Merge branch 'x86-platform-next' into x86-platform
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
79318057 59#include <linux/async.h>
e18086d6 60#include <linux/log2.h>
5a0e3ad6 61#include <linux/slab.h>
1da177e4 62#include <scsi/scsi.h>
193515d5 63#include <scsi/scsi_cmnd.h>
1da177e4
LT
64#include <scsi/scsi_host.h>
65#include <linux/libata.h>
1da177e4 66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
9990b6f3 68#include <linux/ratelimit.h>
1da177e4
LT
69
70#include "libata.h"
d9027470 71#include "libata-transport.h"
fda0efc5 72
d7bb4cc7 73/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
74const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
75const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
76const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 77
029cfd6b 78const struct ata_port_operations ata_base_port_ops = {
0aa1113d 79 .prereset = ata_std_prereset,
203c75b8 80 .postreset = ata_std_postreset,
a1efdaba 81 .error_handler = ata_std_error_handler,
029cfd6b
TH
82};
83
84const struct ata_port_operations sata_port_ops = {
85 .inherits = &ata_base_port_ops,
86
87 .qc_defer = ata_std_qc_defer,
57c9efdf 88 .hardreset = sata_std_hardreset,
029cfd6b
TH
89};
90
3373efd8
TH
91static unsigned int ata_dev_init_params(struct ata_device *dev,
92 u16 heads, u16 sectors);
93static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
94static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 95static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 96
f3187195 97unsigned int ata_print_id = 1;
1da177e4 98
33267325
TH
99struct ata_force_param {
100 const char *name;
101 unsigned int cbl;
102 int spd_limit;
103 unsigned long xfer_mask;
104 unsigned int horkage_on;
105 unsigned int horkage_off;
05944bdf 106 unsigned int lflags;
33267325
TH
107};
108
109struct ata_force_ent {
110 int port;
111 int device;
112 struct ata_force_param param;
113};
114
115static struct ata_force_ent *ata_force_tbl;
116static int ata_force_tbl_size;
117
118static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
119/* param_buf is thrown away after initialization, disallow read */
120module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
121MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
122
2486fa56 123static int atapi_enabled = 1;
1623c81e 124module_param(atapi_enabled, int, 0444);
ad5d8eac 125MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 126
c5c61bda 127static int atapi_dmadir = 0;
95de719a 128module_param(atapi_dmadir, int, 0444);
ad5d8eac 129MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 130
baf4fdfa
ML
131int atapi_passthru16 = 1;
132module_param(atapi_passthru16, int, 0444);
ad5d8eac 133MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 134
c3c013a2
JG
135int libata_fua = 0;
136module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 137MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 138
2dcb407e 139static int ata_ignore_hpa;
1e999736
AC
140module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
141MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
142
b3a70601
AC
143static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
144module_param_named(dma, libata_dma_mask, int, 0444);
145MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
146
87fbc5a0 147static int ata_probe_timeout;
a8601e5f
AM
148module_param(ata_probe_timeout, int, 0444);
149MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
150
6ebe9d86 151int libata_noacpi = 0;
d7d0dad6 152module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 153MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 154
ae8d4ee7
AC
155int libata_allow_tpm = 0;
156module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 157MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 158
e7ecd435
TH
159static int atapi_an;
160module_param(atapi_an, int, 0444);
161MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
162
1da177e4
LT
163MODULE_AUTHOR("Jeff Garzik");
164MODULE_DESCRIPTION("Library module for ATA devices");
165MODULE_LICENSE("GPL");
166MODULE_VERSION(DRV_VERSION);
167
0baab86b 168
9913ff8a
TH
169static bool ata_sstatus_online(u32 sstatus)
170{
171 return (sstatus & 0xf) == 0x3;
172}
173
1eca4365
TH
174/**
175 * ata_link_next - link iteration helper
176 * @link: the previous link, NULL to start
177 * @ap: ATA port containing links to iterate
178 * @mode: iteration mode, one of ATA_LITER_*
179 *
180 * LOCKING:
181 * Host lock or EH context.
aadffb68 182 *
1eca4365
TH
183 * RETURNS:
184 * Pointer to the next link.
aadffb68 185 */
1eca4365
TH
186struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 enum ata_link_iter_mode mode)
aadffb68 188{
1eca4365
TH
189 BUG_ON(mode != ATA_LITER_EDGE &&
190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191
aadffb68 192 /* NULL link indicates start of iteration */
1eca4365
TH
193 if (!link)
194 switch (mode) {
195 case ATA_LITER_EDGE:
196 case ATA_LITER_PMP_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 /* fall through */
200 case ATA_LITER_HOST_FIRST:
201 return &ap->link;
202 }
aadffb68 203
1eca4365
TH
204 /* we just iterated over the host link, what's next? */
205 if (link == &ap->link)
206 switch (mode) {
207 case ATA_LITER_HOST_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_PMP_FIRST:
212 if (unlikely(ap->slave_link))
b1c72916 213 return ap->slave_link;
1eca4365
TH
214 /* fall through */
215 case ATA_LITER_EDGE:
aadffb68 216 return NULL;
b1c72916 217 }
aadffb68 218
b1c72916
TH
219 /* slave_link excludes PMP */
220 if (unlikely(link == ap->slave_link))
221 return NULL;
222
1eca4365 223 /* we were over a PMP link */
aadffb68
TH
224 if (++link < ap->pmp_link + ap->nr_pmp_links)
225 return link;
1eca4365
TH
226
227 if (mode == ATA_LITER_PMP_FIRST)
228 return &ap->link;
229
aadffb68
TH
230 return NULL;
231}
232
1eca4365
TH
233/**
234 * ata_dev_next - device iteration helper
235 * @dev: the previous device, NULL to start
236 * @link: ATA link containing devices to iterate
237 * @mode: iteration mode, one of ATA_DITER_*
238 *
239 * LOCKING:
240 * Host lock or EH context.
241 *
242 * RETURNS:
243 * Pointer to the next device.
244 */
245struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
246 enum ata_dev_iter_mode mode)
247{
248 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
249 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
250
251 /* NULL dev indicates start of iteration */
252 if (!dev)
253 switch (mode) {
254 case ATA_DITER_ENABLED:
255 case ATA_DITER_ALL:
256 dev = link->device;
257 goto check;
258 case ATA_DITER_ENABLED_REVERSE:
259 case ATA_DITER_ALL_REVERSE:
260 dev = link->device + ata_link_max_devices(link) - 1;
261 goto check;
262 }
263
264 next:
265 /* move to the next one */
266 switch (mode) {
267 case ATA_DITER_ENABLED:
268 case ATA_DITER_ALL:
269 if (++dev < link->device + ata_link_max_devices(link))
270 goto check;
271 return NULL;
272 case ATA_DITER_ENABLED_REVERSE:
273 case ATA_DITER_ALL_REVERSE:
274 if (--dev >= link->device)
275 goto check;
276 return NULL;
277 }
278
279 check:
280 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
281 !ata_dev_enabled(dev))
282 goto next;
283 return dev;
284}
285
b1c72916
TH
286/**
287 * ata_dev_phys_link - find physical link for a device
288 * @dev: ATA device to look up physical link for
289 *
290 * Look up physical link which @dev is attached to. Note that
291 * this is different from @dev->link only when @dev is on slave
292 * link. For all other cases, it's the same as @dev->link.
293 *
294 * LOCKING:
295 * Don't care.
296 *
297 * RETURNS:
298 * Pointer to the found physical link.
299 */
300struct ata_link *ata_dev_phys_link(struct ata_device *dev)
301{
302 struct ata_port *ap = dev->link->ap;
303
304 if (!ap->slave_link)
305 return dev->link;
306 if (!dev->devno)
307 return &ap->link;
308 return ap->slave_link;
309}
310
33267325
TH
311/**
312 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 313 * @ap: ATA port of interest
33267325
TH
314 *
315 * Force cable type according to libata.force and whine about it.
316 * The last entry which has matching port number is used, so it
317 * can be specified as part of device force parameters. For
318 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
319 * same effect.
320 *
321 * LOCKING:
322 * EH context.
323 */
324void ata_force_cbl(struct ata_port *ap)
325{
326 int i;
327
328 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
329 const struct ata_force_ent *fe = &ata_force_tbl[i];
330
331 if (fe->port != -1 && fe->port != ap->print_id)
332 continue;
333
334 if (fe->param.cbl == ATA_CBL_NONE)
335 continue;
336
337 ap->cbl = fe->param.cbl;
338 ata_port_printk(ap, KERN_NOTICE,
339 "FORCE: cable set to %s\n", fe->param.name);
340 return;
341 }
342}
343
344/**
05944bdf 345 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
346 * @link: ATA link of interest
347 *
05944bdf
TH
348 * Force link flags and SATA spd limit according to libata.force
349 * and whine about it. When only the port part is specified
350 * (e.g. 1:), the limit applies to all links connected to both
351 * the host link and all fan-out ports connected via PMP. If the
352 * device part is specified as 0 (e.g. 1.00:), it specifies the
353 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
354 * points to the host link whether PMP is attached or not. If the
355 * controller has slave link, device number 16 points to it.
33267325
TH
356 *
357 * LOCKING:
358 * EH context.
359 */
05944bdf 360static void ata_force_link_limits(struct ata_link *link)
33267325 361{
05944bdf 362 bool did_spd = false;
b1c72916
TH
363 int linkno = link->pmp;
364 int i;
33267325
TH
365
366 if (ata_is_host_link(link))
b1c72916 367 linkno += 15;
33267325
TH
368
369 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
370 const struct ata_force_ent *fe = &ata_force_tbl[i];
371
372 if (fe->port != -1 && fe->port != link->ap->print_id)
373 continue;
374
375 if (fe->device != -1 && fe->device != linkno)
376 continue;
377
05944bdf
TH
378 /* only honor the first spd limit */
379 if (!did_spd && fe->param.spd_limit) {
380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
381 ata_link_printk(link, KERN_NOTICE,
382 "FORCE: PHY spd limit set to %s\n",
383 fe->param.name);
384 did_spd = true;
385 }
33267325 386
05944bdf
TH
387 /* let lflags stack */
388 if (fe->param.lflags) {
389 link->flags |= fe->param.lflags;
390 ata_link_printk(link, KERN_NOTICE,
391 "FORCE: link flag 0x%x forced -> 0x%x\n",
392 fe->param.lflags, link->flags);
393 }
33267325
TH
394 }
395}
396
397/**
398 * ata_force_xfermask - force xfermask according to libata.force
399 * @dev: ATA device of interest
400 *
401 * Force xfer_mask according to libata.force and whine about it.
402 * For consistency with link selection, device number 15 selects
403 * the first device connected to the host link.
404 *
405 * LOCKING:
406 * EH context.
407 */
408static void ata_force_xfermask(struct ata_device *dev)
409{
410 int devno = dev->link->pmp + dev->devno;
411 int alt_devno = devno;
412 int i;
413
b1c72916
TH
414 /* allow n.15/16 for devices attached to host port */
415 if (ata_is_host_link(dev->link))
416 alt_devno += 15;
33267325
TH
417
418 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
419 const struct ata_force_ent *fe = &ata_force_tbl[i];
420 unsigned long pio_mask, mwdma_mask, udma_mask;
421
422 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
423 continue;
424
425 if (fe->device != -1 && fe->device != devno &&
426 fe->device != alt_devno)
427 continue;
428
429 if (!fe->param.xfer_mask)
430 continue;
431
432 ata_unpack_xfermask(fe->param.xfer_mask,
433 &pio_mask, &mwdma_mask, &udma_mask);
434 if (udma_mask)
435 dev->udma_mask = udma_mask;
436 else if (mwdma_mask) {
437 dev->udma_mask = 0;
438 dev->mwdma_mask = mwdma_mask;
439 } else {
440 dev->udma_mask = 0;
441 dev->mwdma_mask = 0;
442 dev->pio_mask = pio_mask;
443 }
444
445 ata_dev_printk(dev, KERN_NOTICE,
446 "FORCE: xfer_mask set to %s\n", fe->param.name);
447 return;
448 }
449}
450
451/**
452 * ata_force_horkage - force horkage according to libata.force
453 * @dev: ATA device of interest
454 *
455 * Force horkage according to libata.force and whine about it.
456 * For consistency with link selection, device number 15 selects
457 * the first device connected to the host link.
458 *
459 * LOCKING:
460 * EH context.
461 */
462static void ata_force_horkage(struct ata_device *dev)
463{
464 int devno = dev->link->pmp + dev->devno;
465 int alt_devno = devno;
466 int i;
467
b1c72916
TH
468 /* allow n.15/16 for devices attached to host port */
469 if (ata_is_host_link(dev->link))
470 alt_devno += 15;
33267325
TH
471
472 for (i = 0; i < ata_force_tbl_size; i++) {
473 const struct ata_force_ent *fe = &ata_force_tbl[i];
474
475 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
476 continue;
477
478 if (fe->device != -1 && fe->device != devno &&
479 fe->device != alt_devno)
480 continue;
481
482 if (!(~dev->horkage & fe->param.horkage_on) &&
483 !(dev->horkage & fe->param.horkage_off))
484 continue;
485
486 dev->horkage |= fe->param.horkage_on;
487 dev->horkage &= ~fe->param.horkage_off;
488
489 ata_dev_printk(dev, KERN_NOTICE,
490 "FORCE: horkage modified (%s)\n", fe->param.name);
491 }
492}
493
436d34b3
TH
494/**
495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496 * @opcode: SCSI opcode
497 *
498 * Determine ATAPI command type from @opcode.
499 *
500 * LOCKING:
501 * None.
502 *
503 * RETURNS:
504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 */
506int atapi_cmd_type(u8 opcode)
507{
508 switch (opcode) {
509 case GPCMD_READ_10:
510 case GPCMD_READ_12:
511 return ATAPI_READ;
512
513 case GPCMD_WRITE_10:
514 case GPCMD_WRITE_12:
515 case GPCMD_WRITE_AND_VERIFY_10:
516 return ATAPI_WRITE;
517
518 case GPCMD_READ_CD:
519 case GPCMD_READ_CD_MSF:
520 return ATAPI_READ_CD;
521
e52dcc48
TH
522 case ATA_16:
523 case ATA_12:
524 if (atapi_passthru16)
525 return ATAPI_PASS_THRU;
526 /* fall thru */
436d34b3
TH
527 default:
528 return ATAPI_MISC;
529 }
530}
531
1da177e4
LT
532/**
533 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
534 * @tf: Taskfile to convert
1da177e4 535 * @pmp: Port multiplier port
9977126c
TH
536 * @is_cmd: This FIS is for command
537 * @fis: Buffer into which data will output
1da177e4
LT
538 *
539 * Converts a standard ATA taskfile to a Serial ATA
540 * FIS structure (Register - Host to Device).
541 *
542 * LOCKING:
543 * Inherited from caller.
544 */
9977126c 545void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 546{
9977126c
TH
547 fis[0] = 0x27; /* Register - Host to Device FIS */
548 fis[1] = pmp & 0xf; /* Port multiplier number*/
549 if (is_cmd)
550 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
551
1da177e4
LT
552 fis[2] = tf->command;
553 fis[3] = tf->feature;
554
555 fis[4] = tf->lbal;
556 fis[5] = tf->lbam;
557 fis[6] = tf->lbah;
558 fis[7] = tf->device;
559
560 fis[8] = tf->hob_lbal;
561 fis[9] = tf->hob_lbam;
562 fis[10] = tf->hob_lbah;
563 fis[11] = tf->hob_feature;
564
565 fis[12] = tf->nsect;
566 fis[13] = tf->hob_nsect;
567 fis[14] = 0;
568 fis[15] = tf->ctl;
569
570 fis[16] = 0;
571 fis[17] = 0;
572 fis[18] = 0;
573 fis[19] = 0;
574}
575
576/**
577 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
578 * @fis: Buffer from which data will be input
579 * @tf: Taskfile to output
580 *
e12a1be6 581 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
582 *
583 * LOCKING:
584 * Inherited from caller.
585 */
586
057ace5e 587void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
588{
589 tf->command = fis[2]; /* status */
590 tf->feature = fis[3]; /* error */
591
592 tf->lbal = fis[4];
593 tf->lbam = fis[5];
594 tf->lbah = fis[6];
595 tf->device = fis[7];
596
597 tf->hob_lbal = fis[8];
598 tf->hob_lbam = fis[9];
599 tf->hob_lbah = fis[10];
600
601 tf->nsect = fis[12];
602 tf->hob_nsect = fis[13];
603}
604
8cbd6df1
AL
605static const u8 ata_rw_cmds[] = {
606 /* pio multi */
607 ATA_CMD_READ_MULTI,
608 ATA_CMD_WRITE_MULTI,
609 ATA_CMD_READ_MULTI_EXT,
610 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
611 0,
612 0,
613 0,
614 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
615 /* pio */
616 ATA_CMD_PIO_READ,
617 ATA_CMD_PIO_WRITE,
618 ATA_CMD_PIO_READ_EXT,
619 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
620 0,
621 0,
622 0,
623 0,
8cbd6df1
AL
624 /* dma */
625 ATA_CMD_READ,
626 ATA_CMD_WRITE,
627 ATA_CMD_READ_EXT,
9a3dccc4
TH
628 ATA_CMD_WRITE_EXT,
629 0,
630 0,
631 0,
632 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 633};
1da177e4
LT
634
635/**
8cbd6df1 636 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
637 * @tf: command to examine and configure
638 * @dev: device tf belongs to
1da177e4 639 *
2e9edbf8 640 * Examine the device configuration and tf->flags to calculate
8cbd6df1 641 * the proper read/write commands and protocol to use.
1da177e4
LT
642 *
643 * LOCKING:
644 * caller.
645 */
bd056d7e 646static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 647{
9a3dccc4 648 u8 cmd;
1da177e4 649
9a3dccc4 650 int index, fua, lba48, write;
2e9edbf8 651
9a3dccc4 652 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
653 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
654 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 655
8cbd6df1
AL
656 if (dev->flags & ATA_DFLAG_PIO) {
657 tf->protocol = ATA_PROT_PIO;
9a3dccc4 658 index = dev->multi_count ? 0 : 8;
9af5c9c9 659 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
660 /* Unable to use DMA due to host limitation */
661 tf->protocol = ATA_PROT_PIO;
0565c26d 662 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
663 } else {
664 tf->protocol = ATA_PROT_DMA;
9a3dccc4 665 index = 16;
8cbd6df1 666 }
1da177e4 667
9a3dccc4
TH
668 cmd = ata_rw_cmds[index + fua + lba48 + write];
669 if (cmd) {
670 tf->command = cmd;
671 return 0;
672 }
673 return -1;
1da177e4
LT
674}
675
35b649fe
TH
676/**
677 * ata_tf_read_block - Read block address from ATA taskfile
678 * @tf: ATA taskfile of interest
679 * @dev: ATA device @tf belongs to
680 *
681 * LOCKING:
682 * None.
683 *
684 * Read block address from @tf. This function can handle all
685 * three address formats - LBA, LBA48 and CHS. tf->protocol and
686 * flags select the address format to use.
687 *
688 * RETURNS:
689 * Block address read from @tf.
690 */
691u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
692{
693 u64 block = 0;
694
695 if (tf->flags & ATA_TFLAG_LBA) {
696 if (tf->flags & ATA_TFLAG_LBA48) {
697 block |= (u64)tf->hob_lbah << 40;
698 block |= (u64)tf->hob_lbam << 32;
44901a96 699 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
700 } else
701 block |= (tf->device & 0xf) << 24;
702
703 block |= tf->lbah << 16;
704 block |= tf->lbam << 8;
705 block |= tf->lbal;
706 } else {
707 u32 cyl, head, sect;
708
709 cyl = tf->lbam | (tf->lbah << 8);
710 head = tf->device & 0xf;
711 sect = tf->lbal;
712
ac8672ea
TH
713 if (!sect) {
714 ata_dev_printk(dev, KERN_WARNING, "device reported "
715 "invalid CHS sector 0\n");
716 sect = 1; /* oh well */
717 }
718
719 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
720 }
721
722 return block;
723}
724
bd056d7e
TH
725/**
726 * ata_build_rw_tf - Build ATA taskfile for given read/write request
727 * @tf: Target ATA taskfile
728 * @dev: ATA device @tf belongs to
729 * @block: Block address
730 * @n_block: Number of blocks
731 * @tf_flags: RW/FUA etc...
732 * @tag: tag
733 *
734 * LOCKING:
735 * None.
736 *
737 * Build ATA taskfile @tf for read/write request described by
738 * @block, @n_block, @tf_flags and @tag on @dev.
739 *
740 * RETURNS:
741 *
742 * 0 on success, -ERANGE if the request is too large for @dev,
743 * -EINVAL if the request is invalid.
744 */
745int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
746 u64 block, u32 n_block, unsigned int tf_flags,
747 unsigned int tag)
748{
749 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
750 tf->flags |= tf_flags;
751
6d1245bf 752 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
753 /* yay, NCQ */
754 if (!lba_48_ok(block, n_block))
755 return -ERANGE;
756
757 tf->protocol = ATA_PROT_NCQ;
758 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
759
760 if (tf->flags & ATA_TFLAG_WRITE)
761 tf->command = ATA_CMD_FPDMA_WRITE;
762 else
763 tf->command = ATA_CMD_FPDMA_READ;
764
765 tf->nsect = tag << 3;
766 tf->hob_feature = (n_block >> 8) & 0xff;
767 tf->feature = n_block & 0xff;
768
769 tf->hob_lbah = (block >> 40) & 0xff;
770 tf->hob_lbam = (block >> 32) & 0xff;
771 tf->hob_lbal = (block >> 24) & 0xff;
772 tf->lbah = (block >> 16) & 0xff;
773 tf->lbam = (block >> 8) & 0xff;
774 tf->lbal = block & 0xff;
775
776 tf->device = 1 << 6;
777 if (tf->flags & ATA_TFLAG_FUA)
778 tf->device |= 1 << 7;
779 } else if (dev->flags & ATA_DFLAG_LBA) {
780 tf->flags |= ATA_TFLAG_LBA;
781
782 if (lba_28_ok(block, n_block)) {
783 /* use LBA28 */
784 tf->device |= (block >> 24) & 0xf;
785 } else if (lba_48_ok(block, n_block)) {
786 if (!(dev->flags & ATA_DFLAG_LBA48))
787 return -ERANGE;
788
789 /* use LBA48 */
790 tf->flags |= ATA_TFLAG_LBA48;
791
792 tf->hob_nsect = (n_block >> 8) & 0xff;
793
794 tf->hob_lbah = (block >> 40) & 0xff;
795 tf->hob_lbam = (block >> 32) & 0xff;
796 tf->hob_lbal = (block >> 24) & 0xff;
797 } else
798 /* request too large even for LBA48 */
799 return -ERANGE;
800
801 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
802 return -EINVAL;
803
804 tf->nsect = n_block & 0xff;
805
806 tf->lbah = (block >> 16) & 0xff;
807 tf->lbam = (block >> 8) & 0xff;
808 tf->lbal = block & 0xff;
809
810 tf->device |= ATA_LBA;
811 } else {
812 /* CHS */
813 u32 sect, head, cyl, track;
814
815 /* The request -may- be too large for CHS addressing. */
816 if (!lba_28_ok(block, n_block))
817 return -ERANGE;
818
819 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
820 return -EINVAL;
821
822 /* Convert LBA to CHS */
823 track = (u32)block / dev->sectors;
824 cyl = track / dev->heads;
825 head = track % dev->heads;
826 sect = (u32)block % dev->sectors + 1;
827
828 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
829 (u32)block, track, cyl, head, sect);
830
831 /* Check whether the converted CHS can fit.
832 Cylinder: 0-65535
833 Head: 0-15
834 Sector: 1-255*/
835 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
836 return -ERANGE;
837
838 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
839 tf->lbal = sect;
840 tf->lbam = cyl;
841 tf->lbah = cyl >> 8;
842 tf->device |= head;
843 }
844
845 return 0;
846}
847
cb95d562
TH
848/**
849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
850 * @pio_mask: pio_mask
851 * @mwdma_mask: mwdma_mask
852 * @udma_mask: udma_mask
853 *
854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
855 * unsigned int xfer_mask.
856 *
857 * LOCKING:
858 * None.
859 *
860 * RETURNS:
861 * Packed xfer_mask.
862 */
7dc951ae
TH
863unsigned long ata_pack_xfermask(unsigned long pio_mask,
864 unsigned long mwdma_mask,
865 unsigned long udma_mask)
cb95d562
TH
866{
867 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
868 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
869 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
870}
871
c0489e4e
TH
872/**
873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
874 * @xfer_mask: xfer_mask to unpack
875 * @pio_mask: resulting pio_mask
876 * @mwdma_mask: resulting mwdma_mask
877 * @udma_mask: resulting udma_mask
878 *
879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
880 * Any NULL distination masks will be ignored.
881 */
7dc951ae
TH
882void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
883 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
884{
885 if (pio_mask)
886 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
887 if (mwdma_mask)
888 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
889 if (udma_mask)
890 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
891}
892
cb95d562 893static const struct ata_xfer_ent {
be9a50c8 894 int shift, bits;
cb95d562
TH
895 u8 base;
896} ata_xfer_tbl[] = {
70cd071e
TH
897 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
898 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
899 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
900 { -1, },
901};
902
903/**
904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
905 * @xfer_mask: xfer_mask of interest
906 *
907 * Return matching XFER_* value for @xfer_mask. Only the highest
908 * bit of @xfer_mask is considered.
909 *
910 * LOCKING:
911 * None.
912 *
913 * RETURNS:
70cd071e 914 * Matching XFER_* value, 0xff if no match found.
cb95d562 915 */
7dc951ae 916u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
917{
918 int highbit = fls(xfer_mask) - 1;
919 const struct ata_xfer_ent *ent;
920
921 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
922 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
923 return ent->base + highbit - ent->shift;
70cd071e 924 return 0xff;
cb95d562
TH
925}
926
927/**
928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
929 * @xfer_mode: XFER_* of interest
930 *
931 * Return matching xfer_mask for @xfer_mode.
932 *
933 * LOCKING:
934 * None.
935 *
936 * RETURNS:
937 * Matching xfer_mask, 0 if no match found.
938 */
7dc951ae 939unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
940{
941 const struct ata_xfer_ent *ent;
942
943 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
944 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
945 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
946 & ~((1 << ent->shift) - 1);
cb95d562
TH
947 return 0;
948}
949
950/**
951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
952 * @xfer_mode: XFER_* of interest
953 *
954 * Return matching xfer_shift for @xfer_mode.
955 *
956 * LOCKING:
957 * None.
958 *
959 * RETURNS:
960 * Matching xfer_shift, -1 if no match found.
961 */
7dc951ae 962int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
963{
964 const struct ata_xfer_ent *ent;
965
966 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
967 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
968 return ent->shift;
969 return -1;
970}
971
1da177e4 972/**
1da7b0d0
TH
973 * ata_mode_string - convert xfer_mask to string
974 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
975 *
976 * Determine string which represents the highest speed
1da7b0d0 977 * (highest bit in @modemask).
1da177e4
LT
978 *
979 * LOCKING:
980 * None.
981 *
982 * RETURNS:
983 * Constant C string representing highest speed listed in
1da7b0d0 984 * @mode_mask, or the constant C string "<n/a>".
1da177e4 985 */
7dc951ae 986const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 987{
75f554bc
TH
988 static const char * const xfer_mode_str[] = {
989 "PIO0",
990 "PIO1",
991 "PIO2",
992 "PIO3",
993 "PIO4",
b352e57d
AC
994 "PIO5",
995 "PIO6",
75f554bc
TH
996 "MWDMA0",
997 "MWDMA1",
998 "MWDMA2",
b352e57d
AC
999 "MWDMA3",
1000 "MWDMA4",
75f554bc
TH
1001 "UDMA/16",
1002 "UDMA/25",
1003 "UDMA/33",
1004 "UDMA/44",
1005 "UDMA/66",
1006 "UDMA/100",
1007 "UDMA/133",
1008 "UDMA7",
1009 };
1da7b0d0 1010 int highbit;
1da177e4 1011
1da7b0d0
TH
1012 highbit = fls(xfer_mask) - 1;
1013 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014 return xfer_mode_str[highbit];
1da177e4 1015 return "<n/a>";
1da177e4
LT
1016}
1017
d9027470 1018const char *sata_spd_string(unsigned int spd)
4c360c81
TH
1019{
1020 static const char * const spd_str[] = {
1021 "1.5 Gbps",
1022 "3.0 Gbps",
8522ee25 1023 "6.0 Gbps",
4c360c81
TH
1024 };
1025
1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 return "<unknown>";
1028 return spd_str[spd - 1];
1029}
1030
1da177e4
LT
1031/**
1032 * ata_dev_classify - determine device type based on ATA-spec signature
1033 * @tf: ATA taskfile register set for device to be identified
1034 *
1035 * Determine from taskfile register contents whether a device is
1036 * ATA or ATAPI, as per "Signature and persistence" section
1037 * of ATA/PI spec (volume 1, sect 5.14).
1038 *
1039 * LOCKING:
1040 * None.
1041 *
1042 * RETURNS:
633273a3
TH
1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1044 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1045 */
057ace5e 1046unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1047{
1048 /* Apple's open source Darwin code hints that some devices only
1049 * put a proper signature into the LBA mid/high registers,
1050 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1051 *
1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055 * spec has never mentioned about using different signatures
1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1057 * Multiplier specification began to use 0x69/0x96 to identify
1058 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 * 0x69/0x96 shortly and described them as reserved for
1061 * SerialATA.
1062 *
1063 * We follow the current spec and consider that 0x69/0x96
1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 * SEMB signature. This is worked around in
1067 * ata_dev_read_id().
1da177e4 1068 */
633273a3 1069 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1070 DPRINTK("found ATA device by sig\n");
1071 return ATA_DEV_ATA;
1072 }
1073
633273a3 1074 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1075 DPRINTK("found ATAPI device by sig\n");
1076 return ATA_DEV_ATAPI;
1077 }
1078
633273a3
TH
1079 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1080 DPRINTK("found PMP device by sig\n");
1081 return ATA_DEV_PMP;
1082 }
1083
1084 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1085 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1086 return ATA_DEV_SEMB;
633273a3
TH
1087 }
1088
1da177e4
LT
1089 DPRINTK("unknown device\n");
1090 return ATA_DEV_UNKNOWN;
1091}
1092
1da177e4 1093/**
6a62a04d 1094 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1095 * @id: IDENTIFY DEVICE results we will examine
1096 * @s: string into which data is output
1097 * @ofs: offset into identify device page
1098 * @len: length of string to return. must be an even number.
1099 *
1100 * The strings in the IDENTIFY DEVICE page are broken up into
1101 * 16-bit chunks. Run through the string, and output each
1102 * 8-bit chunk linearly, regardless of platform.
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
6a62a04d
TH
1108void ata_id_string(const u16 *id, unsigned char *s,
1109 unsigned int ofs, unsigned int len)
1da177e4
LT
1110{
1111 unsigned int c;
1112
963e4975
AC
1113 BUG_ON(len & 1);
1114
1da177e4
LT
1115 while (len > 0) {
1116 c = id[ofs] >> 8;
1117 *s = c;
1118 s++;
1119
1120 c = id[ofs] & 0xff;
1121 *s = c;
1122 s++;
1123
1124 ofs++;
1125 len -= 2;
1126 }
1127}
1128
0e949ff3 1129/**
6a62a04d 1130 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1131 * @id: IDENTIFY DEVICE results we will examine
1132 * @s: string into which data is output
1133 * @ofs: offset into identify device page
1134 * @len: length of string to return. must be an odd number.
1135 *
6a62a04d 1136 * This function is identical to ata_id_string except that it
0e949ff3
TH
1137 * trims trailing spaces and terminates the resulting string with
1138 * null. @len must be actual maximum length (even number) + 1.
1139 *
1140 * LOCKING:
1141 * caller.
1142 */
6a62a04d
TH
1143void ata_id_c_string(const u16 *id, unsigned char *s,
1144 unsigned int ofs, unsigned int len)
0e949ff3
TH
1145{
1146 unsigned char *p;
1147
6a62a04d 1148 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1149
1150 p = s + strnlen(s, len - 1);
1151 while (p > s && p[-1] == ' ')
1152 p--;
1153 *p = '\0';
1154}
0baab86b 1155
db6f8759
TH
1156static u64 ata_id_n_sectors(const u16 *id)
1157{
1158 if (ata_id_has_lba(id)) {
1159 if (ata_id_has_lba48(id))
968e594a 1160 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1161 else
968e594a 1162 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1163 } else {
1164 if (ata_id_current_chs_valid(id))
968e594a
RH
1165 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1166 id[ATA_ID_CUR_SECTORS];
db6f8759 1167 else
968e594a
RH
1168 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1169 id[ATA_ID_SECTORS];
db6f8759
TH
1170 }
1171}
1172
a5987e0a 1173u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1174{
1175 u64 sectors = 0;
1176
1177 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1178 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1179 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1180 sectors |= (tf->lbah & 0xff) << 16;
1181 sectors |= (tf->lbam & 0xff) << 8;
1182 sectors |= (tf->lbal & 0xff);
1183
a5987e0a 1184 return sectors;
1e999736
AC
1185}
1186
a5987e0a 1187u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1188{
1189 u64 sectors = 0;
1190
1191 sectors |= (tf->device & 0x0f) << 24;
1192 sectors |= (tf->lbah & 0xff) << 16;
1193 sectors |= (tf->lbam & 0xff) << 8;
1194 sectors |= (tf->lbal & 0xff);
1195
a5987e0a 1196 return sectors;
1e999736
AC
1197}
1198
1199/**
c728a914
TH
1200 * ata_read_native_max_address - Read native max address
1201 * @dev: target device
1202 * @max_sectors: out parameter for the result native max address
1e999736 1203 *
c728a914
TH
1204 * Perform an LBA48 or LBA28 native size query upon the device in
1205 * question.
1e999736 1206 *
c728a914
TH
1207 * RETURNS:
1208 * 0 on success, -EACCES if command is aborted by the drive.
1209 * -EIO on other errors.
1e999736 1210 */
c728a914 1211static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1212{
c728a914 1213 unsigned int err_mask;
1e999736 1214 struct ata_taskfile tf;
c728a914 1215 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1216
1217 ata_tf_init(dev, &tf);
1218
c728a914 1219 /* always clear all address registers */
1e999736 1220 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1221
c728a914
TH
1222 if (lba48) {
1223 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1224 tf.flags |= ATA_TFLAG_LBA48;
1225 } else
1226 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1227
1e999736 1228 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1229 tf.device |= ATA_LBA;
1230
2b789108 1231 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1232 if (err_mask) {
1233 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1234 "max address (err_mask=0x%x)\n", err_mask);
1235 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1236 return -EACCES;
1237 return -EIO;
1238 }
1e999736 1239
c728a914 1240 if (lba48)
a5987e0a 1241 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1242 else
a5987e0a 1243 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1244 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1245 (*max_sectors)--;
c728a914 1246 return 0;
1e999736
AC
1247}
1248
1249/**
c728a914
TH
1250 * ata_set_max_sectors - Set max sectors
1251 * @dev: target device
6b38d1d1 1252 * @new_sectors: new max sectors value to set for the device
1e999736 1253 *
c728a914
TH
1254 * Set max sectors of @dev to @new_sectors.
1255 *
1256 * RETURNS:
1257 * 0 on success, -EACCES if command is aborted or denied (due to
1258 * previous non-volatile SET_MAX) by the drive. -EIO on other
1259 * errors.
1e999736 1260 */
05027adc 1261static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1262{
c728a914 1263 unsigned int err_mask;
1e999736 1264 struct ata_taskfile tf;
c728a914 1265 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1266
1267 new_sectors--;
1268
1269 ata_tf_init(dev, &tf);
1270
1e999736 1271 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1272
1273 if (lba48) {
1274 tf.command = ATA_CMD_SET_MAX_EXT;
1275 tf.flags |= ATA_TFLAG_LBA48;
1276
1277 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1278 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1279 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1280 } else {
c728a914
TH
1281 tf.command = ATA_CMD_SET_MAX;
1282
1e582ba4
TH
1283 tf.device |= (new_sectors >> 24) & 0xf;
1284 }
1285
1e999736 1286 tf.protocol |= ATA_PROT_NODATA;
c728a914 1287 tf.device |= ATA_LBA;
1e999736
AC
1288
1289 tf.lbal = (new_sectors >> 0) & 0xff;
1290 tf.lbam = (new_sectors >> 8) & 0xff;
1291 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1292
2b789108 1293 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1294 if (err_mask) {
1295 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1296 "max address (err_mask=0x%x)\n", err_mask);
1297 if (err_mask == AC_ERR_DEV &&
1298 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1299 return -EACCES;
1300 return -EIO;
1301 }
1302
c728a914 1303 return 0;
1e999736
AC
1304}
1305
1306/**
1307 * ata_hpa_resize - Resize a device with an HPA set
1308 * @dev: Device to resize
1309 *
1310 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1311 * it if required to the full size of the media. The caller must check
1312 * the drive has the HPA feature set enabled.
05027adc
TH
1313 *
1314 * RETURNS:
1315 * 0 on success, -errno on failure.
1e999736 1316 */
05027adc 1317static int ata_hpa_resize(struct ata_device *dev)
1e999736 1318{
05027adc
TH
1319 struct ata_eh_context *ehc = &dev->link->eh_context;
1320 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1321 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1322 u64 sectors = ata_id_n_sectors(dev->id);
1323 u64 native_sectors;
c728a914 1324 int rc;
a617c09f 1325
05027adc
TH
1326 /* do we need to do it? */
1327 if (dev->class != ATA_DEV_ATA ||
1328 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1329 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1330 return 0;
1e999736 1331
05027adc
TH
1332 /* read native max address */
1333 rc = ata_read_native_max_address(dev, &native_sectors);
1334 if (rc) {
dda7aba1
TH
1335 /* If device aborted the command or HPA isn't going to
1336 * be unlocked, skip HPA resizing.
05027adc 1337 */
445d211b 1338 if (rc == -EACCES || !unlock_hpa) {
05027adc 1339 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
dda7aba1 1340 "broken, skipping HPA handling\n");
05027adc
TH
1341 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1342
1343 /* we can continue if device aborted the command */
1344 if (rc == -EACCES)
1345 rc = 0;
1e999736 1346 }
37301a55 1347
05027adc
TH
1348 return rc;
1349 }
5920dadf 1350 dev->n_native_sectors = native_sectors;
05027adc
TH
1351
1352 /* nothing to do? */
445d211b 1353 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1354 if (!print_info || native_sectors == sectors)
1355 return 0;
1356
1357 if (native_sectors > sectors)
1358 ata_dev_printk(dev, KERN_INFO,
1359 "HPA detected: current %llu, native %llu\n",
1360 (unsigned long long)sectors,
1361 (unsigned long long)native_sectors);
1362 else if (native_sectors < sectors)
1363 ata_dev_printk(dev, KERN_WARNING,
1364 "native sectors (%llu) is smaller than "
1365 "sectors (%llu)\n",
1366 (unsigned long long)native_sectors,
1367 (unsigned long long)sectors);
1368 return 0;
1369 }
1370
1371 /* let's unlock HPA */
1372 rc = ata_set_max_sectors(dev, native_sectors);
1373 if (rc == -EACCES) {
1374 /* if device aborted the command, skip HPA resizing */
1375 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1376 "(%llu -> %llu), skipping HPA handling\n",
1377 (unsigned long long)sectors,
1378 (unsigned long long)native_sectors);
1379 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1380 return 0;
1381 } else if (rc)
1382 return rc;
1383
1384 /* re-read IDENTIFY data */
1385 rc = ata_dev_reread_id(dev, 0);
1386 if (rc) {
1387 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1388 "data after HPA resizing\n");
1389 return rc;
1390 }
1391
1392 if (print_info) {
1393 u64 new_sectors = ata_id_n_sectors(dev->id);
1394 ata_dev_printk(dev, KERN_INFO,
1395 "HPA unlocked: %llu -> %llu, native %llu\n",
1396 (unsigned long long)sectors,
1397 (unsigned long long)new_sectors,
1398 (unsigned long long)native_sectors);
1399 }
1400
1401 return 0;
1e999736
AC
1402}
1403
1da177e4
LT
1404/**
1405 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1406 * @id: IDENTIFY DEVICE page to dump
1da177e4 1407 *
0bd3300a
TH
1408 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1409 * page.
1da177e4
LT
1410 *
1411 * LOCKING:
1412 * caller.
1413 */
1414
0bd3300a 1415static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1416{
1417 DPRINTK("49==0x%04x "
1418 "53==0x%04x "
1419 "63==0x%04x "
1420 "64==0x%04x "
1421 "75==0x%04x \n",
0bd3300a
TH
1422 id[49],
1423 id[53],
1424 id[63],
1425 id[64],
1426 id[75]);
1da177e4
LT
1427 DPRINTK("80==0x%04x "
1428 "81==0x%04x "
1429 "82==0x%04x "
1430 "83==0x%04x "
1431 "84==0x%04x \n",
0bd3300a
TH
1432 id[80],
1433 id[81],
1434 id[82],
1435 id[83],
1436 id[84]);
1da177e4
LT
1437 DPRINTK("88==0x%04x "
1438 "93==0x%04x\n",
0bd3300a
TH
1439 id[88],
1440 id[93]);
1da177e4
LT
1441}
1442
cb95d562
TH
1443/**
1444 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1445 * @id: IDENTIFY data to compute xfer mask from
1446 *
1447 * Compute the xfermask for this device. This is not as trivial
1448 * as it seems if we must consider early devices correctly.
1449 *
1450 * FIXME: pre IDE drive timing (do we care ?).
1451 *
1452 * LOCKING:
1453 * None.
1454 *
1455 * RETURNS:
1456 * Computed xfermask
1457 */
7dc951ae 1458unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1459{
7dc951ae 1460 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1461
1462 /* Usual case. Word 53 indicates word 64 is valid */
1463 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1464 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1465 pio_mask <<= 3;
1466 pio_mask |= 0x7;
1467 } else {
1468 /* If word 64 isn't valid then Word 51 high byte holds
1469 * the PIO timing number for the maximum. Turn it into
1470 * a mask.
1471 */
7a0f1c8a 1472 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1473 if (mode < 5) /* Valid PIO range */
2dcb407e 1474 pio_mask = (2 << mode) - 1;
46767aeb
AC
1475 else
1476 pio_mask = 1;
cb95d562
TH
1477
1478 /* But wait.. there's more. Design your standards by
1479 * committee and you too can get a free iordy field to
1480 * process. However its the speeds not the modes that
1481 * are supported... Note drivers using the timing API
1482 * will get this right anyway
1483 */
1484 }
1485
1486 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1487
b352e57d
AC
1488 if (ata_id_is_cfa(id)) {
1489 /*
1490 * Process compact flash extended modes
1491 */
62afe5d7
SS
1492 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1493 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1494
1495 if (pio)
1496 pio_mask |= (1 << 5);
1497 if (pio > 1)
1498 pio_mask |= (1 << 6);
1499 if (dma)
1500 mwdma_mask |= (1 << 3);
1501 if (dma > 1)
1502 mwdma_mask |= (1 << 4);
1503 }
1504
fb21f0d0
TH
1505 udma_mask = 0;
1506 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1507 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1508
1509 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1510}
1511
7102d230 1512static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1513{
77853bf2 1514 struct completion *waiting = qc->private_data;
a2a7a662 1515
a2a7a662 1516 complete(waiting);
a2a7a662
TH
1517}
1518
1519/**
2432697b 1520 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1521 * @dev: Device to which the command is sent
1522 * @tf: Taskfile registers for the command and the result
d69cf37d 1523 * @cdb: CDB for packet command
a2a7a662 1524 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1525 * @sgl: sg list for the data buffer of the command
2432697b 1526 * @n_elem: Number of sg entries
2b789108 1527 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1528 *
1529 * Executes libata internal command with timeout. @tf contains
1530 * command on entry and result on return. Timeout and error
1531 * conditions are reported via return value. No recovery action
1532 * is taken after a command times out. It's caller's duty to
1533 * clean up after timeout.
1534 *
1535 * LOCKING:
1536 * None. Should be called with kernel context, might sleep.
551e8889
TH
1537 *
1538 * RETURNS:
1539 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1540 */
2432697b
TH
1541unsigned ata_exec_internal_sg(struct ata_device *dev,
1542 struct ata_taskfile *tf, const u8 *cdb,
87260216 1543 int dma_dir, struct scatterlist *sgl,
2b789108 1544 unsigned int n_elem, unsigned long timeout)
a2a7a662 1545{
9af5c9c9
TH
1546 struct ata_link *link = dev->link;
1547 struct ata_port *ap = link->ap;
a2a7a662 1548 u8 command = tf->command;
87fbc5a0 1549 int auto_timeout = 0;
a2a7a662 1550 struct ata_queued_cmd *qc;
2ab7db1f 1551 unsigned int tag, preempted_tag;
dedaf2b0 1552 u32 preempted_sactive, preempted_qc_active;
da917d69 1553 int preempted_nr_active_links;
60be6b9a 1554 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1555 unsigned long flags;
77853bf2 1556 unsigned int err_mask;
d95a717f 1557 int rc;
a2a7a662 1558
ba6a1308 1559 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1560
e3180499 1561 /* no internal command while frozen */
b51e9e5d 1562 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1563 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1564 return AC_ERR_SYSTEM;
1565 }
1566
2ab7db1f 1567 /* initialize internal qc */
a2a7a662 1568
2ab7db1f
TH
1569 /* XXX: Tag 0 is used for drivers with legacy EH as some
1570 * drivers choke if any other tag is given. This breaks
1571 * ata_tag_internal() test for those drivers. Don't use new
1572 * EH stuff without converting to it.
1573 */
1574 if (ap->ops->error_handler)
1575 tag = ATA_TAG_INTERNAL;
1576 else
1577 tag = 0;
1578
8a8bc223
TH
1579 if (test_and_set_bit(tag, &ap->qc_allocated))
1580 BUG();
f69499f4 1581 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1582
1583 qc->tag = tag;
1584 qc->scsicmd = NULL;
1585 qc->ap = ap;
1586 qc->dev = dev;
1587 ata_qc_reinit(qc);
1588
9af5c9c9
TH
1589 preempted_tag = link->active_tag;
1590 preempted_sactive = link->sactive;
dedaf2b0 1591 preempted_qc_active = ap->qc_active;
da917d69 1592 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1593 link->active_tag = ATA_TAG_POISON;
1594 link->sactive = 0;
dedaf2b0 1595 ap->qc_active = 0;
da917d69 1596 ap->nr_active_links = 0;
2ab7db1f
TH
1597
1598 /* prepare & issue qc */
a2a7a662 1599 qc->tf = *tf;
d69cf37d
TH
1600 if (cdb)
1601 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1602 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1603 qc->dma_dir = dma_dir;
1604 if (dma_dir != DMA_NONE) {
2432697b 1605 unsigned int i, buflen = 0;
87260216 1606 struct scatterlist *sg;
2432697b 1607
87260216
JA
1608 for_each_sg(sgl, sg, n_elem, i)
1609 buflen += sg->length;
2432697b 1610
87260216 1611 ata_sg_init(qc, sgl, n_elem);
49c80429 1612 qc->nbytes = buflen;
a2a7a662
TH
1613 }
1614
77853bf2 1615 qc->private_data = &wait;
a2a7a662
TH
1616 qc->complete_fn = ata_qc_complete_internal;
1617
8e0e694a 1618 ata_qc_issue(qc);
a2a7a662 1619
ba6a1308 1620 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1621
87fbc5a0
TH
1622 if (!timeout) {
1623 if (ata_probe_timeout)
1624 timeout = ata_probe_timeout * 1000;
1625 else {
1626 timeout = ata_internal_cmd_timeout(dev, command);
1627 auto_timeout = 1;
1628 }
1629 }
2b789108 1630
c0c362b6
TH
1631 if (ap->ops->error_handler)
1632 ata_eh_release(ap);
1633
2b789108 1634 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1635
c0c362b6
TH
1636 if (ap->ops->error_handler)
1637 ata_eh_acquire(ap);
1638
c429137a 1639 ata_sff_flush_pio_task(ap);
41ade50c 1640
d95a717f 1641 if (!rc) {
ba6a1308 1642 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1643
1644 /* We're racing with irq here. If we lose, the
1645 * following test prevents us from completing the qc
d95a717f
TH
1646 * twice. If we win, the port is frozen and will be
1647 * cleaned up by ->post_internal_cmd().
a2a7a662 1648 */
77853bf2 1649 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1650 qc->err_mask |= AC_ERR_TIMEOUT;
1651
1652 if (ap->ops->error_handler)
1653 ata_port_freeze(ap);
1654 else
1655 ata_qc_complete(qc);
f15a1daf 1656
0dd4b21f
BP
1657 if (ata_msg_warn(ap))
1658 ata_dev_printk(dev, KERN_WARNING,
88574551 1659 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1660 }
1661
ba6a1308 1662 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1663 }
1664
d95a717f
TH
1665 /* do post_internal_cmd */
1666 if (ap->ops->post_internal_cmd)
1667 ap->ops->post_internal_cmd(qc);
1668
a51d644a
TH
1669 /* perform minimal error analysis */
1670 if (qc->flags & ATA_QCFLAG_FAILED) {
1671 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1672 qc->err_mask |= AC_ERR_DEV;
1673
1674 if (!qc->err_mask)
1675 qc->err_mask |= AC_ERR_OTHER;
1676
1677 if (qc->err_mask & ~AC_ERR_OTHER)
1678 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1679 }
1680
15869303 1681 /* finish up */
ba6a1308 1682 spin_lock_irqsave(ap->lock, flags);
15869303 1683
e61e0672 1684 *tf = qc->result_tf;
77853bf2
TH
1685 err_mask = qc->err_mask;
1686
1687 ata_qc_free(qc);
9af5c9c9
TH
1688 link->active_tag = preempted_tag;
1689 link->sactive = preempted_sactive;
dedaf2b0 1690 ap->qc_active = preempted_qc_active;
da917d69 1691 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1692
ba6a1308 1693 spin_unlock_irqrestore(ap->lock, flags);
15869303 1694
87fbc5a0
TH
1695 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1696 ata_internal_cmd_timed_out(dev, command);
1697
77853bf2 1698 return err_mask;
a2a7a662
TH
1699}
1700
2432697b 1701/**
33480a0e 1702 * ata_exec_internal - execute libata internal command
2432697b
TH
1703 * @dev: Device to which the command is sent
1704 * @tf: Taskfile registers for the command and the result
1705 * @cdb: CDB for packet command
1706 * @dma_dir: Data tranfer direction of the command
1707 * @buf: Data buffer of the command
1708 * @buflen: Length of data buffer
2b789108 1709 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1710 *
1711 * Wrapper around ata_exec_internal_sg() which takes simple
1712 * buffer instead of sg list.
1713 *
1714 * LOCKING:
1715 * None. Should be called with kernel context, might sleep.
1716 *
1717 * RETURNS:
1718 * Zero on success, AC_ERR_* mask on failure
1719 */
1720unsigned ata_exec_internal(struct ata_device *dev,
1721 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1722 int dma_dir, void *buf, unsigned int buflen,
1723 unsigned long timeout)
2432697b 1724{
33480a0e
TH
1725 struct scatterlist *psg = NULL, sg;
1726 unsigned int n_elem = 0;
2432697b 1727
33480a0e
TH
1728 if (dma_dir != DMA_NONE) {
1729 WARN_ON(!buf);
1730 sg_init_one(&sg, buf, buflen);
1731 psg = &sg;
1732 n_elem++;
1733 }
2432697b 1734
2b789108
TH
1735 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1736 timeout);
2432697b
TH
1737}
1738
977e6b9f
TH
1739/**
1740 * ata_do_simple_cmd - execute simple internal command
1741 * @dev: Device to which the command is sent
1742 * @cmd: Opcode to execute
1743 *
1744 * Execute a 'simple' command, that only consists of the opcode
1745 * 'cmd' itself, without filling any other registers
1746 *
1747 * LOCKING:
1748 * Kernel thread context (may sleep).
1749 *
1750 * RETURNS:
1751 * Zero on success, AC_ERR_* mask on failure
e58eb583 1752 */
77b08fb5 1753unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1754{
1755 struct ata_taskfile tf;
e58eb583
TH
1756
1757 ata_tf_init(dev, &tf);
1758
1759 tf.command = cmd;
1760 tf.flags |= ATA_TFLAG_DEVICE;
1761 tf.protocol = ATA_PROT_NODATA;
1762
2b789108 1763 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1764}
1765
1bc4ccff
AC
1766/**
1767 * ata_pio_need_iordy - check if iordy needed
1768 * @adev: ATA device
1769 *
1770 * Check if the current speed of the device requires IORDY. Used
1771 * by various controllers for chip configuration.
1772 */
1bc4ccff
AC
1773unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1774{
0d9e6659
TH
1775 /* Don't set IORDY if we're preparing for reset. IORDY may
1776 * lead to controller lock up on certain controllers if the
1777 * port is not occupied. See bko#11703 for details.
1778 */
1779 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1780 return 0;
1781 /* Controller doesn't support IORDY. Probably a pointless
1782 * check as the caller should know this.
1783 */
9af5c9c9 1784 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1785 return 0;
5c18c4d2
DD
1786 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1787 if (ata_id_is_cfa(adev->id)
1788 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1789 return 0;
432729f0
AC
1790 /* PIO3 and higher it is mandatory */
1791 if (adev->pio_mode > XFER_PIO_2)
1792 return 1;
1793 /* We turn it on when possible */
1794 if (ata_id_has_iordy(adev->id))
1bc4ccff 1795 return 1;
432729f0
AC
1796 return 0;
1797}
2e9edbf8 1798
432729f0
AC
1799/**
1800 * ata_pio_mask_no_iordy - Return the non IORDY mask
1801 * @adev: ATA device
1802 *
1803 * Compute the highest mode possible if we are not using iordy. Return
1804 * -1 if no iordy mode is available.
1805 */
432729f0
AC
1806static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1807{
1bc4ccff 1808 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1809 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1810 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1811 /* Is the speed faster than the drive allows non IORDY ? */
1812 if (pio) {
1813 /* This is cycle times not frequency - watch the logic! */
1814 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1815 return 3 << ATA_SHIFT_PIO;
1816 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1817 }
1818 }
432729f0 1819 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1820}
1821
963e4975
AC
1822/**
1823 * ata_do_dev_read_id - default ID read method
1824 * @dev: device
1825 * @tf: proposed taskfile
1826 * @id: data buffer
1827 *
1828 * Issue the identify taskfile and hand back the buffer containing
1829 * identify data. For some RAID controllers and for pre ATA devices
1830 * this function is wrapped or replaced by the driver
1831 */
1832unsigned int ata_do_dev_read_id(struct ata_device *dev,
1833 struct ata_taskfile *tf, u16 *id)
1834{
1835 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1836 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1837}
1838
1da177e4 1839/**
49016aca 1840 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1841 * @dev: target device
1842 * @p_class: pointer to class of the target device (may be changed)
bff04647 1843 * @flags: ATA_READID_* flags
fe635c7e 1844 * @id: buffer to read IDENTIFY data into
1da177e4 1845 *
49016aca
TH
1846 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1847 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1848 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1849 * for pre-ATA4 drives.
1da177e4 1850 *
50a99018 1851 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1852 * now we abort if we hit that case.
50a99018 1853 *
1da177e4 1854 * LOCKING:
49016aca
TH
1855 * Kernel thread context (may sleep)
1856 *
1857 * RETURNS:
1858 * 0 on success, -errno otherwise.
1da177e4 1859 */
a9beec95 1860int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1861 unsigned int flags, u16 *id)
1da177e4 1862{
9af5c9c9 1863 struct ata_port *ap = dev->link->ap;
49016aca 1864 unsigned int class = *p_class;
a0123703 1865 struct ata_taskfile tf;
49016aca
TH
1866 unsigned int err_mask = 0;
1867 const char *reason;
79b42bab 1868 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 1869 int may_fallback = 1, tried_spinup = 0;
49016aca 1870 int rc;
1da177e4 1871
0dd4b21f 1872 if (ata_msg_ctl(ap))
7f5e4e8d 1873 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 1874
963e4975 1875retry:
3373efd8 1876 ata_tf_init(dev, &tf);
a0123703 1877
49016aca 1878 switch (class) {
79b42bab
TH
1879 case ATA_DEV_SEMB:
1880 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 1881 case ATA_DEV_ATA:
a0123703 1882 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1883 break;
1884 case ATA_DEV_ATAPI:
a0123703 1885 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1886 break;
1887 default:
1888 rc = -ENODEV;
1889 reason = "unsupported class";
1890 goto err_out;
1da177e4
LT
1891 }
1892
a0123703 1893 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1894
1895 /* Some devices choke if TF registers contain garbage. Make
1896 * sure those are properly initialized.
1897 */
1898 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1899
1900 /* Device presence detection is unreliable on some
1901 * controllers. Always poll IDENTIFY if available.
1902 */
1903 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1904
963e4975
AC
1905 if (ap->ops->read_id)
1906 err_mask = ap->ops->read_id(dev, &tf, id);
1907 else
1908 err_mask = ata_do_dev_read_id(dev, &tf, id);
1909
a0123703 1910 if (err_mask) {
800b3996 1911 if (err_mask & AC_ERR_NODEV_HINT) {
1ffc151f
TH
1912 ata_dev_printk(dev, KERN_DEBUG,
1913 "NODEV after polling detection\n");
55a8e2c8
TH
1914 return -ENOENT;
1915 }
1916
79b42bab
TH
1917 if (is_semb) {
1918 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
1919 "device w/ SEMB sig, disabled\n");
1920 /* SEMB is not supported yet */
1921 *p_class = ATA_DEV_SEMB_UNSUP;
1922 return 0;
1923 }
1924
1ffc151f
TH
1925 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1926 /* Device or controller might have reported
1927 * the wrong device class. Give a shot at the
1928 * other IDENTIFY if the current one is
1929 * aborted by the device.
1930 */
1931 if (may_fallback) {
1932 may_fallback = 0;
1933
1934 if (class == ATA_DEV_ATA)
1935 class = ATA_DEV_ATAPI;
1936 else
1937 class = ATA_DEV_ATA;
1938 goto retry;
1939 }
1940
1941 /* Control reaches here iff the device aborted
1942 * both flavors of IDENTIFYs which happens
1943 * sometimes with phantom devices.
1944 */
1945 ata_dev_printk(dev, KERN_DEBUG,
1946 "both IDENTIFYs aborted, assuming NODEV\n");
1947 return -ENOENT;
54936f8b
TH
1948 }
1949
49016aca
TH
1950 rc = -EIO;
1951 reason = "I/O error";
1da177e4
LT
1952 goto err_out;
1953 }
1954
43c9c591
TH
1955 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1956 ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, "
1957 "class=%d may_fallback=%d tried_spinup=%d\n",
1958 class, may_fallback, tried_spinup);
1959 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1960 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1961 }
1962
54936f8b
TH
1963 /* Falling back doesn't make sense if ID data was read
1964 * successfully at least once.
1965 */
1966 may_fallback = 0;
1967
49016aca 1968 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1969
49016aca 1970 /* sanity check */
a4f5749b 1971 rc = -EINVAL;
6070068b 1972 reason = "device reports invalid type";
a4f5749b
TH
1973
1974 if (class == ATA_DEV_ATA) {
1975 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1976 goto err_out;
1977 } else {
1978 if (ata_id_is_ata(id))
1979 goto err_out;
49016aca
TH
1980 }
1981
169439c2
ML
1982 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1983 tried_spinup = 1;
1984 /*
1985 * Drive powered-up in standby mode, and requires a specific
1986 * SET_FEATURES spin-up subcommand before it will accept
1987 * anything other than the original IDENTIFY command.
1988 */
218f3d30 1989 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1990 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1991 rc = -EIO;
1992 reason = "SPINUP failed";
1993 goto err_out;
1994 }
1995 /*
1996 * If the drive initially returned incomplete IDENTIFY info,
1997 * we now must reissue the IDENTIFY command.
1998 */
1999 if (id[2] == 0x37c8)
2000 goto retry;
2001 }
2002
bff04647 2003 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2004 /*
2005 * The exact sequence expected by certain pre-ATA4 drives is:
2006 * SRST RESET
50a99018
AC
2007 * IDENTIFY (optional in early ATA)
2008 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2009 * anything else..
2010 * Some drives were very specific about that exact sequence.
50a99018
AC
2011 *
2012 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2013 * should never trigger.
49016aca
TH
2014 */
2015 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2016 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2017 if (err_mask) {
2018 rc = -EIO;
2019 reason = "INIT_DEV_PARAMS failed";
2020 goto err_out;
2021 }
2022
2023 /* current CHS translation info (id[53-58]) might be
2024 * changed. reread the identify device info.
2025 */
bff04647 2026 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2027 goto retry;
2028 }
2029 }
2030
2031 *p_class = class;
fe635c7e 2032
49016aca
TH
2033 return 0;
2034
2035 err_out:
88574551 2036 if (ata_msg_warn(ap))
0dd4b21f 2037 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2038 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2039 return rc;
2040}
2041
9062712f
TH
2042static int ata_do_link_spd_horkage(struct ata_device *dev)
2043{
2044 struct ata_link *plink = ata_dev_phys_link(dev);
2045 u32 target, target_limit;
2046
2047 if (!sata_scr_valid(plink))
2048 return 0;
2049
2050 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2051 target = 1;
2052 else
2053 return 0;
2054
2055 target_limit = (1 << target) - 1;
2056
2057 /* if already on stricter limit, no need to push further */
2058 if (plink->sata_spd_limit <= target_limit)
2059 return 0;
2060
2061 plink->sata_spd_limit = target_limit;
2062
2063 /* Request another EH round by returning -EAGAIN if link is
2064 * going faster than the target speed. Forward progress is
2065 * guaranteed by setting sata_spd_limit to target_limit above.
2066 */
2067 if (plink->sata_spd > target) {
2068 ata_dev_printk(dev, KERN_INFO,
2069 "applying link speed limit horkage to %s\n",
2070 sata_spd_string(target));
2071 return -EAGAIN;
2072 }
2073 return 0;
2074}
2075
3373efd8 2076static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2077{
9af5c9c9 2078 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2079
2080 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2081 return 0;
2082
9af5c9c9 2083 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2084}
2085
388539f3 2086static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2087 char *desc, size_t desc_sz)
2088{
9af5c9c9 2089 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2090 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2091 unsigned int err_mask;
2092 char *aa_desc = "";
a6e6ce8e
TH
2093
2094 if (!ata_id_has_ncq(dev->id)) {
2095 desc[0] = '\0';
388539f3 2096 return 0;
a6e6ce8e 2097 }
75683fe7 2098 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2099 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2100 return 0;
6919a0a6 2101 }
a6e6ce8e 2102 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2103 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2104 dev->flags |= ATA_DFLAG_NCQ;
2105 }
2106
388539f3
SL
2107 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2108 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2109 ata_id_has_fpdma_aa(dev->id)) {
2110 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2111 SATA_FPDMA_AA);
2112 if (err_mask) {
2113 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2114 "(error_mask=0x%x)\n", err_mask);
2115 if (err_mask != AC_ERR_DEV) {
2116 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2117 return -EIO;
2118 }
2119 } else
2120 aa_desc = ", AA";
2121 }
2122
a6e6ce8e 2123 if (hdepth >= ddepth)
388539f3 2124 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2125 else
388539f3
SL
2126 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2127 ddepth, aa_desc);
2128 return 0;
a6e6ce8e
TH
2129}
2130
49016aca 2131/**
ffeae418 2132 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2133 * @dev: Target device to configure
2134 *
2135 * Configure @dev according to @dev->id. Generic and low-level
2136 * driver specific fixups are also applied.
49016aca
TH
2137 *
2138 * LOCKING:
ffeae418
TH
2139 * Kernel thread context (may sleep)
2140 *
2141 * RETURNS:
2142 * 0 on success, -errno otherwise
49016aca 2143 */
efdaedc4 2144int ata_dev_configure(struct ata_device *dev)
49016aca 2145{
9af5c9c9
TH
2146 struct ata_port *ap = dev->link->ap;
2147 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2148 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2149 const u16 *id = dev->id;
7dc951ae 2150 unsigned long xfer_mask;
b352e57d 2151 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2152 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2153 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2154 int rc;
49016aca 2155
0dd4b21f 2156 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e 2157 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
7f5e4e8d 2158 __func__);
ffeae418 2159 return 0;
49016aca
TH
2160 }
2161
0dd4b21f 2162 if (ata_msg_probe(ap))
7f5e4e8d 2163 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2164
75683fe7
TH
2165 /* set horkage */
2166 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2167 ata_force_horkage(dev);
75683fe7 2168
50af2fa1
TH
2169 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2170 ata_dev_printk(dev, KERN_INFO,
2171 "unsupported device, disabling\n");
2172 ata_dev_disable(dev);
2173 return 0;
2174 }
2175
2486fa56
TH
2176 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2177 dev->class == ATA_DEV_ATAPI) {
2178 ata_dev_printk(dev, KERN_WARNING,
2179 "WARNING: ATAPI is %s, device ignored.\n",
2180 atapi_enabled ? "not supported with this driver"
2181 : "disabled");
2182 ata_dev_disable(dev);
2183 return 0;
2184 }
2185
9062712f
TH
2186 rc = ata_do_link_spd_horkage(dev);
2187 if (rc)
2188 return rc;
2189
6746544c
TH
2190 /* let ACPI work its magic */
2191 rc = ata_acpi_on_devcfg(dev);
2192 if (rc)
2193 return rc;
08573a86 2194
05027adc
TH
2195 /* massage HPA, do it early as it might change IDENTIFY data */
2196 rc = ata_hpa_resize(dev);
2197 if (rc)
2198 return rc;
2199
c39f5ebe 2200 /* print device capabilities */
0dd4b21f 2201 if (ata_msg_probe(ap))
88574551
TH
2202 ata_dev_printk(dev, KERN_DEBUG,
2203 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2204 "85:%04x 86:%04x 87:%04x 88:%04x\n",
7f5e4e8d 2205 __func__,
f15a1daf
TH
2206 id[49], id[82], id[83], id[84],
2207 id[85], id[86], id[87], id[88]);
c39f5ebe 2208
208a9933 2209 /* initialize to-be-configured parameters */
ea1dd4e1 2210 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2211 dev->max_sectors = 0;
2212 dev->cdb_len = 0;
2213 dev->n_sectors = 0;
2214 dev->cylinders = 0;
2215 dev->heads = 0;
2216 dev->sectors = 0;
e18086d6 2217 dev->multi_count = 0;
208a9933 2218
1da177e4
LT
2219 /*
2220 * common ATA, ATAPI feature tests
2221 */
2222
ff8854b2 2223 /* find max transfer mode; for printk only */
1148c3a7 2224 xfer_mask = ata_id_xfermask(id);
1da177e4 2225
0dd4b21f
BP
2226 if (ata_msg_probe(ap))
2227 ata_dump_id(id);
1da177e4 2228
ef143d57
AL
2229 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2230 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2231 sizeof(fwrevbuf));
2232
2233 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2234 sizeof(modelbuf));
2235
1da177e4
LT
2236 /* ATA-specific feature tests */
2237 if (dev->class == ATA_DEV_ATA) {
b352e57d 2238 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2239 /* CPRM may make this media unusable */
2240 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
44877b4e
TH
2241 ata_dev_printk(dev, KERN_WARNING,
2242 "supports DRM functions and may "
b595076a 2243 "not be fully accessible.\n");
b352e57d 2244 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2245 } else {
2dcb407e 2246 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2247 /* Warn the user if the device has TPM extensions */
2248 if (ata_id_has_tpm(id))
2249 ata_dev_printk(dev, KERN_WARNING,
2250 "supports DRM functions and may "
b595076a 2251 "not be fully accessible.\n");
ae8d4ee7 2252 }
b352e57d 2253
1148c3a7 2254 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2255
e18086d6
ML
2256 /* get current R/W Multiple count setting */
2257 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2258 unsigned int max = dev->id[47] & 0xff;
2259 unsigned int cnt = dev->id[59] & 0xff;
2260 /* only recognize/allow powers of two here */
2261 if (is_power_of_2(max) && is_power_of_2(cnt))
2262 if (cnt <= max)
2263 dev->multi_count = cnt;
2264 }
3f64f565 2265
1148c3a7 2266 if (ata_id_has_lba(id)) {
4c2d721a 2267 const char *lba_desc;
388539f3 2268 char ncq_desc[24];
8bf62ece 2269
4c2d721a
TH
2270 lba_desc = "LBA";
2271 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2272 if (ata_id_has_lba48(id)) {
8bf62ece 2273 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2274 lba_desc = "LBA48";
6fc49adb
TH
2275
2276 if (dev->n_sectors >= (1UL << 28) &&
2277 ata_id_has_flush_ext(id))
2278 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2279 }
8bf62ece 2280
a6e6ce8e 2281 /* config NCQ */
388539f3
SL
2282 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2283 if (rc)
2284 return rc;
a6e6ce8e 2285
8bf62ece 2286 /* print device info to dmesg */
3f64f565
EM
2287 if (ata_msg_drv(ap) && print_info) {
2288 ata_dev_printk(dev, KERN_INFO,
2289 "%s: %s, %s, max %s\n",
2290 revbuf, modelbuf, fwrevbuf,
2291 ata_mode_string(xfer_mask));
2292 ata_dev_printk(dev, KERN_INFO,
2293 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2294 (unsigned long long)dev->n_sectors,
3f64f565
EM
2295 dev->multi_count, lba_desc, ncq_desc);
2296 }
ffeae418 2297 } else {
8bf62ece
AL
2298 /* CHS */
2299
2300 /* Default translation */
1148c3a7
TH
2301 dev->cylinders = id[1];
2302 dev->heads = id[3];
2303 dev->sectors = id[6];
8bf62ece 2304
1148c3a7 2305 if (ata_id_current_chs_valid(id)) {
8bf62ece 2306 /* Current CHS translation is valid. */
1148c3a7
TH
2307 dev->cylinders = id[54];
2308 dev->heads = id[55];
2309 dev->sectors = id[56];
8bf62ece
AL
2310 }
2311
2312 /* print device info to dmesg */
3f64f565 2313 if (ata_msg_drv(ap) && print_info) {
88574551 2314 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2315 "%s: %s, %s, max %s\n",
2316 revbuf, modelbuf, fwrevbuf,
2317 ata_mode_string(xfer_mask));
a84471fe 2318 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2319 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2320 (unsigned long long)dev->n_sectors,
2321 dev->multi_count, dev->cylinders,
2322 dev->heads, dev->sectors);
2323 }
07f6f7d0
AL
2324 }
2325
6e7846e9 2326 dev->cdb_len = 16;
1da177e4
LT
2327 }
2328
2329 /* ATAPI-specific feature tests */
2c13b7ce 2330 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2331 const char *cdb_intr_string = "";
2332 const char *atapi_an_string = "";
91163006 2333 const char *dma_dir_string = "";
7d77b247 2334 u32 sntf;
08a556db 2335
1148c3a7 2336 rc = atapi_cdb_len(id);
1da177e4 2337 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2338 if (ata_msg_warn(ap))
88574551
TH
2339 ata_dev_printk(dev, KERN_WARNING,
2340 "unsupported CDB len\n");
ffeae418 2341 rc = -EINVAL;
1da177e4
LT
2342 goto err_out_nosup;
2343 }
6e7846e9 2344 dev->cdb_len = (unsigned int) rc;
1da177e4 2345
7d77b247
TH
2346 /* Enable ATAPI AN if both the host and device have
2347 * the support. If PMP is attached, SNTF is required
2348 * to enable ATAPI AN to discern between PHY status
2349 * changed notifications and ATAPI ANs.
9f45cbd3 2350 */
e7ecd435
TH
2351 if (atapi_an &&
2352 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2353 (!sata_pmp_attached(ap) ||
7d77b247 2354 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2355 unsigned int err_mask;
2356
9f45cbd3 2357 /* issue SET feature command to turn this on */
218f3d30
JG
2358 err_mask = ata_dev_set_feature(dev,
2359 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2360 if (err_mask)
9f45cbd3 2361 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2362 "failed to enable ATAPI AN "
2363 "(err_mask=0x%x)\n", err_mask);
2364 else {
9f45cbd3 2365 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2366 atapi_an_string = ", ATAPI AN";
2367 }
9f45cbd3
KCA
2368 }
2369
08a556db 2370 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2371 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2372 cdb_intr_string = ", CDB intr";
2373 }
312f7da2 2374
91163006
TH
2375 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2376 dev->flags |= ATA_DFLAG_DMADIR;
2377 dma_dir_string = ", DMADIR";
2378 }
2379
1da177e4 2380 /* print device info to dmesg */
5afc8142 2381 if (ata_msg_drv(ap) && print_info)
ef143d57 2382 ata_dev_printk(dev, KERN_INFO,
91163006 2383 "ATAPI: %s, %s, max %s%s%s%s\n",
ef143d57 2384 modelbuf, fwrevbuf,
12436c30 2385 ata_mode_string(xfer_mask),
91163006
TH
2386 cdb_intr_string, atapi_an_string,
2387 dma_dir_string);
1da177e4
LT
2388 }
2389
914ed354
TH
2390 /* determine max_sectors */
2391 dev->max_sectors = ATA_MAX_SECTORS;
2392 if (dev->flags & ATA_DFLAG_LBA48)
2393 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2394
c5038fc0
AC
2395 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2396 200 sectors */
3373efd8 2397 if (ata_dev_knobble(dev)) {
5afc8142 2398 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2399 ata_dev_printk(dev, KERN_INFO,
2400 "applying bridge limits\n");
5a529139 2401 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2402 dev->max_sectors = ATA_MAX_SECTORS;
2403 }
2404
f8d8e579 2405 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2406 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2407 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2408 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2409 }
f8d8e579 2410
75683fe7 2411 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2412 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2413 dev->max_sectors);
18d6e9d5 2414
4b2f3ede 2415 if (ap->ops->dev_config)
cd0d3bbc 2416 ap->ops->dev_config(dev);
4b2f3ede 2417
c5038fc0
AC
2418 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2419 /* Let the user know. We don't want to disallow opens for
2420 rescue purposes, or in case the vendor is just a blithering
2421 idiot. Do this after the dev_config call as some controllers
2422 with buggy firmware may want to avoid reporting false device
2423 bugs */
2424
2425 if (print_info) {
2426 ata_dev_printk(dev, KERN_WARNING,
2427"Drive reports diagnostics failure. This may indicate a drive\n");
2428 ata_dev_printk(dev, KERN_WARNING,
2429"fault or invalid emulation. Contact drive vendor for information.\n");
2430 }
2431 }
2432
ac70a964
TH
2433 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2434 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2435 "firmware update to be fully functional.\n");
2436 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2437 "or visit http://ata.wiki.kernel.org.\n");
2438 }
2439
ffeae418 2440 return 0;
1da177e4
LT
2441
2442err_out_nosup:
0dd4b21f 2443 if (ata_msg_probe(ap))
88574551 2444 ata_dev_printk(dev, KERN_DEBUG,
7f5e4e8d 2445 "%s: EXIT, err\n", __func__);
ffeae418 2446 return rc;
1da177e4
LT
2447}
2448
be0d18df 2449/**
2e41e8e6 2450 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2451 * @ap: port
2452 *
2e41e8e6 2453 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2454 * detection.
2455 */
2456
2457int ata_cable_40wire(struct ata_port *ap)
2458{
2459 return ATA_CBL_PATA40;
2460}
2461
2462/**
2e41e8e6 2463 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2464 * @ap: port
2465 *
2e41e8e6 2466 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2467 * detection.
2468 */
2469
2470int ata_cable_80wire(struct ata_port *ap)
2471{
2472 return ATA_CBL_PATA80;
2473}
2474
2475/**
2476 * ata_cable_unknown - return unknown PATA cable.
2477 * @ap: port
2478 *
2479 * Helper method for drivers which have no PATA cable detection.
2480 */
2481
2482int ata_cable_unknown(struct ata_port *ap)
2483{
2484 return ATA_CBL_PATA_UNK;
2485}
2486
c88f90c3
TH
2487/**
2488 * ata_cable_ignore - return ignored PATA cable.
2489 * @ap: port
2490 *
2491 * Helper method for drivers which don't use cable type to limit
2492 * transfer mode.
2493 */
2494int ata_cable_ignore(struct ata_port *ap)
2495{
2496 return ATA_CBL_PATA_IGN;
2497}
2498
be0d18df
AC
2499/**
2500 * ata_cable_sata - return SATA cable type
2501 * @ap: port
2502 *
2503 * Helper method for drivers which have SATA cables
2504 */
2505
2506int ata_cable_sata(struct ata_port *ap)
2507{
2508 return ATA_CBL_SATA;
2509}
2510
1da177e4
LT
2511/**
2512 * ata_bus_probe - Reset and probe ATA bus
2513 * @ap: Bus to probe
2514 *
0cba632b
JG
2515 * Master ATA bus probing function. Initiates a hardware-dependent
2516 * bus reset, then attempts to identify any devices found on
2517 * the bus.
2518 *
1da177e4 2519 * LOCKING:
0cba632b 2520 * PCI/etc. bus probe sem.
1da177e4
LT
2521 *
2522 * RETURNS:
96072e69 2523 * Zero on success, negative errno otherwise.
1da177e4
LT
2524 */
2525
80289167 2526int ata_bus_probe(struct ata_port *ap)
1da177e4 2527{
28ca5c57 2528 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2529 int tries[ATA_MAX_DEVICES];
f58229f8 2530 int rc;
e82cbdb9 2531 struct ata_device *dev;
1da177e4 2532
1eca4365 2533 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2534 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2535
2536 retry:
1eca4365 2537 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2538 /* If we issue an SRST then an ATA drive (not ATAPI)
2539 * may change configuration and be in PIO0 timing. If
2540 * we do a hard reset (or are coming from power on)
2541 * this is true for ATA or ATAPI. Until we've set a
2542 * suitable controller mode we should not touch the
2543 * bus as we may be talking too fast.
2544 */
2545 dev->pio_mode = XFER_PIO_0;
2546
2547 /* If the controller has a pio mode setup function
2548 * then use it to set the chipset to rights. Don't
2549 * touch the DMA setup as that will be dealt with when
2550 * configuring devices.
2551 */
2552 if (ap->ops->set_piomode)
2553 ap->ops->set_piomode(ap, dev);
2554 }
2555
2044470c 2556 /* reset and determine device classes */
52783c5d 2557 ap->ops->phy_reset(ap);
2061a47a 2558
1eca4365 2559 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2560 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2561 classes[dev->devno] = dev->class;
2562 else
2563 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2564
52783c5d 2565 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2566 }
1da177e4 2567
f31f0cc2
JG
2568 /* read IDENTIFY page and configure devices. We have to do the identify
2569 specific sequence bass-ackwards so that PDIAG- is released by
2570 the slave device */
2571
1eca4365 2572 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2573 if (tries[dev->devno])
2574 dev->class = classes[dev->devno];
ffeae418 2575
14d2bac1 2576 if (!ata_dev_enabled(dev))
ffeae418 2577 continue;
ffeae418 2578
bff04647
TH
2579 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2580 dev->id);
14d2bac1
TH
2581 if (rc)
2582 goto fail;
f31f0cc2
JG
2583 }
2584
be0d18df
AC
2585 /* Now ask for the cable type as PDIAG- should have been released */
2586 if (ap->ops->cable_detect)
2587 ap->cbl = ap->ops->cable_detect(ap);
2588
1eca4365
TH
2589 /* We may have SATA bridge glue hiding here irrespective of
2590 * the reported cable types and sensed types. When SATA
2591 * drives indicate we have a bridge, we don't know which end
2592 * of the link the bridge is which is a problem.
2593 */
2594 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2595 if (ata_id_is_sata(dev->id))
2596 ap->cbl = ATA_CBL_SATA;
614fe29b 2597
f31f0cc2
JG
2598 /* After the identify sequence we can now set up the devices. We do
2599 this in the normal order so that the user doesn't get confused */
2600
1eca4365 2601 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2602 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2603 rc = ata_dev_configure(dev);
9af5c9c9 2604 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2605 if (rc)
2606 goto fail;
1da177e4
LT
2607 }
2608
e82cbdb9 2609 /* configure transfer mode */
0260731f 2610 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2611 if (rc)
51713d35 2612 goto fail;
1da177e4 2613
1eca4365
TH
2614 ata_for_each_dev(dev, &ap->link, ENABLED)
2615 return 0;
1da177e4 2616
96072e69 2617 return -ENODEV;
14d2bac1
TH
2618
2619 fail:
4ae72a1e
TH
2620 tries[dev->devno]--;
2621
14d2bac1
TH
2622 switch (rc) {
2623 case -EINVAL:
4ae72a1e 2624 /* eeek, something went very wrong, give up */
14d2bac1
TH
2625 tries[dev->devno] = 0;
2626 break;
4ae72a1e
TH
2627
2628 case -ENODEV:
2629 /* give it just one more chance */
2630 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2631 case -EIO:
4ae72a1e
TH
2632 if (tries[dev->devno] == 1) {
2633 /* This is the last chance, better to slow
2634 * down than lose it.
2635 */
a07d499b 2636 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2637 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2638 }
14d2bac1
TH
2639 }
2640
4ae72a1e 2641 if (!tries[dev->devno])
3373efd8 2642 ata_dev_disable(dev);
ec573755 2643
14d2bac1 2644 goto retry;
1da177e4
LT
2645}
2646
3be680b7
TH
2647/**
2648 * sata_print_link_status - Print SATA link status
936fd732 2649 * @link: SATA link to printk link status about
3be680b7
TH
2650 *
2651 * This function prints link speed and status of a SATA link.
2652 *
2653 * LOCKING:
2654 * None.
2655 */
6bdb4fc9 2656static void sata_print_link_status(struct ata_link *link)
3be680b7 2657{
6d5f9732 2658 u32 sstatus, scontrol, tmp;
3be680b7 2659
936fd732 2660 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2661 return;
936fd732 2662 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2663
b1c72916 2664 if (ata_phys_link_online(link)) {
3be680b7 2665 tmp = (sstatus >> 4) & 0xf;
936fd732 2666 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2667 "SATA link up %s (SStatus %X SControl %X)\n",
2668 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2669 } else {
936fd732 2670 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2671 "SATA link down (SStatus %X SControl %X)\n",
2672 sstatus, scontrol);
3be680b7
TH
2673 }
2674}
2675
ebdfca6e
AC
2676/**
2677 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2678 * @adev: device
2679 *
2680 * Obtain the other device on the same cable, or if none is
2681 * present NULL is returned
2682 */
2e9edbf8 2683
3373efd8 2684struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2685{
9af5c9c9
TH
2686 struct ata_link *link = adev->link;
2687 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2688 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2689 return NULL;
2690 return pair;
2691}
2692
1c3fae4d 2693/**
3c567b7d 2694 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2695 * @link: Link to adjust SATA spd limit for
a07d499b 2696 * @spd_limit: Additional limit
1c3fae4d 2697 *
936fd732 2698 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2699 * function only adjusts the limit. The change must be applied
3c567b7d 2700 * using sata_set_spd().
1c3fae4d 2701 *
a07d499b
TH
2702 * If @spd_limit is non-zero, the speed is limited to equal to or
2703 * lower than @spd_limit if such speed is supported. If
2704 * @spd_limit is slower than any supported speed, only the lowest
2705 * supported speed is allowed.
2706 *
1c3fae4d
TH
2707 * LOCKING:
2708 * Inherited from caller.
2709 *
2710 * RETURNS:
2711 * 0 on success, negative errno on failure
2712 */
a07d499b 2713int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2714{
81952c54 2715 u32 sstatus, spd, mask;
a07d499b 2716 int rc, bit;
1c3fae4d 2717
936fd732 2718 if (!sata_scr_valid(link))
008a7896
TH
2719 return -EOPNOTSUPP;
2720
2721 /* If SCR can be read, use it to determine the current SPD.
936fd732 2722 * If not, use cached value in link->sata_spd.
008a7896 2723 */
936fd732 2724 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2725 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2726 spd = (sstatus >> 4) & 0xf;
2727 else
936fd732 2728 spd = link->sata_spd;
1c3fae4d 2729
936fd732 2730 mask = link->sata_spd_limit;
1c3fae4d
TH
2731 if (mask <= 1)
2732 return -EINVAL;
008a7896
TH
2733
2734 /* unconditionally mask off the highest bit */
a07d499b
TH
2735 bit = fls(mask) - 1;
2736 mask &= ~(1 << bit);
1c3fae4d 2737
008a7896
TH
2738 /* Mask off all speeds higher than or equal to the current
2739 * one. Force 1.5Gbps if current SPD is not available.
2740 */
2741 if (spd > 1)
2742 mask &= (1 << (spd - 1)) - 1;
2743 else
2744 mask &= 1;
2745
2746 /* were we already at the bottom? */
1c3fae4d
TH
2747 if (!mask)
2748 return -EINVAL;
2749
a07d499b
TH
2750 if (spd_limit) {
2751 if (mask & ((1 << spd_limit) - 1))
2752 mask &= (1 << spd_limit) - 1;
2753 else {
2754 bit = ffs(mask) - 1;
2755 mask = 1 << bit;
2756 }
2757 }
2758
936fd732 2759 link->sata_spd_limit = mask;
1c3fae4d 2760
936fd732 2761 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2762 sata_spd_string(fls(mask)));
1c3fae4d
TH
2763
2764 return 0;
2765}
2766
936fd732 2767static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2768{
5270222f
TH
2769 struct ata_link *host_link = &link->ap->link;
2770 u32 limit, target, spd;
1c3fae4d 2771
5270222f
TH
2772 limit = link->sata_spd_limit;
2773
2774 /* Don't configure downstream link faster than upstream link.
2775 * It doesn't speed up anything and some PMPs choke on such
2776 * configuration.
2777 */
2778 if (!ata_is_host_link(link) && host_link->sata_spd)
2779 limit &= (1 << host_link->sata_spd) - 1;
2780
2781 if (limit == UINT_MAX)
2782 target = 0;
1c3fae4d 2783 else
5270222f 2784 target = fls(limit);
1c3fae4d
TH
2785
2786 spd = (*scontrol >> 4) & 0xf;
5270222f 2787 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2788
5270222f 2789 return spd != target;
1c3fae4d
TH
2790}
2791
2792/**
3c567b7d 2793 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2794 * @link: Link in question
1c3fae4d
TH
2795 *
2796 * Test whether the spd limit in SControl matches
936fd732 2797 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2798 * whether hardreset is necessary to apply SATA spd
2799 * configuration.
2800 *
2801 * LOCKING:
2802 * Inherited from caller.
2803 *
2804 * RETURNS:
2805 * 1 if SATA spd configuration is needed, 0 otherwise.
2806 */
1dc55e87 2807static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2808{
2809 u32 scontrol;
2810
936fd732 2811 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2812 return 1;
1c3fae4d 2813
936fd732 2814 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2815}
2816
2817/**
3c567b7d 2818 * sata_set_spd - set SATA spd according to spd limit
936fd732 2819 * @link: Link to set SATA spd for
1c3fae4d 2820 *
936fd732 2821 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2822 *
2823 * LOCKING:
2824 * Inherited from caller.
2825 *
2826 * RETURNS:
2827 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2828 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2829 */
936fd732 2830int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2831{
2832 u32 scontrol;
81952c54 2833 int rc;
1c3fae4d 2834
936fd732 2835 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2836 return rc;
1c3fae4d 2837
936fd732 2838 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2839 return 0;
2840
936fd732 2841 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2842 return rc;
2843
1c3fae4d
TH
2844 return 1;
2845}
2846
452503f9
AC
2847/*
2848 * This mode timing computation functionality is ported over from
2849 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2850 */
2851/*
b352e57d 2852 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2853 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2854 * for UDMA6, which is currently supported only by Maxtor drives.
2855 *
2856 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2857 */
2858
2859static const struct ata_timing ata_timing[] = {
3ada9c12
DD
2860/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2861 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2862 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2863 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2864 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2865 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2866 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2867 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2868
2869 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2870 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2871 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2872
2873 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2874 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2875 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2876 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2877 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2878
2879/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2880 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2881 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2882 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2883 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2884 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2885 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2886 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
2887
2888 { 0xFF }
2889};
2890
2dcb407e
JG
2891#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2892#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2893
2894static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2895{
3ada9c12
DD
2896 q->setup = EZ(t->setup * 1000, T);
2897 q->act8b = EZ(t->act8b * 1000, T);
2898 q->rec8b = EZ(t->rec8b * 1000, T);
2899 q->cyc8b = EZ(t->cyc8b * 1000, T);
2900 q->active = EZ(t->active * 1000, T);
2901 q->recover = EZ(t->recover * 1000, T);
2902 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2903 q->cycle = EZ(t->cycle * 1000, T);
2904 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
2905}
2906
2907void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2908 struct ata_timing *m, unsigned int what)
2909{
2910 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2911 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2912 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2913 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2914 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2915 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 2916 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
2917 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2918 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2919}
2920
6357357c 2921const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 2922{
70cd071e
TH
2923 const struct ata_timing *t = ata_timing;
2924
2925 while (xfer_mode > t->mode)
2926 t++;
452503f9 2927
70cd071e
TH
2928 if (xfer_mode == t->mode)
2929 return t;
2930 return NULL;
452503f9
AC
2931}
2932
2933int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2934 struct ata_timing *t, int T, int UT)
2935{
9e8808a9 2936 const u16 *id = adev->id;
452503f9
AC
2937 const struct ata_timing *s;
2938 struct ata_timing p;
2939
2940 /*
2e9edbf8 2941 * Find the mode.
75b1f2f8 2942 */
452503f9
AC
2943
2944 if (!(s = ata_timing_find_mode(speed)))
2945 return -EINVAL;
2946
75b1f2f8
AL
2947 memcpy(t, s, sizeof(*s));
2948
452503f9
AC
2949 /*
2950 * If the drive is an EIDE drive, it can tell us it needs extended
2951 * PIO/MW_DMA cycle timing.
2952 */
2953
9e8808a9 2954 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 2955 memset(&p, 0, sizeof(p));
9e8808a9 2956
2dcb407e 2957 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
9e8808a9
BZ
2958 if (speed <= XFER_PIO_2)
2959 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2960 else if ((speed <= XFER_PIO_4) ||
2961 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2962 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2963 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2964 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2965
452503f9
AC
2966 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2967 }
2968
2969 /*
2970 * Convert the timing to bus clock counts.
2971 */
2972
75b1f2f8 2973 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2974
2975 /*
c893a3ae
RD
2976 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2977 * S.M.A.R.T * and some other commands. We have to ensure that the
2978 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2979 */
2980
fd3367af 2981 if (speed > XFER_PIO_6) {
452503f9
AC
2982 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2983 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2984 }
2985
2986 /*
c893a3ae 2987 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2988 */
2989
2990 if (t->act8b + t->rec8b < t->cyc8b) {
2991 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2992 t->rec8b = t->cyc8b - t->act8b;
2993 }
2994
2995 if (t->active + t->recover < t->cycle) {
2996 t->active += (t->cycle - (t->active + t->recover)) / 2;
2997 t->recover = t->cycle - t->active;
2998 }
a617c09f 2999
4f701d1e
AC
3000 /* In a few cases quantisation may produce enough errors to
3001 leave t->cycle too low for the sum of active and recovery
3002 if so we must correct this */
3003 if (t->active + t->recover > t->cycle)
3004 t->cycle = t->active + t->recover;
452503f9
AC
3005
3006 return 0;
3007}
3008
a0f79b92
TH
3009/**
3010 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3011 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3012 * @cycle: cycle duration in ns
3013 *
3014 * Return matching xfer mode for @cycle. The returned mode is of
3015 * the transfer type specified by @xfer_shift. If @cycle is too
3016 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3017 * than the fastest known mode, the fasted mode is returned.
3018 *
3019 * LOCKING:
3020 * None.
3021 *
3022 * RETURNS:
3023 * Matching xfer_mode, 0xff if no match found.
3024 */
3025u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3026{
3027 u8 base_mode = 0xff, last_mode = 0xff;
3028 const struct ata_xfer_ent *ent;
3029 const struct ata_timing *t;
3030
3031 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3032 if (ent->shift == xfer_shift)
3033 base_mode = ent->base;
3034
3035 for (t = ata_timing_find_mode(base_mode);
3036 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3037 unsigned short this_cycle;
3038
3039 switch (xfer_shift) {
3040 case ATA_SHIFT_PIO:
3041 case ATA_SHIFT_MWDMA:
3042 this_cycle = t->cycle;
3043 break;
3044 case ATA_SHIFT_UDMA:
3045 this_cycle = t->udma;
3046 break;
3047 default:
3048 return 0xff;
3049 }
3050
3051 if (cycle > this_cycle)
3052 break;
3053
3054 last_mode = t->mode;
3055 }
3056
3057 return last_mode;
3058}
3059
cf176e1a
TH
3060/**
3061 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3062 * @dev: Device to adjust xfer masks
458337db 3063 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3064 *
3065 * Adjust xfer masks of @dev downward. Note that this function
3066 * does not apply the change. Invoking ata_set_mode() afterwards
3067 * will apply the limit.
3068 *
3069 * LOCKING:
3070 * Inherited from caller.
3071 *
3072 * RETURNS:
3073 * 0 on success, negative errno on failure
3074 */
458337db 3075int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3076{
458337db 3077 char buf[32];
7dc951ae
TH
3078 unsigned long orig_mask, xfer_mask;
3079 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3080 int quiet, highbit;
cf176e1a 3081
458337db
TH
3082 quiet = !!(sel & ATA_DNXFER_QUIET);
3083 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3084
458337db
TH
3085 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3086 dev->mwdma_mask,
3087 dev->udma_mask);
3088 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3089
458337db
TH
3090 switch (sel) {
3091 case ATA_DNXFER_PIO:
3092 highbit = fls(pio_mask) - 1;
3093 pio_mask &= ~(1 << highbit);
3094 break;
3095
3096 case ATA_DNXFER_DMA:
3097 if (udma_mask) {
3098 highbit = fls(udma_mask) - 1;
3099 udma_mask &= ~(1 << highbit);
3100 if (!udma_mask)
3101 return -ENOENT;
3102 } else if (mwdma_mask) {
3103 highbit = fls(mwdma_mask) - 1;
3104 mwdma_mask &= ~(1 << highbit);
3105 if (!mwdma_mask)
3106 return -ENOENT;
3107 }
3108 break;
3109
3110 case ATA_DNXFER_40C:
3111 udma_mask &= ATA_UDMA_MASK_40C;
3112 break;
3113
3114 case ATA_DNXFER_FORCE_PIO0:
3115 pio_mask &= 1;
3116 case ATA_DNXFER_FORCE_PIO:
3117 mwdma_mask = 0;
3118 udma_mask = 0;
3119 break;
3120
458337db
TH
3121 default:
3122 BUG();
3123 }
3124
3125 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3126
3127 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3128 return -ENOENT;
3129
3130 if (!quiet) {
3131 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3132 snprintf(buf, sizeof(buf), "%s:%s",
3133 ata_mode_string(xfer_mask),
3134 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3135 else
3136 snprintf(buf, sizeof(buf), "%s",
3137 ata_mode_string(xfer_mask));
3138
3139 ata_dev_printk(dev, KERN_WARNING,
3140 "limiting speed to %s\n", buf);
3141 }
cf176e1a
TH
3142
3143 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3144 &dev->udma_mask);
3145
cf176e1a 3146 return 0;
cf176e1a
TH
3147}
3148
3373efd8 3149static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3150{
d0cb43b3 3151 struct ata_port *ap = dev->link->ap;
9af5c9c9 3152 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3153 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3154 const char *dev_err_whine = "";
3155 int ign_dev_err = 0;
d0cb43b3 3156 unsigned int err_mask = 0;
83206a29 3157 int rc;
1da177e4 3158
e8384607 3159 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3160 if (dev->xfer_shift == ATA_SHIFT_PIO)
3161 dev->flags |= ATA_DFLAG_PIO;
3162
d0cb43b3
TH
3163 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3164 dev_err_whine = " (SET_XFERMODE skipped)";
3165 else {
3166 if (nosetxfer)
3167 ata_dev_printk(dev, KERN_WARNING,
3168 "NOSETXFER but PATA detected - can't "
3169 "skip SETXFER, might malfunction\n");
3170 err_mask = ata_dev_set_xfermode(dev);
3171 }
2dcb407e 3172
4055dee7
TH
3173 if (err_mask & ~AC_ERR_DEV)
3174 goto fail;
3175
3176 /* revalidate */
3177 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3178 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3179 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3180 if (rc)
3181 return rc;
3182
b93fda12
AC
3183 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3184 /* Old CFA may refuse this command, which is just fine */
3185 if (ata_id_is_cfa(dev->id))
3186 ign_dev_err = 1;
3187 /* Catch several broken garbage emulations plus some pre
3188 ATA devices */
3189 if (ata_id_major_version(dev->id) == 0 &&
3190 dev->pio_mode <= XFER_PIO_2)
3191 ign_dev_err = 1;
3192 /* Some very old devices and some bad newer ones fail
3193 any kind of SET_XFERMODE request but support PIO0-2
3194 timings and no IORDY */
3195 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3196 ign_dev_err = 1;
3197 }
3acaf94b
AC
3198 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3199 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3200 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3201 dev->dma_mode == XFER_MW_DMA_0 &&
3202 (dev->id[63] >> 8) & 1)
4055dee7 3203 ign_dev_err = 1;
3acaf94b 3204
4055dee7
TH
3205 /* if the device is actually configured correctly, ignore dev err */
3206 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3207 ign_dev_err = 1;
1da177e4 3208
4055dee7
TH
3209 if (err_mask & AC_ERR_DEV) {
3210 if (!ign_dev_err)
3211 goto fail;
3212 else
3213 dev_err_whine = " (device error ignored)";
3214 }
48a8a14f 3215
23e71c3d
TH
3216 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3217 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3218
4055dee7
TH
3219 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3220 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3221 dev_err_whine);
3222
83206a29 3223 return 0;
4055dee7
TH
3224
3225 fail:
3226 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3227 "(err_mask=0x%x)\n", err_mask);
3228 return -EIO;
1da177e4
LT
3229}
3230
1da177e4 3231/**
04351821 3232 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3233 * @link: link on which timings will be programmed
1967b7ff 3234 * @r_failed_dev: out parameter for failed device
1da177e4 3235 *
04351821
AC
3236 * Standard implementation of the function used to tune and set
3237 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3238 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3239 * returned in @r_failed_dev.
780a87f7 3240 *
1da177e4 3241 * LOCKING:
0cba632b 3242 * PCI/etc. bus probe sem.
e82cbdb9
TH
3243 *
3244 * RETURNS:
3245 * 0 on success, negative errno otherwise
1da177e4 3246 */
04351821 3247
0260731f 3248int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3249{
0260731f 3250 struct ata_port *ap = link->ap;
e8e0619f 3251 struct ata_device *dev;
f58229f8 3252 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3253
a6d5a51c 3254 /* step 1: calculate xfer_mask */
1eca4365 3255 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3256 unsigned long pio_mask, dma_mask;
b3a70601 3257 unsigned int mode_mask;
a6d5a51c 3258
b3a70601
AC
3259 mode_mask = ATA_DMA_MASK_ATA;
3260 if (dev->class == ATA_DEV_ATAPI)
3261 mode_mask = ATA_DMA_MASK_ATAPI;
3262 else if (ata_id_is_cfa(dev->id))
3263 mode_mask = ATA_DMA_MASK_CFA;
3264
3373efd8 3265 ata_dev_xfermask(dev);
33267325 3266 ata_force_xfermask(dev);
1da177e4 3267
acf356b1
TH
3268 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3269 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3270
3271 if (libata_dma_mask & mode_mask)
3272 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3273 else
3274 dma_mask = 0;
3275
acf356b1
TH
3276 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3277 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3278
4f65977d 3279 found = 1;
b15b3eba 3280 if (ata_dma_enabled(dev))
5444a6f4 3281 used_dma = 1;
a6d5a51c 3282 }
4f65977d 3283 if (!found)
e82cbdb9 3284 goto out;
a6d5a51c
TH
3285
3286 /* step 2: always set host PIO timings */
1eca4365 3287 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3288 if (dev->pio_mode == 0xff) {
f15a1daf 3289 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3290 rc = -EINVAL;
e82cbdb9 3291 goto out;
e8e0619f
TH
3292 }
3293
3294 dev->xfer_mode = dev->pio_mode;
3295 dev->xfer_shift = ATA_SHIFT_PIO;
3296 if (ap->ops->set_piomode)
3297 ap->ops->set_piomode(ap, dev);
3298 }
1da177e4 3299
a6d5a51c 3300 /* step 3: set host DMA timings */
1eca4365
TH
3301 ata_for_each_dev(dev, link, ENABLED) {
3302 if (!ata_dma_enabled(dev))
e8e0619f
TH
3303 continue;
3304
3305 dev->xfer_mode = dev->dma_mode;
3306 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3307 if (ap->ops->set_dmamode)
3308 ap->ops->set_dmamode(ap, dev);
3309 }
1da177e4
LT
3310
3311 /* step 4: update devices' xfer mode */
1eca4365 3312 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3313 rc = ata_dev_set_mode(dev);
5bbc53f4 3314 if (rc)
e82cbdb9 3315 goto out;
83206a29 3316 }
1da177e4 3317
e8e0619f
TH
3318 /* Record simplex status. If we selected DMA then the other
3319 * host channels are not permitted to do so.
5444a6f4 3320 */
cca3974e 3321 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3322 ap->host->simplex_claimed = ap;
5444a6f4 3323
e82cbdb9
TH
3324 out:
3325 if (rc)
3326 *r_failed_dev = dev;
3327 return rc;
1da177e4
LT
3328}
3329
aa2731ad
TH
3330/**
3331 * ata_wait_ready - wait for link to become ready
3332 * @link: link to be waited on
3333 * @deadline: deadline jiffies for the operation
3334 * @check_ready: callback to check link readiness
3335 *
3336 * Wait for @link to become ready. @check_ready should return
3337 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3338 * link doesn't seem to be occupied, other errno for other error
3339 * conditions.
3340 *
3341 * Transient -ENODEV conditions are allowed for
3342 * ATA_TMOUT_FF_WAIT.
3343 *
3344 * LOCKING:
3345 * EH context.
3346 *
3347 * RETURNS:
3348 * 0 if @linke is ready before @deadline; otherwise, -errno.
3349 */
3350int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3351 int (*check_ready)(struct ata_link *link))
3352{
3353 unsigned long start = jiffies;
b48d58f5 3354 unsigned long nodev_deadline;
aa2731ad
TH
3355 int warned = 0;
3356
b48d58f5
TH
3357 /* choose which 0xff timeout to use, read comment in libata.h */
3358 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3359 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3360 else
3361 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3362
b1c72916
TH
3363 /* Slave readiness can't be tested separately from master. On
3364 * M/S emulation configuration, this function should be called
3365 * only on the master and it will handle both master and slave.
3366 */
3367 WARN_ON(link == link->ap->slave_link);
3368
aa2731ad
TH
3369 if (time_after(nodev_deadline, deadline))
3370 nodev_deadline = deadline;
3371
3372 while (1) {
3373 unsigned long now = jiffies;
3374 int ready, tmp;
3375
3376 ready = tmp = check_ready(link);
3377 if (ready > 0)
3378 return 0;
3379
b48d58f5
TH
3380 /*
3381 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3382 * is online. Also, some SATA devices take a long
b48d58f5
TH
3383 * time to clear 0xff after reset. Wait for
3384 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3385 * offline.
aa2731ad
TH
3386 *
3387 * Note that some PATA controllers (pata_ali) explode
3388 * if status register is read more than once when
3389 * there's no device attached.
3390 */
3391 if (ready == -ENODEV) {
3392 if (ata_link_online(link))
3393 ready = 0;
3394 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3395 !ata_link_offline(link) &&
3396 time_before(now, nodev_deadline))
3397 ready = 0;
3398 }
3399
3400 if (ready)
3401 return ready;
3402 if (time_after(now, deadline))
3403 return -EBUSY;
3404
3405 if (!warned && time_after(now, start + 5 * HZ) &&
3406 (deadline - now > 3 * HZ)) {
3407 ata_link_printk(link, KERN_WARNING,
3408 "link is slow to respond, please be patient "
3409 "(ready=%d)\n", tmp);
3410 warned = 1;
3411 }
3412
97750ceb 3413 ata_msleep(link->ap, 50);
aa2731ad
TH
3414 }
3415}
3416
3417/**
3418 * ata_wait_after_reset - wait for link to become ready after reset
3419 * @link: link to be waited on
3420 * @deadline: deadline jiffies for the operation
3421 * @check_ready: callback to check link readiness
3422 *
3423 * Wait for @link to become ready after reset.
3424 *
3425 * LOCKING:
3426 * EH context.
3427 *
3428 * RETURNS:
3429 * 0 if @linke is ready before @deadline; otherwise, -errno.
3430 */
2b4221bb 3431int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3432 int (*check_ready)(struct ata_link *link))
3433{
97750ceb 3434 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3435
3436 return ata_wait_ready(link, deadline, check_ready);
3437}
3438
d7bb4cc7 3439/**
936fd732
TH
3440 * sata_link_debounce - debounce SATA phy status
3441 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3442 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3443 * @deadline: deadline jiffies for the operation
d7bb4cc7 3444 *
1152b261 3445 * Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3446 * holding the same value where DET is not 1 for @duration polled
3447 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3448 * beginning of the stable state. Because DET gets stuck at 1 on
3449 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3450 * until timeout then returns 0 if DET is stable at 1.
3451 *
d4b2bab4
TH
3452 * @timeout is further limited by @deadline. The sooner of the
3453 * two is used.
3454 *
d7bb4cc7
TH
3455 * LOCKING:
3456 * Kernel thread context (may sleep)
3457 *
3458 * RETURNS:
3459 * 0 on success, -errno on failure.
3460 */
936fd732
TH
3461int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3462 unsigned long deadline)
7a7921e8 3463{
341c2c95
TH
3464 unsigned long interval = params[0];
3465 unsigned long duration = params[1];
d4b2bab4 3466 unsigned long last_jiffies, t;
d7bb4cc7
TH
3467 u32 last, cur;
3468 int rc;
3469
341c2c95 3470 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3471 if (time_before(t, deadline))
3472 deadline = t;
3473
936fd732 3474 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3475 return rc;
3476 cur &= 0xf;
3477
3478 last = cur;
3479 last_jiffies = jiffies;
3480
3481 while (1) {
97750ceb 3482 ata_msleep(link->ap, interval);
936fd732 3483 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3484 return rc;
3485 cur &= 0xf;
3486
3487 /* DET stable? */
3488 if (cur == last) {
d4b2bab4 3489 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3490 continue;
341c2c95
TH
3491 if (time_after(jiffies,
3492 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3493 return 0;
3494 continue;
3495 }
3496
3497 /* unstable, start over */
3498 last = cur;
3499 last_jiffies = jiffies;
3500
f1545154
TH
3501 /* Check deadline. If debouncing failed, return
3502 * -EPIPE to tell upper layer to lower link speed.
3503 */
d4b2bab4 3504 if (time_after(jiffies, deadline))
f1545154 3505 return -EPIPE;
d7bb4cc7
TH
3506 }
3507}
3508
3509/**
936fd732
TH
3510 * sata_link_resume - resume SATA link
3511 * @link: ATA link to resume SATA
d7bb4cc7 3512 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3513 * @deadline: deadline jiffies for the operation
d7bb4cc7 3514 *
936fd732 3515 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3516 *
3517 * LOCKING:
3518 * Kernel thread context (may sleep)
3519 *
3520 * RETURNS:
3521 * 0 on success, -errno on failure.
3522 */
936fd732
TH
3523int sata_link_resume(struct ata_link *link, const unsigned long *params,
3524 unsigned long deadline)
d7bb4cc7 3525{
5040ab67 3526 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3527 u32 scontrol, serror;
81952c54
TH
3528 int rc;
3529
936fd732 3530 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3531 return rc;
7a7921e8 3532
5040ab67
TH
3533 /*
3534 * Writes to SControl sometimes get ignored under certain
3535 * controllers (ata_piix SIDPR). Make sure DET actually is
3536 * cleared.
3537 */
3538 do {
3539 scontrol = (scontrol & 0x0f0) | 0x300;
3540 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3541 return rc;
3542 /*
3543 * Some PHYs react badly if SStatus is pounded
3544 * immediately after resuming. Delay 200ms before
3545 * debouncing.
3546 */
97750ceb 3547 ata_msleep(link->ap, 200);
81952c54 3548
5040ab67
TH
3549 /* is SControl restored correctly? */
3550 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3551 return rc;
3552 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3553
5040ab67
TH
3554 if ((scontrol & 0xf0f) != 0x300) {
3555 ata_link_printk(link, KERN_ERR,
3556 "failed to resume link (SControl %X)\n",
3557 scontrol);
3558 return 0;
3559 }
3560
3561 if (tries < ATA_LINK_RESUME_TRIES)
3562 ata_link_printk(link, KERN_WARNING,
3563 "link resume succeeded after %d retries\n",
3564 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3565
ac371987
TH
3566 if ((rc = sata_link_debounce(link, params, deadline)))
3567 return rc;
3568
f046519f 3569 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3570 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3571 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3572
f046519f 3573 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3574}
3575
1152b261
TH
3576/**
3577 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3578 * @link: ATA link to manipulate SControl for
3579 * @policy: LPM policy to configure
3580 * @spm_wakeup: initiate LPM transition to active state
3581 *
3582 * Manipulate the IPM field of the SControl register of @link
3583 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3584 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3585 * the link. This function also clears PHYRDY_CHG before
3586 * returning.
3587 *
3588 * LOCKING:
3589 * EH context.
3590 *
3591 * RETURNS:
3592 * 0 on succes, -errno otherwise.
3593 */
3594int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3595 bool spm_wakeup)
3596{
3597 struct ata_eh_context *ehc = &link->eh_context;
3598 bool woken_up = false;
3599 u32 scontrol;
3600 int rc;
3601
3602 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3603 if (rc)
3604 return rc;
3605
3606 switch (policy) {
3607 case ATA_LPM_MAX_POWER:
3608 /* disable all LPM transitions */
3609 scontrol |= (0x3 << 8);
3610 /* initiate transition to active state */
3611 if (spm_wakeup) {
3612 scontrol |= (0x4 << 12);
3613 woken_up = true;
3614 }
3615 break;
3616 case ATA_LPM_MED_POWER:
3617 /* allow LPM to PARTIAL */
3618 scontrol &= ~(0x1 << 8);
3619 scontrol |= (0x2 << 8);
3620 break;
3621 case ATA_LPM_MIN_POWER:
3622 /* no restrictions on LPM transitions */
3623 scontrol &= ~(0x3 << 8);
3624 break;
3625 default:
3626 WARN_ON(1);
3627 }
3628
3629 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3630 if (rc)
3631 return rc;
3632
3633 /* give the link time to transit out of LPM state */
3634 if (woken_up)
3635 msleep(10);
3636
3637 /* clear PHYRDY_CHG from SError */
3638 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3639 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3640}
3641
f5914a46 3642/**
0aa1113d 3643 * ata_std_prereset - prepare for reset
cc0680a5 3644 * @link: ATA link to be reset
d4b2bab4 3645 * @deadline: deadline jiffies for the operation
f5914a46 3646 *
cc0680a5 3647 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3648 * prereset makes libata abort whole reset sequence and give up
3649 * that port, so prereset should be best-effort. It does its
3650 * best to prepare for reset sequence but if things go wrong, it
3651 * should just whine, not fail.
f5914a46
TH
3652 *
3653 * LOCKING:
3654 * Kernel thread context (may sleep)
3655 *
3656 * RETURNS:
3657 * 0 on success, -errno otherwise.
3658 */
0aa1113d 3659int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3660{
cc0680a5 3661 struct ata_port *ap = link->ap;
936fd732 3662 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3663 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3664 int rc;
3665
f5914a46
TH
3666 /* if we're about to do hardreset, nothing more to do */
3667 if (ehc->i.action & ATA_EH_HARDRESET)
3668 return 0;
3669
936fd732 3670 /* if SATA, resume link */
a16abc0b 3671 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3672 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3673 /* whine about phy resume failure but proceed */
3674 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3675 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3676 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3677 }
3678
45db2f6c 3679 /* no point in trying softreset on offline link */
b1c72916 3680 if (ata_phys_link_offline(link))
45db2f6c
TH
3681 ehc->i.action &= ~ATA_EH_SOFTRESET;
3682
f5914a46
TH
3683 return 0;
3684}
3685
c2bd5804 3686/**
624d5c51
TH
3687 * sata_link_hardreset - reset link via SATA phy reset
3688 * @link: link to reset
3689 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3690 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3691 * @online: optional out parameter indicating link onlineness
3692 * @check_ready: optional callback to check link readiness
c2bd5804 3693 *
624d5c51 3694 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3695 * After hardreset, link readiness is waited upon using
3696 * ata_wait_ready() if @check_ready is specified. LLDs are
3697 * allowed to not specify @check_ready and wait itself after this
3698 * function returns. Device classification is LLD's
3699 * responsibility.
3700 *
3701 * *@online is set to one iff reset succeeded and @link is online
3702 * after reset.
c2bd5804
TH
3703 *
3704 * LOCKING:
3705 * Kernel thread context (may sleep)
3706 *
3707 * RETURNS:
3708 * 0 on success, -errno otherwise.
3709 */
624d5c51 3710int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3711 unsigned long deadline,
3712 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3713{
624d5c51 3714 u32 scontrol;
81952c54 3715 int rc;
852ee16a 3716
c2bd5804
TH
3717 DPRINTK("ENTER\n");
3718
9dadd45b
TH
3719 if (online)
3720 *online = false;
3721
936fd732 3722 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3723 /* SATA spec says nothing about how to reconfigure
3724 * spd. To be on the safe side, turn off phy during
3725 * reconfiguration. This works for at least ICH7 AHCI
3726 * and Sil3124.
3727 */
936fd732 3728 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3729 goto out;
81952c54 3730
a34b6fc0 3731 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3732
936fd732 3733 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3734 goto out;
1c3fae4d 3735
936fd732 3736 sata_set_spd(link);
1c3fae4d
TH
3737 }
3738
3739 /* issue phy wake/reset */
936fd732 3740 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3741 goto out;
81952c54 3742
852ee16a 3743 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3744
936fd732 3745 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3746 goto out;
c2bd5804 3747
1c3fae4d 3748 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3749 * 10.4.2 says at least 1 ms.
3750 */
97750ceb 3751 ata_msleep(link->ap, 1);
c2bd5804 3752
936fd732
TH
3753 /* bring link back */
3754 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3755 if (rc)
3756 goto out;
3757 /* if link is offline nothing more to do */
b1c72916 3758 if (ata_phys_link_offline(link))
9dadd45b
TH
3759 goto out;
3760
3761 /* Link is online. From this point, -ENODEV too is an error. */
3762 if (online)
3763 *online = true;
3764
071f44b1 3765 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3766 /* If PMP is supported, we have to do follow-up SRST.
3767 * Some PMPs don't send D2H Reg FIS after hardreset if
3768 * the first port is empty. Wait only for
3769 * ATA_TMOUT_PMP_SRST_WAIT.
3770 */
3771 if (check_ready) {
3772 unsigned long pmp_deadline;
3773
341c2c95
TH
3774 pmp_deadline = ata_deadline(jiffies,
3775 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3776 if (time_after(pmp_deadline, deadline))
3777 pmp_deadline = deadline;
3778 ata_wait_ready(link, pmp_deadline, check_ready);
3779 }
3780 rc = -EAGAIN;
3781 goto out;
3782 }
3783
3784 rc = 0;
3785 if (check_ready)
3786 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3787 out:
0cbf0711
TH
3788 if (rc && rc != -EAGAIN) {
3789 /* online is set iff link is online && reset succeeded */
3790 if (online)
3791 *online = false;
9dadd45b
TH
3792 ata_link_printk(link, KERN_ERR,
3793 "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3794 }
b6103f6d
TH
3795 DPRINTK("EXIT, rc=%d\n", rc);
3796 return rc;
3797}
3798
57c9efdf
TH
3799/**
3800 * sata_std_hardreset - COMRESET w/o waiting or classification
3801 * @link: link to reset
3802 * @class: resulting class of attached device
3803 * @deadline: deadline jiffies for the operation
3804 *
3805 * Standard SATA COMRESET w/o waiting or classification.
3806 *
3807 * LOCKING:
3808 * Kernel thread context (may sleep)
3809 *
3810 * RETURNS:
3811 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3812 */
3813int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3814 unsigned long deadline)
3815{
3816 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3817 bool online;
3818 int rc;
3819
3820 /* do hardreset */
3821 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3822 return online ? -EAGAIN : rc;
3823}
3824
c2bd5804 3825/**
203c75b8 3826 * ata_std_postreset - standard postreset callback
cc0680a5 3827 * @link: the target ata_link
c2bd5804
TH
3828 * @classes: classes of attached devices
3829 *
3830 * This function is invoked after a successful reset. Note that
3831 * the device might have been reset more than once using
3832 * different reset methods before postreset is invoked.
c2bd5804 3833 *
c2bd5804
TH
3834 * LOCKING:
3835 * Kernel thread context (may sleep)
3836 */
203c75b8 3837void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3838{
f046519f
TH
3839 u32 serror;
3840
c2bd5804
TH
3841 DPRINTK("ENTER\n");
3842
f046519f
TH
3843 /* reset complete, clear SError */
3844 if (!sata_scr_read(link, SCR_ERROR, &serror))
3845 sata_scr_write(link, SCR_ERROR, serror);
3846
c2bd5804 3847 /* print link status */
936fd732 3848 sata_print_link_status(link);
c2bd5804 3849
c2bd5804
TH
3850 DPRINTK("EXIT\n");
3851}
3852
623a3128
TH
3853/**
3854 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3855 * @dev: device to compare against
3856 * @new_class: class of the new device
3857 * @new_id: IDENTIFY page of the new device
3858 *
3859 * Compare @new_class and @new_id against @dev and determine
3860 * whether @dev is the device indicated by @new_class and
3861 * @new_id.
3862 *
3863 * LOCKING:
3864 * None.
3865 *
3866 * RETURNS:
3867 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3868 */
3373efd8
TH
3869static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3870 const u16 *new_id)
623a3128
TH
3871{
3872 const u16 *old_id = dev->id;
a0cf733b
TH
3873 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3874 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3875
3876 if (dev->class != new_class) {
f15a1daf
TH
3877 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3878 dev->class, new_class);
623a3128
TH
3879 return 0;
3880 }
3881
a0cf733b
TH
3882 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3883 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3884 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3885 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3886
3887 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3888 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3889 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3890 return 0;
3891 }
3892
3893 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3894 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3895 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3896 return 0;
3897 }
3898
623a3128
TH
3899 return 1;
3900}
3901
3902/**
fe30911b 3903 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3904 * @dev: target ATA device
bff04647 3905 * @readid_flags: read ID flags
623a3128
TH
3906 *
3907 * Re-read IDENTIFY page and make sure @dev is still attached to
3908 * the port.
3909 *
3910 * LOCKING:
3911 * Kernel thread context (may sleep)
3912 *
3913 * RETURNS:
3914 * 0 on success, negative errno otherwise
3915 */
fe30911b 3916int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3917{
5eb45c02 3918 unsigned int class = dev->class;
9af5c9c9 3919 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3920 int rc;
3921
fe635c7e 3922 /* read ID data */
bff04647 3923 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3924 if (rc)
fe30911b 3925 return rc;
623a3128
TH
3926
3927 /* is the device still there? */
fe30911b
TH
3928 if (!ata_dev_same_device(dev, class, id))
3929 return -ENODEV;
623a3128 3930
fe635c7e 3931 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3932 return 0;
3933}
3934
3935/**
3936 * ata_dev_revalidate - Revalidate ATA device
3937 * @dev: device to revalidate
422c9daa 3938 * @new_class: new class code
fe30911b
TH
3939 * @readid_flags: read ID flags
3940 *
3941 * Re-read IDENTIFY page, make sure @dev is still attached to the
3942 * port and reconfigure it according to the new IDENTIFY page.
3943 *
3944 * LOCKING:
3945 * Kernel thread context (may sleep)
3946 *
3947 * RETURNS:
3948 * 0 on success, negative errno otherwise
3949 */
422c9daa
TH
3950int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3951 unsigned int readid_flags)
fe30911b 3952{
6ddcd3b0 3953 u64 n_sectors = dev->n_sectors;
5920dadf 3954 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
3955 int rc;
3956
3957 if (!ata_dev_enabled(dev))
3958 return -ENODEV;
3959
422c9daa
TH
3960 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3961 if (ata_class_enabled(new_class) &&
f0d0613d
BP
3962 new_class != ATA_DEV_ATA &&
3963 new_class != ATA_DEV_ATAPI &&
3964 new_class != ATA_DEV_SEMB) {
422c9daa
TH
3965 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3966 dev->class, new_class);
3967 rc = -ENODEV;
3968 goto fail;
3969 }
3970
fe30911b
TH
3971 /* re-read ID */
3972 rc = ata_dev_reread_id(dev, readid_flags);
3973 if (rc)
3974 goto fail;
623a3128
TH
3975
3976 /* configure device according to the new ID */
efdaedc4 3977 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3978 if (rc)
3979 goto fail;
3980
3981 /* verify n_sectors hasn't changed */
445d211b
TH
3982 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3983 dev->n_sectors == n_sectors)
3984 return 0;
3985
3986 /* n_sectors has changed */
3987 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
3988 (unsigned long long)n_sectors,
3989 (unsigned long long)dev->n_sectors);
3990
3991 /*
3992 * Something could have caused HPA to be unlocked
3993 * involuntarily. If n_native_sectors hasn't changed and the
3994 * new size matches it, keep the device.
3995 */
3996 if (dev->n_native_sectors == n_native_sectors &&
3997 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3998 ata_dev_printk(dev, KERN_WARNING,
3999 "new n_sectors matches native, probably "
68939ce5
TH
4000 "late HPA unlock, n_sectors updated\n");
4001 /* use the larger n_sectors */
445d211b 4002 return 0;
6ddcd3b0
TH
4003 }
4004
445d211b
TH
4005 /*
4006 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4007 * unlocking HPA in those cases.
4008 *
4009 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4010 */
4011 if (dev->n_native_sectors == n_native_sectors &&
4012 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4013 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4014 ata_dev_printk(dev, KERN_WARNING,
4015 "old n_sectors matches native, probably "
4016 "late HPA lock, will try to unlock HPA\n");
4017 /* try unlocking HPA */
4018 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4019 rc = -EIO;
4020 } else
4021 rc = -ENODEV;
623a3128 4022
445d211b
TH
4023 /* restore original n_[native_]sectors and fail */
4024 dev->n_native_sectors = n_native_sectors;
4025 dev->n_sectors = n_sectors;
623a3128 4026 fail:
f15a1daf 4027 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4028 return rc;
4029}
4030
6919a0a6
AC
4031struct ata_blacklist_entry {
4032 const char *model_num;
4033 const char *model_rev;
4034 unsigned long horkage;
4035};
4036
4037static const struct ata_blacklist_entry ata_device_blacklist [] = {
4038 /* Devices with DMA related problems under Linux */
4039 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4040 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4041 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4042 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4043 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4044 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4045 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4046 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4047 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4048 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4049 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4050 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4051 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4052 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4053 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4054 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4055 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4056 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4057 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4058 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4059 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4060 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4061 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4062 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4063 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4064 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4065 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4066 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4067 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4068 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4069
18d6e9d5 4070 /* Weird ATAPI devices */
40a1d531 4071 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4072 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
18d6e9d5 4073
6919a0a6
AC
4074 /* Devices we expect to fail diagnostics */
4075
4076 /* Devices where NCQ should be avoided */
4077 /* NCQ is slow */
2dcb407e 4078 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4079 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4080 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4081 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4082 /* NCQ is broken */
539cc7c7 4083 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4084 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4085 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4086 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4087 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4088
ac70a964 4089 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4090 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4091 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4092
4d1f9082 4093 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4094 ATA_HORKAGE_FIRMWARE_WARN },
4095
4d1f9082 4096 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4097 ATA_HORKAGE_FIRMWARE_WARN },
4098
4d1f9082 4099 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4100 ATA_HORKAGE_FIRMWARE_WARN },
4101
36e337d0
RH
4102 /* Blacklist entries taken from Silicon Image 3124/3132
4103 Windows driver .inf file - also several Linux problem reports */
4104 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4105 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4106 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4107
68b0ddb2
TH
4108 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4109 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4110
16c55b03
TH
4111 /* devices which puke on READ_NATIVE_MAX */
4112 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4113 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4114 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4115 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4116
7831387b
TH
4117 /* this one allows HPA unlocking but fails IOs on the area */
4118 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4119
93328e11
AC
4120 /* Devices which report 1 sector over size HPA */
4121 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4122 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4123 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4124
6bbfd53d
AC
4125 /* Devices which get the IVB wrong */
4126 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4127 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4128 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4129
9ce8e307
JA
4130 /* Devices that do not need bridging limits applied */
4131 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4132
9062712f
TH
4133 /* Devices which aren't very happy with higher link speeds */
4134 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4135
d0cb43b3
TH
4136 /*
4137 * Devices which choke on SETXFER. Applies only if both the
4138 * device and controller are SATA.
4139 */
4140 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4a5610a0 4141 { "PIONEER DVD-RW DVR-212D", "1.28", ATA_HORKAGE_NOSETXFER },
d0cb43b3 4142
6919a0a6
AC
4143 /* End Marker */
4144 { }
1da177e4 4145};
2e9edbf8 4146
bce036ce
ML
4147/**
4148 * glob_match - match a text string against a glob-style pattern
4149 * @text: the string to be examined
4150 * @pattern: the glob-style pattern to be matched against
4151 *
4152 * Either/both of text and pattern can be empty strings.
4153 *
4154 * Match text against a glob-style pattern, with wildcards and simple sets:
4155 *
4156 * ? matches any single character.
4157 * * matches any run of characters.
4158 * [xyz] matches a single character from the set: x, y, or z.
2f9e4d16
ML
4159 * [a-d] matches a single character from the range: a, b, c, or d.
4160 * [a-d0-9] matches a single character from either range.
bce036ce 4161 *
2f9e4d16
ML
4162 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4163 * Behaviour with malformed patterns is undefined, though generally reasonable.
bce036ce 4164 *
3d2be54b 4165 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
bce036ce
ML
4166 *
4167 * This function uses one level of recursion per '*' in pattern.
4168 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4169 * this will not cause stack problems for any reasonable use here.
4170 *
4171 * RETURNS:
4172 * 0 on match, 1 otherwise.
4173 */
4174static int glob_match (const char *text, const char *pattern)
539cc7c7 4175{
bce036ce
ML
4176 do {
4177 /* Match single character or a '?' wildcard */
4178 if (*text == *pattern || *pattern == '?') {
4179 if (!*pattern++)
4180 return 0; /* End of both strings: match */
4181 } else {
4182 /* Match single char against a '[' bracketed ']' pattern set */
4183 if (!*text || *pattern != '[')
4184 break; /* Not a pattern set */
2f9e4d16
ML
4185 while (*++pattern && *pattern != ']' && *text != *pattern) {
4186 if (*pattern == '-' && *(pattern - 1) != '[')
4187 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4188 ++pattern;
4189 break;
4190 }
4191 }
bce036ce
ML
4192 if (!*pattern || *pattern == ']')
4193 return 1; /* No match */
4194 while (*pattern && *pattern++ != ']');
4195 }
4196 } while (*++text && *pattern);
4197
4198 /* Match any run of chars against a '*' wildcard */
4199 if (*pattern == '*') {
4200 if (!*++pattern)
4201 return 0; /* Match: avoid recursion at end of pattern */
4202 /* Loop to handle additional pattern chars after the wildcard */
4203 while (*text) {
4204 if (glob_match(text, pattern) == 0)
4205 return 0; /* Remainder matched */
4206 ++text; /* Absorb (match) this char and try again */
317b50b8
AP
4207 }
4208 }
bce036ce
ML
4209 if (!*text && !*pattern)
4210 return 0; /* End of both strings: match */
4211 return 1; /* No match */
539cc7c7 4212}
4fca377f 4213
75683fe7 4214static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4215{
8bfa79fc
TH
4216 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4217 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4218 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4219
8bfa79fc
TH
4220 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4221 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4222
6919a0a6 4223 while (ad->model_num) {
bce036ce 4224 if (!glob_match(model_num, ad->model_num)) {
6919a0a6
AC
4225 if (ad->model_rev == NULL)
4226 return ad->horkage;
bce036ce 4227 if (!glob_match(model_rev, ad->model_rev))
6919a0a6 4228 return ad->horkage;
f4b15fef 4229 }
6919a0a6 4230 ad++;
f4b15fef 4231 }
1da177e4
LT
4232 return 0;
4233}
4234
6919a0a6
AC
4235static int ata_dma_blacklisted(const struct ata_device *dev)
4236{
4237 /* We don't support polling DMA.
4238 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4239 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4240 */
9af5c9c9 4241 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4242 (dev->flags & ATA_DFLAG_CDB_INTR))
4243 return 1;
75683fe7 4244 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4245}
4246
6bbfd53d
AC
4247/**
4248 * ata_is_40wire - check drive side detection
4249 * @dev: device
4250 *
4251 * Perform drive side detection decoding, allowing for device vendors
4252 * who can't follow the documentation.
4253 */
4254
4255static int ata_is_40wire(struct ata_device *dev)
4256{
4257 if (dev->horkage & ATA_HORKAGE_IVB)
4258 return ata_drive_40wire_relaxed(dev->id);
4259 return ata_drive_40wire(dev->id);
4260}
4261
15a5551c
AC
4262/**
4263 * cable_is_40wire - 40/80/SATA decider
4264 * @ap: port to consider
4265 *
4266 * This function encapsulates the policy for speed management
4267 * in one place. At the moment we don't cache the result but
4268 * there is a good case for setting ap->cbl to the result when
4269 * we are called with unknown cables (and figuring out if it
4270 * impacts hotplug at all).
4271 *
4272 * Return 1 if the cable appears to be 40 wire.
4273 */
4274
4275static int cable_is_40wire(struct ata_port *ap)
4276{
4277 struct ata_link *link;
4278 struct ata_device *dev;
4279
4a9c7b33 4280 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4281 if (ap->cbl == ATA_CBL_PATA40)
4282 return 1;
4a9c7b33
TH
4283
4284 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4285 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4286 return 0;
4a9c7b33
TH
4287
4288 /* If the system is known to be 40 wire short cable (eg
4289 * laptop), then we allow 80 wire modes even if the drive
4290 * isn't sure.
4291 */
f792068e
AC
4292 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4293 return 0;
4a9c7b33
TH
4294
4295 /* If the controller doesn't know, we scan.
4296 *
4297 * Note: We look for all 40 wire detects at this point. Any
4298 * 80 wire detect is taken to be 80 wire cable because
4299 * - in many setups only the one drive (slave if present) will
4300 * give a valid detect
4301 * - if you have a non detect capable drive you don't want it
4302 * to colour the choice
4303 */
1eca4365
TH
4304 ata_for_each_link(link, ap, EDGE) {
4305 ata_for_each_dev(dev, link, ENABLED) {
4306 if (!ata_is_40wire(dev))
15a5551c
AC
4307 return 0;
4308 }
4309 }
4310 return 1;
4311}
4312
a6d5a51c
TH
4313/**
4314 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4315 * @dev: Device to compute xfermask for
4316 *
acf356b1
TH
4317 * Compute supported xfermask of @dev and store it in
4318 * dev->*_mask. This function is responsible for applying all
4319 * known limits including host controller limits, device
4320 * blacklist, etc...
a6d5a51c
TH
4321 *
4322 * LOCKING:
4323 * None.
a6d5a51c 4324 */
3373efd8 4325static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4326{
9af5c9c9
TH
4327 struct ata_link *link = dev->link;
4328 struct ata_port *ap = link->ap;
cca3974e 4329 struct ata_host *host = ap->host;
a6d5a51c 4330 unsigned long xfer_mask;
1da177e4 4331
37deecb5 4332 /* controller modes available */
565083e1
TH
4333 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4334 ap->mwdma_mask, ap->udma_mask);
4335
8343f889 4336 /* drive modes available */
37deecb5
TH
4337 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4338 dev->mwdma_mask, dev->udma_mask);
4339 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4340
b352e57d
AC
4341 /*
4342 * CFA Advanced TrueIDE timings are not allowed on a shared
4343 * cable
4344 */
4345 if (ata_dev_pair(dev)) {
4346 /* No PIO5 or PIO6 */
4347 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4348 /* No MWDMA3 or MWDMA 4 */
4349 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4350 }
4351
37deecb5
TH
4352 if (ata_dma_blacklisted(dev)) {
4353 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4354 ata_dev_printk(dev, KERN_WARNING,
4355 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4356 }
a6d5a51c 4357
14d66ab7 4358 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4359 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4360 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4361 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4362 "other device, disabling DMA\n");
5444a6f4 4363 }
565083e1 4364
e424675f
JG
4365 if (ap->flags & ATA_FLAG_NO_IORDY)
4366 xfer_mask &= ata_pio_mask_no_iordy(dev);
4367
5444a6f4 4368 if (ap->ops->mode_filter)
a76b62ca 4369 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4370
8343f889
RH
4371 /* Apply cable rule here. Don't apply it early because when
4372 * we handle hot plug the cable type can itself change.
4373 * Check this last so that we know if the transfer rate was
4374 * solely limited by the cable.
4375 * Unknown or 80 wire cables reported host side are checked
4376 * drive side as well. Cases where we know a 40wire cable
4377 * is used safely for 80 are not checked here.
4378 */
4379 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4380 /* UDMA/44 or higher would be available */
15a5551c 4381 if (cable_is_40wire(ap)) {
2dcb407e 4382 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4383 "limited to UDMA/33 due to 40-wire cable\n");
4384 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4385 }
4386
565083e1
TH
4387 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4388 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4389}
4390
1da177e4
LT
4391/**
4392 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4393 * @dev: Device to which command will be sent
4394 *
780a87f7
JG
4395 * Issue SET FEATURES - XFER MODE command to device @dev
4396 * on port @ap.
4397 *
1da177e4 4398 * LOCKING:
0cba632b 4399 * PCI/etc. bus probe sem.
83206a29
TH
4400 *
4401 * RETURNS:
4402 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4403 */
4404
3373efd8 4405static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4406{
a0123703 4407 struct ata_taskfile tf;
83206a29 4408 unsigned int err_mask;
1da177e4
LT
4409
4410 /* set up set-features taskfile */
4411 DPRINTK("set features - xfer mode\n");
4412
464cf177
TH
4413 /* Some controllers and ATAPI devices show flaky interrupt
4414 * behavior after setting xfer mode. Use polling instead.
4415 */
3373efd8 4416 ata_tf_init(dev, &tf);
a0123703
TH
4417 tf.command = ATA_CMD_SET_FEATURES;
4418 tf.feature = SETFEATURES_XFER;
464cf177 4419 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4420 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4421 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4422 if (ata_pio_need_iordy(dev))
4423 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4424 /* If the device has IORDY and the controller does not - turn it off */
4425 else if (ata_id_has_iordy(dev->id))
11b7becc 4426 tf.nsect = 0x01;
b9f8ab2d
AC
4427 else /* In the ancient relic department - skip all of this */
4428 return 0;
1da177e4 4429
2b789108 4430 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4431
4432 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4433 return err_mask;
4434}
1152b261 4435
9f45cbd3 4436/**
218f3d30 4437 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4438 * @dev: Device to which command will be sent
4439 * @enable: Whether to enable or disable the feature
218f3d30 4440 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4441 *
4442 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4443 * on port @ap with sector count
9f45cbd3
KCA
4444 *
4445 * LOCKING:
4446 * PCI/etc. bus probe sem.
4447 *
4448 * RETURNS:
4449 * 0 on success, AC_ERR_* mask otherwise.
4450 */
1152b261 4451unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
9f45cbd3
KCA
4452{
4453 struct ata_taskfile tf;
4454 unsigned int err_mask;
4455
4456 /* set up set-features taskfile */
4457 DPRINTK("set features - SATA features\n");
4458
4459 ata_tf_init(dev, &tf);
4460 tf.command = ATA_CMD_SET_FEATURES;
4461 tf.feature = enable;
4462 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4463 tf.protocol = ATA_PROT_NODATA;
218f3d30 4464 tf.nsect = feature;
9f45cbd3 4465
2b789108 4466 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4467
83206a29
TH
4468 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4469 return err_mask;
1da177e4
LT
4470}
4471
8bf62ece
AL
4472/**
4473 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4474 * @dev: Device to which command will be sent
e2a7f77a
RD
4475 * @heads: Number of heads (taskfile parameter)
4476 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4477 *
4478 * LOCKING:
6aff8f1f
TH
4479 * Kernel thread context (may sleep)
4480 *
4481 * RETURNS:
4482 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4483 */
3373efd8
TH
4484static unsigned int ata_dev_init_params(struct ata_device *dev,
4485 u16 heads, u16 sectors)
8bf62ece 4486{
a0123703 4487 struct ata_taskfile tf;
6aff8f1f 4488 unsigned int err_mask;
8bf62ece
AL
4489
4490 /* Number of sectors per track 1-255. Number of heads 1-16 */
4491 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4492 return AC_ERR_INVALID;
8bf62ece
AL
4493
4494 /* set up init dev params taskfile */
4495 DPRINTK("init dev params \n");
4496
3373efd8 4497 ata_tf_init(dev, &tf);
a0123703
TH
4498 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4499 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4500 tf.protocol = ATA_PROT_NODATA;
4501 tf.nsect = sectors;
4502 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4503
2b789108 4504 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4505 /* A clean abort indicates an original or just out of spec drive
4506 and we should continue as we issue the setup based on the
4507 drive reported working geometry */
4508 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4509 err_mask = 0;
8bf62ece 4510
6aff8f1f
TH
4511 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4512 return err_mask;
8bf62ece
AL
4513}
4514
1da177e4 4515/**
0cba632b
JG
4516 * ata_sg_clean - Unmap DMA memory associated with command
4517 * @qc: Command containing DMA memory to be released
4518 *
4519 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4520 *
4521 * LOCKING:
cca3974e 4522 * spin_lock_irqsave(host lock)
1da177e4 4523 */
70e6ad0c 4524void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4525{
4526 struct ata_port *ap = qc->ap;
ff2aeb1e 4527 struct scatterlist *sg = qc->sg;
1da177e4
LT
4528 int dir = qc->dma_dir;
4529
efcb3cf7 4530 WARN_ON_ONCE(sg == NULL);
1da177e4 4531
dde20207 4532 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4533
dde20207 4534 if (qc->n_elem)
5825627c 4535 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4536
4537 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4538 qc->sg = NULL;
1da177e4
LT
4539}
4540
1da177e4 4541/**
5895ef9a 4542 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4543 * @qc: Metadata associated with taskfile to check
4544 *
780a87f7
JG
4545 * Allow low-level driver to filter ATA PACKET commands, returning
4546 * a status indicating whether or not it is OK to use DMA for the
4547 * supplied PACKET command.
4548 *
1da177e4 4549 * LOCKING:
624d5c51
TH
4550 * spin_lock_irqsave(host lock)
4551 *
4552 * RETURNS: 0 when ATAPI DMA can be used
4553 * nonzero otherwise
4554 */
5895ef9a 4555int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4556{
4557 struct ata_port *ap = qc->ap;
71601958 4558
624d5c51
TH
4559 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4560 * few ATAPI devices choke on such DMA requests.
4561 */
6a87e42e
TH
4562 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4563 unlikely(qc->nbytes & 15))
624d5c51 4564 return 1;
e2cec771 4565
624d5c51
TH
4566 if (ap->ops->check_atapi_dma)
4567 return ap->ops->check_atapi_dma(qc);
e2cec771 4568
624d5c51
TH
4569 return 0;
4570}
1da177e4 4571
624d5c51
TH
4572/**
4573 * ata_std_qc_defer - Check whether a qc needs to be deferred
4574 * @qc: ATA command in question
4575 *
4576 * Non-NCQ commands cannot run with any other command, NCQ or
4577 * not. As upper layer only knows the queue depth, we are
4578 * responsible for maintaining exclusion. This function checks
4579 * whether a new command @qc can be issued.
4580 *
4581 * LOCKING:
4582 * spin_lock_irqsave(host lock)
4583 *
4584 * RETURNS:
4585 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4586 */
4587int ata_std_qc_defer(struct ata_queued_cmd *qc)
4588{
4589 struct ata_link *link = qc->dev->link;
e2cec771 4590
624d5c51
TH
4591 if (qc->tf.protocol == ATA_PROT_NCQ) {
4592 if (!ata_tag_valid(link->active_tag))
4593 return 0;
4594 } else {
4595 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4596 return 0;
4597 }
e2cec771 4598
624d5c51
TH
4599 return ATA_DEFER_LINK;
4600}
6912ccd5 4601
624d5c51 4602void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4603
624d5c51
TH
4604/**
4605 * ata_sg_init - Associate command with scatter-gather table.
4606 * @qc: Command to be associated
4607 * @sg: Scatter-gather table.
4608 * @n_elem: Number of elements in s/g table.
4609 *
4610 * Initialize the data-related elements of queued_cmd @qc
4611 * to point to a scatter-gather table @sg, containing @n_elem
4612 * elements.
4613 *
4614 * LOCKING:
4615 * spin_lock_irqsave(host lock)
4616 */
4617void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4618 unsigned int n_elem)
4619{
4620 qc->sg = sg;
4621 qc->n_elem = n_elem;
4622 qc->cursg = qc->sg;
4623}
bb5cb290 4624
624d5c51
TH
4625/**
4626 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4627 * @qc: Command with scatter-gather table to be mapped.
4628 *
4629 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4630 *
4631 * LOCKING:
4632 * spin_lock_irqsave(host lock)
4633 *
4634 * RETURNS:
4635 * Zero on success, negative on error.
4636 *
4637 */
4638static int ata_sg_setup(struct ata_queued_cmd *qc)
4639{
4640 struct ata_port *ap = qc->ap;
4641 unsigned int n_elem;
1da177e4 4642
624d5c51 4643 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4644
624d5c51
TH
4645 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4646 if (n_elem < 1)
4647 return -1;
bb5cb290 4648
624d5c51 4649 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4650 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4651 qc->n_elem = n_elem;
4652 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4653
624d5c51 4654 return 0;
1da177e4
LT
4655}
4656
624d5c51
TH
4657/**
4658 * swap_buf_le16 - swap halves of 16-bit words in place
4659 * @buf: Buffer to swap
4660 * @buf_words: Number of 16-bit words in buffer.
4661 *
4662 * Swap halves of 16-bit words if needed to convert from
4663 * little-endian byte order to native cpu byte order, or
4664 * vice-versa.
4665 *
4666 * LOCKING:
4667 * Inherited from caller.
4668 */
4669void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4670{
624d5c51
TH
4671#ifdef __BIG_ENDIAN
4672 unsigned int i;
8061f5f0 4673
624d5c51
TH
4674 for (i = 0; i < buf_words; i++)
4675 buf[i] = le16_to_cpu(buf[i]);
4676#endif /* __BIG_ENDIAN */
8061f5f0
TH
4677}
4678
8a8bc223
TH
4679/**
4680 * ata_qc_new - Request an available ATA command, for queueing
5eb66fe0 4681 * @ap: target port
8a8bc223
TH
4682 *
4683 * LOCKING:
4684 * None.
4685 */
4686
4687static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4688{
4689 struct ata_queued_cmd *qc = NULL;
4690 unsigned int i;
4691
4692 /* no command while frozen */
4693 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4694 return NULL;
4695
4696 /* the last tag is reserved for internal command. */
4697 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4698 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4699 qc = __ata_qc_from_tag(ap, i);
4700 break;
4701 }
4702
4703 if (qc)
4704 qc->tag = i;
4705
4706 return qc;
4707}
4708
1da177e4
LT
4709/**
4710 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4711 * @dev: Device from whom we request an available command structure
4712 *
4713 * LOCKING:
0cba632b 4714 * None.
1da177e4
LT
4715 */
4716
8a8bc223 4717struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4718{
9af5c9c9 4719 struct ata_port *ap = dev->link->ap;
1da177e4
LT
4720 struct ata_queued_cmd *qc;
4721
8a8bc223 4722 qc = ata_qc_new(ap);
1da177e4 4723 if (qc) {
1da177e4
LT
4724 qc->scsicmd = NULL;
4725 qc->ap = ap;
4726 qc->dev = dev;
1da177e4 4727
2c13b7ce 4728 ata_qc_reinit(qc);
1da177e4
LT
4729 }
4730
4731 return qc;
4732}
4733
8a8bc223
TH
4734/**
4735 * ata_qc_free - free unused ata_queued_cmd
4736 * @qc: Command to complete
4737 *
4738 * Designed to free unused ata_queued_cmd object
4739 * in case something prevents using it.
4740 *
4741 * LOCKING:
4742 * spin_lock_irqsave(host lock)
4743 */
4744void ata_qc_free(struct ata_queued_cmd *qc)
4745{
a1104016 4746 struct ata_port *ap;
8a8bc223
TH
4747 unsigned int tag;
4748
efcb3cf7 4749 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4750 ap = qc->ap;
8a8bc223
TH
4751
4752 qc->flags = 0;
4753 tag = qc->tag;
4754 if (likely(ata_tag_valid(tag))) {
4755 qc->tag = ATA_TAG_POISON;
4756 clear_bit(tag, &ap->qc_allocated);
4757 }
4758}
4759
76014427 4760void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4761{
a1104016
JL
4762 struct ata_port *ap;
4763 struct ata_link *link;
dedaf2b0 4764
efcb3cf7
TH
4765 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4766 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
4767 ap = qc->ap;
4768 link = qc->dev->link;
1da177e4
LT
4769
4770 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4771 ata_sg_clean(qc);
4772
7401abf2 4773 /* command should be marked inactive atomically with qc completion */
da917d69 4774 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4775 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4776 if (!link->sactive)
4777 ap->nr_active_links--;
4778 } else {
9af5c9c9 4779 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4780 ap->nr_active_links--;
4781 }
4782
4783 /* clear exclusive status */
4784 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4785 ap->excl_link == link))
4786 ap->excl_link = NULL;
7401abf2 4787
3f3791d3
AL
4788 /* atapi: mark qc as inactive to prevent the interrupt handler
4789 * from completing the command twice later, before the error handler
4790 * is called. (when rc != 0 and atapi request sense is needed)
4791 */
4792 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4793 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4794
1da177e4 4795 /* call completion callback */
77853bf2 4796 qc->complete_fn(qc);
1da177e4
LT
4797}
4798
39599a53
TH
4799static void fill_result_tf(struct ata_queued_cmd *qc)
4800{
4801 struct ata_port *ap = qc->ap;
4802
39599a53 4803 qc->result_tf.flags = qc->tf.flags;
22183bf5 4804 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4805}
4806
00115e0f
TH
4807static void ata_verify_xfer(struct ata_queued_cmd *qc)
4808{
4809 struct ata_device *dev = qc->dev;
4810
00115e0f
TH
4811 if (ata_is_nodata(qc->tf.protocol))
4812 return;
4813
4814 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4815 return;
4816
4817 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4818}
4819
f686bcb8
TH
4820/**
4821 * ata_qc_complete - Complete an active ATA command
4822 * @qc: Command to complete
f686bcb8 4823 *
1aadf5c3
TH
4824 * Indicate to the mid and upper layers that an ATA command has
4825 * completed, with either an ok or not-ok status.
4826 *
4827 * Refrain from calling this function multiple times when
4828 * successfully completing multiple NCQ commands.
4829 * ata_qc_complete_multiple() should be used instead, which will
4830 * properly update IRQ expect state.
f686bcb8
TH
4831 *
4832 * LOCKING:
cca3974e 4833 * spin_lock_irqsave(host lock)
f686bcb8
TH
4834 */
4835void ata_qc_complete(struct ata_queued_cmd *qc)
4836{
4837 struct ata_port *ap = qc->ap;
4838
4839 /* XXX: New EH and old EH use different mechanisms to
4840 * synchronize EH with regular execution path.
4841 *
4842 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4843 * Normal execution path is responsible for not accessing a
4844 * failed qc. libata core enforces the rule by returning NULL
4845 * from ata_qc_from_tag() for failed qcs.
4846 *
4847 * Old EH depends on ata_qc_complete() nullifying completion
4848 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4849 * not synchronize with interrupt handler. Only PIO task is
4850 * taken care of.
4851 */
4852 if (ap->ops->error_handler) {
4dbfa39b
TH
4853 struct ata_device *dev = qc->dev;
4854 struct ata_eh_info *ehi = &dev->link->eh_info;
4855
f686bcb8
TH
4856 if (unlikely(qc->err_mask))
4857 qc->flags |= ATA_QCFLAG_FAILED;
4858
f08dc1ac
TH
4859 /*
4860 * Finish internal commands without any further processing
4861 * and always with the result TF filled.
4862 */
4863 if (unlikely(ata_tag_internal(qc->tag))) {
f4b31db9 4864 fill_result_tf(qc);
f08dc1ac
TH
4865 __ata_qc_complete(qc);
4866 return;
4867 }
f4b31db9 4868
f08dc1ac
TH
4869 /*
4870 * Non-internal qc has failed. Fill the result TF and
4871 * summon EH.
4872 */
4873 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4874 fill_result_tf(qc);
4875 ata_qc_schedule_eh(qc);
f4b31db9 4876 return;
f686bcb8
TH
4877 }
4878
4dc738ed
TH
4879 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4880
f686bcb8
TH
4881 /* read result TF if requested */
4882 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4883 fill_result_tf(qc);
f686bcb8 4884
4dbfa39b
TH
4885 /* Some commands need post-processing after successful
4886 * completion.
4887 */
4888 switch (qc->tf.command) {
4889 case ATA_CMD_SET_FEATURES:
4890 if (qc->tf.feature != SETFEATURES_WC_ON &&
4891 qc->tf.feature != SETFEATURES_WC_OFF)
4892 break;
4893 /* fall through */
4894 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4895 case ATA_CMD_SET_MULTI: /* multi_count changed */
4896 /* revalidate device */
4897 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4898 ata_port_schedule_eh(ap);
4899 break;
054a5fba
TH
4900
4901 case ATA_CMD_SLEEP:
4902 dev->flags |= ATA_DFLAG_SLEEPING;
4903 break;
4dbfa39b
TH
4904 }
4905
00115e0f
TH
4906 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4907 ata_verify_xfer(qc);
4908
f686bcb8
TH
4909 __ata_qc_complete(qc);
4910 } else {
4911 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4912 return;
4913
4914 /* read result TF if failed or requested */
4915 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4916 fill_result_tf(qc);
f686bcb8
TH
4917
4918 __ata_qc_complete(qc);
4919 }
4920}
4921
dedaf2b0
TH
4922/**
4923 * ata_qc_complete_multiple - Complete multiple qcs successfully
4924 * @ap: port in question
4925 * @qc_active: new qc_active mask
dedaf2b0
TH
4926 *
4927 * Complete in-flight commands. This functions is meant to be
4928 * called from low-level driver's interrupt routine to complete
4929 * requests normally. ap->qc_active and @qc_active is compared
4930 * and commands are completed accordingly.
4931 *
1aadf5c3
TH
4932 * Always use this function when completing multiple NCQ commands
4933 * from IRQ handlers instead of calling ata_qc_complete()
4934 * multiple times to keep IRQ expect status properly in sync.
4935 *
dedaf2b0 4936 * LOCKING:
cca3974e 4937 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4938 *
4939 * RETURNS:
4940 * Number of completed commands on success, -errno otherwise.
4941 */
79f97dad 4942int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
4943{
4944 int nr_done = 0;
4945 u32 done_mask;
dedaf2b0
TH
4946
4947 done_mask = ap->qc_active ^ qc_active;
4948
4949 if (unlikely(done_mask & qc_active)) {
4950 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4951 "(%08x->%08x)\n", ap->qc_active, qc_active);
4952 return -EINVAL;
4953 }
4954
43768180 4955 while (done_mask) {
dedaf2b0 4956 struct ata_queued_cmd *qc;
43768180 4957 unsigned int tag = __ffs(done_mask);
dedaf2b0 4958
43768180
JA
4959 qc = ata_qc_from_tag(ap, tag);
4960 if (qc) {
dedaf2b0
TH
4961 ata_qc_complete(qc);
4962 nr_done++;
4963 }
43768180 4964 done_mask &= ~(1 << tag);
dedaf2b0
TH
4965 }
4966
4967 return nr_done;
4968}
4969
1da177e4
LT
4970/**
4971 * ata_qc_issue - issue taskfile to device
4972 * @qc: command to issue to device
4973 *
4974 * Prepare an ATA command to submission to device.
4975 * This includes mapping the data into a DMA-able
4976 * area, filling in the S/G table, and finally
4977 * writing the taskfile to hardware, starting the command.
4978 *
4979 * LOCKING:
cca3974e 4980 * spin_lock_irqsave(host lock)
1da177e4 4981 */
8e0e694a 4982void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4983{
4984 struct ata_port *ap = qc->ap;
9af5c9c9 4985 struct ata_link *link = qc->dev->link;
405e66b3 4986 u8 prot = qc->tf.protocol;
1da177e4 4987
dedaf2b0
TH
4988 /* Make sure only one non-NCQ command is outstanding. The
4989 * check is skipped for old EH because it reuses active qc to
4990 * request ATAPI sense.
4991 */
efcb3cf7 4992 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 4993
1973a023 4994 if (ata_is_ncq(prot)) {
efcb3cf7 4995 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
4996
4997 if (!link->sactive)
4998 ap->nr_active_links++;
9af5c9c9 4999 link->sactive |= 1 << qc->tag;
dedaf2b0 5000 } else {
efcb3cf7 5001 WARN_ON_ONCE(link->sactive);
da917d69
TH
5002
5003 ap->nr_active_links++;
9af5c9c9 5004 link->active_tag = qc->tag;
dedaf2b0
TH
5005 }
5006
e4a70e76 5007 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5008 ap->qc_active |= 1 << qc->tag;
e4a70e76 5009
60f5d6ef
TH
5010 /*
5011 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5012 * non-zero sg if the command is a data command.
5013 */
60f5d6ef
TH
5014 if (WARN_ON_ONCE(ata_is_data(prot) &&
5015 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5016 goto sys_err;
f92a2636 5017
405e66b3 5018 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5019 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5020 if (ata_sg_setup(qc))
60f5d6ef 5021 goto sys_err;
1da177e4 5022
cf480626 5023 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5024 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5025 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5026 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5027 ata_link_abort(link);
5028 return;
5029 }
5030
1da177e4
LT
5031 ap->ops->qc_prep(qc);
5032
8e0e694a
TH
5033 qc->err_mask |= ap->ops->qc_issue(qc);
5034 if (unlikely(qc->err_mask))
5035 goto err;
5036 return;
1da177e4 5037
60f5d6ef 5038sys_err:
8e0e694a
TH
5039 qc->err_mask |= AC_ERR_SYSTEM;
5040err:
5041 ata_qc_complete(qc);
1da177e4
LT
5042}
5043
34bf2170
TH
5044/**
5045 * sata_scr_valid - test whether SCRs are accessible
936fd732 5046 * @link: ATA link to test SCR accessibility for
34bf2170 5047 *
936fd732 5048 * Test whether SCRs are accessible for @link.
34bf2170
TH
5049 *
5050 * LOCKING:
5051 * None.
5052 *
5053 * RETURNS:
5054 * 1 if SCRs are accessible, 0 otherwise.
5055 */
936fd732 5056int sata_scr_valid(struct ata_link *link)
34bf2170 5057{
936fd732
TH
5058 struct ata_port *ap = link->ap;
5059
a16abc0b 5060 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5061}
5062
5063/**
5064 * sata_scr_read - read SCR register of the specified port
936fd732 5065 * @link: ATA link to read SCR for
34bf2170
TH
5066 * @reg: SCR to read
5067 * @val: Place to store read value
5068 *
936fd732 5069 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5070 * guaranteed to succeed if @link is ap->link, the cable type of
5071 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5072 *
5073 * LOCKING:
633273a3 5074 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5075 *
5076 * RETURNS:
5077 * 0 on success, negative errno on failure.
5078 */
936fd732 5079int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5080{
633273a3 5081 if (ata_is_host_link(link)) {
633273a3 5082 if (sata_scr_valid(link))
82ef04fb 5083 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5084 return -EOPNOTSUPP;
5085 }
5086
5087 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5088}
5089
5090/**
5091 * sata_scr_write - write SCR register of the specified port
936fd732 5092 * @link: ATA link to write SCR for
34bf2170
TH
5093 * @reg: SCR to write
5094 * @val: value to write
5095 *
936fd732 5096 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5097 * guaranteed to succeed if @link is ap->link, the cable type of
5098 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5099 *
5100 * LOCKING:
633273a3 5101 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5102 *
5103 * RETURNS:
5104 * 0 on success, negative errno on failure.
5105 */
936fd732 5106int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5107{
633273a3 5108 if (ata_is_host_link(link)) {
633273a3 5109 if (sata_scr_valid(link))
82ef04fb 5110 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5111 return -EOPNOTSUPP;
5112 }
936fd732 5113
633273a3 5114 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5115}
5116
5117/**
5118 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5119 * @link: ATA link to write SCR for
34bf2170
TH
5120 * @reg: SCR to write
5121 * @val: value to write
5122 *
5123 * This function is identical to sata_scr_write() except that this
5124 * function performs flush after writing to the register.
5125 *
5126 * LOCKING:
633273a3 5127 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5128 *
5129 * RETURNS:
5130 * 0 on success, negative errno on failure.
5131 */
936fd732 5132int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5133{
633273a3 5134 if (ata_is_host_link(link)) {
633273a3 5135 int rc;
da3dbb17 5136
633273a3 5137 if (sata_scr_valid(link)) {
82ef04fb 5138 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5139 if (rc == 0)
82ef04fb 5140 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5141 return rc;
5142 }
5143 return -EOPNOTSUPP;
34bf2170 5144 }
633273a3
TH
5145
5146 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5147}
5148
5149/**
b1c72916 5150 * ata_phys_link_online - test whether the given link is online
936fd732 5151 * @link: ATA link to test
34bf2170 5152 *
936fd732
TH
5153 * Test whether @link is online. Note that this function returns
5154 * 0 if online status of @link cannot be obtained, so
5155 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5156 *
5157 * LOCKING:
5158 * None.
5159 *
5160 * RETURNS:
b5b3fa38 5161 * True if the port online status is available and online.
34bf2170 5162 */
b1c72916 5163bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5164{
5165 u32 sstatus;
5166
936fd732 5167 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5168 ata_sstatus_online(sstatus))
b5b3fa38
TH
5169 return true;
5170 return false;
34bf2170
TH
5171}
5172
5173/**
b1c72916 5174 * ata_phys_link_offline - test whether the given link is offline
936fd732 5175 * @link: ATA link to test
34bf2170 5176 *
936fd732
TH
5177 * Test whether @link is offline. Note that this function
5178 * returns 0 if offline status of @link cannot be obtained, so
5179 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5180 *
5181 * LOCKING:
5182 * None.
5183 *
5184 * RETURNS:
b5b3fa38 5185 * True if the port offline status is available and offline.
34bf2170 5186 */
b1c72916 5187bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5188{
5189 u32 sstatus;
5190
936fd732 5191 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5192 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5193 return true;
5194 return false;
34bf2170 5195}
0baab86b 5196
b1c72916
TH
5197/**
5198 * ata_link_online - test whether the given link is online
5199 * @link: ATA link to test
5200 *
5201 * Test whether @link is online. This is identical to
5202 * ata_phys_link_online() when there's no slave link. When
5203 * there's a slave link, this function should only be called on
5204 * the master link and will return true if any of M/S links is
5205 * online.
5206 *
5207 * LOCKING:
5208 * None.
5209 *
5210 * RETURNS:
5211 * True if the port online status is available and online.
5212 */
5213bool ata_link_online(struct ata_link *link)
5214{
5215 struct ata_link *slave = link->ap->slave_link;
5216
5217 WARN_ON(link == slave); /* shouldn't be called on slave link */
5218
5219 return ata_phys_link_online(link) ||
5220 (slave && ata_phys_link_online(slave));
5221}
5222
5223/**
5224 * ata_link_offline - test whether the given link is offline
5225 * @link: ATA link to test
5226 *
5227 * Test whether @link is offline. This is identical to
5228 * ata_phys_link_offline() when there's no slave link. When
5229 * there's a slave link, this function should only be called on
5230 * the master link and will return true if both M/S links are
5231 * offline.
5232 *
5233 * LOCKING:
5234 * None.
5235 *
5236 * RETURNS:
5237 * True if the port offline status is available and offline.
5238 */
5239bool ata_link_offline(struct ata_link *link)
5240{
5241 struct ata_link *slave = link->ap->slave_link;
5242
5243 WARN_ON(link == slave); /* shouldn't be called on slave link */
5244
5245 return ata_phys_link_offline(link) &&
5246 (!slave || ata_phys_link_offline(slave));
5247}
5248
6ffa01d8 5249#ifdef CONFIG_PM
cca3974e
JG
5250static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5251 unsigned int action, unsigned int ehi_flags,
5252 int wait)
500530f6
TH
5253{
5254 unsigned long flags;
5255 int i, rc;
5256
cca3974e
JG
5257 for (i = 0; i < host->n_ports; i++) {
5258 struct ata_port *ap = host->ports[i];
e3667ebf 5259 struct ata_link *link;
500530f6
TH
5260
5261 /* Previous resume operation might still be in
5262 * progress. Wait for PM_PENDING to clear.
5263 */
5264 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5265 ata_port_wait_eh(ap);
5266 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5267 }
5268
5269 /* request PM ops to EH */
5270 spin_lock_irqsave(ap->lock, flags);
5271
5272 ap->pm_mesg = mesg;
5273 if (wait) {
5274 rc = 0;
5275 ap->pm_result = &rc;
5276 }
5277
5278 ap->pflags |= ATA_PFLAG_PM_PENDING;
1eca4365 5279 ata_for_each_link(link, ap, HOST_FIRST) {
e3667ebf
TH
5280 link->eh_info.action |= action;
5281 link->eh_info.flags |= ehi_flags;
5282 }
500530f6
TH
5283
5284 ata_port_schedule_eh(ap);
5285
5286 spin_unlock_irqrestore(ap->lock, flags);
5287
5288 /* wait and check result */
5289 if (wait) {
5290 ata_port_wait_eh(ap);
5291 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5292 if (rc)
5293 return rc;
5294 }
5295 }
5296
5297 return 0;
5298}
5299
5300/**
cca3974e
JG
5301 * ata_host_suspend - suspend host
5302 * @host: host to suspend
500530f6
TH
5303 * @mesg: PM message
5304 *
cca3974e 5305 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5306 * function requests EH to perform PM operations and waits for EH
5307 * to finish.
5308 *
5309 * LOCKING:
5310 * Kernel thread context (may sleep).
5311 *
5312 * RETURNS:
5313 * 0 on success, -errno on failure.
5314 */
cca3974e 5315int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5316{
e2f3d75f 5317 unsigned int ehi_flags = ATA_EHI_QUIET;
9666f400 5318 int rc;
500530f6 5319
e2f3d75f
TH
5320 /*
5321 * On some hardware, device fails to respond after spun down
5322 * for suspend. As the device won't be used before being
5323 * resumed, we don't need to touch the device. Ask EH to skip
5324 * the usual stuff and proceed directly to suspend.
5325 *
5326 * http://thread.gmane.org/gmane.linux.ide/46764
5327 */
5328 if (mesg.event == PM_EVENT_SUSPEND)
5329 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5330
5331 rc = ata_host_request_pm(host, mesg, 0, ehi_flags, 1);
72ad6ec4
JG
5332 if (rc == 0)
5333 host->dev->power.power_state = mesg;
500530f6
TH
5334 return rc;
5335}
5336
5337/**
cca3974e
JG
5338 * ata_host_resume - resume host
5339 * @host: host to resume
500530f6 5340 *
cca3974e 5341 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5342 * function requests EH to perform PM operations and returns.
5343 * Note that all resume operations are performed parallely.
5344 *
5345 * LOCKING:
5346 * Kernel thread context (may sleep).
5347 */
cca3974e 5348void ata_host_resume(struct ata_host *host)
500530f6 5349{
cf480626 5350 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
cca3974e 5351 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
72ad6ec4 5352 host->dev->power.power_state = PMSG_ON;
500530f6 5353}
6ffa01d8 5354#endif
500530f6 5355
3ef3b43d
TH
5356/**
5357 * ata_dev_init - Initialize an ata_device structure
5358 * @dev: Device structure to initialize
5359 *
5360 * Initialize @dev in preparation for probing.
5361 *
5362 * LOCKING:
5363 * Inherited from caller.
5364 */
5365void ata_dev_init(struct ata_device *dev)
5366{
b1c72916 5367 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5368 struct ata_port *ap = link->ap;
72fa4b74
TH
5369 unsigned long flags;
5370
b1c72916 5371 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5372 link->sata_spd_limit = link->hw_sata_spd_limit;
5373 link->sata_spd = 0;
5a04bf4b 5374
72fa4b74
TH
5375 /* High bits of dev->flags are used to record warm plug
5376 * requests which occur asynchronously. Synchronize using
cca3974e 5377 * host lock.
72fa4b74 5378 */
ba6a1308 5379 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5380 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5381 dev->horkage = 0;
ba6a1308 5382 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5383
99cf610a
TH
5384 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5385 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5386 dev->pio_mask = UINT_MAX;
5387 dev->mwdma_mask = UINT_MAX;
5388 dev->udma_mask = UINT_MAX;
5389}
5390
4fb37a25
TH
5391/**
5392 * ata_link_init - Initialize an ata_link structure
5393 * @ap: ATA port link is attached to
5394 * @link: Link structure to initialize
8989805d 5395 * @pmp: Port multiplier port number
4fb37a25
TH
5396 *
5397 * Initialize @link.
5398 *
5399 * LOCKING:
5400 * Kernel thread context (may sleep)
5401 */
fb7fd614 5402void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5403{
5404 int i;
5405
5406 /* clear everything except for devices */
d9027470
GG
5407 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5408 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
4fb37a25
TH
5409
5410 link->ap = ap;
8989805d 5411 link->pmp = pmp;
4fb37a25
TH
5412 link->active_tag = ATA_TAG_POISON;
5413 link->hw_sata_spd_limit = UINT_MAX;
5414
5415 /* can't use iterator, ap isn't initialized yet */
5416 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5417 struct ata_device *dev = &link->device[i];
5418
5419 dev->link = link;
5420 dev->devno = dev - link->device;
110f66d2
TH
5421#ifdef CONFIG_ATA_ACPI
5422 dev->gtf_filter = ata_acpi_gtf_filter;
5423#endif
4fb37a25
TH
5424 ata_dev_init(dev);
5425 }
5426}
5427
5428/**
5429 * sata_link_init_spd - Initialize link->sata_spd_limit
5430 * @link: Link to configure sata_spd_limit for
5431 *
5432 * Initialize @link->[hw_]sata_spd_limit to the currently
5433 * configured value.
5434 *
5435 * LOCKING:
5436 * Kernel thread context (may sleep).
5437 *
5438 * RETURNS:
5439 * 0 on success, -errno on failure.
5440 */
fb7fd614 5441int sata_link_init_spd(struct ata_link *link)
4fb37a25 5442{
33267325 5443 u8 spd;
4fb37a25
TH
5444 int rc;
5445
d127ea7b 5446 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5447 if (rc)
5448 return rc;
5449
d127ea7b 5450 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5451 if (spd)
5452 link->hw_sata_spd_limit &= (1 << spd) - 1;
5453
05944bdf 5454 ata_force_link_limits(link);
33267325 5455
4fb37a25
TH
5456 link->sata_spd_limit = link->hw_sata_spd_limit;
5457
5458 return 0;
5459}
5460
1da177e4 5461/**
f3187195
TH
5462 * ata_port_alloc - allocate and initialize basic ATA port resources
5463 * @host: ATA host this allocated port belongs to
1da177e4 5464 *
f3187195
TH
5465 * Allocate and initialize basic ATA port resources.
5466 *
5467 * RETURNS:
5468 * Allocate ATA port on success, NULL on failure.
0cba632b 5469 *
1da177e4 5470 * LOCKING:
f3187195 5471 * Inherited from calling layer (may sleep).
1da177e4 5472 */
f3187195 5473struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5474{
f3187195 5475 struct ata_port *ap;
1da177e4 5476
f3187195
TH
5477 DPRINTK("ENTER\n");
5478
5479 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5480 if (!ap)
5481 return NULL;
4fca377f 5482
f4d6d004 5483 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5484 ap->lock = &host->lock;
f3187195 5485 ap->print_id = -1;
cca3974e 5486 ap->host = host;
f3187195 5487 ap->dev = host->dev;
bd5d825c
BP
5488
5489#if defined(ATA_VERBOSE_DEBUG)
5490 /* turn on all debugging levels */
5491 ap->msg_enable = 0x00FF;
5492#elif defined(ATA_DEBUG)
5493 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5494#else
0dd4b21f 5495 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5496#endif
1da177e4 5497
ad72cf98 5498 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
5499 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5500 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5501 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5502 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5503 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5504 init_timer_deferrable(&ap->fastdrain_timer);
5505 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5506 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5507
838df628 5508 ap->cbl = ATA_CBL_NONE;
838df628 5509
8989805d 5510 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5511
5512#ifdef ATA_IRQ_TRAP
5513 ap->stats.unhandled_irq = 1;
5514 ap->stats.idle_irq = 1;
5515#endif
270390e1
TH
5516 ata_sff_port_init(ap);
5517
1da177e4 5518 return ap;
1da177e4
LT
5519}
5520
f0d36efd
TH
5521static void ata_host_release(struct device *gendev, void *res)
5522{
5523 struct ata_host *host = dev_get_drvdata(gendev);
5524 int i;
5525
1aa506e4
TH
5526 for (i = 0; i < host->n_ports; i++) {
5527 struct ata_port *ap = host->ports[i];
5528
4911487a
TH
5529 if (!ap)
5530 continue;
5531
5532 if (ap->scsi_host)
1aa506e4
TH
5533 scsi_host_put(ap->scsi_host);
5534
633273a3 5535 kfree(ap->pmp_link);
b1c72916 5536 kfree(ap->slave_link);
4911487a 5537 kfree(ap);
1aa506e4
TH
5538 host->ports[i] = NULL;
5539 }
5540
1aa56cca 5541 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5542}
5543
f3187195
TH
5544/**
5545 * ata_host_alloc - allocate and init basic ATA host resources
5546 * @dev: generic device this host is associated with
5547 * @max_ports: maximum number of ATA ports associated with this host
5548 *
5549 * Allocate and initialize basic ATA host resources. LLD calls
5550 * this function to allocate a host, initializes it fully and
5551 * attaches it using ata_host_register().
5552 *
5553 * @max_ports ports are allocated and host->n_ports is
5554 * initialized to @max_ports. The caller is allowed to decrease
5555 * host->n_ports before calling ata_host_register(). The unused
5556 * ports will be automatically freed on registration.
5557 *
5558 * RETURNS:
5559 * Allocate ATA host on success, NULL on failure.
5560 *
5561 * LOCKING:
5562 * Inherited from calling layer (may sleep).
5563 */
5564struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5565{
5566 struct ata_host *host;
5567 size_t sz;
5568 int i;
5569
5570 DPRINTK("ENTER\n");
5571
5572 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5573 return NULL;
5574
5575 /* alloc a container for our list of ATA ports (buses) */
5576 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5577 /* alloc a container for our list of ATA ports (buses) */
5578 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5579 if (!host)
5580 goto err_out;
5581
5582 devres_add(dev, host);
5583 dev_set_drvdata(dev, host);
5584
5585 spin_lock_init(&host->lock);
c0c362b6 5586 mutex_init(&host->eh_mutex);
f3187195
TH
5587 host->dev = dev;
5588 host->n_ports = max_ports;
5589
5590 /* allocate ports bound to this host */
5591 for (i = 0; i < max_ports; i++) {
5592 struct ata_port *ap;
5593
5594 ap = ata_port_alloc(host);
5595 if (!ap)
5596 goto err_out;
5597
5598 ap->port_no = i;
5599 host->ports[i] = ap;
5600 }
5601
5602 devres_remove_group(dev, NULL);
5603 return host;
5604
5605 err_out:
5606 devres_release_group(dev, NULL);
5607 return NULL;
5608}
5609
f5cda257
TH
5610/**
5611 * ata_host_alloc_pinfo - alloc host and init with port_info array
5612 * @dev: generic device this host is associated with
5613 * @ppi: array of ATA port_info to initialize host with
5614 * @n_ports: number of ATA ports attached to this host
5615 *
5616 * Allocate ATA host and initialize with info from @ppi. If NULL
5617 * terminated, @ppi may contain fewer entries than @n_ports. The
5618 * last entry will be used for the remaining ports.
5619 *
5620 * RETURNS:
5621 * Allocate ATA host on success, NULL on failure.
5622 *
5623 * LOCKING:
5624 * Inherited from calling layer (may sleep).
5625 */
5626struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5627 const struct ata_port_info * const * ppi,
5628 int n_ports)
5629{
5630 const struct ata_port_info *pi;
5631 struct ata_host *host;
5632 int i, j;
5633
5634 host = ata_host_alloc(dev, n_ports);
5635 if (!host)
5636 return NULL;
5637
5638 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5639 struct ata_port *ap = host->ports[i];
5640
5641 if (ppi[j])
5642 pi = ppi[j++];
5643
5644 ap->pio_mask = pi->pio_mask;
5645 ap->mwdma_mask = pi->mwdma_mask;
5646 ap->udma_mask = pi->udma_mask;
5647 ap->flags |= pi->flags;
0c88758b 5648 ap->link.flags |= pi->link_flags;
f5cda257
TH
5649 ap->ops = pi->port_ops;
5650
5651 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5652 host->ops = pi->port_ops;
f5cda257
TH
5653 }
5654
5655 return host;
5656}
5657
b1c72916
TH
5658/**
5659 * ata_slave_link_init - initialize slave link
5660 * @ap: port to initialize slave link for
5661 *
5662 * Create and initialize slave link for @ap. This enables slave
5663 * link handling on the port.
5664 *
5665 * In libata, a port contains links and a link contains devices.
5666 * There is single host link but if a PMP is attached to it,
5667 * there can be multiple fan-out links. On SATA, there's usually
5668 * a single device connected to a link but PATA and SATA
5669 * controllers emulating TF based interface can have two - master
5670 * and slave.
5671 *
5672 * However, there are a few controllers which don't fit into this
5673 * abstraction too well - SATA controllers which emulate TF
5674 * interface with both master and slave devices but also have
5675 * separate SCR register sets for each device. These controllers
5676 * need separate links for physical link handling
5677 * (e.g. onlineness, link speed) but should be treated like a
5678 * traditional M/S controller for everything else (e.g. command
5679 * issue, softreset).
5680 *
5681 * slave_link is libata's way of handling this class of
5682 * controllers without impacting core layer too much. For
5683 * anything other than physical link handling, the default host
5684 * link is used for both master and slave. For physical link
5685 * handling, separate @ap->slave_link is used. All dirty details
5686 * are implemented inside libata core layer. From LLD's POV, the
5687 * only difference is that prereset, hardreset and postreset are
5688 * called once more for the slave link, so the reset sequence
5689 * looks like the following.
5690 *
5691 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5692 * softreset(M) -> postreset(M) -> postreset(S)
5693 *
5694 * Note that softreset is called only for the master. Softreset
5695 * resets both M/S by definition, so SRST on master should handle
5696 * both (the standard method will work just fine).
5697 *
5698 * LOCKING:
5699 * Should be called before host is registered.
5700 *
5701 * RETURNS:
5702 * 0 on success, -errno on failure.
5703 */
5704int ata_slave_link_init(struct ata_port *ap)
5705{
5706 struct ata_link *link;
5707
5708 WARN_ON(ap->slave_link);
5709 WARN_ON(ap->flags & ATA_FLAG_PMP);
5710
5711 link = kzalloc(sizeof(*link), GFP_KERNEL);
5712 if (!link)
5713 return -ENOMEM;
5714
5715 ata_link_init(ap, link, 1);
5716 ap->slave_link = link;
5717 return 0;
5718}
5719
32ebbc0c
TH
5720static void ata_host_stop(struct device *gendev, void *res)
5721{
5722 struct ata_host *host = dev_get_drvdata(gendev);
5723 int i;
5724
5725 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5726
5727 for (i = 0; i < host->n_ports; i++) {
5728 struct ata_port *ap = host->ports[i];
5729
5730 if (ap->ops->port_stop)
5731 ap->ops->port_stop(ap);
5732 }
5733
5734 if (host->ops->host_stop)
5735 host->ops->host_stop(host);
5736}
5737
029cfd6b
TH
5738/**
5739 * ata_finalize_port_ops - finalize ata_port_operations
5740 * @ops: ata_port_operations to finalize
5741 *
5742 * An ata_port_operations can inherit from another ops and that
5743 * ops can again inherit from another. This can go on as many
5744 * times as necessary as long as there is no loop in the
5745 * inheritance chain.
5746 *
5747 * Ops tables are finalized when the host is started. NULL or
5748 * unspecified entries are inherited from the closet ancestor
5749 * which has the method and the entry is populated with it.
5750 * After finalization, the ops table directly points to all the
5751 * methods and ->inherits is no longer necessary and cleared.
5752 *
5753 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5754 *
5755 * LOCKING:
5756 * None.
5757 */
5758static void ata_finalize_port_ops(struct ata_port_operations *ops)
5759{
2da67659 5760 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5761 const struct ata_port_operations *cur;
5762 void **begin = (void **)ops;
5763 void **end = (void **)&ops->inherits;
5764 void **pp;
5765
5766 if (!ops || !ops->inherits)
5767 return;
5768
5769 spin_lock(&lock);
5770
5771 for (cur = ops->inherits; cur; cur = cur->inherits) {
5772 void **inherit = (void **)cur;
5773
5774 for (pp = begin; pp < end; pp++, inherit++)
5775 if (!*pp)
5776 *pp = *inherit;
5777 }
5778
5779 for (pp = begin; pp < end; pp++)
5780 if (IS_ERR(*pp))
5781 *pp = NULL;
5782
5783 ops->inherits = NULL;
5784
5785 spin_unlock(&lock);
5786}
5787
ecef7253
TH
5788/**
5789 * ata_host_start - start and freeze ports of an ATA host
5790 * @host: ATA host to start ports for
5791 *
5792 * Start and then freeze ports of @host. Started status is
5793 * recorded in host->flags, so this function can be called
5794 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5795 * once. If host->ops isn't initialized yet, its set to the
5796 * first non-dummy port ops.
ecef7253
TH
5797 *
5798 * LOCKING:
5799 * Inherited from calling layer (may sleep).
5800 *
5801 * RETURNS:
5802 * 0 if all ports are started successfully, -errno otherwise.
5803 */
5804int ata_host_start(struct ata_host *host)
5805{
32ebbc0c
TH
5806 int have_stop = 0;
5807 void *start_dr = NULL;
ecef7253
TH
5808 int i, rc;
5809
5810 if (host->flags & ATA_HOST_STARTED)
5811 return 0;
5812
029cfd6b
TH
5813 ata_finalize_port_ops(host->ops);
5814
ecef7253
TH
5815 for (i = 0; i < host->n_ports; i++) {
5816 struct ata_port *ap = host->ports[i];
5817
029cfd6b
TH
5818 ata_finalize_port_ops(ap->ops);
5819
f3187195
TH
5820 if (!host->ops && !ata_port_is_dummy(ap))
5821 host->ops = ap->ops;
5822
32ebbc0c
TH
5823 if (ap->ops->port_stop)
5824 have_stop = 1;
5825 }
5826
5827 if (host->ops->host_stop)
5828 have_stop = 1;
5829
5830 if (have_stop) {
5831 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5832 if (!start_dr)
5833 return -ENOMEM;
5834 }
5835
5836 for (i = 0; i < host->n_ports; i++) {
5837 struct ata_port *ap = host->ports[i];
5838
ecef7253
TH
5839 if (ap->ops->port_start) {
5840 rc = ap->ops->port_start(ap);
5841 if (rc) {
0f9fe9b7 5842 if (rc != -ENODEV)
0f757743
AM
5843 dev_printk(KERN_ERR, host->dev,
5844 "failed to start port %d "
5845 "(errno=%d)\n", i, rc);
ecef7253
TH
5846 goto err_out;
5847 }
5848 }
ecef7253
TH
5849 ata_eh_freeze_port(ap);
5850 }
5851
32ebbc0c
TH
5852 if (start_dr)
5853 devres_add(host->dev, start_dr);
ecef7253
TH
5854 host->flags |= ATA_HOST_STARTED;
5855 return 0;
5856
5857 err_out:
5858 while (--i >= 0) {
5859 struct ata_port *ap = host->ports[i];
5860
5861 if (ap->ops->port_stop)
5862 ap->ops->port_stop(ap);
5863 }
32ebbc0c 5864 devres_free(start_dr);
ecef7253
TH
5865 return rc;
5866}
5867
b03732f0 5868/**
cca3974e
JG
5869 * ata_sas_host_init - Initialize a host struct
5870 * @host: host to initialize
5871 * @dev: device host is attached to
5872 * @flags: host flags
5873 * @ops: port_ops
b03732f0
BK
5874 *
5875 * LOCKING:
5876 * PCI/etc. bus probe sem.
5877 *
5878 */
f3187195 5879/* KILLME - the only user left is ipr */
cca3974e 5880void ata_host_init(struct ata_host *host, struct device *dev,
029cfd6b 5881 unsigned long flags, struct ata_port_operations *ops)
b03732f0 5882{
cca3974e 5883 spin_lock_init(&host->lock);
c0c362b6 5884 mutex_init(&host->eh_mutex);
cca3974e
JG
5885 host->dev = dev;
5886 host->flags = flags;
5887 host->ops = ops;
b03732f0
BK
5888}
5889
238c9cf9 5890int ata_port_probe(struct ata_port *ap)
79318057 5891{
238c9cf9 5892 int rc = 0;
886ad09f 5893
79318057
AV
5894 /* probe */
5895 if (ap->ops->error_handler) {
5896 struct ata_eh_info *ehi = &ap->link.eh_info;
5897 unsigned long flags;
5898
79318057
AV
5899 /* kick EH for boot probing */
5900 spin_lock_irqsave(ap->lock, flags);
5901
5902 ehi->probe_mask |= ATA_ALL_DEVICES;
6b7ae954 5903 ehi->action |= ATA_EH_RESET;
79318057
AV
5904 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5905
5906 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5907 ap->pflags |= ATA_PFLAG_LOADING;
5908 ata_port_schedule_eh(ap);
5909
5910 spin_unlock_irqrestore(ap->lock, flags);
5911
5912 /* wait for EH to finish */
5913 ata_port_wait_eh(ap);
5914 } else {
5915 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5916 rc = ata_bus_probe(ap);
5917 DPRINTK("ata%u: bus probe end\n", ap->print_id);
79318057 5918 }
238c9cf9
JB
5919 return rc;
5920}
5921
5922
5923static void async_port_probe(void *data, async_cookie_t cookie)
5924{
5925 struct ata_port *ap = data;
4fca377f 5926
238c9cf9
JB
5927 /*
5928 * If we're not allowed to scan this host in parallel,
5929 * we need to wait until all previous scans have completed
5930 * before going further.
5931 * Jeff Garzik says this is only within a controller, so we
5932 * don't need to wait for port 0, only for later ports.
5933 */
5934 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5935 async_synchronize_cookie(cookie);
5936
5937 (void)ata_port_probe(ap);
f29d3b23
AV
5938
5939 /* in order to keep device order, we need to synchronize at this point */
5940 async_synchronize_cookie(cookie);
5941
5942 ata_scsi_scan_host(ap, 1);
79318057 5943}
238c9cf9 5944
f3187195
TH
5945/**
5946 * ata_host_register - register initialized ATA host
5947 * @host: ATA host to register
5948 * @sht: template for SCSI host
5949 *
5950 * Register initialized ATA host. @host is allocated using
5951 * ata_host_alloc() and fully initialized by LLD. This function
5952 * starts ports, registers @host with ATA and SCSI layers and
5953 * probe registered devices.
5954 *
5955 * LOCKING:
5956 * Inherited from calling layer (may sleep).
5957 *
5958 * RETURNS:
5959 * 0 on success, -errno otherwise.
5960 */
5961int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5962{
5963 int i, rc;
5964
5965 /* host must have been started */
5966 if (!(host->flags & ATA_HOST_STARTED)) {
5967 dev_printk(KERN_ERR, host->dev,
5968 "BUG: trying to register unstarted host\n");
5969 WARN_ON(1);
5970 return -EINVAL;
5971 }
5972
5973 /* Blow away unused ports. This happens when LLD can't
5974 * determine the exact number of ports to allocate at
5975 * allocation time.
5976 */
5977 for (i = host->n_ports; host->ports[i]; i++)
5978 kfree(host->ports[i]);
5979
5980 /* give ports names and add SCSI hosts */
5981 for (i = 0; i < host->n_ports; i++)
5982 host->ports[i]->print_id = ata_print_id++;
5983
4fca377f 5984
d9027470
GG
5985 /* Create associated sysfs transport objects */
5986 for (i = 0; i < host->n_ports; i++) {
5987 rc = ata_tport_add(host->dev,host->ports[i]);
5988 if (rc) {
5989 goto err_tadd;
5990 }
5991 }
5992
f3187195
TH
5993 rc = ata_scsi_add_hosts(host, sht);
5994 if (rc)
d9027470 5995 goto err_tadd;
f3187195 5996
fafbae87
TH
5997 /* associate with ACPI nodes */
5998 ata_acpi_associate(host);
5999
f3187195
TH
6000 /* set cable, sata_spd_limit and report */
6001 for (i = 0; i < host->n_ports; i++) {
6002 struct ata_port *ap = host->ports[i];
f3187195
TH
6003 unsigned long xfer_mask;
6004
6005 /* set SATA cable type if still unset */
6006 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6007 ap->cbl = ATA_CBL_SATA;
6008
6009 /* init sata_spd_limit to the current value */
4fb37a25 6010 sata_link_init_spd(&ap->link);
b1c72916
TH
6011 if (ap->slave_link)
6012 sata_link_init_spd(ap->slave_link);
f3187195 6013
cbcdd875 6014 /* print per-port info to dmesg */
f3187195
TH
6015 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6016 ap->udma_mask);
6017
abf6e8ed 6018 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6019 ata_port_printk(ap, KERN_INFO,
6020 "%cATA max %s %s\n",
a16abc0b 6021 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6022 ata_mode_string(xfer_mask),
cbcdd875 6023 ap->link.eh_info.desc);
abf6e8ed
TH
6024 ata_ehi_clear_desc(&ap->link.eh_info);
6025 } else
f3187195
TH
6026 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6027 }
6028
f6005354 6029 /* perform each probe asynchronously */
f3187195
TH
6030 for (i = 0; i < host->n_ports; i++) {
6031 struct ata_port *ap = host->ports[i];
79318057 6032 async_schedule(async_port_probe, ap);
f3187195 6033 }
f3187195
TH
6034
6035 return 0;
d9027470
GG
6036
6037 err_tadd:
6038 while (--i >= 0) {
6039 ata_tport_delete(host->ports[i]);
6040 }
6041 return rc;
6042
f3187195
TH
6043}
6044
f5cda257
TH
6045/**
6046 * ata_host_activate - start host, request IRQ and register it
6047 * @host: target ATA host
6048 * @irq: IRQ to request
6049 * @irq_handler: irq_handler used when requesting IRQ
6050 * @irq_flags: irq_flags used when requesting IRQ
6051 * @sht: scsi_host_template to use when registering the host
6052 *
6053 * After allocating an ATA host and initializing it, most libata
6054 * LLDs perform three steps to activate the host - start host,
6055 * request IRQ and register it. This helper takes necessasry
6056 * arguments and performs the three steps in one go.
6057 *
3d46b2e2
PM
6058 * An invalid IRQ skips the IRQ registration and expects the host to
6059 * have set polling mode on the port. In this case, @irq_handler
6060 * should be NULL.
6061 *
f5cda257
TH
6062 * LOCKING:
6063 * Inherited from calling layer (may sleep).
6064 *
6065 * RETURNS:
6066 * 0 on success, -errno otherwise.
6067 */
6068int ata_host_activate(struct ata_host *host, int irq,
6069 irq_handler_t irq_handler, unsigned long irq_flags,
6070 struct scsi_host_template *sht)
6071{
cbcdd875 6072 int i, rc;
f5cda257
TH
6073
6074 rc = ata_host_start(host);
6075 if (rc)
6076 return rc;
6077
3d46b2e2
PM
6078 /* Special case for polling mode */
6079 if (!irq) {
6080 WARN_ON(irq_handler);
6081 return ata_host_register(host, sht);
6082 }
6083
f5cda257
TH
6084 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6085 dev_driver_string(host->dev), host);
6086 if (rc)
6087 return rc;
6088
cbcdd875
TH
6089 for (i = 0; i < host->n_ports; i++)
6090 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6091
f5cda257
TH
6092 rc = ata_host_register(host, sht);
6093 /* if failed, just free the IRQ and leave ports alone */
6094 if (rc)
6095 devm_free_irq(host->dev, irq, host);
6096
6097 return rc;
6098}
6099
720ba126
TH
6100/**
6101 * ata_port_detach - Detach ATA port in prepration of device removal
6102 * @ap: ATA port to be detached
6103 *
6104 * Detach all ATA devices and the associated SCSI devices of @ap;
6105 * then, remove the associated SCSI host. @ap is guaranteed to
6106 * be quiescent on return from this function.
6107 *
6108 * LOCKING:
6109 * Kernel thread context (may sleep).
6110 */
741b7763 6111static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6112{
6113 unsigned long flags;
720ba126
TH
6114
6115 if (!ap->ops->error_handler)
c3cf30a9 6116 goto skip_eh;
720ba126
TH
6117
6118 /* tell EH we're leaving & flush EH */
ba6a1308 6119 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6120 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6121 ata_port_schedule_eh(ap);
ba6a1308 6122 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6123
ece180d1 6124 /* wait till EH commits suicide */
720ba126
TH
6125 ata_port_wait_eh(ap);
6126
ece180d1
TH
6127 /* it better be dead now */
6128 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6129
afe2c511 6130 cancel_delayed_work_sync(&ap->hotplug_task);
720ba126 6131
c3cf30a9 6132 skip_eh:
d9027470
GG
6133 if (ap->pmp_link) {
6134 int i;
6135 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6136 ata_tlink_delete(&ap->pmp_link[i]);
6137 }
6138 ata_tport_delete(ap);
6139
720ba126 6140 /* remove the associated SCSI host */
cca3974e 6141 scsi_remove_host(ap->scsi_host);
720ba126
TH
6142}
6143
0529c159
TH
6144/**
6145 * ata_host_detach - Detach all ports of an ATA host
6146 * @host: Host to detach
6147 *
6148 * Detach all ports of @host.
6149 *
6150 * LOCKING:
6151 * Kernel thread context (may sleep).
6152 */
6153void ata_host_detach(struct ata_host *host)
6154{
6155 int i;
6156
6157 for (i = 0; i < host->n_ports; i++)
6158 ata_port_detach(host->ports[i]);
562f0c2d
TH
6159
6160 /* the host is dead now, dissociate ACPI */
6161 ata_acpi_dissociate(host);
0529c159
TH
6162}
6163
374b1873
JG
6164#ifdef CONFIG_PCI
6165
1da177e4
LT
6166/**
6167 * ata_pci_remove_one - PCI layer callback for device removal
6168 * @pdev: PCI device that was removed
6169 *
b878ca5d
TH
6170 * PCI layer indicates to libata via this hook that hot-unplug or
6171 * module unload event has occurred. Detach all ports. Resource
6172 * release is handled via devres.
1da177e4
LT
6173 *
6174 * LOCKING:
6175 * Inherited from PCI layer (may sleep).
6176 */
f0d36efd 6177void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6178{
2855568b 6179 struct device *dev = &pdev->dev;
cca3974e 6180 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6181
b878ca5d 6182 ata_host_detach(host);
1da177e4
LT
6183}
6184
6185/* move to PCI subsystem */
057ace5e 6186int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6187{
6188 unsigned long tmp = 0;
6189
6190 switch (bits->width) {
6191 case 1: {
6192 u8 tmp8 = 0;
6193 pci_read_config_byte(pdev, bits->reg, &tmp8);
6194 tmp = tmp8;
6195 break;
6196 }
6197 case 2: {
6198 u16 tmp16 = 0;
6199 pci_read_config_word(pdev, bits->reg, &tmp16);
6200 tmp = tmp16;
6201 break;
6202 }
6203 case 4: {
6204 u32 tmp32 = 0;
6205 pci_read_config_dword(pdev, bits->reg, &tmp32);
6206 tmp = tmp32;
6207 break;
6208 }
6209
6210 default:
6211 return -EINVAL;
6212 }
6213
6214 tmp &= bits->mask;
6215
6216 return (tmp == bits->val) ? 1 : 0;
6217}
9b847548 6218
6ffa01d8 6219#ifdef CONFIG_PM
3c5100c1 6220void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6221{
6222 pci_save_state(pdev);
4c90d971 6223 pci_disable_device(pdev);
500530f6 6224
3a2d5b70 6225 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6226 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6227}
6228
553c4aa6 6229int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6230{
553c4aa6
TH
6231 int rc;
6232
9b847548
JA
6233 pci_set_power_state(pdev, PCI_D0);
6234 pci_restore_state(pdev);
553c4aa6 6235
b878ca5d 6236 rc = pcim_enable_device(pdev);
553c4aa6
TH
6237 if (rc) {
6238 dev_printk(KERN_ERR, &pdev->dev,
6239 "failed to enable device after resume (%d)\n", rc);
6240 return rc;
6241 }
6242
9b847548 6243 pci_set_master(pdev);
553c4aa6 6244 return 0;
500530f6
TH
6245}
6246
3c5100c1 6247int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6248{
cca3974e 6249 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6250 int rc = 0;
6251
cca3974e 6252 rc = ata_host_suspend(host, mesg);
500530f6
TH
6253 if (rc)
6254 return rc;
6255
3c5100c1 6256 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6257
6258 return 0;
6259}
6260
6261int ata_pci_device_resume(struct pci_dev *pdev)
6262{
cca3974e 6263 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6264 int rc;
500530f6 6265
553c4aa6
TH
6266 rc = ata_pci_device_do_resume(pdev);
6267 if (rc == 0)
6268 ata_host_resume(host);
6269 return rc;
9b847548 6270}
6ffa01d8
TH
6271#endif /* CONFIG_PM */
6272
1da177e4
LT
6273#endif /* CONFIG_PCI */
6274
33267325
TH
6275static int __init ata_parse_force_one(char **cur,
6276 struct ata_force_ent *force_ent,
6277 const char **reason)
6278{
6279 /* FIXME: Currently, there's no way to tag init const data and
6280 * using __initdata causes build failure on some versions of
6281 * gcc. Once __initdataconst is implemented, add const to the
6282 * following structure.
6283 */
6284 static struct ata_force_param force_tbl[] __initdata = {
6285 { "40c", .cbl = ATA_CBL_PATA40 },
6286 { "80c", .cbl = ATA_CBL_PATA80 },
6287 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6288 { "unk", .cbl = ATA_CBL_PATA_UNK },
6289 { "ign", .cbl = ATA_CBL_PATA_IGN },
6290 { "sata", .cbl = ATA_CBL_SATA },
6291 { "1.5Gbps", .spd_limit = 1 },
6292 { "3.0Gbps", .spd_limit = 2 },
6293 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6294 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
43c9c591 6295 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6296 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6297 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6298 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6299 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6300 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6301 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6302 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6303 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6304 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6305 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6306 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6307 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6308 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6309 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6310 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6311 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6312 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6313 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6314 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6315 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6316 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6317 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6318 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6319 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6320 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6321 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6322 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6323 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6324 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6325 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6326 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6327 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6328 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6329 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6330 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6331 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6332 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
33267325
TH
6333 };
6334 char *start = *cur, *p = *cur;
6335 char *id, *val, *endp;
6336 const struct ata_force_param *match_fp = NULL;
6337 int nr_matches = 0, i;
6338
6339 /* find where this param ends and update *cur */
6340 while (*p != '\0' && *p != ',')
6341 p++;
6342
6343 if (*p == '\0')
6344 *cur = p;
6345 else
6346 *cur = p + 1;
6347
6348 *p = '\0';
6349
6350 /* parse */
6351 p = strchr(start, ':');
6352 if (!p) {
6353 val = strstrip(start);
6354 goto parse_val;
6355 }
6356 *p = '\0';
6357
6358 id = strstrip(start);
6359 val = strstrip(p + 1);
6360
6361 /* parse id */
6362 p = strchr(id, '.');
6363 if (p) {
6364 *p++ = '\0';
6365 force_ent->device = simple_strtoul(p, &endp, 10);
6366 if (p == endp || *endp != '\0') {
6367 *reason = "invalid device";
6368 return -EINVAL;
6369 }
6370 }
6371
6372 force_ent->port = simple_strtoul(id, &endp, 10);
6373 if (p == endp || *endp != '\0') {
6374 *reason = "invalid port/link";
6375 return -EINVAL;
6376 }
6377
6378 parse_val:
6379 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6380 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6381 const struct ata_force_param *fp = &force_tbl[i];
6382
6383 if (strncasecmp(val, fp->name, strlen(val)))
6384 continue;
6385
6386 nr_matches++;
6387 match_fp = fp;
6388
6389 if (strcasecmp(val, fp->name) == 0) {
6390 nr_matches = 1;
6391 break;
6392 }
6393 }
6394
6395 if (!nr_matches) {
6396 *reason = "unknown value";
6397 return -EINVAL;
6398 }
6399 if (nr_matches > 1) {
6400 *reason = "ambigious value";
6401 return -EINVAL;
6402 }
6403
6404 force_ent->param = *match_fp;
6405
6406 return 0;
6407}
6408
6409static void __init ata_parse_force_param(void)
6410{
6411 int idx = 0, size = 1;
6412 int last_port = -1, last_device = -1;
6413 char *p, *cur, *next;
6414
6415 /* calculate maximum number of params and allocate force_tbl */
6416 for (p = ata_force_param_buf; *p; p++)
6417 if (*p == ',')
6418 size++;
6419
6420 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6421 if (!ata_force_tbl) {
6422 printk(KERN_WARNING "ata: failed to extend force table, "
6423 "libata.force ignored\n");
6424 return;
6425 }
6426
6427 /* parse and populate the table */
6428 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6429 const char *reason = "";
6430 struct ata_force_ent te = { .port = -1, .device = -1 };
6431
6432 next = cur;
6433 if (ata_parse_force_one(&next, &te, &reason)) {
6434 printk(KERN_WARNING "ata: failed to parse force "
6435 "parameter \"%s\" (%s)\n",
6436 cur, reason);
6437 continue;
6438 }
6439
6440 if (te.port == -1) {
6441 te.port = last_port;
6442 te.device = last_device;
6443 }
6444
6445 ata_force_tbl[idx++] = te;
6446
6447 last_port = te.port;
6448 last_device = te.device;
6449 }
6450
6451 ata_force_tbl_size = idx;
6452}
1da177e4 6453
1da177e4
LT
6454static int __init ata_init(void)
6455{
d9027470 6456 int rc;
270390e1 6457
33267325
TH
6458 ata_parse_force_param();
6459
270390e1 6460 rc = ata_sff_init();
ad72cf98
TH
6461 if (rc) {
6462 kfree(ata_force_tbl);
6463 return rc;
6464 }
453b07ac 6465
d9027470
GG
6466 libata_transport_init();
6467 ata_scsi_transport_template = ata_attach_transport();
6468 if (!ata_scsi_transport_template) {
6469 ata_sff_exit();
6470 rc = -ENOMEM;
6471 goto err_out;
4fca377f 6472 }
d9027470 6473
1da177e4
LT
6474 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6475 return 0;
d9027470
GG
6476
6477err_out:
6478 return rc;
1da177e4
LT
6479}
6480
6481static void __exit ata_exit(void)
6482{
d9027470
GG
6483 ata_release_transport(ata_scsi_transport_template);
6484 libata_transport_exit();
270390e1 6485 ata_sff_exit();
33267325 6486 kfree(ata_force_tbl);
1da177e4
LT
6487}
6488
a4625085 6489subsys_initcall(ata_init);
1da177e4
LT
6490module_exit(ata_exit);
6491
9990b6f3 6492static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6493
6494int ata_ratelimit(void)
6495{
9990b6f3 6496 return __ratelimit(&ratelimit);
67846b30
JG
6497}
6498
c0c362b6
TH
6499/**
6500 * ata_msleep - ATA EH owner aware msleep
6501 * @ap: ATA port to attribute the sleep to
6502 * @msecs: duration to sleep in milliseconds
6503 *
6504 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6505 * ownership is released before going to sleep and reacquired
6506 * after the sleep is complete. IOW, other ports sharing the
6507 * @ap->host will be allowed to own the EH while this task is
6508 * sleeping.
6509 *
6510 * LOCKING:
6511 * Might sleep.
6512 */
97750ceb
TH
6513void ata_msleep(struct ata_port *ap, unsigned int msecs)
6514{
c0c362b6
TH
6515 bool owns_eh = ap && ap->host->eh_owner == current;
6516
6517 if (owns_eh)
6518 ata_eh_release(ap);
6519
97750ceb 6520 msleep(msecs);
c0c362b6
TH
6521
6522 if (owns_eh)
6523 ata_eh_acquire(ap);
97750ceb
TH
6524}
6525
c22daff4
TH
6526/**
6527 * ata_wait_register - wait until register value changes
97750ceb 6528 * @ap: ATA port to wait register for, can be NULL
c22daff4
TH
6529 * @reg: IO-mapped register
6530 * @mask: Mask to apply to read register value
6531 * @val: Wait condition
341c2c95
TH
6532 * @interval: polling interval in milliseconds
6533 * @timeout: timeout in milliseconds
c22daff4
TH
6534 *
6535 * Waiting for some bits of register to change is a common
6536 * operation for ATA controllers. This function reads 32bit LE
6537 * IO-mapped register @reg and tests for the following condition.
6538 *
6539 * (*@reg & mask) != val
6540 *
6541 * If the condition is met, it returns; otherwise, the process is
6542 * repeated after @interval_msec until timeout.
6543 *
6544 * LOCKING:
6545 * Kernel thread context (may sleep)
6546 *
6547 * RETURNS:
6548 * The final register value.
6549 */
97750ceb 6550u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
341c2c95 6551 unsigned long interval, unsigned long timeout)
c22daff4 6552{
341c2c95 6553 unsigned long deadline;
c22daff4
TH
6554 u32 tmp;
6555
6556 tmp = ioread32(reg);
6557
6558 /* Calculate timeout _after_ the first read to make sure
6559 * preceding writes reach the controller before starting to
6560 * eat away the timeout.
6561 */
341c2c95 6562 deadline = ata_deadline(jiffies, timeout);
c22daff4 6563
341c2c95 6564 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
97750ceb 6565 ata_msleep(ap, interval);
c22daff4
TH
6566 tmp = ioread32(reg);
6567 }
6568
6569 return tmp;
6570}
6571
dd5b06c4
TH
6572/*
6573 * Dummy port_ops
6574 */
182d7bba 6575static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6576{
182d7bba 6577 return AC_ERR_SYSTEM;
dd5b06c4
TH
6578}
6579
182d7bba 6580static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6581{
182d7bba 6582 /* truly dummy */
dd5b06c4
TH
6583}
6584
029cfd6b 6585struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6586 .qc_prep = ata_noop_qc_prep,
6587 .qc_issue = ata_dummy_qc_issue,
182d7bba 6588 .error_handler = ata_dummy_error_handler,
dd5b06c4
TH
6589};
6590
21b0ad4f
TH
6591const struct ata_port_info ata_dummy_port_info = {
6592 .port_ops = &ata_dummy_port_ops,
6593};
6594
1da177e4
LT
6595/*
6596 * libata is essentially a library of internal helper functions for
6597 * low-level ATA host controller drivers. As such, the API/ABI is
6598 * likely to change as new drivers are added and updated.
6599 * Do not depend on ABI/API stability.
6600 */
e9c83914
TH
6601EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6602EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6603EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6604EXPORT_SYMBOL_GPL(ata_base_port_ops);
6605EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6606EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6607EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6608EXPORT_SYMBOL_GPL(ata_link_next);
6609EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6610EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 6611EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 6612EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6613EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6614EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6615EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6616EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6617EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6618EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6619EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6620EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6621EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6622EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6623EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6624EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6625EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6626EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6627EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6628EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6629EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6630EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6631EXPORT_SYMBOL_GPL(ata_mode_string);
6632EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 6633EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6634EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6635EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 6636EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6637EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6638EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6639EXPORT_SYMBOL_GPL(sata_link_debounce);
6640EXPORT_SYMBOL_GPL(sata_link_resume);
1152b261 6641EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
0aa1113d 6642EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6643EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6644EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6645EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6646EXPORT_SYMBOL_GPL(ata_dev_classify);
6647EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 6648EXPORT_SYMBOL_GPL(ata_ratelimit);
97750ceb 6649EXPORT_SYMBOL_GPL(ata_msleep);
c22daff4 6650EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 6651EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6652EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6653EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6654EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
34bf2170
TH
6655EXPORT_SYMBOL_GPL(sata_scr_valid);
6656EXPORT_SYMBOL_GPL(sata_scr_read);
6657EXPORT_SYMBOL_GPL(sata_scr_write);
6658EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6659EXPORT_SYMBOL_GPL(ata_link_online);
6660EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6661#ifdef CONFIG_PM
cca3974e
JG
6662EXPORT_SYMBOL_GPL(ata_host_suspend);
6663EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6664#endif /* CONFIG_PM */
6a62a04d
TH
6665EXPORT_SYMBOL_GPL(ata_id_string);
6666EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6667EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6668EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6669
1bc4ccff 6670EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6671EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6672EXPORT_SYMBOL_GPL(ata_timing_compute);
6673EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6674EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6675
1da177e4
LT
6676#ifdef CONFIG_PCI
6677EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6678EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6679#ifdef CONFIG_PM
500530f6
TH
6680EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6681EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6682EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6683EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6684#endif /* CONFIG_PM */
1da177e4 6685#endif /* CONFIG_PCI */
9b847548 6686
b64bbc39
TH
6687EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6688EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6689EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6690EXPORT_SYMBOL_GPL(ata_port_desc);
6691#ifdef CONFIG_PCI
6692EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6693#endif /* CONFIG_PCI */
7b70fc03 6694EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6695EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6696EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6697EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6698EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6699EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6700EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6701EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6702EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6703EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6704EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6705EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6706
6707EXPORT_SYMBOL_GPL(ata_cable_40wire);
6708EXPORT_SYMBOL_GPL(ata_cable_80wire);
6709EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6710EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6711EXPORT_SYMBOL_GPL(ata_cable_sata);