ap);
2061a47a 2460
f58229f8 2461 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2462 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2463 dev->class != ATA_DEV_UNKNOWN)
2464 classes[dev->devno] = dev->class;
2465 else
2466 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2467
52783c5d 2468 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2469 }
1da177e4 2470
52783c5d 2471 ata_port_probe(ap);
2044470c 2472
f31f0cc2
JG
2473 /* read IDENTIFY page and configure devices. We have to do the identify
2474 specific sequence bass-ackwards so that PDIAG- is released by
2475 the slave device */
2476
f58229f8
TH
2477 ata_link_for_each_dev(dev, &ap->link) {
2478 if (tries[dev->devno])
2479 dev->class = classes[dev->devno];
ffeae418 2480
14d2bac1 2481 if (!ata_dev_enabled(dev))
ffeae418 2482 continue;
ffeae418 2483
bff04647
TH
2484 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2485 dev->id);
14d2bac1
TH
2486 if (rc)
2487 goto fail;
f31f0cc2
JG
2488 }
2489
be0d18df
AC
2490 /* Now ask for the cable type as PDIAG- should have been released */
2491 if (ap->ops->cable_detect)
2492 ap->cbl = ap->ops->cable_detect(ap);
2493
614fe29b
AC
2494 /* We may have SATA bridge glue hiding here irrespective of the
2495 reported cable types and sensed types */
2496 ata_link_for_each_dev(dev, &ap->link) {
2497 if (!ata_dev_enabled(dev))
2498 continue;
2499 /* SATA drives indicate we have a bridge. We don't know which
2500 end of the link the bridge is which is a problem */
2501 if (ata_id_is_sata(dev->id))
2502 ap->cbl = ATA_CBL_SATA;
2503 }
2504
f31f0cc2
JG
2505 /* After the identify sequence we can now set up the devices. We do
2506 this in the normal order so that the user doesn't get confused */
2507
f58229f8 2508 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2509 if (!ata_dev_enabled(dev))
2510 continue;
14d2bac1 2511
9af5c9c9 2512 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2513 rc = ata_dev_configure(dev);
9af5c9c9 2514 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2515 if (rc)
2516 goto fail;
1da177e4
LT
2517 }
2518
e82cbdb9 2519 /* configure transfer mode */
0260731f 2520 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2521 if (rc)
51713d35 2522 goto fail;
1da177e4 2523
f58229f8
TH
2524 ata_link_for_each_dev(dev, &ap->link)
2525 if (ata_dev_enabled(dev))
e82cbdb9 2526 return 0;
1da177e4 2527
e82cbdb9
TH
2528 /* no device present, disable port */
2529 ata_port_disable(ap);
96072e69 2530 return -ENODEV;
14d2bac1
TH
2531
2532 fail:
4ae72a1e
TH
2533 tries[dev->devno]--;
2534
14d2bac1
TH
2535 switch (rc) {
2536 case -EINVAL:
4ae72a1e 2537 /* eeek, something went very wrong, give up */
14d2bac1
TH
2538 tries[dev->devno] = 0;
2539 break;
4ae72a1e
TH
2540
2541 case -ENODEV:
2542 /* give it just one more chance */
2543 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2544 case -EIO:
4ae72a1e
TH
2545 if (tries[dev->devno] == 1) {
2546 /* This is the last chance, better to slow
2547 * down than lose it.
2548 */
936fd732 2549 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2550 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2551 }
14d2bac1
TH
2552 }
2553
4ae72a1e 2554 if (!tries[dev->devno])
3373efd8 2555 ata_dev_disable(dev);
ec573755 2556
14d2bac1 2557 goto retry;
1da177e4
LT
2558}
2559
2560/**
0cba632b
JG
2561 * ata_port_probe - Mark port as enabled
2562 * @ap: Port for which we indicate enablement
1da177e4 2563 *
0cba632b
JG
2564 * Modify @ap data structure such that the system
2565 * thinks that the entire port is enabled.
2566 *
cca3974e 2567 * LOCKING: host lock, or some other form of
0cba632b 2568 * serialization.
1da177e4
LT
2569 */
2570
2571void ata_port_probe(struct ata_port *ap)
2572{
198e0fed 2573 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2574}
2575
3be680b7
TH
2576/**
2577 * sata_print_link_status - Print SATA link status
936fd732 2578 * @link: SATA link to printk link status about
3be680b7
TH
2579 *
2580 * This function prints link speed and status of a SATA link.
2581 *
2582 * LOCKING:
2583 * None.
2584 */
936fd732 2585void sata_print_link_status(struct ata_link *link)
3be680b7 2586{
6d5f9732 2587 u32 sstatus, scontrol, tmp;
3be680b7 2588
936fd732 2589 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2590 return;
936fd732 2591 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2592
936fd732 2593 if (ata_link_online(link)) {
3be680b7 2594 tmp = (sstatus >> 4) & 0xf;
936fd732 2595 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2596 "SATA link up %s (SStatus %X SControl %X)\n",
2597 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2598 } else {
936fd732 2599 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2600 "SATA link down (SStatus %X SControl %X)\n",
2601 sstatus, scontrol);
3be680b7
TH
2602 }
2603}
2604
ebdfca6e
AC
2605/**
2606 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2607 * @adev: device
2608 *
2609 * Obtain the other device on the same cable, or if none is
2610 * present NULL is returned
2611 */
2e9edbf8 2612
3373efd8 2613struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2614{
9af5c9c9
TH
2615 struct ata_link *link = adev->link;
2616 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2617 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2618 return NULL;
2619 return pair;
2620}
2621
1da177e4 2622/**
780a87f7
JG
2623 * ata_port_disable - Disable port.
2624 * @ap: Port to be disabled.
1da177e4 2625 *
780a87f7
JG
2626 * Modify @ap data structure such that the system
2627 * thinks that the entire port is disabled, and should
2628 * never attempt to probe or communicate with devices
2629 * on this port.
2630 *
cca3974e 2631 * LOCKING: host lock, or some other form of
780a87f7 2632 * serialization.
1da177e4
LT
2633 */
2634
2635void ata_port_disable(struct ata_port *ap)
2636{
9af5c9c9
TH
2637 ap->link.device[0].class = ATA_DEV_NONE;
2638 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2639 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2640}
2641
1c3fae4d 2642/**
3c567b7d 2643 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2644 * @link: Link to adjust SATA spd limit for
1c3fae4d 2645 *
936fd732 2646 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2647 * function only adjusts the limit. The change must be applied
3c567b7d 2648 * using sata_set_spd().
1c3fae4d
TH
2649 *
2650 * LOCKING:
2651 * Inherited from caller.
2652 *
2653 * RETURNS:
2654 * 0 on success, negative errno on failure
2655 */
936fd732 2656int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2657{
81952c54
TH
2658 u32 sstatus, spd, mask;
2659 int rc, highbit;
1c3fae4d 2660
936fd732 2661 if (!sata_scr_valid(link))
008a7896
TH
2662 return -EOPNOTSUPP;
2663
2664 /* If SCR can be read, use it to determine the current SPD.
936fd732 2665 * If not, use cached value in link->sata_spd.
008a7896 2666 */
936fd732 2667 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2668 if (rc == 0)
2669 spd = (sstatus >> 4) & 0xf;
2670 else
936fd732 2671 spd = link->sata_spd;
1c3fae4d 2672
936fd732 2673 mask = link->sata_spd_limit;
1c3fae4d
TH
2674 if (mask <= 1)
2675 return -EINVAL;
008a7896
TH
2676
2677 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2678 highbit = fls(mask) - 1;
2679 mask &= ~(1 << highbit);
2680
008a7896
TH
2681 /* Mask off all speeds higher than or equal to the current
2682 * one. Force 1.5Gbps if current SPD is not available.
2683 */
2684 if (spd > 1)
2685 mask &= (1 << (spd - 1)) - 1;
2686 else
2687 mask &= 1;
2688
2689 /* were we already at the bottom? */
1c3fae4d
TH
2690 if (!mask)
2691 return -EINVAL;
2692
936fd732 2693 link->sata_spd_limit = mask;
1c3fae4d 2694
936fd732 2695 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2696 sata_spd_string(fls(mask)));
1c3fae4d
TH
2697
2698 return 0;
2699}
2700
936fd732 2701static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2702{
5270222f
TH
2703 struct ata_link *host_link = &link->ap->link;
2704 u32 limit, target, spd;
1c3fae4d 2705
5270222f
TH
2706 limit = link->sata_spd_limit;
2707
2708 /* Don't configure downstream link faster than upstream link.
2709 * It doesn't speed up anything and some PMPs choke on such
2710 * configuration.
2711 */
2712 if (!ata_is_host_link(link) && host_link->sata_spd)
2713 limit &= (1 << host_link->sata_spd) - 1;
2714
2715 if (limit == UINT_MAX)
2716 target = 0;
1c3fae4d 2717 else
5270222f 2718 target = fls(limit);
1c3fae4d
TH
2719
2720 spd = (*scontrol >> 4) & 0xf;
5270222f 2721 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2722
5270222f 2723 return spd != target;
1c3fae4d
TH
2724}
2725
2726/**
3c567b7d 2727 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2728 * @link: Link in question
1c3fae4d
TH
2729 *
2730 * Test whether the spd limit in SControl matches
936fd732 2731 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2732 * whether hardreset is necessary to apply SATA spd
2733 * configuration.
2734 *
2735 * LOCKING:
2736 * Inherited from caller.
2737 *
2738 * RETURNS:
2739 * 1 if SATA spd configuration is needed, 0 otherwise.
2740 */
936fd732 2741int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2742{
2743 u32 scontrol;
2744
936fd732 2745 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2746 return 1;
1c3fae4d 2747
936fd732 2748 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2749}
2750
2751/**
3c567b7d 2752 * sata_set_spd - set SATA spd according to spd limit
936fd732 2753 * @link: Link to set SATA spd for
1c3fae4d 2754 *
936fd732 2755 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2756 *
2757 * LOCKING:
2758 * Inherited from caller.
2759 *
2760 * RETURNS:
2761 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2762 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2763 */
936fd732 2764int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2765{
2766 u32 scontrol;
81952c54 2767 int rc;
1c3fae4d 2768
936fd732 2769 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2770 return rc;
1c3fae4d 2771
936fd732 2772 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2773 return 0;
2774
936fd732 2775 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2776 return rc;
2777
1c3fae4d
TH
2778 return 1;
2779}
2780
452503f9
AC
2781/*
2782 * This mode timing computation functionality is ported over from
2783 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2784 */
2785/*
b352e57d 2786 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2787 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2788 * for UDMA6, which is currently supported only by Maxtor drives.
2789 *
2790 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2791 */
2792
2793static const struct ata_timing ata_timing[] = {
2794
2795 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2796 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2797 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2798 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2799
b352e57d
AC
2800 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2801 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2802 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2803 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2804 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2805
2806/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2807
452503f9
AC
2808 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2809 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2810 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2811
452503f9
AC
2812 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2813 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2814 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2815
b352e57d
AC
2816 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2817 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2818 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2819 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2820
2821 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2822 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2823 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2824
2825/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2826
2827 { 0xFF }
2828};
2829
2dcb407e
JG
2830#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2831#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2832
2833static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2834{
2835 q->setup = EZ(t->setup * 1000, T);
2836 q->act8b = EZ(t->act8b * 1000, T);
2837 q->rec8b = EZ(t->rec8b * 1000, T);
2838 q->cyc8b = EZ(t->cyc8b * 1000, T);
2839 q->active = EZ(t->active * 1000, T);
2840 q->recover = EZ(t->recover * 1000, T);
2841 q->cycle = EZ(t->cycle * 1000, T);
2842 q->udma = EZ(t->udma * 1000, UT);
2843}
2844
2845void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2846 struct ata_timing *m, unsigned int what)
2847{
2848 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2849 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2850 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2851 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2852 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2853 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2854 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2855 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2856}
2857
2dcb407e 2858static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
452503f9
AC
2859{
2860 const struct ata_timing *t;
2861
2862 for (t = ata_timing; t->mode != speed; t++)
91190758 2863 if (t->mode == 0xFF)
452503f9 2864 return NULL;
2e9edbf8 2865 return t;
452503f9
AC
2866}
2867
2868int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2869 struct ata_timing *t, int T, int UT)
2870{
2871 const struct ata_timing *s;
2872 struct ata_timing p;
2873
2874 /*
2e9edbf8 2875 * Find the mode.
75b1f2f8 2876 */
452503f9
AC
2877
2878 if (!(s = ata_timing_find_mode(speed)))
2879 return -EINVAL;
2880
75b1f2f8
AL
2881 memcpy(t, s, sizeof(*s));
2882
452503f9
AC
2883 /*
2884 * If the drive is an EIDE drive, it can tell us it needs extended
2885 * PIO/MW_DMA cycle timing.
2886 */
2887
2888 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2889 memset(&p, 0, sizeof(p));
2dcb407e 2890 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2891 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2892 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2893 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2894 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2895 }
2896 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2897 }
2898
2899 /*
2900 * Convert the timing to bus clock counts.
2901 */
2902
75b1f2f8 2903 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2904
2905 /*
c893a3ae
RD
2906 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2907 * S.M.A.R.T * and some other commands. We have to ensure that the
2908 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2909 */
2910
fd3367af 2911 if (speed > XFER_PIO_6) {
452503f9
AC
2912 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2913 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2914 }
2915
2916 /*
c893a3ae 2917 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2918 */
2919
2920 if (t->act8b + t->rec8b < t->cyc8b) {
2921 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2922 t->rec8b = t->cyc8b - t->act8b;
2923 }
2924
2925 if (t->active + t->recover < t->cycle) {
2926 t->active += (t->cycle - (t->active + t->recover)) / 2;
2927 t->recover = t->cycle - t->active;
2928 }
a617c09f 2929
4f701d1e
AC
2930 /* In a few cases quantisation may produce enough errors to
2931 leave t->cycle too low for the sum of active and recovery
2932 if so we must correct this */
2933 if (t->active + t->recover > t->cycle)
2934 t->cycle = t->active + t->recover;
452503f9
AC
2935
2936 return 0;
2937}
2938
cf176e1a
TH
2939/**
2940 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2941 * @dev: Device to adjust xfer masks
458337db 2942 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2943 *
2944 * Adjust xfer masks of @dev downward. Note that this function
2945 * does not apply the change. Invoking ata_set_mode() afterwards
2946 * will apply the limit.
2947 *
2948 * LOCKING:
2949 * Inherited from caller.
2950 *
2951 * RETURNS:
2952 * 0 on success, negative errno on failure
2953 */
458337db 2954int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2955{
458337db
TH
2956 char buf[32];
2957 unsigned int orig_mask, xfer_mask;
2958 unsigned int pio_mask, mwdma_mask, udma_mask;
2959 int quiet, highbit;
cf176e1a 2960
458337db
TH
2961 quiet = !!(sel & ATA_DNXFER_QUIET);
2962 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2963
458337db
TH
2964 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2965 dev->mwdma_mask,
2966 dev->udma_mask);
2967 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2968
458337db
TH
2969 switch (sel) {
2970 case ATA_DNXFER_PIO:
2971 highbit = fls(pio_mask) - 1;
2972 pio_mask &= ~(1 << highbit);
2973 break;
2974
2975 case ATA_DNXFER_DMA:
2976 if (udma_mask) {
2977 highbit = fls(udma_mask) - 1;
2978 udma_mask &= ~(1 << highbit);
2979 if (!udma_mask)
2980 return -ENOENT;
2981 } else if (mwdma_mask) {
2982 highbit = fls(mwdma_mask) - 1;
2983 mwdma_mask &= ~(1 << highbit);
2984 if (!mwdma_mask)
2985 return -ENOENT;
2986 }
2987 break;
2988
2989 case ATA_DNXFER_40C:
2990 udma_mask &= ATA_UDMA_MASK_40C;
2991 break;
2992
2993 case ATA_DNXFER_FORCE_PIO0:
2994 pio_mask &= 1;
2995 case ATA_DNXFER_FORCE_PIO:
2996 mwdma_mask = 0;
2997 udma_mask = 0;
2998 break;
2999
458337db
TH
3000 default:
3001 BUG();
3002 }
3003
3004 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3005
3006 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3007 return -ENOENT;
3008
3009 if (!quiet) {
3010 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3011 snprintf(buf, sizeof(buf), "%s:%s",
3012 ata_mode_string(xfer_mask),
3013 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3014 else
3015 snprintf(buf, sizeof(buf), "%s",
3016 ata_mode_string(xfer_mask));
3017
3018 ata_dev_printk(dev, KERN_WARNING,
3019 "limiting speed to %s\n", buf);
3020 }
cf176e1a
TH
3021
3022 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3023 &dev->udma_mask);
3024
cf176e1a 3025 return 0;
cf176e1a
TH
3026}
3027
3373efd8 3028static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3029{
9af5c9c9 3030 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
3031 unsigned int err_mask;
3032 int rc;
1da177e4 3033
e8384607 3034 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3035 if (dev->xfer_shift == ATA_SHIFT_PIO)
3036 dev->flags |= ATA_DFLAG_PIO;
3037
3373efd8 3038 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3039
11750a40
AC
3040 /* Old CFA may refuse this command, which is just fine */
3041 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
3042 err_mask &= ~AC_ERR_DEV;
3043
0bc2a79a
AC
3044 /* Some very old devices and some bad newer ones fail any kind of
3045 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3046 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3047 dev->pio_mode <= XFER_PIO_2)
3048 err_mask &= ~AC_ERR_DEV;
2dcb407e 3049
3acaf94b
AC
3050 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3051 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3052 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3053 dev->dma_mode == XFER_MW_DMA_0 &&
3054 (dev->id[63] >> 8) & 1)
3055 err_mask &= ~AC_ERR_DEV;
3056
83206a29 3057 if (err_mask) {
f15a1daf
TH
3058 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3059 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
3060 return -EIO;
3061 }
1da177e4 3062
baa1e78a 3063 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 3064 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 3065 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 3066 if (rc)
83206a29 3067 return rc;
48a8a14f 3068
23e71c3d
TH
3069 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3070 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3071
f15a1daf
TH
3072 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3073 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 3074 return 0;
1da177e4
LT
3075}
3076
1da177e4 3077/**
04351821 3078 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3079 * @link: link on which timings will be programmed
e82cbdb9 3080 * @r_failed_dev: out paramter for failed device
1da177e4 3081 *
04351821
AC
3082 * Standard implementation of the function used to tune and set
3083 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3084 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3085 * returned in @r_failed_dev.
780a87f7 3086 *
1da177e4 3087 * LOCKING:
0cba632b 3088 * PCI/etc. bus probe sem.
e82cbdb9
TH
3089 *
3090 * RETURNS:
3091 * 0 on success, negative errno otherwise
1da177e4 3092 */
04351821 3093
0260731f 3094int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3095{
0260731f 3096 struct ata_port *ap = link->ap;
e8e0619f 3097 struct ata_device *dev;
f58229f8 3098 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3099
a6d5a51c 3100 /* step 1: calculate xfer_mask */
f58229f8 3101 ata_link_for_each_dev(dev, link) {
acf356b1 3102 unsigned int pio_mask, dma_mask;
b3a70601 3103 unsigned int mode_mask;
a6d5a51c 3104
e1211e3f 3105 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3106 continue;
3107
b3a70601
AC
3108 mode_mask = ATA_DMA_MASK_ATA;
3109 if (dev->class == ATA_DEV_ATAPI)
3110 mode_mask = ATA_DMA_MASK_ATAPI;
3111 else if (ata_id_is_cfa(dev->id))
3112 mode_mask = ATA_DMA_MASK_CFA;
3113
3373efd8 3114 ata_dev_xfermask(dev);
1da177e4 3115
acf356b1
TH
3116 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3117 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3118
3119 if (libata_dma_mask & mode_mask)
3120 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3121 else
3122 dma_mask = 0;
3123
acf356b1
TH
3124 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3125 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3126
4f65977d 3127 found = 1;
5444a6f4
AC
3128 if (dev->dma_mode)
3129 used_dma = 1;
a6d5a51c 3130 }
4f65977d 3131 if (!found)
e82cbdb9 3132 goto out;
a6d5a51c
TH
3133
3134 /* step 2: always set host PIO timings */
f58229f8 3135 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3136 if (!ata_dev_enabled(dev))
3137 continue;
3138
3139 if (!dev->pio_mode) {
f15a1daf 3140 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3141 rc = -EINVAL;
e82cbdb9 3142 goto out;
e8e0619f
TH
3143 }
3144
3145 dev->xfer_mode = dev->pio_mode;
3146 dev->xfer_shift = ATA_SHIFT_PIO;
3147 if (ap->ops->set_piomode)
3148 ap->ops->set_piomode(ap, dev);
3149 }
1da177e4 3150
a6d5a51c 3151 /* step 3: set host DMA timings */
f58229f8 3152 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3153 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3154 continue;
3155
3156 dev->xfer_mode = dev->dma_mode;
3157 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3158 if (ap->ops->set_dmamode)
3159 ap->ops->set_dmamode(ap, dev);
3160 }
1da177e4
LT
3161
3162 /* step 4: update devices' xfer mode */
f58229f8 3163 ata_link_for_each_dev(dev, link) {
18d90deb 3164 /* don't update suspended devices' xfer mode */
9666f400 3165 if (!ata_dev_enabled(dev))
83206a29
TH
3166 continue;
3167
3373efd8 3168 rc = ata_dev_set_mode(dev);
5bbc53f4 3169 if (rc)
e82cbdb9 3170 goto out;
83206a29 3171 }
1da177e4 3172
e8e0619f
TH
3173 /* Record simplex status. If we selected DMA then the other
3174 * host channels are not permitted to do so.
5444a6f4 3175 */
cca3974e 3176 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3177 ap->host->simplex_claimed = ap;
5444a6f4 3178
e82cbdb9
TH
3179 out:
3180 if (rc)
3181 *r_failed_dev = dev;
3182 return rc;
1da177e4
LT
3183}
3184
04351821
AC
3185/**
3186 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3187 * @link: link on which timings will be programmed
04351821
AC
3188 * @r_failed_dev: out paramter for failed device
3189 *
3190 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3191 * ata_set_mode() fails, pointer to the failing device is
3192 * returned in @r_failed_dev.
3193 *
3194 * LOCKING:
3195 * PCI/etc. bus probe sem.
3196 *
3197 * RETURNS:
3198 * 0 on success, negative errno otherwise
3199 */
0260731f 3200int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 3201{
0260731f
TH
3202 struct ata_port *ap = link->ap;
3203
04351821
AC
3204 /* has private set_mode? */
3205 if (ap->ops->set_mode)
0260731f
TH
3206 return ap->ops->set_mode(link, r_failed_dev);
3207 return ata_do_set_mode(link, r_failed_dev);
04351821
AC
3208}
3209
1fdffbce
JG
3210/**
3211 * ata_tf_to_host - issue ATA taskfile to host controller
3212 * @ap: port to which command is being issued
3213 * @tf: ATA taskfile register set
3214 *
3215 * Issues ATA taskfile register set to ATA host controller,
3216 * with proper synchronization with interrupt handler and
3217 * other threads.
3218 *
3219 * LOCKING:
cca3974e 3220 * spin_lock_irqsave(host lock)
1fdffbce
JG
3221 */
3222
3223static inline void ata_tf_to_host(struct ata_port *ap,
3224 const struct ata_taskfile *tf)
3225{
3226 ap->ops->tf_load(ap, tf);
3227 ap->ops->exec_command(ap, tf);
3228}
3229
1da177e4
LT
3230/**
3231 * ata_busy_sleep - sleep until BSY clears, or timeout
3232 * @ap: port containing status register to be polled
3233 * @tmout_pat: impatience timeout
3234 * @tmout: overall timeout
3235 *
780a87f7
JG
3236 * Sleep until ATA Status register bit BSY clears,
3237 * or a timeout occurs.
3238 *
d1adc1bb
TH
3239 * LOCKING:
3240 * Kernel thread context (may sleep).
3241 *
3242 * RETURNS:
3243 * 0 on success, -errno otherwise.
1da177e4 3244 */
d1adc1bb
TH
3245int ata_busy_sleep(struct ata_port *ap,
3246 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3247{
3248 unsigned long timer_start, timeout;
3249 u8 status;
3250
3251 status = ata_busy_wait(ap, ATA_BUSY, 300);
3252 timer_start = jiffies;
3253 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3254 while (status != 0xff && (status & ATA_BUSY) &&
3255 time_before(jiffies, timeout)) {
1da177e4
LT
3256 msleep(50);
3257 status = ata_busy_wait(ap, ATA_BUSY, 3);
3258 }
3259
d1adc1bb 3260 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3261 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3262 "port is slow to respond, please be patient "
3263 "(Status 0x%x)\n", status);
1da177e4
LT
3264
3265 timeout = timer_start + tmout;
d1adc1bb
TH
3266 while (status != 0xff && (status & ATA_BUSY) &&
3267 time_before(jiffies, timeout)) {
1da177e4
LT
3268 msleep(50);
3269 status = ata_chk_status(ap);
3270 }
3271
d1adc1bb
TH
3272 if (status == 0xff)
3273 return -ENODEV;
3274
1da177e4 3275 if (status & ATA_BUSY) {
f15a1daf 3276 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3277 "(%lu secs, Status 0x%x)\n",
3278 tmout / HZ, status);
d1adc1bb 3279 return -EBUSY;
1da177e4
LT
3280 }
3281
3282 return 0;
3283}
3284
88ff6eaf
TH
3285/**
3286 * ata_wait_after_reset - wait before checking status after reset
3287 * @ap: port containing status register to be polled
3288 * @deadline: deadline jiffies for the operation
3289 *
3290 * After reset, we need to pause a while before reading status.
3291 * Also, certain combination of controller and device report 0xff
3292 * for some duration (e.g. until SATA PHY is up and running)
3293 * which is interpreted as empty port in ATA world. This
3294 * function also waits for such devices to get out of 0xff
3295 * status.
3296 *
3297 * LOCKING:
3298 * Kernel thread context (may sleep).
3299 */
3300void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3301{
3302 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3303
3304 if (time_before(until, deadline))
3305 deadline = until;
3306
3307 /* Spec mandates ">= 2ms" before checking status. We wait
3308 * 150ms, because that was the magic delay used for ATAPI
3309 * devices in Hale Landis's ATADRVR, for the period of time
3310 * between when the ATA command register is written, and then
3311 * status is checked. Because waiting for "a while" before
3312 * checking status is fine, post SRST, we perform this magic
3313 * delay here as well.
3314 *
3315 * Old drivers/ide uses the 2mS rule and then waits for ready.
3316 */
3317 msleep(150);
3318
3319 /* Wait for 0xff to clear. Some SATA devices take a long time
3320 * to clear 0xff after reset. For example, HHD424020F7SV00
3321 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3322 * than that.
1974e201
TH
3323 *
3324 * Note that some PATA controllers (pata_ali) explode if
3325 * status register is read more than once when there's no
3326 * device attached.
88ff6eaf 3327 */
1974e201
TH
3328 if (ap->flags & ATA_FLAG_SATA) {
3329 while (1) {
3330 u8 status = ata_chk_status(ap);
88ff6eaf 3331
1974e201
TH
3332 if (status != 0xff || time_after(jiffies, deadline))
3333 return;
88ff6eaf 3334
1974e201
TH
3335 msleep(50);
3336 }
88ff6eaf
TH
3337 }
3338}
3339
d4b2bab4
TH
3340/**
3341 * ata_wait_ready - sleep until BSY clears, or timeout
3342 * @ap: port containing status register to be polled
3343 * @deadline: deadline jiffies for the operation
3344 *
3345 * Sleep until ATA Status register bit BSY clears, or timeout
3346 * occurs.
3347 *
3348 * LOCKING:
3349 * Kernel thread context (may sleep).
3350 *
3351 * RETURNS:
3352 * 0 on success, -errno otherwise.
3353 */
3354int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3355{
3356 unsigned long start = jiffies;
3357 int warned = 0;
3358
3359 while (1) {
3360 u8 status = ata_chk_status(ap);
3361 unsigned long now = jiffies;
3362
3363 if (!(status & ATA_BUSY))
3364 return 0;
936fd732 3365 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3366 return -ENODEV;
3367 if (time_after(now, deadline))
3368 return -EBUSY;
3369
3370 if (!warned && time_after(now, start + 5 * HZ) &&
3371 (deadline - now > 3 * HZ)) {
3372 ata_port_printk(ap, KERN_WARNING,
3373 "port is slow to respond, please be patient "
3374 "(Status 0x%x)\n", status);
3375 warned = 1;
3376 }
3377
3378 msleep(50);
3379 }
3380}
3381
3382static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3383 unsigned long deadline)
1da177e4
LT
3384{
3385 struct ata_ioports *ioaddr = &ap->ioaddr;
3386 unsigned int dev0 = devmask & (1 << 0);
3387 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3388 int rc, ret = 0;
1da177e4
LT
3389
3390 /* if device 0 was found in ata_devchk, wait for its
3391 * BSY bit to clear
3392 */
d4b2bab4
TH
3393 if (dev0) {
3394 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3395 if (rc) {
3396 if (rc != -ENODEV)
3397 return rc;
3398 ret = rc;
3399 }
d4b2bab4 3400 }
1da177e4 3401
e141d999
TH
3402 /* if device 1 was found in ata_devchk, wait for register
3403 * access briefly, then wait for BSY to clear.
1da177e4 3404 */
e141d999
TH
3405 if (dev1) {
3406 int i;
1da177e4
LT
3407
3408 ap->ops->dev_select(ap, 1);
e141d999
TH
3409
3410 /* Wait for register access. Some ATAPI devices fail
3411 * to set nsect/lbal after reset, so don't waste too
3412 * much time on it. We're gonna wait for !BSY anyway.
3413 */
3414 for (i = 0; i < 2; i++) {
3415 u8 nsect, lbal;
3416
3417 nsect = ioread8(ioaddr->nsect_addr);
3418 lbal = ioread8(ioaddr->lbal_addr);
3419 if ((nsect == 1) && (lbal == 1))
3420 break;
3421 msleep(50); /* give drive a breather */
3422 }
3423
d4b2bab4 3424 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3425 if (rc) {
3426 if (rc != -ENODEV)
3427 return rc;
3428 ret = rc;
3429 }
d4b2bab4 3430 }
1da177e4
LT
3431
3432 /* is all this really necessary? */
3433 ap->ops->dev_select(ap, 0);
3434 if (dev1)
3435 ap->ops->dev_select(ap, 1);
3436 if (dev0)
3437 ap->ops->dev_select(ap, 0);
d4b2bab4 3438
9b89391c 3439 return ret;
1da177e4
LT
3440}
3441
d4b2bab4
TH
3442static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3443 unsigned long deadline)
1da177e4
LT
3444{
3445 struct ata_ioports *ioaddr = &ap->ioaddr;
3446
44877b4e 3447 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3448
3449 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3450 iowrite8(ap->ctl, ioaddr->ctl_addr);
3451 udelay(20); /* FIXME: flush */
3452 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3453 udelay(20); /* FIXME: flush */
3454 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3455
88ff6eaf
TH
3456 /* wait a while before checking status */
3457 ata_wait_after_reset(ap, deadline);
1da177e4 3458
2e9edbf8 3459 /* Before we perform post reset processing we want to see if
298a41ca
TH
3460 * the bus shows 0xFF because the odd clown forgets the D7
3461 * pulldown resistor.
3462 */
150981b0 3463 if (ata_chk_status(ap) == 0xFF)
9b89391c 3464 return -ENODEV;
09c7ad79 3465
d4b2bab4 3466 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3467}
3468
3469/**
3470 * ata_bus_reset - reset host port and associated ATA channel
3471 * @ap: port to reset
3472 *
3473 * This is typically the first time we actually start issuing
3474 * commands to the ATA channel. We wait for BSY to clear, then
3475 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3476 * result. Determine what devices, if any, are on the channel
3477 * by looking at the device 0/1 error register. Look at the signature
3478 * stored in each device's taskfile registers, to determine if
3479 * the device is ATA or ATAPI.
3480 *
3481 * LOCKING:
0cba632b 3482 * PCI/etc. bus probe sem.
cca3974e 3483 * Obtains host lock.
1da177e4
LT
3484 *
3485 * SIDE EFFECTS:
198e0fed 3486 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3487 */
3488
3489void ata_bus_reset(struct ata_port *ap)
3490{
9af5c9c9 3491 struct ata_device *device = ap->link.device;
1da177e4
LT
3492 struct ata_ioports *ioaddr = &ap->ioaddr;
3493 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3494 u8 err;
aec5c3c1 3495 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3496 int rc;
1da177e4 3497
44877b4e 3498 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3499
3500 /* determine if device 0/1 are present */
3501 if (ap->flags & ATA_FLAG_SATA_RESET)
3502 dev0 = 1;
3503 else {
3504 dev0 = ata_devchk(ap, 0);
3505 if (slave_possible)
3506 dev1 = ata_devchk(ap, 1);
3507 }
3508
3509 if (dev0)
3510 devmask |= (1 << 0);
3511 if (dev1)
3512 devmask |= (1 << 1);
3513
3514 /* select device 0 again */
3515 ap->ops->dev_select(ap, 0);
3516
3517 /* issue bus reset */
9b89391c
TH
3518 if (ap->flags & ATA_FLAG_SRST) {
3519 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3520 if (rc && rc != -ENODEV)
aec5c3c1 3521 goto err_out;
9b89391c 3522 }
1da177e4
LT
3523
3524 /*
3525 * determine by signature whether we have ATA or ATAPI devices
3526 */
3f19859e 3527 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3528 if ((slave_possible) && (err != 0x81))
3f19859e 3529 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3530
1da177e4 3531 /* is double-select really necessary? */
9af5c9c9 3532 if (device[1].class != ATA_DEV_NONE)
1da177e4 3533 ap->ops->dev_select(ap, 1);
9af5c9c9 3534 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3535 ap->ops->dev_select(ap, 0);
3536
3537 /* if no devices were detected, disable this port */
9af5c9c9
TH
3538 if ((device[0].class == ATA_DEV_NONE) &&
3539 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3540 goto err_out;
3541
3542 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3543 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3544 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3545 }
3546
3547 DPRINTK("EXIT\n");
3548 return;
3549
3550err_out:
f15a1daf 3551 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3552 ata_port_disable(ap);
1da177e4
LT
3553
3554 DPRINTK("EXIT\n");
3555}
3556
d7bb4cc7 3557/**
936fd732
TH
3558 * sata_link_debounce - debounce SATA phy status
3559 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3560 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3561 * @deadline: deadline jiffies for the operation
d7bb4cc7 3562 *
936fd732 3563* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3564 * holding the same value where DET is not 1 for @duration polled
3565 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3566 * beginning of the stable state. Because DET gets stuck at 1 on
3567 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3568 * until timeout then returns 0 if DET is stable at 1.
3569 *
d4b2bab4
TH
3570 * @timeout is further limited by @deadline. The sooner of the
3571 * two is used.
3572 *
d7bb4cc7
TH
3573 * LOCKING:
3574 * Kernel thread context (may sleep)
3575 *
3576 * RETURNS:
3577 * 0 on success, -errno on failure.
3578 */
936fd732
TH
3579int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3580 unsigned long deadline)
7a7921e8 3581{
d7bb4cc7 3582 unsigned long interval_msec = params[0];
d4b2bab4
TH
3583 unsigned long duration = msecs_to_jiffies(params[1]);
3584 unsigned long last_jiffies, t;
d7bb4cc7
TH
3585 u32 last, cur;
3586 int rc;
3587
d4b2bab4
TH
3588 t = jiffies + msecs_to_jiffies(params[2]);
3589 if (time_before(t, deadline))
3590 deadline = t;
3591
936fd732 3592 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3593 return rc;
3594 cur &= 0xf;
3595
3596 last = cur;
3597 last_jiffies = jiffies;
3598
3599 while (1) {
3600 msleep(interval_msec);
936fd732 3601 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3602 return rc;
3603 cur &= 0xf;
3604
3605 /* DET stable? */
3606 if (cur == last) {
d4b2bab4 3607 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3608 continue;
3609 if (time_after(jiffies, last_jiffies + duration))
3610 return 0;
3611 continue;
3612 }
3613
3614 /* unstable, start over */
3615 last = cur;
3616 last_jiffies = jiffies;
3617
f1545154
TH
3618 /* Check deadline. If debouncing failed, return
3619 * -EPIPE to tell upper layer to lower link speed.
3620 */
d4b2bab4 3621 if (time_after(jiffies, deadline))
f1545154 3622 return -EPIPE;
d7bb4cc7
TH
3623 }
3624}
3625
3626/**
936fd732
TH
3627 * sata_link_resume - resume SATA link
3628 * @link: ATA link to resume SATA
d7bb4cc7 3629 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3630 * @deadline: deadline jiffies for the operation
d7bb4cc7 3631 *
936fd732 3632 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3633 *
3634 * LOCKING:
3635 * Kernel thread context (may sleep)
3636 *
3637 * RETURNS:
3638 * 0 on success, -errno on failure.
3639 */
936fd732
TH
3640int sata_link_resume(struct ata_link *link, const unsigned long *params,
3641 unsigned long deadline)
d7bb4cc7
TH
3642{
3643 u32 scontrol;
81952c54
TH
3644 int rc;
3645
936fd732 3646 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3647 return rc;
7a7921e8 3648
852ee16a 3649 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3650
936fd732 3651 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3652 return rc;
7a7921e8 3653
d7bb4cc7
TH
3654 /* Some PHYs react badly if SStatus is pounded immediately
3655 * after resuming. Delay 200ms before debouncing.
3656 */
3657 msleep(200);
7a7921e8 3658
936fd732 3659 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3660}
3661
f5914a46
TH
3662/**
3663 * ata_std_prereset - prepare for reset
cc0680a5 3664 * @link: ATA link to be reset
d4b2bab4 3665 * @deadline: deadline jiffies for the operation
f5914a46 3666 *
cc0680a5 3667 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3668 * prereset makes libata abort whole reset sequence and give up
3669 * that port, so prereset should be best-effort. It does its
3670 * best to prepare for reset sequence but if things go wrong, it
3671 * should just whine, not fail.
f5914a46
TH
3672 *
3673 * LOCKING:
3674 * Kernel thread context (may sleep)
3675 *
3676 * RETURNS:
3677 * 0 on success, -errno otherwise.
3678 */
cc0680a5 3679int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3680{
cc0680a5 3681 struct ata_port *ap = link->ap;
936fd732 3682 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3683 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3684 int rc;
3685
31daabda 3686 /* handle link resume */
28324304 3687 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3688 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3689 ehc->i.action |= ATA_EH_HARDRESET;
3690
633273a3
TH
3691 /* Some PMPs don't work with only SRST, force hardreset if PMP
3692 * is supported.
3693 */
3694 if (ap->flags & ATA_FLAG_PMP)
3695 ehc->i.action |= ATA_EH_HARDRESET;
3696
f5914a46
TH
3697 /* if we're about to do hardreset, nothing more to do */
3698 if (ehc->i.action & ATA_EH_HARDRESET)
3699 return 0;
3700
936fd732 3701 /* if SATA, resume link */
a16abc0b 3702 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3703 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3704 /* whine about phy resume failure but proceed */
3705 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3706 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3707 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3708 }
3709
3710 /* Wait for !BSY if the controller can wait for the first D2H
3711 * Reg FIS and we don't know that no device is attached.
3712 */
0c88758b 3713 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3714 rc = ata_wait_ready(ap, deadline);
6dffaf61 3715 if (rc && rc != -ENODEV) {
cc0680a5 3716 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3717 "(errno=%d), forcing hardreset\n", rc);
3718 ehc->i.action |= ATA_EH_HARDRESET;
3719 }
3720 }
f5914a46
TH
3721
3722 return 0;
3723}
3724
c2bd5804
TH
3725/**
3726 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3727 * @link: ATA link to reset
c2bd5804 3728 * @classes: resulting classes of attached devices
d4b2bab4 3729 * @deadline: deadline jiffies for the operation
c2bd5804 3730 *
52783c5d 3731 * Reset host port using ATA SRST.
c2bd5804
TH
3732 *
3733 * LOCKING:
3734 * Kernel thread context (may sleep)
3735 *
3736 * RETURNS:
3737 * 0 on success, -errno otherwise.
3738 */
cc0680a5 3739int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3740 unsigned long deadline)
c2bd5804 3741{
cc0680a5 3742 struct ata_port *ap = link->ap;
c2bd5804 3743 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3744 unsigned int devmask = 0;
3745 int rc;
c2bd5804
TH
3746 u8 err;
3747
3748 DPRINTK("ENTER\n");
3749
936fd732 3750 if (ata_link_offline(link)) {
3a39746a
TH
3751 classes[0] = ATA_DEV_NONE;
3752 goto out;
3753 }
3754
c2bd5804
TH
3755 /* determine if device 0/1 are present */
3756 if (ata_devchk(ap, 0))
3757 devmask |= (1 << 0);
3758 if (slave_possible && ata_devchk(ap, 1))
3759 devmask |= (1 << 1);
3760
c2bd5804
TH
3761 /* select device 0 again */
3762 ap->ops->dev_select(ap, 0);
3763
3764 /* issue bus reset */
3765 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3766 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3767 /* if link is occupied, -ENODEV too is an error */
936fd732 3768 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3769 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3770 return rc;
c2bd5804
TH
3771 }
3772
3773 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3774 classes[0] = ata_dev_try_classify(&link->device[0],
3775 devmask & (1 << 0), &err);
c2bd5804 3776 if (slave_possible && err != 0x81)
3f19859e
TH
3777 classes[1] = ata_dev_try_classify(&link->device[1],
3778 devmask & (1 << 1), &err);
c2bd5804 3779
3a39746a 3780 out:
c2bd5804
TH
3781 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3782 return 0;
3783}
3784
3785/**
cc0680a5
TH
3786 * sata_link_hardreset - reset link via SATA phy reset
3787 * @link: link to reset
b6103f6d 3788 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3789 * @deadline: deadline jiffies for the operation
c2bd5804 3790 *
cc0680a5 3791 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3792 *
3793 * LOCKING:
3794 * Kernel thread context (may sleep)
3795 *
3796 * RETURNS:
3797 * 0 on success, -errno otherwise.
3798 */
cc0680a5 3799int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3800 unsigned long deadline)
c2bd5804 3801{
852ee16a 3802 u32 scontrol;
81952c54 3803 int rc;
852ee16a 3804
c2bd5804
TH
3805 DPRINTK("ENTER\n");
3806
936fd732 3807 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3808 /* SATA spec says nothing about how to reconfigure
3809 * spd. To be on the safe side, turn off phy during
3810 * reconfiguration. This works for at least ICH7 AHCI
3811 * and Sil3124.
3812 */
936fd732 3813 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3814 goto out;
81952c54 3815
a34b6fc0 3816 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3817
936fd732 3818 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3819 goto out;
1c3fae4d 3820
936fd732 3821 sata_set_spd(link);
1c3fae4d
TH
3822 }
3823
3824 /* issue phy wake/reset */
936fd732 3825 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3826 goto out;
81952c54 3827
852ee16a 3828 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3829
936fd732 3830 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3831 goto out;
c2bd5804 3832
1c3fae4d 3833 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3834 * 10.4.2 says at least 1 ms.
3835 */
3836 msleep(1);
3837
936fd732
TH
3838 /* bring link back */
3839 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3840 out:
3841 DPRINTK("EXIT, rc=%d\n", rc);
3842 return rc;
3843}
3844
3845/**
3846 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3847 * @link: link to reset
b6103f6d 3848 * @class: resulting class of attached device
d4b2bab4 3849 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3850 *
3851 * SATA phy-reset host port using DET bits of SControl register,
3852 * wait for !BSY and classify the attached device.
3853 *
3854 * LOCKING:
3855 * Kernel thread context (may sleep)
3856 *
3857 * RETURNS:
3858 * 0 on success, -errno otherwise.
3859 */
cc0680a5 3860int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3861 unsigned long deadline)
b6103f6d 3862{
cc0680a5 3863 struct ata_port *ap = link->ap;
936fd732 3864 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3865 int rc;
3866
3867 DPRINTK("ENTER\n");
3868
3869 /* do hardreset */
cc0680a5 3870 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3871 if (rc) {
cc0680a5 3872 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3873 "COMRESET failed (errno=%d)\n", rc);
3874 return rc;
3875 }
c2bd5804 3876
c2bd5804 3877 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3878 if (ata_link_offline(link)) {
c2bd5804
TH
3879 *class = ATA_DEV_NONE;
3880 DPRINTK("EXIT, link offline\n");
3881 return 0;
3882 }
3883
88ff6eaf
TH
3884 /* wait a while before checking status */
3885 ata_wait_after_reset(ap, deadline);
34fee227 3886
633273a3
TH
3887 /* If PMP is supported, we have to do follow-up SRST. Note
3888 * that some PMPs don't send D2H Reg FIS after hardreset at
3889 * all if the first port is empty. Wait for it just for a
3890 * second and request follow-up SRST.
3891 */
3892 if (ap->flags & ATA_FLAG_PMP) {
3893 ata_wait_ready(ap, jiffies + HZ);
3894 return -EAGAIN;
3895 }
3896
d4b2bab4 3897 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3898 /* link occupied, -ENODEV too is an error */
3899 if (rc) {
cc0680a5 3900 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3901 "COMRESET failed (errno=%d)\n", rc);
3902 return rc;
c2bd5804
TH
3903 }
3904
3a39746a
TH
3905 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3906
3f19859e 3907 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3908
3909 DPRINTK("EXIT, class=%u\n", *class);
3910 return 0;
3911}
3912
3913/**
3914 * ata_std_postreset - standard postreset callback
cc0680a5 3915 * @link: the target ata_link
c2bd5804
TH
3916 * @classes: classes of attached devices
3917 *
3918 * This function is invoked after a successful reset. Note that
3919 * the device might have been reset more than once using
3920 * different reset methods before postreset is invoked.
c2bd5804 3921 *
c2bd5804
TH
3922 * LOCKING:
3923 * Kernel thread context (may sleep)
3924 */
cc0680a5 3925void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3926{
cc0680a5 3927 struct ata_port *ap = link->ap;
dc2b3515
TH
3928 u32 serror;
3929
c2bd5804
TH
3930 DPRINTK("ENTER\n");
3931
c2bd5804 3932 /* print link status */
936fd732 3933 sata_print_link_status(link);
c2bd5804 3934
dc2b3515 3935 /* clear SError */
936fd732
TH
3936 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3937 sata_scr_write(link, SCR_ERROR, serror);
f7fe7ad4 3938 link->eh_info.serror = 0;
dc2b3515 3939
c2bd5804
TH
3940 /* is double-select really necessary? */
3941 if (classes[0] != ATA_DEV_NONE)
3942 ap->ops->dev_select(ap, 1);
3943 if (classes[1] != ATA_DEV_NONE)
3944 ap->ops->dev_select(ap, 0);
3945
3a39746a
TH
3946 /* bail out if no device is present */
3947 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3948 DPRINTK("EXIT, no device\n");
3949 return;
3950 }
3951
3952 /* set up device control */
0d5ff566
TH
3953 if (ap->ioaddr.ctl_addr)
3954 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3955
3956 DPRINTK("EXIT\n");
3957}
3958
623a3128
TH
3959/**
3960 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3961 * @dev: device to compare against
3962 * @new_class: class of the new device
3963 * @new_id: IDENTIFY page of the new device
3964 *
3965 * Compare @new_class and @new_id against @dev and determine
3966 * whether @dev is the device indicated by @new_class and
3967 * @new_id.
3968 *
3969 * LOCKING:
3970 * None.
3971 *
3972 * RETURNS:
3973 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3974 */
3373efd8
TH
3975static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3976 const u16 *new_id)
623a3128
TH
3977{
3978 const u16 *old_id = dev->id;
a0cf733b
TH
3979 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3980 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3981
3982 if (dev->class != new_class) {
f15a1daf
TH
3983 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3984 dev->class, new_class);
623a3128
TH
3985 return 0;
3986 }
3987
a0cf733b
TH
3988 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3989 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3990 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3991 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3992
3993 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3994 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3995 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3996 return 0;
3997 }
3998
3999 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
4000 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4001 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
4002 return 0;
4003 }
4004
623a3128
TH
4005 return 1;
4006}
4007
4008/**
fe30911b 4009 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4010 * @dev: target ATA device
bff04647 4011 * @readid_flags: read ID flags
623a3128
TH
4012 *
4013 * Re-read IDENTIFY page and make sure @dev is still attached to
4014 * the port.
4015 *
4016 * LOCKING:
4017 * Kernel thread context (may sleep)
4018 *
4019 * RETURNS:
4020 * 0 on success, negative errno otherwise
4021 */
fe30911b 4022int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4023{
5eb45c02 4024 unsigned int class = dev->class;
9af5c9c9 4025 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4026 int rc;
4027
fe635c7e 4028 /* read ID data */
bff04647 4029 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4030 if (rc)
fe30911b 4031 return rc;
623a3128
TH
4032
4033 /* is the device still there? */
fe30911b
TH
4034 if (!ata_dev_same_device(dev, class, id))
4035 return -ENODEV;
623a3128 4036
fe635c7e 4037 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4038 return 0;
4039}
4040
4041/**
4042 * ata_dev_revalidate - Revalidate ATA device
4043 * @dev: device to revalidate
422c9daa 4044 * @new_class: new class code
fe30911b
TH
4045 * @readid_flags: read ID flags
4046 *
4047 * Re-read IDENTIFY page, make sure @dev is still attached to the
4048 * port and reconfigure it according to the new IDENTIFY page.
4049 *
4050 * LOCKING:
4051 * Kernel thread context (may sleep)
4052 *
4053 * RETURNS:
4054 * 0 on success, negative errno otherwise
4055 */
422c9daa
TH
4056int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4057 unsigned int readid_flags)
fe30911b 4058{
6ddcd3b0 4059 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4060 int rc;
4061
4062 if (!ata_dev_enabled(dev))
4063 return -ENODEV;
4064
422c9daa
TH
4065 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4066 if (ata_class_enabled(new_class) &&
4067 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4068 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4069 dev->class, new_class);
4070 rc = -ENODEV;
4071 goto fail;
4072 }
4073
fe30911b
TH
4074 /* re-read ID */
4075 rc = ata_dev_reread_id(dev, readid_flags);
4076 if (rc)
4077 goto fail;
623a3128
TH
4078
4079 /* configure device according to the new ID */
efdaedc4 4080 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4081 if (rc)
4082 goto fail;
4083
4084 /* verify n_sectors hasn't changed */
b54eebd6
TH
4085 if (dev->class == ATA_DEV_ATA && n_sectors &&
4086 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4087 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4088 "%llu != %llu\n",
4089 (unsigned long long)n_sectors,
4090 (unsigned long long)dev->n_sectors);
8270bec4
TH
4091
4092 /* restore original n_sectors */
4093 dev->n_sectors = n_sectors;
4094
6ddcd3b0
TH
4095 rc = -ENODEV;
4096 goto fail;
4097 }
4098
4099 return 0;
623a3128
TH
4100
4101 fail:
f15a1daf 4102 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4103 return rc;
4104}
4105
6919a0a6
AC
4106struct ata_blacklist_entry {
4107 const char *model_num;
4108 const char *model_rev;
4109 unsigned long horkage;
4110};
4111
4112static const struct ata_blacklist_entry ata_device_blacklist [] = {
4113 /* Devices with DMA related problems under Linux */
4114 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4115 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4116 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4117 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4118 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4119 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4120 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4121 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4122 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4123 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4124 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4125 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4126 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4127 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4128 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4129 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4130 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4131 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4132 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4133 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4134 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4135 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4136 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4137 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4138 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4139 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4140 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4141 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4142 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4143 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
4144 /* Odd clown on sil3726/4726 PMPs */
4145 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4146 ATA_HORKAGE_SKIP_PM },
6919a0a6 4147
18d6e9d5 4148 /* Weird ATAPI devices */
40a1d531 4149 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4150
6919a0a6
AC
4151 /* Devices we expect to fail diagnostics */
4152
4153 /* Devices where NCQ should be avoided */
4154 /* NCQ is slow */
2dcb407e 4155 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4156 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4157 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4158 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4159 /* NCQ is broken */
539cc7c7 4160 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4161 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
4162 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4163 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 4164 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4165 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4166
36e337d0
RH
4167 /* Blacklist entries taken from Silicon Image 3124/3132
4168 Windows driver .inf file - also several Linux problem reports */
4169 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4170 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4171 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4172
16c55b03
TH
4173 /* devices which puke on READ_NATIVE_MAX */
4174 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4175 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4176 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4177 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4178
93328e11
AC
4179 /* Devices which report 1 sector over size HPA */
4180 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4181 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4182
6bbfd53d
AC
4183 /* Devices which get the IVB wrong */
4184 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4185 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4186 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4187 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4188 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4189
6919a0a6
AC
4190 /* End Marker */
4191 { }
1da177e4 4192};
2e9edbf8 4193
741b7763 4194static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4195{
4196 const char *p;
4197 int len;
4198
4199 /*
4200 * check for trailing wildcard: *\0
4201 */
4202 p = strchr(patt, wildchar);
4203 if (p && ((*(p + 1)) == 0))
4204 len = p - patt;
317b50b8 4205 else {
539cc7c7 4206 len = strlen(name);
317b50b8
AP
4207 if (!len) {
4208 if (!*patt)
4209 return 0;
4210 return -1;
4211 }
4212 }
539cc7c7
JG
4213
4214 return strncmp(patt, name, len);
4215}
4216
75683fe7 4217static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4218{
8bfa79fc
TH
4219 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4220 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4221 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4222
8bfa79fc
TH
4223 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4224 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4225
6919a0a6 4226 while (ad->model_num) {
539cc7c7 4227 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4228 if (ad->model_rev == NULL)
4229 return ad->horkage;
539cc7c7 4230 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4231 return ad->horkage;
f4b15fef 4232 }
6919a0a6 4233 ad++;
f4b15fef 4234 }
1da177e4
LT
4235 return 0;
4236}
4237
6919a0a6
AC
4238static int ata_dma_blacklisted(const struct ata_device *dev)
4239{
4240 /* We don't support polling DMA.
4241 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4242 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4243 */
9af5c9c9 4244 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4245 (dev->flags & ATA_DFLAG_CDB_INTR))
4246 return 1;
75683fe7 4247 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4248}
4249
6bbfd53d
AC
4250/**
4251 * ata_is_40wire - check drive side detection
4252 * @dev: device
4253 *
4254 * Perform drive side detection decoding, allowing for device vendors
4255 * who can't follow the documentation.
4256 */
4257
4258static int ata_is_40wire(struct ata_device *dev)
4259{
4260 if (dev->horkage & ATA_HORKAGE_IVB)
4261 return ata_drive_40wire_relaxed(dev->id);
4262 return ata_drive_40wire(dev->id);
4263}
4264
a6d5a51c
TH
4265/**
4266 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4267 * @dev: Device to compute xfermask for
4268 *
acf356b1
TH
4269 * Compute supported xfermask of @dev and store it in
4270 * dev->*_mask. This function is responsible for applying all
4271 * known limits including host controller limits, device
4272 * blacklist, etc...
a6d5a51c
TH
4273 *
4274 * LOCKING:
4275 * None.
a6d5a51c 4276 */
3373efd8 4277static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4278{
9af5c9c9
TH
4279 struct ata_link *link = dev->link;
4280 struct ata_port *ap = link->ap;
cca3974e 4281 struct ata_host *host = ap->host;
a6d5a51c 4282 unsigned long xfer_mask;
1da177e4 4283
37deecb5 4284 /* controller modes available */
565083e1
TH
4285 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4286 ap->mwdma_mask, ap->udma_mask);
4287
8343f889 4288 /* drive modes available */
37deecb5
TH
4289 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4290 dev->mwdma_mask, dev->udma_mask);
4291 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4292
b352e57d
AC
4293 /*
4294 * CFA Advanced TrueIDE timings are not allowed on a shared
4295 * cable
4296 */
4297 if (ata_dev_pair(dev)) {
4298 /* No PIO5 or PIO6 */
4299 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4300 /* No MWDMA3 or MWDMA 4 */
4301 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4302 }
4303
37deecb5
TH
4304 if (ata_dma_blacklisted(dev)) {
4305 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4306 ata_dev_printk(dev, KERN_WARNING,
4307 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4308 }
a6d5a51c 4309
14d66ab7 4310 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4311 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4312 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4313 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4314 "other device, disabling DMA\n");
5444a6f4 4315 }
565083e1 4316
e424675f
JG
4317 if (ap->flags & ATA_FLAG_NO_IORDY)
4318 xfer_mask &= ata_pio_mask_no_iordy(dev);
4319
5444a6f4 4320 if (ap->ops->mode_filter)
a76b62ca 4321 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4322
8343f889
RH
4323 /* Apply cable rule here. Don't apply it early because when
4324 * we handle hot plug the cable type can itself change.
4325 * Check this last so that we know if the transfer rate was
4326 * solely limited by the cable.
4327 * Unknown or 80 wire cables reported host side are checked
4328 * drive side as well. Cases where we know a 40wire cable
4329 * is used safely for 80 are not checked here.
4330 */
4331 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4332 /* UDMA/44 or higher would be available */
2dcb407e 4333 if ((ap->cbl == ATA_CBL_PATA40) ||
6bbfd53d 4334 (ata_is_40wire(dev) &&
2dcb407e
JG
4335 (ap->cbl == ATA_CBL_PATA_UNK ||
4336 ap->cbl == ATA_CBL_PATA80))) {
4337 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4338 "limited to UDMA/33 due to 40-wire cable\n");
4339 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4340 }
4341
565083e1
TH
4342 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4343 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4344}
4345
1da177e4
LT
4346/**
4347 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4348 * @dev: Device to which command will be sent
4349 *
780a87f7
JG
4350 * Issue SET FEATURES - XFER MODE command to device @dev
4351 * on port @ap.
4352 *
1da177e4 4353 * LOCKING:
0cba632b 4354 * PCI/etc. bus probe sem.
83206a29
TH
4355 *
4356 * RETURNS:
4357 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4358 */
4359
3373efd8 4360static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4361{
a0123703 4362 struct ata_taskfile tf;
83206a29 4363 unsigned int err_mask;
1da177e4
LT
4364
4365 /* set up set-features taskfile */
4366 DPRINTK("set features - xfer mode\n");
4367
464cf177
TH
4368 /* Some controllers and ATAPI devices show flaky interrupt
4369 * behavior after setting xfer mode. Use polling instead.
4370 */
3373efd8 4371 ata_tf_init(dev, &tf);
a0123703
TH
4372 tf.command = ATA_CMD_SET_FEATURES;
4373 tf.feature = SETFEATURES_XFER;
464cf177 4374 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4375 tf.protocol = ATA_PROT_NODATA;
4376 tf.nsect = dev->xfer_mode;
1da177e4 4377
2b789108 4378 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4379
4380 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4381 return err_mask;
4382}
9f45cbd3 4383/**
218f3d30 4384 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4385 * @dev: Device to which command will be sent
4386 * @enable: Whether to enable or disable the feature
218f3d30 4387 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4388 *
4389 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4390 * on port @ap with sector count
9f45cbd3
KCA
4391 *
4392 * LOCKING:
4393 * PCI/etc. bus probe sem.
4394 *
4395 * RETURNS:
4396 * 0 on success, AC_ERR_* mask otherwise.
4397 */
218f3d30
JG
4398static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4399 u8 feature)
9f45cbd3
KCA
4400{
4401 struct ata_taskfile tf;
4402 unsigned int err_mask;
4403
4404 /* set up set-features taskfile */
4405 DPRINTK("set features - SATA features\n");
4406
4407 ata_tf_init(dev, &tf);
4408 tf.command = ATA_CMD_SET_FEATURES;
4409 tf.feature = enable;
4410 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4411 tf.protocol = ATA_PROT_NODATA;
218f3d30 4412 tf.nsect = feature;
9f45cbd3 4413
2b789108 4414 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4415
83206a29
TH
4416 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4417 return err_mask;
1da177e4
LT
4418}
4419
8bf62ece
AL
4420/**
4421 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4422 * @dev: Device to which command will be sent
e2a7f77a
RD
4423 * @heads: Number of heads (taskfile parameter)
4424 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4425 *
4426 * LOCKING:
6aff8f1f
TH
4427 * Kernel thread context (may sleep)
4428 *
4429 * RETURNS:
4430 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4431 */
3373efd8
TH
4432static unsigned int ata_dev_init_params(struct ata_device *dev,
4433 u16 heads, u16 sectors)
8bf62ece 4434{
a0123703 4435 struct ata_taskfile tf;
6aff8f1f 4436 unsigned int err_mask;
8bf62ece
AL
4437
4438 /* Number of sectors per track 1-255. Number of heads 1-16 */
4439 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4440 return AC_ERR_INVALID;
8bf62ece
AL
4441
4442 /* set up init dev params taskfile */
4443 DPRINTK("init dev params \n");
4444
3373efd8 4445 ata_tf_init(dev, &tf);
a0123703
TH
4446 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4447 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4448 tf.protocol = ATA_PROT_NODATA;
4449 tf.nsect = sectors;
4450 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4451
2b789108 4452 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4453 /* A clean abort indicates an original or just out of spec drive
4454 and we should continue as we issue the setup based on the
4455 drive reported working geometry */
4456 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4457 err_mask = 0;
8bf62ece 4458
6aff8f1f
TH
4459 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4460 return err_mask;
8bf62ece
AL
4461}
4462
1da177e4 4463/**
0cba632b
JG
4464 * ata_sg_clean - Unmap DMA memory associated with command
4465 * @qc: Command containing DMA memory to be released
4466 *
4467 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4468 *
4469 * LOCKING:
cca3974e 4470 * spin_lock_irqsave(host lock)
1da177e4 4471 */
70e6ad0c 4472void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4473{
4474 struct ata_port *ap = qc->ap;
cedc9a47 4475 struct scatterlist *sg = qc->__sg;
1da177e4 4476 int dir = qc->dma_dir;
cedc9a47 4477 void *pad_buf = NULL;
1da177e4 4478
a4631474
TH
4479 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4480 WARN_ON(sg == NULL);
1da177e4
LT
4481
4482 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4483 WARN_ON(qc->n_elem > 1);
1da177e4 4484
2c13b7ce 4485 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4486
cedc9a47
JG
4487 /* if we padded the buffer out to 32-bit bound, and data
4488 * xfer direction is from-device, we must copy from the
4489 * pad buffer back into the supplied buffer
4490 */
4491 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4492 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4493
4494 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4495 if (qc->n_elem)
2f1f610b 4496 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47 4497 /* restore last sg */
87260216 4498 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
cedc9a47
JG
4499 if (pad_buf) {
4500 struct scatterlist *psg = &qc->pad_sgent;
45711f1a 4501 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4502 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4503 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4504 }
4505 } else {
2e242fa9 4506 if (qc->n_elem)
2f1f610b 4507 dma_unmap_single(ap->dev,
e1410f2d
JG
4508 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4509 dir);
cedc9a47
JG
4510 /* restore sg */
4511 sg->length += qc->pad_len;
4512 if (pad_buf)
4513 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4514 pad_buf, qc->pad_len);
4515 }
1da177e4
LT
4516
4517 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4518 qc->__sg = NULL;
1da177e4
LT
4519}
4520
4521/**
4522 * ata_fill_sg - Fill PCI IDE PRD table
4523 * @qc: Metadata associated with taskfile to be transferred
4524 *
780a87f7
JG
4525 * Fill PCI IDE PRD (scatter-gather) table with segments
4526 * associated with the current disk command.
4527 *
1da177e4 4528 * LOCKING:
cca3974e 4529 * spin_lock_irqsave(host lock)
1da177e4
LT
4530 *
4531 */
4532static void ata_fill_sg(struct ata_queued_cmd *qc)
4533{
1da177e4 4534 struct ata_port *ap = qc->ap;
cedc9a47
JG
4535 struct scatterlist *sg;
4536 unsigned int idx;
1da177e4 4537
a4631474 4538 WARN_ON(qc->__sg == NULL);
f131883e 4539 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4540
4541 idx = 0;
cedc9a47 4542 ata_for_each_sg(sg, qc) {
1da177e4
LT
4543 u32 addr, offset;
4544 u32 sg_len, len;
4545
4546 /* determine if physical DMA addr spans 64K boundary.
4547 * Note h/w doesn't support 64-bit, so we unconditionally
4548 * truncate dma_addr_t to u32.
4549 */
4550 addr = (u32) sg_dma_address(sg);
4551 sg_len = sg_dma_len(sg);
4552
4553 while (sg_len) {
4554 offset = addr & 0xffff;
4555 len = sg_len;
4556 if ((offset + sg_len) > 0x10000)
4557 len = 0x10000 - offset;
4558
4559 ap->prd[idx].addr = cpu_to_le32(addr);
4560 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4561 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4562
4563 idx++;
4564 sg_len -= len;
4565 addr += len;
4566 }
4567 }
4568
4569 if (idx)
4570 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4571}
b9a4197e 4572
d26fc955
AC
4573/**
4574 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4575 * @qc: Metadata associated with taskfile to be transferred
4576 *
4577 * Fill PCI IDE PRD (scatter-gather) table with segments
4578 * associated with the current disk command. Perform the fill
4579 * so that we avoid writing any length 64K records for
4580 * controllers that don't follow the spec.
4581 *
4582 * LOCKING:
4583 * spin_lock_irqsave(host lock)
4584 *
4585 */
4586static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4587{
4588 struct ata_port *ap = qc->ap;
4589 struct scatterlist *sg;
4590 unsigned int idx;
4591
4592 WARN_ON(qc->__sg == NULL);
4593 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4594
4595 idx = 0;
4596 ata_for_each_sg(sg, qc) {
4597 u32 addr, offset;
4598 u32 sg_len, len, blen;
4599
2dcb407e 4600 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4601 * Note h/w doesn't support 64-bit, so we unconditionally
4602 * truncate dma_addr_t to u32.
4603 */
4604 addr = (u32) sg_dma_address(sg);
4605 sg_len = sg_dma_len(sg);
4606
4607 while (sg_len) {
4608 offset = addr & 0xffff;
4609 len = sg_len;
4610 if ((offset + sg_len) > 0x10000)
4611 len = 0x10000 - offset;
4612
4613 blen = len & 0xffff;
4614 ap->prd[idx].addr = cpu_to_le32(addr);
4615 if (blen == 0) {
4616 /* Some PATA chipsets like the CS5530 can't
4617 cope with 0x0000 meaning 64K as the spec says */
4618 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4619 blen = 0x8000;
4620 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4621 }
4622 ap->prd[idx].flags_len = cpu_to_le32(blen);
4623 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4624
4625 idx++;
4626 sg_len -= len;
4627 addr += len;
4628 }
4629 }
4630
4631 if (idx)
4632 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4633}
4634
1da177e4
LT
4635/**
4636 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4637 * @qc: Metadata associated with taskfile to check
4638 *
780a87f7
JG
4639 * Allow low-level driver to filter ATA PACKET commands, returning
4640 * a status indicating whether or not it is OK to use DMA for the
4641 * supplied PACKET command.
4642 *
1da177e4 4643 * LOCKING:
cca3974e 4644 * spin_lock_irqsave(host lock)
0cba632b 4645 *
1da177e4
LT
4646 * RETURNS: 0 when ATAPI DMA can be used
4647 * nonzero otherwise
4648 */
4649int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4650{
4651 struct ata_port *ap = qc->ap;
b9a4197e
TH
4652
4653 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4654 * few ATAPI devices choke on such DMA requests.
4655 */
4656 if (unlikely(qc->nbytes & 15))
4657 return 1;
6f23a31d 4658
1da177e4 4659 if (ap->ops->check_atapi_dma)
b9a4197e 4660 return ap->ops->check_atapi_dma(qc);
1da177e4 4661
b9a4197e 4662 return 0;
1da177e4 4663}
b9a4197e 4664
140b5e59
TH
4665/**
4666 * atapi_qc_may_overflow - Check whether data transfer may overflow
4667 * @qc: ATA command in question
4668 *
4669 * ATAPI commands which transfer variable length data to host
4670 * might overflow due to application error or hardare bug. This
4671 * function checks whether overflow should be drained and ignored
4672 * for @qc.
4673 *
4674 * LOCKING:
4675 * None.
4676 *
4677 * RETURNS:
4678 * 1 if @qc may overflow; otherwise, 0.
4679 */
4680static int atapi_qc_may_overflow(struct ata_queued_cmd *qc)
4681{
4682 if (qc->tf.protocol != ATA_PROT_ATAPI &&
4683 qc->tf.protocol != ATA_PROT_ATAPI_DMA)
4684 return 0;
4685
4686 if (qc->tf.flags & ATA_TFLAG_WRITE)
4687 return 0;
4688
4689 switch (qc->cdb[0]) {
4690 case READ_10:
4691 case READ_12:
4692 case WRITE_10:
4693 case WRITE_12:
4694 case GPCMD_READ_CD:
4695 case GPCMD_READ_CD_MSF:
4696 return 0;
4697 }
4698
4699 return 1;
4700}
4701
31cc23b3
TH
4702/**
4703 * ata_std_qc_defer - Check whether a qc needs to be deferred
4704 * @qc: ATA command in question
4705 *
4706 * Non-NCQ commands cannot run with any other command, NCQ or
4707 * not. As upper layer only knows the queue depth, we are
4708 * responsible for maintaining exclusion. This function checks
4709 * whether a new command @qc can be issued.
4710 *
4711 * LOCKING:
4712 * spin_lock_irqsave(host lock)
4713 *
4714 * RETURNS:
4715 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4716 */
4717int ata_std_qc_defer(struct ata_queued_cmd *qc)
4718{
4719 struct ata_link *link = qc->dev->link;
4720
4721 if (qc->tf.protocol == ATA_PROT_NCQ) {
4722 if (!ata_tag_valid(link->active_tag))
4723 return 0;
4724 } else {
4725 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4726 return 0;
4727 }
4728
4729 return ATA_DEFER_LINK;
4730}
4731
1da177e4
LT
4732/**
4733 * ata_qc_prep - Prepare taskfile for submission
4734 * @qc: Metadata associated with taskfile to be prepared
4735 *
780a87f7
JG
4736 * Prepare ATA taskfile for submission.
4737 *
1da177e4 4738 * LOCKING:
cca3974e 4739 * spin_lock_irqsave(host lock)
1da177e4
LT
4740 */
4741void ata_qc_prep(struct ata_queued_cmd *qc)
4742{
4743 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4744 return;
4745
4746 ata_fill_sg(qc);
4747}
4748
d26fc955
AC
4749/**
4750 * ata_dumb_qc_prep - Prepare taskfile for submission
4751 * @qc: Metadata associated with taskfile to be prepared
4752 *
4753 * Prepare ATA taskfile for submission.
4754 *
4755 * LOCKING:
4756 * spin_lock_irqsave(host lock)
4757 */
4758void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4759{
4760 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4761 return;
4762
4763 ata_fill_sg_dumb(qc);
4764}
4765
e46834cd
BK
4766void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4767
0cba632b
JG
4768/**
4769 * ata_sg_init_one - Associate command with memory buffer
4770 * @qc: Command to be associated
4771 * @buf: Memory buffer
4772 * @buflen: Length of memory buffer, in bytes.
4773 *
4774 * Initialize the data-related elements of queued_cmd @qc
4775 * to point to a single memory buffer, @buf of byte length @buflen.
4776 *
4777 * LOCKING:
cca3974e 4778 * spin_lock_irqsave(host lock)
0cba632b
JG
4779 */
4780
1da177e4
LT
4781void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4782{
1da177e4
LT
4783 qc->flags |= ATA_QCFLAG_SINGLE;
4784
cedc9a47 4785 qc->__sg = &qc->sgent;
1da177e4 4786 qc->n_elem = 1;
cedc9a47 4787 qc->orig_n_elem = 1;
1da177e4 4788 qc->buf_virt = buf;
233277ca 4789 qc->nbytes = buflen;
87260216 4790 qc->cursg = qc->__sg;
1da177e4 4791
61c0596c 4792 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4793}
4794
0cba632b
JG
4795/**
4796 * ata_sg_init - Associate command with scatter-gather table.
4797 * @qc: Command to be associated
4798 * @sg: Scatter-gather table.
4799 * @n_elem: Number of elements in s/g table.
4800 *
4801 * Initialize the data-related elements of queued_cmd @qc
4802 * to point to a scatter-gather table @sg, containing @n_elem
4803 * elements.
4804 *
4805 * LOCKING:
cca3974e 4806 * spin_lock_irqsave(host lock)
0cba632b
JG
4807 */
4808
1da177e4
LT
4809void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4810 unsigned int n_elem)
4811{
4812 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4813 qc->__sg = sg;
1da177e4 4814 qc->n_elem = n_elem;
cedc9a47 4815 qc->orig_n_elem = n_elem;
87260216 4816 qc->cursg = qc->__sg;
1da177e4
LT
4817}
4818
4819/**
0cba632b
JG
4820 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4821 * @qc: Command with memory buffer to be mapped.
4822 *
4823 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4824 *
4825 * LOCKING:
cca3974e 4826 * spin_lock_irqsave(host lock)
1da177e4
LT
4827 *
4828 * RETURNS:
0cba632b 4829 * Zero on success, negative on error.
1da177e4
LT
4830 */
4831
4832static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4833{
4834 struct ata_port *ap = qc->ap;
4835 int dir = qc->dma_dir;
cedc9a47 4836 struct scatterlist *sg = qc->__sg;
1da177e4 4837 dma_addr_t dma_address;
2e242fa9 4838 int trim_sg = 0;
1da177e4 4839
cedc9a47
JG
4840 /* we must lengthen transfers to end on a 32-bit boundary */
4841 qc->pad_len = sg->length & 3;
4842 if (qc->pad_len) {
4843 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4844 struct scatterlist *psg = &qc->pad_sgent;
4845
a4631474 4846 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4847
4848 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4849
4850 if (qc->tf.flags & ATA_TFLAG_WRITE)
4851 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4852 qc->pad_len);
4853
4854 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4855 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4856 /* trim sg */
4857 sg->length -= qc->pad_len;
2e242fa9
TH
4858 if (sg->length == 0)
4859 trim_sg = 1;
cedc9a47
JG
4860
4861 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4862 sg->length, qc->pad_len);
4863 }
4864
2e242fa9
TH
4865 if (trim_sg) {
4866 qc->n_elem--;
e1410f2d
JG
4867 goto skip_map;
4868 }
4869
2f1f610b 4870 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4871 sg->length, dir);
537a95d9
TH
4872 if (dma_mapping_error(dma_address)) {
4873 /* restore sg */
4874 sg->length += qc->pad_len;
1da177e4 4875 return -1;
537a95d9 4876 }
1da177e4
LT
4877
4878 sg_dma_address(sg) = dma_address;
32529e01 4879 sg_dma_len(sg) = sg->length;
1da177e4 4880
2e242fa9 4881skip_map:
1da177e4
LT
4882 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4883 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4884
4885 return 0;
4886}
4887
4888/**
0cba632b
JG
4889 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4890 * @qc: Command with scatter-gather table to be mapped.
4891 *
4892 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4893 *
4894 * LOCKING:
cca3974e 4895 * spin_lock_irqsave(host lock)
1da177e4
LT
4896 *
4897 * RETURNS:
0cba632b 4898 * Zero on success, negative on error.
1da177e4
LT
4899 *
4900 */
4901
4902static int ata_sg_setup(struct ata_queued_cmd *qc)
4903{
4904 struct ata_port *ap = qc->ap;
cedc9a47 4905 struct scatterlist *sg = qc->__sg;
87260216 4906 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
e1410f2d 4907 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4908
44877b4e 4909 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4910 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4911
cedc9a47
JG
4912 /* we must lengthen transfers to end on a 32-bit boundary */
4913 qc->pad_len = lsg->length & 3;
4914 if (qc->pad_len) {
4915 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4916 struct scatterlist *psg = &qc->pad_sgent;
4917 unsigned int offset;
4918
a4631474 4919 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4920
4921 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4922
4923 /*
4924 * psg->page/offset are used to copy to-be-written
4925 * data in this function or read data in ata_sg_clean.
4926 */
4927 offset = lsg->offset + lsg->length - qc->pad_len;
acd054a5 4928 sg_init_table(psg, 1);
642f1490
JA
4929 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4930 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4931
4932 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4933 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4934 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4935 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4936 }
4937
4938 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4939 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4940 /* trim last sg */
4941 lsg->length -= qc->pad_len;
e1410f2d
JG
4942 if (lsg->length == 0)
4943 trim_sg = 1;
cedc9a47
JG
4944
4945 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4946 qc->n_elem - 1, lsg->length, qc->pad_len);
4947 }
4948
e1410f2d
JG
4949 pre_n_elem = qc->n_elem;
4950 if (trim_sg && pre_n_elem)
4951 pre_n_elem--;
4952
4953 if (!pre_n_elem) {
4954 n_elem = 0;
4955 goto skip_map;
4956 }
4957
1da177e4 4958 dir = qc->dma_dir;
2f1f610b 4959 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4960 if (n_elem < 1) {
4961 /* restore last sg */
4962 lsg->length += qc->pad_len;
1da177e4 4963 return -1;
537a95d9 4964 }
1da177e4
LT
4965
4966 DPRINTK("%d sg elements mapped\n", n_elem);
4967
e1410f2d 4968skip_map:
1da177e4
LT
4969 qc->n_elem = n_elem;
4970
4971 return 0;
4972}
4973
0baab86b 4974/**
c893a3ae 4975 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4976 * @buf: Buffer to swap
4977 * @buf_words: Number of 16-bit words in buffer.
4978 *
4979 * Swap halves of 16-bit words if needed to convert from
4980 * little-endian byte order to native cpu byte order, or
4981 * vice-versa.
4982 *
4983 * LOCKING:
6f0ef4fa 4984 * Inherited from caller.
0baab86b 4985 */
1da177e4
LT
4986void swap_buf_le16(u16 *buf, unsigned int buf_words)
4987{
4988#ifdef __BIG_ENDIAN
4989 unsigned int i;
4990
4991 for (i = 0; i < buf_words; i++)
4992 buf[i] = le16_to_cpu(buf[i]);
4993#endif /* __BIG_ENDIAN */
4994}
4995
6ae4cfb5 4996/**
0d5ff566 4997 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4998 * @adev: device to target
6ae4cfb5
AL
4999 * @buf: data buffer
5000 * @buflen: buffer length
344babaa 5001 * @write_data: read/write
6ae4cfb5
AL
5002 *
5003 * Transfer data from/to the device data register by PIO.
5004 *
5005 * LOCKING:
5006 * Inherited from caller.
6ae4cfb5 5007 */
0d5ff566
TH
5008void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
5009 unsigned int buflen, int write_data)
1da177e4 5010{
9af5c9c9 5011 struct ata_port *ap = adev->link->ap;
6ae4cfb5 5012 unsigned int words = buflen >> 1;
1da177e4 5013
6ae4cfb5 5014 /* Transfer multiple of 2 bytes */
1da177e4 5015 if (write_data)
0d5ff566 5016 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 5017 else
0d5ff566 5018 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
5019
5020 /* Transfer trailing 1 byte, if any. */
5021 if (unlikely(buflen & 0x01)) {
5022 u16 align_buf[1] = { 0 };
5023 unsigned char *trailing_buf = buf + buflen - 1;
5024
5025 if (write_data) {
5026 memcpy(align_buf, trailing_buf, 1);
0d5ff566 5027 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 5028 } else {
0d5ff566 5029 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
5030 memcpy(trailing_buf, align_buf, 1);
5031 }
5032 }
1da177e4
LT
5033}
5034
75e99585 5035/**
0d5ff566 5036 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
5037 * @adev: device to target
5038 * @buf: data buffer
5039 * @buflen: buffer length
5040 * @write_data: read/write
5041 *
88574551 5042 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
5043 * transfer with interrupts disabled.
5044 *
5045 * LOCKING:
5046 * Inherited from caller.
5047 */
0d5ff566
TH
5048void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5049 unsigned int buflen, int write_data)
75e99585
AC
5050{
5051 unsigned long flags;
5052 local_irq_save(flags);
0d5ff566 5053 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
5054 local_irq_restore(flags);
5055}
5056
5057
6ae4cfb5 5058/**
5a5dbd18 5059 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
5060 * @qc: Command on going
5061 *
5a5dbd18 5062 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
5063 *
5064 * LOCKING:
5065 * Inherited from caller.
5066 */
5067
1da177e4
LT
5068static void ata_pio_sector(struct ata_queued_cmd *qc)
5069{
5070 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
5071 struct ata_port *ap = qc->ap;
5072 struct page *page;
5073 unsigned int offset;
5074 unsigned char *buf;
5075
5a5dbd18 5076 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 5077 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 5078
45711f1a 5079 page = sg_page(qc->cursg);
87260216 5080 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
5081
5082 /* get the current page and offset */
5083 page = nth_page(page, (offset >> PAGE_SHIFT));
5084 offset %= PAGE_SIZE;
5085
1da177e4
LT
5086 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5087
91b8b313
AL
5088 if (PageHighMem(page)) {
5089 unsigned long flags;
5090
a6b2c5d4 5091 /* FIXME: use a bounce buffer */
91b8b313
AL
5092 local_irq_save(flags);
5093 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5094
91b8b313 5095 /* do the actual data transfer */
5a5dbd18 5096 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 5097
91b8b313
AL
5098 kunmap_atomic(buf, KM_IRQ0);
5099 local_irq_restore(flags);
5100 } else {
5101 buf = page_address(page);
5a5dbd18 5102 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 5103 }
1da177e4 5104
5a5dbd18
ML
5105 qc->curbytes += qc->sect_size;
5106 qc->cursg_ofs += qc->sect_size;
1da177e4 5107
87260216
JA
5108 if (qc->cursg_ofs == qc->cursg->length) {
5109 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5110 qc->cursg_ofs = 0;
5111 }
1da177e4 5112}
1da177e4 5113
07f6f7d0 5114/**
5a5dbd18 5115 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
5116 * @qc: Command on going
5117 *
5a5dbd18 5118 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
5119 * ATA device for the DRQ request.
5120 *
5121 * LOCKING:
5122 * Inherited from caller.
5123 */
1da177e4 5124
07f6f7d0
AL
5125static void ata_pio_sectors(struct ata_queued_cmd *qc)
5126{
5127 if (is_multi_taskfile(&qc->tf)) {
5128 /* READ/WRITE MULTIPLE */
5129 unsigned int nsect;
5130
587005de 5131 WARN_ON(qc->dev->multi_count == 0);
1da177e4 5132
5a5dbd18 5133 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 5134 qc->dev->multi_count);
07f6f7d0
AL
5135 while (nsect--)
5136 ata_pio_sector(qc);
5137 } else
5138 ata_pio_sector(qc);
4cc980b3
AL
5139
5140 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
5141}
5142
c71c1857
AL
5143/**
5144 * atapi_send_cdb - Write CDB bytes to hardware
5145 * @ap: Port to which ATAPI device is attached.
5146 * @qc: Taskfile currently active
5147 *
5148 * When device has indicated its readiness to accept
5149 * a CDB, this function is called. Send the CDB.
5150 *
5151 * LOCKING:
5152 * caller.
5153 */
5154
5155static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5156{
5157 /* send SCSI cdb */
5158 DPRINTK("send cdb\n");
db024d53 5159 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 5160
a6b2c5d4 5161 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
5162 ata_altstatus(ap); /* flush */
5163
5164 switch (qc->tf.protocol) {
5165 case ATA_PROT_ATAPI:
5166 ap->hsm_task_state = HSM_ST;
5167 break;
5168 case ATA_PROT_ATAPI_NODATA:
5169 ap->hsm_task_state = HSM_ST_LAST;
5170 break;
5171 case ATA_PROT_ATAPI_DMA:
5172 ap->hsm_task_state = HSM_ST_LAST;
5173 /* initiate bmdma */
5174 ap->ops->bmdma_start(qc);
5175 break;
5176 }
1da177e4
LT
5177}
5178
6ae4cfb5
AL
5179/**
5180 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5181 * @qc: Command on going
5182 * @bytes: number of bytes
5183 *
5184 * Transfer Transfer data from/to the ATAPI device.
5185 *
5186 * LOCKING:
5187 * Inherited from caller.
5188 *
5189 */
140b5e59 5190static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
1da177e4
LT
5191{
5192 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4 5193 struct ata_port *ap = qc->ap;
140b5e59
TH
5194 struct ata_eh_info *ehi = &qc->dev->link->eh_info;
5195 struct scatterlist *sg;
1da177e4
LT
5196 struct page *page;
5197 unsigned char *buf;
5198 unsigned int offset, count;
1da177e4
LT
5199
5200next_sg:
140b5e59
TH
5201 sg = qc->cursg;
5202 if (unlikely(!sg)) {
7fb6ec28 5203 /*
563a6e1f
AL
5204 * The end of qc->sg is reached and the device expects
5205 * more data to transfer. In order not to overrun qc->sg
5206 * and fulfill length specified in the byte count register,
5207 * - for read case, discard trailing data from the device
5208 * - for write case, padding zero data to the device
5209 */
5210 u16 pad_buf[1] = { 0 };
563a6e1f
AL
5211 unsigned int i;
5212
140b5e59
TH
5213 if (bytes > qc->curbytes - qc->nbytes + ATAPI_MAX_DRAIN) {
5214 ata_ehi_push_desc(ehi, "too much trailing data "
5215 "buf=%u cur=%u bytes=%u",
5216 qc->nbytes, qc->curbytes, bytes);
5217 return -1;
5218 }
5219
5220 /* overflow is exptected for misc ATAPI commands */
5221 if (bytes && !atapi_qc_may_overflow(qc))
5222 ata_dev_printk(qc->dev, KERN_WARNING, "ATAPI %u bytes "
5223 "trailing data (cdb=%02x nbytes=%u)\n",
5224 bytes, qc->cdb[0], qc->nbytes);
563a6e1f 5225
140b5e59 5226 for (i = 0; i < (bytes + 1) / 2; i++)
2dcb407e 5227 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5228
140b5e59 5229 qc->curbytes += bytes;
563a6e1f 5230
140b5e59
TH
5231 return 0;
5232 }
1da177e4 5233
45711f1a 5234 page = sg_page(sg);
1da177e4
LT
5235 offset = sg->offset + qc->cursg_ofs;
5236
5237 /* get the current page and offset */
5238 page = nth_page(page, (offset >> PAGE_SHIFT));
5239 offset %= PAGE_SIZE;
5240
6952df03 5241 /* don't overrun current sg */
32529e01 5242 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5243
5244 /* don't cross page boundaries */
5245 count = min(count, (unsigned int)PAGE_SIZE - offset);
5246
7282aa4b
AL
5247 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5248
91b8b313
AL
5249 if (PageHighMem(page)) {
5250 unsigned long flags;
5251
a6b2c5d4 5252 /* FIXME: use bounce buffer */
91b8b313
AL
5253 local_irq_save(flags);
5254 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5255
91b8b313 5256 /* do the actual data transfer */
a6b2c5d4 5257 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5258
91b8b313
AL
5259 kunmap_atomic(buf, KM_IRQ0);
5260 local_irq_restore(flags);
5261 } else {
5262 buf = page_address(page);
a6b2c5d4 5263 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5264 }
1da177e4
LT
5265
5266 bytes -= count;
140b5e59
TH
5267 if ((count & 1) && bytes)
5268 bytes--;
1da177e4
LT
5269 qc->curbytes += count;
5270 qc->cursg_ofs += count;
5271
32529e01 5272 if (qc->cursg_ofs == sg->length) {
87260216 5273 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5274 qc->cursg_ofs = 0;
5275 }
5276
563a6e1f 5277 if (bytes)
1da177e4 5278 goto next_sg;
140b5e59
TH
5279
5280 return 0;
1da177e4
LT
5281}
5282
6ae4cfb5
AL
5283/**
5284 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5285 * @qc: Command on going
5286 *
5287 * Transfer Transfer data from/to the ATAPI device.
5288 *
5289 * LOCKING:
5290 * Inherited from caller.
6ae4cfb5
AL
5291 */
5292
1da177e4
LT
5293static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5294{
5295 struct ata_port *ap = qc->ap;
5296 struct ata_device *dev = qc->dev;
5297 unsigned int ireason, bc_lo, bc_hi, bytes;
5298 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5299
eec4c3f3
AL
5300 /* Abuse qc->result_tf for temp storage of intermediate TF
5301 * here to save some kernel stack usage.
5302 * For normal completion, qc->result_tf is not relevant. For
5303 * error, qc->result_tf is later overwritten by ata_qc_complete().
5304 * So, the correctness of qc->result_tf is not affected.
5305 */
5306 ap->ops->tf_read(ap, &qc->result_tf);
5307 ireason = qc->result_tf.nsect;
5308 bc_lo = qc->result_tf.lbam;
5309 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5310 bytes = (bc_hi << 8) | bc_lo;
5311
5312 /* shall be cleared to zero, indicating xfer of data */
5313 if (ireason & (1 << 0))
5314 goto err_out;
5315
5316 /* make sure transfer direction matches expected */
5317 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5318 if (do_write != i_write)
5319 goto err_out;
5320
44877b4e 5321 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5322
140b5e59
TH
5323 if (__atapi_pio_bytes(qc, bytes))
5324 goto err_out;
4cc980b3 5325 ata_altstatus(ap); /* flush */
1da177e4
LT
5326
5327 return;
5328
5329err_out:
f15a1daf 5330 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5331 qc->err_mask |= AC_ERR_HSM;
14be71f4 5332 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5333}
5334
5335/**
c234fb00
AL
5336 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5337 * @ap: the target ata_port
5338 * @qc: qc on going
1da177e4 5339 *
c234fb00
AL
5340 * RETURNS:
5341 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5342 */
c234fb00
AL
5343
5344static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5345{
c234fb00
AL
5346 if (qc->tf.flags & ATA_TFLAG_POLLING)
5347 return 1;
1da177e4 5348
c234fb00
AL
5349 if (ap->hsm_task_state == HSM_ST_FIRST) {
5350 if (qc->tf.protocol == ATA_PROT_PIO &&
5351 (qc->tf.flags & ATA_TFLAG_WRITE))
5352 return 1;
1da177e4 5353
c234fb00
AL
5354 if (is_atapi_taskfile(&qc->tf) &&
5355 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5356 return 1;
fe79e683
AL
5357 }
5358
c234fb00
AL
5359 return 0;
5360}
1da177e4 5361
c17ea20d
TH
5362/**
5363 * ata_hsm_qc_complete - finish a qc running on standard HSM
5364 * @qc: Command to complete
5365 * @in_wq: 1 if called from workqueue, 0 otherwise
5366 *
5367 * Finish @qc which is running on standard HSM.
5368 *
5369 * LOCKING:
cca3974e 5370 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5371 * Otherwise, none on entry and grabs host lock.
5372 */
5373static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5374{
5375 struct ata_port *ap = qc->ap;
5376 unsigned long flags;
5377
5378 if (ap->ops->error_handler) {
5379 if (in_wq) {
ba6a1308 5380 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5381
cca3974e
JG
5382 /* EH might have kicked in while host lock is
5383 * released.
c17ea20d
TH
5384 */
5385 qc = ata_qc_from_tag(ap, qc->tag);
5386 if (qc) {
5387 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5388 ap->ops->irq_on(ap);
c17ea20d
TH
5389 ata_qc_complete(qc);
5390 } else
5391 ata_port_freeze(ap);
5392 }
5393
ba6a1308 5394 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5395 } else {
5396 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5397 ata_qc_complete(qc);
5398 else
5399 ata_port_freeze(ap);
5400 }
5401 } else {
5402 if (in_wq) {
ba6a1308 5403 spin_lock_irqsave(ap->lock, flags);
83625006 5404 ap->ops->irq_on(ap);
c17ea20d 5405 ata_qc_complete(qc);
ba6a1308 5406 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5407 } else
5408 ata_qc_complete(qc);
5409 }
5410}
5411
bb5cb290
AL
5412/**
5413 * ata_hsm_move - move the HSM to the next state.
5414 * @ap: the target ata_port
5415 * @qc: qc on going
5416 * @status: current device status
5417 * @in_wq: 1 if called from workqueue, 0 otherwise
5418 *
5419 * RETURNS:
5420 * 1 when poll next status needed, 0 otherwise.
5421 */
9a1004d0
TH
5422int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5423 u8 status, int in_wq)
e2cec771 5424{
bb5cb290
AL
5425 unsigned long flags = 0;
5426 int poll_next;
5427
6912ccd5
AL
5428 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5429
bb5cb290
AL
5430 /* Make sure ata_qc_issue_prot() does not throw things
5431 * like DMA polling into the workqueue. Notice that
5432 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5433 */
c234fb00 5434 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5435
e2cec771 5436fsm_start:
999bb6f4 5437 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5438 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5439
e2cec771
AL
5440 switch (ap->hsm_task_state) {
5441 case HSM_ST_FIRST:
bb5cb290
AL
5442 /* Send first data block or PACKET CDB */
5443
5444 /* If polling, we will stay in the work queue after
5445 * sending the data. Otherwise, interrupt handler
5446 * takes over after sending the data.
5447 */
5448 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5449
e2cec771 5450 /* check device status */
3655d1d3
AL
5451 if (unlikely((status & ATA_DRQ) == 0)) {
5452 /* handle BSY=0, DRQ=0 as error */
5453 if (likely(status & (ATA_ERR | ATA_DF)))
5454 /* device stops HSM for abort/error */
5455 qc->err_mask |= AC_ERR_DEV;
5456 else
5457 /* HSM violation. Let EH handle this */
5458 qc->err_mask |= AC_ERR_HSM;
5459
14be71f4 5460 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5461 goto fsm_start;
1da177e4
LT
5462 }
5463
71601958
AL
5464 /* Device should not ask for data transfer (DRQ=1)
5465 * when it finds something wrong.
eee6c32f
AL
5466 * We ignore DRQ here and stop the HSM by
5467 * changing hsm_task_state to HSM_ST_ERR and
5468 * let the EH abort the command or reset the device.
71601958
AL
5469 */
5470 if (unlikely(status & (ATA_ERR | ATA_DF))) {
2d3b8eea
AL
5471 /* Some ATAPI tape drives forget to clear the ERR bit
5472 * when doing the next command (mostly request sense).
5473 * We ignore ERR here to workaround and proceed sending
5474 * the CDB.
5475 */
5476 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5477 ata_port_printk(ap, KERN_WARNING,
5478 "DRQ=1 with device error, "
5479 "dev_stat 0x%X\n", status);
5480 qc->err_mask |= AC_ERR_HSM;
5481 ap->hsm_task_state = HSM_ST_ERR;
5482 goto fsm_start;
5483 }
71601958 5484 }
1da177e4 5485
bb5cb290
AL
5486 /* Send the CDB (atapi) or the first data block (ata pio out).
5487 * During the state transition, interrupt handler shouldn't
5488 * be invoked before the data transfer is complete and
5489 * hsm_task_state is changed. Hence, the following locking.
5490 */
5491 if (in_wq)
ba6a1308 5492 spin_lock_irqsave(ap->lock, flags);
1da177e4 5493
bb5cb290
AL
5494 if (qc->tf.protocol == ATA_PROT_PIO) {
5495 /* PIO data out protocol.
5496 * send first data block.
5497 */
0565c26d 5498
bb5cb290
AL
5499 /* ata_pio_sectors() might change the state
5500 * to HSM_ST_LAST. so, the state is changed here
5501 * before ata_pio_sectors().
5502 */
5503 ap->hsm_task_state = HSM_ST;
5504 ata_pio_sectors(qc);
bb5cb290
AL
5505 } else
5506 /* send CDB */
5507 atapi_send_cdb(ap, qc);
5508
5509 if (in_wq)
ba6a1308 5510 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5511
5512 /* if polling, ata_pio_task() handles the rest.
5513 * otherwise, interrupt handler takes over from here.
5514 */
e2cec771 5515 break;
1c848984 5516
e2cec771
AL
5517 case HSM_ST:
5518 /* complete command or read/write the data register */
5519 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5520 /* ATAPI PIO protocol */
5521 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5522 /* No more data to transfer or device error.
5523 * Device error will be tagged in HSM_ST_LAST.
5524 */
e2cec771
AL
5525 ap->hsm_task_state = HSM_ST_LAST;
5526 goto fsm_start;
5527 }
1da177e4 5528
71601958
AL
5529 /* Device should not ask for data transfer (DRQ=1)
5530 * when it finds something wrong.
eee6c32f
AL
5531 * We ignore DRQ here and stop the HSM by
5532 * changing hsm_task_state to HSM_ST_ERR and
5533 * let the EH abort the command or reset the device.
71601958
AL
5534 */
5535 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5536 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5537 "device error, dev_stat 0x%X\n",
5538 status);
3655d1d3 5539 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5540 ap->hsm_task_state = HSM_ST_ERR;
5541 goto fsm_start;
71601958 5542 }
1da177e4 5543
e2cec771 5544 atapi_pio_bytes(qc);
7fb6ec28 5545
e2cec771
AL
5546 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5547 /* bad ireason reported by device */
5548 goto fsm_start;
1da177e4 5549
e2cec771
AL
5550 } else {
5551 /* ATA PIO protocol */
5552 if (unlikely((status & ATA_DRQ) == 0)) {
5553 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5554 if (likely(status & (ATA_ERR | ATA_DF)))
5555 /* device stops HSM for abort/error */
5556 qc->err_mask |= AC_ERR_DEV;
5557 else
55a8e2c8
TH
5558 /* HSM violation. Let EH handle this.
5559 * Phantom devices also trigger this
5560 * condition. Mark hint.
5561 */
5562 qc->err_mask |= AC_ERR_HSM |
5563 AC_ERR_NODEV_HINT;
3655d1d3 5564
e2cec771
AL
5565 ap->hsm_task_state = HSM_ST_ERR;
5566 goto fsm_start;
5567 }
1da177e4 5568
eee6c32f
AL
5569 /* For PIO reads, some devices may ask for
5570 * data transfer (DRQ=1) alone with ERR=1.
5571 * We respect DRQ here and transfer one
5572 * block of junk data before changing the
5573 * hsm_task_state to HSM_ST_ERR.
5574 *
5575 * For PIO writes, ERR=1 DRQ=1 doesn't make
5576 * sense since the data block has been
5577 * transferred to the device.
71601958
AL
5578 */
5579 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5580 /* data might be corrputed */
5581 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5582
5583 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5584 ata_pio_sectors(qc);
eee6c32f
AL
5585 status = ata_wait_idle(ap);
5586 }
5587
3655d1d3
AL
5588 if (status & (ATA_BUSY | ATA_DRQ))
5589 qc->err_mask |= AC_ERR_HSM;
5590
eee6c32f
AL
5591 /* ata_pio_sectors() might change the
5592 * state to HSM_ST_LAST. so, the state
5593 * is changed after ata_pio_sectors().
5594 */
5595 ap->hsm_task_state = HSM_ST_ERR;
5596 goto fsm_start;
71601958
AL
5597 }
5598
e2cec771
AL
5599 ata_pio_sectors(qc);
5600
5601 if (ap->hsm_task_state == HSM_ST_LAST &&
5602 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5603 /* all data read */
52a32205 5604 status = ata_wait_idle(ap);
e2cec771
AL
5605 goto fsm_start;
5606 }
5607 }
5608
bb5cb290 5609 poll_next = 1;
1da177e4
LT
5610 break;
5611
14be71f4 5612 case HSM_ST_LAST:
6912ccd5
AL
5613 if (unlikely(!ata_ok(status))) {
5614 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5615 ap->hsm_task_state = HSM_ST_ERR;
5616 goto fsm_start;
5617 }
5618
5619 /* no more data to transfer */
4332a771 5620 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5621 ap->print_id, qc->dev->devno, status);
e2cec771 5622
6912ccd5
AL
5623 WARN_ON(qc->err_mask);
5624
e2cec771 5625 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5626
e2cec771 5627 /* complete taskfile transaction */
c17ea20d 5628 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5629
5630 poll_next = 0;
1da177e4
LT
5631 break;
5632
14be71f4 5633 case HSM_ST_ERR:
e2cec771
AL
5634 /* make sure qc->err_mask is available to
5635 * know what's wrong and recover
5636 */
5637 WARN_ON(qc->err_mask == 0);
5638
5639 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5640
999bb6f4 5641 /* complete taskfile transaction */
c17ea20d 5642 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5643
5644 poll_next = 0;
e2cec771
AL
5645 break;
5646 default:
bb5cb290 5647 poll_next = 0;
6912ccd5 5648 BUG();
1da177e4
LT
5649 }
5650
bb5cb290 5651 return poll_next;
1da177e4
LT
5652}
5653
65f27f38 5654static void ata_pio_task(struct work_struct *work)
8061f5f0 5655{
65f27f38
DH
5656 struct ata_port *ap =
5657 container_of(work, struct ata_port, port_task.work);
5658 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5659 u8 status;
a1af3734 5660 int poll_next;
8061f5f0 5661
7fb6ec28 5662fsm_start:
a1af3734 5663 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5664
a1af3734
AL
5665 /*
5666 * This is purely heuristic. This is a fast path.
5667 * Sometimes when we enter, BSY will be cleared in
5668 * a chk-status or two. If not, the drive is probably seeking
5669 * or something. Snooze for a couple msecs, then
5670 * chk-status again. If still busy, queue delayed work.
5671 */
5672 status = ata_busy_wait(ap, ATA_BUSY, 5);
5673 if (status & ATA_BUSY) {
5674 msleep(2);
5675 status = ata_busy_wait(ap, ATA_BUSY, 10);
5676 if (status & ATA_BUSY) {
31ce6dae 5677 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5678 return;
5679 }
8061f5f0
TH
5680 }
5681
a1af3734
AL
5682 /* move the HSM */
5683 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5684
a1af3734
AL
5685 /* another command or interrupt handler
5686 * may be running at this point.
5687 */
5688 if (poll_next)
7fb6ec28 5689 goto fsm_start;
8061f5f0
TH
5690}
5691
1da177e4
LT
5692/**
5693 * ata_qc_new - Request an available ATA command, for queueing
5694 * @ap: Port associated with device @dev
5695 * @dev: Device from whom we request an available command structure
5696 *
5697 * LOCKING:
0cba632b 5698 * None.
1da177e4
LT
5699 */
5700
5701static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5702{
5703 struct ata_queued_cmd *qc = NULL;
5704 unsigned int i;
5705
e3180499 5706 /* no command while frozen */
b51e9e5d 5707 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5708 return NULL;
5709
2ab7db1f
TH
5710 /* the last tag is reserved for internal command. */
5711 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5712 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5713 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5714 break;
5715 }
5716
5717 if (qc)
5718 qc->tag = i;
5719
5720 return qc;
5721}
5722
5723/**
5724 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5725 * @dev: Device from whom we request an available command structure
5726 *
5727 * LOCKING:
0cba632b 5728 * None.
1da177e4
LT
5729 */
5730
3373efd8 5731struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5732{
9af5c9c9 5733 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5734 struct ata_queued_cmd *qc;
5735
5736 qc = ata_qc_new(ap);
5737 if (qc) {
1da177e4
LT
5738 qc->scsicmd = NULL;
5739 qc->ap = ap;
5740 qc->dev = dev;
1da177e4 5741
2c13b7ce 5742 ata_qc_reinit(qc);
1da177e4
LT
5743 }
5744
5745 return qc;
5746}
5747
1da177e4
LT
5748/**
5749 * ata_qc_free - free unused ata_queued_cmd
5750 * @qc: Command to complete
5751 *
5752 * Designed to free unused ata_queued_cmd object
5753 * in case something prevents using it.
5754 *
5755 * LOCKING:
cca3974e 5756 * spin_lock_irqsave(host lock)
1da177e4
LT
5757 */
5758void ata_qc_free(struct ata_queued_cmd *qc)
5759{
4ba946e9
TH
5760 struct ata_port *ap = qc->ap;
5761 unsigned int tag;
5762
a4631474 5763 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5764
4ba946e9
TH
5765 qc->flags = 0;
5766 tag = qc->tag;
5767 if (likely(ata_tag_valid(tag))) {
4ba946e9 5768 qc->tag = ATA_TAG_POISON;
6cec4a39 5769 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5770 }
1da177e4
LT
5771}
5772
76014427 5773void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5774{
dedaf2b0 5775 struct ata_port *ap = qc->ap;
9af5c9c9 5776 struct ata_link *link = qc->dev->link;
dedaf2b0 5777
a4631474
TH
5778 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5779 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5780
5781 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5782 ata_sg_clean(qc);
5783
7401abf2 5784 /* command should be marked inactive atomically with qc completion */
da917d69 5785 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5786 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5787 if (!link->sactive)
5788 ap->nr_active_links--;
5789 } else {
9af5c9c9 5790 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5791 ap->nr_active_links--;
5792 }
5793
5794 /* clear exclusive status */
5795 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5796 ap->excl_link == link))
5797 ap->excl_link = NULL;
7401abf2 5798
3f3791d3
AL
5799 /* atapi: mark qc as inactive to prevent the interrupt handler
5800 * from completing the command twice later, before the error handler
5801 * is called. (when rc != 0 and atapi request sense is needed)
5802 */
5803 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5804 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5805
1da177e4 5806 /* call completion callback */
77853bf2 5807 qc->complete_fn(qc);
1da177e4
LT
5808}
5809
39599a53
TH
5810static void fill_result_tf(struct ata_queued_cmd *qc)
5811{
5812 struct ata_port *ap = qc->ap;
5813
39599a53 5814 qc->result_tf.flags = qc->tf.flags;
4742d54f 5815 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5816}
5817
f686bcb8
TH
5818/**
5819 * ata_qc_complete - Complete an active ATA command
5820 * @qc: Command to complete
5821 * @err_mask: ATA Status register contents
5822 *
5823 * Indicate to the mid and upper layers that an ATA
5824 * command has completed, with either an ok or not-ok status.
5825 *
5826 * LOCKING:
cca3974e 5827 * spin_lock_irqsave(host lock)
f686bcb8
TH
5828 */
5829void ata_qc_complete(struct ata_queued_cmd *qc)
5830{
5831 struct ata_port *ap = qc->ap;
5832
5833 /* XXX: New EH and old EH use different mechanisms to
5834 * synchronize EH with regular execution path.
5835 *
5836 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5837 * Normal execution path is responsible for not accessing a
5838 * failed qc. libata core enforces the rule by returning NULL
5839 * from ata_qc_from_tag() for failed qcs.
5840 *
5841 * Old EH depends on ata_qc_complete() nullifying completion
5842 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5843 * not synchronize with interrupt handler. Only PIO task is
5844 * taken care of.
5845 */
5846 if (ap->ops->error_handler) {
4dbfa39b
TH
5847 struct ata_device *dev = qc->dev;
5848 struct ata_eh_info *ehi = &dev->link->eh_info;
5849
b51e9e5d 5850 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5851
5852 if (unlikely(qc->err_mask))
5853 qc->flags |= ATA_QCFLAG_FAILED;
5854
5855 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5856 if (!ata_tag_internal(qc->tag)) {
5857 /* always fill result TF for failed qc */
39599a53 5858 fill_result_tf(qc);
f686bcb8
TH
5859 ata_qc_schedule_eh(qc);
5860 return;
5861 }
5862 }
5863
5864 /* read result TF if requested */
5865 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5866 fill_result_tf(qc);
f686bcb8 5867
4dbfa39b
TH
5868 /* Some commands need post-processing after successful
5869 * completion.
5870 */
5871 switch (qc->tf.command) {
5872 case ATA_CMD_SET_FEATURES:
5873 if (qc->tf.feature != SETFEATURES_WC_ON &&
5874 qc->tf.feature != SETFEATURES_WC_OFF)
5875 break;
5876 /* fall through */
5877 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5878 case ATA_CMD_SET_MULTI: /* multi_count changed */
5879 /* revalidate device */
5880 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5881 ata_port_schedule_eh(ap);
5882 break;
054a5fba
TH
5883
5884 case ATA_CMD_SLEEP:
5885 dev->flags |= ATA_DFLAG_SLEEPING;
5886 break;
4dbfa39b
TH
5887 }
5888
f686bcb8
TH
5889 __ata_qc_complete(qc);
5890 } else {
5891 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5892 return;
5893
5894 /* read result TF if failed or requested */
5895 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5896 fill_result_tf(qc);
f686bcb8
TH
5897
5898 __ata_qc_complete(qc);
5899 }
5900}
5901
dedaf2b0
TH
5902/**
5903 * ata_qc_complete_multiple - Complete multiple qcs successfully
5904 * @ap: port in question
5905 * @qc_active: new qc_active mask
5906 * @finish_qc: LLDD callback invoked before completing a qc
5907 *
5908 * Complete in-flight commands. This functions is meant to be
5909 * called from low-level driver's interrupt routine to complete
5910 * requests normally. ap->qc_active and @qc_active is compared
5911 * and commands are completed accordingly.
5912 *
5913 * LOCKING:
cca3974e 5914 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5915 *
5916 * RETURNS:
5917 * Number of completed commands on success, -errno otherwise.
5918 */
5919int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5920 void (*finish_qc)(struct ata_queued_cmd *))
5921{
5922 int nr_done = 0;
5923 u32 done_mask;
5924 int i;
5925
5926 done_mask = ap->qc_active ^ qc_active;
5927
5928 if (unlikely(done_mask & qc_active)) {
5929 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5930 "(%08x->%08x)\n", ap->qc_active, qc_active);
5931 return -EINVAL;
5932 }
5933
5934 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5935 struct ata_queued_cmd *qc;
5936
5937 if (!(done_mask & (1 << i)))
5938 continue;
5939
5940 if ((qc = ata_qc_from_tag(ap, i))) {
5941 if (finish_qc)
5942 finish_qc(qc);
5943 ata_qc_complete(qc);
5944 nr_done++;
5945 }
5946 }
5947
5948 return nr_done;
5949}
5950
1da177e4
LT
5951static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5952{
5953 struct ata_port *ap = qc->ap;
5954
5955 switch (qc->tf.protocol) {
3dc1d881 5956 case ATA_PROT_NCQ:
1da177e4
LT
5957 case ATA_PROT_DMA:
5958 case ATA_PROT_ATAPI_DMA:
5959 return 1;
5960
5961 case ATA_PROT_ATAPI:
5962 case ATA_PROT_PIO:
1da177e4
LT
5963 if (ap->flags & ATA_FLAG_PIO_DMA)
5964 return 1;
5965
5966 /* fall through */
5967
5968 default:
5969 return 0;
5970 }
5971
5972 /* never reached */
5973}
5974
5975/**
5976 * ata_qc_issue - issue taskfile to device
5977 * @qc: command to issue to device
5978 *
5979 * Prepare an ATA command to submission to device.
5980 * This includes mapping the data into a DMA-able
5981 * area, filling in the S/G table, and finally
5982 * writing the taskfile to hardware, starting the command.
5983 *
5984 * LOCKING:
cca3974e 5985 * spin_lock_irqsave(host lock)
1da177e4 5986 */
8e0e694a 5987void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5988{
5989 struct ata_port *ap = qc->ap;
9af5c9c9 5990 struct ata_link *link = qc->dev->link;
1da177e4 5991
dedaf2b0
TH
5992 /* Make sure only one non-NCQ command is outstanding. The
5993 * check is skipped for old EH because it reuses active qc to
5994 * request ATAPI sense.
5995 */
9af5c9c9 5996 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5997
5998 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5999 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
6000
6001 if (!link->sactive)
6002 ap->nr_active_links++;
9af5c9c9 6003 link->sactive |= 1 << qc->tag;
dedaf2b0 6004 } else {
9af5c9c9 6005 WARN_ON(link->sactive);
da917d69
TH
6006
6007 ap->nr_active_links++;
9af5c9c9 6008 link->active_tag = qc->tag;
dedaf2b0
TH
6009 }
6010
e4a70e76 6011 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 6012 ap->qc_active |= 1 << qc->tag;
e4a70e76 6013
1da177e4
LT
6014 if (ata_should_dma_map(qc)) {
6015 if (qc->flags & ATA_QCFLAG_SG) {
6016 if (ata_sg_setup(qc))
8e436af9 6017 goto sg_err;
1da177e4
LT
6018 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
6019 if (ata_sg_setup_one(qc))
8e436af9 6020 goto sg_err;
1da177e4
LT
6021 }
6022 } else {
6023 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6024 }
6025
054a5fba
TH
6026 /* if device is sleeping, schedule softreset and abort the link */
6027 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6028 link->eh_info.action |= ATA_EH_SOFTRESET;
6029 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6030 ata_link_abort(link);
6031 return;
6032 }
6033
1da177e4
LT
6034 ap->ops->qc_prep(qc);
6035
8e0e694a
TH
6036 qc->err_mask |= ap->ops->qc_issue(qc);
6037 if (unlikely(qc->err_mask))
6038 goto err;
6039 return;
1da177e4 6040
8e436af9
TH
6041sg_err:
6042 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
6043 qc->err_mask |= AC_ERR_SYSTEM;
6044err:
6045 ata_qc_complete(qc);
1da177e4
LT
6046}
6047
6048/**
6049 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6050 * @qc: command to issue to device
6051 *
6052 * Using various libata functions and hooks, this function
6053 * starts an ATA command. ATA commands are grouped into
6054 * classes called "protocols", and issuing each type of protocol
6055 * is slightly different.
6056 *
0baab86b
EF
6057 * May be used as the qc_issue() entry in ata_port_operations.
6058 *
1da177e4 6059 * LOCKING:
cca3974e 6060 * spin_lock_irqsave(host lock)
1da177e4
LT
6061 *
6062 * RETURNS:
9a3d9eb0 6063 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
6064 */
6065
9a3d9eb0 6066unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
6067{
6068 struct ata_port *ap = qc->ap;
6069
e50362ec
AL
6070 /* Use polling pio if the LLD doesn't handle
6071 * interrupt driven pio and atapi CDB interrupt.
6072 */
6073 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6074 switch (qc->tf.protocol) {
6075 case ATA_PROT_PIO:
e3472cbe 6076 case ATA_PROT_NODATA:
e50362ec
AL
6077 case ATA_PROT_ATAPI:
6078 case ATA_PROT_ATAPI_NODATA:
6079 qc->tf.flags |= ATA_TFLAG_POLLING;
6080 break;
6081 case ATA_PROT_ATAPI_DMA:
6082 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 6083 /* see ata_dma_blacklisted() */
e50362ec
AL
6084 BUG();
6085 break;
6086 default:
6087 break;
6088 }
6089 }
6090
312f7da2 6091 /* select the device */
1da177e4
LT
6092 ata_dev_select(ap, qc->dev->devno, 1, 0);
6093
312f7da2 6094 /* start the command */
1da177e4
LT
6095 switch (qc->tf.protocol) {
6096 case ATA_PROT_NODATA:
312f7da2
AL
6097 if (qc->tf.flags & ATA_TFLAG_POLLING)
6098 ata_qc_set_polling(qc);
6099
e5338254 6100 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
6101 ap->hsm_task_state = HSM_ST_LAST;
6102
6103 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6104 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 6105
1da177e4
LT
6106 break;
6107
6108 case ATA_PROT_DMA:
587005de 6109 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6110
1da177e4
LT
6111 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6112 ap->ops->bmdma_setup(qc); /* set up bmdma */
6113 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 6114 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
6115 break;
6116
312f7da2
AL
6117 case ATA_PROT_PIO:
6118 if (qc->tf.flags & ATA_TFLAG_POLLING)
6119 ata_qc_set_polling(qc);
1da177e4 6120
e5338254 6121 ata_tf_to_host(ap, &qc->tf);
312f7da2 6122
54f00389
AL
6123 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6124 /* PIO data out protocol */
6125 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 6126 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6127
6128 /* always send first data block using
e27486db 6129 * the ata_pio_task() codepath.
54f00389 6130 */
312f7da2 6131 } else {
54f00389
AL
6132 /* PIO data in protocol */
6133 ap->hsm_task_state = HSM_ST;
6134
6135 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6136 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6137
6138 /* if polling, ata_pio_task() handles the rest.
6139 * otherwise, interrupt handler takes over from here.
6140 */
312f7da2
AL
6141 }
6142
1da177e4
LT
6143 break;
6144
1da177e4 6145 case ATA_PROT_ATAPI:
1da177e4 6146 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
6147 if (qc->tf.flags & ATA_TFLAG_POLLING)
6148 ata_qc_set_polling(qc);
6149
e5338254 6150 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 6151
312f7da2
AL
6152 ap->hsm_task_state = HSM_ST_FIRST;
6153
6154 /* send cdb by polling if no cdb interrupt */
6155 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6156 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 6157 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6158 break;
6159
6160 case ATA_PROT_ATAPI_DMA:
587005de 6161 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6162
1da177e4
LT
6163 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6164 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
6165 ap->hsm_task_state = HSM_ST_FIRST;
6166
6167 /* send cdb by polling if no cdb interrupt */
6168 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 6169 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6170 break;
6171
6172 default:
6173 WARN_ON(1);
9a3d9eb0 6174 return AC_ERR_SYSTEM;
1da177e4
LT
6175 }
6176
6177 return 0;
6178}
6179
1da177e4
LT
6180/**
6181 * ata_host_intr - Handle host interrupt for given (port, task)
6182 * @ap: Port on which interrupt arrived (possibly...)
6183 * @qc: Taskfile currently active in engine
6184 *
6185 * Handle host interrupt for given queued command. Currently,
6186 * only DMA interrupts are handled. All other commands are
6187 * handled via polling with interrupts disabled (nIEN bit).
6188 *
6189 * LOCKING:
cca3974e 6190 * spin_lock_irqsave(host lock)
1da177e4
LT
6191 *
6192 * RETURNS:
6193 * One if interrupt was handled, zero if not (shared irq).
6194 */
6195
2dcb407e
JG
6196inline unsigned int ata_host_intr(struct ata_port *ap,
6197 struct ata_queued_cmd *qc)
1da177e4 6198{
9af5c9c9 6199 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 6200 u8 status, host_stat = 0;
1da177e4 6201
312f7da2 6202 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 6203 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 6204
312f7da2
AL
6205 /* Check whether we are expecting interrupt in this state */
6206 switch (ap->hsm_task_state) {
6207 case HSM_ST_FIRST:
6912ccd5
AL
6208 /* Some pre-ATAPI-4 devices assert INTRQ
6209 * at this state when ready to receive CDB.
6210 */
1da177e4 6211
312f7da2
AL
6212 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6213 * The flag was turned on only for atapi devices.
6214 * No need to check is_atapi_taskfile(&qc->tf) again.
6215 */
6216 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6217 goto idle_irq;
1da177e4 6218 break;
312f7da2
AL
6219 case HSM_ST_LAST:
6220 if (qc->tf.protocol == ATA_PROT_DMA ||
6221 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6222 /* check status of DMA engine */
6223 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6224 VPRINTK("ata%u: host_stat 0x%X\n",
6225 ap->print_id, host_stat);
312f7da2
AL
6226
6227 /* if it's not our irq... */
6228 if (!(host_stat & ATA_DMA_INTR))
6229 goto idle_irq;
6230
6231 /* before we do anything else, clear DMA-Start bit */
6232 ap->ops->bmdma_stop(qc);
a4f16610
AL
6233
6234 if (unlikely(host_stat & ATA_DMA_ERR)) {
6235 /* error when transfering data to/from memory */
6236 qc->err_mask |= AC_ERR_HOST_BUS;
6237 ap->hsm_task_state = HSM_ST_ERR;
6238 }
312f7da2
AL
6239 }
6240 break;
6241 case HSM_ST:
6242 break;
1da177e4
LT
6243 default:
6244 goto idle_irq;
6245 }
6246
312f7da2
AL
6247 /* check altstatus */
6248 status = ata_altstatus(ap);
6249 if (status & ATA_BUSY)
6250 goto idle_irq;
1da177e4 6251
312f7da2
AL
6252 /* check main status, clearing INTRQ */
6253 status = ata_chk_status(ap);
6254 if (unlikely(status & ATA_BUSY))
6255 goto idle_irq;
1da177e4 6256
312f7da2
AL
6257 /* ack bmdma irq events */
6258 ap->ops->irq_clear(ap);
1da177e4 6259
bb5cb290 6260 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6261
6262 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6263 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6264 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6265
1da177e4
LT
6266 return 1; /* irq handled */
6267
6268idle_irq:
6269 ap->stats.idle_irq++;
6270
6271#ifdef ATA_IRQ_TRAP
6272 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6273 ata_chk_status(ap);
6274 ap->ops->irq_clear(ap);
f15a1daf 6275 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6276 return 1;
1da177e4
LT
6277 }
6278#endif
6279 return 0; /* irq not handled */
6280}
6281
6282/**
6283 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6284 * @irq: irq line (unused)
cca3974e 6285 * @dev_instance: pointer to our ata_host information structure
1da177e4 6286 *
0cba632b
JG
6287 * Default interrupt handler for PCI IDE devices. Calls
6288 * ata_host_intr() for each port that is not disabled.
6289 *
1da177e4 6290 * LOCKING:
cca3974e 6291 * Obtains host lock during operation.
1da177e4
LT
6292 *
6293 * RETURNS:
0cba632b 6294 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6295 */
6296
2dcb407e 6297irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6298{
cca3974e 6299 struct ata_host *host = dev_instance;
1da177e4
LT
6300 unsigned int i;
6301 unsigned int handled = 0;
6302 unsigned long flags;
6303
6304 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6305 spin_lock_irqsave(&host->lock, flags);
1da177e4 6306
cca3974e 6307 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6308 struct ata_port *ap;
6309
cca3974e 6310 ap = host->ports[i];
c1389503 6311 if (ap &&
029f5468 6312 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6313 struct ata_queued_cmd *qc;
6314
9af5c9c9 6315 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6316 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6317 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6318 handled |= ata_host_intr(ap, qc);
6319 }
6320 }
6321
cca3974e 6322 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6323
6324 return IRQ_RETVAL(handled);
6325}
6326
34bf2170
TH
6327/**
6328 * sata_scr_valid - test whether SCRs are accessible
936fd732 6329 * @link: ATA link to test SCR accessibility for
34bf2170 6330 *
936fd732 6331 * Test whether SCRs are accessible for @link.
34bf2170
TH
6332 *
6333 * LOCKING:
6334 * None.
6335 *
6336 * RETURNS:
6337 * 1 if SCRs are accessible, 0 otherwise.
6338 */
936fd732 6339int sata_scr_valid(struct ata_link *link)
34bf2170 6340{
936fd732
TH
6341 struct ata_port *ap = link->ap;
6342
a16abc0b 6343 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6344}
6345
6346/**
6347 * sata_scr_read - read SCR register of the specified port
936fd732 6348 * @link: ATA link to read SCR for
34bf2170
TH
6349 * @reg: SCR to read
6350 * @val: Place to store read value
6351 *
936fd732 6352 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6353 * guaranteed to succeed if @link is ap->link, the cable type of
6354 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6355 *
6356 * LOCKING:
633273a3 6357 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6358 *
6359 * RETURNS:
6360 * 0 on success, negative errno on failure.
6361 */
936fd732 6362int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6363{
633273a3
TH
6364 if (ata_is_host_link(link)) {
6365 struct ata_port *ap = link->ap;
936fd732 6366
633273a3
TH
6367 if (sata_scr_valid(link))
6368 return ap->ops->scr_read(ap, reg, val);
6369 return -EOPNOTSUPP;
6370 }
6371
6372 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6373}
6374
6375/**
6376 * sata_scr_write - write SCR register of the specified port
936fd732 6377 * @link: ATA link to write SCR for
34bf2170
TH
6378 * @reg: SCR to write
6379 * @val: value to write
6380 *
936fd732 6381 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6382 * guaranteed to succeed if @link is ap->link, the cable type of
6383 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6384 *
6385 * LOCKING:
633273a3 6386 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6387 *
6388 * RETURNS:
6389 * 0 on success, negative errno on failure.
6390 */
936fd732 6391int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6392{
633273a3
TH
6393 if (ata_is_host_link(link)) {
6394 struct ata_port *ap = link->ap;
6395
6396 if (sata_scr_valid(link))
6397 return ap->ops->scr_write(ap, reg, val);
6398 return -EOPNOTSUPP;
6399 }
936fd732 6400
633273a3 6401 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6402}
6403
6404/**
6405 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6406 * @link: ATA link to write SCR for
34bf2170
TH
6407 * @reg: SCR to write
6408 * @val: value to write
6409 *
6410 * This function is identical to sata_scr_write() except that this
6411 * function performs flush after writing to the register.
6412 *
6413 * LOCKING:
633273a3 6414 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6415 *
6416 * RETURNS:
6417 * 0 on success, negative errno on failure.
6418 */
936fd732 6419int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6420{
633273a3
TH
6421 if (ata_is_host_link(link)) {
6422 struct ata_port *ap = link->ap;
6423 int rc;
da3dbb17 6424
633273a3
TH
6425 if (sata_scr_valid(link)) {
6426 rc = ap->ops->scr_write(ap, reg, val);
6427 if (rc == 0)
6428 rc = ap->ops->scr_read(ap, reg, &val);
6429 return rc;
6430 }
6431 return -EOPNOTSUPP;
34bf2170 6432 }
633273a3
TH
6433
6434 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6435}
6436
6437/**
936fd732
TH
6438 * ata_link_online - test whether the given link is online
6439 * @link: ATA link to test
34bf2170 6440 *
936fd732
TH
6441 * Test whether @link is online. Note that this function returns
6442 * 0 if online status of @link cannot be obtained, so
6443 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6444 *
6445 * LOCKING:
6446 * None.
6447 *
6448 * RETURNS:
6449 * 1 if the port online status is available and online.
6450 */
936fd732 6451int ata_link_online(struct ata_link *link)
34bf2170
TH
6452{
6453 u32 sstatus;
6454
936fd732
TH
6455 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6456 (sstatus & 0xf) == 0x3)
34bf2170
TH
6457 return 1;
6458 return 0;
6459}
6460
6461/**
936fd732
TH
6462 * ata_link_offline - test whether the given link is offline
6463 * @link: ATA link to test
34bf2170 6464 *
936fd732
TH
6465 * Test whether @link is offline. Note that this function
6466 * returns 0 if offline status of @link cannot be obtained, so
6467 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6468 *
6469 * LOCKING:
6470 * None.
6471 *
6472 * RETURNS:
6473 * 1 if the port offline status is available and offline.
6474 */
936fd732 6475int ata_link_offline(struct ata_link *link)
34bf2170
TH
6476{
6477 u32 sstatus;
6478
936fd732
TH
6479 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6480 (sstatus & 0xf) != 0x3)
34bf2170
TH
6481 return 1;
6482 return 0;
6483}
0baab86b 6484
77b08fb5 6485int ata_flush_cache(struct ata_device *dev)
9b847548 6486{
977e6b9f 6487 unsigned int err_mask;
9b847548
JA
6488 u8 cmd;
6489
6490 if (!ata_try_flush_cache(dev))
6491 return 0;
6492
6fc49adb 6493 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6494 cmd = ATA_CMD_FLUSH_EXT;
6495 else
6496 cmd = ATA_CMD_FLUSH;
6497
4f34337b
AC
6498 /* This is wrong. On a failed flush we get back the LBA of the lost
6499 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6500 a further flush command to continue the writeback until it
4f34337b 6501 does not error */
977e6b9f
TH
6502 err_mask = ata_do_simple_cmd(dev, cmd);
6503 if (err_mask) {
6504 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6505 return -EIO;
6506 }
6507
6508 return 0;
9b847548
JA
6509}
6510
6ffa01d8 6511#ifdef CONFIG_PM
cca3974e
JG
6512static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6513 unsigned int action, unsigned int ehi_flags,
6514 int wait)
500530f6
TH
6515{
6516 unsigned long flags;
6517 int i, rc;
6518
cca3974e
JG
6519 for (i = 0; i < host->n_ports; i++) {
6520 struct ata_port *ap = host->ports[i];
e3667ebf 6521 struct ata_link *link;
500530f6
TH
6522
6523 /* Previous resume operation might still be in
6524 * progress. Wait for PM_PENDING to clear.
6525 */
6526 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6527 ata_port_wait_eh(ap);
6528 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6529 }
6530
6531 /* request PM ops to EH */
6532 spin_lock_irqsave(ap->lock, flags);
6533
6534 ap->pm_mesg = mesg;
6535 if (wait) {
6536 rc = 0;
6537 ap->pm_result = &rc;
6538 }
6539
6540 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6541 __ata_port_for_each_link(link, ap) {
6542 link->eh_info.action |= action;
6543 link->eh_info.flags |= ehi_flags;
6544 }
500530f6
TH
6545
6546 ata_port_schedule_eh(ap);
6547
6548 spin_unlock_irqrestore(ap->lock, flags);
6549
6550 /* wait and check result */
6551 if (wait) {
6552 ata_port_wait_eh(ap);
6553 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6554 if (rc)
6555 return rc;
6556 }
6557 }
6558
6559 return 0;
6560}
6561
6562/**
cca3974e
JG
6563 * ata_host_suspend - suspend host
6564 * @host: host to suspend
500530f6
TH
6565 * @mesg: PM message
6566 *
cca3974e 6567 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6568 * function requests EH to perform PM operations and waits for EH
6569 * to finish.
6570 *
6571 * LOCKING:
6572 * Kernel thread context (may sleep).
6573 *
6574 * RETURNS:
6575 * 0 on success, -errno on failure.
6576 */
cca3974e 6577int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6578{
9666f400 6579 int rc;
500530f6 6580
ca77329f
KCA
6581 /*
6582 * disable link pm on all ports before requesting
6583 * any pm activity
6584 */
6585 ata_lpm_enable(host);
6586
cca3974e 6587 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6588 if (rc == 0)
6589 host->dev->power.power_state = mesg;
500530f6
TH
6590 return rc;
6591}
6592
6593/**
cca3974e
JG
6594 * ata_host_resume - resume host
6595 * @host: host to resume
500530f6 6596 *
cca3974e 6597 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6598 * function requests EH to perform PM operations and returns.
6599 * Note that all resume operations are performed parallely.
6600 *
6601 * LOCKING:
6602 * Kernel thread context (may sleep).
6603 */
cca3974e 6604void ata_host_resume(struct ata_host *host)
500530f6 6605{
cca3974e
JG
6606 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6607 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6608 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
6609
6610 /* reenable link pm */
6611 ata_lpm_disable(host);
500530f6 6612}
6ffa01d8 6613#endif
500530f6 6614
c893a3ae
RD
6615/**
6616 * ata_port_start - Set port up for dma.
6617 * @ap: Port to initialize
6618 *
6619 * Called just after data structures for each port are
6620 * initialized. Allocates space for PRD table.
6621 *
6622 * May be used as the port_start() entry in ata_port_operations.
6623 *
6624 * LOCKING:
6625 * Inherited from caller.
6626 */
f0d36efd 6627int ata_port_start(struct ata_port *ap)
1da177e4 6628{
2f1f610b 6629 struct device *dev = ap->dev;
6037d6bb 6630 int rc;
1da177e4 6631
f0d36efd
TH
6632 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6633 GFP_KERNEL);
1da177e4
LT
6634 if (!ap->prd)
6635 return -ENOMEM;
6636
6037d6bb 6637 rc = ata_pad_alloc(ap, dev);
f0d36efd 6638 if (rc)
6037d6bb 6639 return rc;
1da177e4 6640
f0d36efd
TH
6641 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6642 (unsigned long long)ap->prd_dma);
1da177e4
LT
6643 return 0;
6644}
6645
3ef3b43d
TH
6646/**
6647 * ata_dev_init - Initialize an ata_device structure
6648 * @dev: Device structure to initialize
6649 *
6650 * Initialize @dev in preparation for probing.
6651 *
6652 * LOCKING:
6653 * Inherited from caller.
6654 */
6655void ata_dev_init(struct ata_device *dev)
6656{
9af5c9c9
TH
6657 struct ata_link *link = dev->link;
6658 struct ata_port *ap = link->ap;
72fa4b74
TH
6659 unsigned long flags;
6660
5a04bf4b 6661 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6662 link->sata_spd_limit = link->hw_sata_spd_limit;
6663 link->sata_spd = 0;
5a04bf4b 6664
72fa4b74
TH
6665 /* High bits of dev->flags are used to record warm plug
6666 * requests which occur asynchronously. Synchronize using
cca3974e 6667 * host lock.
72fa4b74 6668 */
ba6a1308 6669 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6670 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6671 dev->horkage = 0;
ba6a1308 6672 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6673
72fa4b74
TH
6674 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6675 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6676 dev->pio_mask = UINT_MAX;
6677 dev->mwdma_mask = UINT_MAX;
6678 dev->udma_mask = UINT_MAX;
6679}
6680
4fb37a25
TH
6681/**
6682 * ata_link_init - Initialize an ata_link structure
6683 * @ap: ATA port link is attached to
6684 * @link: Link structure to initialize
8989805d 6685 * @pmp: Port multiplier port number
4fb37a25
TH
6686 *
6687 * Initialize @link.
6688 *
6689 * LOCKING:
6690 * Kernel thread context (may sleep)
6691 */
fb7fd614 6692void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6693{
6694 int i;
6695
6696 /* clear everything except for devices */
6697 memset(link, 0, offsetof(struct ata_link, device[0]));
6698
6699 link->ap = ap;
8989805d 6700 link->pmp = pmp;
4fb37a25
TH
6701 link->active_tag = ATA_TAG_POISON;
6702 link->hw_sata_spd_limit = UINT_MAX;
6703
6704 /* can't use iterator, ap isn't initialized yet */
6705 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6706 struct ata_device *dev = &link->device[i];
6707
6708 dev->link = link;
6709 dev->devno = dev - link->device;
6710 ata_dev_init(dev);
6711 }
6712}
6713
6714/**
6715 * sata_link_init_spd - Initialize link->sata_spd_limit
6716 * @link: Link to configure sata_spd_limit for
6717 *
6718 * Initialize @link->[hw_]sata_spd_limit to the currently
6719 * configured value.
6720 *
6721 * LOCKING:
6722 * Kernel thread context (may sleep).
6723 *
6724 * RETURNS:
6725 * 0 on success, -errno on failure.
6726 */
fb7fd614 6727int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6728{
6729 u32 scontrol, spd;
6730 int rc;
6731
6732 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6733 if (rc)
6734 return rc;
6735
6736 spd = (scontrol >> 4) & 0xf;
6737 if (spd)
6738 link->hw_sata_spd_limit &= (1 << spd) - 1;
6739
6740 link->sata_spd_limit = link->hw_sata_spd_limit;
6741
6742 return 0;
6743}
6744
1da177e4 6745/**
f3187195
TH
6746 * ata_port_alloc - allocate and initialize basic ATA port resources
6747 * @host: ATA host this allocated port belongs to
1da177e4 6748 *
f3187195
TH
6749 * Allocate and initialize basic ATA port resources.
6750 *
6751 * RETURNS:
6752 * Allocate ATA port on success, NULL on failure.
0cba632b 6753 *
1da177e4 6754 * LOCKING:
f3187195 6755 * Inherited from calling layer (may sleep).
1da177e4 6756 */
f3187195 6757struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6758{
f3187195 6759 struct ata_port *ap;
1da177e4 6760
f3187195
TH
6761 DPRINTK("ENTER\n");
6762
6763 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6764 if (!ap)
6765 return NULL;
6766
f4d6d004 6767 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6768 ap->lock = &host->lock;
198e0fed 6769 ap->flags = ATA_FLAG_DISABLED;
f3187195 6770 ap->print_id = -1;
1da177e4 6771 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6772 ap->host = host;
f3187195 6773 ap->dev = host->dev;
1da177e4 6774 ap->last_ctl = 0xFF;
bd5d825c
BP
6775
6776#if defined(ATA_VERBOSE_DEBUG)
6777 /* turn on all debugging levels */
6778 ap->msg_enable = 0x00FF;
6779#elif defined(ATA_DEBUG)
6780 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6781#else
0dd4b21f 6782 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6783#endif
1da177e4 6784
65f27f38
DH
6785 INIT_DELAYED_WORK(&ap->port_task, NULL);
6786 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6787 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6788 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6789 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6790 init_timer_deferrable(&ap->fastdrain_timer);
6791 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6792 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6793
838df628 6794 ap->cbl = ATA_CBL_NONE;
838df628 6795
8989805d 6796 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6797
6798#ifdef ATA_IRQ_TRAP
6799 ap->stats.unhandled_irq = 1;
6800 ap->stats.idle_irq = 1;
6801#endif
1da177e4 6802 return ap;
1da177e4
LT
6803}
6804
f0d36efd
TH
6805static void ata_host_release(struct device *gendev, void *res)
6806{
6807 struct ata_host *host = dev_get_drvdata(gendev);
6808 int i;
6809
1aa506e4
TH
6810 for (i = 0; i < host->n_ports; i++) {
6811 struct ata_port *ap = host->ports[i];
6812
4911487a
TH
6813 if (!ap)
6814 continue;
6815
6816 if (ap->scsi_host)
1aa506e4
TH
6817 scsi_host_put(ap->scsi_host);
6818
633273a3 6819 kfree(ap->pmp_link);
4911487a 6820 kfree(ap);
1aa506e4
TH
6821 host->ports[i] = NULL;
6822 }
6823
1aa56cca 6824 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6825}
6826
f3187195
TH
6827/**
6828 * ata_host_alloc - allocate and init basic ATA host resources
6829 * @dev: generic device this host is associated with
6830 * @max_ports: maximum number of ATA ports associated with this host
6831 *
6832 * Allocate and initialize basic ATA host resources. LLD calls
6833 * this function to allocate a host, initializes it fully and
6834 * attaches it using ata_host_register().
6835 *
6836 * @max_ports ports are allocated and host->n_ports is
6837 * initialized to @max_ports. The caller is allowed to decrease
6838 * host->n_ports before calling ata_host_register(). The unused
6839 * ports will be automatically freed on registration.
6840 *
6841 * RETURNS:
6842 * Allocate ATA host on success, NULL on failure.
6843 *
6844 * LOCKING:
6845 * Inherited from calling layer (may sleep).
6846 */
6847struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6848{
6849 struct ata_host *host;
6850 size_t sz;
6851 int i;
6852
6853 DPRINTK("ENTER\n");
6854
6855 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6856 return NULL;
6857
6858 /* alloc a container for our list of ATA ports (buses) */
6859 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6860 /* alloc a container for our list of ATA ports (buses) */
6861 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6862 if (!host)
6863 goto err_out;
6864
6865 devres_add(dev, host);
6866 dev_set_drvdata(dev, host);
6867
6868 spin_lock_init(&host->lock);
6869 host->dev = dev;
6870 host->n_ports = max_ports;
6871
6872 /* allocate ports bound to this host */
6873 for (i = 0; i < max_ports; i++) {
6874 struct ata_port *ap;
6875
6876 ap = ata_port_alloc(host);
6877 if (!ap)
6878 goto err_out;
6879
6880 ap->port_no = i;
6881 host->ports[i] = ap;
6882 }
6883
6884 devres_remove_group(dev, NULL);
6885 return host;
6886
6887 err_out:
6888 devres_release_group(dev, NULL);
6889 return NULL;
6890}
6891
f5cda257
TH
6892/**
6893 * ata_host_alloc_pinfo - alloc host and init with port_info array
6894 * @dev: generic device this host is associated with
6895 * @ppi: array of ATA port_info to initialize host with
6896 * @n_ports: number of ATA ports attached to this host
6897 *
6898 * Allocate ATA host and initialize with info from @ppi. If NULL
6899 * terminated, @ppi may contain fewer entries than @n_ports. The
6900 * last entry will be used for the remaining ports.
6901 *
6902 * RETURNS:
6903 * Allocate ATA host on success, NULL on failure.
6904 *
6905 * LOCKING:
6906 * Inherited from calling layer (may sleep).
6907 */
6908struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6909 const struct ata_port_info * const * ppi,
6910 int n_ports)
6911{
6912 const struct ata_port_info *pi;
6913 struct ata_host *host;
6914 int i, j;
6915
6916 host = ata_host_alloc(dev, n_ports);
6917 if (!host)
6918 return NULL;
6919
6920 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6921 struct ata_port *ap = host->ports[i];
6922
6923 if (ppi[j])
6924 pi = ppi[j++];
6925
6926 ap->pio_mask = pi->pio_mask;
6927 ap->mwdma_mask = pi->mwdma_mask;
6928 ap->udma_mask = pi->udma_mask;
6929 ap->flags |= pi->flags;
0c88758b 6930 ap->link.flags |= pi->link_flags;
f5cda257
TH
6931 ap->ops = pi->port_ops;
6932
6933 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6934 host->ops = pi->port_ops;
6935 if (!host->private_data && pi->private_data)
6936 host->private_data = pi->private_data;
6937 }
6938
6939 return host;
6940}
6941
32ebbc0c
TH
6942static void ata_host_stop(struct device *gendev, void *res)
6943{
6944 struct ata_host *host = dev_get_drvdata(gendev);
6945 int i;
6946
6947 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6948
6949 for (i = 0; i < host->n_ports; i++) {
6950 struct ata_port *ap = host->ports[i];
6951
6952 if (ap->ops->port_stop)
6953 ap->ops->port_stop(ap);
6954 }
6955
6956 if (host->ops->host_stop)
6957 host->ops->host_stop(host);
6958}
6959
ecef7253
TH
6960/**
6961 * ata_host_start - start and freeze ports of an ATA host
6962 * @host: ATA host to start ports for
6963 *
6964 * Start and then freeze ports of @host. Started status is
6965 * recorded in host->flags, so this function can be called
6966 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6967 * once. If host->ops isn't initialized yet, its set to the
6968 * first non-dummy port ops.
ecef7253
TH
6969 *
6970 * LOCKING:
6971 * Inherited from calling layer (may sleep).
6972 *
6973 * RETURNS:
6974 * 0 if all ports are started successfully, -errno otherwise.
6975 */
6976int ata_host_start(struct ata_host *host)
6977{
32ebbc0c
TH
6978 int have_stop = 0;
6979 void *start_dr = NULL;
ecef7253
TH
6980 int i, rc;
6981
6982 if (host->flags & ATA_HOST_STARTED)
6983 return 0;
6984
6985 for (i = 0; i < host->n_ports; i++) {
6986 struct ata_port *ap = host->ports[i];
6987
f3187195
TH
6988 if (!host->ops && !ata_port_is_dummy(ap))
6989 host->ops = ap->ops;
6990
32ebbc0c
TH
6991 if (ap->ops->port_stop)
6992 have_stop = 1;
6993 }
6994
6995 if (host->ops->host_stop)
6996 have_stop = 1;
6997
6998 if (have_stop) {
6999 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
7000 if (!start_dr)
7001 return -ENOMEM;
7002 }
7003
7004 for (i = 0; i < host->n_ports; i++) {
7005 struct ata_port *ap = host->ports[i];
7006
ecef7253
TH
7007 if (ap->ops->port_start) {
7008 rc = ap->ops->port_start(ap);
7009 if (rc) {
0f9fe9b7 7010 if (rc != -ENODEV)
0f757743
AM
7011 dev_printk(KERN_ERR, host->dev,
7012 "failed to start port %d "
7013 "(errno=%d)\n", i, rc);
ecef7253
TH
7014 goto err_out;
7015 }
7016 }
ecef7253
TH
7017 ata_eh_freeze_port(ap);
7018 }
7019
32ebbc0c
TH
7020 if (start_dr)
7021 devres_add(host->dev, start_dr);
ecef7253
TH
7022 host->flags |= ATA_HOST_STARTED;
7023 return 0;
7024
7025 err_out:
7026 while (--i >= 0) {
7027 struct ata_port *ap = host->ports[i];
7028
7029 if (ap->ops->port_stop)
7030 ap->ops->port_stop(ap);
7031 }
32ebbc0c 7032 devres_free(start_dr);
ecef7253
TH
7033 return rc;
7034}
7035
b03732f0 7036/**
cca3974e
JG
7037 * ata_sas_host_init - Initialize a host struct
7038 * @host: host to initialize
7039 * @dev: device host is attached to
7040 * @flags: host flags
7041 * @ops: port_ops
b03732f0
BK
7042 *
7043 * LOCKING:
7044 * PCI/etc. bus probe sem.
7045 *
7046 */
f3187195 7047/* KILLME - the only user left is ipr */
cca3974e
JG
7048void ata_host_init(struct ata_host *host, struct device *dev,
7049 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 7050{
cca3974e
JG
7051 spin_lock_init(&host->lock);
7052 host->dev = dev;
7053 host->flags = flags;
7054 host->ops = ops;
b03732f0
BK
7055}
7056
f3187195
TH
7057/**
7058 * ata_host_register - register initialized ATA host
7059 * @host: ATA host to register
7060 * @sht: template for SCSI host
7061 *
7062 * Register initialized ATA host. @host is allocated using
7063 * ata_host_alloc() and fully initialized by LLD. This function
7064 * starts ports, registers @host with ATA and SCSI layers and
7065 * probe registered devices.
7066 *
7067 * LOCKING:
7068 * Inherited from calling layer (may sleep).
7069 *
7070 * RETURNS:
7071 * 0 on success, -errno otherwise.
7072 */
7073int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7074{
7075 int i, rc;
7076
7077 /* host must have been started */
7078 if (!(host->flags & ATA_HOST_STARTED)) {
7079 dev_printk(KERN_ERR, host->dev,
7080 "BUG: trying to register unstarted host\n");
7081 WARN_ON(1);
7082 return -EINVAL;
7083 }
7084
7085 /* Blow away unused ports. This happens when LLD can't
7086 * determine the exact number of ports to allocate at
7087 * allocation time.
7088 */
7089 for (i = host->n_ports; host->ports[i]; i++)
7090 kfree(host->ports[i]);
7091
7092 /* give ports names and add SCSI hosts */
7093 for (i = 0; i < host->n_ports; i++)
7094 host->ports[i]->print_id = ata_print_id++;
7095
7096 rc = ata_scsi_add_hosts(host, sht);
7097 if (rc)
7098 return rc;
7099
fafbae87
TH
7100 /* associate with ACPI nodes */
7101 ata_acpi_associate(host);
7102
f3187195
TH
7103 /* set cable, sata_spd_limit and report */
7104 for (i = 0; i < host->n_ports; i++) {
7105 struct ata_port *ap = host->ports[i];
f3187195
TH
7106 unsigned long xfer_mask;
7107
7108 /* set SATA cable type if still unset */
7109 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7110 ap->cbl = ATA_CBL_SATA;
7111
7112 /* init sata_spd_limit to the current value */
4fb37a25 7113 sata_link_init_spd(&ap->link);
f3187195 7114
cbcdd875 7115 /* print per-port info to dmesg */
f3187195
TH
7116 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7117 ap->udma_mask);
7118
abf6e8ed 7119 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
7120 ata_port_printk(ap, KERN_INFO,
7121 "%cATA max %s %s\n",
a16abc0b 7122 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 7123 ata_mode_string(xfer_mask),
cbcdd875 7124 ap->link.eh_info.desc);
abf6e8ed
TH
7125 ata_ehi_clear_desc(&ap->link.eh_info);
7126 } else
f3187195
TH
7127 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7128 }
7129
7130 /* perform each probe synchronously */
7131 DPRINTK("probe begin\n");
7132 for (i = 0; i < host->n_ports; i++) {
7133 struct ata_port *ap = host->ports[i];
7134 int rc;
7135
7136 /* probe */
7137 if (ap->ops->error_handler) {
9af5c9c9 7138 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
7139 unsigned long flags;
7140
7141 ata_port_probe(ap);
7142
7143 /* kick EH for boot probing */
7144 spin_lock_irqsave(ap->lock, flags);
7145
f58229f8
TH
7146 ehi->probe_mask =
7147 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
7148 ehi->action |= ATA_EH_SOFTRESET;
7149 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7150
f4d6d004 7151 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
7152 ap->pflags |= ATA_PFLAG_LOADING;
7153 ata_port_schedule_eh(ap);
7154
7155 spin_unlock_irqrestore(ap->lock, flags);
7156
7157 /* wait for EH to finish */
7158 ata_port_wait_eh(ap);
7159 } else {
7160 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7161 rc = ata_bus_probe(ap);
7162 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7163
7164 if (rc) {
7165 /* FIXME: do something useful here?
7166 * Current libata behavior will
7167 * tear down everything when
7168 * the module is removed
7169 * or the h/w is unplugged.
7170 */
7171 }
7172 }
7173 }
7174
7175 /* probes are done, now scan each port's disk(s) */
7176 DPRINTK("host probe begin\n");
7177 for (i = 0; i < host->n_ports; i++) {
7178 struct ata_port *ap = host->ports[i];
7179
1ae46317 7180 ata_scsi_scan_host(ap, 1);
ca77329f 7181 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
7182 }
7183
7184 return 0;
7185}
7186
f5cda257
TH
7187/**
7188 * ata_host_activate - start host, request IRQ and register it
7189 * @host: target ATA host
7190 * @irq: IRQ to request
7191 * @irq_handler: irq_handler used when requesting IRQ
7192 * @irq_flags: irq_flags used when requesting IRQ
7193 * @sht: scsi_host_template to use when registering the host
7194 *
7195 * After allocating an ATA host and initializing it, most libata
7196 * LLDs perform three steps to activate the host - start host,
7197 * request IRQ and register it. This helper takes necessasry
7198 * arguments and performs the three steps in one go.
7199 *
3d46b2e2
PM
7200 * An invalid IRQ skips the IRQ registration and expects the host to
7201 * have set polling mode on the port. In this case, @irq_handler
7202 * should be NULL.
7203 *
f5cda257
TH
7204 * LOCKING:
7205 * Inherited from calling layer (may sleep).
7206 *
7207 * RETURNS:
7208 * 0 on success, -errno otherwise.
7209 */
7210int ata_host_activate(struct ata_host *host, int irq,
7211 irq_handler_t irq_handler, unsigned long irq_flags,
7212 struct scsi_host_template *sht)
7213{
cbcdd875 7214 int i, rc;
f5cda257
TH
7215
7216 rc = ata_host_start(host);
7217 if (rc)
7218 return rc;
7219
3d46b2e2
PM
7220 /* Special case for polling mode */
7221 if (!irq) {
7222 WARN_ON(irq_handler);
7223 return ata_host_register(host, sht);
7224 }
7225
f5cda257
TH
7226 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7227 dev_driver_string(host->dev), host);
7228 if (rc)
7229 return rc;
7230
cbcdd875
TH
7231 for (i = 0; i < host->n_ports; i++)
7232 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 7233
f5cda257
TH
7234 rc = ata_host_register(host, sht);
7235 /* if failed, just free the IRQ and leave ports alone */
7236 if (rc)
7237 devm_free_irq(host->dev, irq, host);
7238
7239 return rc;
7240}
7241
720ba126
TH
7242/**
7243 * ata_port_detach - Detach ATA port in prepration of device removal
7244 * @ap: ATA port to be detached
7245 *
7246 * Detach all ATA devices and the associated SCSI devices of @ap;
7247 * then, remove the associated SCSI host. @ap is guaranteed to
7248 * be quiescent on return from this function.
7249 *
7250 * LOCKING:
7251 * Kernel thread context (may sleep).
7252 */
741b7763 7253static void ata_port_detach(struct ata_port *ap)
720ba126
TH
7254{
7255 unsigned long flags;
41bda9c9 7256 struct ata_link *link;
f58229f8 7257 struct ata_device *dev;
720ba126
TH
7258
7259 if (!ap->ops->error_handler)
c3cf30a9 7260 goto skip_eh;
720ba126
TH
7261
7262 /* tell EH we're leaving & flush EH */
ba6a1308 7263 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7264 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7265 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7266
7267 ata_port_wait_eh(ap);
7268
7f9ad9b8
TH
7269 /* EH is now guaranteed to see UNLOADING - EH context belongs
7270 * to us. Disable all existing devices.
720ba126 7271 */
41bda9c9
TH
7272 ata_port_for_each_link(link, ap) {
7273 ata_link_for_each_dev(dev, link)
7274 ata_dev_disable(dev);
7275 }
720ba126 7276
720ba126
TH
7277 /* Final freeze & EH. All in-flight commands are aborted. EH
7278 * will be skipped and retrials will be terminated with bad
7279 * target.
7280 */
ba6a1308 7281 spin_lock_irqsave(ap->lock, flags);
720ba126 7282 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7283 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7284
7285 ata_port_wait_eh(ap);
45a66c1c 7286 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7287
c3cf30a9 7288 skip_eh:
720ba126 7289 /* remove the associated SCSI host */
cca3974e 7290 scsi_remove_host(ap->scsi_host);
720ba126
TH
7291}
7292
0529c159
TH
7293/**
7294 * ata_host_detach - Detach all ports of an ATA host
7295 * @host: Host to detach
7296 *
7297 * Detach all ports of @host.
7298 *
7299 * LOCKING:
7300 * Kernel thread context (may sleep).
7301 */
7302void ata_host_detach(struct ata_host *host)
7303{
7304 int i;
7305
7306 for (i = 0; i < host->n_ports; i++)
7307 ata_port_detach(host->ports[i]);
562f0c2d
TH
7308
7309 /* the host is dead now, dissociate ACPI */
7310 ata_acpi_dissociate(host);
0529c159
TH
7311}
7312
1da177e4
LT
7313/**
7314 * ata_std_ports - initialize ioaddr with standard port offsets.
7315 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7316 *
7317 * Utility function which initializes data_addr, error_addr,
7318 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7319 * device_addr, status_addr, and command_addr to standard offsets
7320 * relative to cmd_addr.
7321 *
7322 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7323 */
0baab86b 7324
1da177e4
LT
7325void ata_std_ports(struct ata_ioports *ioaddr)
7326{
7327 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7328 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7329 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7330 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7331 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7332 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7333 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7334 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7335 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7336 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7337}
7338
0baab86b 7339
374b1873
JG
7340#ifdef CONFIG_PCI
7341
1da177e4
LT
7342/**
7343 * ata_pci_remove_one - PCI layer callback for device removal
7344 * @pdev: PCI device that was removed
7345 *
b878ca5d
TH
7346 * PCI layer indicates to libata via this hook that hot-unplug or
7347 * module unload event has occurred. Detach all ports. Resource
7348 * release is handled via devres.
1da177e4
LT
7349 *
7350 * LOCKING:
7351 * Inherited from PCI layer (may sleep).
7352 */
f0d36efd 7353void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7354{
2855568b 7355 struct device *dev = &pdev->dev;
cca3974e 7356 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7357
b878ca5d 7358 ata_host_detach(host);
1da177e4
LT
7359}
7360
7361/* move to PCI subsystem */
057ace5e 7362int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7363{
7364 unsigned long tmp = 0;
7365
7366 switch (bits->width) {
7367 case 1: {
7368 u8 tmp8 = 0;
7369 pci_read_config_byte(pdev, bits->reg, &tmp8);
7370 tmp = tmp8;
7371 break;
7372 }
7373 case 2: {
7374 u16 tmp16 = 0;
7375 pci_read_config_word(pdev, bits->reg, &tmp16);
7376 tmp = tmp16;
7377 break;
7378 }
7379 case 4: {
7380 u32 tmp32 = 0;
7381 pci_read_config_dword(pdev, bits->reg, &tmp32);
7382 tmp = tmp32;
7383 break;
7384 }
7385
7386 default:
7387 return -EINVAL;
7388 }
7389
7390 tmp &= bits->mask;
7391
7392 return (tmp == bits->val) ? 1 : 0;
7393}
9b847548 7394
6ffa01d8 7395#ifdef CONFIG_PM
3c5100c1 7396void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7397{
7398 pci_save_state(pdev);
4c90d971 7399 pci_disable_device(pdev);
500530f6 7400
4c90d971 7401 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7402 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7403}
7404
553c4aa6 7405int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7406{
553c4aa6
TH
7407 int rc;
7408
9b847548
JA
7409 pci_set_power_state(pdev, PCI_D0);
7410 pci_restore_state(pdev);
553c4aa6 7411
b878ca5d 7412 rc = pcim_enable_device(pdev);
553c4aa6
TH
7413 if (rc) {
7414 dev_printk(KERN_ERR, &pdev->dev,
7415 "failed to enable device after resume (%d)\n", rc);
7416 return rc;
7417 }
7418
9b847548 7419 pci_set_master(pdev);
553c4aa6 7420 return 0;
500530f6
TH
7421}
7422
3c5100c1 7423int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7424{
cca3974e 7425 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7426 int rc = 0;
7427
cca3974e 7428 rc = ata_host_suspend(host, mesg);
500530f6
TH
7429 if (rc)
7430 return rc;
7431
3c5100c1 7432 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7433
7434 return 0;
7435}
7436
7437int ata_pci_device_resume(struct pci_dev *pdev)
7438{
cca3974e 7439 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7440 int rc;
500530f6 7441
553c4aa6
TH
7442 rc = ata_pci_device_do_resume(pdev);
7443 if (rc == 0)
7444 ata_host_resume(host);
7445 return rc;
9b847548 7446}
6ffa01d8
TH
7447#endif /* CONFIG_PM */
7448
1da177e4
LT
7449#endif /* CONFIG_PCI */
7450
7451
1da177e4
LT
7452static int __init ata_init(void)
7453{
a8601e5f 7454 ata_probe_timeout *= HZ;
1da177e4
LT
7455 ata_wq = create_workqueue("ata");
7456 if (!ata_wq)
7457 return -ENOMEM;
7458
453b07ac
TH
7459 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7460 if (!ata_aux_wq) {
7461 destroy_workqueue(ata_wq);
7462 return -ENOMEM;
7463 }
7464
1da177e4
LT
7465 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7466 return 0;
7467}
7468
7469static void __exit ata_exit(void)
7470{
7471 destroy_workqueue(ata_wq);
453b07ac 7472 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7473}
7474
a4625085 7475subsys_initcall(ata_init);
1da177e4
LT
7476module_exit(ata_exit);
7477
67846b30 7478static unsigned long ratelimit_time;
34af946a 7479static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7480
7481int ata_ratelimit(void)
7482{
7483 int rc;
7484 unsigned long flags;
7485
7486 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7487
7488 if (time_after(jiffies, ratelimit_time)) {
7489 rc = 1;
7490 ratelimit_time = jiffies + (HZ/5);
7491 } else
7492 rc = 0;
7493
7494 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7495
7496 return rc;
7497}
7498
c22daff4
TH
7499/**
7500 * ata_wait_register - wait until register value changes
7501 * @reg: IO-mapped register
7502 * @mask: Mask to apply to read register value
7503 * @val: Wait condition
7504 * @interval_msec: polling interval in milliseconds
7505 * @timeout_msec: timeout in milliseconds
7506 *
7507 * Waiting for some bits of register to change is a common
7508 * operation for ATA controllers. This function reads 32bit LE
7509 * IO-mapped register @reg and tests for the following condition.
7510 *
7511 * (*@reg & mask) != val
7512 *
7513 * If the condition is met, it returns; otherwise, the process is
7514 * repeated after @interval_msec until timeout.
7515 *
7516 * LOCKING:
7517 * Kernel thread context (may sleep)
7518 *
7519 * RETURNS:
7520 * The final register value.
7521 */
7522u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7523 unsigned long interval_msec,
7524 unsigned long timeout_msec)
7525{
7526 unsigned long timeout;
7527 u32 tmp;
7528
7529 tmp = ioread32(reg);
7530
7531 /* Calculate timeout _after_ the first read to make sure
7532 * preceding writes reach the controller before starting to
7533 * eat away the timeout.
7534 */
7535 timeout = jiffies + (timeout_msec * HZ) / 1000;
7536
7537 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7538 msleep(interval_msec);
7539 tmp = ioread32(reg);
7540 }
7541
7542 return tmp;
7543}
7544
dd5b06c4
TH
7545/*
7546 * Dummy port_ops
7547 */
7548static void ata_dummy_noret(struct ata_port *ap) { }
7549static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7550static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7551
7552static u8 ata_dummy_check_status(struct ata_port *ap)
7553{
7554 return ATA_DRDY;
7555}
7556
7557static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7558{
7559 return AC_ERR_SYSTEM;
7560}
7561
7562const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7563 .check_status = ata_dummy_check_status,
7564 .check_altstatus = ata_dummy_check_status,
7565 .dev_select = ata_noop_dev_select,
7566 .qc_prep = ata_noop_qc_prep,
7567 .qc_issue = ata_dummy_qc_issue,
7568 .freeze = ata_dummy_noret,
7569 .thaw = ata_dummy_noret,
7570 .error_handler = ata_dummy_noret,
7571 .post_internal_cmd = ata_dummy_qc_noret,
7572 .irq_clear = ata_dummy_noret,
7573 .port_start = ata_dummy_ret0,
7574 .port_stop = ata_dummy_noret,
7575};
7576
21b0ad4f
TH
7577const struct ata_port_info ata_dummy_port_info = {
7578 .port_ops = &ata_dummy_port_ops,
7579};
7580
1da177e4
LT
7581/*
7582 * libata is essentially a library of internal helper functions for
7583 * low-level ATA host controller drivers. As such, the API/ABI is
7584 * likely to change as new drivers are added and updated.
7585 * Do not depend on ABI/API stability.
7586 */
e9c83914
TH
7587EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7588EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7589EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7590EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7591EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7592EXPORT_SYMBOL_GPL(ata_std_bios_param);
7593EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7594EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7595EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7596EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7597EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7598EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7599EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7600EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7601EXPORT_SYMBOL_GPL(ata_sg_init);
7602EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7603EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7604EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7605EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7606EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7607EXPORT_SYMBOL_GPL(ata_tf_load);
7608EXPORT_SYMBOL_GPL(ata_tf_read);
7609EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7610EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7611EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7612EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7613EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7614EXPORT_SYMBOL_GPL(ata_check_status);
7615EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7616EXPORT_SYMBOL_GPL(ata_exec_command);
7617EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7618EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7619EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7620EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7621EXPORT_SYMBOL_GPL(ata_data_xfer);
7622EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7623EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7624EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7625EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7626EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7627EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7628EXPORT_SYMBOL_GPL(ata_bmdma_start);
7629EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7630EXPORT_SYMBOL_GPL(ata_bmdma_status);
7631EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7632EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7633EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7634EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7635EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7636EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7637EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7638EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7639EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7640EXPORT_SYMBOL_GPL(sata_link_debounce);
7641EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4 7642EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7643EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7644EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7645EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7646EXPORT_SYMBOL_GPL(sata_std_hardreset);
7647EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7648EXPORT_SYMBOL_GPL(ata_dev_classify);
7649EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7650EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7651EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7652EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7653EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7654EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7655EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7656EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7657EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7658EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7659EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7660EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7661EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7662EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7663EXPORT_SYMBOL_GPL(sata_scr_valid);
7664EXPORT_SYMBOL_GPL(sata_scr_read);
7665EXPORT_SYMBOL_GPL(sata_scr_write);
7666EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7667EXPORT_SYMBOL_GPL(ata_link_online);
7668EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7669#ifdef CONFIG_PM
cca3974e
JG
7670EXPORT_SYMBOL_GPL(ata_host_suspend);
7671EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7672#endif /* CONFIG_PM */
6a62a04d
TH
7673EXPORT_SYMBOL_GPL(ata_id_string);
7674EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7675EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7676EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7677
1bc4ccff 7678EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7679EXPORT_SYMBOL_GPL(ata_timing_compute);
7680EXPORT_SYMBOL_GPL(ata_timing_merge);
7681
1da177e4
LT
7682#ifdef CONFIG_PCI
7683EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7684EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7685EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7686EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7687EXPORT_SYMBOL_GPL(ata_pci_init_one);
7688EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7689#ifdef CONFIG_PM
500530f6
TH
7690EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7691EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7692EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7693EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7694#endif /* CONFIG_PM */
67951ade
AC
7695EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7696EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7697#endif /* CONFIG_PCI */
9b847548 7698
31f88384 7699EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7700EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7701EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7702EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7703EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7704
b64bbc39
TH
7705EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7706EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7707EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7708EXPORT_SYMBOL_GPL(ata_port_desc);
7709#ifdef CONFIG_PCI
7710EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7711#endif /* CONFIG_PCI */
7b70fc03 7712EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7713EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7714EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7715EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7716EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7717EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7718EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7719EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7720EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7721EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7722EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7723EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7724
7725EXPORT_SYMBOL_GPL(ata_cable_40wire);
7726EXPORT_SYMBOL_GPL(ata_cable_80wire);
7727EXPORT_SYMBOL_GPL(ata_cable_unknown);
7728EXPORT_SYMBOL_GPL(ata_cable_sata);