Merge 4.4.68 into android-4.4
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / crypto / heh.c
CommitLineData
698ffc03
AC
1/*
2 * HEH: Hash-Encrypt-Hash mode
3 *
4 * Copyright (c) 2016 Google Inc.
5 *
6 * Authors:
7 * Alex Cope <alexcope@google.com>
8 * Eric Biggers <ebiggers@google.com>
9 */
10
11/*
12 * Hash-Encrypt-Hash (HEH) is a proposed block cipher mode of operation which
13 * extends the strong pseudo-random permutation (SPRP) property of block ciphers
14 * (e.g. AES) to arbitrary length input strings. It uses two keyed invertible
15 * hash functions with a layer of ECB encryption applied in-between. The
16 * algorithm is specified by the following Internet Draft:
17 *
18 * https://tools.ietf.org/html/draft-cope-heh-01
19 *
20 * Although HEH can be used as either a regular symmetric cipher or as an AEAD,
21 * currently this module only provides it as a symmetric cipher. Additionally,
22 * only 16-byte nonces are supported.
23 */
24
25#include <crypto/gf128mul.h>
26#include <crypto/internal/hash.h>
27#include <crypto/internal/skcipher.h>
28#include <crypto/scatterwalk.h>
29#include <crypto/skcipher.h>
30#include "internal.h"
31
32/*
33 * The block size is the size of GF(2^128) elements and also the required block
34 * size of the underlying block cipher.
35 */
36#define HEH_BLOCK_SIZE 16
37
38struct heh_instance_ctx {
39 struct crypto_shash_spawn cmac;
58b9edb0 40 struct crypto_shash_spawn poly_hash;
698ffc03
AC
41 struct crypto_skcipher_spawn ecb;
42};
43
44struct heh_tfm_ctx {
45 struct crypto_shash *cmac;
58b9edb0 46 struct crypto_shash *poly_hash; /* keyed with tau_key */
698ffc03 47 struct crypto_ablkcipher *ecb;
698ffc03
AC
48};
49
50struct heh_cmac_data {
51 u8 nonce[HEH_BLOCK_SIZE];
52 __le32 nonce_length;
53 __le32 aad_length;
54 __le32 message_length;
55 __le32 padding;
56};
57
58struct heh_req_ctx { /* aligned to alignmask */
59 be128 beta1_key;
60 be128 beta2_key;
61 union {
62 struct {
63 struct heh_cmac_data data;
64 struct shash_desc desc;
65 /* + crypto_shash_descsize(cmac) */
66 } cmac;
58b9edb0
EB
67 struct {
68 struct shash_desc desc;
69 /* + crypto_shash_descsize(poly_hash) */
70 } poly_hash;
698ffc03
AC
71 struct {
72 u8 keystream[HEH_BLOCK_SIZE];
73 u8 tmp[HEH_BLOCK_SIZE];
74 struct scatterlist tmp_sgl[2];
75 struct ablkcipher_request req;
76 /* + crypto_ablkcipher_reqsize(ecb) */
77 } ecb;
78 } u;
79};
80
81/*
82 * Get the offset in bytes to the last full block, or equivalently the length of
83 * all full blocks excluding the last
84 */
85static inline unsigned int get_tail_offset(unsigned int len)
86{
87 len -= len % HEH_BLOCK_SIZE;
88 return len - HEH_BLOCK_SIZE;
89}
90
91static inline struct heh_req_ctx *heh_req_ctx(struct ablkcipher_request *req)
92{
93 unsigned int alignmask = crypto_ablkcipher_alignmask(
94 crypto_ablkcipher_reqtfm(req));
95
96 return (void *)PTR_ALIGN((u8 *)ablkcipher_request_ctx(req),
97 alignmask + 1);
98}
99
100static inline void async_done(struct crypto_async_request *areq, int err,
101 int (*next_step)(struct ablkcipher_request *,
102 u32))
103{
104 struct ablkcipher_request *req = areq->data;
105
106 if (err)
107 goto out;
108
109 err = next_step(req, req->base.flags & ~CRYPTO_TFM_REQ_MAY_SLEEP);
110 if (err == -EINPROGRESS ||
111 (err == -EBUSY && (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))
112 return;
113out:
114 ablkcipher_request_complete(req, err);
115}
116
117/*
118 * Generate the per-message "beta" keys used by the hashing layers of HEH. The
119 * first beta key is the CMAC of the nonce, the additional authenticated data
120 * (AAD), and the lengths in bytes of the nonce, AAD, and message. The nonce
121 * and AAD are each zero-padded to the next 16-byte block boundary, and the
122 * lengths are serialized as 4-byte little endian integers and zero-padded to
123 * the next 16-byte block boundary.
124 * The second beta key is the first one interpreted as an element in GF(2^128)
125 * and multiplied by x.
126 *
127 * Note that because the nonce and AAD may, in general, be variable-length, the
128 * key generation must be done by a pseudo-random function (PRF) on
129 * variable-length inputs. CBC-MAC does not satisfy this, as it is only a PRF
130 * on fixed-length inputs. CMAC remedies this flaw. Including the lengths of
131 * the nonce, AAD, and message is also critical to avoid collisions.
132 *
133 * That being said, this implementation does not yet operate as an AEAD and
134 * therefore there is never any AAD, nor are variable-length nonces supported.
135 */
136static int generate_betas(struct ablkcipher_request *req,
137 be128 *beta1_key, be128 *beta2_key)
138{
139 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
140 struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm);
141 struct heh_req_ctx *rctx = heh_req_ctx(req);
142 struct heh_cmac_data *data = &rctx->u.cmac.data;
143 struct shash_desc *desc = &rctx->u.cmac.desc;
144 int err;
145
146 BUILD_BUG_ON(sizeof(*data) != 2 * HEH_BLOCK_SIZE);
147 memcpy(data->nonce, req->info, HEH_BLOCK_SIZE);
148 data->nonce_length = cpu_to_le32(HEH_BLOCK_SIZE);
149 data->aad_length = cpu_to_le32(0);
150 data->message_length = cpu_to_le32(req->nbytes);
151 data->padding = cpu_to_le32(0);
152
153 desc->tfm = ctx->cmac;
154 desc->flags = req->base.flags;
155
156 err = crypto_shash_digest(desc, (const u8 *)data, sizeof(*data),
157 (u8 *)beta1_key);
158 if (err)
159 return err;
160
161 gf128mul_x_ble(beta2_key, beta1_key);
162 return 0;
163}
164
58b9edb0
EB
165/*****************************************************************************/
166
698ffc03 167/*
58b9edb0
EB
168 * This is the generic version of poly_hash. It does the GF(2^128)
169 * multiplication by 'tau_key' using a precomputed table, without using any
170 * special CPU instructions. On some platforms, an accelerated version (with
171 * higher cra_priority) may be used instead.
698ffc03 172 */
58b9edb0
EB
173
174struct poly_hash_tfm_ctx {
175 struct gf128mul_4k *tau_key;
176};
177
178struct poly_hash_desc_ctx {
179 be128 digest;
180 unsigned int count;
181};
182
183static int poly_hash_setkey(struct crypto_shash *tfm,
184 const u8 *key, unsigned int keylen)
698ffc03 185{
58b9edb0
EB
186 struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(tfm);
187 be128 key128;
698ffc03 188
58b9edb0
EB
189 if (keylen != HEH_BLOCK_SIZE) {
190 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
191 return -EINVAL;
192 }
193
194 if (tctx->tau_key)
195 gf128mul_free_4k(tctx->tau_key);
196 memcpy(&key128, key, HEH_BLOCK_SIZE);
197 tctx->tau_key = gf128mul_init_4k_ble(&key128);
198 if (!tctx->tau_key)
199 return -ENOMEM;
200 return 0;
201}
202
203static int poly_hash_init(struct shash_desc *desc)
204{
205 struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc);
698ffc03 206
58b9edb0
EB
207 ctx->digest = (be128) { 0 };
208 ctx->count = 0;
209 return 0;
210}
698ffc03 211
58b9edb0
EB
212static int poly_hash_update(struct shash_desc *desc, const u8 *src,
213 unsigned int len)
214{
215 struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
216 struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc);
217 unsigned int partial = ctx->count % HEH_BLOCK_SIZE;
218 u8 *dst = (u8 *)&ctx->digest + partial;
698ffc03 219
58b9edb0 220 ctx->count += len;
698ffc03 221
58b9edb0
EB
222 /* Finishing at least one block? */
223 if (partial + len >= HEH_BLOCK_SIZE) {
698ffc03 224
58b9edb0
EB
225 if (partial) {
226 /* Finish the pending block. */
227 unsigned int n = HEH_BLOCK_SIZE - partial;
228
229 len -= n;
230 do {
231 *dst++ ^= *src++;
232 } while (--n);
233
234 gf128mul_4k_ble(&ctx->digest, tctx->tau_key);
698ffc03
AC
235 }
236
58b9edb0
EB
237 /* Process zero or more full blocks. */
238 while (len >= HEH_BLOCK_SIZE) {
239 be128 coeff;
240
698ffc03 241 memcpy(&coeff, src, HEH_BLOCK_SIZE);
58b9edb0 242 be128_xor(&ctx->digest, &ctx->digest, &coeff);
698ffc03 243 src += HEH_BLOCK_SIZE;
58b9edb0
EB
244 len -= HEH_BLOCK_SIZE;
245 gf128mul_4k_ble(&ctx->digest, tctx->tau_key);
698ffc03 246 }
58b9edb0
EB
247 dst = (u8 *)&ctx->digest;
248 }
698ffc03 249
58b9edb0
EB
250 /* Continue adding the next block to 'digest'. */
251 while (len--)
252 *dst++ ^= *src++;
253 return 0;
254}
255
256static int poly_hash_final(struct shash_desc *desc, u8 *out)
257{
258 struct poly_hash_desc_ctx *ctx = shash_desc_ctx(desc);
259
260 /* Finish the last block if needed. */
261 if (ctx->count % HEH_BLOCK_SIZE) {
262 struct poly_hash_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
263
264 gf128mul_4k_ble(&ctx->digest, tctx->tau_key);
698ffc03 265 }
58b9edb0
EB
266
267 memcpy(out, &ctx->digest, HEH_BLOCK_SIZE);
268 return 0;
698ffc03
AC
269}
270
58b9edb0
EB
271static void poly_hash_exit(struct crypto_tfm *tfm)
272{
273 struct poly_hash_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
274
275 gf128mul_free_4k(tctx->tau_key);
276}
277
278static struct shash_alg poly_hash_alg = {
279 .digestsize = HEH_BLOCK_SIZE,
280 .init = poly_hash_init,
281 .update = poly_hash_update,
282 .final = poly_hash_final,
283 .setkey = poly_hash_setkey,
284 .descsize = sizeof(struct poly_hash_desc_ctx),
285 .base = {
286 .cra_name = "poly_hash",
287 .cra_driver_name = "poly_hash-generic",
288 .cra_priority = 100,
289 .cra_ctxsize = sizeof(struct poly_hash_tfm_ctx),
290 .cra_exit = poly_hash_exit,
291 .cra_module = THIS_MODULE,
292 },
293};
294
295/*****************************************************************************/
296
698ffc03
AC
297/*
298 * Split the message into 16 byte blocks, padding out the last block, and use
299 * the blocks as coefficients in the evaluation of a polynomial over GF(2^128)
300 * at the secret point 'tau_key'. For ease of implementing the higher-level
301 * heh_hash_inv() function, the constant and degree-1 coefficients are swapped
302 * if there is a partial block.
303 *
304 * Mathematically, compute:
305 * if (no partial block)
306 * k^{N-1} * m_0 + ... + k * m_{N-2} + m_{N-1}
307 * else if (partial block)
308 * k^N * m_0 + ... + k^2 * m_{N-2} + k * m_N + m_{N-1}
309 *
310 * where:
311 * t is tau_key
312 * N is the number of full blocks in the message
313 * m_i is the i-th full block in the message for i = 0 to N-1 inclusive
314 * m_N is the partial block of the message zero-padded up to 16 bytes
58b9edb0
EB
315 *
316 * Note that most of this is now separated out into its own keyed hash
317 * algorithm, to allow optimized implementations. However, we still handle the
318 * swapping of the last two coefficients here in the HEH template because this
319 * simplifies the poly_hash algorithms: they don't have to buffer an extra
320 * block, don't have to duplicate as much code, and are more similar to GHASH.
698ffc03 321 */
58b9edb0
EB
322static int poly_hash(struct ablkcipher_request *req, struct scatterlist *sgl,
323 be128 *hash)
698ffc03 324{
58b9edb0
EB
325 struct heh_req_ctx *rctx = heh_req_ctx(req);
326 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
698ffc03 327 struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm);
58b9edb0
EB
328 struct shash_desc *desc = &rctx->u.poly_hash.desc;
329 unsigned int tail_offset = get_tail_offset(req->nbytes);
330 unsigned int tail_len = req->nbytes - tail_offset;
698ffc03 331 be128 tail[2];
58b9edb0
EB
332 unsigned int i, n;
333 struct sg_mapping_iter miter;
334 int err;
335
336 desc->tfm = ctx->poly_hash;
337 desc->flags = req->base.flags;
698ffc03
AC
338
339 /* Handle all full blocks except the last */
58b9edb0
EB
340 err = crypto_shash_init(desc);
341 sg_miter_start(&miter, sgl, sg_nents(sgl),
342 SG_MITER_FROM_SG | SG_MITER_ATOMIC);
343 for (i = 0; i < tail_offset && !err; i += n) {
344 sg_miter_next(&miter);
345 n = min_t(unsigned int, miter.length, tail_offset - i);
346 err = crypto_shash_update(desc, miter.addr, n);
347 }
348 sg_miter_stop(&miter);
349 if (err)
350 return err;
698ffc03
AC
351
352 /* Handle the last full block and the partial block */
353 scatterwalk_map_and_copy(tail, sgl, tail_offset, tail_len, 0);
354
355 if (tail_len != HEH_BLOCK_SIZE) {
356 /* handle the partial block */
357 memset((u8 *)tail + tail_len, 0, sizeof(tail) - tail_len);
58b9edb0
EB
358 err = crypto_shash_update(desc, (u8 *)&tail[1], HEH_BLOCK_SIZE);
359 if (err)
360 return err;
698ffc03 361 }
58b9edb0
EB
362 err = crypto_shash_final(desc, (u8 *)hash);
363 if (err)
364 return err;
365 be128_xor(hash, hash, &tail[0]);
366 return 0;
698ffc03
AC
367}
368
369/*
370 * Transform all full blocks except the last.
371 * This is used by both the hash and inverse hash phases.
372 */
373static int heh_tfm_blocks(struct ablkcipher_request *req,
374 struct scatterlist *src_sgl,
375 struct scatterlist *dst_sgl, unsigned int len,
376 const be128 *hash, const be128 *beta_key)
377{
378 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
379 struct blkcipher_desc desc = { .flags = req->base.flags };
380 struct blkcipher_walk walk;
381 be128 e = *beta_key;
382 int err;
383 unsigned int nbytes;
384
385 blkcipher_walk_init(&walk, dst_sgl, src_sgl, len);
386
387 err = blkcipher_ablkcipher_walk_virt(&desc, &walk, tfm);
388
389 while ((nbytes = walk.nbytes)) {
390 const be128 *src = (be128 *)walk.src.virt.addr;
391 be128 *dst = (be128 *)walk.dst.virt.addr;
392
393 do {
394 gf128mul_x_ble(&e, &e);
395 be128_xor(dst, src, hash);
396 be128_xor(dst, dst, &e);
397 src++;
398 dst++;
399 } while ((nbytes -= HEH_BLOCK_SIZE) >= HEH_BLOCK_SIZE);
400 err = blkcipher_walk_done(&desc, &walk, nbytes);
401 }
402 return err;
403}
404
405/*
406 * The hash phase of HEH. Given a message, compute:
407 *
408 * (m_0 + H, ..., m_{N-2} + H, H, m_N) + (xb, x^2b, ..., x^{N-1}b, b, 0)
409 *
410 * where:
411 * N is the number of full blocks in the message
412 * m_i is the i-th full block in the message for i = 0 to N-1 inclusive
413 * m_N is the unpadded partial block, possibly empty
414 * H is the poly_hash() of the message, keyed by tau_key
415 * b is beta_key
416 * x is the element x in our representation of GF(2^128)
417 *
418 * Note that the partial block remains unchanged, but it does affect the result
419 * of poly_hash() and therefore the transformation of all the full blocks.
420 */
421static int heh_hash(struct ablkcipher_request *req, const be128 *beta_key)
422{
423 be128 hash;
698ffc03
AC
424 unsigned int tail_offset = get_tail_offset(req->nbytes);
425 unsigned int partial_len = req->nbytes % HEH_BLOCK_SIZE;
426 int err;
427
428 /* poly_hash() the full message including the partial block */
58b9edb0
EB
429 err = poly_hash(req, req->src, &hash);
430 if (err)
431 return err;
698ffc03
AC
432
433 /* Transform all full blocks except the last */
434 err = heh_tfm_blocks(req, req->src, req->dst, tail_offset, &hash,
435 beta_key);
436 if (err)
437 return err;
438
439 /* Set the last full block to hash XOR beta_key */
440 be128_xor(&hash, &hash, beta_key);
441 scatterwalk_map_and_copy(&hash, req->dst, tail_offset, HEH_BLOCK_SIZE,
442 1);
443
444 /* Copy the partial block if needed */
445 if (partial_len != 0 && req->src != req->dst) {
446 unsigned int offs = tail_offset + HEH_BLOCK_SIZE;
447
448 scatterwalk_map_and_copy(&hash, req->src, offs, partial_len, 0);
449 scatterwalk_map_and_copy(&hash, req->dst, offs, partial_len, 1);
450 }
451 return 0;
452}
453
454/*
455 * The inverse hash phase of HEH. This undoes the result of heh_hash().
456 */
457static int heh_hash_inv(struct ablkcipher_request *req, const be128 *beta_key)
458{
459 be128 hash;
460 be128 tmp;
461 struct scatterlist tmp_sgl[2];
462 struct scatterlist *tail_sgl;
58b9edb0 463 unsigned int tail_offset = get_tail_offset(req->nbytes);
698ffc03 464 struct scatterlist *sgl = req->dst;
698ffc03
AC
465 int err;
466
467 /*
468 * The last full block was computed as hash XOR beta_key, so XOR it with
469 * beta_key to recover hash.
470 */
471 tail_sgl = scatterwalk_ffwd(tmp_sgl, sgl, tail_offset);
472 scatterwalk_map_and_copy(&hash, tail_sgl, 0, HEH_BLOCK_SIZE, 0);
473 be128_xor(&hash, &hash, beta_key);
474
475 /* Transform all full blocks except the last */
476 err = heh_tfm_blocks(req, sgl, sgl, tail_offset, &hash, beta_key);
477 if (err)
478 return err;
479
480 /*
481 * Recover the last full block. We know 'hash', i.e. the poly_hash() of
482 * the the original message. The last full block was the constant term
483 * of the polynomial. To recover the last full block, temporarily zero
484 * it, compute the poly_hash(), and take the difference from 'hash'.
485 */
486 memset(&tmp, 0, sizeof(tmp));
487 scatterwalk_map_and_copy(&tmp, tail_sgl, 0, HEH_BLOCK_SIZE, 1);
58b9edb0
EB
488 err = poly_hash(req, sgl, &tmp);
489 if (err)
490 return err;
698ffc03
AC
491 be128_xor(&tmp, &tmp, &hash);
492 scatterwalk_map_and_copy(&tmp, tail_sgl, 0, HEH_BLOCK_SIZE, 1);
493 return 0;
494}
495
496static int heh_hash_inv_step(struct ablkcipher_request *req, u32 flags)
497{
498 struct heh_req_ctx *rctx = heh_req_ctx(req);
499
500 return heh_hash_inv(req, &rctx->beta2_key);
501}
502
503static int heh_ecb_step_3(struct ablkcipher_request *req, u32 flags)
504{
505 struct heh_req_ctx *rctx = heh_req_ctx(req);
506 u8 partial_block[HEH_BLOCK_SIZE] __aligned(__alignof__(u32));
507 unsigned int tail_offset = get_tail_offset(req->nbytes);
508 unsigned int partial_offset = tail_offset + HEH_BLOCK_SIZE;
509 unsigned int partial_len = req->nbytes - partial_offset;
510
511 /*
512 * Extract the pad in req->dst at tail_offset, and xor the partial block
513 * with it to create encrypted partial block
514 */
515 scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset,
516 HEH_BLOCK_SIZE, 0);
517 scatterwalk_map_and_copy(partial_block, req->dst, partial_offset,
518 partial_len, 0);
519 crypto_xor(partial_block, rctx->u.ecb.keystream, partial_len);
520
521 /*
522 * Store the encrypted final block and partial block back in dst_sg
523 */
524 scatterwalk_map_and_copy(&rctx->u.ecb.tmp, req->dst, tail_offset,
525 HEH_BLOCK_SIZE, 1);
526 scatterwalk_map_and_copy(partial_block, req->dst, partial_offset,
527 partial_len, 1);
528
529 return heh_hash_inv_step(req, flags);
530}
531
532static void heh_ecb_step_2_done(struct crypto_async_request *areq, int err)
533{
534 return async_done(areq, err, heh_ecb_step_3);
535}
536
537static int heh_ecb_step_2(struct ablkcipher_request *req, u32 flags)
538{
539 struct heh_req_ctx *rctx = heh_req_ctx(req);
540 unsigned int partial_len = req->nbytes % HEH_BLOCK_SIZE;
541 struct scatterlist *tmp_sgl;
542 int err;
543 unsigned int tail_offset = get_tail_offset(req->nbytes);
544
545 if (partial_len == 0)
546 return heh_hash_inv_step(req, flags);
547
548 /*
549 * Extract the final full block, store it in tmp, and then xor that with
550 * the value saved in u.ecb.keystream
551 */
552 scatterwalk_map_and_copy(rctx->u.ecb.tmp, req->dst, tail_offset,
553 HEH_BLOCK_SIZE, 0);
554 crypto_xor(rctx->u.ecb.keystream, rctx->u.ecb.tmp, HEH_BLOCK_SIZE);
555
556 /*
557 * Encrypt the value in rctx->u.ecb.keystream to create the pad for the
558 * partial block.
559 * We cannot encrypt stack buffers, so re-use the dst_sg to do this
560 * encryption to avoid a malloc. The value at tail_offset is stored in
561 * tmp, and will be restored later.
562 */
563 scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset,
564 HEH_BLOCK_SIZE, 1);
565 tmp_sgl = scatterwalk_ffwd(rctx->u.ecb.tmp_sgl, req->dst, tail_offset);
566 ablkcipher_request_set_callback(&rctx->u.ecb.req, flags,
567 heh_ecb_step_2_done, req);
568 ablkcipher_request_set_crypt(&rctx->u.ecb.req, tmp_sgl, tmp_sgl,
569 HEH_BLOCK_SIZE, NULL);
570 err = crypto_ablkcipher_encrypt(&rctx->u.ecb.req);
571 if (err)
572 return err;
573 return heh_ecb_step_3(req, flags);
574}
575
576static void heh_ecb_full_done(struct crypto_async_request *areq, int err)
577{
578 return async_done(areq, err, heh_ecb_step_2);
579}
580
581/*
582 * The encrypt phase of HEH. This uses ECB encryption, with special handling
583 * for the partial block at the end if any. The source data is already in
584 * req->dst, so the encryption happens in-place.
585 *
586 * After the encrypt phase we continue on to the inverse hash phase. The
587 * functions calls are chained to support asynchronous ECB algorithms.
588 */
589static int heh_ecb(struct ablkcipher_request *req, bool decrypt)
590{
591 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
592 struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(tfm);
593 struct heh_req_ctx *rctx = heh_req_ctx(req);
594 struct ablkcipher_request *ecb_req = &rctx->u.ecb.req;
595 unsigned int tail_offset = get_tail_offset(req->nbytes);
596 unsigned int full_len = tail_offset + HEH_BLOCK_SIZE;
597 int err;
598
599 /*
600 * Save the last full block before it is encrypted/decrypted. This will
601 * be used later to encrypt/decrypt the partial block
602 */
603 scatterwalk_map_and_copy(rctx->u.ecb.keystream, req->dst, tail_offset,
604 HEH_BLOCK_SIZE, 0);
605
606 /* Encrypt/decrypt all full blocks */
607 ablkcipher_request_set_tfm(ecb_req, ctx->ecb);
608 ablkcipher_request_set_callback(ecb_req, req->base.flags,
609 heh_ecb_full_done, req);
610 ablkcipher_request_set_crypt(ecb_req, req->dst, req->dst, full_len,
611 NULL);
612 if (decrypt)
613 err = crypto_ablkcipher_decrypt(ecb_req);
614 else
615 err = crypto_ablkcipher_encrypt(ecb_req);
616 if (err)
617 return err;
618
619 return heh_ecb_step_2(req, req->base.flags);
620}
621
622static int heh_crypt(struct ablkcipher_request *req, bool decrypt)
623{
698ffc03
AC
624 struct heh_req_ctx *rctx = heh_req_ctx(req);
625 int err;
626
627 /* Inputs must be at least one full block */
628 if (req->nbytes < HEH_BLOCK_SIZE)
629 return -EINVAL;
630
698ffc03
AC
631 err = generate_betas(req, &rctx->beta1_key, &rctx->beta2_key);
632 if (err)
633 return err;
634
635 if (decrypt)
636 swap(rctx->beta1_key, rctx->beta2_key);
637
638 err = heh_hash(req, &rctx->beta1_key);
639 if (err)
640 return err;
641
642 return heh_ecb(req, decrypt);
643}
644
645static int heh_encrypt(struct ablkcipher_request *req)
646{
647 return heh_crypt(req, false);
648}
649
650static int heh_decrypt(struct ablkcipher_request *req)
651{
652 return heh_crypt(req, true);
653}
654
655static int heh_setkey(struct crypto_ablkcipher *parent, const u8 *key,
656 unsigned int keylen)
657{
658 struct heh_tfm_ctx *ctx = crypto_ablkcipher_ctx(parent);
659 struct crypto_shash *cmac = ctx->cmac;
660 struct crypto_ablkcipher *ecb = ctx->ecb;
661 SHASH_DESC_ON_STACK(desc, cmac);
662 u8 *derived_keys;
663 u8 digest[HEH_BLOCK_SIZE];
664 unsigned int i;
665 int err;
666
667 /* set prf_key = key */
668 crypto_shash_clear_flags(cmac, CRYPTO_TFM_REQ_MASK);
669 crypto_shash_set_flags(cmac, crypto_ablkcipher_get_flags(parent) &
670 CRYPTO_TFM_REQ_MASK);
671 err = crypto_shash_setkey(cmac, key, keylen);
672 crypto_ablkcipher_set_flags(parent, crypto_shash_get_flags(cmac) &
673 CRYPTO_TFM_RES_MASK);
674 if (err)
675 return err;
676
677 /*
678 * Generate tau_key and ecb_key as follows:
679 * tau_key = cmac(prf_key, 0x00...01)
680 * ecb_key = cmac(prf_key, 0x00...02) || cmac(prf_key, 0x00...03) || ...
681 * truncated to keylen bytes
682 */
683 derived_keys = kzalloc(round_up(HEH_BLOCK_SIZE + keylen,
684 HEH_BLOCK_SIZE), GFP_KERNEL);
685 if (!derived_keys)
686 return -ENOMEM;
687 desc->tfm = cmac;
688 desc->flags = (crypto_shash_get_flags(cmac) & CRYPTO_TFM_REQ_MASK);
689 for (i = 0; i < keylen + HEH_BLOCK_SIZE; i += HEH_BLOCK_SIZE) {
690 derived_keys[i + HEH_BLOCK_SIZE - 1] =
691 0x01 + i / HEH_BLOCK_SIZE;
692 err = crypto_shash_digest(desc, derived_keys + i,
693 HEH_BLOCK_SIZE, digest);
694 if (err)
695 goto out;
696 memcpy(derived_keys + i, digest, HEH_BLOCK_SIZE);
697 }
698
58b9edb0
EB
699 err = crypto_shash_setkey(ctx->poly_hash, derived_keys, HEH_BLOCK_SIZE);
700 if (err)
698ffc03
AC
701 goto out;
702
703 crypto_ablkcipher_clear_flags(ecb, CRYPTO_TFM_REQ_MASK);
704 crypto_ablkcipher_set_flags(ecb, crypto_ablkcipher_get_flags(parent) &
705 CRYPTO_TFM_REQ_MASK);
706 err = crypto_ablkcipher_setkey(ecb, derived_keys + HEH_BLOCK_SIZE,
707 keylen);
708 crypto_ablkcipher_set_flags(parent, crypto_ablkcipher_get_flags(ecb) &
709 CRYPTO_TFM_RES_MASK);
710out:
711 kzfree(derived_keys);
712 return err;
713}
714
715static int heh_init_tfm(struct crypto_tfm *tfm)
716{
717 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
718 struct heh_instance_ctx *ictx = crypto_instance_ctx(inst);
719 struct heh_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
720 struct crypto_shash *cmac;
58b9edb0 721 struct crypto_shash *poly_hash;
698ffc03
AC
722 struct crypto_ablkcipher *ecb;
723 unsigned int reqsize;
724 int err;
725
726 cmac = crypto_spawn_shash(&ictx->cmac);
727 if (IS_ERR(cmac))
728 return PTR_ERR(cmac);
729
58b9edb0
EB
730 poly_hash = crypto_spawn_shash(&ictx->poly_hash);
731 err = PTR_ERR(poly_hash);
732 if (IS_ERR(poly_hash))
733 goto err_free_cmac;
734
698ffc03
AC
735 ecb = crypto_spawn_skcipher(&ictx->ecb);
736 err = PTR_ERR(ecb);
737 if (IS_ERR(ecb))
58b9edb0 738 goto err_free_poly_hash;
698ffc03
AC
739
740 ctx->cmac = cmac;
58b9edb0 741 ctx->poly_hash = poly_hash;
698ffc03
AC
742 ctx->ecb = ecb;
743
744 reqsize = crypto_tfm_alg_alignmask(tfm) &
745 ~(crypto_tfm_ctx_alignment() - 1);
58b9edb0
EB
746 reqsize += max3(offsetof(struct heh_req_ctx, u.cmac.desc) +
747 sizeof(struct shash_desc) +
748 crypto_shash_descsize(cmac),
749 offsetof(struct heh_req_ctx, u.poly_hash.desc) +
750 sizeof(struct shash_desc) +
751 crypto_shash_descsize(poly_hash),
752 offsetof(struct heh_req_ctx, u.ecb.req) +
753 sizeof(struct ablkcipher_request) +
754 crypto_ablkcipher_reqsize(ecb));
698ffc03 755 tfm->crt_ablkcipher.reqsize = reqsize;
58b9edb0 756
698ffc03
AC
757 return 0;
758
58b9edb0
EB
759err_free_poly_hash:
760 crypto_free_shash(poly_hash);
698ffc03
AC
761err_free_cmac:
762 crypto_free_shash(cmac);
763 return err;
764}
765
766static void heh_exit_tfm(struct crypto_tfm *tfm)
767{
768 struct heh_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
769
698ffc03 770 crypto_free_shash(ctx->cmac);
58b9edb0 771 crypto_free_shash(ctx->poly_hash);
698ffc03
AC
772 crypto_free_ablkcipher(ctx->ecb);
773}
774
775static void heh_free_instance(struct crypto_instance *inst)
776{
777 struct heh_instance_ctx *ctx = crypto_instance_ctx(inst);
778
779 crypto_drop_shash(&ctx->cmac);
58b9edb0 780 crypto_drop_shash(&ctx->poly_hash);
698ffc03
AC
781 crypto_drop_skcipher(&ctx->ecb);
782 kfree(inst);
783}
784
785/*
786 * Create an instance of HEH as a ablkcipher.
787 *
788 * This relies on underlying CMAC and ECB algorithms, usually cmac(aes) and
789 * ecb(aes). For performance reasons we support asynchronous ECB algorithms.
790 * However, we do not yet support asynchronous CMAC algorithms because CMAC is
791 * only used on a small fixed amount of data per request, independent of the
792 * request length. This would change if AEAD or variable-length nonce support
793 * were to be exposed.
794 */
795static int heh_create_common(struct crypto_template *tmpl, struct rtattr **tb,
796 const char *full_name, const char *cmac_name,
58b9edb0 797 const char *poly_hash_name, const char *ecb_name)
698ffc03
AC
798{
799 struct crypto_attr_type *algt;
800 struct crypto_instance *inst;
801 struct heh_instance_ctx *ctx;
802 struct shash_alg *cmac;
58b9edb0 803 struct shash_alg *poly_hash;
698ffc03
AC
804 struct crypto_alg *ecb;
805 int err;
806
807 algt = crypto_get_attr_type(tb);
808 if (IS_ERR(algt))
809 return PTR_ERR(algt);
810
811 /* User must be asking for something compatible with ablkcipher */
812 if ((algt->type ^ CRYPTO_ALG_TYPE_ABLKCIPHER) & algt->mask)
813 return -EINVAL;
814
815 /* Allocate the ablkcipher instance */
816 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
817 if (!inst)
818 return -ENOMEM;
819
820 ctx = crypto_instance_ctx(inst);
821
58b9edb0 822 /* Set up the cmac spawn */
698ffc03 823 ctx->cmac.base.inst = inst;
58b9edb0 824 err = crypto_grab_shash(&ctx->cmac, cmac_name, 0, 0);
698ffc03
AC
825 if (err)
826 goto err_free_inst;
827 cmac = crypto_spawn_shash_alg(&ctx->cmac);
828 err = -EINVAL;
829 if (cmac->digestsize != HEH_BLOCK_SIZE)
830 goto err_drop_cmac;
831
58b9edb0
EB
832 /* Set up the poly_hash spawn */
833 ctx->poly_hash.base.inst = inst;
834 err = crypto_grab_shash(&ctx->poly_hash, poly_hash_name, 0, 0);
835 if (err)
836 goto err_drop_cmac;
837 poly_hash = crypto_spawn_shash_alg(&ctx->poly_hash);
838 err = -EINVAL;
839 if (poly_hash->digestsize != HEH_BLOCK_SIZE)
840 goto err_drop_poly_hash;
841
842 /* Set up the ecb spawn */
698ffc03
AC
843 ctx->ecb.base.inst = inst;
844 err = crypto_grab_skcipher(&ctx->ecb, ecb_name, 0,
845 crypto_requires_sync(algt->type,
846 algt->mask));
847 if (err)
58b9edb0 848 goto err_drop_poly_hash;
698ffc03
AC
849 ecb = crypto_skcipher_spawn_alg(&ctx->ecb);
850
851 /* HEH only supports block ciphers with 16 byte block size */
852 err = -EINVAL;
853 if (ecb->cra_blocksize != HEH_BLOCK_SIZE)
854 goto err_drop_ecb;
855
856 /* The underlying "ECB" algorithm must not require an IV */
857 err = -EINVAL;
858 if ((ecb->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_BLKCIPHER) {
859 if (ecb->cra_blkcipher.ivsize != 0)
860 goto err_drop_ecb;
861 } else {
862 if (ecb->cra_ablkcipher.ivsize != 0)
863 goto err_drop_ecb;
864 }
865
866 /* Set the instance names */
867 err = -ENAMETOOLONG;
868 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
58b9edb0
EB
869 "heh_base(%s,%s,%s)", cmac->base.cra_driver_name,
870 poly_hash->base.cra_driver_name,
698ffc03
AC
871 ecb->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
872 goto err_drop_ecb;
873
874 err = -ENAMETOOLONG;
875 if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME,
876 "%s", full_name) >= CRYPTO_MAX_ALG_NAME)
877 goto err_drop_ecb;
878
879 /* Finish initializing the instance */
880
881 inst->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
58b9edb0 882 (ecb->cra_flags & CRYPTO_ALG_ASYNC);
698ffc03
AC
883 inst->alg.cra_blocksize = HEH_BLOCK_SIZE;
884 inst->alg.cra_ctxsize = sizeof(struct heh_tfm_ctx);
885 inst->alg.cra_alignmask = ecb->cra_alignmask | (__alignof__(be128) - 1);
886 inst->alg.cra_priority = ecb->cra_priority;
887 inst->alg.cra_type = &crypto_ablkcipher_type;
888 inst->alg.cra_init = heh_init_tfm;
889 inst->alg.cra_exit = heh_exit_tfm;
890
891 inst->alg.cra_ablkcipher.setkey = heh_setkey;
892 inst->alg.cra_ablkcipher.encrypt = heh_encrypt;
893 inst->alg.cra_ablkcipher.decrypt = heh_decrypt;
894 if ((ecb->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_BLKCIPHER) {
895 inst->alg.cra_ablkcipher.min_keysize = ecb->cra_blkcipher.min_keysize;
896 inst->alg.cra_ablkcipher.max_keysize = ecb->cra_blkcipher.max_keysize;
897 } else {
898 inst->alg.cra_ablkcipher.min_keysize = ecb->cra_ablkcipher.min_keysize;
899 inst->alg.cra_ablkcipher.max_keysize = ecb->cra_ablkcipher.max_keysize;
900 }
901 inst->alg.cra_ablkcipher.ivsize = HEH_BLOCK_SIZE;
902
903 /* Register the instance */
904 err = crypto_register_instance(tmpl, inst);
905 if (err)
906 goto err_drop_ecb;
907 return 0;
908
909err_drop_ecb:
910 crypto_drop_skcipher(&ctx->ecb);
58b9edb0
EB
911err_drop_poly_hash:
912 crypto_drop_shash(&ctx->poly_hash);
698ffc03
AC
913err_drop_cmac:
914 crypto_drop_shash(&ctx->cmac);
915err_free_inst:
916 kfree(inst);
917 return err;
918}
919
920static int heh_create(struct crypto_template *tmpl, struct rtattr **tb)
921{
922 const char *cipher_name;
923 char full_name[CRYPTO_MAX_ALG_NAME];
924 char cmac_name[CRYPTO_MAX_ALG_NAME];
925 char ecb_name[CRYPTO_MAX_ALG_NAME];
926
927 /* Get the name of the requested block cipher (e.g. aes) */
928 cipher_name = crypto_attr_alg_name(tb[1]);
929 if (IS_ERR(cipher_name))
930 return PTR_ERR(cipher_name);
931
932 if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "heh(%s)", cipher_name) >=
933 CRYPTO_MAX_ALG_NAME)
934 return -ENAMETOOLONG;
935
936 if (snprintf(cmac_name, CRYPTO_MAX_ALG_NAME, "cmac(%s)", cipher_name) >=
937 CRYPTO_MAX_ALG_NAME)
938 return -ENAMETOOLONG;
939
940 if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", cipher_name) >=
941 CRYPTO_MAX_ALG_NAME)
942 return -ENAMETOOLONG;
943
58b9edb0
EB
944 return heh_create_common(tmpl, tb, full_name, cmac_name, "poly_hash",
945 ecb_name);
698ffc03
AC
946}
947
948static struct crypto_template heh_tmpl = {
949 .name = "heh",
950 .create = heh_create,
951 .free = heh_free_instance,
952 .module = THIS_MODULE,
953};
954
955static int heh_base_create(struct crypto_template *tmpl, struct rtattr **tb)
956{
957 char full_name[CRYPTO_MAX_ALG_NAME];
958 const char *cmac_name;
58b9edb0 959 const char *poly_hash_name;
698ffc03
AC
960 const char *ecb_name;
961
962 cmac_name = crypto_attr_alg_name(tb[1]);
963 if (IS_ERR(cmac_name))
964 return PTR_ERR(cmac_name);
965
58b9edb0
EB
966 poly_hash_name = crypto_attr_alg_name(tb[2]);
967 if (IS_ERR(poly_hash_name))
968 return PTR_ERR(poly_hash_name);
969
970 ecb_name = crypto_attr_alg_name(tb[3]);
698ffc03
AC
971 if (IS_ERR(ecb_name))
972 return PTR_ERR(ecb_name);
973
58b9edb0
EB
974 if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "heh_base(%s,%s,%s)",
975 cmac_name, poly_hash_name, ecb_name) >=
976 CRYPTO_MAX_ALG_NAME)
698ffc03
AC
977 return -ENAMETOOLONG;
978
58b9edb0
EB
979 return heh_create_common(tmpl, tb, full_name, cmac_name, poly_hash_name,
980 ecb_name);
698ffc03
AC
981}
982
983/*
984 * If HEH is instantiated as "heh_base" instead of "heh", then specific
58b9edb0
EB
985 * implementations of cmac, poly_hash, and ecb can be specified instead of just
986 * the cipher.
698ffc03
AC
987 */
988static struct crypto_template heh_base_tmpl = {
989 .name = "heh_base",
990 .create = heh_base_create,
991 .free = heh_free_instance,
992 .module = THIS_MODULE,
993};
994
995static int __init heh_module_init(void)
996{
997 int err;
998
999 err = crypto_register_template(&heh_tmpl);
1000 if (err)
1001 return err;
1002
1003 err = crypto_register_template(&heh_base_tmpl);
1004 if (err)
1005 goto out_undo_heh;
1006
58b9edb0
EB
1007 err = crypto_register_shash(&poly_hash_alg);
1008 if (err)
1009 goto out_undo_heh_base;
1010
698ffc03
AC
1011 return 0;
1012
58b9edb0
EB
1013out_undo_heh_base:
1014 crypto_unregister_template(&heh_base_tmpl);
698ffc03
AC
1015out_undo_heh:
1016 crypto_unregister_template(&heh_tmpl);
1017 return err;
1018}
1019
1020static void __exit heh_module_exit(void)
1021{
1022 crypto_unregister_template(&heh_tmpl);
1023 crypto_unregister_template(&heh_base_tmpl);
58b9edb0 1024 crypto_unregister_shash(&poly_hash_alg);
698ffc03
AC
1025}
1026
1027module_init(heh_module_init);
1028module_exit(heh_module_exit);
1029
1030MODULE_LICENSE("GPL");
1031MODULE_DESCRIPTION("Hash-Encrypt-Hash block cipher mode");
1032MODULE_ALIAS_CRYPTO("heh");
1033MODULE_ALIAS_CRYPTO("heh_base");