libata-acpi: miscellaneous cleanups
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4 74
f3187195 75unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
1e999736
AC
92static int ata_ignore_hpa = 0;
93module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
a8601e5f
AM
96static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97module_param(ata_probe_timeout, int, 0444);
98MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
d7d0dad6
JG
100int libata_noacpi = 1;
101module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
102MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
1da177e4
LT
104MODULE_AUTHOR("Jeff Garzik");
105MODULE_DESCRIPTION("Library module for ATA devices");
106MODULE_LICENSE("GPL");
107MODULE_VERSION(DRV_VERSION);
108
0baab86b 109
1da177e4
LT
110/**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
057ace5e 123void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
124{
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150}
151
152/**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
e12a1be6 157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
057ace5e 163void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
164{
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179}
180
8cbd6df1
AL
181static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
196 0,
197 0,
198 0,
199 0,
8cbd6df1
AL
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
9a3dccc4
TH
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 209};
1da177e4
LT
210
211/**
8cbd6df1 212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
1da177e4 215 *
2e9edbf8 216 * Examine the device configuration and tf->flags to calculate
8cbd6df1 217 * the proper read/write commands and protocol to use.
1da177e4
LT
218 *
219 * LOCKING:
220 * caller.
221 */
bd056d7e 222static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 223{
9a3dccc4 224 u8 cmd;
1da177e4 225
9a3dccc4 226 int index, fua, lba48, write;
2e9edbf8 227
9a3dccc4 228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 231
8cbd6df1
AL
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
9a3dccc4 234 index = dev->multi_count ? 0 : 8;
bd056d7e 235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
0565c26d 238 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
239 } else {
240 tf->protocol = ATA_PROT_DMA;
9a3dccc4 241 index = 16;
8cbd6df1 242 }
1da177e4 243
9a3dccc4
TH
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
1da177e4
LT
250}
251
35b649fe
TH
252/**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268{
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293}
294
bd056d7e
TH
295/**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318{
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
6d1245bf 322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416}
417
cb95d562
TH
418/**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436{
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440}
441
c0489e4e
TH
442/**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456{
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463}
464
cb95d562 465static const struct ata_xfer_ent {
be9a50c8 466 int shift, bits;
cb95d562
TH
467 u8 base;
468} ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473};
474
475/**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489{
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497}
498
499/**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512{
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519}
520
521/**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533static int ata_xfer_mode2shift(unsigned int xfer_mode)
534{
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541}
542
1da177e4 543/**
1da7b0d0
TH
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
546 *
547 * Determine string which represents the highest speed
1da7b0d0 548 * (highest bit in @modemask).
1da177e4
LT
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
1da7b0d0 555 * @mode_mask, or the constant C string "<n/a>".
1da177e4 556 */
1da7b0d0 557static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 558{
75f554bc
TH
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
b352e57d
AC
565 "PIO5",
566 "PIO6",
75f554bc
TH
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
b352e57d
AC
570 "MWDMA3",
571 "MWDMA4",
75f554bc
TH
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
1da7b0d0 581 int highbit;
1da177e4 582
1da7b0d0
TH
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
1da177e4 586 return "<n/a>";
1da177e4
LT
587}
588
4c360c81
TH
589static const char *sata_spd_string(unsigned int spd)
590{
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599}
600
3373efd8 601void ata_dev_disable(struct ata_device *dev)
0b8efb0a 602{
09d7f9b0
TH
603 if (ata_dev_enabled(dev)) {
604 if (ata_msg_drv(dev->ap))
605 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
606 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
607 ATA_DNXFER_QUIET);
0b8efb0a
TH
608 dev->class++;
609 }
610}
611
1da177e4 612/**
0d5ff566 613 * ata_devchk - PATA device presence detection
1da177e4
LT
614 * @ap: ATA channel to examine
615 * @device: Device to examine (starting at zero)
616 *
617 * This technique was originally described in
618 * Hale Landis's ATADRVR (www.ata-atapi.com), and
619 * later found its way into the ATA/ATAPI spec.
620 *
621 * Write a pattern to the ATA shadow registers,
622 * and if a device is present, it will respond by
623 * correctly storing and echoing back the
624 * ATA shadow register contents.
625 *
626 * LOCKING:
627 * caller.
628 */
629
0d5ff566 630static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
631{
632 struct ata_ioports *ioaddr = &ap->ioaddr;
633 u8 nsect, lbal;
634
635 ap->ops->dev_select(ap, device);
636
0d5ff566
TH
637 iowrite8(0x55, ioaddr->nsect_addr);
638 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 639
0d5ff566
TH
640 iowrite8(0xaa, ioaddr->nsect_addr);
641 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 642
0d5ff566
TH
643 iowrite8(0x55, ioaddr->nsect_addr);
644 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 645
0d5ff566
TH
646 nsect = ioread8(ioaddr->nsect_addr);
647 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
648
649 if ((nsect == 0x55) && (lbal == 0xaa))
650 return 1; /* we found a device */
651
652 return 0; /* nothing found */
653}
654
1da177e4
LT
655/**
656 * ata_dev_classify - determine device type based on ATA-spec signature
657 * @tf: ATA taskfile register set for device to be identified
658 *
659 * Determine from taskfile register contents whether a device is
660 * ATA or ATAPI, as per "Signature and persistence" section
661 * of ATA/PI spec (volume 1, sect 5.14).
662 *
663 * LOCKING:
664 * None.
665 *
666 * RETURNS:
667 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
668 * the event of failure.
669 */
670
057ace5e 671unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
672{
673 /* Apple's open source Darwin code hints that some devices only
674 * put a proper signature into the LBA mid/high registers,
675 * So, we only check those. It's sufficient for uniqueness.
676 */
677
678 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
679 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
680 DPRINTK("found ATA device by sig\n");
681 return ATA_DEV_ATA;
682 }
683
684 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
685 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
686 DPRINTK("found ATAPI device by sig\n");
687 return ATA_DEV_ATAPI;
688 }
689
690 DPRINTK("unknown device\n");
691 return ATA_DEV_UNKNOWN;
692}
693
694/**
695 * ata_dev_try_classify - Parse returned ATA device signature
696 * @ap: ATA channel to examine
697 * @device: Device to examine (starting at zero)
b4dc7623 698 * @r_err: Value of error register on completion
1da177e4
LT
699 *
700 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
701 * an ATA/ATAPI-defined set of values is placed in the ATA
702 * shadow registers, indicating the results of device detection
703 * and diagnostics.
704 *
705 * Select the ATA device, and read the values from the ATA shadow
706 * registers. Then parse according to the Error register value,
707 * and the spec-defined values examined by ata_dev_classify().
708 *
709 * LOCKING:
710 * caller.
b4dc7623
TH
711 *
712 * RETURNS:
713 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
714 */
715
a619f981 716unsigned int
b4dc7623 717ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 718{
1da177e4
LT
719 struct ata_taskfile tf;
720 unsigned int class;
721 u8 err;
722
723 ap->ops->dev_select(ap, device);
724
725 memset(&tf, 0, sizeof(tf));
726
1da177e4 727 ap->ops->tf_read(ap, &tf);
0169e284 728 err = tf.feature;
b4dc7623
TH
729 if (r_err)
730 *r_err = err;
1da177e4 731
93590859
AC
732 /* see if device passed diags: if master then continue and warn later */
733 if (err == 0 && device == 0)
734 /* diagnostic fail : do nothing _YET_ */
735 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
736 else if (err == 1)
1da177e4
LT
737 /* do nothing */ ;
738 else if ((device == 0) && (err == 0x81))
739 /* do nothing */ ;
740 else
b4dc7623 741 return ATA_DEV_NONE;
1da177e4 742
b4dc7623 743 /* determine if device is ATA or ATAPI */
1da177e4 744 class = ata_dev_classify(&tf);
b4dc7623 745
1da177e4 746 if (class == ATA_DEV_UNKNOWN)
b4dc7623 747 return ATA_DEV_NONE;
1da177e4 748 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
749 return ATA_DEV_NONE;
750 return class;
1da177e4
LT
751}
752
753/**
6a62a04d 754 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
755 * @id: IDENTIFY DEVICE results we will examine
756 * @s: string into which data is output
757 * @ofs: offset into identify device page
758 * @len: length of string to return. must be an even number.
759 *
760 * The strings in the IDENTIFY DEVICE page are broken up into
761 * 16-bit chunks. Run through the string, and output each
762 * 8-bit chunk linearly, regardless of platform.
763 *
764 * LOCKING:
765 * caller.
766 */
767
6a62a04d
TH
768void ata_id_string(const u16 *id, unsigned char *s,
769 unsigned int ofs, unsigned int len)
1da177e4
LT
770{
771 unsigned int c;
772
773 while (len > 0) {
774 c = id[ofs] >> 8;
775 *s = c;
776 s++;
777
778 c = id[ofs] & 0xff;
779 *s = c;
780 s++;
781
782 ofs++;
783 len -= 2;
784 }
785}
786
0e949ff3 787/**
6a62a04d 788 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
789 * @id: IDENTIFY DEVICE results we will examine
790 * @s: string into which data is output
791 * @ofs: offset into identify device page
792 * @len: length of string to return. must be an odd number.
793 *
6a62a04d 794 * This function is identical to ata_id_string except that it
0e949ff3
TH
795 * trims trailing spaces and terminates the resulting string with
796 * null. @len must be actual maximum length (even number) + 1.
797 *
798 * LOCKING:
799 * caller.
800 */
6a62a04d
TH
801void ata_id_c_string(const u16 *id, unsigned char *s,
802 unsigned int ofs, unsigned int len)
0e949ff3
TH
803{
804 unsigned char *p;
805
806 WARN_ON(!(len & 1));
807
6a62a04d 808 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
809
810 p = s + strnlen(s, len - 1);
811 while (p > s && p[-1] == ' ')
812 p--;
813 *p = '\0';
814}
0baab86b 815
1e999736
AC
816static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
817{
818 u64 sectors = 0;
819
820 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
821 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
822 sectors |= (tf->hob_lbal & 0xff) << 24;
823 sectors |= (tf->lbah & 0xff) << 16;
824 sectors |= (tf->lbam & 0xff) << 8;
825 sectors |= (tf->lbal & 0xff);
826
827 return ++sectors;
828}
829
830static u64 ata_tf_to_lba(struct ata_taskfile *tf)
831{
832 u64 sectors = 0;
833
834 sectors |= (tf->device & 0x0f) << 24;
835 sectors |= (tf->lbah & 0xff) << 16;
836 sectors |= (tf->lbam & 0xff) << 8;
837 sectors |= (tf->lbal & 0xff);
838
839 return ++sectors;
840}
841
842/**
843 * ata_read_native_max_address_ext - LBA48 native max query
844 * @dev: Device to query
845 *
846 * Perform an LBA48 size query upon the device in question. Return the
847 * actual LBA48 size or zero if the command fails.
848 */
849
850static u64 ata_read_native_max_address_ext(struct ata_device *dev)
851{
852 unsigned int err;
853 struct ata_taskfile tf;
854
855 ata_tf_init(dev, &tf);
856
857 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
858 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
859 tf.protocol |= ATA_PROT_NODATA;
860 tf.device |= 0x40;
861
862 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
863 if (err)
864 return 0;
865
866 return ata_tf_to_lba48(&tf);
867}
868
869/**
870 * ata_read_native_max_address - LBA28 native max query
871 * @dev: Device to query
872 *
873 * Performa an LBA28 size query upon the device in question. Return the
874 * actual LBA28 size or zero if the command fails.
875 */
876
877static u64 ata_read_native_max_address(struct ata_device *dev)
878{
879 unsigned int err;
880 struct ata_taskfile tf;
881
882 ata_tf_init(dev, &tf);
883
884 tf.command = ATA_CMD_READ_NATIVE_MAX;
885 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
886 tf.protocol |= ATA_PROT_NODATA;
887 tf.device |= 0x40;
888
889 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
890 if (err)
891 return 0;
892
893 return ata_tf_to_lba(&tf);
894}
895
896/**
897 * ata_set_native_max_address_ext - LBA48 native max set
898 * @dev: Device to query
6b38d1d1 899 * @new_sectors: new max sectors value to set for the device
1e999736
AC
900 *
901 * Perform an LBA48 size set max upon the device in question. Return the
902 * actual LBA48 size or zero if the command fails.
903 */
904
905static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
906{
907 unsigned int err;
908 struct ata_taskfile tf;
909
910 new_sectors--;
911
912 ata_tf_init(dev, &tf);
913
914 tf.command = ATA_CMD_SET_MAX_EXT;
915 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
916 tf.protocol |= ATA_PROT_NODATA;
917 tf.device |= 0x40;
918
919 tf.lbal = (new_sectors >> 0) & 0xff;
920 tf.lbam = (new_sectors >> 8) & 0xff;
921 tf.lbah = (new_sectors >> 16) & 0xff;
922
923 tf.hob_lbal = (new_sectors >> 24) & 0xff;
924 tf.hob_lbam = (new_sectors >> 32) & 0xff;
925 tf.hob_lbah = (new_sectors >> 40) & 0xff;
926
927 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
928 if (err)
929 return 0;
930
931 return ata_tf_to_lba48(&tf);
932}
933
934/**
935 * ata_set_native_max_address - LBA28 native max set
936 * @dev: Device to query
6b38d1d1 937 * @new_sectors: new max sectors value to set for the device
1e999736
AC
938 *
939 * Perform an LBA28 size set max upon the device in question. Return the
940 * actual LBA28 size or zero if the command fails.
941 */
942
943static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
944{
945 unsigned int err;
946 struct ata_taskfile tf;
947
948 new_sectors--;
949
950 ata_tf_init(dev, &tf);
951
952 tf.command = ATA_CMD_SET_MAX;
953 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
954 tf.protocol |= ATA_PROT_NODATA;
955
956 tf.lbal = (new_sectors >> 0) & 0xff;
957 tf.lbam = (new_sectors >> 8) & 0xff;
958 tf.lbah = (new_sectors >> 16) & 0xff;
959 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
960
961 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
962 if (err)
963 return 0;
964
965 return ata_tf_to_lba(&tf);
966}
967
968/**
969 * ata_hpa_resize - Resize a device with an HPA set
970 * @dev: Device to resize
971 *
972 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
973 * it if required to the full size of the media. The caller must check
974 * the drive has the HPA feature set enabled.
975 */
976
977static u64 ata_hpa_resize(struct ata_device *dev)
978{
979 u64 sectors = dev->n_sectors;
980 u64 hpa_sectors;
a617c09f 981
1e999736
AC
982 if (ata_id_has_lba48(dev->id))
983 hpa_sectors = ata_read_native_max_address_ext(dev);
984 else
985 hpa_sectors = ata_read_native_max_address(dev);
986
1e999736
AC
987 if (hpa_sectors > sectors) {
988 ata_dev_printk(dev, KERN_INFO,
989 "Host Protected Area detected:\n"
990 "\tcurrent size: %lld sectors\n"
991 "\tnative size: %lld sectors\n",
bd1d5ec6 992 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
993
994 if (ata_ignore_hpa) {
995 if (ata_id_has_lba48(dev->id))
996 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
997 else
bd1d5ec6
AM
998 hpa_sectors = ata_set_native_max_address(dev,
999 hpa_sectors);
1e999736
AC
1000
1001 if (hpa_sectors) {
bd1d5ec6
AM
1002 ata_dev_printk(dev, KERN_INFO, "native size "
1003 "increased to %lld sectors\n",
1004 (long long)hpa_sectors);
1e999736
AC
1005 return hpa_sectors;
1006 }
1007 }
37301a55
TH
1008 } else if (hpa_sectors < sectors)
1009 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1010 "is smaller than sectors (%lld)\n", __FUNCTION__,
1011 (long long)hpa_sectors, (long long)sectors);
1012
1e999736
AC
1013 return sectors;
1014}
1015
2940740b
TH
1016static u64 ata_id_n_sectors(const u16 *id)
1017{
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1028 }
1029}
1030
10305f0f
AC
1031/**
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
cc261267 1034 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1035 *
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1040 *
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1044 */
1045
1046void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047{
1048 unsigned int mask;
1049 u8 mode;
1050
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1058
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 }
1067
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1071}
1072
0baab86b
EF
1073/**
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1077 *
1078 * This function performs no actual function.
1079 *
1080 * May be used as the dev_select() entry in ata_port_operations.
1081 *
1082 * LOCKING:
1083 * caller.
1084 */
1da177e4
LT
1085void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086{
1087}
1088
0baab86b 1089
1da177e4
LT
1090/**
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1094 *
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
0baab86b
EF
1097 * ATA channel. Works with both PIO and MMIO.
1098 *
1099 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1100 *
1101 * LOCKING:
1102 * caller.
1103 */
1104
1105void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106{
1107 u8 tmp;
1108
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113
0d5ff566 1114 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1116}
1117
1118/**
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1124 *
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1128 *
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1132 *
1133 * LOCKING:
1134 * caller.
1135 */
1136
1137void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1139{
88574551 1140 if (ata_msg_probe(ap))
44877b4e
TH
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1da177e4
LT
1143
1144 if (wait)
1145 ata_wait_idle(ap);
1146
1147 ap->ops->dev_select(ap, device);
1148
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1153 }
1154}
1155
1156/**
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1158 * @id: IDENTIFY DEVICE page to dump
1da177e4 1159 *
0bd3300a
TH
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1da177e4
LT
1162 *
1163 * LOCKING:
1164 * caller.
1165 */
1166
0bd3300a 1167static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1168{
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
0bd3300a
TH
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1da177e4
LT
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
0bd3300a
TH
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1da177e4
LT
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
0bd3300a
TH
1191 id[88],
1192 id[93]);
1da177e4
LT
1193}
1194
cb95d562
TH
1195/**
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1198 *
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1201 *
1202 * FIXME: pre IDE drive timing (do we care ?).
1203 *
1204 * LOCKING:
1205 * None.
1206 *
1207 * RETURNS:
1208 * Computed xfermask
1209 */
1210static unsigned int ata_id_xfermask(const u16 *id)
1211{
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1213
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1223 */
7a0f1c8a 1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
cb95d562
TH
1229
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1235 */
1236 }
1237
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1239
b352e57d
AC
1240 if (ata_id_is_cfa(id)) {
1241 /*
1242 * Process compact flash extended modes
1243 */
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1246
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1255 }
1256
fb21f0d0
TH
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1260
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262}
1263
86e45b6b
TH
1264/**
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
e2a7f77a 1267 * @fn: workqueue function to be scheduled
65f27f38 1268 * @data: data for @fn to use
e2a7f77a 1269 * @delay: delay time for workqueue function
86e45b6b
TH
1270 *
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1275 *
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1279 *
1280 * LOCKING:
1281 * Inherited from caller.
1282 */
65f27f38 1283void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1284 unsigned long delay)
1285{
1286 int rc;
1287
b51e9e5d 1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1289 return;
1290
65f27f38
DH
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
86e45b6b 1293
52bad64d 1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1295
1296 /* rc == 0 means that another user is using port task */
1297 WARN_ON(rc == 0);
1298}
1299
1300/**
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1303 *
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1306 *
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1309 */
1310void ata_port_flush_task(struct ata_port *ap)
1311{
1312 unsigned long flags;
1313
1314 DPRINTK("ENTER\n");
1315
ba6a1308 1316 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1318 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1319
1320 DPRINTK("flush #1\n");
28e53bdd 1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
86e45b6b
TH
1322
1323 /*
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 * Cancel and flush.
1327 */
1328 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1329 if (ata_msg_ctl(ap))
88574551
TH
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 __FUNCTION__);
28e53bdd 1332 cancel_work_sync(&ap->port_task.work);
86e45b6b
TH
1333 }
1334
ba6a1308 1335 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1337 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1338
0dd4b21f
BP
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1341}
1342
7102d230 1343static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1344{
77853bf2 1345 struct completion *waiting = qc->private_data;
a2a7a662 1346
a2a7a662 1347 complete(waiting);
a2a7a662
TH
1348}
1349
1350/**
2432697b 1351 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
d69cf37d 1354 * @cdb: CDB for packet command
a2a7a662 1355 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
a2a7a662
TH
1358 *
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1364 *
1365 * LOCKING:
1366 * None. Should be called with kernel context, might sleep.
551e8889
TH
1367 *
1368 * RETURNS:
1369 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1370 */
2432697b
TH
1371unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
a2a7a662 1375{
3373efd8 1376 struct ata_port *ap = dev->ap;
a2a7a662
TH
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
2ab7db1f 1379 unsigned int tag, preempted_tag;
dedaf2b0 1380 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1381 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1382 unsigned long flags;
77853bf2 1383 unsigned int err_mask;
d95a717f 1384 int rc;
a2a7a662 1385
ba6a1308 1386 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1387
e3180499 1388 /* no internal command while frozen */
b51e9e5d 1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1390 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1391 return AC_ERR_SYSTEM;
1392 }
1393
2ab7db1f 1394 /* initialize internal qc */
a2a7a662 1395
2ab7db1f
TH
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1400 */
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1403 else
1404 tag = 0;
1405
6cec4a39 1406 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1407 BUG();
f69499f4 1408 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1409
1410 qc->tag = tag;
1411 qc->scsicmd = NULL;
1412 qc->ap = ap;
1413 qc->dev = dev;
1414 ata_qc_reinit(qc);
1415
1416 preempted_tag = ap->active_tag;
dedaf2b0
TH
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
2ab7db1f 1419 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1420 ap->sactive = 0;
1421 ap->qc_active = 0;
2ab7db1f
TH
1422
1423 /* prepare & issue qc */
a2a7a662 1424 qc->tf = *tf;
d69cf37d
TH
1425 if (cdb)
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
2432697b
TH
1430 unsigned int i, buflen = 0;
1431
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1434
1435 ata_sg_init(qc, sg, n_elem);
49c80429 1436 qc->nbytes = buflen;
a2a7a662
TH
1437 }
1438
77853bf2 1439 qc->private_data = &wait;
a2a7a662
TH
1440 qc->complete_fn = ata_qc_complete_internal;
1441
8e0e694a 1442 ata_qc_issue(qc);
a2a7a662 1443
ba6a1308 1444 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1445
a8601e5f 1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1447
1448 ata_port_flush_task(ap);
41ade50c 1449
d95a717f 1450 if (!rc) {
ba6a1308 1451 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1452
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
d95a717f
TH
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
a2a7a662 1457 */
77853bf2 1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1460
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1463 else
1464 ata_qc_complete(qc);
f15a1daf 1465
0dd4b21f
BP
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
88574551 1468 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1469 }
1470
ba6a1308 1471 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1472 }
1473
d95a717f
TH
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1477
a51d644a
TH
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1482
1483 if (!qc->err_mask)
1484 qc->err_mask |= AC_ERR_OTHER;
1485
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1488 }
1489
15869303 1490 /* finish up */
ba6a1308 1491 spin_lock_irqsave(ap->lock, flags);
15869303 1492
e61e0672 1493 *tf = qc->result_tf;
77853bf2
TH
1494 err_mask = qc->err_mask;
1495
1496 ata_qc_free(qc);
2ab7db1f 1497 ap->active_tag = preempted_tag;
dedaf2b0
TH
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
77853bf2 1500
1f7dd3e9
TH
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * port.
1505 *
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1509 *
1510 * Kill the following code as soon as those drivers are fixed.
1511 */
198e0fed 1512 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1513 err_mask |= AC_ERR_SYSTEM;
1514 ata_port_probe(ap);
1515 }
1516
ba6a1308 1517 spin_unlock_irqrestore(ap->lock, flags);
15869303 1518
77853bf2 1519 return err_mask;
a2a7a662
TH
1520}
1521
2432697b 1522/**
33480a0e 1523 * ata_exec_internal - execute libata internal command
2432697b
TH
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1530 *
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1533 *
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1536 *
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1539 */
1540unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1543{
33480a0e
TH
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
2432697b 1546
33480a0e
TH
1547 if (dma_dir != DMA_NONE) {
1548 WARN_ON(!buf);
1549 sg_init_one(&sg, buf, buflen);
1550 psg = &sg;
1551 n_elem++;
1552 }
2432697b 1553
33480a0e 1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1555}
1556
977e6b9f
TH
1557/**
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1561 *
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1564 *
1565 * LOCKING:
1566 * Kernel thread context (may sleep).
1567 *
1568 * RETURNS:
1569 * Zero on success, AC_ERR_* mask on failure
e58eb583 1570 */
77b08fb5 1571unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1572{
1573 struct ata_taskfile tf;
e58eb583
TH
1574
1575 ata_tf_init(dev, &tf);
1576
1577 tf.command = cmd;
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1580
977e6b9f 1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1582}
1583
1bc4ccff
AC
1584/**
1585 * ata_pio_need_iordy - check if iordy needed
1586 * @adev: ATA device
1587 *
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1590 */
a617c09f 1591
1bc4ccff
AC
1592unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593{
432729f0
AC
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1597 return 0;
432729f0
AC
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1600 return 1;
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1bc4ccff 1603 return 1;
432729f0
AC
1604 return 0;
1605}
2e9edbf8 1606
432729f0
AC
1607/**
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * @adev: ATA device
1610 *
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1613 */
a617c09f 1614
432729f0
AC
1615static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616{
1bc4ccff 1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1620 /* Is the speed faster than the drive allows non IORDY ? */
1621 if (pio) {
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1626 }
1627 }
432729f0 1628 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1629}
1630
1da177e4 1631/**
49016aca 1632 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
bff04647 1635 * @flags: ATA_READID_* flags
fe635c7e 1636 * @id: buffer to read IDENTIFY data into
1da177e4 1637 *
49016aca
TH
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1da177e4
LT
1642 *
1643 * LOCKING:
49016aca
TH
1644 * Kernel thread context (may sleep)
1645 *
1646 * RETURNS:
1647 * 0 on success, -errno otherwise.
1da177e4 1648 */
a9beec95 1649int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1650 unsigned int flags, u16 *id)
1da177e4 1651{
3373efd8 1652 struct ata_port *ap = dev->ap;
49016aca 1653 unsigned int class = *p_class;
a0123703 1654 struct ata_taskfile tf;
49016aca
TH
1655 unsigned int err_mask = 0;
1656 const char *reason;
54936f8b 1657 int may_fallback = 1, tried_spinup = 0;
49016aca 1658 int rc;
1da177e4 1659
0dd4b21f 1660 if (ata_msg_ctl(ap))
44877b4e 1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1662
49016aca 1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1664 retry:
3373efd8 1665 ata_tf_init(dev, &tf);
a0123703 1666
49016aca
TH
1667 switch (class) {
1668 case ATA_DEV_ATA:
a0123703 1669 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1670 break;
1671 case ATA_DEV_ATAPI:
a0123703 1672 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1673 break;
1674 default:
1675 rc = -ENODEV;
1676 reason = "unsupported class";
1677 goto err_out;
1da177e4
LT
1678 }
1679
a0123703 1680 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1681
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1684 */
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1689 */
1690 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1691
3373efd8 1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1693 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1694 if (err_mask) {
800b3996 1695 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1697 ap->print_id, dev->devno);
55a8e2c8
TH
1698 return -ENOENT;
1699 }
1700
54936f8b
TH
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1704 */
1705 if (may_fallback &&
1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1707 may_fallback = 0;
1708
1709 if (class == ATA_DEV_ATA)
1710 class = ATA_DEV_ATAPI;
1711 else
1712 class = ATA_DEV_ATA;
1713 goto retry;
1714 }
1715
49016aca
TH
1716 rc = -EIO;
1717 reason = "I/O error";
1da177e4
LT
1718 goto err_out;
1719 }
1720
54936f8b
TH
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1723 */
1724 may_fallback = 0;
1725
49016aca 1726 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1727
49016aca 1728 /* sanity check */
a4f5749b 1729 rc = -EINVAL;
6070068b 1730 reason = "device reports invalid type";
a4f5749b
TH
1731
1732 if (class == ATA_DEV_ATA) {
1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1734 goto err_out;
1735 } else {
1736 if (ata_id_is_ata(id))
1737 goto err_out;
49016aca
TH
1738 }
1739
169439c2
ML
1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1741 tried_spinup = 1;
1742 /*
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1746 */
1747 ata_tf_init(dev, &tf);
1748 tf.command = ATA_CMD_SET_FEATURES;
1749 tf.feature = SETFEATURES_SPINUP;
1750 tf.protocol = ATA_PROT_NODATA;
1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1753 if (err_mask) {
1754 rc = -EIO;
1755 reason = "SPINUP failed";
1756 goto err_out;
1757 }
1758 /*
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1761 */
1762 if (id[2] == 0x37c8)
1763 goto retry;
1764 }
1765
bff04647 1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1767 /*
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1769 * SRST RESET
1770 * IDENTIFY
1771 * INITIALIZE DEVICE PARAMETERS
1772 * anything else..
1773 * Some drives were very specific about that exact sequence.
1774 */
1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1776 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1777 if (err_mask) {
1778 rc = -EIO;
1779 reason = "INIT_DEV_PARAMS failed";
1780 goto err_out;
1781 }
1782
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1785 */
bff04647 1786 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1787 goto retry;
1788 }
1789 }
1790
1791 *p_class = class;
fe635c7e 1792
49016aca
TH
1793 return 0;
1794
1795 err_out:
88574551 1796 if (ata_msg_warn(ap))
0dd4b21f 1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1798 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1799 return rc;
1800}
1801
3373efd8 1802static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1803{
3373efd8 1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1805}
1806
a6e6ce8e
TH
1807static void ata_dev_config_ncq(struct ata_device *dev,
1808 char *desc, size_t desc_sz)
1809{
1810 struct ata_port *ap = dev->ap;
1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1812
1813 if (!ata_id_has_ncq(dev->id)) {
1814 desc[0] = '\0';
1815 return;
1816 }
6919a0a6
AC
1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 snprintf(desc, desc_sz, "NCQ (not used)");
1819 return;
1820 }
a6e6ce8e 1821 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1823 dev->flags |= ATA_DFLAG_NCQ;
1824 }
1825
1826 if (hdepth >= ddepth)
1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1828 else
1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1830}
1831
49016aca 1832/**
ffeae418 1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1834 * @dev: Target device to configure
1835 *
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
49016aca
TH
1838 *
1839 * LOCKING:
ffeae418
TH
1840 * Kernel thread context (may sleep)
1841 *
1842 * RETURNS:
1843 * 0 on success, -errno otherwise
49016aca 1844 */
efdaedc4 1845int ata_dev_configure(struct ata_device *dev)
49016aca 1846{
3373efd8 1847 struct ata_port *ap = dev->ap;
efdaedc4 1848 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1849 const u16 *id = dev->id;
ff8854b2 1850 unsigned int xfer_mask;
b352e57d 1851 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1852 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1853 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1854 int rc;
49016aca 1855
0dd4b21f 1856 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1857 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1858 __FUNCTION__);
ffeae418 1859 return 0;
49016aca
TH
1860 }
1861
0dd4b21f 1862 if (ata_msg_probe(ap))
44877b4e 1863 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1864
08573a86 1865 /* set _SDD */
3a32a8e9 1866 rc = ata_acpi_push_id(dev);
08573a86
KCA
1867 if (rc) {
1868 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1869 rc);
1870 }
1871
1872 /* retrieve and execute the ATA task file of _GTF */
1873 ata_acpi_exec_tfs(ap);
1874
c39f5ebe 1875 /* print device capabilities */
0dd4b21f 1876 if (ata_msg_probe(ap))
88574551
TH
1877 ata_dev_printk(dev, KERN_DEBUG,
1878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1879 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1880 __FUNCTION__,
f15a1daf
TH
1881 id[49], id[82], id[83], id[84],
1882 id[85], id[86], id[87], id[88]);
c39f5ebe 1883
208a9933 1884 /* initialize to-be-configured parameters */
ea1dd4e1 1885 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1886 dev->max_sectors = 0;
1887 dev->cdb_len = 0;
1888 dev->n_sectors = 0;
1889 dev->cylinders = 0;
1890 dev->heads = 0;
1891 dev->sectors = 0;
1892
1da177e4
LT
1893 /*
1894 * common ATA, ATAPI feature tests
1895 */
1896
ff8854b2 1897 /* find max transfer mode; for printk only */
1148c3a7 1898 xfer_mask = ata_id_xfermask(id);
1da177e4 1899
0dd4b21f
BP
1900 if (ata_msg_probe(ap))
1901 ata_dump_id(id);
1da177e4 1902
ef143d57
AL
1903 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1904 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1905 sizeof(fwrevbuf));
1906
1907 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1908 sizeof(modelbuf));
1909
1da177e4
LT
1910 /* ATA-specific feature tests */
1911 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1912 if (ata_id_is_cfa(id)) {
1913 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1914 ata_dev_printk(dev, KERN_WARNING,
1915 "supports DRM functions and may "
1916 "not be fully accessable.\n");
b352e57d
AC
1917 snprintf(revbuf, 7, "CFA");
1918 }
1919 else
1920 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1921
1148c3a7 1922 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1923
3f64f565
EM
1924 if (dev->id[59] & 0x100)
1925 dev->multi_count = dev->id[59] & 0xff;
1926
1148c3a7 1927 if (ata_id_has_lba(id)) {
4c2d721a 1928 const char *lba_desc;
a6e6ce8e 1929 char ncq_desc[20];
8bf62ece 1930
4c2d721a
TH
1931 lba_desc = "LBA";
1932 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1933 if (ata_id_has_lba48(id)) {
8bf62ece 1934 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1935 lba_desc = "LBA48";
6fc49adb
TH
1936
1937 if (dev->n_sectors >= (1UL << 28) &&
1938 ata_id_has_flush_ext(id))
1939 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1940 }
8bf62ece 1941
1e999736
AC
1942 if (ata_id_hpa_enabled(dev->id))
1943 dev->n_sectors = ata_hpa_resize(dev);
1944
a6e6ce8e
TH
1945 /* config NCQ */
1946 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1947
8bf62ece 1948 /* print device info to dmesg */
3f64f565
EM
1949 if (ata_msg_drv(ap) && print_info) {
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%s: %s, %s, max %s\n",
1952 revbuf, modelbuf, fwrevbuf,
1953 ata_mode_string(xfer_mask));
1954 ata_dev_printk(dev, KERN_INFO,
1955 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1956 (unsigned long long)dev->n_sectors,
3f64f565
EM
1957 dev->multi_count, lba_desc, ncq_desc);
1958 }
ffeae418 1959 } else {
8bf62ece
AL
1960 /* CHS */
1961
1962 /* Default translation */
1148c3a7
TH
1963 dev->cylinders = id[1];
1964 dev->heads = id[3];
1965 dev->sectors = id[6];
8bf62ece 1966
1148c3a7 1967 if (ata_id_current_chs_valid(id)) {
8bf62ece 1968 /* Current CHS translation is valid. */
1148c3a7
TH
1969 dev->cylinders = id[54];
1970 dev->heads = id[55];
1971 dev->sectors = id[56];
8bf62ece
AL
1972 }
1973
1974 /* print device info to dmesg */
3f64f565 1975 if (ata_msg_drv(ap) && print_info) {
88574551 1976 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1977 "%s: %s, %s, max %s\n",
1978 revbuf, modelbuf, fwrevbuf,
1979 ata_mode_string(xfer_mask));
a84471fe 1980 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1981 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1982 (unsigned long long)dev->n_sectors,
1983 dev->multi_count, dev->cylinders,
1984 dev->heads, dev->sectors);
1985 }
07f6f7d0
AL
1986 }
1987
6e7846e9 1988 dev->cdb_len = 16;
1da177e4
LT
1989 }
1990
1991 /* ATAPI-specific feature tests */
2c13b7ce 1992 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1993 char *cdb_intr_string = "";
1994
1148c3a7 1995 rc = atapi_cdb_len(id);
1da177e4 1996 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1997 if (ata_msg_warn(ap))
88574551
TH
1998 ata_dev_printk(dev, KERN_WARNING,
1999 "unsupported CDB len\n");
ffeae418 2000 rc = -EINVAL;
1da177e4
LT
2001 goto err_out_nosup;
2002 }
6e7846e9 2003 dev->cdb_len = (unsigned int) rc;
1da177e4 2004
08a556db 2005 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2006 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2007 cdb_intr_string = ", CDB intr";
2008 }
312f7da2 2009
1da177e4 2010 /* print device info to dmesg */
5afc8142 2011 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
2012 ata_dev_printk(dev, KERN_INFO,
2013 "ATAPI: %s, %s, max %s%s\n",
2014 modelbuf, fwrevbuf,
12436c30
TH
2015 ata_mode_string(xfer_mask),
2016 cdb_intr_string);
1da177e4
LT
2017 }
2018
914ed354
TH
2019 /* determine max_sectors */
2020 dev->max_sectors = ATA_MAX_SECTORS;
2021 if (dev->flags & ATA_DFLAG_LBA48)
2022 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2023
93590859
AC
2024 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2025 /* Let the user know. We don't want to disallow opens for
2026 rescue purposes, or in case the vendor is just a blithering
2027 idiot */
2028 if (print_info) {
2029 ata_dev_printk(dev, KERN_WARNING,
2030"Drive reports diagnostics failure. This may indicate a drive\n");
2031 ata_dev_printk(dev, KERN_WARNING,
2032"fault or invalid emulation. Contact drive vendor for information.\n");
2033 }
2034 }
2035
4b2f3ede 2036 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2037 if (ata_dev_knobble(dev)) {
5afc8142 2038 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2039 ata_dev_printk(dev, KERN_INFO,
2040 "applying bridge limits\n");
5a529139 2041 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2042 dev->max_sectors = ATA_MAX_SECTORS;
2043 }
2044
18d6e9d5 2045 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2046 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2047 dev->max_sectors);
18d6e9d5 2048
4b2f3ede 2049 if (ap->ops->dev_config)
cd0d3bbc 2050 ap->ops->dev_config(dev);
4b2f3ede 2051
0dd4b21f
BP
2052 if (ata_msg_probe(ap))
2053 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2054 __FUNCTION__, ata_chk_status(ap));
ffeae418 2055 return 0;
1da177e4
LT
2056
2057err_out_nosup:
0dd4b21f 2058 if (ata_msg_probe(ap))
88574551
TH
2059 ata_dev_printk(dev, KERN_DEBUG,
2060 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2061 return rc;
1da177e4
LT
2062}
2063
be0d18df 2064/**
2e41e8e6 2065 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2066 * @ap: port
2067 *
2e41e8e6 2068 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2069 * detection.
2070 */
2071
2072int ata_cable_40wire(struct ata_port *ap)
2073{
2074 return ATA_CBL_PATA40;
2075}
2076
2077/**
2e41e8e6 2078 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2079 * @ap: port
2080 *
2e41e8e6 2081 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2082 * detection.
2083 */
2084
2085int ata_cable_80wire(struct ata_port *ap)
2086{
2087 return ATA_CBL_PATA80;
2088}
2089
2090/**
2091 * ata_cable_unknown - return unknown PATA cable.
2092 * @ap: port
2093 *
2094 * Helper method for drivers which have no PATA cable detection.
2095 */
2096
2097int ata_cable_unknown(struct ata_port *ap)
2098{
2099 return ATA_CBL_PATA_UNK;
2100}
2101
2102/**
2103 * ata_cable_sata - return SATA cable type
2104 * @ap: port
2105 *
2106 * Helper method for drivers which have SATA cables
2107 */
2108
2109int ata_cable_sata(struct ata_port *ap)
2110{
2111 return ATA_CBL_SATA;
2112}
2113
1da177e4
LT
2114/**
2115 * ata_bus_probe - Reset and probe ATA bus
2116 * @ap: Bus to probe
2117 *
0cba632b
JG
2118 * Master ATA bus probing function. Initiates a hardware-dependent
2119 * bus reset, then attempts to identify any devices found on
2120 * the bus.
2121 *
1da177e4 2122 * LOCKING:
0cba632b 2123 * PCI/etc. bus probe sem.
1da177e4
LT
2124 *
2125 * RETURNS:
96072e69 2126 * Zero on success, negative errno otherwise.
1da177e4
LT
2127 */
2128
80289167 2129int ata_bus_probe(struct ata_port *ap)
1da177e4 2130{
28ca5c57 2131 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2132 int tries[ATA_MAX_DEVICES];
4ae72a1e 2133 int i, rc;
e82cbdb9 2134 struct ata_device *dev;
1da177e4 2135
28ca5c57 2136 ata_port_probe(ap);
c19ba8af 2137
14d2bac1
TH
2138 for (i = 0; i < ATA_MAX_DEVICES; i++)
2139 tries[i] = ATA_PROBE_MAX_TRIES;
2140
2141 retry:
2044470c 2142 /* reset and determine device classes */
52783c5d 2143 ap->ops->phy_reset(ap);
2061a47a 2144
52783c5d
TH
2145 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2146 dev = &ap->device[i];
c19ba8af 2147
52783c5d
TH
2148 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2149 dev->class != ATA_DEV_UNKNOWN)
2150 classes[dev->devno] = dev->class;
2151 else
2152 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2153
52783c5d 2154 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2155 }
1da177e4 2156
52783c5d 2157 ata_port_probe(ap);
2044470c 2158
b6079ca4
AC
2159 /* after the reset the device state is PIO 0 and the controller
2160 state is undefined. Record the mode */
2161
2162 for (i = 0; i < ATA_MAX_DEVICES; i++)
2163 ap->device[i].pio_mode = XFER_PIO_0;
2164
f31f0cc2
JG
2165 /* read IDENTIFY page and configure devices. We have to do the identify
2166 specific sequence bass-ackwards so that PDIAG- is released by
2167 the slave device */
2168
2169 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2170 dev = &ap->device[i];
28ca5c57 2171
ec573755
TH
2172 if (tries[i])
2173 dev->class = classes[i];
ffeae418 2174
14d2bac1 2175 if (!ata_dev_enabled(dev))
ffeae418 2176 continue;
ffeae418 2177
bff04647
TH
2178 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2179 dev->id);
14d2bac1
TH
2180 if (rc)
2181 goto fail;
f31f0cc2
JG
2182 }
2183
be0d18df
AC
2184 /* Now ask for the cable type as PDIAG- should have been released */
2185 if (ap->ops->cable_detect)
2186 ap->cbl = ap->ops->cable_detect(ap);
2187
f31f0cc2
JG
2188 /* After the identify sequence we can now set up the devices. We do
2189 this in the normal order so that the user doesn't get confused */
2190
2191 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2192 dev = &ap->device[i];
2193 if (!ata_dev_enabled(dev))
2194 continue;
14d2bac1 2195
efdaedc4
TH
2196 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2197 rc = ata_dev_configure(dev);
2198 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2199 if (rc)
2200 goto fail;
1da177e4
LT
2201 }
2202
e82cbdb9 2203 /* configure transfer mode */
3adcebb2 2204 rc = ata_set_mode(ap, &dev);
4ae72a1e 2205 if (rc)
51713d35 2206 goto fail;
1da177e4 2207
e82cbdb9
TH
2208 for (i = 0; i < ATA_MAX_DEVICES; i++)
2209 if (ata_dev_enabled(&ap->device[i]))
2210 return 0;
1da177e4 2211
e82cbdb9
TH
2212 /* no device present, disable port */
2213 ata_port_disable(ap);
1da177e4 2214 ap->ops->port_disable(ap);
96072e69 2215 return -ENODEV;
14d2bac1
TH
2216
2217 fail:
4ae72a1e
TH
2218 tries[dev->devno]--;
2219
14d2bac1
TH
2220 switch (rc) {
2221 case -EINVAL:
4ae72a1e 2222 /* eeek, something went very wrong, give up */
14d2bac1
TH
2223 tries[dev->devno] = 0;
2224 break;
4ae72a1e
TH
2225
2226 case -ENODEV:
2227 /* give it just one more chance */
2228 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2229 case -EIO:
4ae72a1e
TH
2230 if (tries[dev->devno] == 1) {
2231 /* This is the last chance, better to slow
2232 * down than lose it.
2233 */
2234 sata_down_spd_limit(ap);
2235 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2236 }
14d2bac1
TH
2237 }
2238
4ae72a1e 2239 if (!tries[dev->devno])
3373efd8 2240 ata_dev_disable(dev);
ec573755 2241
14d2bac1 2242 goto retry;
1da177e4
LT
2243}
2244
2245/**
0cba632b
JG
2246 * ata_port_probe - Mark port as enabled
2247 * @ap: Port for which we indicate enablement
1da177e4 2248 *
0cba632b
JG
2249 * Modify @ap data structure such that the system
2250 * thinks that the entire port is enabled.
2251 *
cca3974e 2252 * LOCKING: host lock, or some other form of
0cba632b 2253 * serialization.
1da177e4
LT
2254 */
2255
2256void ata_port_probe(struct ata_port *ap)
2257{
198e0fed 2258 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2259}
2260
3be680b7
TH
2261/**
2262 * sata_print_link_status - Print SATA link status
2263 * @ap: SATA port to printk link status about
2264 *
2265 * This function prints link speed and status of a SATA link.
2266 *
2267 * LOCKING:
2268 * None.
2269 */
43727fbc 2270void sata_print_link_status(struct ata_port *ap)
3be680b7 2271{
6d5f9732 2272 u32 sstatus, scontrol, tmp;
3be680b7 2273
81952c54 2274 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2275 return;
81952c54 2276 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2277
81952c54 2278 if (ata_port_online(ap)) {
3be680b7 2279 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2280 ata_port_printk(ap, KERN_INFO,
2281 "SATA link up %s (SStatus %X SControl %X)\n",
2282 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2283 } else {
f15a1daf
TH
2284 ata_port_printk(ap, KERN_INFO,
2285 "SATA link down (SStatus %X SControl %X)\n",
2286 sstatus, scontrol);
3be680b7
TH
2287 }
2288}
2289
1da177e4 2290/**
780a87f7
JG
2291 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2292 * @ap: SATA port associated with target SATA PHY.
1da177e4 2293 *
780a87f7
JG
2294 * This function issues commands to standard SATA Sxxx
2295 * PHY registers, to wake up the phy (and device), and
2296 * clear any reset condition.
1da177e4
LT
2297 *
2298 * LOCKING:
0cba632b 2299 * PCI/etc. bus probe sem.
1da177e4
LT
2300 *
2301 */
2302void __sata_phy_reset(struct ata_port *ap)
2303{
2304 u32 sstatus;
2305 unsigned long timeout = jiffies + (HZ * 5);
2306
2307 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2308 /* issue phy wake/reset */
81952c54 2309 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2310 /* Couldn't find anything in SATA I/II specs, but
2311 * AHCI-1.1 10.4.2 says at least 1 ms. */
2312 mdelay(1);
1da177e4 2313 }
81952c54
TH
2314 /* phy wake/clear reset */
2315 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2316
2317 /* wait for phy to become ready, if necessary */
2318 do {
2319 msleep(200);
81952c54 2320 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2321 if ((sstatus & 0xf) != 1)
2322 break;
2323 } while (time_before(jiffies, timeout));
2324
3be680b7
TH
2325 /* print link status */
2326 sata_print_link_status(ap);
656563e3 2327
3be680b7 2328 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2329 if (!ata_port_offline(ap))
1da177e4 2330 ata_port_probe(ap);
3be680b7 2331 else
1da177e4 2332 ata_port_disable(ap);
1da177e4 2333
198e0fed 2334 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2335 return;
2336
2337 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2338 ata_port_disable(ap);
2339 return;
2340 }
2341
2342 ap->cbl = ATA_CBL_SATA;
2343}
2344
2345/**
780a87f7
JG
2346 * sata_phy_reset - Reset SATA bus.
2347 * @ap: SATA port associated with target SATA PHY.
1da177e4 2348 *
780a87f7
JG
2349 * This function resets the SATA bus, and then probes
2350 * the bus for devices.
1da177e4
LT
2351 *
2352 * LOCKING:
0cba632b 2353 * PCI/etc. bus probe sem.
1da177e4
LT
2354 *
2355 */
2356void sata_phy_reset(struct ata_port *ap)
2357{
2358 __sata_phy_reset(ap);
198e0fed 2359 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2360 return;
2361 ata_bus_reset(ap);
2362}
2363
ebdfca6e
AC
2364/**
2365 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2366 * @adev: device
2367 *
2368 * Obtain the other device on the same cable, or if none is
2369 * present NULL is returned
2370 */
2e9edbf8 2371
3373efd8 2372struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2373{
3373efd8 2374 struct ata_port *ap = adev->ap;
ebdfca6e 2375 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2376 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2377 return NULL;
2378 return pair;
2379}
2380
1da177e4 2381/**
780a87f7
JG
2382 * ata_port_disable - Disable port.
2383 * @ap: Port to be disabled.
1da177e4 2384 *
780a87f7
JG
2385 * Modify @ap data structure such that the system
2386 * thinks that the entire port is disabled, and should
2387 * never attempt to probe or communicate with devices
2388 * on this port.
2389 *
cca3974e 2390 * LOCKING: host lock, or some other form of
780a87f7 2391 * serialization.
1da177e4
LT
2392 */
2393
2394void ata_port_disable(struct ata_port *ap)
2395{
2396 ap->device[0].class = ATA_DEV_NONE;
2397 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2398 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2399}
2400
1c3fae4d 2401/**
3c567b7d 2402 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2403 * @ap: Port to adjust SATA spd limit for
2404 *
2405 * Adjust SATA spd limit of @ap downward. Note that this
2406 * function only adjusts the limit. The change must be applied
3c567b7d 2407 * using sata_set_spd().
1c3fae4d
TH
2408 *
2409 * LOCKING:
2410 * Inherited from caller.
2411 *
2412 * RETURNS:
2413 * 0 on success, negative errno on failure
2414 */
3c567b7d 2415int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2416{
81952c54
TH
2417 u32 sstatus, spd, mask;
2418 int rc, highbit;
1c3fae4d 2419
81952c54
TH
2420 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2421 if (rc)
2422 return rc;
1c3fae4d
TH
2423
2424 mask = ap->sata_spd_limit;
2425 if (mask <= 1)
2426 return -EINVAL;
2427 highbit = fls(mask) - 1;
2428 mask &= ~(1 << highbit);
2429
81952c54 2430 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2431 if (spd <= 1)
2432 return -EINVAL;
2433 spd--;
2434 mask &= (1 << spd) - 1;
2435 if (!mask)
2436 return -EINVAL;
2437
2438 ap->sata_spd_limit = mask;
2439
f15a1daf
TH
2440 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2441 sata_spd_string(fls(mask)));
1c3fae4d
TH
2442
2443 return 0;
2444}
2445
3c567b7d 2446static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2447{
2448 u32 spd, limit;
2449
2450 if (ap->sata_spd_limit == UINT_MAX)
2451 limit = 0;
2452 else
2453 limit = fls(ap->sata_spd_limit);
2454
2455 spd = (*scontrol >> 4) & 0xf;
2456 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2457
2458 return spd != limit;
2459}
2460
2461/**
3c567b7d 2462 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2463 * @ap: Port in question
2464 *
2465 * Test whether the spd limit in SControl matches
2466 * @ap->sata_spd_limit. This function is used to determine
2467 * whether hardreset is necessary to apply SATA spd
2468 * configuration.
2469 *
2470 * LOCKING:
2471 * Inherited from caller.
2472 *
2473 * RETURNS:
2474 * 1 if SATA spd configuration is needed, 0 otherwise.
2475 */
3c567b7d 2476int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2477{
2478 u32 scontrol;
2479
81952c54 2480 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2481 return 0;
2482
3c567b7d 2483 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2484}
2485
2486/**
3c567b7d 2487 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2488 * @ap: Port to set SATA spd for
2489 *
2490 * Set SATA spd of @ap according to sata_spd_limit.
2491 *
2492 * LOCKING:
2493 * Inherited from caller.
2494 *
2495 * RETURNS:
2496 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2497 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2498 */
3c567b7d 2499int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2500{
2501 u32 scontrol;
81952c54 2502 int rc;
1c3fae4d 2503
81952c54
TH
2504 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2505 return rc;
1c3fae4d 2506
3c567b7d 2507 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2508 return 0;
2509
81952c54
TH
2510 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2511 return rc;
2512
1c3fae4d
TH
2513 return 1;
2514}
2515
452503f9
AC
2516/*
2517 * This mode timing computation functionality is ported over from
2518 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2519 */
2520/*
b352e57d 2521 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2522 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2523 * for UDMA6, which is currently supported only by Maxtor drives.
2524 *
2525 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2526 */
2527
2528static const struct ata_timing ata_timing[] = {
2529
2530 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2531 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2532 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2533 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2534
b352e57d
AC
2535 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2536 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2537 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2538 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2539 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2540
2541/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2542
452503f9
AC
2543 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2544 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2545 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2546
452503f9
AC
2547 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2548 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2549 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2550
b352e57d
AC
2551 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2552 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2553 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2554 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2555
2556 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2557 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2558 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2559
2560/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2561
2562 { 0xFF }
2563};
2564
2565#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2566#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2567
2568static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2569{
2570 q->setup = EZ(t->setup * 1000, T);
2571 q->act8b = EZ(t->act8b * 1000, T);
2572 q->rec8b = EZ(t->rec8b * 1000, T);
2573 q->cyc8b = EZ(t->cyc8b * 1000, T);
2574 q->active = EZ(t->active * 1000, T);
2575 q->recover = EZ(t->recover * 1000, T);
2576 q->cycle = EZ(t->cycle * 1000, T);
2577 q->udma = EZ(t->udma * 1000, UT);
2578}
2579
2580void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2581 struct ata_timing *m, unsigned int what)
2582{
2583 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2584 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2585 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2586 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2587 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2588 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2589 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2590 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2591}
2592
2593static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2594{
2595 const struct ata_timing *t;
2596
2597 for (t = ata_timing; t->mode != speed; t++)
91190758 2598 if (t->mode == 0xFF)
452503f9 2599 return NULL;
2e9edbf8 2600 return t;
452503f9
AC
2601}
2602
2603int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2604 struct ata_timing *t, int T, int UT)
2605{
2606 const struct ata_timing *s;
2607 struct ata_timing p;
2608
2609 /*
2e9edbf8 2610 * Find the mode.
75b1f2f8 2611 */
452503f9
AC
2612
2613 if (!(s = ata_timing_find_mode(speed)))
2614 return -EINVAL;
2615
75b1f2f8
AL
2616 memcpy(t, s, sizeof(*s));
2617
452503f9
AC
2618 /*
2619 * If the drive is an EIDE drive, it can tell us it needs extended
2620 * PIO/MW_DMA cycle timing.
2621 */
2622
2623 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2624 memset(&p, 0, sizeof(p));
2625 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2626 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2627 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2628 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2629 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2630 }
2631 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2632 }
2633
2634 /*
2635 * Convert the timing to bus clock counts.
2636 */
2637
75b1f2f8 2638 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2639
2640 /*
c893a3ae
RD
2641 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2642 * S.M.A.R.T * and some other commands. We have to ensure that the
2643 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2644 */
2645
fd3367af 2646 if (speed > XFER_PIO_6) {
452503f9
AC
2647 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2648 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2649 }
2650
2651 /*
c893a3ae 2652 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2653 */
2654
2655 if (t->act8b + t->rec8b < t->cyc8b) {
2656 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2657 t->rec8b = t->cyc8b - t->act8b;
2658 }
2659
2660 if (t->active + t->recover < t->cycle) {
2661 t->active += (t->cycle - (t->active + t->recover)) / 2;
2662 t->recover = t->cycle - t->active;
2663 }
a617c09f 2664
4f701d1e
AC
2665 /* In a few cases quantisation may produce enough errors to
2666 leave t->cycle too low for the sum of active and recovery
2667 if so we must correct this */
2668 if (t->active + t->recover > t->cycle)
2669 t->cycle = t->active + t->recover;
452503f9
AC
2670
2671 return 0;
2672}
2673
cf176e1a
TH
2674/**
2675 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2676 * @dev: Device to adjust xfer masks
458337db 2677 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2678 *
2679 * Adjust xfer masks of @dev downward. Note that this function
2680 * does not apply the change. Invoking ata_set_mode() afterwards
2681 * will apply the limit.
2682 *
2683 * LOCKING:
2684 * Inherited from caller.
2685 *
2686 * RETURNS:
2687 * 0 on success, negative errno on failure
2688 */
458337db 2689int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2690{
458337db
TH
2691 char buf[32];
2692 unsigned int orig_mask, xfer_mask;
2693 unsigned int pio_mask, mwdma_mask, udma_mask;
2694 int quiet, highbit;
cf176e1a 2695
458337db
TH
2696 quiet = !!(sel & ATA_DNXFER_QUIET);
2697 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2698
458337db
TH
2699 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2700 dev->mwdma_mask,
2701 dev->udma_mask);
2702 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2703
458337db
TH
2704 switch (sel) {
2705 case ATA_DNXFER_PIO:
2706 highbit = fls(pio_mask) - 1;
2707 pio_mask &= ~(1 << highbit);
2708 break;
2709
2710 case ATA_DNXFER_DMA:
2711 if (udma_mask) {
2712 highbit = fls(udma_mask) - 1;
2713 udma_mask &= ~(1 << highbit);
2714 if (!udma_mask)
2715 return -ENOENT;
2716 } else if (mwdma_mask) {
2717 highbit = fls(mwdma_mask) - 1;
2718 mwdma_mask &= ~(1 << highbit);
2719 if (!mwdma_mask)
2720 return -ENOENT;
2721 }
2722 break;
2723
2724 case ATA_DNXFER_40C:
2725 udma_mask &= ATA_UDMA_MASK_40C;
2726 break;
2727
2728 case ATA_DNXFER_FORCE_PIO0:
2729 pio_mask &= 1;
2730 case ATA_DNXFER_FORCE_PIO:
2731 mwdma_mask = 0;
2732 udma_mask = 0;
2733 break;
2734
458337db
TH
2735 default:
2736 BUG();
2737 }
2738
2739 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2740
2741 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2742 return -ENOENT;
2743
2744 if (!quiet) {
2745 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2746 snprintf(buf, sizeof(buf), "%s:%s",
2747 ata_mode_string(xfer_mask),
2748 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2749 else
2750 snprintf(buf, sizeof(buf), "%s",
2751 ata_mode_string(xfer_mask));
2752
2753 ata_dev_printk(dev, KERN_WARNING,
2754 "limiting speed to %s\n", buf);
2755 }
cf176e1a
TH
2756
2757 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2758 &dev->udma_mask);
2759
cf176e1a 2760 return 0;
cf176e1a
TH
2761}
2762
3373efd8 2763static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2764{
baa1e78a 2765 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2766 unsigned int err_mask;
2767 int rc;
1da177e4 2768
e8384607 2769 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2770 if (dev->xfer_shift == ATA_SHIFT_PIO)
2771 dev->flags |= ATA_DFLAG_PIO;
2772
3373efd8 2773 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2774 /* Old CFA may refuse this command, which is just fine */
2775 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2776 err_mask &= ~AC_ERR_DEV;
2777
83206a29 2778 if (err_mask) {
f15a1daf
TH
2779 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2780 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2781 return -EIO;
2782 }
1da177e4 2783
baa1e78a 2784 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2785 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2786 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2787 if (rc)
83206a29 2788 return rc;
48a8a14f 2789
23e71c3d
TH
2790 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2791 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2792
f15a1daf
TH
2793 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2794 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2795 return 0;
1da177e4
LT
2796}
2797
1da177e4 2798/**
04351821 2799 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2800 * @ap: port on which timings will be programmed
e82cbdb9 2801 * @r_failed_dev: out paramter for failed device
1da177e4 2802 *
04351821
AC
2803 * Standard implementation of the function used to tune and set
2804 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2805 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2806 * returned in @r_failed_dev.
780a87f7 2807 *
1da177e4 2808 * LOCKING:
0cba632b 2809 * PCI/etc. bus probe sem.
e82cbdb9
TH
2810 *
2811 * RETURNS:
2812 * 0 on success, negative errno otherwise
1da177e4 2813 */
04351821
AC
2814
2815int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2816{
e8e0619f 2817 struct ata_device *dev;
e82cbdb9 2818 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2819
3adcebb2 2820
a6d5a51c
TH
2821 /* step 1: calculate xfer_mask */
2822 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2823 unsigned int pio_mask, dma_mask;
a6d5a51c 2824
e8e0619f
TH
2825 dev = &ap->device[i];
2826
e1211e3f 2827 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2828 continue;
2829
3373efd8 2830 ata_dev_xfermask(dev);
1da177e4 2831
acf356b1
TH
2832 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2833 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2834 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2835 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2836
4f65977d 2837 found = 1;
5444a6f4
AC
2838 if (dev->dma_mode)
2839 used_dma = 1;
a6d5a51c 2840 }
4f65977d 2841 if (!found)
e82cbdb9 2842 goto out;
a6d5a51c
TH
2843
2844 /* step 2: always set host PIO timings */
e8e0619f
TH
2845 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2846 dev = &ap->device[i];
2847 if (!ata_dev_enabled(dev))
2848 continue;
2849
2850 if (!dev->pio_mode) {
f15a1daf 2851 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2852 rc = -EINVAL;
e82cbdb9 2853 goto out;
e8e0619f
TH
2854 }
2855
2856 dev->xfer_mode = dev->pio_mode;
2857 dev->xfer_shift = ATA_SHIFT_PIO;
2858 if (ap->ops->set_piomode)
2859 ap->ops->set_piomode(ap, dev);
2860 }
1da177e4 2861
a6d5a51c 2862 /* step 3: set host DMA timings */
e8e0619f
TH
2863 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2864 dev = &ap->device[i];
2865
2866 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2867 continue;
2868
2869 dev->xfer_mode = dev->dma_mode;
2870 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2871 if (ap->ops->set_dmamode)
2872 ap->ops->set_dmamode(ap, dev);
2873 }
1da177e4
LT
2874
2875 /* step 4: update devices' xfer mode */
83206a29 2876 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2877 dev = &ap->device[i];
1da177e4 2878
18d90deb 2879 /* don't update suspended devices' xfer mode */
9666f400 2880 if (!ata_dev_enabled(dev))
83206a29
TH
2881 continue;
2882
3373efd8 2883 rc = ata_dev_set_mode(dev);
5bbc53f4 2884 if (rc)
e82cbdb9 2885 goto out;
83206a29 2886 }
1da177e4 2887
e8e0619f
TH
2888 /* Record simplex status. If we selected DMA then the other
2889 * host channels are not permitted to do so.
5444a6f4 2890 */
cca3974e 2891 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2892 ap->host->simplex_claimed = ap;
5444a6f4 2893
e82cbdb9
TH
2894 out:
2895 if (rc)
2896 *r_failed_dev = dev;
2897 return rc;
1da177e4
LT
2898}
2899
04351821
AC
2900/**
2901 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2902 * @ap: port on which timings will be programmed
2903 * @r_failed_dev: out paramter for failed device
2904 *
2905 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2906 * ata_set_mode() fails, pointer to the failing device is
2907 * returned in @r_failed_dev.
2908 *
2909 * LOCKING:
2910 * PCI/etc. bus probe sem.
2911 *
2912 * RETURNS:
2913 * 0 on success, negative errno otherwise
2914 */
2915int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2916{
2917 /* has private set_mode? */
2918 if (ap->ops->set_mode)
2919 return ap->ops->set_mode(ap, r_failed_dev);
2920 return ata_do_set_mode(ap, r_failed_dev);
2921}
2922
1fdffbce
JG
2923/**
2924 * ata_tf_to_host - issue ATA taskfile to host controller
2925 * @ap: port to which command is being issued
2926 * @tf: ATA taskfile register set
2927 *
2928 * Issues ATA taskfile register set to ATA host controller,
2929 * with proper synchronization with interrupt handler and
2930 * other threads.
2931 *
2932 * LOCKING:
cca3974e 2933 * spin_lock_irqsave(host lock)
1fdffbce
JG
2934 */
2935
2936static inline void ata_tf_to_host(struct ata_port *ap,
2937 const struct ata_taskfile *tf)
2938{
2939 ap->ops->tf_load(ap, tf);
2940 ap->ops->exec_command(ap, tf);
2941}
2942
1da177e4
LT
2943/**
2944 * ata_busy_sleep - sleep until BSY clears, or timeout
2945 * @ap: port containing status register to be polled
2946 * @tmout_pat: impatience timeout
2947 * @tmout: overall timeout
2948 *
780a87f7
JG
2949 * Sleep until ATA Status register bit BSY clears,
2950 * or a timeout occurs.
2951 *
d1adc1bb
TH
2952 * LOCKING:
2953 * Kernel thread context (may sleep).
2954 *
2955 * RETURNS:
2956 * 0 on success, -errno otherwise.
1da177e4 2957 */
d1adc1bb
TH
2958int ata_busy_sleep(struct ata_port *ap,
2959 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2960{
2961 unsigned long timer_start, timeout;
2962 u8 status;
2963
2964 status = ata_busy_wait(ap, ATA_BUSY, 300);
2965 timer_start = jiffies;
2966 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2967 while (status != 0xff && (status & ATA_BUSY) &&
2968 time_before(jiffies, timeout)) {
1da177e4
LT
2969 msleep(50);
2970 status = ata_busy_wait(ap, ATA_BUSY, 3);
2971 }
2972
d1adc1bb 2973 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2974 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2975 "port is slow to respond, please be patient "
2976 "(Status 0x%x)\n", status);
1da177e4
LT
2977
2978 timeout = timer_start + tmout;
d1adc1bb
TH
2979 while (status != 0xff && (status & ATA_BUSY) &&
2980 time_before(jiffies, timeout)) {
1da177e4
LT
2981 msleep(50);
2982 status = ata_chk_status(ap);
2983 }
2984
d1adc1bb
TH
2985 if (status == 0xff)
2986 return -ENODEV;
2987
1da177e4 2988 if (status & ATA_BUSY) {
f15a1daf 2989 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2990 "(%lu secs, Status 0x%x)\n",
2991 tmout / HZ, status);
d1adc1bb 2992 return -EBUSY;
1da177e4
LT
2993 }
2994
2995 return 0;
2996}
2997
d4b2bab4
TH
2998/**
2999 * ata_wait_ready - sleep until BSY clears, or timeout
3000 * @ap: port containing status register to be polled
3001 * @deadline: deadline jiffies for the operation
3002 *
3003 * Sleep until ATA Status register bit BSY clears, or timeout
3004 * occurs.
3005 *
3006 * LOCKING:
3007 * Kernel thread context (may sleep).
3008 *
3009 * RETURNS:
3010 * 0 on success, -errno otherwise.
3011 */
3012int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3013{
3014 unsigned long start = jiffies;
3015 int warned = 0;
3016
3017 while (1) {
3018 u8 status = ata_chk_status(ap);
3019 unsigned long now = jiffies;
3020
3021 if (!(status & ATA_BUSY))
3022 return 0;
fd7fe701 3023 if (!ata_port_online(ap) && status == 0xff)
d4b2bab4
TH
3024 return -ENODEV;
3025 if (time_after(now, deadline))
3026 return -EBUSY;
3027
3028 if (!warned && time_after(now, start + 5 * HZ) &&
3029 (deadline - now > 3 * HZ)) {
3030 ata_port_printk(ap, KERN_WARNING,
3031 "port is slow to respond, please be patient "
3032 "(Status 0x%x)\n", status);
3033 warned = 1;
3034 }
3035
3036 msleep(50);
3037 }
3038}
3039
3040static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3041 unsigned long deadline)
1da177e4
LT
3042{
3043 struct ata_ioports *ioaddr = &ap->ioaddr;
3044 unsigned int dev0 = devmask & (1 << 0);
3045 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3046 int rc, ret = 0;
1da177e4
LT
3047
3048 /* if device 0 was found in ata_devchk, wait for its
3049 * BSY bit to clear
3050 */
d4b2bab4
TH
3051 if (dev0) {
3052 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3053 if (rc) {
3054 if (rc != -ENODEV)
3055 return rc;
3056 ret = rc;
3057 }
d4b2bab4 3058 }
1da177e4 3059
e141d999
TH
3060 /* if device 1 was found in ata_devchk, wait for register
3061 * access briefly, then wait for BSY to clear.
1da177e4 3062 */
e141d999
TH
3063 if (dev1) {
3064 int i;
1da177e4
LT
3065
3066 ap->ops->dev_select(ap, 1);
e141d999
TH
3067
3068 /* Wait for register access. Some ATAPI devices fail
3069 * to set nsect/lbal after reset, so don't waste too
3070 * much time on it. We're gonna wait for !BSY anyway.
3071 */
3072 for (i = 0; i < 2; i++) {
3073 u8 nsect, lbal;
3074
3075 nsect = ioread8(ioaddr->nsect_addr);
3076 lbal = ioread8(ioaddr->lbal_addr);
3077 if ((nsect == 1) && (lbal == 1))
3078 break;
3079 msleep(50); /* give drive a breather */
3080 }
3081
d4b2bab4 3082 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3083 if (rc) {
3084 if (rc != -ENODEV)
3085 return rc;
3086 ret = rc;
3087 }
d4b2bab4 3088 }
1da177e4
LT
3089
3090 /* is all this really necessary? */
3091 ap->ops->dev_select(ap, 0);
3092 if (dev1)
3093 ap->ops->dev_select(ap, 1);
3094 if (dev0)
3095 ap->ops->dev_select(ap, 0);
d4b2bab4 3096
9b89391c 3097 return ret;
1da177e4
LT
3098}
3099
d4b2bab4
TH
3100static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3101 unsigned long deadline)
1da177e4
LT
3102{
3103 struct ata_ioports *ioaddr = &ap->ioaddr;
3104
44877b4e 3105 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3106
3107 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3108 iowrite8(ap->ctl, ioaddr->ctl_addr);
3109 udelay(20); /* FIXME: flush */
3110 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3111 udelay(20); /* FIXME: flush */
3112 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3113
3114 /* spec mandates ">= 2ms" before checking status.
3115 * We wait 150ms, because that was the magic delay used for
3116 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3117 * between when the ATA command register is written, and then
3118 * status is checked. Because waiting for "a while" before
3119 * checking status is fine, post SRST, we perform this magic
3120 * delay here as well.
09c7ad79
AC
3121 *
3122 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3123 */
3124 msleep(150);
3125
2e9edbf8 3126 /* Before we perform post reset processing we want to see if
298a41ca
TH
3127 * the bus shows 0xFF because the odd clown forgets the D7
3128 * pulldown resistor.
3129 */
d1adc1bb 3130 if (ata_check_status(ap) == 0xFF)
9b89391c 3131 return -ENODEV;
09c7ad79 3132
d4b2bab4 3133 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3134}
3135
3136/**
3137 * ata_bus_reset - reset host port and associated ATA channel
3138 * @ap: port to reset
3139 *
3140 * This is typically the first time we actually start issuing
3141 * commands to the ATA channel. We wait for BSY to clear, then
3142 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3143 * result. Determine what devices, if any, are on the channel
3144 * by looking at the device 0/1 error register. Look at the signature
3145 * stored in each device's taskfile registers, to determine if
3146 * the device is ATA or ATAPI.
3147 *
3148 * LOCKING:
0cba632b 3149 * PCI/etc. bus probe sem.
cca3974e 3150 * Obtains host lock.
1da177e4
LT
3151 *
3152 * SIDE EFFECTS:
198e0fed 3153 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3154 */
3155
3156void ata_bus_reset(struct ata_port *ap)
3157{
3158 struct ata_ioports *ioaddr = &ap->ioaddr;
3159 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3160 u8 err;
aec5c3c1 3161 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3162 int rc;
1da177e4 3163
44877b4e 3164 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3165
3166 /* determine if device 0/1 are present */
3167 if (ap->flags & ATA_FLAG_SATA_RESET)
3168 dev0 = 1;
3169 else {
3170 dev0 = ata_devchk(ap, 0);
3171 if (slave_possible)
3172 dev1 = ata_devchk(ap, 1);
3173 }
3174
3175 if (dev0)
3176 devmask |= (1 << 0);
3177 if (dev1)
3178 devmask |= (1 << 1);
3179
3180 /* select device 0 again */
3181 ap->ops->dev_select(ap, 0);
3182
3183 /* issue bus reset */
9b89391c
TH
3184 if (ap->flags & ATA_FLAG_SRST) {
3185 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3186 if (rc && rc != -ENODEV)
aec5c3c1 3187 goto err_out;
9b89391c 3188 }
1da177e4
LT
3189
3190 /*
3191 * determine by signature whether we have ATA or ATAPI devices
3192 */
b4dc7623 3193 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3194 if ((slave_possible) && (err != 0x81))
b4dc7623 3195 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
3196
3197 /* re-enable interrupts */
83625006 3198 ap->ops->irq_on(ap);
1da177e4
LT
3199
3200 /* is double-select really necessary? */
3201 if (ap->device[1].class != ATA_DEV_NONE)
3202 ap->ops->dev_select(ap, 1);
3203 if (ap->device[0].class != ATA_DEV_NONE)
3204 ap->ops->dev_select(ap, 0);
3205
3206 /* if no devices were detected, disable this port */
3207 if ((ap->device[0].class == ATA_DEV_NONE) &&
3208 (ap->device[1].class == ATA_DEV_NONE))
3209 goto err_out;
3210
3211 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3212 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3213 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3214 }
3215
3216 DPRINTK("EXIT\n");
3217 return;
3218
3219err_out:
f15a1daf 3220 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3221 ap->ops->port_disable(ap);
3222
3223 DPRINTK("EXIT\n");
3224}
3225
d7bb4cc7
TH
3226/**
3227 * sata_phy_debounce - debounce SATA phy status
3228 * @ap: ATA port to debounce SATA phy status for
3229 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3230 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3231 *
3232 * Make sure SStatus of @ap reaches stable state, determined by
3233 * holding the same value where DET is not 1 for @duration polled
3234 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3235 * beginning of the stable state. Because DET gets stuck at 1 on
3236 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3237 * until timeout then returns 0 if DET is stable at 1.
3238 *
d4b2bab4
TH
3239 * @timeout is further limited by @deadline. The sooner of the
3240 * two is used.
3241 *
d7bb4cc7
TH
3242 * LOCKING:
3243 * Kernel thread context (may sleep)
3244 *
3245 * RETURNS:
3246 * 0 on success, -errno on failure.
3247 */
d4b2bab4
TH
3248int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3249 unsigned long deadline)
7a7921e8 3250{
d7bb4cc7 3251 unsigned long interval_msec = params[0];
d4b2bab4
TH
3252 unsigned long duration = msecs_to_jiffies(params[1]);
3253 unsigned long last_jiffies, t;
d7bb4cc7
TH
3254 u32 last, cur;
3255 int rc;
3256
d4b2bab4
TH
3257 t = jiffies + msecs_to_jiffies(params[2]);
3258 if (time_before(t, deadline))
3259 deadline = t;
3260
d7bb4cc7
TH
3261 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3262 return rc;
3263 cur &= 0xf;
3264
3265 last = cur;
3266 last_jiffies = jiffies;
3267
3268 while (1) {
3269 msleep(interval_msec);
3270 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3271 return rc;
3272 cur &= 0xf;
3273
3274 /* DET stable? */
3275 if (cur == last) {
d4b2bab4 3276 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3277 continue;
3278 if (time_after(jiffies, last_jiffies + duration))
3279 return 0;
3280 continue;
3281 }
3282
3283 /* unstable, start over */
3284 last = cur;
3285 last_jiffies = jiffies;
3286
d4b2bab4
TH
3287 /* check deadline */
3288 if (time_after(jiffies, deadline))
d7bb4cc7
TH
3289 return -EBUSY;
3290 }
3291}
3292
3293/**
3294 * sata_phy_resume - resume SATA phy
3295 * @ap: ATA port to resume SATA phy for
3296 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3297 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3298 *
3299 * Resume SATA phy of @ap and debounce it.
3300 *
3301 * LOCKING:
3302 * Kernel thread context (may sleep)
3303 *
3304 * RETURNS:
3305 * 0 on success, -errno on failure.
3306 */
d4b2bab4
TH
3307int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3308 unsigned long deadline)
d7bb4cc7
TH
3309{
3310 u32 scontrol;
81952c54
TH
3311 int rc;
3312
3313 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3314 return rc;
7a7921e8 3315
852ee16a 3316 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3317
3318 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3319 return rc;
7a7921e8 3320
d7bb4cc7
TH
3321 /* Some PHYs react badly if SStatus is pounded immediately
3322 * after resuming. Delay 200ms before debouncing.
3323 */
3324 msleep(200);
7a7921e8 3325
d4b2bab4 3326 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3327}
3328
f5914a46
TH
3329/**
3330 * ata_std_prereset - prepare for reset
3331 * @ap: ATA port to be reset
d4b2bab4 3332 * @deadline: deadline jiffies for the operation
f5914a46 3333 *
b8cffc6a
TH
3334 * @ap is about to be reset. Initialize it. Failure from
3335 * prereset makes libata abort whole reset sequence and give up
3336 * that port, so prereset should be best-effort. It does its
3337 * best to prepare for reset sequence but if things go wrong, it
3338 * should just whine, not fail.
f5914a46
TH
3339 *
3340 * LOCKING:
3341 * Kernel thread context (may sleep)
3342 *
3343 * RETURNS:
3344 * 0 on success, -errno otherwise.
3345 */
d4b2bab4 3346int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3347{
3348 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3349 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3350 int rc;
3351
31daabda 3352 /* handle link resume */
28324304
TH
3353 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3354 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3355 ehc->i.action |= ATA_EH_HARDRESET;
3356
f5914a46
TH
3357 /* if we're about to do hardreset, nothing more to do */
3358 if (ehc->i.action & ATA_EH_HARDRESET)
3359 return 0;
3360
3361 /* if SATA, resume phy */
3362 if (ap->cbl == ATA_CBL_SATA) {
d4b2bab4 3363 rc = sata_phy_resume(ap, timing, deadline);
b8cffc6a
TH
3364 /* whine about phy resume failure but proceed */
3365 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3366 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3367 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3368 }
3369
3370 /* Wait for !BSY if the controller can wait for the first D2H
3371 * Reg FIS and we don't know that no device is attached.
3372 */
b8cffc6a
TH
3373 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3374 rc = ata_wait_ready(ap, deadline);
6dffaf61 3375 if (rc && rc != -ENODEV) {
b8cffc6a
TH
3376 ata_port_printk(ap, KERN_WARNING, "device not ready "
3377 "(errno=%d), forcing hardreset\n", rc);
3378 ehc->i.action |= ATA_EH_HARDRESET;
3379 }
3380 }
f5914a46
TH
3381
3382 return 0;
3383}
3384
c2bd5804
TH
3385/**
3386 * ata_std_softreset - reset host port via ATA SRST
3387 * @ap: port to reset
c2bd5804 3388 * @classes: resulting classes of attached devices
d4b2bab4 3389 * @deadline: deadline jiffies for the operation
c2bd5804 3390 *
52783c5d 3391 * Reset host port using ATA SRST.
c2bd5804
TH
3392 *
3393 * LOCKING:
3394 * Kernel thread context (may sleep)
3395 *
3396 * RETURNS:
3397 * 0 on success, -errno otherwise.
3398 */
d4b2bab4
TH
3399int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3400 unsigned long deadline)
c2bd5804
TH
3401{
3402 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3403 unsigned int devmask = 0;
3404 int rc;
c2bd5804
TH
3405 u8 err;
3406
3407 DPRINTK("ENTER\n");
3408
81952c54 3409 if (ata_port_offline(ap)) {
3a39746a
TH
3410 classes[0] = ATA_DEV_NONE;
3411 goto out;
3412 }
3413
c2bd5804
TH
3414 /* determine if device 0/1 are present */
3415 if (ata_devchk(ap, 0))
3416 devmask |= (1 << 0);
3417 if (slave_possible && ata_devchk(ap, 1))
3418 devmask |= (1 << 1);
3419
c2bd5804
TH
3420 /* select device 0 again */
3421 ap->ops->dev_select(ap, 0);
3422
3423 /* issue bus reset */
3424 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3425 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c
TH
3426 /* if link is occupied, -ENODEV too is an error */
3427 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
d4b2bab4
TH
3428 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3429 return rc;
c2bd5804
TH
3430 }
3431
3432 /* determine by signature whether we have ATA or ATAPI devices */
3433 classes[0] = ata_dev_try_classify(ap, 0, &err);
3434 if (slave_possible && err != 0x81)
3435 classes[1] = ata_dev_try_classify(ap, 1, &err);
3436
3a39746a 3437 out:
c2bd5804
TH
3438 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3439 return 0;
3440}
3441
3442/**
b6103f6d 3443 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3444 * @ap: port to reset
b6103f6d 3445 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3446 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3447 *
3448 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3449 *
3450 * LOCKING:
3451 * Kernel thread context (may sleep)
3452 *
3453 * RETURNS:
3454 * 0 on success, -errno otherwise.
3455 */
d4b2bab4
TH
3456int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3457 unsigned long deadline)
c2bd5804 3458{
852ee16a 3459 u32 scontrol;
81952c54 3460 int rc;
852ee16a 3461
c2bd5804
TH
3462 DPRINTK("ENTER\n");
3463
3c567b7d 3464 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3465 /* SATA spec says nothing about how to reconfigure
3466 * spd. To be on the safe side, turn off phy during
3467 * reconfiguration. This works for at least ICH7 AHCI
3468 * and Sil3124.
3469 */
81952c54 3470 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3471 goto out;
81952c54 3472
a34b6fc0 3473 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3474
3475 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3476 goto out;
1c3fae4d 3477
3c567b7d 3478 sata_set_spd(ap);
1c3fae4d
TH
3479 }
3480
3481 /* issue phy wake/reset */
81952c54 3482 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3483 goto out;
81952c54 3484
852ee16a 3485 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3486
3487 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3488 goto out;
c2bd5804 3489
1c3fae4d 3490 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3491 * 10.4.2 says at least 1 ms.
3492 */
3493 msleep(1);
3494
1c3fae4d 3495 /* bring phy back */
d4b2bab4 3496 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3497 out:
3498 DPRINTK("EXIT, rc=%d\n", rc);
3499 return rc;
3500}
3501
3502/**
3503 * sata_std_hardreset - reset host port via SATA phy reset
3504 * @ap: port to reset
3505 * @class: resulting class of attached device
d4b2bab4 3506 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3507 *
3508 * SATA phy-reset host port using DET bits of SControl register,
3509 * wait for !BSY and classify the attached device.
3510 *
3511 * LOCKING:
3512 * Kernel thread context (may sleep)
3513 *
3514 * RETURNS:
3515 * 0 on success, -errno otherwise.
3516 */
d4b2bab4
TH
3517int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3518 unsigned long deadline)
b6103f6d
TH
3519{
3520 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3521 int rc;
3522
3523 DPRINTK("ENTER\n");
3524
3525 /* do hardreset */
d4b2bab4 3526 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3527 if (rc) {
3528 ata_port_printk(ap, KERN_ERR,
3529 "COMRESET failed (errno=%d)\n", rc);
3530 return rc;
3531 }
c2bd5804 3532
c2bd5804 3533 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3534 if (ata_port_offline(ap)) {
c2bd5804
TH
3535 *class = ATA_DEV_NONE;
3536 DPRINTK("EXIT, link offline\n");
3537 return 0;
3538 }
3539
34fee227
TH
3540 /* wait a while before checking status, see SRST for more info */
3541 msleep(150);
3542
d4b2bab4 3543 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3544 /* link occupied, -ENODEV too is an error */
3545 if (rc) {
f15a1daf 3546 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3547 "COMRESET failed (errno=%d)\n", rc);
3548 return rc;
c2bd5804
TH
3549 }
3550
3a39746a
TH
3551 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3552
c2bd5804
TH
3553 *class = ata_dev_try_classify(ap, 0, NULL);
3554
3555 DPRINTK("EXIT, class=%u\n", *class);
3556 return 0;
3557}
3558
3559/**
3560 * ata_std_postreset - standard postreset callback
3561 * @ap: the target ata_port
3562 * @classes: classes of attached devices
3563 *
3564 * This function is invoked after a successful reset. Note that
3565 * the device might have been reset more than once using
3566 * different reset methods before postreset is invoked.
c2bd5804 3567 *
c2bd5804
TH
3568 * LOCKING:
3569 * Kernel thread context (may sleep)
3570 */
3571void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3572{
dc2b3515
TH
3573 u32 serror;
3574
c2bd5804
TH
3575 DPRINTK("ENTER\n");
3576
c2bd5804 3577 /* print link status */
81952c54 3578 sata_print_link_status(ap);
c2bd5804 3579
dc2b3515
TH
3580 /* clear SError */
3581 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3582 sata_scr_write(ap, SCR_ERROR, serror);
3583
3a39746a 3584 /* re-enable interrupts */
83625006
AI
3585 if (!ap->ops->error_handler)
3586 ap->ops->irq_on(ap);
c2bd5804
TH
3587
3588 /* is double-select really necessary? */
3589 if (classes[0] != ATA_DEV_NONE)
3590 ap->ops->dev_select(ap, 1);
3591 if (classes[1] != ATA_DEV_NONE)
3592 ap->ops->dev_select(ap, 0);
3593
3a39746a
TH
3594 /* bail out if no device is present */
3595 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3596 DPRINTK("EXIT, no device\n");
3597 return;
3598 }
3599
3600 /* set up device control */
0d5ff566
TH
3601 if (ap->ioaddr.ctl_addr)
3602 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3603
3604 DPRINTK("EXIT\n");
3605}
3606
623a3128
TH
3607/**
3608 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3609 * @dev: device to compare against
3610 * @new_class: class of the new device
3611 * @new_id: IDENTIFY page of the new device
3612 *
3613 * Compare @new_class and @new_id against @dev and determine
3614 * whether @dev is the device indicated by @new_class and
3615 * @new_id.
3616 *
3617 * LOCKING:
3618 * None.
3619 *
3620 * RETURNS:
3621 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3622 */
3373efd8
TH
3623static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3624 const u16 *new_id)
623a3128
TH
3625{
3626 const u16 *old_id = dev->id;
a0cf733b
TH
3627 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3628 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3629
3630 if (dev->class != new_class) {
f15a1daf
TH
3631 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3632 dev->class, new_class);
623a3128
TH
3633 return 0;
3634 }
3635
a0cf733b
TH
3636 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3637 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3638 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3639 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3640
3641 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3642 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3643 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3644 return 0;
3645 }
3646
3647 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3648 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3649 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3650 return 0;
3651 }
3652
623a3128
TH
3653 return 1;
3654}
3655
3656/**
fe30911b 3657 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3658 * @dev: target ATA device
bff04647 3659 * @readid_flags: read ID flags
623a3128
TH
3660 *
3661 * Re-read IDENTIFY page and make sure @dev is still attached to
3662 * the port.
3663 *
3664 * LOCKING:
3665 * Kernel thread context (may sleep)
3666 *
3667 * RETURNS:
3668 * 0 on success, negative errno otherwise
3669 */
fe30911b 3670int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3671{
5eb45c02 3672 unsigned int class = dev->class;
f15a1daf 3673 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3674 int rc;
3675
fe635c7e 3676 /* read ID data */
bff04647 3677 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3678 if (rc)
fe30911b 3679 return rc;
623a3128
TH
3680
3681 /* is the device still there? */
fe30911b
TH
3682 if (!ata_dev_same_device(dev, class, id))
3683 return -ENODEV;
623a3128 3684
fe635c7e 3685 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3686 return 0;
3687}
3688
3689/**
3690 * ata_dev_revalidate - Revalidate ATA device
3691 * @dev: device to revalidate
3692 * @readid_flags: read ID flags
3693 *
3694 * Re-read IDENTIFY page, make sure @dev is still attached to the
3695 * port and reconfigure it according to the new IDENTIFY page.
3696 *
3697 * LOCKING:
3698 * Kernel thread context (may sleep)
3699 *
3700 * RETURNS:
3701 * 0 on success, negative errno otherwise
3702 */
3703int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3704{
6ddcd3b0 3705 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3706 int rc;
3707
3708 if (!ata_dev_enabled(dev))
3709 return -ENODEV;
3710
3711 /* re-read ID */
3712 rc = ata_dev_reread_id(dev, readid_flags);
3713 if (rc)
3714 goto fail;
623a3128
TH
3715
3716 /* configure device according to the new ID */
efdaedc4 3717 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3718 if (rc)
3719 goto fail;
3720
3721 /* verify n_sectors hasn't changed */
3722 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3723 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3724 "%llu != %llu\n",
3725 (unsigned long long)n_sectors,
3726 (unsigned long long)dev->n_sectors);
3727 rc = -ENODEV;
3728 goto fail;
3729 }
3730
3731 return 0;
623a3128
TH
3732
3733 fail:
f15a1daf 3734 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3735 return rc;
3736}
3737
6919a0a6
AC
3738struct ata_blacklist_entry {
3739 const char *model_num;
3740 const char *model_rev;
3741 unsigned long horkage;
3742};
3743
3744static const struct ata_blacklist_entry ata_device_blacklist [] = {
3745 /* Devices with DMA related problems under Linux */
3746 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3747 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3748 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3749 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3750 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3751 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3752 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3753 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3754 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3755 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3756 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3757 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3758 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3759 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3760 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3761 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3762 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3763 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3764 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3765 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3766 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3767 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3768 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3769 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3770 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3771 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3772 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3773 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3774 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3775 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3776 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
6919a0a6 3777
18d6e9d5 3778 /* Weird ATAPI devices */
40a1d531 3779 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3780
6919a0a6
AC
3781 /* Devices we expect to fail diagnostics */
3782
3783 /* Devices where NCQ should be avoided */
3784 /* NCQ is slow */
3785 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3786 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3787 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3788 /* NCQ is broken */
3789 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
471e44b2 3790 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
96442925
JA
3791 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3792 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3793 /* Blacklist entries taken from Silicon Image 3124/3132
3794 Windows driver .inf file - also several Linux problem reports */
3795 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3796 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3797 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3798 /* Drives which do spurious command completion */
3799 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3800 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3801 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3802 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3803
3804 /* Devices with NCQ limits */
3805
3806 /* End Marker */
3807 { }
1da177e4 3808};
2e9edbf8 3809
6919a0a6 3810unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3811{
8bfa79fc
TH
3812 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3813 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3814 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3815
8bfa79fc
TH
3816 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3817 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3818
6919a0a6 3819 while (ad->model_num) {
8bfa79fc 3820 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3821 if (ad->model_rev == NULL)
3822 return ad->horkage;
8bfa79fc 3823 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3824 return ad->horkage;
f4b15fef 3825 }
6919a0a6 3826 ad++;
f4b15fef 3827 }
1da177e4
LT
3828 return 0;
3829}
3830
6919a0a6
AC
3831static int ata_dma_blacklisted(const struct ata_device *dev)
3832{
3833 /* We don't support polling DMA.
3834 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3835 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3836 */
3837 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3838 (dev->flags & ATA_DFLAG_CDB_INTR))
3839 return 1;
3840 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3841}
3842
a6d5a51c
TH
3843/**
3844 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3845 * @dev: Device to compute xfermask for
3846 *
acf356b1
TH
3847 * Compute supported xfermask of @dev and store it in
3848 * dev->*_mask. This function is responsible for applying all
3849 * known limits including host controller limits, device
3850 * blacklist, etc...
a6d5a51c
TH
3851 *
3852 * LOCKING:
3853 * None.
a6d5a51c 3854 */
3373efd8 3855static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3856{
3373efd8 3857 struct ata_port *ap = dev->ap;
cca3974e 3858 struct ata_host *host = ap->host;
a6d5a51c 3859 unsigned long xfer_mask;
1da177e4 3860
37deecb5 3861 /* controller modes available */
565083e1
TH
3862 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3863 ap->mwdma_mask, ap->udma_mask);
3864
8343f889 3865 /* drive modes available */
37deecb5
TH
3866 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3867 dev->mwdma_mask, dev->udma_mask);
3868 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3869
b352e57d
AC
3870 /*
3871 * CFA Advanced TrueIDE timings are not allowed on a shared
3872 * cable
3873 */
3874 if (ata_dev_pair(dev)) {
3875 /* No PIO5 or PIO6 */
3876 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3877 /* No MWDMA3 or MWDMA 4 */
3878 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3879 }
3880
37deecb5
TH
3881 if (ata_dma_blacklisted(dev)) {
3882 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3883 ata_dev_printk(dev, KERN_WARNING,
3884 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3885 }
a6d5a51c 3886
14d66ab7
PV
3887 if ((host->flags & ATA_HOST_SIMPLEX) &&
3888 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3889 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3890 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3891 "other device, disabling DMA\n");
5444a6f4 3892 }
565083e1 3893
e424675f
JG
3894 if (ap->flags & ATA_FLAG_NO_IORDY)
3895 xfer_mask &= ata_pio_mask_no_iordy(dev);
3896
5444a6f4 3897 if (ap->ops->mode_filter)
a76b62ca 3898 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3899
8343f889
RH
3900 /* Apply cable rule here. Don't apply it early because when
3901 * we handle hot plug the cable type can itself change.
3902 * Check this last so that we know if the transfer rate was
3903 * solely limited by the cable.
3904 * Unknown or 80 wire cables reported host side are checked
3905 * drive side as well. Cases where we know a 40wire cable
3906 * is used safely for 80 are not checked here.
3907 */
3908 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3909 /* UDMA/44 or higher would be available */
3910 if((ap->cbl == ATA_CBL_PATA40) ||
3911 (ata_drive_40wire(dev->id) &&
3912 (ap->cbl == ATA_CBL_PATA_UNK ||
3913 ap->cbl == ATA_CBL_PATA80))) {
3914 ata_dev_printk(dev, KERN_WARNING,
3915 "limited to UDMA/33 due to 40-wire cable\n");
3916 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3917 }
3918
565083e1
TH
3919 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3920 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3921}
3922
1da177e4
LT
3923/**
3924 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3925 * @dev: Device to which command will be sent
3926 *
780a87f7
JG
3927 * Issue SET FEATURES - XFER MODE command to device @dev
3928 * on port @ap.
3929 *
1da177e4 3930 * LOCKING:
0cba632b 3931 * PCI/etc. bus probe sem.
83206a29
TH
3932 *
3933 * RETURNS:
3934 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3935 */
3936
3373efd8 3937static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3938{
a0123703 3939 struct ata_taskfile tf;
83206a29 3940 unsigned int err_mask;
1da177e4
LT
3941
3942 /* set up set-features taskfile */
3943 DPRINTK("set features - xfer mode\n");
3944
464cf177
TH
3945 /* Some controllers and ATAPI devices show flaky interrupt
3946 * behavior after setting xfer mode. Use polling instead.
3947 */
3373efd8 3948 ata_tf_init(dev, &tf);
a0123703
TH
3949 tf.command = ATA_CMD_SET_FEATURES;
3950 tf.feature = SETFEATURES_XFER;
464cf177 3951 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3952 tf.protocol = ATA_PROT_NODATA;
3953 tf.nsect = dev->xfer_mode;
1da177e4 3954
3373efd8 3955 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3956
83206a29
TH
3957 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3958 return err_mask;
1da177e4
LT
3959}
3960
8bf62ece
AL
3961/**
3962 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3963 * @dev: Device to which command will be sent
e2a7f77a
RD
3964 * @heads: Number of heads (taskfile parameter)
3965 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3966 *
3967 * LOCKING:
6aff8f1f
TH
3968 * Kernel thread context (may sleep)
3969 *
3970 * RETURNS:
3971 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3972 */
3373efd8
TH
3973static unsigned int ata_dev_init_params(struct ata_device *dev,
3974 u16 heads, u16 sectors)
8bf62ece 3975{
a0123703 3976 struct ata_taskfile tf;
6aff8f1f 3977 unsigned int err_mask;
8bf62ece
AL
3978
3979 /* Number of sectors per track 1-255. Number of heads 1-16 */
3980 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3981 return AC_ERR_INVALID;
8bf62ece
AL
3982
3983 /* set up init dev params taskfile */
3984 DPRINTK("init dev params \n");
3985
3373efd8 3986 ata_tf_init(dev, &tf);
a0123703
TH
3987 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3988 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3989 tf.protocol = ATA_PROT_NODATA;
3990 tf.nsect = sectors;
3991 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3992
3373efd8 3993 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3994
6aff8f1f
TH
3995 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3996 return err_mask;
8bf62ece
AL
3997}
3998
1da177e4 3999/**
0cba632b
JG
4000 * ata_sg_clean - Unmap DMA memory associated with command
4001 * @qc: Command containing DMA memory to be released
4002 *
4003 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4004 *
4005 * LOCKING:
cca3974e 4006 * spin_lock_irqsave(host lock)
1da177e4 4007 */
70e6ad0c 4008void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4009{
4010 struct ata_port *ap = qc->ap;
cedc9a47 4011 struct scatterlist *sg = qc->__sg;
1da177e4 4012 int dir = qc->dma_dir;
cedc9a47 4013 void *pad_buf = NULL;
1da177e4 4014
a4631474
TH
4015 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4016 WARN_ON(sg == NULL);
1da177e4
LT
4017
4018 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4019 WARN_ON(qc->n_elem > 1);
1da177e4 4020
2c13b7ce 4021 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4022
cedc9a47
JG
4023 /* if we padded the buffer out to 32-bit bound, and data
4024 * xfer direction is from-device, we must copy from the
4025 * pad buffer back into the supplied buffer
4026 */
4027 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4028 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4029
4030 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4031 if (qc->n_elem)
2f1f610b 4032 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4033 /* restore last sg */
4034 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4035 if (pad_buf) {
4036 struct scatterlist *psg = &qc->pad_sgent;
4037 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4038 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4039 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4040 }
4041 } else {
2e242fa9 4042 if (qc->n_elem)
2f1f610b 4043 dma_unmap_single(ap->dev,
e1410f2d
JG
4044 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4045 dir);
cedc9a47
JG
4046 /* restore sg */
4047 sg->length += qc->pad_len;
4048 if (pad_buf)
4049 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4050 pad_buf, qc->pad_len);
4051 }
1da177e4
LT
4052
4053 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4054 qc->__sg = NULL;
1da177e4
LT
4055}
4056
4057/**
4058 * ata_fill_sg - Fill PCI IDE PRD table
4059 * @qc: Metadata associated with taskfile to be transferred
4060 *
780a87f7
JG
4061 * Fill PCI IDE PRD (scatter-gather) table with segments
4062 * associated with the current disk command.
4063 *
1da177e4 4064 * LOCKING:
cca3974e 4065 * spin_lock_irqsave(host lock)
1da177e4
LT
4066 *
4067 */
4068static void ata_fill_sg(struct ata_queued_cmd *qc)
4069{
1da177e4 4070 struct ata_port *ap = qc->ap;
cedc9a47
JG
4071 struct scatterlist *sg;
4072 unsigned int idx;
1da177e4 4073
a4631474 4074 WARN_ON(qc->__sg == NULL);
f131883e 4075 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4076
4077 idx = 0;
cedc9a47 4078 ata_for_each_sg(sg, qc) {
1da177e4
LT
4079 u32 addr, offset;
4080 u32 sg_len, len;
4081
4082 /* determine if physical DMA addr spans 64K boundary.
4083 * Note h/w doesn't support 64-bit, so we unconditionally
4084 * truncate dma_addr_t to u32.
4085 */
4086 addr = (u32) sg_dma_address(sg);
4087 sg_len = sg_dma_len(sg);
4088
4089 while (sg_len) {
4090 offset = addr & 0xffff;
4091 len = sg_len;
4092 if ((offset + sg_len) > 0x10000)
4093 len = 0x10000 - offset;
4094
4095 ap->prd[idx].addr = cpu_to_le32(addr);
4096 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4097 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4098
4099 idx++;
4100 sg_len -= len;
4101 addr += len;
4102 }
4103 }
4104
4105 if (idx)
4106 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4107}
b9a4197e 4108
1da177e4
LT
4109/**
4110 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4111 * @qc: Metadata associated with taskfile to check
4112 *
780a87f7
JG
4113 * Allow low-level driver to filter ATA PACKET commands, returning
4114 * a status indicating whether or not it is OK to use DMA for the
4115 * supplied PACKET command.
4116 *
1da177e4 4117 * LOCKING:
cca3974e 4118 * spin_lock_irqsave(host lock)
0cba632b 4119 *
1da177e4
LT
4120 * RETURNS: 0 when ATAPI DMA can be used
4121 * nonzero otherwise
4122 */
4123int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4124{
4125 struct ata_port *ap = qc->ap;
b9a4197e
TH
4126
4127 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4128 * few ATAPI devices choke on such DMA requests.
4129 */
4130 if (unlikely(qc->nbytes & 15))
4131 return 1;
6f23a31d 4132
1da177e4 4133 if (ap->ops->check_atapi_dma)
b9a4197e 4134 return ap->ops->check_atapi_dma(qc);
1da177e4 4135
b9a4197e 4136 return 0;
1da177e4 4137}
b9a4197e 4138
1da177e4
LT
4139/**
4140 * ata_qc_prep - Prepare taskfile for submission
4141 * @qc: Metadata associated with taskfile to be prepared
4142 *
780a87f7
JG
4143 * Prepare ATA taskfile for submission.
4144 *
1da177e4 4145 * LOCKING:
cca3974e 4146 * spin_lock_irqsave(host lock)
1da177e4
LT
4147 */
4148void ata_qc_prep(struct ata_queued_cmd *qc)
4149{
4150 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4151 return;
4152
4153 ata_fill_sg(qc);
4154}
4155
e46834cd
BK
4156void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4157
0cba632b
JG
4158/**
4159 * ata_sg_init_one - Associate command with memory buffer
4160 * @qc: Command to be associated
4161 * @buf: Memory buffer
4162 * @buflen: Length of memory buffer, in bytes.
4163 *
4164 * Initialize the data-related elements of queued_cmd @qc
4165 * to point to a single memory buffer, @buf of byte length @buflen.
4166 *
4167 * LOCKING:
cca3974e 4168 * spin_lock_irqsave(host lock)
0cba632b
JG
4169 */
4170
1da177e4
LT
4171void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4172{
1da177e4
LT
4173 qc->flags |= ATA_QCFLAG_SINGLE;
4174
cedc9a47 4175 qc->__sg = &qc->sgent;
1da177e4 4176 qc->n_elem = 1;
cedc9a47 4177 qc->orig_n_elem = 1;
1da177e4 4178 qc->buf_virt = buf;
233277ca 4179 qc->nbytes = buflen;
1da177e4 4180
61c0596c 4181 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4182}
4183
0cba632b
JG
4184/**
4185 * ata_sg_init - Associate command with scatter-gather table.
4186 * @qc: Command to be associated
4187 * @sg: Scatter-gather table.
4188 * @n_elem: Number of elements in s/g table.
4189 *
4190 * Initialize the data-related elements of queued_cmd @qc
4191 * to point to a scatter-gather table @sg, containing @n_elem
4192 * elements.
4193 *
4194 * LOCKING:
cca3974e 4195 * spin_lock_irqsave(host lock)
0cba632b
JG
4196 */
4197
1da177e4
LT
4198void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4199 unsigned int n_elem)
4200{
4201 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4202 qc->__sg = sg;
1da177e4 4203 qc->n_elem = n_elem;
cedc9a47 4204 qc->orig_n_elem = n_elem;
1da177e4
LT
4205}
4206
4207/**
0cba632b
JG
4208 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4209 * @qc: Command with memory buffer to be mapped.
4210 *
4211 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4212 *
4213 * LOCKING:
cca3974e 4214 * spin_lock_irqsave(host lock)
1da177e4
LT
4215 *
4216 * RETURNS:
0cba632b 4217 * Zero on success, negative on error.
1da177e4
LT
4218 */
4219
4220static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4221{
4222 struct ata_port *ap = qc->ap;
4223 int dir = qc->dma_dir;
cedc9a47 4224 struct scatterlist *sg = qc->__sg;
1da177e4 4225 dma_addr_t dma_address;
2e242fa9 4226 int trim_sg = 0;
1da177e4 4227
cedc9a47
JG
4228 /* we must lengthen transfers to end on a 32-bit boundary */
4229 qc->pad_len = sg->length & 3;
4230 if (qc->pad_len) {
4231 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4232 struct scatterlist *psg = &qc->pad_sgent;
4233
a4631474 4234 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4235
4236 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4237
4238 if (qc->tf.flags & ATA_TFLAG_WRITE)
4239 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4240 qc->pad_len);
4241
4242 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4243 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4244 /* trim sg */
4245 sg->length -= qc->pad_len;
2e242fa9
TH
4246 if (sg->length == 0)
4247 trim_sg = 1;
cedc9a47
JG
4248
4249 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4250 sg->length, qc->pad_len);
4251 }
4252
2e242fa9
TH
4253 if (trim_sg) {
4254 qc->n_elem--;
e1410f2d
JG
4255 goto skip_map;
4256 }
4257
2f1f610b 4258 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4259 sg->length, dir);
537a95d9
TH
4260 if (dma_mapping_error(dma_address)) {
4261 /* restore sg */
4262 sg->length += qc->pad_len;
1da177e4 4263 return -1;
537a95d9 4264 }
1da177e4
LT
4265
4266 sg_dma_address(sg) = dma_address;
32529e01 4267 sg_dma_len(sg) = sg->length;
1da177e4 4268
2e242fa9 4269skip_map:
1da177e4
LT
4270 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4271 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4272
4273 return 0;
4274}
4275
4276/**
0cba632b
JG
4277 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4278 * @qc: Command with scatter-gather table to be mapped.
4279 *
4280 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4281 *
4282 * LOCKING:
cca3974e 4283 * spin_lock_irqsave(host lock)
1da177e4
LT
4284 *
4285 * RETURNS:
0cba632b 4286 * Zero on success, negative on error.
1da177e4
LT
4287 *
4288 */
4289
4290static int ata_sg_setup(struct ata_queued_cmd *qc)
4291{
4292 struct ata_port *ap = qc->ap;
cedc9a47
JG
4293 struct scatterlist *sg = qc->__sg;
4294 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4295 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4296
44877b4e 4297 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4298 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4299
cedc9a47
JG
4300 /* we must lengthen transfers to end on a 32-bit boundary */
4301 qc->pad_len = lsg->length & 3;
4302 if (qc->pad_len) {
4303 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4304 struct scatterlist *psg = &qc->pad_sgent;
4305 unsigned int offset;
4306
a4631474 4307 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4308
4309 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4310
4311 /*
4312 * psg->page/offset are used to copy to-be-written
4313 * data in this function or read data in ata_sg_clean.
4314 */
4315 offset = lsg->offset + lsg->length - qc->pad_len;
4316 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4317 psg->offset = offset_in_page(offset);
4318
4319 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4320 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4321 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4322 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4323 }
4324
4325 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4326 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4327 /* trim last sg */
4328 lsg->length -= qc->pad_len;
e1410f2d
JG
4329 if (lsg->length == 0)
4330 trim_sg = 1;
cedc9a47
JG
4331
4332 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4333 qc->n_elem - 1, lsg->length, qc->pad_len);
4334 }
4335
e1410f2d
JG
4336 pre_n_elem = qc->n_elem;
4337 if (trim_sg && pre_n_elem)
4338 pre_n_elem--;
4339
4340 if (!pre_n_elem) {
4341 n_elem = 0;
4342 goto skip_map;
4343 }
4344
1da177e4 4345 dir = qc->dma_dir;
2f1f610b 4346 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4347 if (n_elem < 1) {
4348 /* restore last sg */
4349 lsg->length += qc->pad_len;
1da177e4 4350 return -1;
537a95d9 4351 }
1da177e4
LT
4352
4353 DPRINTK("%d sg elements mapped\n", n_elem);
4354
e1410f2d 4355skip_map:
1da177e4
LT
4356 qc->n_elem = n_elem;
4357
4358 return 0;
4359}
4360
0baab86b 4361/**
c893a3ae 4362 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4363 * @buf: Buffer to swap
4364 * @buf_words: Number of 16-bit words in buffer.
4365 *
4366 * Swap halves of 16-bit words if needed to convert from
4367 * little-endian byte order to native cpu byte order, or
4368 * vice-versa.
4369 *
4370 * LOCKING:
6f0ef4fa 4371 * Inherited from caller.
0baab86b 4372 */
1da177e4
LT
4373void swap_buf_le16(u16 *buf, unsigned int buf_words)
4374{
4375#ifdef __BIG_ENDIAN
4376 unsigned int i;
4377
4378 for (i = 0; i < buf_words; i++)
4379 buf[i] = le16_to_cpu(buf[i]);
4380#endif /* __BIG_ENDIAN */
4381}
4382
6ae4cfb5 4383/**
0d5ff566 4384 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4385 * @adev: device to target
6ae4cfb5
AL
4386 * @buf: data buffer
4387 * @buflen: buffer length
344babaa 4388 * @write_data: read/write
6ae4cfb5
AL
4389 *
4390 * Transfer data from/to the device data register by PIO.
4391 *
4392 * LOCKING:
4393 * Inherited from caller.
6ae4cfb5 4394 */
0d5ff566
TH
4395void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4396 unsigned int buflen, int write_data)
1da177e4 4397{
a6b2c5d4 4398 struct ata_port *ap = adev->ap;
6ae4cfb5 4399 unsigned int words = buflen >> 1;
1da177e4 4400
6ae4cfb5 4401 /* Transfer multiple of 2 bytes */
1da177e4 4402 if (write_data)
0d5ff566 4403 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4404 else
0d5ff566 4405 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4406
4407 /* Transfer trailing 1 byte, if any. */
4408 if (unlikely(buflen & 0x01)) {
4409 u16 align_buf[1] = { 0 };
4410 unsigned char *trailing_buf = buf + buflen - 1;
4411
4412 if (write_data) {
4413 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4414 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4415 } else {
0d5ff566 4416 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4417 memcpy(trailing_buf, align_buf, 1);
4418 }
4419 }
1da177e4
LT
4420}
4421
75e99585 4422/**
0d5ff566 4423 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4424 * @adev: device to target
4425 * @buf: data buffer
4426 * @buflen: buffer length
4427 * @write_data: read/write
4428 *
88574551 4429 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4430 * transfer with interrupts disabled.
4431 *
4432 * LOCKING:
4433 * Inherited from caller.
4434 */
0d5ff566
TH
4435void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4436 unsigned int buflen, int write_data)
75e99585
AC
4437{
4438 unsigned long flags;
4439 local_irq_save(flags);
0d5ff566 4440 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4441 local_irq_restore(flags);
4442}
4443
4444
6ae4cfb5 4445/**
5a5dbd18 4446 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4447 * @qc: Command on going
4448 *
5a5dbd18 4449 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4450 *
4451 * LOCKING:
4452 * Inherited from caller.
4453 */
4454
1da177e4
LT
4455static void ata_pio_sector(struct ata_queued_cmd *qc)
4456{
4457 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4458 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4459 struct ata_port *ap = qc->ap;
4460 struct page *page;
4461 unsigned int offset;
4462 unsigned char *buf;
4463
5a5dbd18 4464 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4465 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4466
4467 page = sg[qc->cursg].page;
726f0785 4468 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4469
4470 /* get the current page and offset */
4471 page = nth_page(page, (offset >> PAGE_SHIFT));
4472 offset %= PAGE_SIZE;
4473
1da177e4
LT
4474 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4475
91b8b313
AL
4476 if (PageHighMem(page)) {
4477 unsigned long flags;
4478
a6b2c5d4 4479 /* FIXME: use a bounce buffer */
91b8b313
AL
4480 local_irq_save(flags);
4481 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4482
91b8b313 4483 /* do the actual data transfer */
5a5dbd18 4484 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4485
91b8b313
AL
4486 kunmap_atomic(buf, KM_IRQ0);
4487 local_irq_restore(flags);
4488 } else {
4489 buf = page_address(page);
5a5dbd18 4490 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4491 }
1da177e4 4492
5a5dbd18
ML
4493 qc->curbytes += qc->sect_size;
4494 qc->cursg_ofs += qc->sect_size;
1da177e4 4495
726f0785 4496 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4497 qc->cursg++;
4498 qc->cursg_ofs = 0;
4499 }
1da177e4 4500}
1da177e4 4501
07f6f7d0 4502/**
5a5dbd18 4503 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4504 * @qc: Command on going
4505 *
5a5dbd18 4506 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4507 * ATA device for the DRQ request.
4508 *
4509 * LOCKING:
4510 * Inherited from caller.
4511 */
1da177e4 4512
07f6f7d0
AL
4513static void ata_pio_sectors(struct ata_queued_cmd *qc)
4514{
4515 if (is_multi_taskfile(&qc->tf)) {
4516 /* READ/WRITE MULTIPLE */
4517 unsigned int nsect;
4518
587005de 4519 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4520
5a5dbd18 4521 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4522 qc->dev->multi_count);
07f6f7d0
AL
4523 while (nsect--)
4524 ata_pio_sector(qc);
4525 } else
4526 ata_pio_sector(qc);
4527}
4528
c71c1857
AL
4529/**
4530 * atapi_send_cdb - Write CDB bytes to hardware
4531 * @ap: Port to which ATAPI device is attached.
4532 * @qc: Taskfile currently active
4533 *
4534 * When device has indicated its readiness to accept
4535 * a CDB, this function is called. Send the CDB.
4536 *
4537 * LOCKING:
4538 * caller.
4539 */
4540
4541static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4542{
4543 /* send SCSI cdb */
4544 DPRINTK("send cdb\n");
db024d53 4545 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4546
a6b2c5d4 4547 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4548 ata_altstatus(ap); /* flush */
4549
4550 switch (qc->tf.protocol) {
4551 case ATA_PROT_ATAPI:
4552 ap->hsm_task_state = HSM_ST;
4553 break;
4554 case ATA_PROT_ATAPI_NODATA:
4555 ap->hsm_task_state = HSM_ST_LAST;
4556 break;
4557 case ATA_PROT_ATAPI_DMA:
4558 ap->hsm_task_state = HSM_ST_LAST;
4559 /* initiate bmdma */
4560 ap->ops->bmdma_start(qc);
4561 break;
4562 }
1da177e4
LT
4563}
4564
6ae4cfb5
AL
4565/**
4566 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4567 * @qc: Command on going
4568 * @bytes: number of bytes
4569 *
4570 * Transfer Transfer data from/to the ATAPI device.
4571 *
4572 * LOCKING:
4573 * Inherited from caller.
4574 *
4575 */
4576
1da177e4
LT
4577static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4578{
4579 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4580 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4581 struct ata_port *ap = qc->ap;
4582 struct page *page;
4583 unsigned char *buf;
4584 unsigned int offset, count;
4585
563a6e1f 4586 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4587 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4588
4589next_sg:
563a6e1f 4590 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4591 /*
563a6e1f
AL
4592 * The end of qc->sg is reached and the device expects
4593 * more data to transfer. In order not to overrun qc->sg
4594 * and fulfill length specified in the byte count register,
4595 * - for read case, discard trailing data from the device
4596 * - for write case, padding zero data to the device
4597 */
4598 u16 pad_buf[1] = { 0 };
4599 unsigned int words = bytes >> 1;
4600 unsigned int i;
4601
4602 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4603 ata_dev_printk(qc->dev, KERN_WARNING,
4604 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4605
4606 for (i = 0; i < words; i++)
a6b2c5d4 4607 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4608
14be71f4 4609 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4610 return;
4611 }
4612
cedc9a47 4613 sg = &qc->__sg[qc->cursg];
1da177e4 4614
1da177e4
LT
4615 page = sg->page;
4616 offset = sg->offset + qc->cursg_ofs;
4617
4618 /* get the current page and offset */
4619 page = nth_page(page, (offset >> PAGE_SHIFT));
4620 offset %= PAGE_SIZE;
4621
6952df03 4622 /* don't overrun current sg */
32529e01 4623 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4624
4625 /* don't cross page boundaries */
4626 count = min(count, (unsigned int)PAGE_SIZE - offset);
4627
7282aa4b
AL
4628 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4629
91b8b313
AL
4630 if (PageHighMem(page)) {
4631 unsigned long flags;
4632
a6b2c5d4 4633 /* FIXME: use bounce buffer */
91b8b313
AL
4634 local_irq_save(flags);
4635 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4636
91b8b313 4637 /* do the actual data transfer */
a6b2c5d4 4638 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4639
91b8b313
AL
4640 kunmap_atomic(buf, KM_IRQ0);
4641 local_irq_restore(flags);
4642 } else {
4643 buf = page_address(page);
a6b2c5d4 4644 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4645 }
1da177e4
LT
4646
4647 bytes -= count;
4648 qc->curbytes += count;
4649 qc->cursg_ofs += count;
4650
32529e01 4651 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4652 qc->cursg++;
4653 qc->cursg_ofs = 0;
4654 }
4655
563a6e1f 4656 if (bytes)
1da177e4 4657 goto next_sg;
1da177e4
LT
4658}
4659
6ae4cfb5
AL
4660/**
4661 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4662 * @qc: Command on going
4663 *
4664 * Transfer Transfer data from/to the ATAPI device.
4665 *
4666 * LOCKING:
4667 * Inherited from caller.
6ae4cfb5
AL
4668 */
4669
1da177e4
LT
4670static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4671{
4672 struct ata_port *ap = qc->ap;
4673 struct ata_device *dev = qc->dev;
4674 unsigned int ireason, bc_lo, bc_hi, bytes;
4675 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4676
eec4c3f3
AL
4677 /* Abuse qc->result_tf for temp storage of intermediate TF
4678 * here to save some kernel stack usage.
4679 * For normal completion, qc->result_tf is not relevant. For
4680 * error, qc->result_tf is later overwritten by ata_qc_complete().
4681 * So, the correctness of qc->result_tf is not affected.
4682 */
4683 ap->ops->tf_read(ap, &qc->result_tf);
4684 ireason = qc->result_tf.nsect;
4685 bc_lo = qc->result_tf.lbam;
4686 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4687 bytes = (bc_hi << 8) | bc_lo;
4688
4689 /* shall be cleared to zero, indicating xfer of data */
4690 if (ireason & (1 << 0))
4691 goto err_out;
4692
4693 /* make sure transfer direction matches expected */
4694 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4695 if (do_write != i_write)
4696 goto err_out;
4697
44877b4e 4698 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4699
1da177e4
LT
4700 __atapi_pio_bytes(qc, bytes);
4701
4702 return;
4703
4704err_out:
f15a1daf 4705 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4706 qc->err_mask |= AC_ERR_HSM;
14be71f4 4707 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4708}
4709
4710/**
c234fb00
AL
4711 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4712 * @ap: the target ata_port
4713 * @qc: qc on going
1da177e4 4714 *
c234fb00
AL
4715 * RETURNS:
4716 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4717 */
c234fb00
AL
4718
4719static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4720{
c234fb00
AL
4721 if (qc->tf.flags & ATA_TFLAG_POLLING)
4722 return 1;
1da177e4 4723
c234fb00
AL
4724 if (ap->hsm_task_state == HSM_ST_FIRST) {
4725 if (qc->tf.protocol == ATA_PROT_PIO &&
4726 (qc->tf.flags & ATA_TFLAG_WRITE))
4727 return 1;
1da177e4 4728
c234fb00
AL
4729 if (is_atapi_taskfile(&qc->tf) &&
4730 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4731 return 1;
fe79e683
AL
4732 }
4733
c234fb00
AL
4734 return 0;
4735}
1da177e4 4736
c17ea20d
TH
4737/**
4738 * ata_hsm_qc_complete - finish a qc running on standard HSM
4739 * @qc: Command to complete
4740 * @in_wq: 1 if called from workqueue, 0 otherwise
4741 *
4742 * Finish @qc which is running on standard HSM.
4743 *
4744 * LOCKING:
cca3974e 4745 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4746 * Otherwise, none on entry and grabs host lock.
4747 */
4748static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4749{
4750 struct ata_port *ap = qc->ap;
4751 unsigned long flags;
4752
4753 if (ap->ops->error_handler) {
4754 if (in_wq) {
ba6a1308 4755 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4756
cca3974e
JG
4757 /* EH might have kicked in while host lock is
4758 * released.
c17ea20d
TH
4759 */
4760 qc = ata_qc_from_tag(ap, qc->tag);
4761 if (qc) {
4762 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4763 ap->ops->irq_on(ap);
c17ea20d
TH
4764 ata_qc_complete(qc);
4765 } else
4766 ata_port_freeze(ap);
4767 }
4768
ba6a1308 4769 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4770 } else {
4771 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4772 ata_qc_complete(qc);
4773 else
4774 ata_port_freeze(ap);
4775 }
4776 } else {
4777 if (in_wq) {
ba6a1308 4778 spin_lock_irqsave(ap->lock, flags);
83625006 4779 ap->ops->irq_on(ap);
c17ea20d 4780 ata_qc_complete(qc);
ba6a1308 4781 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4782 } else
4783 ata_qc_complete(qc);
4784 }
4785}
4786
bb5cb290
AL
4787/**
4788 * ata_hsm_move - move the HSM to the next state.
4789 * @ap: the target ata_port
4790 * @qc: qc on going
4791 * @status: current device status
4792 * @in_wq: 1 if called from workqueue, 0 otherwise
4793 *
4794 * RETURNS:
4795 * 1 when poll next status needed, 0 otherwise.
4796 */
9a1004d0
TH
4797int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4798 u8 status, int in_wq)
e2cec771 4799{
bb5cb290
AL
4800 unsigned long flags = 0;
4801 int poll_next;
4802
6912ccd5
AL
4803 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4804
bb5cb290
AL
4805 /* Make sure ata_qc_issue_prot() does not throw things
4806 * like DMA polling into the workqueue. Notice that
4807 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4808 */
c234fb00 4809 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4810
e2cec771 4811fsm_start:
999bb6f4 4812 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4813 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4814
e2cec771
AL
4815 switch (ap->hsm_task_state) {
4816 case HSM_ST_FIRST:
bb5cb290
AL
4817 /* Send first data block or PACKET CDB */
4818
4819 /* If polling, we will stay in the work queue after
4820 * sending the data. Otherwise, interrupt handler
4821 * takes over after sending the data.
4822 */
4823 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4824
e2cec771 4825 /* check device status */
3655d1d3
AL
4826 if (unlikely((status & ATA_DRQ) == 0)) {
4827 /* handle BSY=0, DRQ=0 as error */
4828 if (likely(status & (ATA_ERR | ATA_DF)))
4829 /* device stops HSM for abort/error */
4830 qc->err_mask |= AC_ERR_DEV;
4831 else
4832 /* HSM violation. Let EH handle this */
4833 qc->err_mask |= AC_ERR_HSM;
4834
14be71f4 4835 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4836 goto fsm_start;
1da177e4
LT
4837 }
4838
71601958
AL
4839 /* Device should not ask for data transfer (DRQ=1)
4840 * when it finds something wrong.
eee6c32f
AL
4841 * We ignore DRQ here and stop the HSM by
4842 * changing hsm_task_state to HSM_ST_ERR and
4843 * let the EH abort the command or reset the device.
71601958
AL
4844 */
4845 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4846 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4847 "error, dev_stat 0x%X\n", status);
3655d1d3 4848 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4849 ap->hsm_task_state = HSM_ST_ERR;
4850 goto fsm_start;
71601958 4851 }
1da177e4 4852
bb5cb290
AL
4853 /* Send the CDB (atapi) or the first data block (ata pio out).
4854 * During the state transition, interrupt handler shouldn't
4855 * be invoked before the data transfer is complete and
4856 * hsm_task_state is changed. Hence, the following locking.
4857 */
4858 if (in_wq)
ba6a1308 4859 spin_lock_irqsave(ap->lock, flags);
1da177e4 4860
bb5cb290
AL
4861 if (qc->tf.protocol == ATA_PROT_PIO) {
4862 /* PIO data out protocol.
4863 * send first data block.
4864 */
0565c26d 4865
bb5cb290
AL
4866 /* ata_pio_sectors() might change the state
4867 * to HSM_ST_LAST. so, the state is changed here
4868 * before ata_pio_sectors().
4869 */
4870 ap->hsm_task_state = HSM_ST;
4871 ata_pio_sectors(qc);
4872 ata_altstatus(ap); /* flush */
4873 } else
4874 /* send CDB */
4875 atapi_send_cdb(ap, qc);
4876
4877 if (in_wq)
ba6a1308 4878 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4879
4880 /* if polling, ata_pio_task() handles the rest.
4881 * otherwise, interrupt handler takes over from here.
4882 */
e2cec771 4883 break;
1c848984 4884
e2cec771
AL
4885 case HSM_ST:
4886 /* complete command or read/write the data register */
4887 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4888 /* ATAPI PIO protocol */
4889 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4890 /* No more data to transfer or device error.
4891 * Device error will be tagged in HSM_ST_LAST.
4892 */
e2cec771
AL
4893 ap->hsm_task_state = HSM_ST_LAST;
4894 goto fsm_start;
4895 }
1da177e4 4896
71601958
AL
4897 /* Device should not ask for data transfer (DRQ=1)
4898 * when it finds something wrong.
eee6c32f
AL
4899 * We ignore DRQ here and stop the HSM by
4900 * changing hsm_task_state to HSM_ST_ERR and
4901 * let the EH abort the command or reset the device.
71601958
AL
4902 */
4903 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4904 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4905 "device error, dev_stat 0x%X\n",
4906 status);
3655d1d3 4907 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4908 ap->hsm_task_state = HSM_ST_ERR;
4909 goto fsm_start;
71601958 4910 }
1da177e4 4911
e2cec771 4912 atapi_pio_bytes(qc);
7fb6ec28 4913
e2cec771
AL
4914 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4915 /* bad ireason reported by device */
4916 goto fsm_start;
1da177e4 4917
e2cec771
AL
4918 } else {
4919 /* ATA PIO protocol */
4920 if (unlikely((status & ATA_DRQ) == 0)) {
4921 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4922 if (likely(status & (ATA_ERR | ATA_DF)))
4923 /* device stops HSM for abort/error */
4924 qc->err_mask |= AC_ERR_DEV;
4925 else
55a8e2c8
TH
4926 /* HSM violation. Let EH handle this.
4927 * Phantom devices also trigger this
4928 * condition. Mark hint.
4929 */
4930 qc->err_mask |= AC_ERR_HSM |
4931 AC_ERR_NODEV_HINT;
3655d1d3 4932
e2cec771
AL
4933 ap->hsm_task_state = HSM_ST_ERR;
4934 goto fsm_start;
4935 }
1da177e4 4936
eee6c32f
AL
4937 /* For PIO reads, some devices may ask for
4938 * data transfer (DRQ=1) alone with ERR=1.
4939 * We respect DRQ here and transfer one
4940 * block of junk data before changing the
4941 * hsm_task_state to HSM_ST_ERR.
4942 *
4943 * For PIO writes, ERR=1 DRQ=1 doesn't make
4944 * sense since the data block has been
4945 * transferred to the device.
71601958
AL
4946 */
4947 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4948 /* data might be corrputed */
4949 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4950
4951 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4952 ata_pio_sectors(qc);
4953 ata_altstatus(ap);
4954 status = ata_wait_idle(ap);
4955 }
4956
3655d1d3
AL
4957 if (status & (ATA_BUSY | ATA_DRQ))
4958 qc->err_mask |= AC_ERR_HSM;
4959
eee6c32f
AL
4960 /* ata_pio_sectors() might change the
4961 * state to HSM_ST_LAST. so, the state
4962 * is changed after ata_pio_sectors().
4963 */
4964 ap->hsm_task_state = HSM_ST_ERR;
4965 goto fsm_start;
71601958
AL
4966 }
4967
e2cec771
AL
4968 ata_pio_sectors(qc);
4969
4970 if (ap->hsm_task_state == HSM_ST_LAST &&
4971 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4972 /* all data read */
4973 ata_altstatus(ap);
52a32205 4974 status = ata_wait_idle(ap);
e2cec771
AL
4975 goto fsm_start;
4976 }
4977 }
4978
4979 ata_altstatus(ap); /* flush */
bb5cb290 4980 poll_next = 1;
1da177e4
LT
4981 break;
4982
14be71f4 4983 case HSM_ST_LAST:
6912ccd5
AL
4984 if (unlikely(!ata_ok(status))) {
4985 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4986 ap->hsm_task_state = HSM_ST_ERR;
4987 goto fsm_start;
4988 }
4989
4990 /* no more data to transfer */
4332a771 4991 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 4992 ap->print_id, qc->dev->devno, status);
e2cec771 4993
6912ccd5
AL
4994 WARN_ON(qc->err_mask);
4995
e2cec771 4996 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4997
e2cec771 4998 /* complete taskfile transaction */
c17ea20d 4999 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5000
5001 poll_next = 0;
1da177e4
LT
5002 break;
5003
14be71f4 5004 case HSM_ST_ERR:
e2cec771
AL
5005 /* make sure qc->err_mask is available to
5006 * know what's wrong and recover
5007 */
5008 WARN_ON(qc->err_mask == 0);
5009
5010 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5011
999bb6f4 5012 /* complete taskfile transaction */
c17ea20d 5013 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5014
5015 poll_next = 0;
e2cec771
AL
5016 break;
5017 default:
bb5cb290 5018 poll_next = 0;
6912ccd5 5019 BUG();
1da177e4
LT
5020 }
5021
bb5cb290 5022 return poll_next;
1da177e4
LT
5023}
5024
65f27f38 5025static void ata_pio_task(struct work_struct *work)
8061f5f0 5026{
65f27f38
DH
5027 struct ata_port *ap =
5028 container_of(work, struct ata_port, port_task.work);
5029 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5030 u8 status;
a1af3734 5031 int poll_next;
8061f5f0 5032
7fb6ec28 5033fsm_start:
a1af3734 5034 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5035
a1af3734
AL
5036 /*
5037 * This is purely heuristic. This is a fast path.
5038 * Sometimes when we enter, BSY will be cleared in
5039 * a chk-status or two. If not, the drive is probably seeking
5040 * or something. Snooze for a couple msecs, then
5041 * chk-status again. If still busy, queue delayed work.
5042 */
5043 status = ata_busy_wait(ap, ATA_BUSY, 5);
5044 if (status & ATA_BUSY) {
5045 msleep(2);
5046 status = ata_busy_wait(ap, ATA_BUSY, 10);
5047 if (status & ATA_BUSY) {
31ce6dae 5048 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5049 return;
5050 }
8061f5f0
TH
5051 }
5052
a1af3734
AL
5053 /* move the HSM */
5054 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5055
a1af3734
AL
5056 /* another command or interrupt handler
5057 * may be running at this point.
5058 */
5059 if (poll_next)
7fb6ec28 5060 goto fsm_start;
8061f5f0
TH
5061}
5062
1da177e4
LT
5063/**
5064 * ata_qc_new - Request an available ATA command, for queueing
5065 * @ap: Port associated with device @dev
5066 * @dev: Device from whom we request an available command structure
5067 *
5068 * LOCKING:
0cba632b 5069 * None.
1da177e4
LT
5070 */
5071
5072static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5073{
5074 struct ata_queued_cmd *qc = NULL;
5075 unsigned int i;
5076
e3180499 5077 /* no command while frozen */
b51e9e5d 5078 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5079 return NULL;
5080
2ab7db1f
TH
5081 /* the last tag is reserved for internal command. */
5082 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5083 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5084 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5085 break;
5086 }
5087
5088 if (qc)
5089 qc->tag = i;
5090
5091 return qc;
5092}
5093
5094/**
5095 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5096 * @dev: Device from whom we request an available command structure
5097 *
5098 * LOCKING:
0cba632b 5099 * None.
1da177e4
LT
5100 */
5101
3373efd8 5102struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5103{
3373efd8 5104 struct ata_port *ap = dev->ap;
1da177e4
LT
5105 struct ata_queued_cmd *qc;
5106
5107 qc = ata_qc_new(ap);
5108 if (qc) {
1da177e4
LT
5109 qc->scsicmd = NULL;
5110 qc->ap = ap;
5111 qc->dev = dev;
1da177e4 5112
2c13b7ce 5113 ata_qc_reinit(qc);
1da177e4
LT
5114 }
5115
5116 return qc;
5117}
5118
1da177e4
LT
5119/**
5120 * ata_qc_free - free unused ata_queued_cmd
5121 * @qc: Command to complete
5122 *
5123 * Designed to free unused ata_queued_cmd object
5124 * in case something prevents using it.
5125 *
5126 * LOCKING:
cca3974e 5127 * spin_lock_irqsave(host lock)
1da177e4
LT
5128 */
5129void ata_qc_free(struct ata_queued_cmd *qc)
5130{
4ba946e9
TH
5131 struct ata_port *ap = qc->ap;
5132 unsigned int tag;
5133
a4631474 5134 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5135
4ba946e9
TH
5136 qc->flags = 0;
5137 tag = qc->tag;
5138 if (likely(ata_tag_valid(tag))) {
4ba946e9 5139 qc->tag = ATA_TAG_POISON;
6cec4a39 5140 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5141 }
1da177e4
LT
5142}
5143
76014427 5144void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5145{
dedaf2b0
TH
5146 struct ata_port *ap = qc->ap;
5147
a4631474
TH
5148 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5149 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5150
5151 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5152 ata_sg_clean(qc);
5153
7401abf2 5154 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5155 if (qc->tf.protocol == ATA_PROT_NCQ)
5156 ap->sactive &= ~(1 << qc->tag);
5157 else
5158 ap->active_tag = ATA_TAG_POISON;
7401abf2 5159
3f3791d3
AL
5160 /* atapi: mark qc as inactive to prevent the interrupt handler
5161 * from completing the command twice later, before the error handler
5162 * is called. (when rc != 0 and atapi request sense is needed)
5163 */
5164 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5165 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5166
1da177e4 5167 /* call completion callback */
77853bf2 5168 qc->complete_fn(qc);
1da177e4
LT
5169}
5170
39599a53
TH
5171static void fill_result_tf(struct ata_queued_cmd *qc)
5172{
5173 struct ata_port *ap = qc->ap;
5174
39599a53 5175 qc->result_tf.flags = qc->tf.flags;
4742d54f 5176 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5177}
5178
f686bcb8
TH
5179/**
5180 * ata_qc_complete - Complete an active ATA command
5181 * @qc: Command to complete
5182 * @err_mask: ATA Status register contents
5183 *
5184 * Indicate to the mid and upper layers that an ATA
5185 * command has completed, with either an ok or not-ok status.
5186 *
5187 * LOCKING:
cca3974e 5188 * spin_lock_irqsave(host lock)
f686bcb8
TH
5189 */
5190void ata_qc_complete(struct ata_queued_cmd *qc)
5191{
5192 struct ata_port *ap = qc->ap;
5193
5194 /* XXX: New EH and old EH use different mechanisms to
5195 * synchronize EH with regular execution path.
5196 *
5197 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5198 * Normal execution path is responsible for not accessing a
5199 * failed qc. libata core enforces the rule by returning NULL
5200 * from ata_qc_from_tag() for failed qcs.
5201 *
5202 * Old EH depends on ata_qc_complete() nullifying completion
5203 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5204 * not synchronize with interrupt handler. Only PIO task is
5205 * taken care of.
5206 */
5207 if (ap->ops->error_handler) {
b51e9e5d 5208 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5209
5210 if (unlikely(qc->err_mask))
5211 qc->flags |= ATA_QCFLAG_FAILED;
5212
5213 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5214 if (!ata_tag_internal(qc->tag)) {
5215 /* always fill result TF for failed qc */
39599a53 5216 fill_result_tf(qc);
f686bcb8
TH
5217 ata_qc_schedule_eh(qc);
5218 return;
5219 }
5220 }
5221
5222 /* read result TF if requested */
5223 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5224 fill_result_tf(qc);
f686bcb8
TH
5225
5226 __ata_qc_complete(qc);
5227 } else {
5228 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5229 return;
5230
5231 /* read result TF if failed or requested */
5232 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5233 fill_result_tf(qc);
f686bcb8
TH
5234
5235 __ata_qc_complete(qc);
5236 }
5237}
5238
dedaf2b0
TH
5239/**
5240 * ata_qc_complete_multiple - Complete multiple qcs successfully
5241 * @ap: port in question
5242 * @qc_active: new qc_active mask
5243 * @finish_qc: LLDD callback invoked before completing a qc
5244 *
5245 * Complete in-flight commands. This functions is meant to be
5246 * called from low-level driver's interrupt routine to complete
5247 * requests normally. ap->qc_active and @qc_active is compared
5248 * and commands are completed accordingly.
5249 *
5250 * LOCKING:
cca3974e 5251 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5252 *
5253 * RETURNS:
5254 * Number of completed commands on success, -errno otherwise.
5255 */
5256int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5257 void (*finish_qc)(struct ata_queued_cmd *))
5258{
5259 int nr_done = 0;
5260 u32 done_mask;
5261 int i;
5262
5263 done_mask = ap->qc_active ^ qc_active;
5264
5265 if (unlikely(done_mask & qc_active)) {
5266 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5267 "(%08x->%08x)\n", ap->qc_active, qc_active);
5268 return -EINVAL;
5269 }
5270
5271 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5272 struct ata_queued_cmd *qc;
5273
5274 if (!(done_mask & (1 << i)))
5275 continue;
5276
5277 if ((qc = ata_qc_from_tag(ap, i))) {
5278 if (finish_qc)
5279 finish_qc(qc);
5280 ata_qc_complete(qc);
5281 nr_done++;
5282 }
5283 }
5284
5285 return nr_done;
5286}
5287
1da177e4
LT
5288static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5289{
5290 struct ata_port *ap = qc->ap;
5291
5292 switch (qc->tf.protocol) {
3dc1d881 5293 case ATA_PROT_NCQ:
1da177e4
LT
5294 case ATA_PROT_DMA:
5295 case ATA_PROT_ATAPI_DMA:
5296 return 1;
5297
5298 case ATA_PROT_ATAPI:
5299 case ATA_PROT_PIO:
1da177e4
LT
5300 if (ap->flags & ATA_FLAG_PIO_DMA)
5301 return 1;
5302
5303 /* fall through */
5304
5305 default:
5306 return 0;
5307 }
5308
5309 /* never reached */
5310}
5311
5312/**
5313 * ata_qc_issue - issue taskfile to device
5314 * @qc: command to issue to device
5315 *
5316 * Prepare an ATA command to submission to device.
5317 * This includes mapping the data into a DMA-able
5318 * area, filling in the S/G table, and finally
5319 * writing the taskfile to hardware, starting the command.
5320 *
5321 * LOCKING:
cca3974e 5322 * spin_lock_irqsave(host lock)
1da177e4 5323 */
8e0e694a 5324void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5325{
5326 struct ata_port *ap = qc->ap;
5327
dedaf2b0
TH
5328 /* Make sure only one non-NCQ command is outstanding. The
5329 * check is skipped for old EH because it reuses active qc to
5330 * request ATAPI sense.
5331 */
5332 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5333
5334 if (qc->tf.protocol == ATA_PROT_NCQ) {
5335 WARN_ON(ap->sactive & (1 << qc->tag));
5336 ap->sactive |= 1 << qc->tag;
5337 } else {
5338 WARN_ON(ap->sactive);
5339 ap->active_tag = qc->tag;
5340 }
5341
e4a70e76 5342 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5343 ap->qc_active |= 1 << qc->tag;
e4a70e76 5344
1da177e4
LT
5345 if (ata_should_dma_map(qc)) {
5346 if (qc->flags & ATA_QCFLAG_SG) {
5347 if (ata_sg_setup(qc))
8e436af9 5348 goto sg_err;
1da177e4
LT
5349 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5350 if (ata_sg_setup_one(qc))
8e436af9 5351 goto sg_err;
1da177e4
LT
5352 }
5353 } else {
5354 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5355 }
5356
5357 ap->ops->qc_prep(qc);
5358
8e0e694a
TH
5359 qc->err_mask |= ap->ops->qc_issue(qc);
5360 if (unlikely(qc->err_mask))
5361 goto err;
5362 return;
1da177e4 5363
8e436af9
TH
5364sg_err:
5365 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5366 qc->err_mask |= AC_ERR_SYSTEM;
5367err:
5368 ata_qc_complete(qc);
1da177e4
LT
5369}
5370
5371/**
5372 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5373 * @qc: command to issue to device
5374 *
5375 * Using various libata functions and hooks, this function
5376 * starts an ATA command. ATA commands are grouped into
5377 * classes called "protocols", and issuing each type of protocol
5378 * is slightly different.
5379 *
0baab86b
EF
5380 * May be used as the qc_issue() entry in ata_port_operations.
5381 *
1da177e4 5382 * LOCKING:
cca3974e 5383 * spin_lock_irqsave(host lock)
1da177e4
LT
5384 *
5385 * RETURNS:
9a3d9eb0 5386 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5387 */
5388
9a3d9eb0 5389unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5390{
5391 struct ata_port *ap = qc->ap;
5392
e50362ec
AL
5393 /* Use polling pio if the LLD doesn't handle
5394 * interrupt driven pio and atapi CDB interrupt.
5395 */
5396 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5397 switch (qc->tf.protocol) {
5398 case ATA_PROT_PIO:
e3472cbe 5399 case ATA_PROT_NODATA:
e50362ec
AL
5400 case ATA_PROT_ATAPI:
5401 case ATA_PROT_ATAPI_NODATA:
5402 qc->tf.flags |= ATA_TFLAG_POLLING;
5403 break;
5404 case ATA_PROT_ATAPI_DMA:
5405 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5406 /* see ata_dma_blacklisted() */
e50362ec
AL
5407 BUG();
5408 break;
5409 default:
5410 break;
5411 }
5412 }
5413
312f7da2 5414 /* select the device */
1da177e4
LT
5415 ata_dev_select(ap, qc->dev->devno, 1, 0);
5416
312f7da2 5417 /* start the command */
1da177e4
LT
5418 switch (qc->tf.protocol) {
5419 case ATA_PROT_NODATA:
312f7da2
AL
5420 if (qc->tf.flags & ATA_TFLAG_POLLING)
5421 ata_qc_set_polling(qc);
5422
e5338254 5423 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5424 ap->hsm_task_state = HSM_ST_LAST;
5425
5426 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5427 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5428
1da177e4
LT
5429 break;
5430
5431 case ATA_PROT_DMA:
587005de 5432 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5433
1da177e4
LT
5434 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5435 ap->ops->bmdma_setup(qc); /* set up bmdma */
5436 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5437 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5438 break;
5439
312f7da2
AL
5440 case ATA_PROT_PIO:
5441 if (qc->tf.flags & ATA_TFLAG_POLLING)
5442 ata_qc_set_polling(qc);
1da177e4 5443
e5338254 5444 ata_tf_to_host(ap, &qc->tf);
312f7da2 5445
54f00389
AL
5446 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5447 /* PIO data out protocol */
5448 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5449 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5450
5451 /* always send first data block using
e27486db 5452 * the ata_pio_task() codepath.
54f00389 5453 */
312f7da2 5454 } else {
54f00389
AL
5455 /* PIO data in protocol */
5456 ap->hsm_task_state = HSM_ST;
5457
5458 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5459 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5460
5461 /* if polling, ata_pio_task() handles the rest.
5462 * otherwise, interrupt handler takes over from here.
5463 */
312f7da2
AL
5464 }
5465
1da177e4
LT
5466 break;
5467
1da177e4 5468 case ATA_PROT_ATAPI:
1da177e4 5469 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5470 if (qc->tf.flags & ATA_TFLAG_POLLING)
5471 ata_qc_set_polling(qc);
5472
e5338254 5473 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5474
312f7da2
AL
5475 ap->hsm_task_state = HSM_ST_FIRST;
5476
5477 /* send cdb by polling if no cdb interrupt */
5478 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5479 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5480 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5481 break;
5482
5483 case ATA_PROT_ATAPI_DMA:
587005de 5484 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5485
1da177e4
LT
5486 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5487 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5488 ap->hsm_task_state = HSM_ST_FIRST;
5489
5490 /* send cdb by polling if no cdb interrupt */
5491 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5492 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5493 break;
5494
5495 default:
5496 WARN_ON(1);
9a3d9eb0 5497 return AC_ERR_SYSTEM;
1da177e4
LT
5498 }
5499
5500 return 0;
5501}
5502
1da177e4
LT
5503/**
5504 * ata_host_intr - Handle host interrupt for given (port, task)
5505 * @ap: Port on which interrupt arrived (possibly...)
5506 * @qc: Taskfile currently active in engine
5507 *
5508 * Handle host interrupt for given queued command. Currently,
5509 * only DMA interrupts are handled. All other commands are
5510 * handled via polling with interrupts disabled (nIEN bit).
5511 *
5512 * LOCKING:
cca3974e 5513 * spin_lock_irqsave(host lock)
1da177e4
LT
5514 *
5515 * RETURNS:
5516 * One if interrupt was handled, zero if not (shared irq).
5517 */
5518
5519inline unsigned int ata_host_intr (struct ata_port *ap,
5520 struct ata_queued_cmd *qc)
5521{
ea54763f 5522 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5523 u8 status, host_stat = 0;
1da177e4 5524
312f7da2 5525 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5526 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5527
312f7da2
AL
5528 /* Check whether we are expecting interrupt in this state */
5529 switch (ap->hsm_task_state) {
5530 case HSM_ST_FIRST:
6912ccd5
AL
5531 /* Some pre-ATAPI-4 devices assert INTRQ
5532 * at this state when ready to receive CDB.
5533 */
1da177e4 5534
312f7da2
AL
5535 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5536 * The flag was turned on only for atapi devices.
5537 * No need to check is_atapi_taskfile(&qc->tf) again.
5538 */
5539 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5540 goto idle_irq;
1da177e4 5541 break;
312f7da2
AL
5542 case HSM_ST_LAST:
5543 if (qc->tf.protocol == ATA_PROT_DMA ||
5544 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5545 /* check status of DMA engine */
5546 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5547 VPRINTK("ata%u: host_stat 0x%X\n",
5548 ap->print_id, host_stat);
312f7da2
AL
5549
5550 /* if it's not our irq... */
5551 if (!(host_stat & ATA_DMA_INTR))
5552 goto idle_irq;
5553
5554 /* before we do anything else, clear DMA-Start bit */
5555 ap->ops->bmdma_stop(qc);
a4f16610
AL
5556
5557 if (unlikely(host_stat & ATA_DMA_ERR)) {
5558 /* error when transfering data to/from memory */
5559 qc->err_mask |= AC_ERR_HOST_BUS;
5560 ap->hsm_task_state = HSM_ST_ERR;
5561 }
312f7da2
AL
5562 }
5563 break;
5564 case HSM_ST:
5565 break;
1da177e4
LT
5566 default:
5567 goto idle_irq;
5568 }
5569
312f7da2
AL
5570 /* check altstatus */
5571 status = ata_altstatus(ap);
5572 if (status & ATA_BUSY)
5573 goto idle_irq;
1da177e4 5574
312f7da2
AL
5575 /* check main status, clearing INTRQ */
5576 status = ata_chk_status(ap);
5577 if (unlikely(status & ATA_BUSY))
5578 goto idle_irq;
1da177e4 5579
312f7da2
AL
5580 /* ack bmdma irq events */
5581 ap->ops->irq_clear(ap);
1da177e4 5582
bb5cb290 5583 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5584
5585 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5586 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5587 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5588
1da177e4
LT
5589 return 1; /* irq handled */
5590
5591idle_irq:
5592 ap->stats.idle_irq++;
5593
5594#ifdef ATA_IRQ_TRAP
5595 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5596 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5597 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5598 return 1;
1da177e4
LT
5599 }
5600#endif
5601 return 0; /* irq not handled */
5602}
5603
5604/**
5605 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5606 * @irq: irq line (unused)
cca3974e 5607 * @dev_instance: pointer to our ata_host information structure
1da177e4 5608 *
0cba632b
JG
5609 * Default interrupt handler for PCI IDE devices. Calls
5610 * ata_host_intr() for each port that is not disabled.
5611 *
1da177e4 5612 * LOCKING:
cca3974e 5613 * Obtains host lock during operation.
1da177e4
LT
5614 *
5615 * RETURNS:
0cba632b 5616 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5617 */
5618
7d12e780 5619irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5620{
cca3974e 5621 struct ata_host *host = dev_instance;
1da177e4
LT
5622 unsigned int i;
5623 unsigned int handled = 0;
5624 unsigned long flags;
5625
5626 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5627 spin_lock_irqsave(&host->lock, flags);
1da177e4 5628
cca3974e 5629 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5630 struct ata_port *ap;
5631
cca3974e 5632 ap = host->ports[i];
c1389503 5633 if (ap &&
029f5468 5634 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5635 struct ata_queued_cmd *qc;
5636
5637 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5638 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5639 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5640 handled |= ata_host_intr(ap, qc);
5641 }
5642 }
5643
cca3974e 5644 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5645
5646 return IRQ_RETVAL(handled);
5647}
5648
34bf2170
TH
5649/**
5650 * sata_scr_valid - test whether SCRs are accessible
5651 * @ap: ATA port to test SCR accessibility for
5652 *
5653 * Test whether SCRs are accessible for @ap.
5654 *
5655 * LOCKING:
5656 * None.
5657 *
5658 * RETURNS:
5659 * 1 if SCRs are accessible, 0 otherwise.
5660 */
5661int sata_scr_valid(struct ata_port *ap)
5662{
5663 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5664}
5665
5666/**
5667 * sata_scr_read - read SCR register of the specified port
5668 * @ap: ATA port to read SCR for
5669 * @reg: SCR to read
5670 * @val: Place to store read value
5671 *
5672 * Read SCR register @reg of @ap into *@val. This function is
5673 * guaranteed to succeed if the cable type of the port is SATA
5674 * and the port implements ->scr_read.
5675 *
5676 * LOCKING:
5677 * None.
5678 *
5679 * RETURNS:
5680 * 0 on success, negative errno on failure.
5681 */
5682int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5683{
5684 if (sata_scr_valid(ap)) {
5685 *val = ap->ops->scr_read(ap, reg);
5686 return 0;
5687 }
5688 return -EOPNOTSUPP;
5689}
5690
5691/**
5692 * sata_scr_write - write SCR register of the specified port
5693 * @ap: ATA port to write SCR for
5694 * @reg: SCR to write
5695 * @val: value to write
5696 *
5697 * Write @val to SCR register @reg of @ap. This function is
5698 * guaranteed to succeed if the cable type of the port is SATA
5699 * and the port implements ->scr_read.
5700 *
5701 * LOCKING:
5702 * None.
5703 *
5704 * RETURNS:
5705 * 0 on success, negative errno on failure.
5706 */
5707int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5708{
5709 if (sata_scr_valid(ap)) {
5710 ap->ops->scr_write(ap, reg, val);
5711 return 0;
5712 }
5713 return -EOPNOTSUPP;
5714}
5715
5716/**
5717 * sata_scr_write_flush - write SCR register of the specified port and flush
5718 * @ap: ATA port to write SCR for
5719 * @reg: SCR to write
5720 * @val: value to write
5721 *
5722 * This function is identical to sata_scr_write() except that this
5723 * function performs flush after writing to the register.
5724 *
5725 * LOCKING:
5726 * None.
5727 *
5728 * RETURNS:
5729 * 0 on success, negative errno on failure.
5730 */
5731int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5732{
5733 if (sata_scr_valid(ap)) {
5734 ap->ops->scr_write(ap, reg, val);
5735 ap->ops->scr_read(ap, reg);
5736 return 0;
5737 }
5738 return -EOPNOTSUPP;
5739}
5740
5741/**
5742 * ata_port_online - test whether the given port is online
5743 * @ap: ATA port to test
5744 *
5745 * Test whether @ap is online. Note that this function returns 0
5746 * if online status of @ap cannot be obtained, so
5747 * ata_port_online(ap) != !ata_port_offline(ap).
5748 *
5749 * LOCKING:
5750 * None.
5751 *
5752 * RETURNS:
5753 * 1 if the port online status is available and online.
5754 */
5755int ata_port_online(struct ata_port *ap)
5756{
5757 u32 sstatus;
5758
5759 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5760 return 1;
5761 return 0;
5762}
5763
5764/**
5765 * ata_port_offline - test whether the given port is offline
5766 * @ap: ATA port to test
5767 *
5768 * Test whether @ap is offline. Note that this function returns
5769 * 0 if offline status of @ap cannot be obtained, so
5770 * ata_port_online(ap) != !ata_port_offline(ap).
5771 *
5772 * LOCKING:
5773 * None.
5774 *
5775 * RETURNS:
5776 * 1 if the port offline status is available and offline.
5777 */
5778int ata_port_offline(struct ata_port *ap)
5779{
5780 u32 sstatus;
5781
5782 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5783 return 1;
5784 return 0;
5785}
0baab86b 5786
77b08fb5 5787int ata_flush_cache(struct ata_device *dev)
9b847548 5788{
977e6b9f 5789 unsigned int err_mask;
9b847548
JA
5790 u8 cmd;
5791
5792 if (!ata_try_flush_cache(dev))
5793 return 0;
5794
6fc49adb 5795 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5796 cmd = ATA_CMD_FLUSH_EXT;
5797 else
5798 cmd = ATA_CMD_FLUSH;
5799
977e6b9f
TH
5800 err_mask = ata_do_simple_cmd(dev, cmd);
5801 if (err_mask) {
5802 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5803 return -EIO;
5804 }
5805
5806 return 0;
9b847548
JA
5807}
5808
6ffa01d8 5809#ifdef CONFIG_PM
cca3974e
JG
5810static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5811 unsigned int action, unsigned int ehi_flags,
5812 int wait)
500530f6
TH
5813{
5814 unsigned long flags;
5815 int i, rc;
5816
cca3974e
JG
5817 for (i = 0; i < host->n_ports; i++) {
5818 struct ata_port *ap = host->ports[i];
500530f6
TH
5819
5820 /* Previous resume operation might still be in
5821 * progress. Wait for PM_PENDING to clear.
5822 */
5823 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5824 ata_port_wait_eh(ap);
5825 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5826 }
5827
5828 /* request PM ops to EH */
5829 spin_lock_irqsave(ap->lock, flags);
5830
5831 ap->pm_mesg = mesg;
5832 if (wait) {
5833 rc = 0;
5834 ap->pm_result = &rc;
5835 }
5836
5837 ap->pflags |= ATA_PFLAG_PM_PENDING;
5838 ap->eh_info.action |= action;
5839 ap->eh_info.flags |= ehi_flags;
5840
5841 ata_port_schedule_eh(ap);
5842
5843 spin_unlock_irqrestore(ap->lock, flags);
5844
5845 /* wait and check result */
5846 if (wait) {
5847 ata_port_wait_eh(ap);
5848 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5849 if (rc)
5850 return rc;
5851 }
5852 }
5853
5854 return 0;
5855}
5856
5857/**
cca3974e
JG
5858 * ata_host_suspend - suspend host
5859 * @host: host to suspend
500530f6
TH
5860 * @mesg: PM message
5861 *
cca3974e 5862 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5863 * function requests EH to perform PM operations and waits for EH
5864 * to finish.
5865 *
5866 * LOCKING:
5867 * Kernel thread context (may sleep).
5868 *
5869 * RETURNS:
5870 * 0 on success, -errno on failure.
5871 */
cca3974e 5872int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5873{
9666f400 5874 int rc;
500530f6 5875
cca3974e 5876 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5877 if (rc == 0)
5878 host->dev->power.power_state = mesg;
500530f6
TH
5879 return rc;
5880}
5881
5882/**
cca3974e
JG
5883 * ata_host_resume - resume host
5884 * @host: host to resume
500530f6 5885 *
cca3974e 5886 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5887 * function requests EH to perform PM operations and returns.
5888 * Note that all resume operations are performed parallely.
5889 *
5890 * LOCKING:
5891 * Kernel thread context (may sleep).
5892 */
cca3974e 5893void ata_host_resume(struct ata_host *host)
500530f6 5894{
cca3974e
JG
5895 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5896 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5897 host->dev->power.power_state = PMSG_ON;
500530f6 5898}
6ffa01d8 5899#endif
500530f6 5900
c893a3ae
RD
5901/**
5902 * ata_port_start - Set port up for dma.
5903 * @ap: Port to initialize
5904 *
5905 * Called just after data structures for each port are
5906 * initialized. Allocates space for PRD table.
5907 *
5908 * May be used as the port_start() entry in ata_port_operations.
5909 *
5910 * LOCKING:
5911 * Inherited from caller.
5912 */
f0d36efd 5913int ata_port_start(struct ata_port *ap)
1da177e4 5914{
2f1f610b 5915 struct device *dev = ap->dev;
6037d6bb 5916 int rc;
1da177e4 5917
f0d36efd
TH
5918 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5919 GFP_KERNEL);
1da177e4
LT
5920 if (!ap->prd)
5921 return -ENOMEM;
5922
6037d6bb 5923 rc = ata_pad_alloc(ap, dev);
f0d36efd 5924 if (rc)
6037d6bb 5925 return rc;
1da177e4 5926
f0d36efd
TH
5927 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5928 (unsigned long long)ap->prd_dma);
1da177e4
LT
5929 return 0;
5930}
5931
3ef3b43d
TH
5932/**
5933 * ata_dev_init - Initialize an ata_device structure
5934 * @dev: Device structure to initialize
5935 *
5936 * Initialize @dev in preparation for probing.
5937 *
5938 * LOCKING:
5939 * Inherited from caller.
5940 */
5941void ata_dev_init(struct ata_device *dev)
5942{
5943 struct ata_port *ap = dev->ap;
72fa4b74
TH
5944 unsigned long flags;
5945
5a04bf4b
TH
5946 /* SATA spd limit is bound to the first device */
5947 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5948
72fa4b74
TH
5949 /* High bits of dev->flags are used to record warm plug
5950 * requests which occur asynchronously. Synchronize using
cca3974e 5951 * host lock.
72fa4b74 5952 */
ba6a1308 5953 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5954 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5955 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5956
72fa4b74
TH
5957 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5958 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5959 dev->pio_mask = UINT_MAX;
5960 dev->mwdma_mask = UINT_MAX;
5961 dev->udma_mask = UINT_MAX;
5962}
5963
1da177e4 5964/**
f3187195
TH
5965 * ata_port_alloc - allocate and initialize basic ATA port resources
5966 * @host: ATA host this allocated port belongs to
1da177e4 5967 *
f3187195
TH
5968 * Allocate and initialize basic ATA port resources.
5969 *
5970 * RETURNS:
5971 * Allocate ATA port on success, NULL on failure.
0cba632b 5972 *
1da177e4 5973 * LOCKING:
f3187195 5974 * Inherited from calling layer (may sleep).
1da177e4 5975 */
f3187195 5976struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5977{
f3187195 5978 struct ata_port *ap;
1da177e4
LT
5979 unsigned int i;
5980
f3187195
TH
5981 DPRINTK("ENTER\n");
5982
5983 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5984 if (!ap)
5985 return NULL;
5986
f4d6d004 5987 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5988 ap->lock = &host->lock;
198e0fed 5989 ap->flags = ATA_FLAG_DISABLED;
f3187195 5990 ap->print_id = -1;
1da177e4 5991 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5992 ap->host = host;
f3187195
TH
5993 ap->dev = host->dev;
5994
5a04bf4b 5995 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5996 ap->active_tag = ATA_TAG_POISON;
5997 ap->last_ctl = 0xFF;
bd5d825c
BP
5998
5999#if defined(ATA_VERBOSE_DEBUG)
6000 /* turn on all debugging levels */
6001 ap->msg_enable = 0x00FF;
6002#elif defined(ATA_DEBUG)
6003 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6004#else
0dd4b21f 6005 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6006#endif
1da177e4 6007
65f27f38
DH
6008 INIT_DELAYED_WORK(&ap->port_task, NULL);
6009 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6010 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6011 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6012 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 6013
838df628 6014 ap->cbl = ATA_CBL_NONE;
838df628 6015
acf356b1
TH
6016 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6017 struct ata_device *dev = &ap->device[i];
38d87234 6018 dev->ap = ap;
72fa4b74 6019 dev->devno = i;
3ef3b43d 6020 ata_dev_init(dev);
acf356b1 6021 }
1da177e4
LT
6022
6023#ifdef ATA_IRQ_TRAP
6024 ap->stats.unhandled_irq = 1;
6025 ap->stats.idle_irq = 1;
6026#endif
1da177e4 6027 return ap;
1da177e4
LT
6028}
6029
f0d36efd
TH
6030static void ata_host_release(struct device *gendev, void *res)
6031{
6032 struct ata_host *host = dev_get_drvdata(gendev);
6033 int i;
6034
6035 for (i = 0; i < host->n_ports; i++) {
6036 struct ata_port *ap = host->ports[i];
6037
ecef7253
TH
6038 if (!ap)
6039 continue;
6040
6041 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6042 ap->ops->port_stop(ap);
f0d36efd
TH
6043 }
6044
ecef7253 6045 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6046 host->ops->host_stop(host);
1aa56cca 6047
1aa506e4
TH
6048 for (i = 0; i < host->n_ports; i++) {
6049 struct ata_port *ap = host->ports[i];
6050
4911487a
TH
6051 if (!ap)
6052 continue;
6053
6054 if (ap->scsi_host)
1aa506e4
TH
6055 scsi_host_put(ap->scsi_host);
6056
4911487a 6057 kfree(ap);
1aa506e4
TH
6058 host->ports[i] = NULL;
6059 }
6060
1aa56cca 6061 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6062}
6063
f3187195
TH
6064/**
6065 * ata_host_alloc - allocate and init basic ATA host resources
6066 * @dev: generic device this host is associated with
6067 * @max_ports: maximum number of ATA ports associated with this host
6068 *
6069 * Allocate and initialize basic ATA host resources. LLD calls
6070 * this function to allocate a host, initializes it fully and
6071 * attaches it using ata_host_register().
6072 *
6073 * @max_ports ports are allocated and host->n_ports is
6074 * initialized to @max_ports. The caller is allowed to decrease
6075 * host->n_ports before calling ata_host_register(). The unused
6076 * ports will be automatically freed on registration.
6077 *
6078 * RETURNS:
6079 * Allocate ATA host on success, NULL on failure.
6080 *
6081 * LOCKING:
6082 * Inherited from calling layer (may sleep).
6083 */
6084struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6085{
6086 struct ata_host *host;
6087 size_t sz;
6088 int i;
6089
6090 DPRINTK("ENTER\n");
6091
6092 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6093 return NULL;
6094
6095 /* alloc a container for our list of ATA ports (buses) */
6096 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6097 /* alloc a container for our list of ATA ports (buses) */
6098 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6099 if (!host)
6100 goto err_out;
6101
6102 devres_add(dev, host);
6103 dev_set_drvdata(dev, host);
6104
6105 spin_lock_init(&host->lock);
6106 host->dev = dev;
6107 host->n_ports = max_ports;
6108
6109 /* allocate ports bound to this host */
6110 for (i = 0; i < max_ports; i++) {
6111 struct ata_port *ap;
6112
6113 ap = ata_port_alloc(host);
6114 if (!ap)
6115 goto err_out;
6116
6117 ap->port_no = i;
6118 host->ports[i] = ap;
6119 }
6120
6121 devres_remove_group(dev, NULL);
6122 return host;
6123
6124 err_out:
6125 devres_release_group(dev, NULL);
6126 return NULL;
6127}
6128
f5cda257
TH
6129/**
6130 * ata_host_alloc_pinfo - alloc host and init with port_info array
6131 * @dev: generic device this host is associated with
6132 * @ppi: array of ATA port_info to initialize host with
6133 * @n_ports: number of ATA ports attached to this host
6134 *
6135 * Allocate ATA host and initialize with info from @ppi. If NULL
6136 * terminated, @ppi may contain fewer entries than @n_ports. The
6137 * last entry will be used for the remaining ports.
6138 *
6139 * RETURNS:
6140 * Allocate ATA host on success, NULL on failure.
6141 *
6142 * LOCKING:
6143 * Inherited from calling layer (may sleep).
6144 */
6145struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6146 const struct ata_port_info * const * ppi,
6147 int n_ports)
6148{
6149 const struct ata_port_info *pi;
6150 struct ata_host *host;
6151 int i, j;
6152
6153 host = ata_host_alloc(dev, n_ports);
6154 if (!host)
6155 return NULL;
6156
6157 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6158 struct ata_port *ap = host->ports[i];
6159
6160 if (ppi[j])
6161 pi = ppi[j++];
6162
6163 ap->pio_mask = pi->pio_mask;
6164 ap->mwdma_mask = pi->mwdma_mask;
6165 ap->udma_mask = pi->udma_mask;
6166 ap->flags |= pi->flags;
6167 ap->ops = pi->port_ops;
6168
6169 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6170 host->ops = pi->port_ops;
6171 if (!host->private_data && pi->private_data)
6172 host->private_data = pi->private_data;
6173 }
6174
6175 return host;
6176}
6177
ecef7253
TH
6178/**
6179 * ata_host_start - start and freeze ports of an ATA host
6180 * @host: ATA host to start ports for
6181 *
6182 * Start and then freeze ports of @host. Started status is
6183 * recorded in host->flags, so this function can be called
6184 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6185 * once. If host->ops isn't initialized yet, its set to the
6186 * first non-dummy port ops.
ecef7253
TH
6187 *
6188 * LOCKING:
6189 * Inherited from calling layer (may sleep).
6190 *
6191 * RETURNS:
6192 * 0 if all ports are started successfully, -errno otherwise.
6193 */
6194int ata_host_start(struct ata_host *host)
6195{
6196 int i, rc;
6197
6198 if (host->flags & ATA_HOST_STARTED)
6199 return 0;
6200
6201 for (i = 0; i < host->n_ports; i++) {
6202 struct ata_port *ap = host->ports[i];
6203
f3187195
TH
6204 if (!host->ops && !ata_port_is_dummy(ap))
6205 host->ops = ap->ops;
6206
ecef7253
TH
6207 if (ap->ops->port_start) {
6208 rc = ap->ops->port_start(ap);
6209 if (rc) {
6210 ata_port_printk(ap, KERN_ERR, "failed to "
6211 "start port (errno=%d)\n", rc);
6212 goto err_out;
6213 }
6214 }
6215
6216 ata_eh_freeze_port(ap);
6217 }
6218
6219 host->flags |= ATA_HOST_STARTED;
6220 return 0;
6221
6222 err_out:
6223 while (--i >= 0) {
6224 struct ata_port *ap = host->ports[i];
6225
6226 if (ap->ops->port_stop)
6227 ap->ops->port_stop(ap);
6228 }
6229 return rc;
6230}
6231
b03732f0 6232/**
cca3974e
JG
6233 * ata_sas_host_init - Initialize a host struct
6234 * @host: host to initialize
6235 * @dev: device host is attached to
6236 * @flags: host flags
6237 * @ops: port_ops
b03732f0
BK
6238 *
6239 * LOCKING:
6240 * PCI/etc. bus probe sem.
6241 *
6242 */
f3187195 6243/* KILLME - the only user left is ipr */
cca3974e
JG
6244void ata_host_init(struct ata_host *host, struct device *dev,
6245 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6246{
cca3974e
JG
6247 spin_lock_init(&host->lock);
6248 host->dev = dev;
6249 host->flags = flags;
6250 host->ops = ops;
b03732f0
BK
6251}
6252
f3187195
TH
6253/**
6254 * ata_host_register - register initialized ATA host
6255 * @host: ATA host to register
6256 * @sht: template for SCSI host
6257 *
6258 * Register initialized ATA host. @host is allocated using
6259 * ata_host_alloc() and fully initialized by LLD. This function
6260 * starts ports, registers @host with ATA and SCSI layers and
6261 * probe registered devices.
6262 *
6263 * LOCKING:
6264 * Inherited from calling layer (may sleep).
6265 *
6266 * RETURNS:
6267 * 0 on success, -errno otherwise.
6268 */
6269int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6270{
6271 int i, rc;
6272
6273 /* host must have been started */
6274 if (!(host->flags & ATA_HOST_STARTED)) {
6275 dev_printk(KERN_ERR, host->dev,
6276 "BUG: trying to register unstarted host\n");
6277 WARN_ON(1);
6278 return -EINVAL;
6279 }
6280
6281 /* Blow away unused ports. This happens when LLD can't
6282 * determine the exact number of ports to allocate at
6283 * allocation time.
6284 */
6285 for (i = host->n_ports; host->ports[i]; i++)
6286 kfree(host->ports[i]);
6287
6288 /* give ports names and add SCSI hosts */
6289 for (i = 0; i < host->n_ports; i++)
6290 host->ports[i]->print_id = ata_print_id++;
6291
6292 rc = ata_scsi_add_hosts(host, sht);
6293 if (rc)
6294 return rc;
6295
fafbae87
TH
6296 /* associate with ACPI nodes */
6297 ata_acpi_associate(host);
6298
f3187195
TH
6299 /* set cable, sata_spd_limit and report */
6300 for (i = 0; i < host->n_ports; i++) {
6301 struct ata_port *ap = host->ports[i];
6302 int irq_line;
6303 u32 scontrol;
6304 unsigned long xfer_mask;
6305
6306 /* set SATA cable type if still unset */
6307 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6308 ap->cbl = ATA_CBL_SATA;
6309
6310 /* init sata_spd_limit to the current value */
6311 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6312 int spd = (scontrol >> 4) & 0xf;
afe3cc51
TH
6313 if (spd)
6314 ap->hw_sata_spd_limit &= (1 << spd) - 1;
f3187195
TH
6315 }
6316 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6317
6318 /* report the secondary IRQ for second channel legacy */
6319 irq_line = host->irq;
6320 if (i == 1 && host->irq2)
6321 irq_line = host->irq2;
6322
6323 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6324 ap->udma_mask);
6325
6326 /* print per-port info to dmesg */
6327 if (!ata_port_is_dummy(ap))
6328 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6329 "ctl 0x%p bmdma 0x%p irq %d\n",
6330 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6331 ata_mode_string(xfer_mask),
6332 ap->ioaddr.cmd_addr,
6333 ap->ioaddr.ctl_addr,
6334 ap->ioaddr.bmdma_addr,
6335 irq_line);
6336 else
6337 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6338 }
6339
6340 /* perform each probe synchronously */
6341 DPRINTK("probe begin\n");
6342 for (i = 0; i < host->n_ports; i++) {
6343 struct ata_port *ap = host->ports[i];
6344 int rc;
6345
6346 /* probe */
6347 if (ap->ops->error_handler) {
6348 struct ata_eh_info *ehi = &ap->eh_info;
6349 unsigned long flags;
6350
6351 ata_port_probe(ap);
6352
6353 /* kick EH for boot probing */
6354 spin_lock_irqsave(ap->lock, flags);
6355
6356 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6357 ehi->action |= ATA_EH_SOFTRESET;
6358 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6359
f4d6d004 6360 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6361 ap->pflags |= ATA_PFLAG_LOADING;
6362 ata_port_schedule_eh(ap);
6363
6364 spin_unlock_irqrestore(ap->lock, flags);
6365
6366 /* wait for EH to finish */
6367 ata_port_wait_eh(ap);
6368 } else {
6369 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6370 rc = ata_bus_probe(ap);
6371 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6372
6373 if (rc) {
6374 /* FIXME: do something useful here?
6375 * Current libata behavior will
6376 * tear down everything when
6377 * the module is removed
6378 * or the h/w is unplugged.
6379 */
6380 }
6381 }
6382 }
6383
6384 /* probes are done, now scan each port's disk(s) */
6385 DPRINTK("host probe begin\n");
6386 for (i = 0; i < host->n_ports; i++) {
6387 struct ata_port *ap = host->ports[i];
6388
6389 ata_scsi_scan_host(ap);
6390 }
6391
6392 return 0;
6393}
6394
f5cda257
TH
6395/**
6396 * ata_host_activate - start host, request IRQ and register it
6397 * @host: target ATA host
6398 * @irq: IRQ to request
6399 * @irq_handler: irq_handler used when requesting IRQ
6400 * @irq_flags: irq_flags used when requesting IRQ
6401 * @sht: scsi_host_template to use when registering the host
6402 *
6403 * After allocating an ATA host and initializing it, most libata
6404 * LLDs perform three steps to activate the host - start host,
6405 * request IRQ and register it. This helper takes necessasry
6406 * arguments and performs the three steps in one go.
6407 *
6408 * LOCKING:
6409 * Inherited from calling layer (may sleep).
6410 *
6411 * RETURNS:
6412 * 0 on success, -errno otherwise.
6413 */
6414int ata_host_activate(struct ata_host *host, int irq,
6415 irq_handler_t irq_handler, unsigned long irq_flags,
6416 struct scsi_host_template *sht)
6417{
6418 int rc;
6419
6420 rc = ata_host_start(host);
6421 if (rc)
6422 return rc;
6423
6424 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6425 dev_driver_string(host->dev), host);
6426 if (rc)
6427 return rc;
6428
4031826b
TH
6429 /* Used to print device info at probe */
6430 host->irq = irq;
6431
f5cda257
TH
6432 rc = ata_host_register(host, sht);
6433 /* if failed, just free the IRQ and leave ports alone */
6434 if (rc)
6435 devm_free_irq(host->dev, irq, host);
6436
6437 return rc;
6438}
6439
720ba126
TH
6440/**
6441 * ata_port_detach - Detach ATA port in prepration of device removal
6442 * @ap: ATA port to be detached
6443 *
6444 * Detach all ATA devices and the associated SCSI devices of @ap;
6445 * then, remove the associated SCSI host. @ap is guaranteed to
6446 * be quiescent on return from this function.
6447 *
6448 * LOCKING:
6449 * Kernel thread context (may sleep).
6450 */
6451void ata_port_detach(struct ata_port *ap)
6452{
6453 unsigned long flags;
6454 int i;
6455
6456 if (!ap->ops->error_handler)
c3cf30a9 6457 goto skip_eh;
720ba126
TH
6458
6459 /* tell EH we're leaving & flush EH */
ba6a1308 6460 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6461 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6462 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6463
6464 ata_port_wait_eh(ap);
6465
6466 /* EH is now guaranteed to see UNLOADING, so no new device
6467 * will be attached. Disable all existing devices.
6468 */
ba6a1308 6469 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6470
6471 for (i = 0; i < ATA_MAX_DEVICES; i++)
6472 ata_dev_disable(&ap->device[i]);
6473
ba6a1308 6474 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6475
6476 /* Final freeze & EH. All in-flight commands are aborted. EH
6477 * will be skipped and retrials will be terminated with bad
6478 * target.
6479 */
ba6a1308 6480 spin_lock_irqsave(ap->lock, flags);
720ba126 6481 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6482 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6483
6484 ata_port_wait_eh(ap);
6485
6486 /* Flush hotplug task. The sequence is similar to
6487 * ata_port_flush_task().
6488 */
28e53bdd 6489 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
720ba126 6490 cancel_delayed_work(&ap->hotplug_task);
28e53bdd 6491 cancel_work_sync(&ap->hotplug_task.work);
720ba126 6492
c3cf30a9 6493 skip_eh:
720ba126 6494 /* remove the associated SCSI host */
cca3974e 6495 scsi_remove_host(ap->scsi_host);
720ba126
TH
6496}
6497
0529c159
TH
6498/**
6499 * ata_host_detach - Detach all ports of an ATA host
6500 * @host: Host to detach
6501 *
6502 * Detach all ports of @host.
6503 *
6504 * LOCKING:
6505 * Kernel thread context (may sleep).
6506 */
6507void ata_host_detach(struct ata_host *host)
6508{
6509 int i;
6510
6511 for (i = 0; i < host->n_ports; i++)
6512 ata_port_detach(host->ports[i]);
6513}
6514
1da177e4
LT
6515/**
6516 * ata_std_ports - initialize ioaddr with standard port offsets.
6517 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6518 *
6519 * Utility function which initializes data_addr, error_addr,
6520 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6521 * device_addr, status_addr, and command_addr to standard offsets
6522 * relative to cmd_addr.
6523 *
6524 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6525 */
0baab86b 6526
1da177e4
LT
6527void ata_std_ports(struct ata_ioports *ioaddr)
6528{
6529 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6530 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6531 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6532 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6533 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6534 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6535 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6536 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6537 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6538 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6539}
6540
0baab86b 6541
374b1873
JG
6542#ifdef CONFIG_PCI
6543
1da177e4
LT
6544/**
6545 * ata_pci_remove_one - PCI layer callback for device removal
6546 * @pdev: PCI device that was removed
6547 *
b878ca5d
TH
6548 * PCI layer indicates to libata via this hook that hot-unplug or
6549 * module unload event has occurred. Detach all ports. Resource
6550 * release is handled via devres.
1da177e4
LT
6551 *
6552 * LOCKING:
6553 * Inherited from PCI layer (may sleep).
6554 */
f0d36efd 6555void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6556{
6557 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6558 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6559
b878ca5d 6560 ata_host_detach(host);
1da177e4
LT
6561}
6562
6563/* move to PCI subsystem */
057ace5e 6564int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6565{
6566 unsigned long tmp = 0;
6567
6568 switch (bits->width) {
6569 case 1: {
6570 u8 tmp8 = 0;
6571 pci_read_config_byte(pdev, bits->reg, &tmp8);
6572 tmp = tmp8;
6573 break;
6574 }
6575 case 2: {
6576 u16 tmp16 = 0;
6577 pci_read_config_word(pdev, bits->reg, &tmp16);
6578 tmp = tmp16;
6579 break;
6580 }
6581 case 4: {
6582 u32 tmp32 = 0;
6583 pci_read_config_dword(pdev, bits->reg, &tmp32);
6584 tmp = tmp32;
6585 break;
6586 }
6587
6588 default:
6589 return -EINVAL;
6590 }
6591
6592 tmp &= bits->mask;
6593
6594 return (tmp == bits->val) ? 1 : 0;
6595}
9b847548 6596
6ffa01d8 6597#ifdef CONFIG_PM
3c5100c1 6598void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6599{
6600 pci_save_state(pdev);
4c90d971 6601 pci_disable_device(pdev);
500530f6 6602
4c90d971 6603 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6604 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6605}
6606
553c4aa6 6607int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6608{
553c4aa6
TH
6609 int rc;
6610
9b847548
JA
6611 pci_set_power_state(pdev, PCI_D0);
6612 pci_restore_state(pdev);
553c4aa6 6613
b878ca5d 6614 rc = pcim_enable_device(pdev);
553c4aa6
TH
6615 if (rc) {
6616 dev_printk(KERN_ERR, &pdev->dev,
6617 "failed to enable device after resume (%d)\n", rc);
6618 return rc;
6619 }
6620
9b847548 6621 pci_set_master(pdev);
553c4aa6 6622 return 0;
500530f6
TH
6623}
6624
3c5100c1 6625int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6626{
cca3974e 6627 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6628 int rc = 0;
6629
cca3974e 6630 rc = ata_host_suspend(host, mesg);
500530f6
TH
6631 if (rc)
6632 return rc;
6633
3c5100c1 6634 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6635
6636 return 0;
6637}
6638
6639int ata_pci_device_resume(struct pci_dev *pdev)
6640{
cca3974e 6641 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6642 int rc;
500530f6 6643
553c4aa6
TH
6644 rc = ata_pci_device_do_resume(pdev);
6645 if (rc == 0)
6646 ata_host_resume(host);
6647 return rc;
9b847548 6648}
6ffa01d8
TH
6649#endif /* CONFIG_PM */
6650
1da177e4
LT
6651#endif /* CONFIG_PCI */
6652
6653
1da177e4
LT
6654static int __init ata_init(void)
6655{
a8601e5f 6656 ata_probe_timeout *= HZ;
1da177e4
LT
6657 ata_wq = create_workqueue("ata");
6658 if (!ata_wq)
6659 return -ENOMEM;
6660
453b07ac
TH
6661 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6662 if (!ata_aux_wq) {
6663 destroy_workqueue(ata_wq);
6664 return -ENOMEM;
6665 }
6666
1da177e4
LT
6667 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6668 return 0;
6669}
6670
6671static void __exit ata_exit(void)
6672{
6673 destroy_workqueue(ata_wq);
453b07ac 6674 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6675}
6676
a4625085 6677subsys_initcall(ata_init);
1da177e4
LT
6678module_exit(ata_exit);
6679
67846b30 6680static unsigned long ratelimit_time;
34af946a 6681static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6682
6683int ata_ratelimit(void)
6684{
6685 int rc;
6686 unsigned long flags;
6687
6688 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6689
6690 if (time_after(jiffies, ratelimit_time)) {
6691 rc = 1;
6692 ratelimit_time = jiffies + (HZ/5);
6693 } else
6694 rc = 0;
6695
6696 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6697
6698 return rc;
6699}
6700
c22daff4
TH
6701/**
6702 * ata_wait_register - wait until register value changes
6703 * @reg: IO-mapped register
6704 * @mask: Mask to apply to read register value
6705 * @val: Wait condition
6706 * @interval_msec: polling interval in milliseconds
6707 * @timeout_msec: timeout in milliseconds
6708 *
6709 * Waiting for some bits of register to change is a common
6710 * operation for ATA controllers. This function reads 32bit LE
6711 * IO-mapped register @reg and tests for the following condition.
6712 *
6713 * (*@reg & mask) != val
6714 *
6715 * If the condition is met, it returns; otherwise, the process is
6716 * repeated after @interval_msec until timeout.
6717 *
6718 * LOCKING:
6719 * Kernel thread context (may sleep)
6720 *
6721 * RETURNS:
6722 * The final register value.
6723 */
6724u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6725 unsigned long interval_msec,
6726 unsigned long timeout_msec)
6727{
6728 unsigned long timeout;
6729 u32 tmp;
6730
6731 tmp = ioread32(reg);
6732
6733 /* Calculate timeout _after_ the first read to make sure
6734 * preceding writes reach the controller before starting to
6735 * eat away the timeout.
6736 */
6737 timeout = jiffies + (timeout_msec * HZ) / 1000;
6738
6739 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6740 msleep(interval_msec);
6741 tmp = ioread32(reg);
6742 }
6743
6744 return tmp;
6745}
6746
dd5b06c4
TH
6747/*
6748 * Dummy port_ops
6749 */
6750static void ata_dummy_noret(struct ata_port *ap) { }
6751static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6752static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6753
6754static u8 ata_dummy_check_status(struct ata_port *ap)
6755{
6756 return ATA_DRDY;
6757}
6758
6759static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6760{
6761 return AC_ERR_SYSTEM;
6762}
6763
6764const struct ata_port_operations ata_dummy_port_ops = {
6765 .port_disable = ata_port_disable,
6766 .check_status = ata_dummy_check_status,
6767 .check_altstatus = ata_dummy_check_status,
6768 .dev_select = ata_noop_dev_select,
6769 .qc_prep = ata_noop_qc_prep,
6770 .qc_issue = ata_dummy_qc_issue,
6771 .freeze = ata_dummy_noret,
6772 .thaw = ata_dummy_noret,
6773 .error_handler = ata_dummy_noret,
6774 .post_internal_cmd = ata_dummy_qc_noret,
6775 .irq_clear = ata_dummy_noret,
6776 .port_start = ata_dummy_ret0,
6777 .port_stop = ata_dummy_noret,
6778};
6779
21b0ad4f
TH
6780const struct ata_port_info ata_dummy_port_info = {
6781 .port_ops = &ata_dummy_port_ops,
6782};
6783
1da177e4
LT
6784/*
6785 * libata is essentially a library of internal helper functions for
6786 * low-level ATA host controller drivers. As such, the API/ABI is
6787 * likely to change as new drivers are added and updated.
6788 * Do not depend on ABI/API stability.
6789 */
6790
e9c83914
TH
6791EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6792EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6793EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6794EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6795EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6796EXPORT_SYMBOL_GPL(ata_std_bios_param);
6797EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6798EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6799EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6800EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6801EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6802EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6803EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6804EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6805EXPORT_SYMBOL_GPL(ata_sg_init);
6806EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6807EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6808EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6809EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6810EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6811EXPORT_SYMBOL_GPL(ata_tf_load);
6812EXPORT_SYMBOL_GPL(ata_tf_read);
6813EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6814EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6815EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6816EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6817EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6818EXPORT_SYMBOL_GPL(ata_check_status);
6819EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6820EXPORT_SYMBOL_GPL(ata_exec_command);
6821EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6822EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6823EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6824EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6825EXPORT_SYMBOL_GPL(ata_data_xfer);
6826EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6827EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6828EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6829EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6830EXPORT_SYMBOL_GPL(ata_bmdma_start);
6831EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6832EXPORT_SYMBOL_GPL(ata_bmdma_status);
6833EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6834EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6835EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6836EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6837EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6838EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6839EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6840EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6841EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6842EXPORT_SYMBOL_GPL(sata_phy_debounce);
6843EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6844EXPORT_SYMBOL_GPL(sata_phy_reset);
6845EXPORT_SYMBOL_GPL(__sata_phy_reset);
6846EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6847EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6848EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6849EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6850EXPORT_SYMBOL_GPL(sata_std_hardreset);
6851EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6852EXPORT_SYMBOL_GPL(ata_dev_classify);
6853EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6854EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6855EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6856EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6857EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6858EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6859EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6860EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6861EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6862EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6863EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6864EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6865EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6866EXPORT_SYMBOL_GPL(sata_scr_valid);
6867EXPORT_SYMBOL_GPL(sata_scr_read);
6868EXPORT_SYMBOL_GPL(sata_scr_write);
6869EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6870EXPORT_SYMBOL_GPL(ata_port_online);
6871EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6872#ifdef CONFIG_PM
cca3974e
JG
6873EXPORT_SYMBOL_GPL(ata_host_suspend);
6874EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6875#endif /* CONFIG_PM */
6a62a04d
TH
6876EXPORT_SYMBOL_GPL(ata_id_string);
6877EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6878EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6919a0a6 6879EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6880EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6881
1bc4ccff 6882EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6883EXPORT_SYMBOL_GPL(ata_timing_compute);
6884EXPORT_SYMBOL_GPL(ata_timing_merge);
6885
1da177e4
LT
6886#ifdef CONFIG_PCI
6887EXPORT_SYMBOL_GPL(pci_test_config_bits);
d491b27b 6888EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
1626aeb8 6889EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
21b0ad4f 6890EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
1da177e4
LT
6891EXPORT_SYMBOL_GPL(ata_pci_init_one);
6892EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6893#ifdef CONFIG_PM
500530f6
TH
6894EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6895EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6896EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6897EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6898#endif /* CONFIG_PM */
67951ade
AC
6899EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6900EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6901#endif /* CONFIG_PCI */
9b847548 6902
ece1d636 6903EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6904EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6905EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6906EXPORT_SYMBOL_GPL(ata_port_freeze);
6907EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6908EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6909EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6910EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6911EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6912EXPORT_SYMBOL_GPL(ata_irq_on);
6913EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6914EXPORT_SYMBOL_GPL(ata_irq_ack);
6915EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6916EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6917
6918EXPORT_SYMBOL_GPL(ata_cable_40wire);
6919EXPORT_SYMBOL_GPL(ata_cable_80wire);
6920EXPORT_SYMBOL_GPL(ata_cable_unknown);
6921EXPORT_SYMBOL_GPL(ata_cable_sata);